1
|
Anghelache M, Voicu G, Anton R, Safciuc F, Boteanu D, Deleanu M, Turtoi M, Simionescu M, Manduteanu I, Calin M. Inflammation resolution-based treatment of atherosclerosis using biomimetic nanocarriers loaded with specialized pro-resolving lipid mediators. Mater Today Bio 2025; 32:101733. [PMID: 40255582 PMCID: PMC12008601 DOI: 10.1016/j.mtbio.2025.101733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/25/2025] [Accepted: 04/04/2025] [Indexed: 04/22/2025] Open
Abstract
Recent studies have shown that chronic inflammation in atherosclerotic (ATH) lesions is due to an inability to resolve the inflammatory response. We evaluated the therapeutic potential of specialized pro-resolving mediators (SPMs) incorporated into biomimetic lipid nanoemulsions covered with macrophage membranes (Bio-LN/SPMs) to enhance their stability, targeting, and bioactivity in resolving atherosclerotic plaque inflammation. We utilized both in vitro and in vivo experimental models to test this hypothesis. In vitro, we found that Bio-LN/SPMs significantly reduced the inflammatory markers VCAM-1, MCP-1 in TNF-α-activated endothelial and smooth muscle cells, and iNOS, and NLRP3 in LPS-activated macrophages. In contrast, free SPMs exhibited a more modest effect. In vivo, the i.v. administration of Bio-LN/SPMs in ApoE-deficient mice with progressive atherosclerotic lesions developed after administration for 4 and 8 weeks of a high-fat diet, reduced plasma triglycerides, improved renal function, and decreased plasma proteins associated with complement activation and inflammation (i.e. C4d, C5b-9, IL-6, and MCP-1) to a greater extent than other treatment groups. Bio-LN/SPMs also affected circulated monocyte subpopulations by increasing the percentage of anti-inflammatory Ly6Clow monocytes and reducing that of pro-inflammatory Ly6Chigh monocytes. Additionally, they promoted the transition of macrophages in atherosclerotic plaques to a reparative M2 phenotype. They decreased the production of TNF-α, IL-1β, and IL-6 cytokines, along with lipid deposits in the aorta of ApoE-deficient mice. These findings demonstrate the improved therapeutic efficacy of Bio-LN/SPMs compared to unincorporated SPMs and standard nanoemulsions (LN/SPMs), emphasizing their potential as a novel approach for treating atherosclerosis and other inflammatory diseases.
Collapse
Affiliation(s)
- Maria Anghelache
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Geanina Voicu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Ruxandra Anton
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Florentina Safciuc
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Delia Boteanu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Mariana Deleanu
- “Liquid and Gas Chromatography” Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Mihaela Turtoi
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Maya Simionescu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Ileana Manduteanu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Manuela Calin
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| |
Collapse
|
2
|
Wang T, Wang X, Ren W, Sun Z, Zhang Y, Wu N, Diao H. Cardiomyocyte proliferation: Advances and insights in macrophage-targeted therapy for myocardial injury. Genes Dis 2025; 12:101332. [PMID: 39935606 PMCID: PMC11810708 DOI: 10.1016/j.gendis.2024.101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/18/2024] [Accepted: 03/20/2024] [Indexed: 02/13/2025] Open
Abstract
In the mammalian heart, cardiomyocytes undergo a transient window of proliferation that leads to regenerative impairment, limiting cardiomyocyte proliferation and myocardial repair capacity. Cardiac developmental patterns exacerbate the progression of heart disease characterized by myocardial cell loss, ultimately leading to cardiac dysfunction and heart failure. Myocardial infarction causes the death of partial cardiomyocytes, which triggers an immune response to remove debris and restore tissue integrity. Interestingly, when transient myocardial injury triggers irreversible loss of cardiomyocytes, the subsequent macrophages responsible for proliferation and regeneration have a unique immune phenotype that promotes the formation of pre-existing new cardiomyocytes. During mammalian regeneration, mononuclear-derived macrophages and self-renewing resident cardiac macrophages provide multiple cytokines and molecular signals that create a regenerative environment and cellular plasticity capacity in postnatal cardiomyocytes, a pivotal strategy for achieving myocardial repair. Consistent with other human tissues, cardiac macrophages originating from the embryonic endothelium produce a hierarchy of contributions to monocyte recruitment and fate specification. In this review, we discuss the novel functions of macrophages in triggering cardiac regeneration and repair after myocardial infarction and provide recent advances and prospective insights into the phenotypic transformation and heterogeneous features involving cardiac macrophages. In conclusion, macrophages contribute critically to regeneration, repair, and remodeling, and are challenging targets for cardiovascular therapeutic interventions.
Collapse
Affiliation(s)
- Tao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Xueyao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Weibin Ren
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yanhui Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Nanping Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Hongyan Diao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
3
|
Li YJ, Zhao X, Wu S, Yao N, Zhang X, Liu Y, Tian X, Li Y, Gao B, Johnston SC, Shi FD, Li Z. Formyl peptide receptor 1 and its antagonist T0080 in atherosclerosis. Cell Death Differ 2025:10.1038/s41418-025-01506-7. [PMID: 40204950 DOI: 10.1038/s41418-025-01506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Focal inflammation and arterial damage driven by macrophages are key pathogenic processes in atherosclerosis. However, the mechanisms that regulate these processes remain poorly understood. In this study, we demonstrate that formyl peptide receptor 1 (FPR1) agonist, a mitochondrial N-formyl peptide, is elevated in the blood of patients with atherosclerosis and correlates with carotid stenosis. Macrophages expressing FPR1 were found in atherosclerotic lesions. Conditional deletion of Fpr1 in macrophages reduced plaque formation, local inflammation, and aortic atherosclerosis in apolipoprotein E (ApoE)-/- mice. FPR1 activates protein kinase C (PKC) in macrophages, promoting the production of reactive oxygen species (ROS), tumor necrosis factor alpha (TNF-α) and interleukin-1beta (IL-1β), which accelerates the apoptosis of endothelial cells and smooth muscle cells. To inhibit FPR1 bioactivity, we developed an antagonist, T0080. Therapeutic administration of T0080 attenuates atherosclerotic progression in ApoE-/- mice. Our findings highlight the pivotal role of FPR1 in macrophage-mediated atherosclerotic plaque formation and support further investigation of T0080-mediated FPR1 inhibition as a potential treatment for atherosclerosis.
Collapse
Affiliation(s)
- Yu-Jing Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xue Zhao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Siting Wu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Nan Yao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xueyu Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yanyan Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaobing Tian
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yulin Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bin Gao
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - S Claiborne Johnston
- Department of Neurology, University of California, San Francisco, CA, 94143, USA
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Zhiguo Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
4
|
Wang H, Li Y, Zhang L, Lu M, Li C, Li Y. Anti-Inflammatory Lipid Mediators from Polyunsaturated Fatty Acids: Insights into their Role in Atherosclerosis Microenvironments. Curr Atheroscler Rep 2025; 27:48. [PMID: 40198469 DOI: 10.1007/s11883-025-01285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2025] [Indexed: 04/10/2025]
Abstract
PURPOSE OF REVIEW Inflammation has become a major residual risk factor for atherosclerotic cardiovascular disease (ASCVD). Certain lipid mediators, known as specialized proresolving mediators (SPMs), are mainly derived from polyunsaturated fatty acids (PUFAs) and can promote inflammation resolution while maintaining host autoimmunity. This review investigates the synthesis and ligand action pathways of these lipid mediators, as well as their regulatory mechanisms in the microenvironment of atherosclerotic plaques. Furthermore, it explores their clinical therapeutic potential, aiming to offer new insights into novel anti-inflammatory drug targets for the treatment of ASCVD. RECENT FINDINGS Reduced levels of SPMs are associated with the progression of atherosclerosis. SPMs inhibit inflammatory responses in the plaque microenvironment by limiting immune cell infiltration, reducing oxidative stress, and promoting the clearance of apoptotic cells, all of which contribute to plaque stabilization. Tyrosine-protein kinase Mer (MerTK), TRIF-related adaptor molecule (TRAM), and high mobility group box 1 (HMGB1) play crucial roles in the modulation of SPM production. Clinical use of ω-3 PUFAs has been shown to reduce the incidence of fatal cardiovascular events. Furthermore, aspirin not only initiates the synthesis of specific SPMs but also extends their activity within the body. The enhanced production of SPMs promotes inflammation resolution in the plaque microenvironment without inducing immunosuppression. This characteristic highlights MerTK, TRAM, and HMGB1 as potential targets for the development of anti-inflammatory drugs. Investigating targets and compounds that enhance the production of SPMs presents a promising strategy for developing future anti-inflammatory agents.
Collapse
Affiliation(s)
- Hongqin Wang
- Post-doctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- , Daxue Road No. 4655, Changqing District, Jinan, Shandong Province, People's Republic of China
| | - Yuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- , Daxue Road No. 4655, Changqing District, Jinan, Shandong Province, People's Republic of China
| | - Lei Zhang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- , Daxue Road No. 4655, Changqing District, Jinan, Shandong Province, People's Republic of China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- , Daxue Road No. 4655, Changqing District, Jinan, Shandong Province, People's Republic of China.
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
5
|
Jiang M, Sun L, Jia Y, Ren X, Han L, Zhu Z, Zheng X. Causal effects of Annexin A1 and Annexin A2 on ischemic stroke and its subtypes: A two-sample Mendelian randomization study. J Cardiol 2025:S0914-5087(25)00099-1. [PMID: 40187529 DOI: 10.1016/j.jjcc.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Preclinical studies have suggested that Annexin A1 and Annexin A2 act as anti-inflammatory agents, slowing the progression of atherosclerosis and further potentially reducing the risk of ischemic stroke. Since the causality of Annexins and ischemic stroke remains uncertain, this study aimed to investigate the causal effects of both using a two-sample Mendelian randomization (MR) method. METHODS The genetic instruments associated with Annexin A1 and Annexin A2 originated from a European-descent genome-wide association study (GWAS) of 50,000 participants from the INTERVAL study. Summary statistics for ischemic stroke and ischemic stroke subtypes were derived from the MEGASTROKE consortium's GWAS dataset, involving 40,585 cases and 406,111 controls of European ancestry. The inverse-variance weighted method was utilized in the main analysis, followed by a series of sensitivity analyses for robustness validation. RESULTS In the primary analysis, genetically predicted high Annexin A1 levels were associated with decreased risks of ischemic stroke (OR = 0.96; 95 % CI = 0.93-0.99; p = 0.023) and large artery stroke (OR = 0.88; 95 % CI = 0.81-0.96; p = 0.004). Similarly, genetically predicted high Annexin A2 levels also had significant associations with decreased risks of ischemic stroke (OR = 0.97; 95 % CI = 0.95-1.00; p = 0.019) and large artery stroke (OR = 0.90; 95 % CI = 0.85-0.96; p = 0.001). CONCLUSION In this two-sample MR study, we found that Annexins had causal protective effects against ischemic stroke, especially large artery stroke. Further basic mechanistic studies should be conducted to investigate the biological roles of these genes.
Collapse
Affiliation(s)
- Minglan Jiang
- Public Health Research Center and Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Lulu Sun
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yiming Jia
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Xiao Ren
- Public Health Research Center and Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Longyang Han
- Public Health Research Center and Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
| | - Xiaowei Zheng
- Public Health Research Center and Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
6
|
Margraf A, Chen J, Christoforou M, Claria-Ribas P, Henriques Schneider A, Cecconello C, Bu W, Imbert PRC, Wright TD, Russo S, Blacksell IA, Koenis DS, Dalli J, Lupisella JA, Wurtz NR, Garcia RA, Cooper D, Norling LV, Perretti M. Formyl-peptide receptor type 2 activation mitigates heart and lung damage in inflammatory arthritis. EMBO Mol Med 2025:10.1038/s44321-025-00227-1. [PMID: 40181186 DOI: 10.1038/s44321-025-00227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
Rheumatoid arthritis (RA) is associated with heart and lung dysfunction. Current therapies fail to attenuate such complications. Here, we identify formyl-peptide receptor type 2 (FPR2) as a therapeutic target to treat heart and lung dysfunction associated with inflammatory arthritis. Arthritic mice on high levels of dietary homocysteine develop cardiac diastolic dysfunction and reduced lung compliance, mirroring two comorbidities in RA. Therapeutic administration of a small molecule FPR2 agonist (BMS986235) to hyper-homocysteine arthritic mice prevented diastolic dysfunction (monitored by echocardiography) and restored lung compliance. These tissue-specific effects were secondary to reduced neutrophil infiltration, modulation of fibroblast activation and phenotype (in the heart) and attenuation of monocyte and macrophage numbers (in the lung). A dual FPR1/2 agonist (compound 43) failed to prevent the reduction in lung compliance of arthritic mice and promoted the accumulation of inflammatory monocytes and pro-fibrotic macrophages in lung parenchyma. This cellular response lies downstream of FPR1-mediated potentiation of CCL2-dependent monocyte chemotaxis and activation. This finding supports the therapeutic development of selective FPR2 agonists to mitigate two impactful comorbidities associated with inflammatory arthritides.
