1
|
Dai Y, Wang Y, Fan Y, Han B. Genotype-phenotype insights of pediatric dilated cardiomyopathy. Front Pediatr 2025; 13:1505830. [PMID: 39959410 PMCID: PMC11825472 DOI: 10.3389/fped.2025.1505830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/21/2025] [Indexed: 02/18/2025] Open
Abstract
Dilated cardiomyopathy (DCM) in children is a severe myocardial disease characterized by enlargement of the left ventricle or both ventricles with impaired contractile function. DCM can cause adverse consequences such as heart failure, sudden death, thromboembolism, and arrhythmias. This article reviews the latest advances in genotype and phenotype research in pediatric DCM. With the development of gene sequencing technologies, considerable progress has been made in genetic research on DCM. Research has shown that DCM exhibits notable genetic heterogeneity, with over 100 DCM-related genes identified to date, primarily involving functions such as calcium handling, the cytoskeleton, and ion channels. As human genomic variations are linked to phenotypes, DCM phenotypes are influenced by numerous genetic variations across the entire genome. Children with DCM display high genetic heterogeneity and are characterized by early onset, rapid disease progression, and poor prognosis. The genetic architecture of pediatric DCM markedly differs from that of adult DCM, necessitating analyses through clinical phenotyping, familial cosegregation studies, and functional validation. Clarifying the genotype-phenotype relationship can improve diagnostic accuracy, enhance prognosis, and guide follow-up treatment for genotype-positive and phenotype-negative patients identified through genetic testing, providing new insights for precision medicine. Future research should further explore novel pathogenic genes and mutations and strengthen genotype-phenotype correlation analyses to facilitate precise diagnosis and treatment of DCM in children.
Collapse
Affiliation(s)
| | | | - Youfei Fan
- Department of Pediatrics, Shandong Province Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bo Han
- Department of Pediatrics, Shandong Province Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Murphy MR, Ganapathi M, Lee TM, Fisher JM, Patel MV, Jayakar P, Buchanan A, Rippert AL, Ahrens-Nicklas RC, Nair D, Soni RK, Yin Y, Yang F, Reilly MP, Chung WK, Wu X. Pathogenetic mechanisms of muscle-specific ribosomes in dilated cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.02.630345. [PMID: 39803500 PMCID: PMC11722222 DOI: 10.1101/2025.01.02.630345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The heart employs a specialized ribosome in its muscle cells to translate genetic information into proteins, a fundamental adaptation with an elusive physiological role1-3. Its significance is underscored by the discovery of neonatal patients suffering from often fatal heart failure caused by severe dilated cardiomyopathy when both copies of the gene RPL3L are mutated4-9. RPL3L is a muscle-specific paralog1-3 of the ubiquitous ribosomal protein L3 (RPL3), which makes the closest contact of any protein to the ribosome's RNA-based catalytic center10. RPL3L-linked heart failure represents the only known human disease associated with tissue-specific ribosomes, yet the underlying pathogenetic mechanisms remain poorly understood. Intriguingly, disease is linked to a large number of mostly missense variants in RPL3L, and RPL3L-knockout resulted in no severe heart defect in either human or mice3, 11-13, challenging the prevailing view that autosomal recessive diseases are caused by loss-of-function mutations. Here, we report three new cases of RPL3L-linked severe neonatal heart failure and present a unifying pathogenetic mechanism by which a large number of variants in the muscle-specific ribosome led to disease. Specifically, affected families often carry one of two recurrent toxic gain-of-function variants alongside a family-specific putative loss-of-function variant. While the non-recurrent variants often trigger partial compensation of RPL3 similar to Rpl3l-knockout mice, both recurrent variants exhibit increased affinity for the RPL3/RPL3L chaperone GRWD114-16 and 60S biogenesis factors, sequester 28S rRNA in the nucleus, disrupt ribosome biogenesis, and trigger severe cellular toxicity that extends beyond the loss of ribosomes. These findings provide critical insights for genetic screening and therapeutic development of neonatal heart failure. Our results suggest that gain-of-toxicity mechanisms may be more prevalent in autosomal recessive diseases, and a combination of gain-of-toxicity and loss-of-function mechanisms could underlie many diseases involving genes with paralogs.
Collapse
Affiliation(s)
- Michael R. Murphy
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mythily Ganapathi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Teresa M. Lee
- Department of Pediatrics, Columbia University Medical Center Irving Medical Center, New York, NY 10032, USA
| | - Joshua M. Fisher
- Department of Pediatrics, Columbia University Medical Center Irving Medical Center, New York, NY 10032, USA
| | - Megha V. Patel
- Department of Pediatrics, Nicklaus Children’s Hospital, Miami, FL 33155, USA
- Current: Children’s Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Parul Jayakar
- Division of Genetics and Metabolism, Nicklaus Children’s Hospital, Miami, FL 33155, USA
| | | | - Alyssa L Rippert
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rebecca C. Ahrens-Nicklas
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Divya Nair
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rajesh K. Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Yue Yin
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Barnard College, Columbia University, New York, NY 10027, USA
| | - Feiyue Yang
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Muredach P. Reilly
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K. Chung
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xuebing Wu
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
3
|
Ader F, Derridj N, Brehin AC, Domanski O, Baudelet JB, Gras P, Kuster A, Benbrik N, Troadec Y, Denjoy I, Bonnefoy R, Beyler C, El Chehadeh S, Schaeffer E, Dupin-Deguine D, Bloch A, Rooryck C, Proukhnitzky J, Bosser G, Vincenti M, Gandjbakhch E, Charron P, Richard P, Bonnet D, Khraiche D. Clinical impact of genetic testing in a large cohort of pediatric cardiomyopathies. Int J Cardiol 2025; 419:132729. [PMID: 39549770 DOI: 10.1016/j.ijcard.2024.132729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND There are limited data that can explain the earlier penetrance and the different expressivity of pediatric cardiomyopathy (pCM) compared to adult-onset cardiomyopathy (aCM). In addition, the relationship between genotype and pCM results is poorly described. OBJECTIVE We compared the genotypes between a cohort of aCM and a cohort of pCM to propose hypotheses on the earlier penetrance and expressivity of pCM. Finally, we report how genetic testing was used to guide genetic counseling in pCM. METHODS 253 pCM (<18 years old) and 1466 aCM patients were sequenced on a panel of 67 cardiomyopathy genes. Risk factors for death and heart transplantation were analyzed. RESULTS In pCM, the variant of interest (VOI) yield was 53.7 % including 24.2 % carrying two VOI. De novo variants represented 11 % of VOI in pCM and 50 % in restrictive pCM. An age at diagnosis younger than 1 year (HR = 2.07, p = 0.029), restrictive phenotype (HR = 2.87, p = 0.03) and the presence of two VOI (HR = 2.97, p = 0.001) were independent risk factors for death or heart transplantation. In comparison with aCM, pCM patients harbored more frequently two VOI (p = 0.02), or de novo variants (p = 4.10-13). In addition, the distribution of VOI was different in aCM and pCM. Genotyping of pCM improved genetic counseling in families and led to ten prenatal-diagnosis. CONCLUSIONS Genetic testing provides clues for earlier penetrance of pCM. The presence of two VOI in children with CM is a risk factor for severe and early cardiac events.
Collapse
Affiliation(s)
- Flavie Ader
- Sorbonne Université- DMU BioGem-Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire et cellulaire, Service de Biochimie Métabolique, APHP-Hôpital Universitaire Pitié Salpêtrière, Paris, France; INSERM UMRS1166 Équipe 1, ICAN Institute, Paris, France; Université Paris Cité, UFR de Pharmacie, 4 av de l'observatoire, 75006 Paris, France.
