1
|
Xue JY, Chen MT, Jian YH, Liang LL, Yang XR, Sun SH, Liu P, Liu QY, Jiang Y, Liu MN. The role of the TREM receptor family in cardiovascular diseases: Functions, mechanisms, and therapeutic target. Life Sci 2025; 369:123555. [PMID: 40068732 DOI: 10.1016/j.lfs.2025.123555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 03/15/2025]
Abstract
The Triggering Receptor Expressed in the Myeloid Cells (TREM) family represents an emerging subgroup within the immunoglobulin superfamily, which includes key members such as TREM-1, TREM-2, TREM-3, TREM-like transcript-1 (TLT-1), TLT-2, and TLT-4. TREM-1 serves as a potent amplifier of immune responses, exacerbating atherosclerosis and myocardial injury by enhancing inflammatory reactions. In contrast, TREM-2 exerts protective effects by regulating lipid metabolism, mitigating inflammation, and promoting phagocytic activity, thereby attenuating cardiovascular damage. Both soluble TLT-1 and TLT-4 have been identified as potential biomarkers for cardiovascular risk. In recent years, the roles of the TREM family in the pathogenesis of cardiovascular diseases (CVD) have garnered growing interest within the scientific community. This review aims to illuminate the functional roles, underlying mechanisms, and clinical relevance of TREM family members in the regulation of CVD, while exploring their potential applications in early diagnosis, disease monitoring, and the development of novel therapeutic targets for CVD, ultimately laying a foundation for their clinical translation and advancement in precision medicine.
Collapse
Affiliation(s)
- Jin-Yi Xue
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Ming-Tai Chen
- Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
| | - Yu-Hong Jian
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Ling-Ling Liang
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xin-Rui Yang
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Shi-Han Sun
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Ping Liu
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Qiu-Yu Liu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Yan Jiang
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Meng-Nan Liu
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
2
|
Terada Y, Li W, Amrute JM, Bery AI, Liu CR, Nunna V, Frye CC, Dun H, Koenig AL, Luehmann HP, Heo GS, Owen MC, Wein AN, Liu Y, Ritter JH, Prabhu SD, Nava RG, Gelman AE, Cella M, Colonna M, Lavine KJ, Kreisel D. Tissue-resident CCR2 + macrophage TREM-1/3 signaling is necessary for monocyte and neutrophil recruitment to injured hearts. Cell Rep 2025; 44:115380. [PMID: 40042972 DOI: 10.1016/j.celrep.2025.115380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/16/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025] Open
Abstract
Triggering receptor expressed on myeloid cells 1 (TREM-1) has been shown to amplify inflammatory signals, such as Toll-like receptor signaling, after infection and sterile injury. While previous studies have demonstrated that TREM-1 activation in circulating immune cells promotes injury, the role of TREM-1 signaling in tissue-resident cells in the context of sterile inflammation remains poorly understood. Here, we used a cardiac transplantation model to dissect how Trem1/3 expression on heart-resident cells regulates sterile inflammation. TREM-1 is expressed in heart-resident C-C chemokine receptor 2 (CCR2)+ macrophages in mice and humans. TREM-1/3 signaling in tissue-resident CCR2+ macrophages promotes C-C motif chemokine ligand 3 (CCL3) production and is critical for recruiting neutrophils and CCR2+ monocytes after heart transplantation. We demonstrate prolonged allograft survival after transplantation of Trem1/3-deficient compared with wild-type hearts. We identify TREM-1/3 signaling in donor grafts as a potential future therapeutic target to blunt inflammation after myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yuriko Terada
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wenjun Li
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Junedh M Amrute
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amit I Bery
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles R Liu
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Venkatrao Nunna
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christian Corbin Frye
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hao Dun
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew L Koenig
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hannah P Luehmann
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gyu Seong Heo
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Macee C Owen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexander N Wein
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yongjian Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jon H Ritter
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sumanth D Prabhu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ruben G Nava
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marina Cella
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kory J Lavine
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Fan Z, Wang L, Sun S, Ge Z. The properties of TREM1 and its emerging role in pain-related diseases. Mol Brain 2025; 18:15. [PMID: 40011963 PMCID: PMC11866596 DOI: 10.1186/s13041-025-01187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/08/2025] [Indexed: 02/28/2025] Open
Abstract
The TREM1 receptor, a member of the TREMs family, is expressed by myeloid cells and functions as an initiator or enhancer of the inflammatory response, playing a pivotal role in the regulation of inflammation. In recent years, it has been found that TREM1-mediated inflammatory response is involved in the regulation of pain-related diseases. This article provides an extensive review on the structural characteristics and distribution patterns, ligand, signaling pathways, inhibitors, and pathophysiological roles of TREM1 in pain disorders aiming to further elucidate its biological function and offer novel insights for clinical interventions targeting pain-related diseases.
Collapse
Affiliation(s)
- Zhenzhen Fan
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Longde Wang
- Expert Workstation of Academician Wang Longde, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Songtang Sun
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
| | - Zhaoming Ge
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China.
- Expert Workstation of Academician Wang Longde, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Gansu Provincial Neurology Clinical Medical Research Center, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Song W, Zhou ZM, Zhang LL, Shu HF, Xia JR, Qin X, Hua R, Zhang YM. Infiltrating peripheral monocyte TREM-1 mediates dopaminergic neuron injury in substantia nigra of Parkinson's disease model mice. Cell Death Dis 2025; 16:18. [PMID: 39809747 PMCID: PMC11733277 DOI: 10.1038/s41419-025-07333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/20/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Neuroinflammation is a key factor in the pathogenesis of Parkinson's disease (PD). Activated microglia in the central nervous system (CNS) and infiltration of peripheral immune cells contribute to dopaminergic neuron loss. However, the role of peripheral immune responses, particularly triggering receptor expressed on myeloid cells-1 (TREM-1), in PD remains unclear. Using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP)-induced PD mouse model, we examined TREM-1 expression and monocyte infiltration in the substantia nigra pars compacta (SNpc). We found that MPTP increased peripheral monocytes, and deletion of peripheral monocytes protected against MPTP neurotoxicity in the SNpc. TREM-1 inhibition, both genetically and pharmacologically, reduced monocyte infiltration, alleviated neuroinflammation, and preserved dopaminergic neurons, resulting in improved motor function. Furthermore, adoptive transfer of TREM-1-expressing monocytes from PD model mice to naive mice induced neuronal damage and motor deficits. These results underscore the critical role of peripheral monocytes and TREM-1 in PD progression, suggesting that targeting TREM-1 could be a promising therapeutic approach to prevent dopaminergic neurodegeneration and motor dysfunction in PD. Schematic diagram of monocyte TREM-1-mediated dopaminergic neuron damage. The figure illustrates that in experimental MPTP-induced PD model mice, the number of inflammatory monocytes in the peripheral blood increases, after which the monocytes infiltrate the CNS through the Blood-Brain Barrier(BBB). These infiltrating monocytes increase the release of inflammatory cytokines and eventually cause neuronal injury. TREM-1 gene deletion and pharmacological blockade limit inflammatory monocyte recruitment into the SNpc and ameliorate neuroinflammatory events and the loss of dopaminergic neurons.
Collapse
Affiliation(s)
- Wei Song
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- Yancheng Stomatological Hospital, Yancheng, China
| | - Zi-Ming Zhou
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Le-le Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Hai-Feng Shu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Jin-Ru Xia
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xia Qin
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Rong Hua
- Department of Emergency, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Yong-Mei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
5
|
Chen X, Yu L, Meng S, Zhao J, Huang X, Wang Z, Zhou Z, Huang Y, Hong T, Duan J, Su T, Cao Z, Chi Y, Huang T, Wang H. Inhibition of TREM-1 ameliorates angiotensin II-induced atrial fibrillation by attenuating macrophage infiltration and inflammation through the PI3K/AKT/FoxO3a signaling pathway. Cell Signal 2024; 124:111458. [PMID: 39384003 DOI: 10.1016/j.cellsig.2024.111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Inflammation and infiltration of immune cells are intricately linked to the pathogenesis of atrial fibrillation (AF). Triggering receptor expressed on myeloid cells-1 (TREM-1), an enhancer of inflammation, is implicated in various cardiovascular disorders. However, the precise role and potential mechanisms of TREM-1 in the development of AF remain ambiguous. Atrial samples from patients with AF were used to assess the expression levels of TREM-1. An angiotensin II (Ang II)-induced AF mouse model was established to assess the functionality of TREM-1. Cardiac function and AF inducibility were assessed through echocardiography, programmed transvenous cardiac pacing, and atrial electrophysiological mapping. Peripheral blood and atrial inflammatory cells were assessed using flow cytometry. Using histology, bulk RNA sequencing, biochemical analyses, and cell cultures, the mechanistic role of TREM-1 in AF was elucidated. TREM-1 expression was upregulated and co-localized with macrophages in the atria of patients with AF. Pharmacological inhibition of TREM-1 decreased Ang II-induced atrial enlargement and electrical remodeling. TREM-1 inhibition also ameliorated Ang II-induced NLRP3 inflammasome activation, inflammatory factor release, atrial fibrosis, and macrophage infiltration. Transcriptomic analysis revealed that TREM-1 modulates Ang II-induced inflammation through the PI3K/AKT/FoxO3a signaling pathway. In vitro studies further supported these findings, demonstrating that TREM-1 activation exacerbates Ang II-induced inflammation, while overexpression of FoxO3a counteracts this effect. This study discovered the critical role of TREM-1 in the pathogenesis of AF and its underlying molecular mechanisms. Inhibition of TREM-1 provides a new therapeutic strategy for the treatment of AF.
Collapse
Affiliation(s)
- Xin Chen
- Postgraduate Training Base of General Hospital of Northern Theater Command, Jinzhou Medical University, Jinzhou, Liaoning 121001, PR China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Liming Yu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Shan Meng
- Postgraduate Training Base of General Hospital of Northern Theater Command, Jinzhou Medical University, Jinzhou, Liaoning 121001, PR China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jikai Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xinyi Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zhishang Wang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zijun Zhou
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yuting Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Tao Hong
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Postgraduate College, Dalian Medical University, Dalian, Liaoning 116000, PR China; Pediatric Surgery Ward, Fuwai Hospital Chinese Academy of Medical Sciences, ShenZhen 518000, PR China
| | - Jinfeng Duan
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Postgraduate College, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Tong Su
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, PR China
| | - Zijun Cao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Postgraduate College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, PR China
| | - Yanbang Chi
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Department of Obstetrics and Gynecology, General Hospital of Northern Theater Command, Shenyang 110016, PR China
| | - Tao Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| | - Huishan Wang
- Postgraduate Training Base of General Hospital of Northern Theater Command, Jinzhou Medical University, Jinzhou, Liaoning 121001, PR China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
6
|
Chen Z, Yi X, Fu W, Wu Y, Zhong X, Fan C, Jiang Y, Zhou Q, Peng J, Liao J, You Z, Tan J. Higher soluble TREM-1 levels are associated with cognitive impairment after acute ischemic stroke. Front Aging Neurosci 2024; 16:1463065. [PMID: 39649719 PMCID: PMC11621044 DOI: 10.3389/fnagi.2024.1463065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/11/2024] [Indexed: 12/11/2024] Open
Abstract
Background and purpose Triggering receptor expressed on myeloid cells-1 (TREM-1) was reported to be critical for mediating the neurological function after stroke, while the impact of soluble TREM-1 (sTREM-1) on cognitive impairment after ischemic stroke is unclear. We aimed to explore the association between sTREM-1 and post-stroke cognitive impairment (PSCI). Methods We prospectively recruited consecutive ischemic stroke patients who admitted hospital within 7 days of onset. Serum sTREM-1 concentrations were measured after admission. Cognitive function was assessed at 90 days follow-up using the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). PSCI was defined as a MMSE score of <27 or a MoCA score < 26. Results A total of 291 patients (mean age, 66.6 years; 46.0% female) were enrolled for this study. Among these participants, the median sTREM-1 concentrations were 289.4 pg/mL. According to the MoCA score, 153 (52.6%) patients experienced PSCI at 3 months. After adjustment for confounding risk factors by multivariate regression analysis, patients with sTREM-1 levels in the fourth quartile were more likely to have increased risk 3-month PSCI (as compared with the first quartile, odds ratio 12.22, 95% confidence intervals, 5.20-28.71, P = 0.001). Restricted cubic spline further confirmed a dose-dependent relationship between sTREM-1 levels and PSCI (P = 0.003 for linearity). Similar significant findings were observed when the cognitive impairment was diagnosed according to the MMSE criterion. Conclusion Our study revealed that higher serum sTREM-1 levels at admission were associated with increased risk of 3-month PSCI.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Neurology, Mianzhu People’s Hospital, Mianzhu, Sichuan, China
| | - Xin Yi
- Department of Neurology, Mianzhu People’s Hospital, Mianzhu, Sichuan, China
| | - Wei Fu
- Department of Neurology, Mianzhu People’s Hospital, Mianzhu, Sichuan, China
| | - Yong Wu
- Department of Neurology, Mianzhu People’s Hospital, Mianzhu, Sichuan, China
| | - Xingju Zhong
- Department of Neurology, Mianzhu People’s Hospital, Mianzhu, Sichuan, China
| | - Chaoli Fan
- Department of Neurology, Mianzhu People’s Hospital, Mianzhu, Sichuan, China
| | - Yu Jiang
- Department of Neurology, Mianzhu People’s Hospital, Mianzhu, Sichuan, China
| | - Qi Zhou
- Department of Neurology, Mianzhu People’s Hospital, Mianzhu, Sichuan, China
| | - Jie Peng
- Department of Neurology, Mianzhu People’s Hospital, Mianzhu, Sichuan, China
| | - Jieyu Liao
- Department of Neurology, Mianzhu People’s Hospital, Mianzhu, Sichuan, China
| | - Zhike You
- Department of Neurology, Mianzhu People’s Hospital, Mianzhu, Sichuan, China
| | - Jingyu Tan
- Department of Endocrinology, Mianzhu People’s Hospital, Mianzhu, Sichuan, China
| |
Collapse
|
7
|
Ramatchandirin B, Balamurugan MA, Desiraju S, Chung Y, Wojczyk BS, MohanKumar K. Stored RBC transfusions leads to the systemic inflammatory response syndrome in anemic murine neonates. Inflamm Res 2024; 73:1859-1873. [PMID: 39235608 PMCID: PMC11540732 DOI: 10.1007/s00011-024-01936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024] Open
Abstract
OBJECTIVE RBC transfusions (RBCT) are life-saving treatment for premature and critically ill infants. However, the procedure has been associated with the development of systemic inflammatory response syndrome (SIRS) and potentially multiple organ dysfunction syndrome (MODS) in neonates. The present study aimed to investigate the mechanisms of RBCT-related SIRS in severely anemic murine neonates. METHODS C57BL/6 (WT), TLR4-/- and myeloid-specific triggered myeloid receptor-1 (trem1)-/- mouse pups were studied in 4 groups (n = 6 each): (1) naïve controls, (2) transfused control, (3) anemic (hematocrit 20-24%) and (4) anemic with RBC transfused using our established murine model of phlebotomy-induced anemia (PIA) and RBC transfusion. Plasma was measured for quantifying inflammatory cytokines (IFN-γ, IL-1β, TNF-α, IL-6, MIP-1α, MIP-1β, MIP2 and LIX) using a Luminex assay. In vitro studies included (i) sensitization by exposing the cells to a low level of lipopolysaccharide (LPS; 500 ng/ml) and (ii) trem1-siRNA transfection with/without plasma supernatant from stored RBC to assess the acute inflammatory response through trem1 by qRT-PCR and immunoblotting. RESULTS Anemic murine pups developed cytokine storm within 2 h of receiving stored RBCs, which increased until 6 h post-transfusion, as compared to non-anemic mice receiving stored RBCTs ("transfusion controls"), in a TLR4-independent fashion. Nonetheless, severely anemic pups had elevated circulating endotoxin levels, thereby sensitizing circulating monocytes to presynthesize proinflammatory cytokines (IFN-γ, IL-1β, TNF-α, IL-6, MIP-1α, MIP-1β, MIP2, LIX) and express trem1. Silencing trem1 expression in Raw264.7 cells mitigated both endotoxin-associated presynthesis of proinflammatory cytokines and the RBCT-induced release of inflammatory cytokines. Indeed, myeloid-specific trem1-/- murine pups had significantly reduced evidence of SIRS following RBCTs. CONCLUSION Severe anemia-associated low-grade inflammation sensitizes monocytes to enhance the synthesis of proinflammatory cytokines and trem1. In this setting, RBCTs further activate these monocytes, thereby inducing SIRS. Inhibiting trem1 in myeloid cells, including monocytes, alleviates the inflammatory response associated with the combined effects of anemia and RBCTs in murine neonates.