Collapse
Affiliation(s)
- Andreas Margraf
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jianmin Chen
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Marilena Christoforou
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Pol Claria-Ribas
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ayda Henriques Schneider
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Chiara Cecconello
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Weifeng Bu
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Paul R C Imbert
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Thomas D Wright
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stefan Russo
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Isobel A Blacksell
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Duco S Koenis
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jesmond Dalli
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - John A Lupisella
- Department of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, Princeton, NJ, USA
| | - Nicholas R Wurtz
- Department of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, Princeton, NJ, USA
| | - Ricardo A Garcia
- Department of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, Princeton, NJ, USA
- GeneToBe, Ann Arbor, MI, USA
| | - Dianne Cooper
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Lucy V Norling
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Mauro Perretti
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
7
|
Boros-Rausch A, Dorogin A, Nadeem L, Shynlova O, Lye SJ. A Broad-Spectrum Chemokine Inhibitor Drives M2 Macrophage Polarization Through Modulation of the Myometrial Secretome. Cells 2025; 14:514. [PMID: 40214468 PMCID: PMC11989072 DOI: 10.3390/cells14070514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
The uterine smooth muscle (myometrium) is an immunomodulatory tissue capable of secreting multiple chemokines during pregnancy. We propose that before term labor, chemokines secreted as a result of mechanical stretch of the uterine walls by the growing fetus(es) induce infiltration of maternal monocytes into myometrium, drive their differentiation into macrophages, and induce pro-inflammatory (M1) polarization, leading to labor contractions. This study used high-throughput proteomic mass-spectrometry to investigate the underlying mechanisms and explored the therapeutic potential of a broad-spectrum chemokine inhibitor (BSCI, FX125L) in modulating these effects. Primary myocytes isolated from the myometrium of term pregnant women were subjected in vitro to static mechanical stretch. Proteomic analysis of stretched myocyte-conditioned media (CM) identified significant upregulation of chemokine-related pathways and ECM degradation proteins. CM induced in vitro differentiation of human monocytes to macrophages and polarization into an M1-like phenotype characterized by elevated ROS production. BSCI treatment altered the myocyte secretome, increasing tissue-remodeling and anti-inflammatory proteins, Annexin A1 and TGF-β. BSCI-treated myocyte secretions induced Annexin A1 expression in macrophages and enhanced their phagocytic activity. We conclude that factors secreted by mechanically stretched myocytes induce pro-inflammatory M1 macrophage polarization, while BSCI modulates myocyte secretome, which reprograms macrophages to a homeostatic M2-like phenotype, thus reducing inflammation. When treated with BSCI, M2-polarized macrophages reduced myocyte-driven collagen gel contraction, whereas M1 macrophages enhanced it. This study reveals novel insights into the myocyte-macrophage interaction and identifies BSCI as a promising drug to modulate myometrial activity. We suggest that uterine macrophages may represent a therapeutic target for preventing preterm labor in women.
Collapse
Affiliation(s)
- Adam Boros-Rausch
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; (A.B.-R.); (A.D.); (L.N.); (S.J.L.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Anna Dorogin
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; (A.B.-R.); (A.D.); (L.N.); (S.J.L.)
| | - Lubna Nadeem
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; (A.B.-R.); (A.D.); (L.N.); (S.J.L.)
| | - Oksana Shynlova
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; (A.B.-R.); (A.D.); (L.N.); (S.J.L.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Stephen James Lye
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; (A.B.-R.); (A.D.); (L.N.); (S.J.L.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
8
|
Gutiérrez‐Muñoz C, Blázquez‐Serra R, Sebastian‐Jaraba IS, Sanz‐Andrea S, Fernández‐Gómez MJ, Nuñez‐Moreno G, Mínguez P, Escolá‐Gil JC, Nogales P, Ollivier V, Martín‐Ventura JL, Noe BH, Rescher U, Méndez‐Barbero N, Blanco‐Colio LM. Annexin A8 deficiency delays atherosclerosis progression. Clin Transl Med 2025; 15:e70176. [PMID: 39835780 PMCID: PMC11748212 DOI: 10.1002/ctm2.70176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 12/20/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids and leukocytes within the arterial wall. By studying the aortic transcriptome of atherosclerosis-prone apolipoprotein E (ApoE-/-) mice, we aimed to identify novel players in the progression of atherosclerosis. METHODS RNA-Seq analysis was performed on aortas from ApoE-/- and wild-type mice. AnxA8 expression was assessed in human and mice atherosclerotic tissue and healthy aorta. ApoE-/- mice lacking systemic AnxA8 (ApoE-/-AnxA8-/-) were generated to assess the effect of AnxA8 deficiency on atherosclerosis. Bone marrow transplantation (BMT) was also performed to generate ApoE-/- lacking AnxA8 specifically in bone marrow-derived cells. Endothelial-specific AnxA8 silencing in vivo was performed in ApoE-/- mice. The functional role of AnxA8 was analysed in cultured murine cells. RESULTS RNA-Seq unveiled AnxA8 as one of the most significantly upregulated genes in atherosclerotic aortas of ApoE-/- compared to wild-type mice. Moreover, AnxA8 was upregulated in human atherosclerotic plaques. Germline deletion of AnxA8 decreased the atherosclerotic burden, the size and volume of atherosclerotic plaques in the aortic root. Plaques of ApoE-/-AnxA8-/- were characterized by lower lipid and inflammatory content, smaller necrotic core, thicker fibrous cap and less apoptosis compared with those in ApoE-/-AnxA8+/+. BMT showed that hematopoietic AnxA8 deficiency had no effect on atherosclerotic progression. Oxidized low-density lipoprotein (ox-LDL) increased AnxA8 expression in murine aortic endothelial cells (MAECs). In vitro experiments revealed that AnxA8 deficiency in MAECs suppressed P/E-selectin and CD31 expression and secretion induced by ox-LDL with a concomitant reduction in platelet and leukocyte adhesion. Intravital microscopy confirmed the reduction in leukocyte and platelet adhesion in ApoE-/-AnxA8-/- mice. Finally, endothelial-specific silencing of AnxA8 decreased atherosclerosis progression. CONCLUSION Our findings demonstrate that AnxA8 promotes the progression of atherosclerosis by modulating endothelial-leukocyte interactions. Interventions capable of reducing AnxA8 expression in endothelial cells may delay atherosclerotic plaque progression. KEY POINTS This study shows that AnxA8 is upregulated in aorta of atheroprone mice and in human atherosclerotic plaques. Germline AnxA8 deficiency reduces platelet and leukocyte recruitment to activated endothelium as well as atherosclerotic burden, plaque size, and macrophage accumulation in mice. AnxA8 regulates oxLDL-induced adhesion molecules expression in aortic endothelial cells. Our data strongly suggest that AnxA8 promotes disease progression through regulation of adhesion and influx of immune cells to the intima. Endothelial specific silencing of AnxA8 reduced atherosclerosis progression. Therapeutic interventions to reduce AnxA8 expression may delay atherosclerosis progression.
Collapse
Affiliation(s)
- Carmen Gutiérrez‐Muñoz
- Vascular Research Laboratory, IIS‐Fundación Jiménez DíazMadridSpain
- CIBERCV, ISCIIIMadridSpain
| | - Rafael Blázquez‐Serra
- Vascular Research Laboratory, IIS‐Fundación Jiménez DíazMadridSpain
- CIBERCV, ISCIIIMadridSpain
| | | | | | | | - Gonzalo Nuñez‐Moreno
- Bioinformatics UnitDepartment of Genetics & GenomicsIIS‐Fundación Jiménez DíazMadridSpain
- CIBERER, ISCIIIMadridSpain
| | - Pablo Mínguez
- Bioinformatics UnitDepartment of Genetics & GenomicsIIS‐Fundación Jiménez DíazMadridSpain
- CIBERER, ISCIIIMadridSpain
| | - Joan Carles Escolá‐Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant PauBarcelonaSpain
- CIBERDEM, ISCIIIMadridSpain
| | - Paula Nogales
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Veronique Ollivier
- Laboratory for Vascular Translation ScienceInserm U1148, Paris Bichat HospitalParisFrance
| | - Jose L. Martín‐Ventura
- Vascular Research Laboratory, IIS‐Fundación Jiménez DíazMadridSpain
- CIBERCV, ISCIIIMadridSpain
| | - Benoit Ho‐Tin Noe
- Laboratory for Vascular Translation ScienceInserm U1148, Paris Bichat HospitalParisFrance
| | - Ursula Rescher
- Center for Molecular Biology of InflammationResearch Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, University of MuensterMuensterGermany
| | - Nerea Méndez‐Barbero
- Vascular Research Laboratory, IIS‐Fundación Jiménez DíazMadridSpain
- CIBERCV, ISCIIIMadridSpain
| | - Luis M. Blanco‐Colio
- Vascular Research Laboratory, IIS‐Fundación Jiménez DíazMadridSpain
- CIBERCV, ISCIIIMadridSpain
| |
Collapse
|
9
|
Fredman G, Serhan CN. Specialized pro-resolving mediators in vascular inflammation and atherosclerotic cardiovascular disease. Nat Rev Cardiol 2024; 21:808-823. [PMID: 38216693 DOI: 10.1038/s41569-023-00984-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/14/2024]
Abstract
Timely resolution of the acute inflammatory response (or inflammation resolution) is an active, highly coordinated process that is essential to optimal health. Inflammation resolution is regulated by specific endogenous signalling molecules that function as 'stop signals' to terminate the inflammatory response when it is no longer needed; to actively promote healing, regeneration and tissue repair; and to limit pain. Specialized pro-resolving mediators are a superfamily of signalling molecules that initiate anti-inflammatory and pro-resolving actions. Without an effective and timely resolution response, inflammation can become chronic, a pathological state that is associated with many widely occurring human diseases, including atherosclerotic cardiovascular disease. Uncovering the mechanisms of inflammation resolution failure in cardiovascular diseases and identifying useful biomarkers for non-resolving inflammation are unmet needs. In this Review, we discuss the accumulating evidence that supports the role of non-resolving inflammation in atherosclerosis and the use of specialized pro-resolving mediators as therapeutic tools for the treatment of atherosclerotic cardiovascular disease. We highlight open questions about therapeutic strategies and mechanisms of disease to provide a framework for future studies on the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Gabrielle Fredman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anaesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Broering MF, Tocci S, Sout NT, Reutelingsperger C, Farsky SHP, Das S, Sayed IM. Development of an Inflamed High Throughput Stem-cell-based Gut Epithelium Model to Assess the Impact of Annexin A1. Stem Cell Rev Rep 2024; 20:1299-1310. [PMID: 38498294 DOI: 10.1007/s12015-024-10708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE AND DESIGN Annexin A1 (ANXA1) plays a role in maintaining intestinal hemostasis, especially following mucosal inflammation. The published data about ANXA1 was derived from experimental animal models where there is an overlapping between epithelial and immune cells. There is no in vitro gut epithelial model that can assess the direct effect of ANXA1 on the gut epithelium. METHODS We developed high-throughput stem-cell-based murine epithelial cells and bacterial lipopolysaccharides (LPS) were used to induce inflammation. The impact of ANXA1 and its functional part (Ac2-26) was evaluated in the inflamed model. Intestinal integrity was assessed by the transepithelial electrical resistance (TEER), and FITC-Dextran permeability. Epithelial junction proteins were assessed using confocal microscopy and RT-qPCR. Inflammatory cytokines were evaluated by RT-qPCR and ELISA. RESULTS LPS challenge mediated a damage in the epithelial cells as shown by a drop in the TEER and an increase in FITC-dextran permeability; reduced the expression of epithelial junctional proteins (Occludin, ZO-1, and Cadherin) and increased the expression of the gut leaky protein, Claudin - 2. ANXA1 and Ac2-26 treatment reduced the previous damaging effects. In addition, ANXA1 and Ac2-26 inhibited the inflammatory responses mediated by the LPS and increased the transcription of the anti-inflammatory cytokine, IL-10. CONCLUSION ANXA1 and Ac2-26 directly protect the epithelial integrity by affecting the expression of epithelial junction and inflammatory markers. The inflamed gut model is a reliable tool to study intestinal inflammatory diseases, and to evaluate the efficacy of potential anti-inflammatory drugs and the screening of new drugs that could be candidates for inflammatory bowel disease.