| | - Neil Derridj
- M3C-Necker, Cardiologie Congénitale et Pédiatrique, APHP- Hôpital Universitaire Necker-Enfants malades, Paris, France
| | | | - Olivia Domanski
- CHU de Lille, Service de Cardiologie Pédiatrique, Lille, France
| | | | - Pauline Gras
- CHU de Lille, Service de Cardiologie Pédiatrique, Lille, France
| | - Alice Kuster
- CHU de Nantes, Service de Cardiologie Pédiatrique, Nantes, France
| | - Nadir Benbrik
- CHU de Nantes, Service de Cardiologie Pédiatrique, Nantes, France
| | | | - Isabelle Denjoy
- Service de Cardiologie Pédiatrique, APHP-Hôpital Robert Debré, Paris, France
| | - Ronan Bonnefoy
- Service de Cardiologie Pédiatrique, APHP-Hôpital Robert Debré, Paris, France
| | - Constance Beyler
- Service de Cardiologie Pédiatrique, APHP-Hôpital Robert Debré, Paris, France
| | | | | | | | - Adrien Bloch
- Sorbonne Université- DMU BioGem-Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire et cellulaire, Service de Biochimie Métabolique, APHP-Hôpital Universitaire Pitié Salpêtrière, Paris, France
| | - Caroline Rooryck
- CHU Bordeaux, Service de Génétique, Groupe Hospitalier Pellegrin, Bordeaux, France
| | - Julie Proukhnitzky
- INSERM UMRS1166 Équipe 1, ICAN Institute, Paris, France; Sorbonne Université, Centre de référence des maladies cardiaques héréditaires ou rares, département de génétique, APHP-Hôpitaux Universitaires Pitié- Salpêtrière - Charles Foix, Paris, France
| | | | - Marie Vincenti
- CHU de Montpellier, service de cardiologie pédiatrique, Montpellier, France
| | - Estelle Gandjbakhch
- INSERM UMRS1166 Équipe 1, ICAN Institute, Paris, France; Sorbonne Université, Centre de référence des maladies cardiaques héréditaires ou rares, département de génétique, APHP-Hôpitaux Universitaires Pitié- Salpêtrière - Charles Foix, Paris, France
| | - Philippe Charron
- INSERM UMRS1166 Équipe 1, ICAN Institute, Paris, France; Sorbonne Université, Centre de référence des maladies cardiaques héréditaires ou rares, département de génétique, APHP-Hôpitaux Universitaires Pitié- Salpêtrière - Charles Foix, Paris, France
| | - Pascale Richard
- Sorbonne Université- DMU BioGem-Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire et cellulaire, Service de Biochimie Métabolique, APHP-Hôpital Universitaire Pitié Salpêtrière, Paris, France; INSERM UMRS1166 Équipe 1, ICAN Institute, Paris, France
| | - Damien Bonnet
- M3C-Necker, Cardiologie Congénitale et Pédiatrique, APHP- Hôpital Universitaire Necker-Enfants malades, Paris, France; Université Paris Cité, Paris, France
| | - Diala Khraiche
- M3C-Necker, Cardiologie Congénitale et Pédiatrique, APHP- Hôpital Universitaire Necker-Enfants malades, Paris, France
| |
Collapse
|
4
|
Mazarura GR, Hébert TE. Modeling the contribution of cardiac fibroblasts in dilated cardiomyopathy using induced pluripotent stem cells. Mol Pharmacol 2025; 107:100002. [PMID: 39919160 DOI: 10.1124/molpharm.124.000958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/18/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Fibrosis is implicated in nearly all forms of cardiomyopathy and significantly influences disease severity and outcomes. The primary cell responsible for fibrosis is the cardiac fibroblast, which remains understudied relative to cardiomyocytes in the context of cardiomyopathy. The development of induced pluripotent stem cell-derived cardiac fibroblasts (iPSC-CFs) allows for the modeling of patient-specific disease characteristics and provides a scalable source of fibroblasts. iPSC-CFs are invaluable for understanding molecular pathways that affect disease progression and outcomes. This review explores various aspects of cardiomyopathy, with a focus on dilated cardiomyopathy, that can be modeled using iPSC-CFs and their application in drug discovery, given the current lack of approved therapies for cardiac fibrosis. We examine how iPSC-CFs can be utilized to study heart development, fibroblast heterogeneity, and activation, with the ultimate goal of developing better therapies for patients with cardiomyopathies. SIGNIFICANCE STATEMENT: We explore how induced pluripotent stem cell-derived cardiac fibroblasts (iPSC-CFs) are used to study the fibrotic component of dilated cardiomyopathy. Most research has focused on cardiomyocytes, but iPSC-CFs serve as a valuable tool to elucidate molecular pathways leading to fibrosis and paracrine interactions with cardiomyocytes. Gaining insights into these events could aid in the development of new therapies and enable the use of patient-derived iPSC-CFs for precision medicine, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Grace R Mazarura
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
5
|
Dou Z, He Q, Ma K, Wang X, Zeng M, Pang K, Zhang B, Rui L, Mao F, Yuan J, Wu D, Liu Y, Schranz D, Li S. Pulmonary artery banding for cardiomyopathy in young children: First trial in China. ESC Heart Fail 2024; 11:3854-3861. [PMID: 39030781 PMCID: PMC11631247 DOI: 10.1002/ehf2.14978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/20/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024] Open
Abstract
AIMS Heritable dilated cardiomyopathy (DCM) or DCM associated with congenital or acquired left ventricular diseases carries a significant mortality risk. Pulmonary artery banding (PAB) has been proposed as an alternative to heart transplantation. This study aimed to delineate the clinical development, ventricular reverse remodelling, and functional regeneration of the dilated left ventricle, presenting as a pioneering approach in China. METHODS AND RESULTS This prospective study was initiated in November 2021, involving paediatric patients with a significant dilated left ventricle and preserved right ventricle who underwent surgical PAB. The baseline characteristics and clinical information during follow-up were collected. Seven patients (five boys) with a median age of 240 (148, 1028) days have been included thus far. No procedural or follow-up mortality was observed. The modified Ross functional class improved from treatment to follow-up of 348 (200, 629) days, and the median left ventricular ejection fraction increased from 27.0 (15.0, 34.0) % before surgery to 61.0 (52.0, 68.0) % (P < 0.05); the median left ventricular end-diastolic diameter and corresponding Z-scores decreased from 43.0 (40.0, 55.0) mm [+9.4 (+7.7, +11.7)] to 33.0 (29.0, 39.0) mm [+1.8 (+1.3, +3.8)] (P < 0.05). Functional regeneration of the left ventricle was observed in five patients. Three of them underwent balloon dilation of the PAB to relieve excessively elevated right ventricular pressures. CONCLUSIONS The application of PAB should adhere to strict criteria. Initial results are promising for infants and even toddlers with a dilated left ventricle and limited probability of spontaneous recovery. PAB can be an alternative when there is a shortage of donor transplants and assist devices, especially for low- and middle-income countries.
Collapse
Affiliation(s)
- Zheng Dou
- Paediatric Cardiac Surgery Center, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Qiyu He
- Paediatric Cardiac Surgery Center, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Kai Ma
- Paediatric Cardiac Surgery Center, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Xu Wang
- Paediatric Intensive Care Unit, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical SciencePeking Union Medical CollegeBeijingChina
| | - Min Zeng
- Paediatric Intensive Care Unit, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical SciencePeking Union Medical CollegeBeijingChina
| | - Kunjing Pang
- Department of Echocardiography, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Benqing Zhang
- Paediatric Cardiac Surgery Center, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Lu Rui
- Paediatric Cardiac Surgery Center, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Fengqun Mao
- Paediatric Cardiac Surgery Center, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Jianhui Yuan
- Paediatric Cardiac Surgery Center, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Dongdong Wu
- Paediatric Cardiac Surgery Center, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Yuze Liu
- Paediatric Cardiac Surgery Center, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Dietmar Schranz
- Paediatric Heart CenterJustus‐Liebig UniversityGiessenGermany
| | - Shoujun Li
- Paediatric Cardiac Surgery Center, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| |
Collapse
|
6
|
Aborode AT, Olamilekan Adesola R, Idris I, Adio WS, Scott GY, Chakoma M, Oluwaseun AA, Onifade IA, Adeoye AF, Aluko BA, Abok JI. Troponin C gene mutations on cardiac muscle cell and skeletal Regulation: A comprehensive review. Gene 2024; 927:148651. [PMID: 38871035 DOI: 10.1016/j.gene.2024.148651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The troponin complex plays a crucial role in regulating skeletal and cardiac contraction. Congenital myopathies can occur due to several mutations in genes that encode skeletal troponin. Moreover, there is limited information regarding the composition of skeletal troponin. This review specifically examines a comprehensive review of the TNNC gene mutations on cardiac and skeletal regulations. MAIN BODY Troponin C (TNNC) has been linked to a newly discovered inherited muscle disorder. Genetic variations in genes that encode skeletal troponin can impair the function of sarcomeres. Various treatment approaches have been employed to mitigate the impact of variations, including the use of troponin activators, the injection of wild-type protein via AAV gene therapy, and myosin modification to enhance muscle contraction. The processes responsible for the pathophysiological implications of the variations in genes that encode skeletal troponin are not fully understood. CONCLUSION This comprehensive review will contribute to the understanding of the relationship between human cardiomyopathy and TNNC mutations and will guide the development of therapy approaches.