Collapse
Affiliation(s)
- Balamurugan Ramatchandirin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Marie Amalie Balamurugan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Suneetha Desiraju
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Yerin Chung
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Boguslaw S Wojczyk
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Krishnan MohanKumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Child Health Research Institute, Omaha, NE, 68198, USA.
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
8
|
Yu J, Chen Y, Pan X, Chen J, Mai Z, Zhang Y, Wang X, Zhou G, Bukhari SA, Ma D, Deng L. Diagnostic and Prognostic Value of Soluble Triggering Receptor Expressed on Myeloid Cells-1 (sTREM-1) for Septic Cardiomyopathy. J Inflamm Res 2024; 17:7869-7879. [PMID: 39494206 PMCID: PMC11531277 DOI: 10.2147/jir.s481792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose The early diagnosis of septic cardiomyopathy remains a challenge. The present work aims to evaluate the diagnostic and prognostic value of plasma soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) levels in septic cardiomyopathy when compared with traditional myocardial biomarkers. Methods In the 143 sepsis enrolled patients, 67 and 76 patients were classified as non-septic cardiomyopathy and septic cardiomyopathy, respectively. Their blood samples were harvested up to 14th day after hospital admission for measurements of sTREM-1 and other biomarkers, such as N-terminal pronatriuretic peptide (NT-proBNP), highly sensitive troponin (TNT-HS), myoglobin (MYO), creatine kinase isoenzyme (CK-MB), etc. All the data were collected at 8:00 a.m. The area under the receiver operating characteristic curve was obtained to assess the diagnostic accuracy of those biomarkers. The Log rank test was utilized to evaluate the prognostic value of sTREM-1 on septic cardiomyopathy. Results Circulating sTREM-1 showed a high specificity (88.1%) and moderate sensitivity (64.5%) to distinguish patients with septic cardiomyopathy in the 143 septic patients. The diagnostic efficiency of sTREM-1 was higher than inflammatory biomarkers and traditional myocardial markers. Logistic regression revealed that plasma sTREM-1 was an independent predictor of septic cardiomyopathy. Furthermore, in the whole septic cardiomyopathy cohorts, the sTREM-1 levels in the non-survivors were significantly higher than those of survivors during ICU stay. In addition, the left ventricular systolic dysfunction had a high odds ratio (3.968) to predict 90-day mortality in septic patients with cardiomyopathy. Conclusion High plasma sTREM-1 level may be a diagnostic marker in predicting ICU poor outcome of patients with septic cardiomyopathy.
Collapse
Affiliation(s)
- Jiamin Yu
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, People’s Republic of China
| | - Yongxia Chen
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, People’s Republic of China
| | - Xiaoyan Pan
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, People’s Republic of China
| | - Ji Chen
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, People’s Republic of China
| | - Zhenhua Mai
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, People’s Republic of China
| | - Yuanli Zhang
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, People’s Republic of China
| | - Xiaoyan Wang
- Doctoral Scientific Research Center, Lianjiang People’s Hospital, Zhanjiang, 524400, People’s Republic of China
- Affiliated Lianjiang People’s Hospital, Guangdong Medical University, Zhanjiang, 524400, People’s Republic of China
- Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, People’s Republic of China
| | - Gaosheng Zhou
- Department of Critical Care Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People’s Hospital, Yichang, Hubei, 443003, People’s Republic of China
| | - Sayed Adam Bukhari
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
- Perioperative and Systems Medicine Laboratory, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People’s Republic of China
| | - Liehua Deng
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, People’s Republic of China
| |
Collapse
|
9
|
Vinolo E, Maillefer M, Jolly L, Colné N, Meiffren G, Carrasco K, Derive M. The potential of targeting TREM-1 in IBD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:301-330. [PMID: 39521605 DOI: 10.1016/bs.apha.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Innate immune dysfunction is a hallmark of the pathogenesis of Inflammatory Bowel Disease, both in Crohn's disease and ulcerative colitis. Despite considerable efforts in research to better understand the pathophysiology of IBD and for the development of new therapeutic modalities for IBD patients, there is no therapy specifically targeting the dysregulations of the innate immune response available today in that field. TREM-1 is exclusively expressed by innate immune cells and is an immune amplifier. Its engagement following the primary activation of Pattern Recognition Receptors, including Toll-Like Receptors, triggers the development of a dysregulated and sustained innate immune response, promoting the perpetuation of the inflammatory response in the mucosa of IBD patients, microscopic mucosal tissue alterations, impaired autophagy, impaired epithelial barrier integrity and function, ulcerations, and mucosal damages. In patients, TREM-1 activation is associated with the active status of the disease as well as with severity. Blocking TREM-1 in experimental colitis attenuates the dysregulated innate immune response leading to improved clinical signs. Anti-TREM-1 approaches have the potential of controlling the pathogenic dysregulation of the immune response in IBD by targeting an upstream amplification loop of the activation of innate immunity.
Collapse
|
10
|
Garlapati V, Luo Q, Posma J, Aluia M, Nguyen TS, Grunz K, Molitor M, Finger S, Harms G, Bopp T, Ruf W, Wenzel P. Macrophage-Expressed Coagulation Factor VII Promotes Adverse Cardiac Remodeling. Circ Res 2024; 135:841-855. [PMID: 39234697 DOI: 10.1161/circresaha.123.324114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Excess fibrotic remodeling causes cardiac dysfunction in ischemic heart disease, driven by MAP (mitogen-activated protein) kinase-dependent TGF-ß1 (transforming growth factor-ß1) activation by coagulation signaling of myeloid cells. How coagulation-inflammatory circuits can be specifically targeted to achieve beneficial macrophage reprogramming after myocardial infarction (MI) is not completely understood. METHODS Mice with permanent ligation of the left anterior descending artery were used to model nonreperfused MI and analyzed by single-cell RNA sequencing, protein expression changes, confocal microscopy, and longitudinal monitoring of recovery. We probed the role of the tissue factor (TF)-FVIIa (activated factor VII)-integrin ß1-PAR2 (protease-activated receptor 2) signaling complex by utilizing genetic mouse models and pharmacological intervention. RESULTS Cleavage-insensitive PAR2R38E and myeloid cell integrin ß1-deficient mice had improved cardiac function after MI compared with controls. Proximity ligation assays of monocytic cells demonstrated that colocalization of FVIIa with integrin ß1 was diminished in monocyte/macrophage FVII-deficient mice after MI. Compared with controls, F7fl/fl CX3CR1 (CX3C motif chemokine receptor 1)Cre mice showed reduced TGF-ß1 and MAP kinase activation, as well as cardiac dysfunction after MI, despite unaltered overall recruitment of myeloid cells. Single-cell mRNA sequencing of CD45 (cluster of differentiation 45)+ cells 3 and 7 days after MI uncovered a trajectory from recruited monocytes to inflammatory TF+/TREM (triggered receptor expressed on myeloid cells) 1+ macrophages requiring F7. As early as 7 days after MI, macrophage F7 deletion led to an expansion of reparative Olfml 3 (olfactomedin-like protein 3)+ macrophages and, conversely, to a reduction of TF+/TREM1+ macrophages, which were also reduced in PAR2R38E mice. Short-term treatment from days 1 to 5 after nonreperfused MI with a monoclonal antibody inhibiting the macrophage TF-FVIIa-PAR2 signaling complex without anticoagulant activity improved cardiac dysfunction, decreased excess fibrosis, attenuated vascular endothelial dysfunction, and increased survival 28 days after MI. CONCLUSIONS Extravascular TF-FVIIa-PAR2 complex signaling drives inflammatory macrophage polarization in ischemic heart disease. Targeting this signaling complex for specific therapeutic macrophage reprogramming following MI attenuates cardiac fibrosis and improves cardiovascular function.
Collapse
Affiliation(s)
- Venkata Garlapati
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
- Department of Cardiology (V.G., Q.L., M.A., M.M., S.F., P.W.), University Medical Center Mainz, Germany
- German Center for Cardiovascular Research-Partner site Rhine-Main (V.G., Q.L., M.A., M.M., W.R., P.W.), University Medical Center Mainz, Germany
| | - Qi Luo
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
- Department of Cardiology (V.G., Q.L., M.A., M.M., S.F., P.W.), University Medical Center Mainz, Germany
- German Center for Cardiovascular Research-Partner site Rhine-Main (V.G., Q.L., M.A., M.M., W.R., P.W.), University Medical Center Mainz, Germany
- Department of Biochemistry, Cardiovascular Research Maastricht University, the Netherlands (Q.L.)
| | - Jens Posma
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
| | - Melania Aluia
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
- Department of Cardiology (V.G., Q.L., M.A., M.M., S.F., P.W.), University Medical Center Mainz, Germany
- German Center for Cardiovascular Research-Partner site Rhine-Main (V.G., Q.L., M.A., M.M., W.R., P.W.), University Medical Center Mainz, Germany
| | - Than Son Nguyen
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
| | - Kristin Grunz
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
| | - Michael Molitor
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
- Department of Cardiology (V.G., Q.L., M.A., M.M., S.F., P.W.), University Medical Center Mainz, Germany
- German Center for Cardiovascular Research-Partner site Rhine-Main (V.G., Q.L., M.A., M.M., W.R., P.W.), University Medical Center Mainz, Germany
| | - Stefanie Finger
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
- Department of Cardiology (V.G., Q.L., M.A., M.M., S.F., P.W.), University Medical Center Mainz, Germany
| | - Gregory Harms
- Institute of Immunology and Research Center for Immunotherapy (G.H., T.B.), University Medical Center Mainz, Germany
- Cell Biology Unit (G.H.), University Medical Center Mainz, Germany
- Department of Biology, Wilkes University, Wilkes-Barre, PA (G.H.)
| | - Tobias Bopp
- Institute of Immunology and Research Center for Immunotherapy (G.H., T.B.), University Medical Center Mainz, Germany
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
- German Center for Cardiovascular Research-Partner site Rhine-Main (V.G., Q.L., M.A., M.M., W.R., P.W.), University Medical Center Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA (W.R.)
| | - Philip Wenzel
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
- Department of Cardiology (V.G., Q.L., M.A., M.M., S.F., P.W.), University Medical Center Mainz, Germany
- German Center for Cardiovascular Research-Partner site Rhine-Main (V.G., Q.L., M.A., M.M., W.R., P.W.), University Medical Center Mainz, Germany
| |
Collapse
|
11
|
Fan Y, Xu Y, Huo Z, Zhang H, Peng L, Jiang X, Thomson AW, Dai H. Role of triggering receptor expressed on myeloid cells-1 in kidney diseases: A biomarker and potential therapeutic target. Chin Med J (Engl) 2024; 137:1663-1673. [PMID: 38809056 PMCID: PMC11268828 DOI: 10.1097/cm9.0000000000003197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Indexed: 05/30/2024] Open
Abstract
ABSTRACT Triggering receptor expressed on myeloid cells-1 (TREM-1) is a member of the immunoglobulin superfamily. As an amplifier of the inflammatory response, TREM-1 is mainly involved in the production of inflammatory mediators and the regulation of cell survival. TREM-1 has been studied in infectious diseases and more recently in non-infectious disorders. More and more studies have shown that TREM-1 plays an important pathogenic role in kidney diseases. There is evidence that TREM-1 can not only be used as a biomarker for diagnosis of disease but also as a potential therapeutic target to guide the development of novel therapeutic agents for kidney disease. This review summarized molecular biology of TREM-1 and its signaling pathways as well as immune response in the progress of acute kidney injury, renal fibrosis, diabetic nephropathy, immune nephropathy, and renal cell carcinoma.
Collapse
Affiliation(s)
- Yuxi Fan
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ye Xu
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Medical College of Guangxi University, Nanning, Guangxi 530004, China
| | - Zhi Huo
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Hedong Zhang
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Longkai Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xin Jiang
- Department of Organ Transplantation, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People’s Hospital), Zhengzhou, Henan 450000, China
| | - Angus W. Thomson
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Helong Dai
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
12
|
Ertel MV, da Silva ABA, de Sousa DF, Dos Santos CJ, da Silva TM, da Silva-Sales MFM, de Oliveira Matos A, Sales-Campos H. Who is who within the universe of TREM-like transcripts (TREML)? Life Sci 2024; 348:122696. [PMID: 38710279 DOI: 10.1016/j.lfs.2024.122696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
The Triggering Receptor Expressed on Myeloid Cells (TREM) family of receptors plays a crucial role in the immune response across various species. Particularly, TREM-1 and TREM-2 have been extensively studied, both in terms of their applications and their expression sites and signaling pathways. However, the same is not observed for the other family members collectively known as TREM-like-transcripts (TREML). The TREML family consists of eight receptors, with TREML1-5 identified in humans and mice, TREML-6 exclusive found in mice, TREML-7 in dogs and horses, and TREML-8 in rabbits and opossums. Despite the limited data available on the TREML members, they have been implicated in different immune and non-immune activities, which have been proposed to display both pro and anti-inflammatory activities, and to influence fundamental biological processes such as coagulation, bone and neurological development. In this review, we have compiled available information regarding the already discovered members of the family and provided foundational framework for understanding the function, localization, and therapeutic potential of all TREML members. Additionally, we hope that this review may shed light on this family of receptors, whose underlying mechanisms are still awaiting elucidation, while emphasizing the need for future studies to explore their functions and potential therapeutic application.