Collapse
Affiliation(s)
- Milena Fronza Broering
- Department of Biomedical and Nutritional Sciences, University of Massachusetts-Lowell, Lowell, MA, 01854, USA
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, São Paulo, 05508-000, Brazil
| | - Stefania Tocci
- Department of Biomedical and Nutritional Sciences, University of Massachusetts-Lowell, Lowell, MA, 01854, USA
| | - Noah T Sout
- Department of Biomedical and Nutritional Sciences, University of Massachusetts-Lowell, Lowell, MA, 01854, USA
| | - Chris Reutelingsperger
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht University, Maastricht, 6211 LK, The Netherlands
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, São Paulo, 05508-000, Brazil
| | - Soumita Das
- Department of Biomedical and Nutritional Sciences, University of Massachusetts-Lowell, Lowell, MA, 01854, USA.
| | - Ibrahim M Sayed
- Department of Biomedical and Nutritional Sciences, University of Massachusetts-Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
11
|
Huang Y, Han Z, Shen T, Zheng Y, Yang Z, Fan J, Wang R, Yan F, Tao Z, Luo Y, Liu P. Neutrophil migration participates in the side effect of recombinant human tissue plasminogen activator. CNS Neurosci Ther 2024; 30:e14825. [PMID: 38954749 PMCID: PMC11218914 DOI: 10.1111/cns.14825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 07/04/2024] Open
Abstract
AIMS Ischemic stroke remains a challenge in medical research because of the limited treatment options. Recombinant human tissue plasminogen activator (rtPA) is the primary treatment for recanalization. However, nearly 50% of the patients experience complications that result in ineffective reperfusion. The precise factors contributing to ineffective reperfusion remain unclear; however, recent studies have suggested that immune cells, notably neutrophils, may influence the outcome of rtPA thrombolysis via mechanisms such as the formation of neutrophil extracellular traps. This study aimed to explore the nonthrombolytic effects of rtPA on neutrophils and highlight their contribution to ineffective reperfusion. METHODS We evaluated the effects of rtPA treatment on middle cerebral artery occlusion in rats. We also assessed neutrophil infiltration and activation after rtPA treatment in vitro and in vivo in a small cohort of patients with massive cerebral ischemia (MCI). RESULTS rtPA increased neutrophil infiltration into the brain microvessels and worsened blood-brain barrier damage during ischemia. It also increased the neutrophil counts of the patients with MCI. CONCLUSION Neutrophils play a crucial role in promoting ischemic injury and blood-brain barrier disruption, making them potential therapeutic targets.
Collapse
Affiliation(s)
- Yuyou Huang
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Ziping Han
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Tong Shen
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yangmin Zheng
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Zhenhong Yang
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Junfen Fan
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Rongliang Wang
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Feng Yan
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Zhen Tao
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yumin Luo
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Institute for Brain Disorders, Capital Medical UniversityBeijingChina
| | - Ping Liu
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| |
Collapse
|
12
|
Zhang L, Shao L, Li J, Zhang Y, Shen Z. Annexin A1-Loaded Alginate Hydrogel Promotes Cardiac Repair via Modulation of Macrophage Phenotypes after Myocardial Infarction. ACS Biomater Sci Eng 2024; 10:3232-3241. [PMID: 38556725 DOI: 10.1021/acsbiomaterials.4c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Myocardial infarction (MI) is associated with inflammatory reaction, which is a pivotal component in MI pathogenesis. Moreover, excessive inflammation post-MI can lead to cardiac dysfunction and adverse remodeling, emphasizing the critical need for an effective inflammation-regulating treatment for cardiac repair. Macrophage polarization is crucial in the inflammation process, indicating its potential as an adjunct therapy for MI. In this study, we developed an injectable alginate hydrogel loaded with annexin A1 (AnxA1, an endogenous anti-inflammatory and pro-resolving mediator) for MI treatment. In vitro results showed that the composite hydrogel had good biocompatibility and consistently released AnxA1 for several days. Additionally, this hydrogel led to a reduced number of pro-inflammatory macrophages and an increased proportion of pro-healing macrophages via the adenosine monophosphate (AMP)-activated protein kinase (AMPK)-mammalian target of the rapamycin (mTOR) axis. Furthermore, the intramyocardial injection of this composite hydrogel into a mouse MI model effectively modulated macrophage transition to pro-healing phenotypes. This transition mitigated early inflammatory responses and cardiac fibrosis, promoted angiogenesis, and improved cardiac function. Therefore, our study findings suggest that combining biomaterials and endogenous proteins for MI treatment is a promising approach for limiting adverse cardiac remodeling, preventing cardiac damage, and preserving the function of infarcted hearts.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215000, P. R. China
- Department of Intensive Care Medicine and Medical Research Center, Affiliated Hospital 2 of Nantong University and Nantong First People's Hospital, Nantong 226001, P. R. China
| | - Lianbo Shao
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215000, P. R. China
| | - Jingjing Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215000, P. R. China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215000, P. R. China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215000, P. R. China
| |
Collapse
|
13
|
Rizo-Téllez SA, Filep JG. Beyond host defense and tissue injury: the emerging role of neutrophils in tissue repair. Am J Physiol Cell Physiol 2024; 326:C661-C683. [PMID: 38189129 PMCID: PMC11193466 DOI: 10.1152/ajpcell.00652.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Neutrophils, the most abundant immune cells in human blood, play a fundamental role in host defense against invading pathogens and tissue injury. Neutrophils carry potentially lethal weaponry to the affected site. Inadvertent and perpetual neutrophil activation could lead to nonresolving inflammation and tissue damage, a unifying mechanism of many common diseases. The prevailing view emphasizes the dichotomy of their function, host defense versus tissue damage. However, tissue injury may also persist during neutropenia, which is associated with disease severity and poor outcome. Numerous studies highlight neutrophil phenotypic heterogeneity and functional versatility, indicating that neutrophils play more complex roles than previously thought. Emerging evidence indicates that neutrophils actively orchestrate resolution of inflammation and tissue repair and facilitate return to homeostasis. Thus, neutrophils mobilize multiple mechanisms to limit the inflammatory reaction, assure debris removal, matrix remodeling, cytokine scavenging, macrophage reprogramming, and angiogenesis. In this review, we will summarize the homeostatic and tissue-reparative functions and mechanisms of neutrophils across organs. We will also discuss how the healing power of neutrophils might be harnessed to develop novel resolution and repair-promoting therapies while maintaining their defense functions.
Collapse
Affiliation(s)
- Salma A Rizo-Téllez
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Schelemei P, Wagner E, Picard FSR, Winkels H. Macrophage mediators and mechanisms in cardiovascular disease. FASEB J 2024; 38:e23424. [PMID: 38275140 DOI: 10.1096/fj.202302001r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024]
Abstract
Macrophages are major players in myocardial infarction (MI) and atherosclerosis, two major cardiovascular diseases (CVD). Atherosclerosis is caused by the buildup of cholesterol-rich lipoproteins in blood vessels, causing inflammation, vascular injury, and plaque formation. Plaque rupture or erosion can cause thrombus formation resulting in inadequate blood flow to the heart muscle and MI. Inflammation, particularly driven by macrophages, plays a central role in both atherosclerosis and MI. Recent integrative approaches of single-cell analysis-based classifications in both murine and human atherosclerosis as well as experimental MI showed overlap in origin, diversity, and function of macrophages in the aorta and the heart. We here discuss differences and communalities between macrophages in the heart and aorta at steady state and in atherosclerosis or upon MI. We focus on markers, mediators, and functional states of macrophage subpopulations. Recent trials testing anti-inflammatory agents show a major benefit in reducing the inflammatory burden of CVD patients, but highlight a necessity for a broader understanding of immune cell ontogeny and heterogeneity in CVD. The novel insights into macrophage biology in CVD represent exciting opportunities for the development of novel treatment strategies against CVD.
Collapse
Affiliation(s)
- Patrik Schelemei
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Elena Wagner
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Felix Simon Ruben Picard
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Holger Winkels
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Zha D, Wang S, Monaghan-Nichols P, Qian Y, Sampath V, Fu M. Mechanisms of Endothelial Cell Membrane Repair: Progress and Perspectives. Cells 2023; 12:2648. [PMID: 37998383 PMCID: PMC10670313 DOI: 10.3390/cells12222648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
Endothelial cells are the crucial inner lining of blood vessels, which are pivotal in vascular homeostasis and integrity. However, these cells are perpetually subjected to a myriad of mechanical, chemical, and biological stresses that can compromise their plasma membranes. A sophisticated repair system involving key molecules, such as calcium, annexins, dysferlin, and MG53, is essential for maintaining endothelial viability. These components orchestrate complex mechanisms, including exocytosis and endocytosis, to repair membrane disruptions. Dysfunctions in this repair machinery, often exacerbated by aging, are linked to endothelial cell death, subsequently contributing to the onset of atherosclerosis and the progression of cardiovascular diseases (CVD) and stroke, major causes of mortality in the United States. Thus, identifying the core machinery for endothelial cell membrane repair is critically important for understanding the pathogenesis of CVD and stroke and developing novel therapeutic strategies for combating CVD and stroke. This review summarizes the recent advances in understanding the mechanisms of endothelial cell membrane repair. The future directions of this research area are also highlighted.
Collapse
Affiliation(s)
- Duoduo Zha
- Department of Biomedical Science, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA; (D.Z.); (P.M.-N.)
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, Nanchang 330031, China;
| | - Shizhen Wang
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri Kansas City, 5009 Rockhill Road, Kansas City, MO 64110, USA;
| | - Paula Monaghan-Nichols
- Department of Biomedical Science, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA; (D.Z.); (P.M.-N.)
| | - Yisong Qian
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, Nanchang 330031, China;
| | - Venkatesh Sampath
- Department of Pediatric, Children’s Mercy Hospital, Children’s Mercy Research Institute, Kansas City, MO 64108, USA;
| | - Mingui Fu
- Department of Biomedical Science, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA; (D.Z.); (P.M.-N.)
| |
Collapse
|
16
|
Wickstead ES, Elliott BT, Pokorny S, Biggs C, Getting SJ, McArthur S. Stimulation of the Pro-Resolving Receptor Fpr2 Reverses Inflammatory Microglial Activity by Suppressing NFκB Activity. Int J Mol Sci 2023; 24:15996. [PMID: 37958978 PMCID: PMC10649357 DOI: 10.3390/ijms242115996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Neuroinflammation driven primarily by microglia directly contributes to neuronal death in many neurodegenerative diseases. Classical anti-inflammatory approaches aim to suppress pro-inflammatory mediator production, but exploitation of inflammatory resolution may also be of benefit. A key driver of peripheral inflammatory resolution, formyl peptide receptor 2 (Fpr2), is expressed by microglia, but its therapeutic potential in neurodegeneration remains unclear. Here, we studied whether targeting of Fpr2 could reverse inflammatory microglial activation induced by the potent bacterial inflammogen lipopolysaccharide (LPS). Exposure of murine primary or immortalised BV2 microglia to LPS triggered pro-inflammatory phenotypic change and activation of ROS production, effects significantly attenuated by subsequent treatment with the Fpr2 agonist C43. Mechanistic studies showed C43 to act through p38 MAPK phosphorylation and reduction of LPS-induced NFκB nuclear translocation via prevention of IκBα degradation. Here, we provide proof-of-concept data highlighting Fpr2 as a potential target for control of microglial pro-inflammatory activity, suggesting that it may be a promising therapeutic target for the treatment of neuroinflammatory disease.