Collapse
Affiliation(s)
| | - Ridwan Olamilekan Adesola
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Ibrahim Idris
- Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Nigeria.
| | - Waheed Sakariyau Adio
- Department of Chemistry and Biochemistry, College of Health and Natural Science, The University of Tulsa, Tulsa, USA.
| | - Godfred Yawson Scott
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Mugove Chakoma
- Department of Primary Healthcare, Faculty of Medicine and Healthcare, University of Zimbabwe, Zimbabwe.
| | | | | | | | | | - Jeremiah I Abok
- Department of Chemistry & Chemical Biology University of New Mexico, USA.
| |
Collapse
|
7
|
Battipaglia I, Cantarutti N, Cicenia M, Adorisio R, Battista V, Baban A, Silvetti MS, Drago F. Arrhythmias May Hide a Genetic Cardiomyopathy in Left Ventricular Hypertrabeculation in Children: A Single-Center Experience. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1233. [PMID: 39457198 PMCID: PMC11505651 DOI: 10.3390/children11101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Left ventricular hypertrabeculation (LVHT) is a myocardial disorder with different clinical manifestations, from total absence of symptoms to heart failure, arrhythmias, sudden cardiac death (SCD), and thromboembolic events. It is challenging to distinguish between the benign and pathological forms of LVHT. The aim of this study was to describe the arrhythmic manifestations of LVHT in a large group of pediatric patients and to correlate them with genetic results or other clinical markers. METHODS We retrospectively enrolled 140 pediatric patients with diagnosis of LVHT followed at our Institution from 2013 to 2023. Data regarding family history, instrumental exams, cardiac magnetic resonance, genetic testing and outcomes were collected. Most of them had isolated LVHT (80.7%); in other patients, mixed phenotypes (hypertrophic or dilated cardiomyopathy or congenital heart disease) were present. RESULTS Arrhythmias were found in 33 children (23.6%): 13 (9.3%) supraventricular tachyarrhythmias; 14 (10%) ventricular arrhythmias (five frequent PVCs (premature ventricular contractions), eight patients with ventricular tachycardia (VT), one ventricular fibrillation (VF)); two (1.4%) sinus node disfunctions; two (1.4%) complete atrio-ventricular blocks (AVB), three (2.1%) paroxysmal complete AVB, one (0.7%) severe I degree AVB. Three patients received an ICD (implantable cardioverter defibrillator). Comparison between LVHT patients with (33 pts) and without (107 pts) arrhythmias as regards genetic testing showed a statistical significance for the presence of class 4 or 5 genetic variants and arrhythmic manifestation (p = 0.037). CONCLUSIONS In our pediatric cohort with LVHT, good outcomes were observed, but arrhythmias were not so rare (23.6%); no SCD occurred.
Collapse
Affiliation(s)
- Irma Battipaglia
- Pediatric Cardiology and Cardiac Arrhythmias Complex Unit, Bambino Gesù Children’s Hospital IRCCS, 00050 Rome, Italy; (N.C.); (M.C.); (V.B.); (M.S.S.); (F.D.)
| | - Nicoletta Cantarutti
- Pediatric Cardiology and Cardiac Arrhythmias Complex Unit, Bambino Gesù Children’s Hospital IRCCS, 00050 Rome, Italy; (N.C.); (M.C.); (V.B.); (M.S.S.); (F.D.)
| | - Marianna Cicenia
- Pediatric Cardiology and Cardiac Arrhythmias Complex Unit, Bambino Gesù Children’s Hospital IRCCS, 00050 Rome, Italy; (N.C.); (M.C.); (V.B.); (M.S.S.); (F.D.)
| | - Rachele Adorisio
- Heart Failure, Transplant and Mechanical Cardiocirculatory Support Unit, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy;
| | - Virginia Battista
- Pediatric Cardiology and Cardiac Arrhythmias Complex Unit, Bambino Gesù Children’s Hospital IRCCS, 00050 Rome, Italy; (N.C.); (M.C.); (V.B.); (M.S.S.); (F.D.)
| | - Anwar Baban
- Medical Genetic, Bambino Gesù Children’s Hospital IRCCS, 00146 Rome, Italy;
| | - Massimo Stefano Silvetti
- Pediatric Cardiology and Cardiac Arrhythmias Complex Unit, Bambino Gesù Children’s Hospital IRCCS, 00050 Rome, Italy; (N.C.); (M.C.); (V.B.); (M.S.S.); (F.D.)
| | - Fabrizio Drago
- Pediatric Cardiology and Cardiac Arrhythmias Complex Unit, Bambino Gesù Children’s Hospital IRCCS, 00050 Rome, Italy; (N.C.); (M.C.); (V.B.); (M.S.S.); (F.D.)
| |
Collapse
|
8
|
Carvalho TD, Freitas OGAD, Chalela WA, Hossri CAC, Milani M, Buglia S, Falcão AMGM, Costa RVC, Ritt LEF, Pfeiffer MET, Silva OBE, Imada R, Pena JLB, Avanza Júnior AC, Sellera CAC. Brazilian Guideline for Exercise Testing in Children and Adolescents - 2024. Arq Bras Cardiol 2024; 121:e20240525. [PMID: 39292116 PMCID: PMC11495813 DOI: 10.36660/abc.20240525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
CLASSES OF RECOMMENDATION LEVELS OF EVIDENCE
Collapse
Affiliation(s)
- Tales de Carvalho
- Clínica de Prevenção e Reabilitação Cardiosport, Florianópolis, SC - Brasil
- Universidade do Estado de Santa Catarina, Florianópolis, SC - Brasil
| | | | - William Azem Chalela
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo, SP - Brasil
- Sociedade Beneficente de Senhoras do Hospital Sírio-Libanês, São Paulo, SP - Brasil
| | | | - Mauricio Milani
- Universidade de Brasília (UnB), Brasília, DF - Brasil
- Hasselt University, Hasselt - Bélgica
- Jessa Ziekenhuis, Hasselt - Bélgica
| | - Susimeire Buglia
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brasil
| | - Andréa Maria Gomes Marinho Falcão
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo, SP - Brasil
| | | | - Luiz Eduardo Fonteles Ritt
- Escola Bahiana de Medicina e Saúde Pública, Salvador, BA - Brasil
- Instituto D'Or de Pesquisa e Ensino, Salvador, BA - Brasil
- Hospital Cárdio Pulmonar, Salvador, BA - Brasil
| | | | | | - Rodrigo Imada
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo, SP - Brasil
- Hospital Sírio-Libanês, São Paulo, SP - Brasil
| | - José Luiz Barros Pena
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, MG - Brasil
- Hospital Felício Rocho, Belo Horizonte, MG - Brasil
| | | | | |
Collapse
|
9
|
Torbey AFM, Couto RGT, Grippa A, Maia EC, Miranda SA, Santos MACD, Peres ET, Costa OPS, Oliveira EMD, Mesquita ET. Cardiomyopathy in Children and Adolescents in the Era of Precision Medicine. Arq Bras Cardiol 2024; 121:e20230154. [PMID: 39442130 PMCID: PMC11634207 DOI: 10.36660/abc.20230154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2024] [Accepted: 05/15/2024] [Indexed: 10/25/2024] Open
Abstract
In childhood and adolescence, cardiomyopathies have their own characteristics and are an important cause of heart failure, arrhythmias, sudden death, and indication for heart transplantation. Diagnosis is a challenge in daily practice due to its varied clinical presentation, heterogeneous etiologies, and limited knowledge of tools related to clinical and molecular genetics. However, it is essential to recognize the different phenotypes and prioritize the search for the etiology. Recent advances in precision medicine have made molecular diagnosis accessible, which makes it possible to individualize therapeutic approaches, stratify the prognosis, and identify individuals in the family who are at risk of developing the disease. The objective of this review is to emphasize the particularities of cardiomyopathies in pediatrics and how the individualized approach impacts the therapy and prognosis of the patient. Through a systematized approach, the five-stage protocol used in our service is presented. These stages bring together clinical evaluation for determining the morphofunctional phenotype, identification of etiology, classification, establishment of prognosis, and the search for personalized therapies.