Collapse
Affiliation(s)
- Márcia Verônica Ertel
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | | | - Daniel Francisco de Sousa
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Cairo José Dos Santos
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Tatiane Mendonça da Silva
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | | | - Amanda de Oliveira Matos
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Helioswilton Sales-Campos
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
13
|
Ramonfaur D, Buckley LF, Arthur V, Yang Y, Claggett BL, Ndumele CE, Walker KA, Austin T, Odden MC, Floyd JS, Sanders-van Wijk S, Njoroge J, Kizer JR, Kitzman D, Konety SH, Schrack J, Liu F, Windham BG, Palta P, Coresh J, Yu B, Shah AM. High Throughput Plasma Proteomics and Risk of Heart Failure and Frailty in Late Life. JAMA Cardiol 2024; 9:649-658. [PMID: 38809565 PMCID: PMC11137660 DOI: 10.1001/jamacardio.2024.1178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/05/2024] [Indexed: 05/30/2024]
Abstract
Importance Heart failure (HF) and frailty frequently coexist and may share a common pathobiology, although the underlying mechanisms remain unclear. Understanding these mechanisms may provide guidance for preventing and treating both conditions. Objective To identify shared pathways between incident HF and frailty in late life using large-scale proteomics. Design, Setting, and Participants In this cohort study, 4877 aptamers (Somascan v4) were measured among participants in the community-based longitudinal Atherosclerosis Risk In Communities (ARIC) cohort study at visit 3 (V3; 1993-1995; n = 10 638) and at visit 5 (V5; 2011-2013; n = 3908). Analyses were externally replicated among 3189 participants in the Cardiovascular Health Study (CHS). Data analysis was conducted from February 2022 to June 2023. Exposures Protein aptamers, measured at study V3 and V5. Main Outcomes and Measures Outcomes assessed included incident HF hospitalization after V3 and after V5, prevalent frailty at V5, and incident frailty between V5 and visit 6 (V6; 2016-2017; n = 4131). Frailty was assessed using the Fried criteria. Analyses were adjusted for age, gender, race, field center, hypertension, diabetes, smoking status, body mass index, estimated glomerular filtration rate, prevalent coronary heart disease, prevalent atrial fibrillation, and history of myocardial infarction. Mendelian randomization (MR) analysis was performed to assess potential causal effects of candidate proteins on HF and frailty. Results A total of 4877 protein aptamers were measured among 10 638 participants at V3 (mean [SD] age, 60 [6] years; 4886 [46%] men). Overall, 286 proteins were associated with incident HF after V3 (822 events; P < 1.0 × 10-5), 83 of which were also associated with incident after V5 (336 events; P < 1.7 × 10-4). Among HF-free participants at V5 (n = 3908; mean [SD] age, 75 [5] years; 1861 [42%] men), 48 of 83 HF-associated proteins were associated with prevalent frailty (223 cases; P < 6.0 × 10-4), 18 of which were also associated with incident frailty at V6 (152 cases; P < 1.0 × 10-3). These proteins enriched fibrosis and inflammation pathways and demonstrated stronger associations with incident HF with preserved ejection fraction (HFpEF) than HF with reduced ejection fraction. All 18 proteins were associated with both prevalent frailty and incident HF in CHS. MR identified potential causal effects of several proteins on frailty and HF. Conclusions and Relevance In this study, the proteins associated with risk of HF and frailty enrich for pathways related to inflammation and fibrosis as well as risk of HFpEF. Several of these proteins could potentially contribute to the shared pathophysiology of frailty and HF.
Collapse
Affiliation(s)
- Diego Ramonfaur
- University of Texas Southwestern Medical Center, Dallas
- Brigham and Women’s Hospital, Boston, Massachusetts
| | | | | | - Yimin Yang
- Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Chiadi E. Ndumele
- Johns Hopkins University School of Medicine, Baltimore, Maryland
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Keenan A. Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland
| | - Thomas Austin
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle
| | - Michelle C. Odden
- Department of Epidemiology and Population Health, Stanford University, Stanford, California
| | - James S. Floyd
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle
| | - Sandra Sanders-van Wijk
- Division of Cardiology, Department of Medicine, Zuyderland Medical Center, Heerlen, the Netherlands
| | - Joyce Njoroge
- Division of Cardiology, Department of Medicine, Stanford University Medical Center, Palo Alto, California
| | - Jorge R. Kizer
- Division of Cardiology, San Francisco Veterans Affairs Health Care System, and Departments of Medicine, Epidemiology and Biostatistics, San Francisco, California
| | - Dalane Kitzman
- Wake Forest School of Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | | - Jennifer Schrack
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fangyu Liu
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Priya Palta
- University of North Carolina School of Medicine, Chapel Hill
| | - Josef Coresh
- Departments of Medicine and Population Health, NYU Langone Health, New York, New York
| | - Bing Yu
- The University of Texas Health Science Center at Houston School of Public Health, Houston
| | - Amil M. Shah
- University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
14
|
Shen T, Cui G, Chen H, Huang L, Song W, Zu J, Zhang W, Xu C, Dong L, Zhang Y. TREM-1 mediates interaction between substantia nigra microglia and peripheral neutrophils. Neural Regen Res 2024; 19:1375-1384. [PMID: 37905888 PMCID: PMC11467918 DOI: 10.4103/1673-5374.385843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 05/29/2023] [Indexed: 11/02/2023] Open
Abstract
Microglia-mediated neuroinflammation is considered a pathological feature of Parkinson’s disease. Triggering receptor expressed on myeloid cell-1 (TREM-1) can amplify the inherent immune response, and crucially, regulate inflammation. In this study, we found marked elevation of serum soluble TREM-1 in patients with Parkinson’s disease that positively correlated with Parkinson’s disease severity and dyskinesia. In a mouse model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease, we found that microglial TREM-1 expression also increased in the substantia nigra. Further, TREM-1 knockout alleviated dyskinesia in a mouse model of Parkinson’s disease and reduced dopaminergic neuronal injury. Meanwhile, TREM-1 knockout attenuated the neuroinflammatory response, dopaminergic neuronal injury, and neutrophil migration. Next, we established an in vitro 1-methyl-4-phenyl-pyridine-induced BV2 microglia model of Parkinson’s disease and treated the cells with the TREM-1 inhibitory peptide LP17. We found that LP17 treatment reduced apoptosis of dopaminergic neurons and neutrophil migration. Moreover, inhibition of neutrophil TREM-1 activation diminished dopaminergic neuronal apoptosis induced by lipopolysaccharide. TREM-1 can activate the downstream CARD9/NF-κB proinflammatory pathway via interaction with SYK. These findings suggest that TREM-1 may play a key role in mediating the damage to dopaminergic neurons in Parkinson’s disease by regulating the interaction between microglia and peripheral neutrophils.
Collapse
Affiliation(s)
- Tong Shen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu Province, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Hao Chen
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Long Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu Province, China
| | - Wei Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu Province, China
| | - Jie Zu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wei Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Chuanying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Liguo Dong
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yongmei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu Province, China
| |
Collapse
|
15
|
Wilson EN, Wang C, Swarovski MS, Zera KA, Ennerfelt HE, Wang Q, Chaney A, Gauba E, Ramos Benitez JA, Le Guen Y, Minhas PS, Panchal M, Tan YJ, Blacher E, A Iweka C, Cropper H, Jain P, Liu Q, Mehta SS, Zuckerman AJ, Xin M, Umans J, Huang J, Durairaj AS, Serrano GE, Beach TG, Greicius MD, James ML, Buckwalter MS, McReynolds MR, Rabinowitz JD, Andreasson KI. TREM1 disrupts myeloid bioenergetics and cognitive function in aging and Alzheimer disease mouse models. Nat Neurosci 2024; 27:873-885. [PMID: 38539014 PMCID: PMC11102654 DOI: 10.1038/s41593-024-01610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 02/22/2024] [Indexed: 04/21/2024]
Abstract
Human genetics implicate defective myeloid responses in the development of late-onset Alzheimer disease. A decline in peripheral and brain myeloid metabolism, triggering maladaptive immune responses, is a feature of aging. The role of TREM1, a pro-inflammatory factor, in neurodegenerative diseases is unclear. Here we show that Trem1 deficiency prevents age-dependent changes in myeloid metabolism, inflammation and hippocampal memory function in mice. Trem1 deficiency rescues age-associated declines in ribose 5-phosphate. In vitro, Trem1-deficient microglia are resistant to amyloid-β42 oligomer-induced bioenergetic changes, suggesting that amyloid-β42 oligomer stimulation disrupts homeostatic microglial metabolism and immune function via TREM1. In the 5XFAD mouse model, Trem1 haploinsufficiency prevents spatial memory loss, preserves homeostatic microglial morphology, and reduces neuritic dystrophy and changes in the disease-associated microglial transcriptomic signature. In aging APPSwe mice, Trem1 deficiency prevents hippocampal memory decline while restoring synaptic mitochondrial function and cerebral glucose uptake. In postmortem Alzheimer disease brain, TREM1 colocalizes with Iba1+ cells around amyloid plaques and its expression is associated with Alzheimer disease clinical and neuropathological severity. Our results suggest that TREM1 promotes cognitive decline in aging and in the context of amyloid pathology.
Collapse
Affiliation(s)
- Edward N Wilson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Congcong Wang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle S Swarovski
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristy A Zera
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannah E Ennerfelt
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Qian Wang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Aisling Chaney
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Esha Gauba
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Javier A Ramos Benitez
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Paras S Minhas
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Maharshi Panchal
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuting J Tan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Eran Blacher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Chinyere A Iweka
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Haley Cropper
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Poorva Jain
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Qingkun Liu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Swapnil S Mehta
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Abigail J Zuckerman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew Xin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jacob Umans
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jolie Huang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Aarooran S Durairaj
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Michelle L James
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Melanie R McReynolds
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Katrin I Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
16
|
Kuku KO, Oyetoro R, Hashemian M, Livinski AA, Shearer JJ, Joo J, Psaty BM, Levy D, Ganz P, Roger VL. Proteomics for heart failure risk stratification: a systematic review. BMC Med 2024; 22:34. [PMID: 38273315 PMCID: PMC10809595 DOI: 10.1186/s12916-024-03249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Heart failure (HF) is a complex clinical syndrome with persistently high mortality. High-throughput proteomic technologies offer new opportunities to improve HF risk stratification, but their contribution remains to be clearly defined. We aimed to systematically review prognostic studies using high-throughput proteomics to identify protein signatures associated with HF mortality. METHODS We searched four databases and two clinical trial registries for articles published from 2012 to 2023. HF proteomics studies measuring high numbers of proteins using aptamer or antibody-based affinity platforms on human plasma or serum with outcomes of all-cause or cardiovascular death were included. Two reviewers independently screened articles, extracted data, and assessed the risk of bias. A third reviewer resolved conflicts. We assessed the risk of bias using the Risk Of Bias In Non-randomized Studies-of Exposure tool. RESULTS Out of 5131 unique articles identified, nine articles were included in the review. The nine studies were observational; three used the aptamer platform, and six used the antibody platform. We found considerable heterogeneity across studies in measurement panels, HF definitions, ejection fraction categorization, follow-up duration, and outcome definitions, and a lack of risk estimates for most protein associations. Hence, we proceeded with a systematic review rather than a meta-analysis. In two comparable aptamer studies in patients with HF with reduced ejection fraction, 21 proteins were identified in common for the association with all-cause death. Among these, one protein, WAP four-disulfide core domain protein 2 was also reported in an antibody study on HFrEF and for the association with CV death. We proposed standardized reporting criteria to facilitate the interpretation of future studies. CONCLUSIONS In this systematic review of nine studies evaluating the association of proteomics with mortality in HF, we identified a limited number of proteins common across several studies. Heterogeneity across studies compromised drawing broad inferences, underscoring the importance of standardized approaches to reporting.
Collapse
Affiliation(s)
- Kayode O Kuku
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca Oyetoro
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maryam Hashemian
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alicia A Livinski
- Office of Research Services, Office of the Director, National Institutes of Health Library, National Institutes of Health, Bethesda, MD, USA
| | - Joseph J Shearer
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jungnam Joo
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Daniel Levy
- Laboratory for Cardiovascular Epidemiology and Genomics, Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter Ganz
- Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - Véronique L Roger
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Theobald V, Schmitt FCF, Middel CS, Gaissmaier L, Brenner T, Weigand MA. Triggering receptor expressed on myeloid cells-1 in sepsis, and current insights into clinical studies. Crit Care 2024; 28:17. [PMID: 38191420 PMCID: PMC10775509 DOI: 10.1186/s13054-024-04798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024] Open
Abstract
Triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor and plays a critical role in the immune response. TREM-1 activation leads to the production and release of proinflammatory cytokines, chemokines, as well as its own expression and circulating levels of the cleaved soluble extracellular portion of TREM-1 (sTREM-1). Because patients with sepsis and septic shock show elevated sTREM-1 levels, TREM-1 has attracted attention as an important contributor to the inadequate immune response in this often-deadly condition. Since 2001, when the first blockade of TREM-1 in sepsis was performed, many potential TREM-1 inhibitors have been established in animal models. However, only one of them, nangibotide, has entered clinical trials, which have yielded promising data for future treatment of sepsis, septic shock, and other inflammatory disease such as COVID-19. This review discusses the TREM-1 pathway and important ligands, and highlights the development of novel inhibitors as well as their clinical potential for targeted treatment of various inflammatory conditions.