Collapse
Affiliation(s)
- Edward S. Wickstead
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, 4, Newark Street, London E1 2AT, UK
- School of Life Sciences, College of Liberal Arts & Sciences, University of Westminster, 115, New Cavendish Street, London W1W 6UW, UK
- Icahn School of Medicine at Mount Sinai, Department of Neurology, Simon Hess Medical and Science Building, New York, NY 10029, USA
| | - Bradley T. Elliott
- School of Life Sciences, College of Liberal Arts & Sciences, University of Westminster, 115, New Cavendish Street, London W1W 6UW, UK
| | - Sarah Pokorny
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, 4, Newark Street, London E1 2AT, UK
| | - Christopher Biggs
- School of Life Sciences, College of Liberal Arts & Sciences, University of Westminster, 115, New Cavendish Street, London W1W 6UW, UK
| | - Stephen J. Getting
- School of Life Sciences, College of Liberal Arts & Sciences, University of Westminster, 115, New Cavendish Street, London W1W 6UW, UK
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, 4, Newark Street, London E1 2AT, UK
| |
Collapse
|
17
|
He X, Shao G, Du X, Hua R, Song H, Chen Y, Zhu X, Yang G. Molecular characterization and functional implications on mouse peripheral blood mononuclear cells of annexin proteins from Echinococcus granulosus sensu lato. Parasit Vectors 2023; 16:350. [PMID: 37803469 PMCID: PMC10559496 DOI: 10.1186/s13071-023-05967-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/09/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Cystic echinococcosis (CE) is a life-threatening zoonotic disease caused by the larval stage of Echinococcus granulosus sensu lato, which employs various strategies to evade the host immune system for survival. Recent advances have revealed the role of annexins as excretory/secretory products, providing new insights into the immune regulation by these proteins in the pathogenesis of CE. METHODS Echinococcus granulosus annexin B proteins EgANXB2, EgANXB18, EgANXB20, and EgANXB23 were cloned, expressed, and analyzed using bioinformatic tools. Membrane binding analysis was used to assess their bioactivity, while their immunoreactivity and tissue distribution characteristics were determined experimentally using western blotting and immunofluorescence staining, respectively. Furthermore, quantitative real-time reverse transcription PCR (qRT-PCR) was used to analyze the mRNA expression profiles of EgANXBs in different developmental stages of E. granulosus. Finally, immunofluorescence staining, cell counting kit 8 assays, flow cytometry, transwell migration assays, and qRT-PCR were used to evaluate the functional effects of rEgANXB18 and rEgANXB20 on mouse peripheral blood mononuclear cells (PBMCs). RESULTS In this study, we identified four EgANXBs with conserved protein structures and calcium-dependent phospholipid binding activities. rEgANXBs were recognized by serum from sheep infected with E. granulosus and distributed in the germinal layer of fertile cysts. Interestingly, transcription levels of the four EgANXBs were significantly higher in protoscoleces than in 28-day strobilated worms. Moreover, we demonstrated that rEgANXB18 and rEgANXB20 were secretory proteins that could bind to PBMCs and regulate their function. Specifically, rEgANXB18 inhibited cell proliferation and migration while promoting cell apoptosis, NO production, and cytokine profile shifting. In contrast, rEgANXB20 showed limited effects on apoptosis but inhibited NO production. CONCLUSIONS Our findings suggested that among the four identified EgANXBs, EgANXB2 and EgANXB23 might play a pivotal role for the development of protoscoleces, while EgANXB18 and EgANXB20, as secretory proteins, appeared to participate in the host-parasite interaction by regulating the function of immune cells.
Collapse
Affiliation(s)
- Xue He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Guoqing Shao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Xiaodi Du
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Hongyu Song
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Yanxin Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Xiaowei Zhu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China.
| |
Collapse
|
18
|
Prevete N, Poto R, Marone G, Varricchi G. Unleashing the power of formyl peptide receptor 2 in cardiovascular disease. Cytokine 2023; 169:156298. [PMID: 37454543 DOI: 10.1016/j.cyto.2023.156298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
N-formyl peptide receptors (FPRs) are seven-transmembrane, G protein-coupled receptors with a wide distribution in immune and non-immune cells, recognizing N-formyl peptides from bacterial and mitochondrial origin and several endogenous signals. Three FPRs have been identified in humans: FPR1, FPR2, and FPR3. Most FPR ligands can activate a pro-inflammatory response, while a limited group of FPR agonists can elicit anti-inflammatory and homeostatic responses. Annexin A1 (AnxA1), a glucocorticoid-induced protein, its N-terminal peptide Ac2-26, and lipoxin A4 (LXA4), a lipoxygenase-derived eicosanoid mediator, exert significant immunomodulatory effects by interacting with FPR2 and/or FPR1. The ability of FPRs to recognize both ligands with pro-inflammatory or inflammation-resolving properties places them in a crucial position in the balance between activation against harmful events and maintaince of tissue integrity. A new field of investigation focused on the role of FPRs in the setting of heart injury. FPRs are expressed on cardiac macrophages, which are the predominant immune cells in the myocardium and play a key role in heart diseases. Several endogenous (AnxA1, LXA4) and synthetic compounds (compound 43, BMS-986235) reduced infarct size and promoted the resolution of inflammation via the activation of FPR2 on cardiac macrophages. Further studies should evaluate FPR2 role in other cardiovascular disorders.
Collapse
Affiliation(s)
- Nella Prevete
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy.
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy.
| |
Collapse
|
19
|
Achmad H, Almajidi YQ, Adel H, Obaid RF, Romero-Parra RM, Kadhum WR, Almulla AF, Alhachami FR, Gabr GA, Mustafa YF, Mahmoudi R, Hosseini-Fard S. The emerging crosstalk between atherosclerosis-related microRNAs and Bermuda triangle of foam cells: Cholesterol influx, trafficking, and efflux. Cell Signal 2023; 106:110632. [PMID: 36805844 DOI: 10.1016/j.cellsig.2023.110632] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
In atherosclerosis, the gradual buildup of lipid particles into the sub-endothelium of damaged arteries leads to numerous lipid alterations. The absorption of these modified lipids by monocyte-derived macrophages in the arterial wall leads to cholesterol accumulation and increases the likelihood of foam cell formation and fatty streak, which is an early characteristic of atherosclerosis. Foam cell formation is related to an imbalance in cholesterol influx, trafficking, and efflux. The formation of foam cells is heavily regulated by various mechanisms, among them, the role of epigenetic factors like microRNA alteration in the formation of foam cells has been well studied. Recent studies have focused on the potential interplay between microRNAs and foam cell formation in the pathogenesis of atherosclerosis; nevertheless, there is significant space to progress in this attractive field. This review has focused to examine the underlying processes of foam cell formation and microRNA crosstalk to provide a deep insight into therapeutic implications in atherosclerosis.
Collapse
Affiliation(s)
- Harun Achmad
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Indonesia
| | - Yasir Q Almajidi
- Department of Pharmacy, Baghdad College of Medical Sciences, Baghdad, Iraq
| | - Hussein Adel
- Al-Farahidi University, College of Dentistry, Baghdad, Iraq
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | | | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut 52001, Wasit, Iraq
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Firas Rahi Alhachami
- Radiology Department, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyedreza Hosseini-Fard
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Greening DW, Xu R, Ale A, Hagemeyer CE, Chen W. Extracellular vesicles as next generation immunotherapeutics. Semin Cancer Biol 2023; 90:73-100. [PMID: 36773820 DOI: 10.1016/j.semcancer.2023.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Extracellular vesicles (EVs) function as a mode of intercellular communication and molecular transfer to elicit diverse biological/functional response. Accumulating evidence has highlighted that EVs from immune, tumour, stromal cells and even bacteria and parasites mediate the communication of various immune cell types to dynamically regulate host immune response. EVs have an innate capacity to evade recognition, transport and transfer functional components to target cells, with subsequent removal by the immune system, where the immunological activities of EVs impact immunoregulation including modulation of antigen presentation and cross-dressing, immune activation, immune suppression, and immune surveillance, impacting the tumour immune microenvironment. In this review, we outline the recent progress of EVs in immunorecognition and therapeutic intervention in cancer, including vaccine and targeted drug delivery and summarise their utility towards clinical translation. We highlight the strategies where EVs (natural and engineered) are being employed as a therapeutic approach for immunogenicity, tumoricidal function, and vaccine development, termed immuno-EVs. With seminal studies providing significant progress in the sequential development of engineered EVs as therapeutic anti-tumour platforms, we now require direct assessment to tune and improve the efficacy of resulting immune responses - essential in their translation into the clinic. We believe such a review could strengthen our understanding of the progress in EV immunobiology and facilitate advances in engineering EVs for the development of novel EV-based immunotherapeutics as a platform for cancer treatment.
Collapse
Affiliation(s)
- David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, Australia; Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia; Central Clinical School, Monash University, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia.
| | - Rong Xu
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Anukreity Ale
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Christoph E Hagemeyer
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Weisan Chen
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia
| |
Collapse
|
21
|
Uriarte SM, Hajishengallis G. Neutrophils in the periodontium: Interactions with pathogens and roles in tissue homeostasis and inflammation. Immunol Rev 2023; 314:93-110. [PMID: 36271881 PMCID: PMC10049968 DOI: 10.1111/imr.13152] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neutrophils are of key importance in periodontal health and disease. In their absence or when they are functionally defective, as occurs in certain congenital disorders, affected individuals develop severe forms of periodontitis in early age. These observations imply that the presence of immune-competent neutrophils is essential to homeostasis. However, the presence of supernumerary or hyper-responsive neutrophils, either because of systemic priming or innate immune training, leads to imbalanced host-microbe interactions in the periodontium that culminate in dysbiosis and inflammatory tissue breakdown. These disease-provoking imbalanced interactions are further exacerbated by periodontal pathogens capable of subverting neutrophil responses to their microbial community's benefit and the host's detriment. This review attempts a synthesis of these findings for an integrated view of the neutrophils' ambivalent role in periodontal disease and, moreover, discusses how some of these concepts underpin the development of novel therapeutic approaches to treat periodontal disease.
Collapse
Affiliation(s)
- Silvia M. Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
22
|
Perretti M, Dalli J. Resolution Pharmacology: Focus on Pro-Resolving Annexin A1 and Lipid Mediators for Therapeutic Innovation in Inflammation. Annu Rev Pharmacol Toxicol 2023; 63:449-469. [PMID: 36151051 DOI: 10.1146/annurev-pharmtox-051821-042743] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chronic diseases that affect our society are made more complex by comorbidities and are poorly managed by the current pharmacology. While all present inflammatory etiopathogeneses, there is an unmet need for better clinical management of these diseases and their multiple symptoms. We discuss here an innovative approach based on the biology of the resolution of inflammation. Studying endogenous pro-resolving peptide and lipid mediators, how they are formed, and which target they interact with, can offer innovative options through augmenting the expression or function of pro-resolving pathways or mimicking their actions with novel targeted molecules. In all cases, resolution offers innovation for the treatment of the primary cause of a given disease and/or for the management of its comorbidities, ultimately improving patient quality of life. By implementing resolution pharmacology, we harness the whole physiology of inflammation, with the potential to bring a marked change in the management of inflammatory conditions.
Collapse
Affiliation(s)
- Mauro Perretti
- The William Harvey Research Institute, Faculty of Medicine and Dentistry, and Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom; ,
| | - Jesmond Dalli
- The William Harvey Research Institute, Faculty of Medicine and Dentistry, and Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom; ,
| |
Collapse
|
23
|
Spite M, Fredman G. Insights into the role of the resolvin D2-GPR18 signaling axis in cardiovascular physiology and disease. ADVANCES IN PHARMACOLOGY 2023; 97:257-281. [DOI: 10.1016/bs.apha.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Chen R, Li J, Zhou J, Wang Y, Zhao X, Li N, Liu W, Liu C, Zhou P, Chen Y, Yan S, Song L, Yan H, Zhao H. Prognostic impacts of Lipoxin A4 in patients with acute myocardial infarction: A prospective cohort study. Pharmacol Res 2023; 187:106618. [PMID: 36549409 DOI: 10.1016/j.phrs.2022.106618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Lipoxin A4 (LXA4) is one of the specialized pro-resolving lipid mediators proved to suppress the progression of atherosclerosis in vivo, but its clinical impacts in atherosclerotic patients is unclear. In this study, we assessed the prognostic impacts of LXA4 in patients with acute myocardial infarction (AMI). A total of 1569 consecutive AMI patients were prospectively recruited from March 2017 to January 2020. Plasma samples of AMI patients were collected, and LXA4 levels were determined using enzyme-linked immunosorbent assay. The primary outcome was major adverse cardiovascular event (MACE), a composite of all-cause death, recurrent MI, ischemic stroke, or ischemia-driven revascularization. Cox regression was used to assess associations between LXA4 and clinical outcomes. Overall, the median level of LXA4 was 5.637 (3.047-9.014) ng/mL for AMI patients. During a median follow-up of 786 (726-1108) days, high LXA4 (≥ 5.637 ng/mL) was associated with lower risk of MACE (hazard ratio [HR]: 0.73, 95% confidence interval [CI]: 0.60-0.89, P = 0.002), which was sustained in propensity score matching (HR: 0.73, 95% CI: 0.60-0.90, P = 0.004) and inverse probability weighting analysis (HR: 0.74, 95% CI: 0.61-0.90, P = 0.002). Combined with pro-inflammatory biomarker, patients with high levels of LXA4 (≥ 5.637 ng/mL) but low levels of high-sensitivity C-reactive protein (< 5.7 mg/L) acquired the lowest risk of MACE (HR: 0.68, 95% CI: 0.51-0.92, P = 0.012). In sum, high levels of LXA4 were associated with lower risk of recurrent ischemic events for AMI patients, which could serve as new therapeutic target to tackle cardiovascular inflammation.