Collapse
Affiliation(s)
- Ana Flávia Mallheiros Torbey
- Universidade Federal Fluminense, Niterói, RJ - Brasil
- Programa de Pós-Graduação em Ciências Cardiovasculares da Universidade Federal Fluminense, Niterói, RJ - Brasil
| | - Raquel Germer Toja Couto
- Universidade Federal Fluminense Hospital Universitário Antônio Pedro (EBSERH), Niterói, RJ - Brasil
| | - Aurea Grippa
- Universidade Federal Fluminense, Niterói, RJ - Brasil
| | | | | | | | | | | | | | - Evandro Tinoco Mesquita
- Universidade Federal Fluminense, Niterói, RJ - Brasil
- Programa de Pós-Graduação em Ciências Cardiovasculares da Universidade Federal Fluminense, Niterói, RJ - Brasil
- Complexo Hospitalar de Niteroi, Niterói, RJ - Brasil
| |
Collapse
|
10
|
Rohde S, Miera O, Sandica E, Adorisio R, Salas-Mera D, Wiedemann D, Sliwka J, Amodeo A, Gollmann-Tepeköylü C, Napoleone CP, Angeli E, Veen K, de By T, Meyns B. Ventricular assist device support in paediatric patients with restrictive cardiomyopathy-clinical outcomes and haemodynamics. Eur J Cardiothorac Surg 2024; 66:ezae277. [PMID: 39029920 DOI: 10.1093/ejcts/ezae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 07/21/2024] Open
Abstract
OBJECTIVES Restrictive cardiomyopathy is rare and is generally associated with worse clinical outcomes compared to other cardiomyopathies. Ventricular assist device (VAD) support for these children is seldom applied and often hampered by the surgical difficulties. METHODS All paediatric (<19 years) patients with a restricted cardiomyopathy supported by a VAD from the EUROMACS database were included and compared to patients with a dilated cardiomyopathy (retrospective database analyses). Participating centres were retrospectively contacted to provide additional detailed echo and Swan Ganz measurements to analyse the effect of VAD support on pulmonary artery pressure and right ventricular function. RESULTS Forty-four paediatric VAD-supported patients diagnosed with restricted cardiomyopathy were included, with a median age at implantation of 5.0 years. Twenty-six of the 44 patient with a restricted cardiomyopathy survived to transplantation (59.1%), 16 died (36.4%) and 2 are still on ongoing VAD support (4.5%) after a median duration of support of 95.5 days (interquartile range 33.3-217.8). Transplantation probability after 1 and 2 years of VAD support in patients with a restricted cardiomyopathy were comparable to patients with a dilated cardiomyopathy (52.3% vs 51.4% and 59.5% vs 60.1%, P = 0.868). However, mortality probability was higher in the restricted cardiomyopathy cohort (35.8% vs 17.0% and 35.8% vs 19.0%, P = 0.005). Adverse event rates were high (cerebrovascular accident in 31.8%, pump thrombosis in 29.5%, major bleeding 25.0%, eventual biventricular support in 59.1%). In the atrially cannulated group, cerebrovascular accident and pump thrombosis occurred in twice as much patients (21.1% vs 40.0%, P = 0.595 and 15.8% vs 40.0%, P = 0.464; probably non-significant due to the small numbers). Pulmonary arterial pressures improved after implantation of a VAD, and 6 patients who were initially labelled as ineligible due to pulmonary hypertension could eventually be transplanted. CONCLUSIONS VAD support in children with a restricted cardiomyopathy is rarely performed. Mortality and adverse event rates are high. On the other hand, survival to cardiac transplantation was 59.1% with all patients surviving the 1st 30 days after cardiac transplantation. Pulmonary arterial pressures improved while on support, potentially making cardiac transplantation a viable option for previously ineligible children.
Collapse
Affiliation(s)
- Sofie Rohde
- Department of Cardio-Thoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Oliver Miera
- Department of Congenital Heart Disease and Pediatric Cardiology, Deutsches Herzzentrum der Charité, Berlin, Germany
| | - Eugen Sandica
- Department of Surgery for Congenital. Heart Defects, Clinic for Pediatric Cardiac Surgery and Congenital Heart Defects, Heart and Diabetes Centre North Rhine-Westphalia, Ruhr-University of Bochum, Bad Oeynhausen, Germany
| | - Rachele Adorisio
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Hospital and Research Institute, Rome, Italy
| | - Diana Salas-Mera
- Pediatric Cardiology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Dominik Wiedemann
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Joanna Sliwka
- Department of Cardiac Surgery, Transplantology and Vascular Surgery, Silesian Center for Heart Diseases, Zabrze, Poland
| | - Antonio Amodeo
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, Rome, Italy
- Department of Cardiovascular and Pneumological Sciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Carlo Pace Napoleone
- Pediatric Cardiac Surgery Department, Regina Margherita Children's Hospital, Torino, Italy
| | - Emanuela Angeli
- Department of Pediatric and Grown-up Congenital Cardiac Surgery, Sant'Orsola Hospital, Bologna, Italy
| | - Kevin Veen
- Department of Cardio-Thoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Bart Meyns
- Department of Cardiac Surgery, University Hospital Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Fernandes F, Simões MV, Correia EDB, Marcondes-Braga FG, Coelho-Filho OR, Mesquita CT, Mathias Junior W, Antunes MDO, Arteaga-Fernández E, Rochitte CE, Ramires FJA, Alves SMM, Montera MW, Lopes RD, Oliveira Junior MTD, Scolari FL, Avila WS, Canesin MF, Bocchi EA, Bacal F, Moura LZ, Saad EB, Scanavacca MI, Valdigem BP, Cano MN, Abizaid AAC, Ribeiro HB, Lemos Neto PA, Ribeiro GCDA, Jatene FB, Dias RR, Beck-da-Silva L, Rohde LEP, Bittencourt MI, Pereira ADC, Krieger JE, Villacorta Junior H, Martins WDA, Figueiredo Neto JAD, Cardoso JN, Pastore CA, Jatene IB, Tanaka ACS, Hotta VT, Romano MMD, Albuquerque DCD, Mourilhe-Rocha R, Hajjar LA, Brito Junior FSD, Caramelli B, Calderaro D, Farsky PS, Colafranceschi AS, Pinto IMF, Vieira MLC, Danzmann LC, Barberato SH, Mady C, Martinelli Filho M, Torbey AFM, Schwartzmann PV, Macedo AVS, Ferreira SMA, Schmidt A, Melo MDTD, Lima Filho MO, Sposito AC, Brito FDS, Biolo A, Madrini Junior V, Rizk SI, Mesquita ET. Guidelines on the Diagnosis and Treatment of Hypertrophic Cardiomyopathy - 2024. Arq Bras Cardiol 2024; 121:e202400415. [PMID: 39082572 DOI: 10.36660/abc.20240415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Affiliation(s)
- Fabio Fernandes
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Marcus V Simões
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto, SP - Brasil
| | | | - Fabiana Goulart Marcondes-Braga
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | - Wilson Mathias Junior
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Murillo de Oliveira Antunes
- Universidade São Francisco (USF), São Paulo, SP - Brasil; Pronto Socorro Cardiológico de Pernambuco (PROCAPE), Recife, PE - Brasil
| | - Edmundo Arteaga-Fernández
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Carlos Eduardo Rochitte
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Felix José Alvarez Ramires
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Silvia Marinho Martins Alves
- Universidade São Francisco (USF), São Paulo, SP - Brasil; Pronto Socorro Cardiológico de Pernambuco (PROCAPE), Recife, PE - Brasil
- Universidade de Pernambuco (UPE), Recife, PE - Brasil
| | | | | | - Mucio Tavares de Oliveira Junior
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Walkiria Samuel Avila
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | - Fernando Bacal
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Eduardo Benchimol Saad
- Hospital Samaritano, Rio de Janeiro, RJ - Brasil
- Beth Israel Deaconess Medical Center / Harvard Medical School, Boston - USA
| | - Mauricio Ibrahim Scanavacca
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | - Alexandre Antonio Cunha Abizaid
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Henrique Barbosa Ribeiro
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | - Fabio Biscegli Jatene
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Luis Beck-da-Silva
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brasil
| | | | | | - Alexandre da Costa Pereira
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Fundação Zerbini, São Paulo, SP - Brasil
| | - José Eduardo Krieger
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | | | - Juliano Novaes Cardoso
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Faculdade Santa Marcelina, São Paulo, SP - Brasil
| | - Carlos Alberto Pastore
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Ana Cristina Sayuri Tanaka
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Viviane Tiemi Hotta
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Fleury Medicina e Saúde, São Paulo, SP - Brasil
| | | | - Denilson Campos de Albuquerque
- Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ - Brasil
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, RJ - Brasil
| | | | - Ludhmila Abrahão Hajjar
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Bruno Caramelli
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Daniela Calderaro
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | | | - Marcelo Luiz Campos Vieira
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Hospital Israelita Albert Einstein, São Paulo, SP - Brasil
| | | | - Silvio Henrique Barberato
- CardioEco Centro de Diagnóstico Cardiovascular e Ecocardiografia, Curitiba, PR - Brasil
- Quanta Diagnósticos, Curitiba, PR - Brasil
| | - Charles Mady
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Martino Martinelli Filho
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Pedro Vellosa Schwartzmann
- Hospital Unimed Ribeirão Preto, Ribeirão Preto, SP - Brasil
- Centro Avançado de Pesquisa, Ensino e Diagnóstico (CAPED), Ribeirão Preto, SP - Brasil
| | | | - Silvia Moreira Ayub Ferreira
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Fundação Zerbini, São Paulo, SP - Brasil
| | - Andre Schmidt
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto, SP - Brasil
| | | | | | - Andrei C Sposito
- Universidade Estadual de Campinas (UNICAMP), Campinas, SP - Brasil
| | - Flávio de Souza Brito
- Hospital Vera Cruz, Campinas, SP - Brasil
- Hospital das Clínicas da Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), São Paulo, SP - Brasil
- Centro de Pesquisa Clínica - Indacor, São Paulo, SP - Brasil
| | - Andreia Biolo
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brasil
- Hospital Moinhos de Vento, Porto Alegre, RS - Brasil
- Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS - Brasil
| | - Vagner Madrini Junior
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Hospital Israelita Albert Einstein, São Paulo, SP - Brasil
| | - Stephanie Itala Rizk
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | |
Collapse
|
12
|
Yang P, Lou Y, Geng Z, Guo Z, Wu S, Li Y, Song K, Shi T, Zhang S, Xiong J, Chen AF, Li D, Pu WT, Da L, Zhang Y, Sun K, Zhang B. Allele-Specific Suppression of Variant MHC With High-Precision RNA Nuclease CRISPR-Cas13d Prevents Hypertrophic Cardiomyopathy. Circulation 2024; 150:283-298. [PMID: 38752340 PMCID: PMC11259241 DOI: 10.1161/circulationaha.123.067890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/12/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Familial hypertrophic cardiomyopathy has severe clinical complications of heart failure, arrhythmia, and sudden cardiac death. Heterozygous single nucleotide variants (SNVs) of sarcomere genes such as MYH7 are the leading cause of this type of disease. CRISPR-Cas13 (clustered regularly interspaced short palindromic repeats and their associated protein 13) is an emerging gene therapy approach for treating genetic disorders, but its therapeutic potential in genetic cardiomyopathy remains unexplored. METHODS We developed a sensitive allelic point mutation reporter system to screen the mutagenic variants of Cas13d. On the basis of Cas13d homology structure, we rationally designed a series of Cas13d variants and obtained a high-precision Cas13d variant (hpCas13d) that specifically cleaves the MYH7 variant RNAs containing 1 allelic SNV. We validated the high precision and low collateral cleavage activity of hpCas13d through various in vitro assays. We generated 2 HCM mouse models bearing distinct MYH7 SNVs and used adenovirus-associated virus serotype 9 to deliver hpCas13d specifically to the cardiomyocytes. We performed a large-scale library screening to assess the potency of hpCas13d in resolving 45 human MYH7 allelic pathogenic SNVs. RESULTS Wild-type Cas13d cannot distinguish and specifically cleave the heterozygous MYH7 allele with SNV. hpCas13d, with 3 amino acid substitutions, had minimized collateral RNase activity and was able to resolve various human MYH7 pathological sequence variations that cause hypertrophic cardiomyopathy. In vivo application of hpCas13d to 2 hypertrophic cardiomyopathy models caused by distinct human MYH7 analogous sequence variations specifically suppressed the altered allele and prevented cardiac hypertrophy. CONCLUSIONS Our study unveils the great potential of CRISPR-Cas nucleases with high precision in treating inheritable cardiomyopathy and opens a new avenue for therapeutic management of inherited cardiac diseases.