Collapse
Affiliation(s)
- Vivienne Theobald
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Felix Carl Fabian Schmitt
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Chiara Simone Middel
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Lena Gaissmaier
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Markus Alexander Weigand
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany.
| |
Collapse
|
18
|
Sun S, Fan Z, Liu X, Wang L, Ge Z. Microglia TREM1-mediated neuroinflammation contributes to central sensitization via the NF-κB pathway in a chronic migraine model. J Headache Pain 2024; 25:3. [PMID: 38177990 PMCID: PMC10768449 DOI: 10.1186/s10194-023-01707-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Neuroinflammation, mediated by the activation of microglia, contributes to central sensitization, which is associated with the development of chronic migraine (CM). TREM1 receptors amplify the inflammatory response. However, their relationship to CM is unclear. Thus, this study endeavoured to elucidate the exact role of TREM1 in CM. METHODS Nitroglycerin (NTG) was repeatedly administered intraperitoneally to establish the CM model. Mechanical and thermal sensitivities were assessed using von Frey filaments and hot plate assays. Using Western blotting, TREM1, NF-κB pathway, NLRP3 inflammasome components, and proinflammatory cytokines were all detected. Immunofluorescence was used to examine the cellular distribution of TREM1 and NLRP3, the number of microglia, immunoreactivity, and morphological changes. We examined the effects of TREM1 antagonists (LR12) and NF-κB inhibitors (PDTC) on pain behaviour, as well as the production of c-fos and CGRP. Additionally, we investigated whether LR12 and PDTC affect the activation of microglia and the NLRP3 inflammasome. We synthesized siRNA and TREM1-overexpressing plasmids to transfect BV2 cells treated with LPS and normal BV2 cells and treated TREM1-overexpressing BV2 cells with PDTC. The NF-κB pathway, NLRP3 inflammasome components, and proinflammatory cytokines were quantified using Western blotting. RESULTS Following NTG administration, the expression of TREM1 was significantly upregulated and exclusively localized in microglia in the TNC, and was well co-localized with NLRP3. Furthermore, activation of the classical NF-κB pathway was observed. Pre-treatment with LR12 and PDTC effectively attenuated mechanical hypersensitivity, suppressed the expression of c-fos and CGRP, and inhibited NF-κB activity in CM mice. Additionally, inhibition of TREM1 and NF-κB activity mitigated NTG-induced microglia and NLRP3 activation, as well as proinflammatory cytokines production. In vitro, knockdown of TREM1 resulted in attenuated activation of the NF-κB pathway following lipopolysaccharide (LPS) treatment and reduced expression of NLRP3 inflammasome components as well as proinflammatory cytokines. After TREM1 overexpression, the NF-κB pathway was activated, NLRP3 inflammasome components and proinflammatory cytokines were upregulated, and PDTC reversed this phenomenon. CONCLUSIONS Our findings suggest that TREM1 regulates microglia and NLRP3 activation via the NF-κB pathway, thereby contributing to central sensitization and implicating its involvement in chronic migraine pathogenesis.
Collapse
Affiliation(s)
- Songtang Sun
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Zhenzhen Fan
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Xuejiao Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Longde Wang
- Expert Workstation of Academician Wang Longde, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Zhaoming Ge
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China.
- Gansu Provincial Neurology Clinical Medical Research Center, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Expert Workstation of Academician Wang Longde, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
19
|
Fan L, Liu Y, Wang Z, Mei X. Prognostic utility of sTREM-1 in predicting early neurological deterioration in patients with acute ischemic stroke treated without reperfusion therapy. J Stroke Cerebrovasc Dis 2023; 32:107381. [PMID: 37776727 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
OBJECTIVE Serum triggering receptor expressed on myeloid cells type 1 (sTREM-1) is a new type of immunoglobulin superfamily receptor related to inflammation that aggravates brain injury. This study aimed to assess the clinical value of sTREM-1 in predicting early neurological deterioration in patients with acute ischemic stroke (AIS) treated without reperfusion therapy. METHODS This prospective cohort study enrolled 315 patients with acute ischemic stroke admitted to the Affiliated Taizhou People's Hospital of Nanjing Medical University between October 2020 and October 2022. The study excluded patients treated with reperfusion therapy. sTREM-1 levels were evaluated within 24 h of the acute ischemic stroke. Early neurological deterioration (END) was defined as an increase in the National Institutes of Health Stroke Scale (NIHSS) score ≥ 4 points within three days after admission. Multivariable analyses were used to investigate the relationship between sTREM-1 levels and END. RESULTS A total of 81 (25.7 %) patients had early neurological deterioration. Patients in the END group had a higher NIHSS score at admission (P =0.007), CRP levels (P =0.011), white blood cell count (P =0.002), fasting blood glucose levels (P =0.028), and sTREM-1 levels (P <0.001). After adjusting for confounders, higher sTREM-1 levels were significantly associated with an increased risk of early neurological deterioration (OR, 1.98; 95 % CI, 1.17-3.38, P=0.012). Moreover, sTREM-1 levels efficiently differentiated END (area under the curve: 0.779; 95 % CI: 0.731-0.822). Furthermore, the results showed significant differences between the high sTREM-1 group and the low sTREM-1 group in NIHSS scores (P=0.019), C-reactive protein (P=0.018), white blood cell count (P=0.013), and the incidence of early neurological deterioration (P<0.001). According to the multivariate logistic regression model, we discovered that the high sTREM-1 group was a significant independent predictor of early neurological deterioration incidence (OR, 4.19; 95 % CI, 1.46-9.84; P= 0.003). CONCLUSION sTREM-1 could be a potential biomarker for predicting early neurological deterioration in AIS patients not treated with reperfusion therapy.
Collapse
Affiliation(s)
- Lin Fan
- Department of Neurology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China; Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Ying Liu
- Department of Neurology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Zhengyang Wang
- Department of Neurology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Xiaoliang Mei
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China.
| |
Collapse
|
20
|
Deng RM, Zhou J. The role of PI3K/AKT signaling pathway in myocardial ischemia-reperfusion injury. Int Immunopharmacol 2023; 123:110714. [PMID: 37523969 DOI: 10.1016/j.intimp.2023.110714] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Myocardial ischemia has a high incidence and mortality rate, and reperfusion is currently the standard intervention. However, reperfusion may lead to further myocardial damage, known as myocardial ischemia/reperfusion injury (MIRI). There are currently no effective clinical treatments for MIRI. The PI3K/Akt signaling pathway is involved in cardiovascular health and disease and plays an important role in reducing myocardial infarct size and restoring cardiac function after MIRI. Activation of the PI3K/Akt pathway provides myocardial protection through synergistic upregulation of antioxidant, anti-inflammatory, and autophagy activities and inhibition of mitochondrial dysfunction and cardiomyocyte apoptosis. Many studies have shown that PI3K/Akt has a significant protective effect against MIRI. Here, we reviewed the molecular regulation of PI3K/Akt in MIRI and summarized the molecular mechanism by which PI3K/Akt affects MIRI, the effects of ischemic preconditioning and ischemic postconditioning, and the role of related drugs or activators targeting PI3K/Akt in MIRI, providing novel insights for the formulation of myocardial protection strategies. This review provides evidence of the role of PI3K/Akt activation in MIRI and supports its use as a therapeutic target.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Juan Zhou
- Department of thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
21
|
Li Q, Zhao Y, Guo H, Li Q, Yan C, Li Y, He S, Wang N, Wang Q. Impaired lipophagy induced-microglial lipid droplets accumulation contributes to the buildup of TREM1 in diabetes-associated cognitive impairment. Autophagy 2023; 19:2639-2656. [PMID: 37204119 PMCID: PMC10472854 DOI: 10.1080/15548627.2023.2213984] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023] Open
Abstract
Neuroinflammation caused by microglial activation and consequent neurological impairment are prominent features of diabetes-associated cognitive impairment (DACI). Microglial lipophagy, a significant fraction of autophagy contributing to lipid homeostasis and inflammation, had mostly been ignored in DACI. Microglial lipid droplets (LDs) accumulation is a characteristic of aging, however, little is known about the pathological role of microglial lipophagy and LDs in DACI. Therefore, we hypothesized that microglial lipophagy could be an Achilles's heel exploitable to develop effective strategies for DACI therapy. Here, starting with characterization of microglial accumulation of LDs in leptin receptor-deficient (db/db) mice and in high-fat diet and STZ (HFD/STZ) induced T2DM mice, as well as in high-glucose (HG)-treated mice BV2, human HMC3 and primary mice microglia, we revealed that HG-dampened lipophagy was responsible for LDs accumulation in microglia. Mechanistically, accumulated LDs colocalized with the microglial specific inflammatory amplifier TREM1 (triggering receptor expressed on myeloid cells 1), resulting in the buildup of microglial TREM1, which in turn aggravates HG-induced lipophagy damage and subsequently promoted HG-induced neuroinflammatory cascades via NLRP3 (NLR family pyrin domain containing 3) inflammasome. Moreover, pharmacological blockade of TREM1 with LP17 in db/db mice and HFD/STZ mice inhibited accumulation of LDs and TREM1, reduced hippocampal neuronal inflammatory damage, and consequently improved cognitive functions. Taken together, these findings uncover a previously unappreciated mechanism of impaired lipophagy-induced TREM1 accumulation in microglia and neuroinflammation in DACI, suggesting its translational potential as an attractive therapeutic target for delaying diabetes-associated cognitive decline.Abbreviations: ACTB: beta actin; AIF1/IBA1: allograft inflammatory factor 1; ALB: albumin; ARG1: arginase 1; ATG3: autophagy related 3; Baf: bafilomycin A1; BECN1: beclin 1, autophagy related; BW: body weight; CNS: central nervous system; Co-IP: co-immunoprecipitation; DACI: diabetes-associated cognitive impairment; DAPI: 4',6-diamidino-2-phenylindole; DGs: dentate gyrus; DLG4/PSD95: discs large MAGUK scaffold protein 4; DMEM: Dulbecco's modified Eagle's medium; DSST: digit symbol substitution test; EDTA: ethylenedinitrilotetraacetic acid; ELISA: enzyme linked immunosorbent assay; GFAP: glial fibrillary acidic protein; HFD: high-fat diet; HG: high glucose; IFNG/IFN-γ: interferon gamma; IL1B/IL-1β: interleukin 1 beta; IL4: interleukin 4; IL6: interleukin 6; IL10: interleukin 10; LDs: lipid droplets; LPS: lipopolysaccharide; MAP2: microtubule associated protein 2; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MWM: morris water maze; NFKB/NF-κB: nuclear factor of kappa light polypeptide gene enhancer in B cells; NLRP3: NLR family pyrin domain containing 3; NOS2/iNOS: nitric oxide synthase 2, inducible; NOR: novel object recognition; OA: oleic acid; PA: palmitic acid; PBS: phosphate-buffered saline; PFA: paraformaldehyde; PLIN2: perilipin 2; PLIN3: perilipin 3; PS: penicillin-streptomycin solution; RAPA: rapamycin; RBFOX3/NeuN: RNA binding protein, fox-1 homolog (C. elegans) 3; RELA/p65: RELA proto-oncogene, NF-kB subunit; ROS: reactive oxygen species; RT: room temperature; RT-qPCR: Reverse transcription quantitative real-time polymerase chain reaction; STZ: streptozotocin; SQSTM1/p62: sequestosome 1; SYK: spleen asociated tyrosine kinase; SYP: synaptophysin; T2DM: type 2 diabetes mellitus; TNF/TNF-α: tumor necrosis factor; TREM1: triggering receptor expressed on myeloid cells 1; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling.
Collapse
Affiliation(s)
- Qing Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yujing Zhao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hongyan Guo
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qiao Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chaoying Yan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shuxuan He
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Nan Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
22
|
Lin H, Chu J, Yuan D, Wang K, Chen F, Liu X. MiR-206 may regulate mitochondrial ROS contribute to the progression of Myocardial infarction via TREM1. BMC Cardiovasc Disord 2023; 23:470. [PMID: 37730550 PMCID: PMC10512505 DOI: 10.1186/s12872-023-03481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023] Open
Abstract
Myocardial infarction (MI) is a leading cause of mortality. To better understand its molecular and cellular mechanisms, we used bioinformatic tools and molecular experiments to explore the pathogenesis and prognostic markers. Differential gene expression analysis was conducted using GSE60993 and GSE66360 datasets. Hub genes were identified through pathway enrichment analysis and PPI network construction, and four hub genes (AQP9, MMP9, FPR1, and TREM1) were evaluated for their predictive performance using AUC and qRT-PCR. miR-206 was identified as a potential regulator of TREM1. Finally, miR-206 was found to induce EC senescence and ER stress through upregulating mitochondrial ROS levels via TREM1. These findings may contribute to understanding the pathogenesis of MI and identifying potential prognostic markers.
Collapse
Affiliation(s)
- Hao Lin
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No.389, Xincun Road, Shanghai, 200092, Putuo District, China
| | - Jiapeng Chu
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No.389, Xincun Road, Shanghai, 200092, Putuo District, China
| | - Deqiang Yuan
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No.389, Xincun Road, Shanghai, 200092, Putuo District, China
| | - Kangwei Wang
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No.389, Xincun Road, Shanghai, 200092, Putuo District, China
| | - Fei Chen
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No.389, Xincun Road, Shanghai, 200092, Putuo District, China.
| | - Xuebo Liu
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No.389, Xincun Road, Shanghai, 200092, Putuo District, China.
| |
Collapse
|
23
|
Abstract
Triggering receptors expressed on myeloid cells (TREMs) encompass a family of cell-surface receptors chiefly expressed by granulocytes, monocytes and tissue macrophages. These receptors have been implicated in inflammation, neurodegenerative diseases, bone remodelling, metabolic syndrome, atherosclerosis and cancer. Here, I review the structure, ligands, signalling modes and functions of TREMs in humans and mice and discuss the challenges that remain in understanding TREM biology.
Collapse
Affiliation(s)
- Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
24
|
Vandestienne M, Braik R, Lavillegrand JR, Hariri G, Demailly Z, Ben Hamouda N, Tamion F, Clavier T, Ait-Oufella H. Soluble TREM-1 plasma levels are associated with acute kidney injury, acute atrial fibrillation and prolonged ICU stay after cardiac surgery- a proof-concept study. Front Cardiovasc Med 2023; 10:1098914. [PMID: 37522081 PMCID: PMC10373879 DOI: 10.3389/fcvm.2023.1098914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Background Cardiopulmonary bypass (CPB) during cardiac surgery leads to deleterious systemic inflammation. We hypothesized that TREM-1, a myeloid receptor shed after activation, drives systemic inflammation during CPB. Methods Prospective observational bi-centric study. Blood analysis (flow cytometry and ELISA) before and at H2 and H24 after CPB. Inclusion of adult patients who underwent elective cardiac surgery with CPB. Results TREM-1 expression on neutrophils decreased between H0 and H2 while soluble (s)TREM-1 plasma levels increased. sTREM-1 levels increased at H2 and at H24 (p < 0.001). IL-6, IL-8, G-CSF and TNF-α, but not IL-1β, significantly increased at H2 compared to H0 (p < 0.001), but dropped at H24. Principal component analysis showed a close relationship between sTREM-1 and IL-8. Three patterns of patients were identified: Profile 1 with high baseline sTREM-1 levels and high increase and profile 2/3 with low/moderate baseline sTREM-1 levels and no/moderate increase overtime. Profile 1 patients developed more severe organ failure after CPB, with higher norepinephrine dose, higher SOFA score and more frequently acute kidney injury at both H24 and H48. Acute atrial fibrillation was also more frequent in profile 1 patients at H24 (80% vs. 19.4%, p = 0.001). After adjustment on age and duration of CPB, H0, H2 and H24 sTREM-1 levels remained associated with prolonged ICU and hospital length of stay. Conclusions Baseline sTREM-1 levels as well as early kinetics after cardiac surgery identified patients at high risk of post-operative complications and prolonged length of stay.