Collapse
Affiliation(s)
- Runzhen Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China; Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiannan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jinying Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxiao Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Nan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Weida Liu
- Medical Research Center, Peking Union Medical College Hospital, Beijing, China
| | - Chen Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Shaodi Yan
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Li Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China; Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongbing Yan
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China; Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Hanjun Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
25
|
Jing Y, Hu S, Song J, Dong X, Zhang Y, Sun X, Wang D. Association between polymorphisms in miRNAs and ischemic stroke: A meta-analysis. Medicine (Baltimore) 2022; 101:e32078. [PMID: 36596006 PMCID: PMC9803434 DOI: 10.1097/md.0000000000032078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Atherosclerosis remains a predominant cause of ischemic stroke (IS). Four miRNA polymorphisms associated with arteriosclerosis mechanism were meta-analyzed to explore whether they had predictive significance for IS. METHODS PubMed, Excerpta Medica database, Web of Science, Cochrane Library, Scopus, China National Knowledge Infrastructure, and China Wanfang Database were searched for relevant case-control studies published before September 2022. Two researchers independently reviewed the studies and extracted the data. Data synthesis was carried out on eligible studies. Meta-analysis, subgroup analysis, sensitivity analysis, and publication bias analysis were performed using Stata software 16.0. RESULTS Twenty-two studies were included, comprising 8879 cases and 12,091 controls. The results indicated that there were no significant associations between miR-146a C>G (rs2910164), miR-196a2 T>C (rs11614913) and IS risk in the overall analyses, but miR-149 T>C (rs2292832) and miR-499 A>G (rs3746444) increased IS risk under the allelic model, homozygote model and recessive model. The subgroup analyses based on Trial of Org 101072 in Acute Stroke Treatment classification indicated that rs2910164 increased small artery occlusion (SAO) risk under the allelic model, heterozygote model and dominant model; rs11614913 decreased the risk of SAO under the allelic model, homozygote model, heterozygote model and dominant model. CONCLUSION This Meta-analysis showed that all 4 single nucleotide polymorphisms were associated with the risk of IS or SAO, even though the overall and subgroup analyses were not entirely consistent.
Collapse
Affiliation(s)
- Yunnan Jing
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siya Hu
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Song
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Dong
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaowei Sun
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dongyan Wang
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- * Correspondence: Dongyan Wang, Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 411 Gogoli Dajie, Nangang District, Harbin City, Heilongjiang Province 150000, China (e-mail: )
| |
Collapse
|
26
|
Hajishengallis G, Chavakis T. Mechanisms and Therapeutic Modulation of Neutrophil-Mediated Inflammation. J Dent Res 2022; 101:1563-1571. [PMID: 35786033 PMCID: PMC9703529 DOI: 10.1177/00220345221107602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Neutrophils are abundant, short-lived myeloid cells that are readily recruitable to sites of inflammation, where they serve as first-line defense against infection and other types of insult to the host. In recent years, there has been increased understanding on the involvement of neutrophils in chronic inflammatory diseases, where they may act as direct effectors of destructive inflammation. However, destructive tissue inflammation is also instigated in settings of neutrophil paucity, suggesting that neutrophils also mediate critical homeostatic functions. The activity of neutrophils is regulated by a variety of local tissue factors. In addition, systemic metabolic conditions, such as hypercholesterolemia and hyperglycemia, affect the production and mobilization of neutrophils from the bone marrow. Moreover, according to the recently emerged concept of innate immune memory, the functions of neutrophils can be enhanced through the process of trained granulopoiesis. This process may have both beneficial and potentially destructive effects, depending on context, that is, protective against infections and tumors, while destructive in the context of chronic inflammatory conditions. Although we are far from a complete understanding of the mechanisms underlying the regulation and function of neutrophils, current insights enable the development of targeted therapeutic interventions that can restrain neutrophil-mediated inflammation in chronic inflammatory diseases, such as periodontitis.
Collapse
Affiliation(s)
- G. Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - T. Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Sachsen, Germany
| |
Collapse
|
27
|
Méndez-Barbero N, San Sebastian-Jaraba I, Blázquez-Serra R, Martín-Ventura JL, Blanco-Colio LM. Annexins and cardiovascular diseases: Beyond membrane trafficking and repair. Front Cell Dev Biol 2022; 10:1000760. [PMID: 36313572 PMCID: PMC9614170 DOI: 10.3389/fcell.2022.1000760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 12/02/2022] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of mortality worldwide. The main cause underlying CVD is associated with the pathological remodeling of the vascular wall, involving several cell types, including endothelial cells, vascular smooth muscle cells, and leukocytes. Vascular remodeling is often related with the development of atherosclerotic plaques leading to narrowing of the arteries and reduced blood flow. Atherosclerosis is known to be triggered by high blood cholesterol levels, which in the presence of a dysfunctional endothelium, results in the retention of lipoproteins in the artery wall, leading to an immune-inflammatory response. Continued hypercholesterolemia and inflammation aggravate the progression of atherosclerotic plaque over time, which is often complicated by thrombus development, leading to the possibility of CV events such as myocardial infarction or stroke. Annexins are a family of proteins with high structural homology that bind phospholipids in a calcium-dependent manner. These proteins are involved in several biological functions, from cell structural organization to growth regulation and vesicle trafficking. In vitro gain- or loss-of-function experiments have demonstrated the implication of annexins with a wide variety of cellular processes independent of calcium signaling such as immune-inflammatory response, cell proliferation, migration, differentiation, apoptosis, and membrane repair. In the last years, the use of mice deficient for different annexins has provided insight into additional functions of these proteins in vivo, and their involvement in different pathologies. This review will focus in the role of annexins in CVD, highlighting the mechanisms involved and the potential therapeutic effects of these proteins.
Collapse
Affiliation(s)
- Nerea Méndez-Barbero
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBERCV, Madrid, Spain
| | | | - Rafael Blázquez-Serra
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Jose L. Martín-Ventura
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBERCV, Madrid, Spain
- Autonoma University of Madrid, Madrid, Spain
| | - Luis M. Blanco-Colio
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBERCV, Madrid, Spain
- *Correspondence: Luis M. Blanco-Colio,
| |
Collapse
|
28
|
Labes R, Dong L, Mrowka R, Bachmann S, von Vietinghoff S, Paliege A. Annexin A1 exerts renoprotective effects in experimental crescentic glomerulonephritis. Front Physiol 2022; 13:984362. [PMID: 36311242 PMCID: PMC9605209 DOI: 10.3389/fphys.2022.984362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
Non-resolving inflammation plays a critical role during the transition from renal injury towards end-stage renal disease. The glucocorticoid-inducible protein annexin A1 has been shown to function as key regulator in the resolution phase of inflammation, but its role in immune-mediated crescentic glomerulonephritis has not been studied so far. Methods: Acute crescentic glomerulonephritis was induced in annexin A1-deficient and wildtype mice using a sheep serum against rat glomerular basement membrane constituents. Animals were sacrificed at d5 and d10 after nephritis induction. Renal leukocyte abundance was studied by immunofluorescence and flow cytometry. Alterations in gene expression were determined by RNA-Seq and gene ontology analysis. Renal levels of eicosanoids and related lipid products were measured using lipid mass spectrometry. Results: Histological analysis revealed an increased number of sclerotic glomeruli and aggravated tubulointerstitial damage in the kidneys of annexin A1-deficient mice compared to the wildtype controls. Flow cytometry analysis confirmed an increased number of CD45+ leukocytes and neutrophil granulocytes in the absence of annexin A1. Lipid mass spectrometry showed elevated levels of prostaglandins PGE2 and PGD2 and reduced levels of antiinflammatory epoxydocosapentaenoic acid regioisomers. RNA-Seq with subsequent gene ontology analysis revealed induction of gene products related to leukocyte activation and chemotaxis as well as regulation of cytokine production and secretion. Conclusion: Intrinsic annexin A1 reduces proinflammatory signals and infiltration of neutrophil granulocytes and thereby protects the kidney during crescentic glomerulonephritis. The annexin A1 signaling cascade may therefore provide novel targets for the treatment of inflammatory kidney disease.
Collapse
Affiliation(s)
- Robert Labes
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lei Dong
- Nephrology Department, Tongji Hospital, Tongji College, Huazhong University of Science and Technology, Wuhan, China
| | - Ralf Mrowka
- Klinik für Innere Medizin III, AG Experimentelle Nephrologie, Universitätsklinikum Jena, Jena, Germany
| | - Sebastian Bachmann
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sibylle von Vietinghoff
- Nephrology Section, First Medical Clinic, University Clinic and Rheinische Friedrich-Wilhelms Universität Bonn, Bonn, Germany
| | - Alexander Paliege
- Division of Nephrology, Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- *Correspondence: Alexander Paliege,
| |
Collapse
|
29
|
Suica VI, Uyy E, Ivan L, Boteanu RM, Cerveanu-Hogas A, Hansen R, Antohe F. Cardiac Alarmins as Residual Risk Markers of Atherosclerosis under Hypolipidemic Therapy. Int J Mol Sci 2022; 23:ijms231911174. [PMID: 36232476 PMCID: PMC9569654 DOI: 10.3390/ijms231911174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 12/01/2022] Open
Abstract
Increased levels of low-density lipoproteins are the main risk factor in the initiation and progression of atherosclerosis. Although statin treatment can effectively lower these levels, there is still a residual risk of cardiovascular events. We hypothesize that a specific panel of stress-sensing molecules (alarmins) could indicate the persistence of silent atherosclerosis residual risk. New Zealand White rabbits were divided into: control group (C), a group that received a high-fat diet for twelve weeks (Au), and a treated hyperlipidemic group with a lipid diet for eight weeks followed by a standard diet and hypolipidemic treatment (atorvastatin and PCSK9 siRNA-inhibitor) for four weeks (Asi). Mass spectrometry experiments of left ventricle lysates were complemented by immunologic and genomic studies to corroborate the data. The hyperlipidemic diet determined a general alarmin up-regulation tendency over the C group. A significant spectral abundance increase was measured for specific heat shock proteins, S100 family members, HMGB1, and Annexin A1. The hypolipidemic treatment demonstrated a reversed regulation trend with non-significant spectral alteration over the C group for some of the identified alarmins. Our study highlights the discriminating potential of alarmins in hyperlipidemia or following hypolipidemic treatment. Data are available via ProteomeXchange with identifier PXD035692.
Collapse
Affiliation(s)
- Viorel I. Suica
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Elena Uyy
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Luminita Ivan
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Raluca M. Boteanu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Aurel Cerveanu-Hogas
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Rune Hansen
- SINTEF Digital, 7465 Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Felicia Antohe
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
- Correspondence: ; Tel.: +40-213194518
| |
Collapse
|
30
|
Tackling inflammation in atherosclerosis: Are we there yet and what lies beyond? Curr Opin Pharmacol 2022; 66:102283. [PMID: 36037627 DOI: 10.1016/j.coph.2022.102283] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/21/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is a lipid-driven disease of the artery characterized by chronic non-resolving inflammation. Despite availability of excellent lipid-lowering therapies, atherosclerosis remains the leading cause of disability and death globally. The demonstration that suppressing inflammation prevents the adverse clinical manifestations of atherosclerosis in recent clinical trials has led to heightened interest in anti-inflammatory therapies. In this review, we briefly highlight some key anti-inflammatory and pro-resolution pathways, which could be targeted to modulate pathogenesis and stall atherosclerosis progression. We also highlight key challenges that must be overcome to turn the concept of inflammation targeting therapies into clinical reality for atherosclerotic heart disease.
Collapse
|
31
|
Zhang Q, Li F, Ritchie RH, Woodman OL, Zhou X, Qin CX. Novel strategies to promote resolution of inflammation to treat lower extremity artery disease. Curr Opin Pharmacol 2022; 65:102263. [DOI: 10.1016/j.coph.2022.102263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 12/24/2022]
|
32
|
Irwandi RA, Chiesa ST, Hajishengallis G, Papayannopoulos V, Deanfield JE, D’Aiuto F. The Roles of Neutrophils Linking Periodontitis and Atherosclerotic Cardiovascular Diseases. Front Immunol 2022; 13:915081. [PMID: 35874771 PMCID: PMC9300828 DOI: 10.3389/fimmu.2022.915081] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/13/2022] [Indexed: 01/02/2023] Open
Abstract
Inflammation plays a crucial role in the onset and development of atherosclerosis. Periodontitis is a common chronic disease linked to other chronic inflammatory diseases such as atherosclerotic cardiovascular disease (ASCVD). The mechanistic pathways underlying this association are yet to be fully understood. This critical review aims at discuss the role of neutrophils in mediating the relationship between periodontitis and ASCVD. Systemic inflammation triggered by periodontitis could lead to adaptations in hematopoietic stem and progenitor cells (HSPCs) resulting in trained granulopoiesis in the bone marrow, thereby increasing the production of neutrophils and driving the hyper-responsiveness of these abundant innate-immune cells. These alterations may contribute to the onset, progression, and complications of atherosclerosis. Despite the emerging evidence suggesting that the treatment of periodontitis improves surrogate markers of cardiovascular disease, the resolution of periodontitis may not necessarily reverse neutrophil hyper-responsiveness since the hyper-inflammatory re-programming of granulopoiesis can persist long after the inflammatory inducers are removed. Novel and targeted approaches to manipulate neutrophil numbers and functions are warranted within the context of the treatment of periodontitis and also to mitigate its potential impact on ASCVD.