Collapse
Affiliation(s)
- Ping Yang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| | - Yingmei Lou
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| | - Zilong Geng
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| | - Zhizhao Guo
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| | - Shuo Wu
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| | - Yige Li
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| | - Kaiyuan Song
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China (T.S.)
| | - Shasha Zhang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| | - Junhao Xiong
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| | - Alex F. Chen
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (D.L.)
| | - William T. Pu
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, MA (W.T.P.)
- Harvard Stem Cell Institute, Harvard University, MA (W.T.P.)
| | - Lintai Da
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| | - Yan Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (Y.Z.)
| | - Kun Sun
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| | - Bing Zhang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| |
Collapse
|
13
|
Malinow I, Fong DC, Miyamoto M, Badran S, Hong CC. Pediatric dilated cardiomyopathy: a review of current clinical approaches and pathogenesis. Front Pediatr 2024; 12:1404942. [PMID: 38966492 PMCID: PMC11223501 DOI: 10.3389/fped.2024.1404942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Pediatric dilated cardiomyopathy (DCM) is a rare, yet life-threatening cardiovascular condition characterized by systolic dysfunction with biventricular dilatation and reduced myocardial contractility. Therapeutic options are limited with nearly 40% of children undergoing heart transplant or death within 2 years of diagnosis. Pediatric patients are currently diagnosed based on correlating the clinical picture with echocardiographic findings. Patient age, etiology of disease, and parameters of cardiac function significantly impact prognosis. Treatments for pediatric DCM aim to ameliorate symptoms, reduce progression of disease, and prevent life-threatening arrhythmias. Many therapeutic agents with known efficacy in adults lack the same evidence in children. Unlike adult DCM, the pathogenesis of pediatric DCM is not well understood as approximately two thirds of cases are classified as idiopathic disease. Children experience unique gene expression changes and molecular pathway activation in response to DCM. Studies have pointed to a significant genetic component in pediatric DCM, with variants in genes related to sarcomere and cytoskeleton structure implicated. In this regard, pediatric DCM can be considered pediatric manifestations of inherited cardiomyopathy syndromes. Yet exciting recent studies in infantile DCM suggest that this subset has a distinct etiology involving defective postnatal cardiac maturation, such as the failure of programmed centrosome breakdown in cardiomyocytes. Improved knowledge of pathogenesis is central to developing child-specific treatment approaches. This review aims to discuss the established biological pathogenesis of pediatric DCM, current clinical guidelines, and promising therapeutic avenues, highlighting differences from adult disease. The overarching goal is to unravel the complexities surrounding this condition to facilitate the advancement of novel therapeutic interventions and improve prognosis and overall quality of life for pediatric patients affected by DCM.
Collapse
Affiliation(s)
- Ian Malinow
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Daniel C. Fong
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Matthew Miyamoto
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sarah Badran
- Department of Pediatric Cardiology, Michigan State University College of Human Medicine Helen Devos Children’s Hospital, Grand Rapids, MI, United States
| | - Charles C. Hong
- Department of Medicine, Division of Cardiology, Michigan State University College of Human Medicine, East Lansing, MI, United States
| |
Collapse
|
14
|
Jiang JH, Tian J, Pan B. Noteworthy phenomena in pediatric inherited cardiomyopathy. World J Pediatr 2024; 20:635-637. [PMID: 38896415 DOI: 10.1007/s12519-024-00825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Affiliation(s)
- Jin-Hang Jiang
- Department of Pediatric Cardiology, National Clinical Key Cardiovascular Specialty, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Yuzhong Distirct, Chongqing, 400014, China
| | - Jie Tian
- Department of Pediatric Cardiology, National Clinical Key Cardiovascular Specialty, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Yuzhong Distirct, Chongqing, 400014, China
- Key Laboratory of Children's Important Organ Development and Diseases, Chongqing Municipal Health Commission, Chongqing, China
| | - Bo Pan
- Department of Pediatric Cardiology, National Clinical Key Cardiovascular Specialty, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Yuzhong Distirct, Chongqing, 400014, China.
- Key Laboratory of Children's Important Organ Development and Diseases, Chongqing Municipal Health Commission, Chongqing, China.
| |
Collapse
|
15
|
Lam TH, Yen NTB, Hung ND, Trang NT, Minh TD, Duyen NT. Biventricular noncompaction induced heart failure in premature newborn. Radiol Case Rep 2024; 19:2448-2451. [PMID: 38585401 PMCID: PMC10998051 DOI: 10.1016/j.radcr.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Deep intertrabecular recesses and overly pronounced trabeculations in one ventricle are the hallmarks of noncompaction cardiomyopathy (NCCM), a rare congenital cardiomyopathy but very rarely right ventricle (RV), or both ventricles may be involved. We reported a 5-day-old preterm newborn with signs of congestive heart failure that the transthoracic echocardiography (TTE) revealed deep intertrabecular recesses perfused from the left ventricle (LV) and RV cavity, as well as significantly increased wall thickness of the right ventricles and hypertrabeculations in the apical and midventricular segments.
Collapse
|
16
|
Rozanski B, Gregorcyk L. Massively good catch! Elevated blood pressure led to alarming discovery. Clin Pediatr (Phila) 2024; 63:848-851. [PMID: 37608697 DOI: 10.1177/00099228231193857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Affiliation(s)
- Brandon Rozanski
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lisa Gregorcyk
- Department of Pediatrics, Navy Medical Center Portsmouth, Portsmouth, VA, USA
| |
Collapse
|
17
|
Sun Q, Guo J, Zhang Y, Zheng R, He K, Chen Y, Hao C, Xie Z, Wang F. Cardiomyopathy in children: a single-centre, retrospective study of genetic and clinical characteristics. BMJ Paediatr Open 2024; 8:e002024. [PMID: 38823802 PMCID: PMC11149152 DOI: 10.1136/bmjpo-2023-002024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/27/2023] [Indexed: 06/03/2024] Open
Abstract
OBJECTIVES This study aimed to describe the genetic and clinical characteristics of paediatric cardiomyopathy in a cohort of Chinese patients. METHODS We retrospectively reviewed the clinical history and mutation spectrum of 75 unrelated Chinese paediatric patients who were diagnosed with cardiomyopathy and referred to our hospital between January 2016 and December 2022. RESULTS Seventy-five children with cardiomyopathy were enrolled, including 32 (42.7%) boys and 43 (57.3%) girls. Dilated cardiomyopathy was the most prevalent cardiomyopathy (61.3%) in the patients, followed by hypertrophic cardiomyopathy (17.3%), ventricular non-compaction (14.7%), restrictive cardiomyopathy (5.3%) and arrhythmogenic right ventricular cardiomyopathy (1.3%). Whole-exome sequencing and targeted next-generation sequencing identified 34 pathogenic/likely pathogenic variants and 1 copy number variant in 14 genes related to cardiomyopathy in 30 children, accounting for 40% of all patients. TNNC1 p.Asp65Asn and MYH7 p.Glu500Lys have not been reported previously. The follow-up time ranged from 2 months to 6 years. Twenty-two children died (mortality rate 29%). CONCLUSIONS Comprehensive genetic testing was associated with a 40% yield of causal genetic mutations in Chinese cardiomyopathy cases. We found diversity in the mutation profile in different patients, which suggests that the mutational background of cardiomyopathy in China is heterogeneous, and the findings may be helpful to those counselling patients and families.