Collapse
Affiliation(s)
- Marie Vandestienne
- Centre de Recherche Cardiovasculaire de Paris (PARCC), Université de Paris, Inserm U970, Paris, France
| | - Rayan Braik
- Centre de Recherche Cardiovasculaire de Paris (PARCC), Université de Paris, Inserm U970, Paris, France
| | - Jean-Rémi Lavillegrand
- Centre de Recherche Cardiovasculaire de Paris (PARCC), Université de Paris, Inserm U970, Paris, France
| | - Geoffroy Hariri
- Service de Réanimation Chirurgicale, Assistance Publique – Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpétrière, Institut du Coeur, Paris, France
| | - Zoe Demailly
- Université de Normandie, UNIROUEN, Inserm U1096, FHU REMOD-VHF, Rouen, France
- Service D’anesthésie-Réanimation Chirurgicale, CHU De Rouen, Rouen, France
| | - Nadine Ben Hamouda
- Service D’Immunologie, Hôpital Européen Georges Pompidou, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Fabienne Tamion
- Université de Normandie, UNIROUEN, Inserm U1096, FHU REMOD-VHF, Rouen, France
- Service de Médecine Intensive-Réanimation, CHU De Rouen, Rouen, France
| | - Thomas Clavier
- Université de Normandie, UNIROUEN, Inserm U1096, FHU REMOD-VHF, Rouen, France
- Service D’anesthésie-Réanimation Chirurgicale, CHU De Rouen, Rouen, France
| | - Hafid Ait-Oufella
- Centre de Recherche Cardiovasculaire de Paris (PARCC), Université de Paris, Inserm U970, Paris, France
- Service de Médecine Intensive-Réanimation, Assistance Publique – Hôpitaux de Paris, Sorbonne Université, Paris, France
- Hôpital Saint-Antoine, Sorbonne Université, Paris, France
| |
Collapse
|
25
|
Hok-A-Hin YS, Del Campo M, Boiten WA, Stoops E, Vanhooren M, Lemstra AW, van der Flier WM, Teunissen CE. Neuroinflammatory CSF biomarkers MIF, sTREM1, and sTREM2 show dynamic expression profiles in Alzheimer's disease. J Neuroinflammation 2023; 20:107. [PMID: 37147668 PMCID: PMC10163795 DOI: 10.1186/s12974-023-02796-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND There is a need for novel fluid biomarkers tracking neuroinflammatory responses in Alzheimer's disease (AD). Our recent cerebrospinal fluid (CSF) proteomics study revealed that migration inhibitory factor (MIF) and soluble triggering receptor expressed on myeloid cells 1 (sTREM1) increased along the AD continuum. We aimed to assess the potential use of these proteins, in addition to sTREM2, as CSF biomarkers to monitor inflammatory processes in AD. METHODS We included cognitively unimpaired controls (n = 67, 63 ± 9 years, 24% females, all amyloid negative), patients with mild cognitive impairment (MCI; n = 92, 65 ± 7 years, 47% females, 65% amyloid positive), AD (n = 38, 67 ± 6 years, 8% females, all amyloid positive), and DLB (n = 50, 67 ± 6 years, 5% females, 54% amyloid positive). MIF, sTREM1, and sTREM2 levels were measured by validated immunoassays. Differences in protein levels between groups were tested with analysis of covariance (corrected for age and sex). Spearman correlation analysis was performed to evaluate the association between these neuroinflammatory markers with AD-CSF biomarkers (Aβ42, tTau, pTau) and mini-mental state examination (MMSE) scores. RESULTS MIF levels were increased in MCI (p < 0.01), AD (p < 0.05), and DLB (p > 0.05) compared to controls. Levels of sTREM1 were specifically increased in AD compared to controls (p < 0.01), MCI (p < 0.05), and DLB patients (p > 0.05), while sTREM2 levels were increased specifically in MCI compared to all other groups (all p < 0.001). Neuroinflammatory proteins were highly correlated with CSF pTau levels (MIF: all groups; sTREM1: MCI, AD and DLB; sTREM2: controls, MCI and DLB). Correlations with MMSE scores were observed in specific clinical groups (MIF in controls, sTREM1 in AD, and sTREM2 in DLB). CONCLUSION Inflammatory-related proteins show diverse expression profiles along different AD stages, with increased protein levels in the MCI stage (MIF and sTREM2) and AD stage (MIF and sTREM1). The associations of these inflammatory markers primarily with CSF pTau levels indicate an intertwined relationship between tau pathology and inflammation. These neuroinflammatory markers might be useful in clinical trials to capture dynamics in inflammatory responses or monitor drug-target engagement of inflammatory modulators.
Collapse
Affiliation(s)
- Yanaika S Hok-A-Hin
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Marta Del Campo
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Walter A Boiten
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | | | | | - Afina W Lemstra
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Epidemiology and Data Science, VU University Medical Centers, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Yamaga S, Murao A, Ma G, Brenner M, Aziz M, Wang P. Radiation upregulates macrophage TREM-1 expression to exacerbate injury in mice. Front Immunol 2023; 14:1151250. [PMID: 37168858 PMCID: PMC10164953 DOI: 10.3389/fimmu.2023.1151250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Exposure to high-dose ionizing radiation causes tissue injury, infections and even death due to immune dysfunction. The triggering receptor expressed on myeloid cells-1 (TREM-1) has been demonstrated to critically amplify and dysregulate immune responses. However, the role of TREM-1 in radiation injury remains unknown. Extracellular cold-inducible RNA-binding protein (eCIRP), a new damage-associated molecular pattern, is released from activated or stressed cells during inflammation. We hypothesized that ionizing radiation upregulates TREM-1 expression via eCIRP release to worsen survival. Methods RAW264.7 cells and peritoneal macrophages collected from C57BL/6 wild-type (WT) mice were exposed to 5- and 10-Gray (Gy) radiation. C57BL/6 WT and CIRP-/- mice underwent 10-Gy total body irradiation (TBI). TREM-1 expression on RAW264.7 cells and peritoneal macrophages in vitro and in vivo were evaluated by flow cytometry. eCIRP levels in cell culture supernatants and in peritoneal lavage isolated from irradiated mice were evaluated by Western blotting. We also evaluated 30-day survival in C57BL/6 WT, CIRP-/- and TREM-1-/- mice after 6.5-Gy TBI. Results The surface protein and mRNA levels of TREM-1 in RAW264.7 cells were significantly increased at 24 h after 5- and 10-Gy radiation exposure. TREM-1 expression on peritoneal macrophages was significantly increased after radiation exposure in vitro and in vivo. eCIRP levels were significantly increased after radiation exposure in cell culture supernatants of peritoneal macrophages in vitro and in peritoneal lavage in vivo. Moreover, CIRP-/- mice exhibited increased survival after 6.5-Gy TBI compared to WT mice. Interestingly, TREM-1 expression on peritoneal macrophages in CIRP-/- mice was significantly decreased compared to that in WT mice at 24 h after 10-Gy TBI. Furthermore, 30-day survival in TREM-1-/- mice was significantly increased to 64% compared to 20% in WT mice after 6.5-Gy TBI. Conclusion Our data indicate that ionizing radiation increases TREM-1 expression in macrophages via the release of eCIRP, and TREM-1 contributes to worse survival after total body irradiation. Thus, targeting TREM-1 could have the potential to be developed as a novel medical countermeasure for radiation injury.
Collapse
Affiliation(s)
- Satoshi Yamaga
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Gaifeng Ma
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
27
|
Zhang RYK, Cochran BJ, Thomas SR, Rye KA. Impact of Reperfusion on Temporal Immune Cell Dynamics After Myocardial Infarction. J Am Heart Assoc 2023; 12:e027600. [PMID: 36789837 PMCID: PMC10111498 DOI: 10.1161/jaha.122.027600] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Excessive inflammation and impaired healing of cardiac tissue following a myocardial infarction (MI) can drive the development of heart failure. Cardiac repair begins immediately after the onset of MI and continues for months. The repair process can be divided into the following 3 overlapping phases, each having distinct functions and sequelae: the inflammatory phase, the proliferative phase, and the maturation phase. Macrophages, neutrophils, and lymphocytes are present in the myocardium throughout the repair process and govern the duration and function of each of these phases. However, changes in the functions of these cell types across each phase are poorly characterized. Numerous immunomodulatory therapies that specifically target inflammation have been developed for promoting cardiac repair and preventing heart failure after MI. However, these treatments have been largely unsuccessful in large-scale clinical randomized controlled trials. A potential explanation for this failure is the lack of a thorough understanding of the time-dependent evolution of the functions of immune cells after a major cardiovascular event. Failure to account for this temporal plasticity in cell function may reduce the efficacy of immunomodulatory approaches that target cardiac repair. This review is concerned with how the functions of different immune cells change with time following an MI. Improved understanding of the temporal changes in immune cell function is important for the future development of effective and targeted treatments for preventing heart failure after MI.
Collapse
Affiliation(s)
| | - Blake J Cochran
- School of Medical Sciences University of New South Wales Sydney New South Wales
| | - Shane R Thomas
- School of Medical Sciences University of New South Wales Sydney New South Wales
| | - Kerry-Anne Rye
- School of Medical Sciences University of New South Wales Sydney New South Wales
| |
Collapse
|
28
|
Brustolin B, Touly N, Maillefer M, Parisot L, Di Pillo E, Derive M, Gibot S. Triggering receptor expressed on myeloid cells-1 deletion in mice attenuates high-fat diet-induced obesity. Front Endocrinol (Lausanne) 2023; 13:983827. [PMID: 36699032 PMCID: PMC9869264 DOI: 10.3389/fendo.2022.983827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/05/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction The low-grade inflammatory state present in obesity leads to the development and perpetuation of comorbidities associated with obesity. Our laboratory has been working for several years on an amplification loop of the inflammatory response mediated by TREM-1 (Triggering Receptor of Expressed on Myeloid Cells-1). It is implicated in many acute (septic shock) and chronic (IBD) inflammatory diseases. Previously, TREM-1 has been shown to be overexpressed in adipose and liver tissue in obese and diabetic patients, but its impact has never been characterized in these pathologies. Methods Our hypothesis is that TREM-1 plays a major role in the generation and perpetuation of inflammation during obesity and its associated complication (Insulin resistance and cardiac dysfunction). We assessed TREM-1 protein expression by western blot and immunofluorescence in omental and subcutaneous (pre-)adipocyte. Moreover, we submitted mice to a high-fat diet and investigated the effects of the genetic Trem1 deletion (trem1 KO mice). Results We showed, for the first time, that TREM-1 is expressed and is functional in subcutaneous and omental (pre-)adipocytes. In the mouse model of high-fat diet-induced obesity, we found that Trem1 suppression limited weight gain, insulin resistance and inflammation in white adipose tissue and liver. Discussion/conclusion Our results reveal the trem1 KO model can be viewed as a preventive model and that TREM-1 seems to play an important role in the development of obesity and its associated complication. It could therefore be a new therapeutic target in this context.
Collapse
Affiliation(s)
- Benjamin Brustolin
- Inserm Unité Mixte de Recherche (UMR) S1116, Faculté de Médecine de Nancy, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Nina Touly
- Inserm Unité Mixte de Recherche (UMR) S1116, Faculté de Médecine de Nancy, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | | | | | - Elisa Di Pillo
- Inserm Unité Mixte de Recherche (UMR) S1116, Faculté de Médecine de Nancy, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Marc Derive
- INOTREM, University of Lorraine, Nancy, France
| | - Sébastien Gibot
- Inserm Unité Mixte de Recherche (UMR) S1116, Faculté de Médecine de Nancy, Université de Lorraine, Vandœuvre-lès-Nancy, France
- Service de Médecine Intensive Réanimation, Hôpital Central, Nancy, France
| |
Collapse
|
29
|
Panagopoulos A, Samant S, Bakhos JJ, Liu M, Khan B, Makadia J, Muhammad F, Kievit FM, Agrawal DK, Chatzizisis YS. Triggering receptor expressed on myeloid cells-1 (TREM-1) inhibition in atherosclerosis. Pharmacol Ther 2022; 238:108182. [DOI: 10.1016/j.pharmthera.2022.108182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
|
30
|
Picchio V, Floris E, Derevyanchuk Y, Cozzolino C, Messina E, Pagano F, Chimenti I, Gaetani R. Multicellular 3D Models for the Study of Cardiac Fibrosis. Int J Mol Sci 2022; 23:ijms231911642. [PMID: 36232943 PMCID: PMC9569892 DOI: 10.3390/ijms231911642] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Ex vivo modelling systems for cardiovascular research are becoming increasingly important in reducing lab animal use and boosting personalized medicine approaches. Integrating multiple cell types in complex setups adds a higher level of significance to the models, simulating the intricate intercellular communication of the microenvironment in vivo. Cardiac fibrosis represents a key pathogenetic step in multiple cardiovascular diseases, such as ischemic and diabetic cardiomyopathies. Indeed, allowing inter-cellular interactions between cardiac stromal cells, endothelial cells, cardiomyocytes, and/or immune cells in dedicated systems could make ex vivo models of cardiac fibrosis even more relevant. Moreover, culture systems with 3D architectures further enrich the physiological significance of such in vitro models. In this review, we provide a summary of the multicellular 3D models for the study of cardiac fibrosis described in the literature, such as spontaneous microtissues, bioprinted constructs, engineered tissues, and organs-on-chip, discussing their advantages and limitations. Important discoveries on the physiopathology of cardiac fibrosis, as well as the screening of novel potential therapeutic molecules, have been reported thanks to these systems. Future developments will certainly increase their translational impact for understanding and modulating mechanisms of cardiac fibrosis even further.
Collapse
Affiliation(s)
- Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy
| | - Erica Floris
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy
| | - Yuriy Derevyanchuk
- Department of Molecular Medicine, Sapienza University, 00161 Rome, Italy
| | - Claudia Cozzolino
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy
| | - Elisa Messina
- Department of Molecular Medicine, Sapienza University, 00161 Rome, Italy
| | - Francesca Pagano
- Institute of Biochemistry and Cell Biology, National Council of Research (IBBC-CNR), 00015 Monterotondo, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy
- Mediterranea Cardiocentro, 80122 Napoli, Italy
- Correspondence: ; Tel.: +39-077-3175-7234
| | - Roberto Gaetani
- Department of Molecular Medicine, Sapienza University, 00161 Rome, Italy
| |
Collapse
|
31
|
Rathnayake N, Gustafsson A, Sorsa T, Norhammar A, Bostanci N, the PAROKRANK Steering Committee. Association of peptidoglycan recognition protein 1 to post-myocardial infarction and periodontal inflammation: A subgroup report from the PAROKRANK (Periodontal Disease and the Relation to Myocardial Infarction) study. J Periodontol 2022; 93:1325-1335. [PMID: 35344208 PMCID: PMC9796725 DOI: 10.1002/jper.21-0595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/27/2022] [Accepted: 02/21/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Peptidoglycan recognition protein 1 (PGLYRP1) is an antimicrobial and proinflammatory innate immunity protein activated during infections. We aimed to investigate whether PGYLRP1 and associated molecules of the immune response in saliva is a cumulative outcome result of both MI and periodontal inflammation. METHODS AND RESULTS Two hundred patients with MI and another 200 matched non-MI controls were included. A full-mouthexamination was conducted to assess periodontal inflammation and collection of stimulated saliva was performed 6 to 10 weeks after the first MI. PGLYRP1, triggering receptor expressed on myeloid cells 1 (TREM-1), interleukin-1 beta (IL-1β) were analyzed by ELISA. Matrix metalloproteinase (MMP)-8 levels were determined by IFMA. Compared to controls, MI patients showed higher salivary PGLYRP1, but not TREM-1 levels. The difference in PGLYRP1 levels remained after adjustment for covariates. In MI patients, the PGLYRP1 levels positively correlated with BOP and PPD 4 to 5 mm. Among non-MI subjects, the levels of PGLYRP1 correlated positively and significantly with BOP and total PPD. Salivary PGLYRP1 concentrations also showed strong positive correlations with levels of TREM-1, IL-1β and MMP-8. In multivariate linear regression analysis, in MI patients, BOP and former smokingstatus displayed an association with salivary PGLYRP1 concentration. CONCLUSION MI patients showed higher salivary PGLYRP1 levels than healthy controls, also after adjusting for smoking, sex, age and periodontal health status. Salivary levels of PGLYRP1 may reflect the overall inflammatory burden to chronic bacterial exposure, possibly underpinning the observed associations between periodontitis and exposure with MI.