Collapse
Affiliation(s)
- Rizky A. Irwandi
- Periodontology Unit, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Scott T. Chiesa
- UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - George Hajishengallis
- Department of Basic & Translational Sciences, Laboratory of Innate Immunity & Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - John E. Deanfield
- UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Francesco D’Aiuto
- Periodontology Unit, UCL Eastman Dental Institute, University College London, London, United Kingdom
- *Correspondence: Francesco D’Aiuto,
| |
Collapse
|
33
|
Dubé L, Spahis S, Lachaîne K, Lemieux A, Monhem H, Poulin SM, Randoll C, Travaillaud E, Ould-Chikh NEH, Marcil V, Delvin E, Levy E. Specialized Pro-Resolving Mediators Derived from N-3 Polyunsaturated Fatty Acids: Role in Metabolic Syndrome and Related Complications. Antioxid Redox Signal 2022; 37:54-83. [PMID: 35072542 DOI: 10.1089/ars.2021.0156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Metabolic syndrome (MetS) prevalence continues to grow and represents a serious public health issue worldwide. This multifactorial condition carries the risk of hastening the development of type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases (CVD). Another troubling aspect of MetS is the requirement of poly-pharmacological therapy not devoid of side effects. Therefore, there is an urgent need for prospecting alternative nutraceuticals as effective therapeutic agents for MetS. Recent Advances: Currently, there is an increased interest in understanding the regulation of metabolic derangements by specialized pro-resolving lipid mediators (SPMs), especially those derived from the long chain n-3 polyunsaturated fatty acids. Critical Issues: The SPMs are recognized as efficient modulators that are capable of inhibiting the production of pro-inflammatory cytokines, blocking neutrophil activation/recruitment, and inducing non-phlogistic (anti-inflammatory) activation of macrophage engulfment and removal of apoptotic inflammatory cells and debris. The aim of the present review is precisely to first underline key concepts relative to SPM functions before focusing on their status and actions on MetS components (e.g., obesity, glucose dysmetabolism, hyperlipidemia, hypertension) and complications such as T2D, NAFLD, and CVD. Future Directions: Valuable data from preclinical and clinical investigations have emphasized the SPM functions and influence on oxidative stress- and inflammation-related MetS. Despite these promising findings obtained without compromising host defense, additional efforts are needed to evaluate their potential therapeutic applications and further develop practical tools to monitor their bioavailability to cope with cardiometabolic disorders. Antioxid. Redox Signal. 37, 54-83.
Collapse
Affiliation(s)
- Laurent Dubé
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada
| | - Schohraya Spahis
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Karelle Lachaîne
- Department of Nutrition, Université de Montréal, Montreal, Canada
| | | | - Hanine Monhem
- Department of Nutrition, Université de Montréal, Montreal, Canada
| | | | - Carolane Randoll
- Department of Nutrition, Université de Montréal, Montreal, Canada
| | - Eva Travaillaud
- Department of Nutrition, Université de Montréal, Montreal, Canada
| | | | - Valérie Marcil
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Edgard Delvin
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Biochemistry, Université de Montréal, Montreal, Canada
| | - Emile Levy
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada.,Department of Pediatrics, Gastroenterology & Hepatology Unit, Université de Montréal, Montreal, Canada
| |
Collapse
|
34
|
Ma Q, Immler R, Pruenster M, Sellmayr M, Li C, von Brunn A, von Brunn B, Ehmann R, Wölfel R, Napoli M, Li Q, Romagnani P, Böttcher RT, Sperandio M, Anders HJ, Steiger S. Soluble uric acid inhibits β2 integrin-mediated neutrophil recruitment in innate immunity. Blood 2022; 139:3402-3417. [PMID: 35303071 PMCID: PMC11022987 DOI: 10.1182/blood.2021011234] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/07/2022] [Indexed: 11/20/2022] Open
Abstract
Neutrophils are key players during host defense and sterile inflammation. Neutrophil dysfunction is a characteristic feature of the acquired immunodeficiency during kidney disease. We speculated that the impaired renal clearance of the intrinsic purine metabolite soluble uric acid (sUA) may account for neutrophil dysfunction. Indeed, hyperuricemia (HU, serum UA of 9-12 mg/dL) related or unrelated to kidney dysfunction significantly diminished neutrophil adhesion and extravasation in mice with crystal- and coronavirus-related sterile inflammation using intravital microscopy and an air pouch model. This impaired neutrophil recruitment was partially reversible by depleting UA with rasburicase. We validated these findings in vitro using either neutrophils or serum from patients with kidney dysfunction-related HU with or without UA depletion, which partially normalized the defective migration of neutrophils. Mechanistically, sUA impaired β2 integrin activity and internalization/recycling by regulating intracellular pH and cytoskeletal dynamics, physiological processes that are known to alter the migratory and phagocytic capability of neutrophils. This effect was fully reversible by blocking intracellular uptake of sUA via urate transporters. In contrast, sUA had no effect on neutrophil extracellular trap formation in neutrophils from healthy subjects or patients with kidney dysfunction. Our results identify an unexpected immunoregulatory role of the intrinsic purine metabolite sUA, which contrasts the well-known immunostimulatory effects of crystalline UA. Specifically targeting UA may help to overcome certain forms of immunodeficiency, for example in kidney dysfunction, but may enhance sterile forms of inflammation.
Collapse
Affiliation(s)
- Qiuyue Ma
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Roland Immler
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Monika Pruenster
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Markus Sellmayr
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Chenyu Li
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Albrecht von Brunn
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University (LMU) Munich and German Center for Infection Research (DZIF), Munich, Germany
| | - Brigitte von Brunn
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University (LMU) Munich and German Center for Infection Research (DZIF), Munich, Germany
| | - Rosina Ehmann
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Roman Wölfel
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Matteo Napoli
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Qiubo Li
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Paola Romagnani
- Department of Biomedical Experimental and Clinical Sciences “Maria Serio,” University of Florence, Florence, Italy
| | - Ralph Thomas Böttcher
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Markus Sperandio
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Stefanie Steiger
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| |
Collapse
|
35
|
Lin X, Zhang H, Liu J, Wu CL, McDavid A, Boyce BF, Xing L. Aged Callus Skeletal Stem/Progenitor Cells Contain an Inflammatory Osteogenic Population With Increased IRF and NF-κB Pathways and Reduced Osteogenic Potential. Front Mol Biosci 2022; 9:806528. [PMID: 35755815 PMCID: PMC9218815 DOI: 10.3389/fmolb.2022.806528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/29/2022] [Indexed: 11/15/2022] Open
Abstract
Skeletal stem/progenitor cells (SSPCs) are critical for fracture repair by providing osteo-chondro precursors in the callus, which is impaired in aging. However, the molecular signatures of callus SSPCs during aging are not known. Herein, we performed single-cell RNA sequencing on 11,957 CD45-CD31-Ter119- SSPCs isolated from young and aged mouse calluses. Combining unsupervised clustering, putative makers, and DEGs/pathway analyses, major SSPC clusters were annotated as osteogenic, proliferating, and adipogenic populations. The proliferating cluster had a differentiating potential into osteogenic and adipogenic lineages by trajectory analysis. The osteoblastic/adipogenic/proliferating potential of individual clusters was further evidenced by elevated expression of genes related to osteoblasts, adipocytes, or proliferation. The osteogenic cluster was sub-clustered into house-keeping and inflammatory osteogenic populations that were decreased and increased in aged callus, respectively. The majority of master regulators for the inflammatory osteogenic population belong to IRF and NF-κB families, which was confirmed by immunostaining, RT-qPCR, and Western blot analysis. Furthermore, cells in the inflammatory osteogenic sub-cluster had reduced osteoblast differentiation capacity. In conclusion, we identified 3 major clusters in callus SSPCs, confirming their heterogeneity and, importantly, increased IRF/NF-κB-mediated inflammatory osteogenic population with decreased osteogenic potential in aged cells.
Collapse
Affiliation(s)
- X. Lin
- Department of Pathology and Laboratory Medicine, Rochester, NY, United States
| | - H. Zhang
- Department of Pathology and Laboratory Medicine, Rochester, NY, United States
| | - J. Liu
- Department of Pathology and Laboratory Medicine, Rochester, NY, United States
| | - C L. Wu
- Center for Musculoskeletal Research, Rochester, NY, United States
| | - A. McDavid
- Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - B. F. Boyce
- Department of Pathology and Laboratory Medicine, Rochester, NY, United States
- Center for Musculoskeletal Research, Rochester, NY, United States
| | - L. Xing
- Department of Pathology and Laboratory Medicine, Rochester, NY, United States
- Center for Musculoskeletal Research, Rochester, NY, United States
| |
Collapse
|
36
|
Sajid S, Zariwala MG, Mackenzie R, Turner M, Nell T, Bellary S, Renshaw D. Suppression of Anti-Inflammatory Mediators in Metabolic Disease May Be Driven by Overwhelming Pro-Inflammatory Drivers. Nutrients 2022; 14:2360. [PMID: 35684160 PMCID: PMC9182642 DOI: 10.3390/nu14112360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 12/07/2022] Open
Abstract
Obesity is a multifactorial disease and is associated with an increased risk of developing metabolic syndrome and co-morbidities. Dysregulated expansion of the adipose tissue during obesity induces local tissue hypoxia, altered secretory profile of adipokines, cytokines and chemokines, altered profile of local tissue inflammatory cells leading to the development of low-grade chronic inflammation. Low grade chronic inflammation is considered to be the underlying mechanism that increases the risk of developing obesity associated comorbidities. The glucocorticoid induced protein annexin A1 and its N-terminal peptides are anti-inflammatory mediators involved in resolving inflammation. The aim of the current study was to investigate the role of annexin A1 in obesity and associated inflammation. To achieve this aim, the current study analysed data from two feasibility studies in clinical populations: (1) bariatric surgery patients (Pre- and 3 months post-surgery) and (2) Lipodystrophy patients. Plasma annexin A1 levels were increased at 3-months post-surgery compared to pre-surgery (1.2 ± 0.1 ng/mL, n = 19 vs. 1.6 ± 0.1 ng/mL, n = 9, p = 0.009) and positively correlated with adiponectin (p = 0.009, r = 0.468, n = 25). Plasma annexin A1 levels were decreased in patients with lipodystrophy compared to BMI matched controls (0.2 ± 0.1 ng/mL, n = 9 vs. 0.97 ± 0.1 ng/mL, n = 30, p = 0.008), whereas CRP levels were significantly elevated (3.3 ± 1.0 µg/mL, n = 9 vs. 1.4 ± 0.3 µg/mL, n = 31, p = 0.0074). The roles of annexin A1 were explored using an in vitro cell based model (SGBS cells) mimicking the inflammatory status that is observed in obesity. Acute treatment with the annexin A1 N-terminal peptide, AC2-26 differentially regulated gene expression (including PPARA (2.8 ± 0.7-fold, p = 0.0303, n = 3), ADIPOQ (2.0 ± 0.3-fold, p = 0.0073, n = 3), LEP (0.6 ± 0.2-fold, p = 0.0400, n = 3), NAMPT (0.4 ± 0.1-fold, p = 0.0039, n = 3) and RETN (0.1 ± 0.03-fold, p < 0.0001, n = 3) in mature obesogenic adipocytes indicating that annexin A1 may play a protective role in obesity and inflammation. However, this effect may be overshadowed by the continued increase in systemic inflammation associated with rapid tissue expansion in obesity.
Collapse
Affiliation(s)
- Sehar Sajid
- Centre for Sport, Exercise and Life Sciences, Institute for Health and Wellbeing, Coventry University, Priory Street, Coventry CV1 5FB, UK; (S.S.); (M.T.)
| | - Mohammed Gulrez Zariwala
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK;
| | - Richard Mackenzie
- School of Life & Health Sciences, University of Roehampton, London SW15 4DJ, UK;
| | - Mark Turner
- Centre for Sport, Exercise and Life Sciences, Institute for Health and Wellbeing, Coventry University, Priory Street, Coventry CV1 5FB, UK; (S.S.); (M.T.)
| | - Theo Nell
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University Main Campus, Stellenbosch 7600, South Africa;
| | - Srikanth Bellary
- The Diabetes Centre, Birmingham Heartlands Hospital, Birmingham B9 5SS, UK;
| | - Derek Renshaw
- Centre for Sport, Exercise and Life Sciences, Institute for Health and Wellbeing, Coventry University, Priory Street, Coventry CV1 5FB, UK; (S.S.); (M.T.)
| |
Collapse
|
37
|
Li YZ, Wang YY, Huang L, Zhao YY, Chen LH, Zhang C. Annexin A Protein Family in Atherosclerosis. Clin Chim Acta 2022; 531:406-417. [PMID: 35562096 DOI: 10.1016/j.cca.2022.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022]
Abstract
Atherosclerosis, a silent chronic vascular pathology, is the cause of the majority of cardiovascular ischaemic events. Atherosclerosis is characterized by a series of deleterious changes in cellularity, including endothelial dysfunction, transmigration of circulating inflammatory cells into the arterial wall, pro-inflammatory cytokines production, lipid accumulation in the intima, vascular local inflammatory response, atherosclerosis-related cells apoptosis and autophagy. Proteins of Annexin A (AnxA) family, the well-known Ca2+ phospholipid-binding protein, have many functions in regulating inflammation-related enzymes and cell signaling transduction, thus influencing cell adhesion, migration, differentiation, proliferation and apoptosis. There is now accumulating evidence that some members of the AnxA family, such as AnxA1, AnxA2, AnxA5 and AnxA7, play major roles in the development of atherosclerosis. This article discusses the major roles of AnxA1, AnxA2, AnxA5 and AnxA7, and the multifaceted mechanisms of the main biological process in which they are involved in atherosclerosis. Considering these evidences, it has been proposed that AnxA are drivers- and not merely participator- on the road to atherosclerosis, thus the progression of atherosclerosis may be prevented by targeting the expression or function of the AnxA family proteins.