Collapse
Affiliation(s)
- Qiqing Sun
- Department of Cardiology, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun Guo
- Beijing Children's Hospital, Beijing, China
| | - Yaodong Zhang
- Henan Provincial Clinical Research Center for Pediatric Diseases, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruili Zheng
- Department of Cardiology, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, Henan, China
| | - Kun He
- Department of Cardiology, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, Henan, China
| | | | | | - Zhenhua Xie
- Henan Provincial Clinical Research Center for Pediatric Diseases, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, Henan, China
| | - Fangjie Wang
- Department of Cardiology, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
18
|
Husain DS, Joshi NP, Al Senaidi KS, Al Riyami H. Paediatric Restrictive Cardiomyopathy - Diagnosis and Challenges: A report of two cases. Sultan Qaboos Univ Med J 2024; 24:283-287. [PMID: 38828243 PMCID: PMC11139361 DOI: 10.18295/squmj.9.2023.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/26/2023] [Accepted: 08/22/2023] [Indexed: 06/05/2024] Open
Abstract
Restrictive cardiomyopathy is one of the rarest forms of cardiomyopathies in paediatric patients characterised by impaired myocardial relaxation or compliance with restricted ventricular filling, leading to a reduced diastolic volume with a preserved systolic function. We report 2 cases-a 5-year-old boy who presented with abdominal distension and palpitation with family history of similar complaints but no definite genetic diagnosis as yet and a 5-year-old girl who presented with chronic cough and shortness of breath. Both cases were diagnosed in a tertiary care hospital in Muscat, Oman, in 2019 and are managed supportively with regular outpatient follow-up. This is the first series of reported cases of paediatric restrictive cardiomyopathy from Oman.
Collapse
|
19
|
Townsend M, Jeewa A, Khoury M, Cunningham C, George K, Conway J. Unique Aspects of Hypertrophic Cardiomyopathy in Children. Can J Cardiol 2024; 40:907-920. [PMID: 38244986 DOI: 10.1016/j.cjca.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/03/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a primary heart muscle disease characterized by left ventricular hypertrophy that can be asymptomatic or with presentations that vary from left ventricular outflow tract obstruction, heart failure from diastolic dysfunction, arrhythmias, and/or sudden cardiac death. Children younger than 1 year of age tend to have worse outcomes and often have HCM secondary to inborn errors of metabolism or syndromes such as RASopathies. For children who survive or are diagnosed after 1 year of age, HCM outcomes are often favourable and similar to those seen in adults. This is because of sudden cardiac death risk stratification and medical and surgical innovations. Genetic testing and timely cardiac screening are paving the way for disease-modifying treatment as gene-specific therapies are being developed.
Collapse
Affiliation(s)
- Madeleine Townsend
- Department of Cardiology, Cleveland Clinic Children's Hospital, Cleveland, Ohio, USA
| | - Aamir Jeewa
- Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael Khoury
- Division of Pediatric Cardiology, Stollery Children's Hospital, Edmonton, Alberta, Canada
| | | | - Kristen George
- Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer Conway
- Division of Pediatric Cardiology, Stollery Children's Hospital, Edmonton, Alberta, Canada.
| |
Collapse
|
20
|
Wang R, Hasegawa M, Suginobe H, Yoshihara C, Ishii Y, Ueyama A, Ueda K, Hashimoto K, Hirose M, Ishii R, Narita J, Watanabe T, Kawamura T, Taira M, Ueno T, Miyagawa S, Ishida H. Impaired Relaxation in Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Pathogenic TNNI3 Mutation of Pediatric Restrictive Cardiomyopathy. J Am Heart Assoc 2024; 13:e032375. [PMID: 38497452 PMCID: PMC11010001 DOI: 10.1161/jaha.123.032375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Restrictive cardiomyopathy (RCM) is characterized by impaired diastolic function with preserved ventricular contraction. Several pathogenic variants in sarcomere genes, including TNNI3, are reported to cause Ca2+ hypersensitivity in cardiomyocytes in overexpression models; however, the pathophysiology of induced pluripotent stem cell (iPSC)-derived cardiomyocytes specific to a patient with RCM remains unknown. METHODS AND RESULTS We established an iPSC line from a pediatric patient with RCM and a heterozygous TNNI3 missense variant, c.508C>T (p.Arg170Trp; R170W). We conducted genome editing via CRISPR/Cas9 technology to establish an isogenic correction line harboring wild type TNNI3 as well as a homozygous TNNI3-R170W. iPSCs were then differentiated to cardiomyocytes to compare their cellular physiological, structural, and transcriptomic features. Cardiomyocytes differentiated from heterozygous and homozygous TNNI3-R170W iPSC lines demonstrated impaired diastolic function in cell motion analyses as compared with that in cardiomyocytes derived from isogenic-corrected iPSCs and 3 independent healthy iPSC lines. The intracellular Ca2+ oscillation and immunocytochemistry of troponin I were not significantly affected in RCM-cardiomyocytes with either heterozygous or homozygous TNNI3-R170W. Electron microscopy showed that the myofibril and mitochondrial structures appeared to be unaffected. RNA sequencing revealed that pathways associated with cardiac muscle development and contraction, extracellular matrix-receptor interaction, and transforming growth factor-β were altered in RCM-iPSC-derived cardiomyocytes. CONCLUSIONS Patient-specific iPSC-derived cardiomyocytes could effectively represent the diastolic dysfunction of RCM. Myofibril structures including troponin I remained unaffected in the monolayer culture system, although gene expression profiles associated with cardiac muscle functions were altered.
Collapse
Affiliation(s)
- Renjie Wang
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Moyu Hasegawa
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Hidehiro Suginobe
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Chika Yoshihara
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Yoichiro Ishii
- Department of Pediatric Cardiology Osaka Children's and Women's Hospital Osaka Japan
| | - Atsuko Ueyama
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Kazutoshi Ueda
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Kazuhisa Hashimoto
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Masaki Hirose
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Ryo Ishii
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Jun Narita
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Takuji Watanabe
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Masaki Taira
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Takayoshi Ueno
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Hidekazu Ishida
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| |
Collapse
|
21
|
Wang F, Han S, Fang L, Lin X. A fetal rat model of ventricular noncompaction caused by intrauterine hyperglycemia. Cardiovasc Pathol 2024; 69:107601. [PMID: 38072092 DOI: 10.1016/j.carpath.2023.107601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND This study aims to develop a fetal rat model of ventricular noncompaction (NVM) using streptozotocin (STZ)-induced gestational hyperglycemia and compare it with a retinoic acid (RA) model. METHODS Female SD rats were categorized into STZ, RA, and normal control (NC) groups. The STZ group was given a high-fat diet pre-pregnancy and 35 mg/kg of 2% STZ postpregnancy. The RA group received a 90 mg/kg dose of RA on day 13 postpregnancy. Embryonic myocardial morphology was analyzed through HE staining, and embryonic cardiomyocyte ultrastructures were studied using electron microscopy. Diagnoses of NVM were based on a ratio of noncompact myocardium (N) to compact myocardium (C) >1.4, accompanied by thick myocardial trabeculae and a thin myocardial compaction layer. Kruskal-Wallis test determined N/C ratio differences among groups. RESULTS Both STZ and RA groups displayed significant NVM characteristics. The left ventricular (LV) N/C in the STZ, RA, and NC groups were 1.983 (1.423-3.527), 1.640 (1.197-2.895), and 0.927 (0.806-1.087), respectively, with a statistically significant difference (P<0.001). The right ventricular (RV) N/C in the STZ, RA, and NC groups were 2.097 (1.364-3.081), 1.897 (1.337-2.662), and 0.869 (0.732-1.022), respectively, with a significant difference (P<0.001). Electron microscopy highlighted marked endoplasmic reticulum swelling in embryonic cardiomyocytes from both STZ and RA groups. CONCLUSION Our model underscores the pivotal role of an adverse intrauterine developmental environment in the onset of NVM. This insight holds significant implications for future studies exploring the pathogenesis of NVM.