Collapse
Affiliation(s)
- Nilminie Rathnayake
- Section of Oral Health and PeriodontologyDivision of Oral DiseasesDepartment of Dental Medicine, Karolinska InstitutetHuddingeSweden,University of HelsinkiHelsinki University Central HospitalDepartment of Oral and Maxillofacial DiseasesHelsinkiFinland
| | - Anders Gustafsson
- Section of Oral Health and PeriodontologyDivision of Oral DiseasesDepartment of Dental Medicine, Karolinska InstitutetHuddingeSweden
| | - Timo Sorsa
- University of HelsinkiHelsinki University Central HospitalDepartment of Oral and Maxillofacial DiseasesHelsinkiFinland
| | - Anna Norhammar
- Cardiology UnitDepartment of MedicineKarolinska InstitutetKarolinska University Hospital SolnaStockholmSweden,Capio Saint Göran's HospitalStockholmSweden
| | - Nagihan Bostanci
- Section of Oral Health and PeriodontologyDivision of Oral DiseasesDepartment of Dental Medicine, Karolinska InstitutetHuddingeSweden
| | | |
Collapse
|
32
|
Li J, Li R, Tuleta I, Hernandez SC, Humeres C, Hanna A, Chen B, Frangogiannis NG. The role of endogenous Smad7 in regulating macrophage phenotype following myocardial infarction. FASEB J 2022; 36:e22400. [PMID: 35695814 DOI: 10.1096/fj.202101956rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022]
Abstract
Smad7 restrains TGF-β responses, and has been suggested to exert both pro- and anti-inflammatory actions that may involve effects on macrophages. Myocardial infarction triggers a macrophage-driven inflammatory response that not only plays a central role in cardiac repair, but also contributes to adverse remodeling and fibrosis. We hypothesized that macrophage Smad7 expression may regulate inflammation and fibrosis in the infarcted heart through suppression of TGF-β responses, or via TGF-independent actions. In a mouse model of myocardial infarction, infiltration with Smad7+ macrophages peaked 7 days after coronary occlusion. Myeloid cell-specific Smad7 loss in mice had no effects on homeostatic functions and did not affect baseline macrophage gene expression. RNA-seq predicted that Smad7 may promote TREM1-mediated inflammation in infarct macrophages. However, these alterations in the transcriptional profile of macrophages were associated with a modest and transient reduction in infarct myofibroblast infiltration, and did not affect dysfunction, chamber dilation, scar remodeling, collagen deposition, and macrophage recruitment. In vitro, RNA-seq and PCR arrays showed that TGF-β has profound effects on macrophage profile, attenuating pro-inflammatory cytokine/chemokine expression, modulating synthesis of matrix remodeling genes, inducing genes associated with sphingosine-1 phosphate activation and integrin signaling, and inhibiting cholesterol biosynthesis genes. However, Smad7 loss did not significantly affect TGF-β-mediated macrophage responses, modulating synthesis of only a small fraction of TGF-β-induced genes, including Itga5, Olfml3, and Fabp7. Our findings suggest a limited role for macrophage Smad7 in regulation of post-infarction inflammation and repair, and demonstrate that the anti-inflammatory effects of TGF-β in macrophages are not restrained by endogenous Smad7 induction.
Collapse
Affiliation(s)
- Jun Li
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA.,Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ruoshui Li
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| | - Izabela Tuleta
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| | - Silvia C Hernandez
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| | - Claudio Humeres
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| | - Anis Hanna
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| | - Bijun Chen
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| | - Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| |
Collapse
|
33
|
Krychtiuk KA, Vrints C, Wojta J, Huber K, Speidl WS. Basic mechanisms in cardiogenic shock: part 2 - biomarkers and treatment options. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2022; 11:366-374. [PMID: 35218355 DOI: 10.1093/ehjacc/zuac022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Cardiogenic shock mortality rates remain high despite significant advances in cardiovascular medicine and the widespread uptake of mechanical circulatory support systems. Except for early invasive angiography and percutaneous coronary intervention of the infarct-related artery, all other widely used therapeutic measures are based on low-quality evidence. The grim prognosis and lack of high-quality data warrant further action. Within Part 2 of this two-part educational review on basic mechanisms in cardiogenic shock, we aimed to highlight the current status of translating our understanding of the pathophysiology of cardiogenic shock into clinical practice. We summarize the current status of biomarker research in risk stratification and therapy guidance. In addition, we summarized the current status of translating the findings from bench-, bedside, and biomarker studies into treatment options. Several large randomized controlled trials (RCTs) are underway, providing a huge opportunity to study contemporary cardiogenic shock patients. Finally, we call for translational, homogenous, biomarker-based, international RCTs testing novel treatment approaches to improve the outcome of our patients.
Collapse
Affiliation(s)
- Konstantin A Krychtiuk
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Duke Clinical Research Institute, 300 W Morgan Street, 27701 Durham, NC, USA
| | - Christiaan Vrints
- Research Group Cardiovascular Diseases, Department GENCOR, University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Johann Wojta
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Core Facilities, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Kurt Huber
- Ludwig Boltzmann Institute for Cardiovascular Research, Waehringer Guertel 18-20, 1090 Vienna, Austria
- 3rd Department of Internal Medicine, Cardiology and Intensive Care Unit, Wilhelminenhospital, Montleartstraße 37, 1160 Vienna, Austria
- Medical School, Sigmund Freud University, Freudplatz 1, 1020 Vienna, Austria
| | - Walter S Speidl
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
34
|
Huang K, Wu L, Gao Y, Li Q, Wu H, Liu X, Han L. Transcriptome Sequencing Data Reveal LncRNA-miRNA-mRNA Regulatory Network in Calcified Aortic Valve Disease. Front Cardiovasc Med 2022; 9:886995. [PMID: 35722091 PMCID: PMC9204424 DOI: 10.3389/fcvm.2022.886995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCalcified aortic valve disease (CAVD) is one of the most common valvular heart diseases in the elderly population. However, no effective medical treatments have been found to interfere with the progression of CAVD, and specific molecular mechanisms of CAVD remain unclear.Materials and MethodsTranscriptome sequencing data of GSE55492 and GSE148219 were downloaded from the European Nucleotide Archive, and the microarray dataset, GSE12644 was acquired from the Gene Expression Omnibus database. Software, including FastQC, HISAT2, samtools, and featureCounts was applied to generate the read count matrix. The “Limma” package in R was utilized to analyze differentially expressed genes (DEGs). Thereafter, weighted gene co-expression network analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and the protein-protein interaction (PPI) network were used to identify hub genes associated with CAVD, which were further validated by receiver operating characteristic curve (ROC) analysis using GSE12644. The long non-coding RNA (LncRNA)-mediated regulatory network was established based on the differentially expressed LncRNAs and hub genes, which were detected using quantitative real-time PCR (qRT-PCR) in clinical samples and valve interstitial cells. Moreover, CIBERSORT was used to calculate the expression distribution of immune cell infiltration in CAVD.ResultsA total of 126 DEGs were included in the PPI network. PI3K-Akt signaling pathway, ECM-receptor interaction, hematopoietic cell lineage, cell adhesion molecules, and focal adhesion were the most enriched pathways revealed by KEGG. Four LncRNAs, including TRHDE-AS1, LINC00092, LINC01094, and LINC00702 were considered the differentially expressed LncRNA. SPP1, TREM1, GPM6A, CCL19, CR1, NCAM1, CNTN1, TLR8, SDC1, and COL6A6 were the 10 hub genes identified to be associated with CAVD. Moreover, the calcified aortic valve samples had a greater level of Tregs, naïve B cells, and M0 macrophages than the noncalcified ones, whereas CAVD samples had a lower M2 macrophage expression compared to the noncalcified valve tissues.ConclusionThe current study identified SPP1, TREM1, TLR8, SDC1, GPM6A, and CNTN1 as hub genes that could potentially be associated with CAVD. The LINC00702–miR-181b-5p–SPP1 axis might participate in the development of CAVD. Additionally, M2 macrophages, Tregs, naïve B cells, and M0 macrophages might possibly play a role in the initiation of CAVD.
Collapse
|
35
|
TREM-1 Modulates Dendritic Cells Maturation and Dendritic Cell-Mediated T-Cell Activation Induced by ox-LDL. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3951686. [PMID: 35637975 PMCID: PMC9148251 DOI: 10.1155/2022/3951686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/21/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease. The triggering receptor expressed on myeloid cells-1 (TREM-1) plays a crucial role in inflammatory diseases; recently, it was identified as a major upstream proatherogenic receptor, but its mechanism is still unclear. In this study, we explore the role of TREM-1 on dendritic cells maturation and inflammatory responses induced by ox-LDL and its possible mechanism. Human dendritic cells were differentiated from blood monocytes and treated with ox-LDL. Naive autologous T cells were cocultured with pretreated DCs or treated directly. The expression of TREM-1 and inflammatory factors were evaluated by real-time PCR, western blot, and ELISA methods. And the expression of immune factors to evaluate the DCs maturation and T-cell activation were determined by the FACS. Our study showed that ox-LDL induced TREM-1 expression, DC maturation, and T-cell activation. T cells exposed to ox-LDL-treated DCs produced interferon-γ and interleukin-17 (IL-17). Blocking TREM-1 suppressed the DC maturation, showing lower expression of CD1a, CD40, CD86, CD83, and HLA-DR, and limited their production of tumor necrosis factor-alpha (TNF-α), IL-1β, IL-6, and monocyte chemoattractant protein-1 (MCP-1), meanwhile increased transforming growth factor-β(TGF-β) and IL-10 production. Ox-LDL induced miR-155, miR-27, Let-7c, and miR-185 expression; however, TREM-1 inhibiting decreased miRNA-155 expression. Furthermore, silencing miRNA-155 restores SOCS1 repression induced by ox-LDL. Experiments with T cells derived from carotid atherosclerotic plaques or healthy individuals showed similar results. Our results uncover a new link between ox-LDL and TREM-1 and may provide insight into this interaction in the context of atherosclerosis.
Collapse
|
36
|
Zhang H, Ye J, Wang X, Liu Z, Chen T, Gao J. Muscone Inhibits the Excessive Inflammatory Response in Myocardial Infarction by Targeting TREM-1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9112479. [PMID: 35591864 PMCID: PMC9113894 DOI: 10.1155/2022/9112479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 11/17/2022]
Abstract
The inhibitory effect of muscone on the hyperinflammatory response after myocardial ischemia reperfusion injury (MIRI) was investigated, and the target and signal pathways of muscone were explored. The levels of inflammatory cytokines interleukin-1β, interleukin-6, and tumor necrosis factor alpha were detected through qRT-PCR and ELISA. The expression levels of p38 and NF-κB signaling pathway-related proteins were detected through Western blot. TREM-1 siRNA was transfected into macrophages in vitro. The rat model of myocardial ischemia was established and used in studying the inhibitory effect of muscone on the inflammatory response and its protective effect muscone on myocardial apoptosis. The expression of TREM-1 was upregulated during myocardial ischemia. Knocking down TREM-1 decreased the increase in inflammatory cytokines in the supernatant of macrophages induced by rmHMGB1 (1 μg/mL) and rmHSP60 (1 mol/mL). In addition, knocking down TREM-1 decreased p38 and NF-κB signaling activation. Muscone can protect myocardial cells by inhibiting the expression of TREM-1 and the inflammatory response after myocardial infarction. Further study showed that muscone inhibited the production of DAM-triggered (damage-associated molecular pattern trigger) inflammatory cytokines. In addition, muscone inhibited the activation of p38 and NF-κB signals under DAM-induced conditions. Muscone and TREM-1 gene knockout reduced cell apoptosis and provided protection against MIRI by inhibiting p38 and NF-κB signaling activation. Mechanism studies showed that muscone inhibited the production and release of inflammatory cytokines by inhibiting TREM-1, and thereby reducing the inflammatory response and providing protection against MIRI.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Jian Ye
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xu Wang
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Zongjun Liu
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Tao Chen
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Junqing Gao
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| |
Collapse
|
37
|
Lu L, Liu X, Fu J, Liang J, Hou Y, Dou H. sTREM-1 promotes the phagocytic function of microglia to induce hippocampus damage via the PI3K-AKT signaling pathway. Sci Rep 2022; 12:7047. [PMID: 35487953 PMCID: PMC9054830 DOI: 10.1038/s41598-022-10973-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/15/2022] [Indexed: 12/18/2022] Open
Abstract
Soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) is a soluble form of TREM-1 released during inflammation. Elevated sTREM-1 levels have been found in neuropsychiatric systemic lupus erythematosus (NPSLE) patients; yet, the exact mechanisms remain unclear. This study investigated the role of sTREM-1 in brain damage and its underlying mechanism. The sTREM-1 recombinant protein (2.5 μg/3 μL) was injected into the lateral ventricle of C57BL/6 female mice. After intracerebroventricular (ICV) injection, the damage in hippocampal neurons increased, and the loss of neuronal synapses and activation of microglia increased compared to the control mice (treated with saline). In vitro. after sTREM-1 stimulation, the apoptosis of BV2 cells decreased, the polarization of BV2 cells shifted to the M1 phenotype, the phagocytic function of BV2 cells significantly improved, while the PI3K-AKT signal pathway was activated in vivo and in vitro. PI3K-AKT pathway inhibitor LY294002 reversed the excessive activation and phagocytosis of microglia caused by sTREM-1 in vivo and in vitro, which in turn improved the hippocampus damage. These results indicated that sTREM-1 activated the microglial by the PI3K-AKT signal pathway, and promoted its excessive phagocytosis of the neuronal synapse, thus inducing hippocampal damage. sTREM-1 might be a potential target for inducing brain lesions.