Collapse
Affiliation(s)
- Yong-Zhen Li
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yan-Yue Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yu-Yan Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Lin-Hui Chen
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
38
|
Bardin M, Pawelzik SC, Lagrange J, Mahdi A, Arnardottir H, Regnault V, Fève B, Lacolley P, Michel JB, Mercier N, Bäck M. The resolvin D2 - GPR18 axis is expressed in human coronary atherosclerosis and transduces atheroprotection in apolipoprotein E deficient mice. Biochem Pharmacol 2022; 201:115075. [PMID: 35525326 DOI: 10.1016/j.bcp.2022.115075] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/17/2023]
Abstract
Chronic inflammation in atherosclerosis reflects a failure in the resolution of inflammation. Pro-resolving lipid mediators derived from omega-3 fatty acids reduce the development of atherosclerosis in murine models. The aim of the present study was to decipher the role of the specialized proresolving mediator (SPM) resolvin D2 (RvD2) in atherosclerosis and its signaling through the G-protein coupled receptor (GPR) 18. The ligand and receptor were detected in human coronary arteries in relation to the presence of atherosclerotic lesions and its cellular components. Importantly, RvD2 levels were significantly higher in atherosclerotic compared with healthy human coronary arteries. Furthermore, apolipoprotein E (ApoE) deficient hyperlipidemic mice were treated with either RvD2 or vehicle in the absence and presence of the GPR18 antagonist O-1918. RvD2 significantly reduced atherosclerosis, necrotic core, and pro-inflammatory macrophage marker expression. RvD2 in addition enhanced macrophage phagocytosis. The beneficial effects of RvD2 were not observed in the presence of O-1918. Taken together, these results provide evidence of atheroprotective pro-resolving signalling through the RvD2-GPR18 axis.
Collapse
Affiliation(s)
| | - Sven-Christian Pawelzik
- Department of Medicine Solna, Karolinska Institutet and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jeremy Lagrange
- Université de Lorraine, Inserm, DCAC, Nancy, France; CHRU Nancy, Vandœuvre-lès-Nancy, France
| | - Ali Mahdi
- Department of Medicine Solna, Karolinska Institutet and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Hildur Arnardottir
- Department of Medicine Solna, Karolinska Institutet and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Bruno Fève
- INSERM UMR_S938, Centre de recherche Saint-Antoine, Institut Hospitalo-Universitaire, Université de la Sorbonne, ICAN, 75012 Paris, France
| | | | | | | | - Magnus Bäck
- Université de Lorraine, Inserm, DCAC, Nancy, France; Department of Medicine Solna, Karolinska Institutet and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
39
|
Specialized Pro-Resolving Lipid Mediators: New Therapeutic Approaches for Vascular Remodeling. Int J Mol Sci 2022; 23:ijms23073592. [PMID: 35408952 PMCID: PMC8998739 DOI: 10.3390/ijms23073592] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
Vascular remodeling is a typical feature of vascular diseases, such as atherosclerosis, aneurysms or restenosis. Excessive inflammation is a key mechanism underlying vascular remodeling via the modulation of vascular fibrosis, phenotype and function. Recent evidence suggests that not only augmented inflammation but unresolved inflammation might also contribute to different aspects of vascular diseases. Resolution of inflammation is mediated by a family of specialized pro-resolving mediators (SPMs) that limit immune cell infiltration and initiate tissue repair mechanisms. SPMs (lipoxins, resolvins, protectins, maresins) are generated from essential polyunsaturated fatty acids. Synthases and receptors for SPMs were initially described in immune cells, but they are also present in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), where they regulate processes important for vascular physiology, such as EC activation and VSMC phenotype. Evidence from genetic models targeting SPM pathways and pharmacological supplementation with SPMs have demonstrated that these mediators may play a protective role against the development of vascular remodeling in atherosclerosis, aneurysms and restenosis. This review focuses on the latest advances in understanding the role of SPMs in vascular cells and their therapeutic effects in the vascular remodeling associated with different cardiovascular diseases.
Collapse
|
40
|
Kelly L, McGrath S, Rodgers L, McCall K, Tulunay Virlan A, Dempsey F, Crichton S, Goodyear CS. Annexin-A1; the culprit or the solution? Immunology 2022; 166:2-16. [PMID: 35146757 PMCID: PMC9426623 DOI: 10.1111/imm.13455] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Annexin‐A1 has a well‐defined anti‐inflammatory role in the innate immune system, but its function in adaptive immunity remains controversial. This glucocorticoid‐induced protein has been implicated in a range of inflammatory conditions and cancers, as well as being found to be overexpressed on the T cells of patients with autoimmune disease. Moreover, the formyl peptide family of receptors, through which annexin‐A1 primarily signals, has also been implicated in these diseases. In contrast, treatment with recombinant annexin‐A1 peptides resulted in suppression of inflammatory processes in murine models of inflammation. This review will focus on what is currently known about annexin‐A1 in health and disease and discuss the potential of this protein as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Lauren Kelly
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Sarah McGrath
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Lewis Rodgers
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Kathryn McCall
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Aysin Tulunay Virlan
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Fiona Dempsey
- Medannex Ltd, 1 Lochrin Square, Fountainbridge, Edinburgh, EH3 9QA
| | - Scott Crichton
- Medannex Ltd, 1 Lochrin Square, Fountainbridge, Edinburgh, EH3 9QA
| | - Carl S Goodyear
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| |
Collapse
|
41
|
Kraft JD, Blomgran R, Bergström I, Soták M, Clark M, Rani A, Rajan MR, Dalli J, Nyström S, Quiding‐Järbrink M, Bromberg J, Skoog P, Börgeson E. Lipoxins modulate neutrophil oxidative burst, integrin expression and lymphatic transmigration differentially in human health and atherosclerosis. FASEB J 2022; 36:e22173. [PMID: 35104001 PMCID: PMC9305188 DOI: 10.1096/fj.202101219rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 12/31/2022]
Abstract
Dysregulated chronic inflammation plays a crucial role in the pathophysiology of atherosclerosis and may be a result of impaired resolution. Thus, restoring levels of specialized pro‐resolving mediators (SPMs) to promote the resolution of inflammation has been proposed as a therapeutic strategy for patients with atherosclerosis, in addition to standard clinical care. Herein, we evaluated the effects of the SPM lipids, lipoxin A4 (LXA4) and lipoxin B4 (LXB4), on neutrophils isolated from patients with atherosclerosis compared with healthy controls. Patients displayed altered endogenous SPM production, and we demonstrated that lipoxin treatment in whole blood from atherosclerosis patients attenuates neutrophil oxidative burst, a key contributor to atherosclerotic development. We found the opposite effect in neutrophils from healthy controls, indicating a potential mechanism whereby lipoxins aid the endogenous neutrophil function in health but reduce its excessive activation in disease. We also demonstrated that lipoxins attenuated upregulation of the high‐affinity conformation of the CD11b/CD18 integrin, which plays a central role in clot activation and atherosclerosis. Finally, LXB4 enhanced lymphatic transmigration of human neutrophils isolated from patients with atherosclerosis. This finding is noteworthy, as impaired lymphatic function is now recognized as an important contributor to atherosclerosis. Although both lipoxins modulated neutrophil function, LXB4 displayed more potent effects than LXA4 in humans. This study highlights the therapeutic potential of lipoxins in atherosclerotic disease and demonstrates that the effect of these SPMs may be specifically tailored to the need of the individual.
Collapse
Affiliation(s)
- Jamie D. Kraft
- Department of Molecular and Clinical Medicine Wallenberg Laboratory Institute of Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Wallenberg Centre for Molecular and Translational Medicine University of Gothenburg Gothenburg Sweden
| | - Robert Blomgran
- Division of Inflammation and Infection Department of Biomedical and Clinical Sciences Faculty of Medicine and Health Sciences Linköping University Linköping Sweden
| | - Ida Bergström
- Department of Clinical Immunology and Transfusion Medicine Linköping University Linköping Sweden
- Department of Biomedical and Clinical Sciences Linköping University Linköping Sweden
| | - Matúš Soták
- Department of Molecular and Clinical Medicine Wallenberg Laboratory Institute of Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Wallenberg Centre for Molecular and Translational Medicine University of Gothenburg Gothenburg Sweden
- Department of Clinical Physiology Region Vaestra Goetaland Sahlgrenska University Hospital Gothenburg Sweden
| | - Madison Clark
- Department of Molecular and Clinical Medicine Wallenberg Laboratory Institute of Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Wallenberg Centre for Molecular and Translational Medicine University of Gothenburg Gothenburg Sweden
| | - Alankrita Rani
- Department of Molecular and Clinical Medicine Wallenberg Laboratory Institute of Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Wallenberg Centre for Molecular and Translational Medicine University of Gothenburg Gothenburg Sweden
- Department of Clinical Physiology Region Vaestra Goetaland Sahlgrenska University Hospital Gothenburg Sweden
| | - Meenu Rohini Rajan
- Department of Molecular and Clinical Medicine Wallenberg Laboratory Institute of Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Wallenberg Centre for Molecular and Translational Medicine University of Gothenburg Gothenburg Sweden
- Department of Clinical Physiology Region Vaestra Goetaland Sahlgrenska University Hospital Gothenburg Sweden
| | - Jesmond Dalli
- William Harvey Research Institute Barts & The London School of Medicine & Dentistry Queen Mary University of London London UK
- Centre for Inflammation and Therapeutic Innovation Queen Mary University of London London UK
| | - Sofia Nyström
- Department of Clinical Immunology and Transfusion Medicine Linköping University Linköping Sweden
- Department of Biomedical and Clinical Sciences Linköping University Linköping Sweden
| | - Marianne Quiding‐Järbrink
- Department of Microbiology and Immunology Institute of Biomedicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Jonathan Bromberg
- Department of Surgery University of Maryland School of Medicine Baltimore Maryland USA
- Department of Microbiology and Immunology University of Maryland School of Medicine Baltimore Maryland USA
- Center for Vascular and Inflammatory Diseases University of Maryland School of Medicine Baltimore Maryland USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center University of Maryland Baltimore Maryland USA
| | - Per Skoog
- Department of Vascular Surgery and Institute of Medicine Sahlgrenska University Hospital and Academy Gothenburg Sweden
- Department of Molecular and Clinical Medicine Sahlgrenska University Hospital and Academy Gothenburg Sweden
| | - Emma Börgeson
- Department of Molecular and Clinical Medicine Wallenberg Laboratory Institute of Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Wallenberg Centre for Molecular and Translational Medicine University of Gothenburg Gothenburg Sweden
- Department of Clinical Physiology Region Vaestra Goetaland Sahlgrenska University Hospital Gothenburg Sweden
| |
Collapse
|
42
|
Abstract
Resolution is an active and highly coordinated process that occurs in response to inflammation to limit tissue damage and promote repair. When the resolution program fails, inflammation persists. It is now understood that failed resolution is a major underlying cause of many chronic inflammatory diseases. Here, we will review the major failures of resolution in atherosclerosis, including the imbalance of proinflammatory to pro-resolving mediator production, impaired clearance of dead cells, and functional changes in immune cells that favor ongoing inflammation. In addition, we will briefly discuss new concepts that are emerging as possible regulators of resolution and highlight the translational significance for the field.
Collapse
Affiliation(s)
- Amanda C. Doran
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt Institute for Infection, Immunology, and Inflammation, Department of Molecular Physiology and Biophysics, Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
43
|
Therapeutic Potential of Annexin A1 Modulation in Kidney and Cardiovascular Disorders. Cells 2021; 10:cells10123420. [PMID: 34943928 PMCID: PMC8700139 DOI: 10.3390/cells10123420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 01/11/2023] Open
Abstract
Renal and cardiovascular disorders are very prevalent and associated with significant morbidity and mortality. Among diverse pathogenic mechanisms, the dysregulation of immune and inflammatory responses plays an essential role in such disorders. Consequently, the discovery of Annexin A1, as a glucocorticoid-inducible anti-inflammatory protein, has fueled investigation of its role in renal and cardiovascular pathologies. Indeed, with respect to the kidney, its role has been examined in diverse renal pathologies, including acute kidney injury, diabetic nephropathy, immune-mediated nephropathy, drug-induced kidney injury, kidney stone formation, and renal cancer. Regarding the cardiovascular system, major areas of investigation include the role of Annexin A1 in vascular abnormalities, atherosclerosis, and myocardial infarction. Thus, this review briefly describes major structural and functional features of Annexin A1 followed by a review of its role in pathologies of the kidney and the cardiovascular system, as well as the therapeutic potential of its modulation for such disorders.