Collapse
Affiliation(s)
- Fanglu Wang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Songbo Han
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Ligang Fang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xue Lin
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
22
|
Santoro F, Vitale E, Ragnatela I, Cetera R, Leopzzi A, Mallardi A, Matera A, Mele M, Correale M, Brunetti ND. Multidisciplinary approach in cardiomyopathies: From genetics to advanced imaging. Heart Fail Rev 2024; 29:445-462. [PMID: 38041702 DOI: 10.1007/s10741-023-10373-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Cardiomyopathies are myocardial diseases characterized by mechanical and electrical dysfunction of the heart muscle which could lead to heart failure and life-threatening arrhythmias. Certainly, an accurate anamnesis, a meticulous physical examination, and an ECG are cornerstones in raising the diagnostic suspicion. However, cardiovascular imaging techniques are indispensable to diagnose a specific cardiomyopathy, to stratify the risk related to the disease and even to track the response to the therapy. Echocardiography is often the first exam that the patient undergoes, because of its non-invasiveness, wide availability, and cost-effectiveness. Cardiac magnetic resonance imaging allows to integrate and implement the information obtained with the echography. Furthermore, cardiomyopathies' genetic basis has been investigated over the years and the list of genetic mutations deemed potentially pathogenic is expected to grow further. The aim of this review is to show echocardiographic, cardiac magnetic resonance imaging, and genetic features of several cardiomyopathies: dilated cardiomyopathy (DMC), hypertrophic cardiomyopathy (HCM), arrhythmogenic cardiomyopathy (ACM), left ventricular noncompaction cardiomyopathy (LVNC), myocarditis, and takotsubo cardiomyopathy.
Collapse
Affiliation(s)
- Francesco Santoro
- Department of Medical and Surgical Sciences, Cardiology Unit, Policlinico "Riuniti", University of Foggia, Viale Pinto n.1, 71122, Foggia, Italy.
| | - Enrica Vitale
- Department of Medical and Surgical Sciences, Cardiology Unit, Policlinico "Riuniti", University of Foggia, Viale Pinto n.1, 71122, Foggia, Italy
| | - Ilaria Ragnatela
- Department of Medical and Surgical Sciences, Cardiology Unit, Policlinico "Riuniti", University of Foggia, Viale Pinto n.1, 71122, Foggia, Italy
| | - Rosa Cetera
- Department of Medical and Surgical Sciences, Cardiology Unit, Policlinico "Riuniti", University of Foggia, Viale Pinto n.1, 71122, Foggia, Italy
| | | | | | - Annalisa Matera
- Department of Medical and Surgical Sciences, Cardiology Unit, Policlinico "Riuniti", University of Foggia, Viale Pinto n.1, 71122, Foggia, Italy
| | - Marco Mele
- Department of Medical and Surgical Sciences, Cardiology Unit, Policlinico "Riuniti", University of Foggia, Viale Pinto n.1, 71122, Foggia, Italy
| | - Michele Correale
- Department of Medical and Surgical Sciences, Cardiology Unit, Policlinico "Riuniti", University of Foggia, Viale Pinto n.1, 71122, Foggia, Italy
| | - Natale Daniele Brunetti
- Department of Medical and Surgical Sciences, Cardiology Unit, Policlinico "Riuniti", University of Foggia, Viale Pinto n.1, 71122, Foggia, Italy
| |
Collapse
|
23
|
Hasegawa M, Miki K, Kawamura T, Takei Sasozaki I, Higashiyama Y, Tsuchida M, Kashino K, Taira M, Ito E, Takeda M, Ishida H, Higo S, Sakata Y, Miyagawa S. Gene correction and overexpression of TNNI3 improve impaired relaxation in engineered heart tissue model of pediatric restrictive cardiomyopathy. Dev Growth Differ 2024; 66:119-132. [PMID: 38193576 PMCID: PMC11457505 DOI: 10.1111/dgd.12909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/10/2024]
Abstract
Research on cardiomyopathy models using engineered heart tissue (EHT) created from disease-specific induced pluripotent stem cells (iPSCs) is advancing rapidly. However, the study of restrictive cardiomyopathy (RCM), a rare and intractable cardiomyopathy, remains at the experimental stage because there is currently no established method to replicate the hallmark phenotype of RCM, particularly diastolic dysfunction, in vitro. In this study, we generated iPSCs from a patient with early childhood-onset RCM harboring the TNNI3 R170W mutation (R170W-iPSCs). The properties of R170W-iPSC-derived cardiomyocytes (CMs) and EHTs were evaluated and compared with an isogenic iPSC line in which the mutation was corrected. Our results indicated altered calcium kinetics in R170W-iPSC-CMs, including prolonged tau, and an increased ratio of relaxation force to contractile force in R170W-EHTs. These properties were reversed in the isogenic line, suggesting that our model recapitulates impaired relaxation of RCM, i.e., diastolic dysfunction in clinical practice. Furthermore, overexpression of wild-type TNNI3 in R170W-iPSC-CMs and -EHTs effectively rescued impaired relaxation. These results highlight the potential efficacy of EHT, a modality that can accurately recapitulate diastolic dysfunction in vitro, to elucidate the pathophysiology of RCM, as well as the possible benefits of gene therapies for patients with RCM.
Collapse
Affiliation(s)
- Moyu Hasegawa
- Department of Cardiovascular SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Kenji Miki
- Premium Research Institute for Human Metaverse MedicineOsaka UniversityOsakaJapan
| | - Takuji Kawamura
- Department of Cardiovascular SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Ikue Takei Sasozaki
- Department of Cardiovascular SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Yuki Higashiyama
- Department of Cardiovascular SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Masaru Tsuchida
- NTT Communication Science LaboratoriesMedia Information Research DepartmentKanagawaJapan
| | - Kunio Kashino
- Premium Research Institute for Human Metaverse MedicineOsaka UniversityOsakaJapan
- NTT Communication Science LaboratoriesMedia Information Research DepartmentKanagawaJapan
| | - Masaki Taira
- Department of Cardiovascular SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Emiko Ito
- Department of Cardiovascular SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Maki Takeda
- Department of Cardiovascular SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Hidekazu Ishida
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Shuichiro Higo
- Department of Medical Therapeutics for Heart FailureOsaka University Graduate School of MedicineOsakaJapan
| | - Yasushi Sakata
- Department of Cardiovascular MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Shigeru Miyagawa
- Department of Cardiovascular SurgeryOsaka University Graduate School of MedicineOsakaJapan
- Premium Research Institute for Human Metaverse MedicineOsaka UniversityOsakaJapan
| |
Collapse
|
24
|
Monda E, De Michele G, Diana G, Verrillo F, Rubino M, Cirillo A, Fusco A, Amodio F, Caiazza M, Dongiglio F, Palmiero G, Buono P, Russo MG, Limongelli G. RETRACTED: Left Ventricular Non-Compaction in Children: Aetiology and Diagnostic Criteria. Diagnostics (Basel) 2024; 14:115. [PMID: 38201424 PMCID: PMC10871098 DOI: 10.3390/diagnostics14010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Left ventricular non-compaction (LVNC) is a heterogeneous myocardial disorder characterized by prominent trabeculae protruding into the left ventricular lumen and deep intertrabecular recesses. LVNC can manifest in isolation or alongside other heart muscle diseases. Its occurrence among children is rising due to advancements in imaging techniques. The origins of LVNC are diverse, involving both genetic and acquired forms. The clinical manifestation varies greatly, with some cases presenting no symptoms, while others typically manifesting with heart failure, systemic embolism, and arrhythmias. Diagnosis mainly relies on assessing heart structure using imaging tools like echocardiography and cardiac magnetic resonance. However, the absence of a universally agreed-upon standard and limitations in diagnostic criteria have led to ongoing debates in the scientific community regarding the most reliable methods. Further research is crucial to enhance the diagnosis of LVNC, particularly in early life stages.
Collapse
Affiliation(s)
- Emanuele Monda
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
- Institute of Cardiovascular Science, University College London, London WC1N 3JH, UK
| | - Gianantonio De Michele
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
| | - Gaetano Diana
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
| | - Federica Verrillo
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
| | - Marta Rubino
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
| | - Annapaola Cirillo
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
| | - Adelaide Fusco
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
| | - Federica Amodio
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
| | - Francesca Dongiglio
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
| | - Giuseppe Palmiero
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
| | - Pietro Buono
- Department of Maternal and Child Health, General Directorate for Health, 80131 Naples, Italy;
| | - Maria Giovanna Russo
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
- Institute of Cardiovascular Science, University College London, London WC1N 3JH, UK
| |
Collapse
|
25
|
Mariani MV, Pierucci N, Fanisio F, Laviola D, Silvetti G, Piro A, La Fazia VM, Chimenti C, Rebecchi M, Drago F, Miraldi F, Natale A, Vizza CD, Lavalle C. Inherited Arrhythmias in the Pediatric Population: An Updated Overview. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:94. [PMID: 38256355 PMCID: PMC10819657 DOI: 10.3390/medicina60010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
Pediatric cardiomyopathies (CMs) and electrical diseases constitute a heterogeneous spectrum of disorders distinguished by structural and electrical abnormalities in the heart muscle, attributed to a genetic variant. They rank among the main causes of morbidity and mortality in the pediatric population, with an annual incidence of 1.1-1.5 per 100,000 in children under the age of 18. The most common conditions are dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). Despite great enthusiasm for research in this field, studies in this population are still limited, and the management and treatment often follow adult recommendations, which have significantly more data on treatment benefits. Although adult and pediatric cardiac diseases share similar morphological and clinical manifestations, their outcomes significantly differ. This review summarizes the latest evidence on genetics, clinical characteristics, management, and updated outcomes of primary pediatric CMs and electrical diseases, including DCM, HCM, arrhythmogenic right ventricular cardiomyopathy (ARVC), Brugada syndrome (BrS), catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT syndrome (LQTS), and short QT syndrome (SQTS).