Collapse
Affiliation(s)
- Li Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China
| | - Xuan Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China
| | - Juanhua Fu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China.
| |
Collapse
|
38
|
Cao L, Yang K. Paeoniflorin Attenuated TREM-1-Mediated Inflammation in THP-1 Cells. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7051643. [PMID: 35480155 PMCID: PMC9038380 DOI: 10.1155/2022/7051643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/13/2022] [Indexed: 12/04/2022]
Abstract
Sepsis is caused by bacterial infections or viral infections. Clinically, there exist confirmed or highly suspected infection foci. Mortality caused by septic shock remains in a high rate even though antibiotic treatment works effectively. In this study, we treat THP-1 cells with 1 ug/mL LPS (lipopolysaccharide) and add paeoniflorin or LR-12 inhibitor. TREM-1 (triggering receptor expressed on myeloid cells-1), IL-6, IL-1β, and TNF-α (tumour necrosis factor alpha (a)-cachectin) were detected by ELISA and qRT-PCR, and western blotting is performed to detect related proteins in the NF-κB signaling pathway. As a result, paeoniflorin can significantly reduce the production of LPS-stimulated TREM-1 as well as inflammatory factors and attenuate the phosphorylation of NF-κB signaling pathway-related factors, such as p65 and IκBα. At the same time, the combined effect of paeoniflorin and LR-12 is more significant. The results of this study solidly prove that paeoniflorin plays a role in inhibiting TREM-1-mediated inflammation and the NF-κB pathway could be a potential mechanism of action.
Collapse
Affiliation(s)
- Li Cao
- Department of Critical Medicine, Shenzhen Baoan Shiyan People's Hospital, Shenzhen 5515108, China
| | - Kerong Yang
- Department of Suzhou Medical College, Soochow University, Suzhou 215123, China
| |
Collapse
|
39
|
Zhong Y, Xu Y, Xue S, Zhu L, Lu H, Wang C, Chen H, Sang W, Ma J. Nangibotide attenuates osteoarthritis by inhibiting osteoblast apoptosis and TGF-β activity in subchondral bone. Inflammopharmacology 2022; 30:1107-1117. [PMID: 35391646 DOI: 10.1007/s10787-022-00984-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/25/2022] [Indexed: 11/26/2022]
Abstract
Osteoarthritis (OA) is a chronic joint disorder that causes cartilage degradation and subchondral bone abnormalities. Nangibotide, also known as LR12, is a dodecapeptide with considerable anti-inflammatory properties, but its significance in OA is uncertain. The aim of the study was to determine whether nangibotide could attenuate the progression of OA, and elucidate the underlying mechanism. In vitro experiments showed that nangibotide strongly inhibited TNF-α-induced osteogenic reduction, significantly enhanced osteoblast proliferation and prevented apoptosis in MC3T3-E1 cells. Male C57BL/6 J mice aged 2 months were randomly allocated to three groups: sham, ACLT, and ACLT with nangibotide therapy. Nangibotide suppressed ACLT-induced cartilage degradation and MMP-13 expression. MicroCT analysis revealed that nangibotide attenuated in vivo subchondral bone loss induced by ACLT. Histomorphometry results showed that nangibotide attenuated ACLT-induced osteoblast inhibition; TUNEL assays and immunohistochemical staining of cleaved-caspase3 further confirmed the in vivo anti-apoptotic effect of nangibotide on osteoblasts. Furthermore, we found that nangibotide exerted protective effects by suppressing TGF-β signaling mediated by Smad2/3 to restore coupled bone remodeling in the subchondral bone. In conclusion, the findings suggest that nangibotide might exert a protective effect on the bone-cartilage unit and maybe an alternative treatment option for OA.
Collapse
Affiliation(s)
- Yiming Zhong
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Rd, Shanghai, 200080, China
| | - Yiming Xu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Rd, Shanghai, 200080, China
| | - Song Xue
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Libo Zhu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Rd, Shanghai, 200080, China
| | - Haiming Lu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Rd, Shanghai, 200080, China
| | - Cong Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Rd, Shanghai, 200080, China
| | - Hongjie Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Rd, Shanghai, 200080, China
| | - Weilin Sang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Rd, Shanghai, 200080, China.
| | - Jinzhong Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Rd, Shanghai, 200080, China.
| |
Collapse
|
40
|
Williams SA, Ostroff R, Hinterberg MA, Coresh J, Ballantyne CM, Matsushita K, Mueller CE, Walter J, Jonasson C, Holman RR, Shah SH, Sattar N, Taylor R, Lean ME, Kato S, Shimokawa H, Sakata Y, Nochioka K, Parikh CR, Coca SG, Omland T, Chadwick J, Astling D, Hagar Y, Kureshi N, Loupy K, Paterson C, Primus J, Simpson M, Trujillo NP, Ganz P. A proteomic surrogate for cardiovascular outcomes that is sensitive to multiple mechanisms of change in risk. Sci Transl Med 2022; 14:eabj9625. [PMID: 35385337 DOI: 10.1126/scitranslmed.abj9625] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A reliable, individualized, and dynamic surrogate of cardiovascular risk, synoptic for key biologic mechanisms, could shorten the path for drug development, enhance drug cost-effectiveness and improve patient outcomes. We used highly multiplexed proteomics to address these objectives, measuring about 5000 proteins in each of 32,130 archived plasma samples from 22,849 participants in nine clinical studies. We used machine learning to derive a 27-protein model predicting 4-year likelihood of myocardial infarction, stroke, heart failure, or death. The 27 proteins encompassed 10 biologic systems, and 12 were associated with relevant causal genetic traits. We independently validated results in 11,609 participants. Compared to a clinical model, the ratio of observed events in quintile 5 to quintile 1 was 6.7 for proteins versus 2.9 for the clinical model, AUCs (95% CI) were 0.73 (0.72 to 0.74) versus 0.64 (0.62 to 0.65), c-statistics were 0.71 (0.69 to 0.72) versus 0.62 (0.60 to 0.63), and the net reclassification index was +0.43. Adding the clinical model to the proteins only improved discrimination metrics by 0.01 to 0.02. Event rates in four predefined protein risk categories were 5.6, 11.2, 20.0, and 43.4% within 4 years; median time to event was 1.71 years. Protein predictions were directionally concordant with changed outcomes. Adverse risks were predicted for aging, approaching an event, anthracycline chemotherapy, diabetes, smoking, rheumatoid arthritis, cancer history, cardiovascular disease, high systolic blood pressure, and lipids. Reduced risks were predicted for weight loss and exenatide. The 27-protein model has potential as a "universal" surrogate end point for cardiovascular risk.
Collapse
Affiliation(s)
| | | | | | - Josef Coresh
- Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | - Christian E Mueller
- Cardiovascular Research Institute, University of Basel, Basel 4001, Switzerland
| | - Joan Walter
- Cardiovascular Research Institute, University of Basel, Basel 4001, Switzerland.,Institute of Diagnostic and Interventional Radiology, University Hospital Zürich, University of Zürich, Zürich 7491, Switzerland
| | - Christian Jonasson
- Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Rury R Holman
- Diabetes Trials Unit, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Svati H Shah
- Division of Cardiology, Duke Department of Medicine, and Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Roy Taylor
- Newcastle Magnetic Resonance Centre, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK
| | - Michael E Lean
- School of Medicine, Nursing and Dentistry, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Hiroaki Shimokawa
- Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan.,Graduate School, International University of Health and Welfare, Narita 286-8686, Japan
| | - Yasuhiko Sakata
- Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan
| | - Kotaro Nochioka
- Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan
| | | | - Steven G Coca
- Mt Sinai Clinical and Translational Science Research Unit, Icahn School of Medicine at Mount Sinai, New York, NY 11766, USA
| | - Torbjørn Omland
- Department of Cardiology, Akershus University Hospital and University of Oslo, Oslo 1478, Norway
| | | | | | | | | | | | | | | | | | | | - Peter Ganz
- Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
41
|
Lu RXZ, Lai BFL, Rafatian N, Gustafson D, Campbell SB, Banerjee A, Kozak R, Mossman K, Mubareka S, Howe KL, Fish JE, Radisic M. Vasculature-on-a-chip platform with innate immunity enables identification of angiopoietin-1 derived peptide as a therapeutic for SARS-CoV-2 induced inflammation. LAB ON A CHIP 2022; 22:1171-1186. [PMID: 35142777 PMCID: PMC9207819 DOI: 10.1039/d1lc00817j] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Coronavirus disease 2019 (COVID-19) was primarily identified as a novel disease causing acute respiratory syndrome. However, as the pandemic progressed various cases of secondary organ infection and damage by severe respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported, including a breakdown of the vascular barrier. As SARS-CoV-2 gains access to blood circulation through the lungs, the virus is first encountered by the layer of endothelial cells and immune cells that participate in host defense. Here, we developed an approach to study SARS-CoV-2 infection using vasculature-on-a-chip. We first modeled the interaction of virus alone with the endothelialized vasculature-on-a-chip, followed by the studies of the interaction of the virus exposed-endothelial cells with peripheral blood mononuclear cells (PBMCs). In an endothelial model grown on a permeable microfluidic bioscaffold under flow conditions, both human coronavirus (HCoV)-NL63 and SARS-CoV-2 presence diminished endothelial barrier function by disrupting VE-cadherin junctions and elevating the level of pro-inflammatory cytokines such as interleukin (IL)-6, IL-8, and angiopoietin-2. Inflammatory cytokine markers were markedly more elevated upon SARS-CoV-2 infection compared to HCoV-NL63 infection. Introduction of PBMCs with monocytes into the vasculature-on-a-chip upon SARS-CoV-2 infection further exacerbated cytokine-induced endothelial dysfunction, demonstrating the compounding effects of inter-cellular crosstalk between endothelial cells and monocytes in facilitating the hyperinflammatory state. Considering the harmful effects of SARS-CoV-2 on endothelial cells, even without active virus proliferation inside the cells, a potential therapeutic approach is critical. We identified angiopoietin-1 derived peptide, QHREDGS, as a potential therapeutic capable of profoundly attenuating the inflammatory state of the cells consistent with the levels in non-infected controls, thereby improving the barrier function and endothelial cell survival against SARS-CoV-2 infection in the presence of PBMC.
Collapse
Affiliation(s)
- Rick Xing Ze Lu
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada.
| | - Benjamin Fook Lun Lai
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada.
| | - Naimeh Rafatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada.
| | - Dakota Gustafson
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, M5G 2C4, Canada
| | - Scott B Campbell
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada.
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, M5G 2C4, Canada
| | - Arinjay Banerjee
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5E3, Canada
| | - Robert Kozak
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Karen Mossman
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Samira Mubareka
- Sunnybrook Health Sciences Center, Toronto, Ontario, M4N 3M5, Canada
| | - Kathryn L Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, M5G 2C4, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Jason E Fish
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, M5G 2C4, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada.
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, M5G 2C4, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| |
Collapse
|
42
|
A novel eCIRP/TREM-1 pathway inhibitor attenuates acute kidney injury. Surgery 2022; 172:639-647. [PMID: 35292178 PMCID: PMC9283225 DOI: 10.1016/j.surg.2022.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Extracellular cold-inducible RNA-binding protein aggravates acute kidney injury after renal ischemia/reperfusion. Although extracellular cold-inducible RNA-binding protein activates triggering receptor expressed on myeloid cells-1, how this receptor and its antagonism with a novel peptide M3 affects acute kidney injury is poorly understood. We, therefore, hypothesize that inhibiting the extracellular cold-inducible RNA-binding protein/triggering receptor expressed on myeloid cells-1 pathway with M3 attenuates acute kidney injury. METHODS Wild-type and triggering receptor expressed on myeloid cells-1-/- mice were subjected to bilateral 30-minute renal hilum clamping followed by reperfusion or sham. After 4 hours, wild-type mice received M3 (10 mg/kg BW) or normal saline intraperitoneally. After 24 hours, renal tissue and serum were collected for analysis. Additionally, wild-type mice were subjected to bilateral renal ischemia for 34 minutes and treated with M3 at 10 mg/kg BW or vehicle at the time of reperfusion. Survival was monitored for 10 days. RESULTS After renal ischemia/reperfusion, triggering receptor expressed on myeloid cells-1 messenger ribonucleic acid expression increased by 9-fold in wild-type mice compared to sham mice. Wild-type mice also demonstrated significant increases in serum blood urea nitrogen, creatinine, and interleukin-6 and renal tissue levels of interleukin-6 and neutrophil gelatinase-associated lipocalin after renal ischemia/reperfusion compared to sham mice. Triggering receptor expressed on myeloid cells-1-/- mice demonstrated significant reductions in serum blood urea nitrogen, creatinine, and interleukin-6 compared to wild-type mice after renal ischemia/reperfusion. Levels of renal interleukin-6 and neutrophil gelatinase-associated lipocalin were also significantly decreased in the kidneys of triggering receptor expressed on myeloid cells-1-/- mice. Furthermore, treatment with M3 in wild-type mice significantly decreased serum and renal levels of interleukin-6 after renal ischemia/reperfusion. M3 treatment demonstrated significant reductions in renal messenger ribonucleic acid and protein levels of neutrophil gelatinase-associated lipocalin, serum blood urea nitrogen and creatinine, and histologic structural damage as well as apoptosis. Treatment with M3 also increased survival from 35% to 65% in mice with acute kidney injury. CONCLUSION Triggering receptor expressed on myeloid cells-1 mediates the deleterious effects of extracellular cold-inducible RNA-binding protein in acute kidney injury after renal ischemia/reperfusion. The novel extracellular cold-inducible RNA-binding protein/triggering receptor expressed on myeloid cells-1 pathway antagonist, M3, attenuates acute kidney injury and has the potential to be developed as a therapeutic agent for acute kidney injury.
Collapse
|
43
|
Vandestienne M, Joffre J, Lemarié J, Ait-Oufella H. [Role of TREM-1 in cardiovascular diseases]. Med Sci (Paris) 2022; 38:32-37. [PMID: 35060884 DOI: 10.1051/medsci/2021242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The innate immune system plays a crucial role in cardiovascular disease initiation, progression and complications. TREM-1, a receptor mainly expressed by myeloid cells, orchestrates inflammatory responses and amplifies cytokine and chemokine production as well as oxidative burst. Recent experimental studies have demonstrated that TREM-1 blockade is protective, limiting atherosclerosis and abdominal aortic aneurysm development, as well as adverse tissue remodeling after cardiac or cerebral ischemic injuries. Plasma soluble TREM-1 level is a promising biomarker in patients with cardiovascular diseases for risk stratification, paving the way for personalized immune-modulatory approaches.