Collapse
|
44
|
Fredman G, MacNamara KC. Atherosclerosis is a major human killer and non-resolving inflammation is a prime suspect. Cardiovasc Res 2021; 117:2563-2574. [PMID: 34609505 PMCID: PMC8783387 DOI: 10.1093/cvr/cvab309] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
The resolution of inflammation (or inflammation-resolution) is an active and highly coordinated process. Inflammation-resolution is governed by several endogenous factors, and specialized pro-resolving mediators (SPMs) are one such class of molecules that have robust biological function. Non-resolving inflammation is associated with a variety of human diseases, including atherosclerosis. Moreover, non-resolving inflammation is a hallmark of ageing, an inevitable process associated with increased risk for cardiovascular disease. Uncovering mechanisms as to why inflammation-resolution is impaired in ageing and in disease and identifying useful biomarkers for non-resolving inflammation are unmet needs. Recent work has pointed to a critical role for balanced ratios of SPMs and pro-inflammatory lipids (i.e. leucotrienes and/or specific prostaglandins) as a key determinant of timely inflammation resolution. This review will focus on the accumulating findings that support the role of non-resolving inflammation and imbalanced pro-resolving and pro-inflammatory mediators in atherosclerosis. We aim to provide insight as to why these imbalances occur, the importance of ageing in disease progression, and how haematopoietic function impacts inflammation-resolution and atherosclerosis. We highlight open questions regarding therapeutic strategies and mechanisms of disease to provide a framework for future studies that aim to tackle this important human disease.
Collapse
Affiliation(s)
- Gabrielle Fredman
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Katherine C MacNamara
- The Department of Immunology and Infectious Disease, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
45
|
Oliveira-Costa KM, Menezes GB, Paula Neto HA. Neutrophil accumulation within tissues: A damage x healing dichotomy. Biomed Pharmacother 2021; 145:112422. [PMID: 34781139 DOI: 10.1016/j.biopha.2021.112422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 02/09/2023] Open
Abstract
The abundance of neutrophils in human circulation, their fast mobilization from blood to tissues, along with their alleged short life-span led to the image of neutrophils as a homogeneous cell type designed to fight infections and die in the process. Additionally, their granule content and capacity to produce molecules with considerable cytotoxic potential, lead to the general belief that neutrophil activation inexorably results in side effect of extensive tissue injury. Neutrophil activation in fact causes tissue injury as an adverse effect, but it seems that this is restricted to particular pathological situations and more of an "exception to the rule". Here we review evidences arising especially from intravital microscopy studies that demonstrate neutrophils as cells endowed with sophisticated mechanisms and able to engage in complex interactions as to minimize damage and optimize their effector functions. Moreover, neutrophil infiltration may even contribute to tissue healing and repair which may altogether demand a reexamination of current anti-inflammatory therapies that have neutrophil migration and activation as a target.
Collapse
Affiliation(s)
- Karen Marques Oliveira-Costa
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Gustavo B Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Heitor A Paula Neto
- Laboratório de Alvos Moleculares, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
46
|
Chen R, Zhang X, Gu L, Zhu H, Zhong Y, Ye Y, Xiong X, Jian Z. New Insight Into Neutrophils: A Potential Therapeutic Target for Cerebral Ischemia. Front Immunol 2021; 12:692061. [PMID: 34335600 PMCID: PMC8317226 DOI: 10.3389/fimmu.2021.692061] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke is one of the main issues threatening human health worldwide, and it is also the main cause of permanent disability in adults. Energy consumption and hypoxia after ischemic stroke leads to the death of nerve cells, activate resident glial cells, and promote the infiltration of peripheral immune cells into the brain, resulting in various immune-mediated effects and even contradictory effects. Immune cell infiltration can mediate neuronal apoptosis and aggravate ischemic injury, but it can also promote neuronal repair, differentiation and regeneration. The central nervous system (CNS), which is one of the most important immune privileged parts of the human body, is separated from the peripheral immune system by the blood-brain barrier (BBB). Under physiological conditions, the infiltration of peripheral immune cells into the CNS is controlled by the BBB and regulated by the interaction between immune cells and vascular endothelial cells. As the immune response plays a key role in regulating the development of ischemic injury, neutrophils have been proven to be involved in many inflammatory diseases, especially acute ischemic stroke (AIS). However, neutrophils may play a dual role in the CNS. Neutrophils are the first group of immune cells to enter the brain from the periphery after ischemic stroke, and their exact role in cerebral ischemia remains to be further explored. Elucidating the characteristics of immune cells and their role in the regulation of the inflammatory response may lead to the identification of new potential therapeutic strategies. Thus, this review will specifically discuss the role of neutrophils in ischemic stroke from production to functional differentiation, emphasizing promising targeted interventions, which may promote the development of ischemic stroke treatments in the future.
Collapse
Affiliation(s)
- Ran Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
47
|
Zhu L, Shi Y, Xiong Y, Ba L, Li Q, Qiu M, Zou Z, Peng G. Emerging self-assembling peptide nanomaterial for anti-cancer therapy. J Biomater Appl 2021; 36:882-901. [PMID: 34180306 DOI: 10.1177/08853282211027882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently it is mainly focused on anti-tumor comprehensive treatments like finding target tumor cells or activating immune cells to inhibit tumor recurrence and metastasis. At present, chemotherapy and molecular-targeted drugs can inhibit tumor cell growth to a certain extent. However, multi-drug resistance and immune escape often make it difficult for new drugs to achieve expected effects. Peptide hydrogel nanoparticles is a new type of biological material with functional peptide chains as the core and self-assembling peptide (SAP) as the framework. It has a variety of significant biological functions, including effective local inflammation suppression and non-drug-resistant cell killing. Besides, it can induce immune activation more persistently in an adjuvant independent manner when compared with simple peptides. Thus, SAP nanomaterial has great potential in regulating cell physiological functions, drug delivery and sensitization, vaccine design and immunotherapy. Not only that, it is also a potential way to focus on some specific proteins and cells through peptides, which has already been examined in previous research. A full understanding of the function and application of SAP nanoparticles can provide a simple and practical strategy for the development of anti-tumor drugs and vaccine design, which contributes to the historical transition of peptide nanohydrogels from bench to bedside and brings as much survival benefits as possible to cancer patients.
Collapse
Affiliation(s)
- Lisheng Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xiong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Ba
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuting Li
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengjun Qiu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenwei Zou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Sekheri M, Othman A, Filep JG. β2 Integrin Regulation of Neutrophil Functional Plasticity and Fate in the Resolution of Inflammation. Front Immunol 2021; 12:660760. [PMID: 33859651 PMCID: PMC8043047 DOI: 10.3389/fimmu.2021.660760] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022] Open
Abstract
Neutrophils act as the first line of cellular defense against invading pathogens or tissue injury. Their rapid recruitment into inflamed tissues is critical for the elimination of invading microorganisms and tissue repair, but is also capable of inflicting damage to neighboring tissues. The β2 integrins and Mac-1 (CD11b/CD18, αMβ2 or complement receptor 3) in particular, are best known for mediating neutrophil adhesion and transmigration across the endothelium and phagocytosis of microbes. However, Mac-1 has a broad ligand recognition property that contributes to the functional versatility of the neutrophil population far beyond their antimicrobial function. Accumulating evidence over the past decade has demonstrated roles for Mac-1 ligands in regulating reverse neutrophil transmigration, lifespan, phagocytosis-induced cell death, release of neutrophil extracellular traps and efferocytosis, hence extending the traditional β2 integrin repertoire in shaping innate and adaptive immune responses. Understanding the functions of β2 integrins may partly explain neutrophil heterogeneity and may be instrumental to develop novel therapies specifically targeting Mac-1-mediated pro-resolution actions without compromising immunity. Thus, this review details novel insights on outside-in signaling through β2 integrins and neutrophil functional heterogeneity pertinent to the resolution of inflammation.
Collapse
Affiliation(s)
- Meriem Sekheri
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada.,Department of Biomedical Sciences, University of Montreal, Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - Amira Othman
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada.,Department of Biomedical Sciences, University of Montreal, Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| |
Collapse
|
49
|
Lee S, Hong JH, Kim JS, Yoon JS, Chun SH, Hong SA, Kim EJ, Kang K, Lee Kang J, Ko YH, Ahn YH. Cancer-associated fibroblasts activated by miR-196a promote the migration and invasion of lung cancer cells. Cancer Lett 2021; 508:92-103. [PMID: 33775710 DOI: 10.1016/j.canlet.2021.03.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
Fibroblasts in the tumor microenvironment, known as cancer-associated fibroblasts (CAFs), promote the migration, invasion, and metastasis of cancer cells when they are activated through diverse processes, including post-transcriptional regulation by microRNAs (miRNAs). To identify the miRNAs that regulate CAF activation, we used NanoString to profile miRNA expression within normal mouse lung fibroblasts (LFs) and CAFs. Based on NanoString profiling, miR-196a was selected as a candidate that was up-regulated in CAFs. miR-196a-overexpressed LFs (LF-196a) promoted the migration and invasion of lung cancer cells in co-culture systems (Transwell migration and spheroid invasion assays). ANXA1 was confirmed as a direct target of miR-196a, and adding back ANXA1 to LF-196a restored the cancer cell invasion promoted by miR-196a. miR-196a increased CCL2 secretion in fibroblasts, and that was suppressed by ANXA1. Furthermore, blocking CCL2 impeded cancer spheroid invasion. In lung adenocarcinoma patients, high miR-196a expression was associated with poor prognosis. Collectively, our results suggest that CAF-specific miR-196a promotes lung cancer progression in the tumor microenvironment via ANXA1 and CCL2 and that miR-196a will be a good therapeutic target or biomarker in lung adenocarcinoma.
Collapse
Affiliation(s)
- Sieun Lee
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea; Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Ji Hyung Hong
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Jeong Seon Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea; Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Jung Sook Yoon
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Sang Hoon Chun
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Soon Auck Hong
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, 06974, South Korea
| | - Eun Ju Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea; Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, South Korea
| | - Jihee Lee Kang
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea; Department of Physiology, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Yoon Ho Ko
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
| | - Young-Ho Ahn
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea; Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea.
| |
Collapse
|
50
|
Grewal T, Rentero C, Enrich C, Wahba M, Raabe CA, Rescher U. Annexin Animal Models-From Fundamental Principles to Translational Research. Int J Mol Sci 2021; 22:ijms22073439. [PMID: 33810523 PMCID: PMC8037771 DOI: 10.3390/ijms22073439] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Routine manipulation of the mouse genome has become a landmark in biomedical research. Traits that are only associated with advanced developmental stages can now be investigated within a living organism, and the in vivo analysis of corresponding phenotypes and functions advances the translation into the clinical setting. The annexins, a family of closely related calcium (Ca2+)- and lipid-binding proteins, are found at various intra- and extracellular locations, and interact with a broad range of membrane lipids and proteins. Their impacts on cellular functions has been extensively assessed in vitro, yet annexin-deficient mouse models generally develop normally and do not display obvious phenotypes. Only in recent years, studies examining genetically modified annexin mouse models which were exposed to stress conditions mimicking human disease often revealed striking phenotypes. This review is the first comprehensive overview of annexin-related research using animal models and their exciting future use for relevant issues in biology and experimental medicine.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
- Correspondence: (T.G.); (U.R.); Tel.: +61-(0)2-9351-8496 (T.G.); +49-(0)251-83-52121 (U.R.)
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.R.); (C.E.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.R.); (C.E.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Mohamed Wahba
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Carsten A. Raabe
- Research Group Regulatory Mechanisms of Inflammation, Center for Molecular Biology of Inflammation (ZMBE) and Cells in Motion Interfaculty Center (CiM), Institute of Medical Biochemistry, University of Muenster, 48149 Muenster, Germany;
| | - Ursula Rescher
- Research Group Regulatory Mechanisms of Inflammation, Center for Molecular Biology of Inflammation (ZMBE) and Cells in Motion Interfaculty Center (CiM), Institute of Medical Biochemistry, University of Muenster, 48149 Muenster, Germany;
- Correspondence: (T.G.); (U.R.); Tel.: +61-(0)2-9351-8496 (T.G.); +49-(0)251-83-52121 (U.R.)
| |
Collapse
|