Collapse
Affiliation(s)
- Marie Vandestienne
- Université de Paris, Inserm U970, PARCC (Paris Cardiovascular Research Center), Paris, France
| | - Jérémie Joffre
- Service de Médecine intensive-Réanimation, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France
| | - Jérémie Lemarié
- Université de Paris, Inserm U970, PARCC (Paris Cardiovascular Research Center), Paris, France - Service de Médecine intensive-Réanimation, CHU de Nantes, Nantes, France
| | - Hafid Ait-Oufella
- Université de Paris, Inserm U970, PARCC (Paris Cardiovascular Research Center), Paris, France - Service de Médecine intensive-Réanimation, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France
| |
Collapse
|
44
|
Chalikias G, Tziakas DN. Triggering receptor expressing on myeloid cells (TREM)-1 and acute myocardial infarction: An association vs. causality conundrum. Int J Cardiol 2021; 344:222-223. [PMID: 34627968 DOI: 10.1016/j.ijcard.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Affiliation(s)
- George Chalikias
- University Cardiology Department, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitrios N Tziakas
- University Cardiology Department, Medical School, Democritus University of Thrace, Alexandroupolis, Greece.
| |
Collapse
|
45
|
Plasma and genetic determinants of soluble TREM-1 and major adverse cardiovascular events in a prospective cohort of acute myocardial infarction patients. Results from the FAST-MI 2010 study. Int J Cardiol 2021; 344:213-219. [PMID: 34534607 DOI: 10.1016/j.ijcard.2021.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Triggering receptor expressing on myeloid cells (TREM)-1 is involved in the pathophysiology of ischemic heart disease. Plasma soluble TREM-1 levels (sTREM-1) has been associated with increased risk of major adverse cardiovascular events (MACE) in acute myocardial infarction (AMI) patients. However, the causative link between TREM-1 and MACE remains unknown and requires further investigation before developing potential therapeutic approaches. METHODS AND RESULTS Using the serum and DNA data bank from the prospective, nationwide French registry of Acute ST-elevation and non-ST-elevation Myocardial Infarction (FAST-MI 2010, N = 1293), we studied the association of plasma levels of sTREM-1 with 9 common genetic variants at the TREM1 locus and their relationship with recurrent MACE over a 3-year follow up. Plasma levels of sTREM-1 were associated with an increased risk of MACEs (death, recurrent MI or stroke) (adjusted HR = 1.86, 95%CI = 1.06-3.26 and HR = 1.11, 95%CI = 0.61-2.02 respectively for tertiles 3 and 2 versus tertile 1, P < 0.001). The study of common variants identified two major genetic determinants of sTREM-1 (rs4714449: beta = -0.11, Padd = 7.85 × 10-5 and rs3804276: beta = 0.18, Padd = 2.65 × 10-11) with a potential role on maintenance and/or differentiation of hematopoietic stem cells. However, associated variants only explained 4% of sTREM-1 variance (P = 2.74 × 10-14). Moreover, the rs4714449 variant, individually and in haplotype, was not significantly associated with MACE (HR = 0.61, 95%CI: 0.35-1.05, P = 0.07). CONCLUSIONS Despite its relationship with increased risk of death, recurrent MI and stroke, genetic determinants of plasma levels of sTREM-1 were not found to be causal prognostic factors in patients with acute myocardial infarction.
Collapse
|
46
|
Vandestienne M, Zhang Y, Santos-Zas I, Al-Rifai R, Joffre J, Giraud A, Laurans L, Esposito B, Pinet F, Bruneval P, Raffort J, Lareyre F, Vilar J, Boufenzer A, Guyonnet L, Guerin C, Clauser E, Silvestre JS, Lang S, Soulat-Dufour L, Tedgui A, Mallat Z, Taleb S, Boissonnas A, Derive M, Chinetti G, Ait-Oufella H. TREM-1 orchestrates angiotensin II-induced monocyte trafficking and promotes experimental abdominal aortic aneurysm. J Clin Invest 2021; 131:142468. [PMID: 33258804 DOI: 10.1172/jci142468] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/20/2020] [Indexed: 01/16/2023] Open
Abstract
The triggering receptor expressed on myeloid cells 1 (TREM-1) drives inflammatory responses in several cardiovascular diseases but its role in abdominal aortic aneurysm (AAA) remains unknown. Our objective was to explore the role of TREM-1 in a mouse model of angiotensin II-induced (AngII-induced) AAA. TREM-1 expression was detected in mouse aortic aneurysm and colocalized with macrophages. Trem1 gene deletion (Apoe-/-Trem1-/-), as well as TREM-1 pharmacological blockade with LR-12 peptide, limited both AAA development and severity. Trem1 gene deletion attenuated the inflammatory response in the aorta, with a reduction of Il1b, Tnfa, Mmp2, and Mmp9 mRNA expression, and led to a decreased macrophage content due to a reduction of Ly6Chi classical monocyte trafficking. Conversely, antibody-mediated TREM-1 stimulation exacerbated Ly6Chi monocyte aorta infiltration after AngII infusion through CD62L upregulation and promoted proinflammatory signature in the aorta, resulting in worsening AAA severity. AngII infusion stimulated TREM-1 expression and activation on Ly6Chi monocytes through AngII receptor type I (AT1R). In human AAA, TREM-1 was detected and TREM1 mRNA expression correlated with SELL mRNA expression. Finally, circulating levels of sTREM-1 were increased in patients with AAA when compared with patients without AAA. In conclusion, TREM-1 is involved in AAA pathophysiology and may represent a promising therapeutic target in humans.
Collapse
Affiliation(s)
- Marie Vandestienne
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, Paris, France
| | - Yujiao Zhang
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, Paris, France
| | - Icia Santos-Zas
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, Paris, France
| | - Rida Al-Rifai
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, Paris, France
| | - Jeremie Joffre
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, Paris, France
| | - Andreas Giraud
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, Paris, France
| | - Ludivine Laurans
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, Paris, France
| | - Bruno Esposito
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, Paris, France
| | | | - Patrick Bruneval
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, Paris, France.,Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Juliette Raffort
- Université Côte d'Azur, Centre Hospitalo-Universitaire (CHU), INSERM, C3M, Nice, France
| | - Fabien Lareyre
- Université Côte d'Azur, Centre Hospitalo-Universitaire (CHU), INSERM, C3M, Nice, France
| | - Jose Vilar
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, Paris, France
| | | | - Lea Guyonnet
- Université de Paris, Innovative Therapies in Haemostasis, INSERM, F-75006, Paris, France.,Institut Curie, Cytometry Platform F-75006, Paris, France.,Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Coralie Guerin
- Université de Paris, Innovative Therapies in Haemostasis, INSERM, F-75006, Paris, France.,Institut Curie, Cytometry Platform F-75006, Paris, France.,Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Eric Clauser
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, Paris, France
| | | | - Sylvie Lang
- Cardiology Department, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France
| | - Laurie Soulat-Dufour
- Cardiology Department, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France
| | - Alain Tedgui
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, Paris, France
| | - Ziad Mallat
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, Paris, France.,Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Soraya Taleb
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, Paris, France
| | - Alexandre Boissonnas
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses Cimi-Paris, Paris, France
| | | | - Giulia Chinetti
- Université Côte d'Azur, Centre Hospitalo-Universitaire (CHU), INSERM, C3M, Nice, France
| | - Hafid Ait-Oufella
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, Paris, France.,Medical Intensive Care Unit, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France
| |
Collapse
|
47
|
Abstract
Sepsis is a syndrome which is defined as a dysregulated host response to infection leading to organ failure. Since it remains one of the leading causes of mortality worldwide, numerous drug candidates have already been tested, and continue to be developed, as potential adjunct therapies. Despite convincing mechanisms of action and robust pre-clinical data, almost all drug candidates in the field of sepsis have failed to demonstrate clinical efficacy in the past two decades. Accordingly, the development of new sepsis drugs has markedly decreased in the past few years. Nevertheless, thanks to a better understanding of sepsis pathophysiology and pathways, new promising drug candidates are currently being developed. Instead of a unique sepsis profile as initially suspected, various phenotypes have been characterised. This has resulted in the identification of multiple targets for new drugs together with relevant biomarkers, and a better understanding of the most appropriate time to intervention. Within the entire sepsis drugs portfolio, those targeting the immune response are probably the most promising. Monoclonal antibodies targeting either cytokines or infectious agents are undoubtedly part of the potential successful therapeutic classes to come.
Collapse
Affiliation(s)
- Philippe Vignon
- Medical-Surgical Intensive Care Unit, Dupuytren Teaching Hospital, 87000, Limoges, France. .,Inserm CIC 1435, Dupuytren Teaching Hospital, 87000, Limoges, France. .,Inserm UMR 1092, Dupuytren Teaching Hospital, 87000, Limoges, France. .,Réanimation Polyvalente, CHU Dupuytren, 2 Avenue Martin Luther king, 87042, Limoges, France.
| | - Pierre-François Laterre
- St Luc University Hospital, Université Catholique de Louvain, Avenue Hippocrate 12, 1200, Brussels, Belgium
| | - Thomas Daix
- Medical-Surgical Intensive Care Unit, Dupuytren Teaching Hospital, 87000, Limoges, France.,Inserm CIC 1435, Dupuytren Teaching Hospital, 87000, Limoges, France.,Inserm UMR 1092, Dupuytren Teaching Hospital, 87000, Limoges, France
| | - Bruno François
- Medical-Surgical Intensive Care Unit, Dupuytren Teaching Hospital, 87000, Limoges, France.,Inserm CIC 1435, Dupuytren Teaching Hospital, 87000, Limoges, France.,Inserm UMR 1092, Dupuytren Teaching Hospital, 87000, Limoges, France
| |
Collapse
|
48
|
Ji Z, Zhang R, Yang M, Zuo W, Yao Y, Qu Y, Su Y, Liu Z, Gu Z, Ma G. Accuracy of triggering receptor expressed on myeloid cells 1 in diagnosis and prognosis of acute myocardial infarction: a prospective cohort study. PeerJ 2021; 9:e11655. [PMID: 34221733 PMCID: PMC8231339 DOI: 10.7717/peerj.11655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022] Open
Abstract
Background Acute myocardial infarction (AMI) is one of the fatal cardiac emergencies. The detection of triggering receptor expressed on myeloid cells 1 (TREM1), a cell surface immunoglobulin that amplifies pro-inflammatory responses, screened by bioinformatics was shown to be significant in diagnosing and predicting the prognosis of AMI. Methods GSE66360, GSE61144 and GSE60993 were downloaded from the Gene Expression Omnibus (GEO) database to explore the differentially expressed genes (DEGs) between AMI and control groups using R software. A total of 147 patients in total were prospectively enrolled from October 2018 to June 2019 and divided into two groups, the normal group (n = 35) and the AMI group (n = 112). Plasma was collected from each patient at admission and all patients received 6-month follow-up care. Results According to bioinformatic analysis, TREM1 was an important DEG in patients with AMI. Compared with the normal group, TREM1 expression was markedly increased in the AMI group (p < 0.001). TREM1 expression was positively correlated with fasting plasma glucose (FPG), glycosylated hemoglobin (HbAC), and the number of lesion vessels, although it had no correlation with Gensini score. TREM1 expression in the triple-vessels group was significantly higher than that of the single-vessel group (p < 0.05). Multiple linear regression showed that UA and HbAC were two factors influencing TREM1 expression. The ROC curve showed that TREM1 had a diagnostic significance in AMI (p < 0.001), especially in AMI patients without diabetes. Cox regression showed increased TREM1 expression was closely associated with 6-month major adverse cardiac events (MACEs) (p < 0.001). Conclusions TREM1 is a potentially significant biomarker for the diagnosis of AMI and may be closely associated with the severity of coronary lesions and diabetes. TREM1 may also be helpful in predicting the 6-month MACEs after AMI.
Collapse
Affiliation(s)
- Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, Jiangsu, China
| | - Rui Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, Jiangsu, China
| | - Mingming Yang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, Jiangsu, China
| | - Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, Jiangsu, China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, Jiangsu, China
| | - Yangyang Qu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, Jiangsu, China
| | - Yamin Su
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, Jiangsu, China
| | - Zhuyuan Liu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, Jiangsu, China
| | - Ziran Gu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, Jiangsu, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, Jiangsu, China
| |
Collapse
|
49
|
Sansonetti M, De Windt LJ. Non-coding RNAs in cardiac inflammation: key drivers in the pathophysiology of heart failure. Cardiovasc Res 2021; 118:2058-2073. [PMID: 34097013 DOI: 10.1093/cvr/cvab192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Heart failure is among the most progressive diseases and a leading cause of morbidity. Despite several advances in cardiovascular therapies, pharmacological treatments are limited to relieve symptoms without curing cardiac injury. Multiple observations point to the involvement of immune cells as key drivers in the pathophysiology of heart failure. In particular, there is a growing recognition that heart failure is related to a prolonged and insufficiently repressed inflammatory response leading to molecular, cellular, and functional cardiac alterations. Over the last decades, non-coding RNAs are recognized as prominent mediators of the cardiac inflammation, affecting the function of several immune cells. In the current review, we explore the contribution of the diverse immune cells in the progression of heart failure, revealing mechanistic functions for non-coding RNAs in cardiac immune cells as a new and exciting field of investigation.
Collapse
Affiliation(s)
- Marida Sansonetti
- Department of Molecular Genetics, Faculty of Science and Engineering; Faculty of Health, Medicine and Life Sciences; Maastricht University, Maastricht, The Netherlands
| | - Leon J De Windt
- Department of Molecular Genetics, Faculty of Science and Engineering; Faculty of Health, Medicine and Life Sciences; Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
50
|
LR12 Promotes Liver Repair by Improving the Resolution of Inflammation and Liver Regeneration in Mice with Thioacetamide- (TAA-) Induced Acute Liver Failure. Mediators Inflamm 2021; 2021:2327721. [PMID: 34135689 PMCID: PMC8179768 DOI: 10.1155/2021/2327721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Background Triggering receptor expressed on myeloid cells-1 (TREM-1) controls the mobilization of inflammatory cells in response to injury and consequently enhances liver damage. LR12 is a TREM-1 inhibitory peptide. However, the role of LR12 in acute liver failure (ALF) has remained elusive. This study was aimed at indicating whether LR12 could promote liver repair in mice with thioacetamide- (TAA-) induced ALF. Methods BALB/c mice were intraperitoneally injected with TAA, followed by intravenous injection of LR12. Damage and regeneration of the liver were assessed. LO2 cells and macrophages were used to assess the therapeutic effects of LR12. Results Mice treated with TAA for 24 h developed ALF, while liver inflammation was alleviated after LR12 treatment. Moreover, LR12 promoted hepatocyte regeneration in mice with TAA-induced ALF. In vitro, the supernatant from TAA+LR12-treated macrophages promoted the proliferation of LO2 cells. Cytokine protein microarray analysis suggested that LR12 promoted the secretion of C-C chemokine ligand 20 (CCL20) from macrophages. Besides, neutralization of CCL20 blocked the effects of LR12, thus inhibited the proliferation of LO2 cells in vitro, aggregated the liver inflammation, and restrained hepatocyte regeneration in ALF mice in vivo. Furthermore, we also found that LR12 activated the p38 mitogen-activated protein kinase (MAPK) pathway in hepatocytes through promoting the secretion of CCL20 from macrophages. Conclusions LR12 could improve the resolution of inflammation and liver regeneration in mice with TAA-induced ALF by promoting the secretion of CCL20 from macrophages and activating the p38 MAPK pathway. Therefore, LR12 could be an attractive therapeutic target for the treatment of ALF.
Collapse
|