Collapse
Affiliation(s)
- Marco Valerio Mariani
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Nicola Pierucci
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Francesca Fanisio
- Division of Cardiology, Policlinico Casilino, 00169 Rome, Italy; (F.F.); (M.R.)
| | - Domenico Laviola
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Giacomo Silvetti
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Agostino Piro
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Vincenzo Mirco La Fazia
- Department of Electrophysiology, St. David’s Medical Center, Texas Cardiac Arrhythmia Institute, Austin, TX 78705, USA; (V.M.L.F.); (A.N.)
| | - Cristina Chimenti
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Marco Rebecchi
- Division of Cardiology, Policlinico Casilino, 00169 Rome, Italy; (F.F.); (M.R.)
| | - Fabrizio Drago
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children’s Hospital and Research Institute, 00165 Rome, Italy;
| | - Fabio Miraldi
- Cardio Thoracic-Vascular and Organ Transplantation Surgery Department, Policlinico Umberto I Hospital, 00161 Rome, Italy;
| | - Andrea Natale
- Department of Electrophysiology, St. David’s Medical Center, Texas Cardiac Arrhythmia Institute, Austin, TX 78705, USA; (V.M.L.F.); (A.N.)
| | - Carmine Dario Vizza
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Carlo Lavalle
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| |
Collapse
|
26
|
Vasilescu C, Colpan M, Ojala TH, Manninen T, Mutka A, Ylänen K, Rahkonen O, Poutanen T, Martelius L, Kumari R, Hinterding H, Brilhante V, Ojanen S, Lappalainen P, Koskenvuo J, Carroll CJ, Fowler VM, Gregorio CC, Suomalainen A. Recessive TMOD1 mutation causes childhood cardiomyopathy. Commun Biol 2024; 7:7. [PMID: 38168645 PMCID: PMC10761686 DOI: 10.1038/s42003-023-05670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Familial cardiomyopathy in pediatric stages is a poorly understood presentation of heart disease in children that is attributed to pathogenic mutations. Through exome sequencing, we report a homozygous variant in tropomodulin 1 (TMOD1; c.565C>T, p.R189W) in three individuals from two unrelated families with childhood-onset dilated and restrictive cardiomyopathy. To decipher the mechanism of pathogenicity of the R189W mutation in TMOD1, we utilized a wide array of methods, including protein analyses, biochemistry and cultured cardiomyocytes. Structural modeling revealed potential defects in the local folding of TMOD1R189W and its affinity for actin. Cardiomyocytes expressing GFP-TMOD1R189W demonstrated longer thin filaments than GFP-TMOD1wt-expressing cells, resulting in compromised filament length regulation. Furthermore, TMOD1R189W showed weakened activity in capping actin filament pointed ends, providing direct evidence for the variant's effect on actin filament length regulation. Our data indicate that the p.R189W variant in TMOD1 has altered biochemical properties and reveals a unique mechanism for childhood-onset cardiomyopathy.
Collapse
Affiliation(s)
- Catalina Vasilescu
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Mert Colpan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, 85724, USA
| | - Tiina H Ojala
- Department of Pediatric Cardiology, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland
| | - Tuula Manninen
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Aino Mutka
- Department of Pathology, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland
| | - Kaisa Ylänen
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and University Hospital, 33521, Tampere, Finland
| | - Otto Rahkonen
- Department of Pediatric Cardiology, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland
| | - Tuija Poutanen
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and University Hospital, 33521, Tampere, Finland
| | - Laura Martelius
- Department of Pediatric Radiology, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland
| | - Reena Kumari
- HiLIFE Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | - Helena Hinterding
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Virginia Brilhante
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Simo Ojanen
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | | | - Christopher J Carroll
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland
- Molecular and Clinical Sciences, St. George's, University of London, London, United Kingdom
| | - Velia M Fowler
- Department of Biological Sciences, University of Delaware, Newark, DE, 19711, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, 85724, USA.
- Cardiovascular Research Institute, Department of Medicine, Icahn School of Medicine, New York, NY, 10029, USA.
| | - Anu Suomalainen
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland.
- HUSlab, Helsinki University Hospital, University of Helsinki, 00290, Helsinki, Finland.
| |
Collapse
|
27
|
Bajpai AK, Gu Q, Orgil BO, Alberson NR, Towbin JA, Martinez HR, Lu L, Purevjav E. Exploring the Regulation and Function of Rpl3l in the Development of Early-Onset Dilated Cardiomyopathy and Congestive Heart Failure Using Systems Genetics Approach. Genes (Basel) 2023; 15:53. [PMID: 38254943 PMCID: PMC10815855 DOI: 10.3390/genes15010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Cardiomyopathies, diseases affecting the myocardium, are common causes of congestive heart failure (CHF) and sudden cardiac death. Recently, biallelic variants in ribosomal protein L3-like (RPL3L) have been reported to be associated with severe neonatal dilated cardiomyopathy (DCM) and CHF. This study employs a systems genetics approach to gain understanding of the regulatory mechanisms underlying the role of RPL3L in DCM. METHODS Genetic correlation, expression quantitative trait loci (eQTL) mapping, differential expression analysis and comparative functional analysis were performed using cardiac gene expression data from the patients and murine genetic reference populations (GRPs) of BXD mice (recombinant inbred strains from a cross of C57BL/6J and DBA/2J mice). Additionally, immune infiltration analysis was performed to understand the relationship between DCM, immune cells and RPL3L expression. RESULTS Systems genetics analysis identified high expression of Rpl3l mRNA, which ranged from 11.31 to 12.16 across murine GRPs of BXD mice, with an ~1.8-fold difference. Pathways such as "diabetic cardiomyopathy", "focal adhesion", "oxidative phosphorylation" and "DCM" were significantly associated with Rpl3l. eQTL mapping suggested Myl4 (Chr 11) and Sdha (Chr 13) as the upstream regulators of Rpl3l. The mRNA expression of Rpl3l, Myl4 and Sdha was significantly correlated with multiple echocardiography traits in BXD mice. Immune infiltration analysis revealed a significant association of RPL3L and SDHA with seven immune cells (CD4, CD8-naive T cell, CD8 T cell, macrophages, cytotoxic T cell, gamma delta T cell and exhausted T cell) that were also differentially infiltrated between heart samples obtained from DCM patients and normal individuals. CONCLUSIONS RPL3L is highly expressed in the heart tissue of humans and mice. Expression of Rpl3l and its upstream regulators, Myl4 and Sdha, correlate with multiple cardiac function traits in murine GRPs of BXD mice, while RPL3L and SDHA correlate with immune cell infiltration in DCM patient hearts, suggesting important roles for RPL3L in DCM and CHF pathogenesis via immune inflammation, necessitating experimental validations of Myl4 and Sdha in Rpl3l regulation.
Collapse
Affiliation(s)
- Akhilesh K. Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (A.K.B.); (Q.G.)
| | - Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (A.K.B.); (Q.G.)
| | - Buyan-Ochir Orgil
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Neely R. Alberson
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Jeffrey A. Towbin
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- Cardiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hugo R. Martinez
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (A.K.B.); (Q.G.)
| | - Enkhsaikhan Purevjav
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| |
Collapse
|
28
|
Passantino S, Chiellino S, Girolami F, Zampieri M, Calabri GB, Spaziani G, Bennati E, Porcedda G, Procopio E, Olivotto I, Favilli S. Cardiac Involvement in Classical Organic Acidurias: Clinical Profile and Outcome in a Pediatric Cohort. Diagnostics (Basel) 2023; 13:3674. [PMID: 38132258 PMCID: PMC10742676 DOI: 10.3390/diagnostics13243674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Cardiac involvement is reported in a significant proportion of patients with classical organic acidurias (OAs), contributing to disability and premature death. Different cardiac phenotypes have been described, among which dilated cardiomyopathy (DCM) is predominant. Despite recent progress in diagnosis and treatment, the natural history of patients with OAs remains unresolved, specifically with regard to the impact of cardiac complications. We therefore performed a retrospective study to address this issue at our Referral Center for Pediatric Inherited Errors of Metabolism. METHODS Sixty patients with OAs (propionic (PA), methylmalonic (MMA) and isovaleric acidemias and maple syrup urine disease) diagnosed from 2000 to 2022 were systematically assessed at baseline and at follow-up. RESULTS Cardiac anomalies were found in 23/60 OA patients, all with PA or MMA, represented by DCM (17/23 patients) and/or acquired long QT syndrome (3/23 patients). The presence of DCM was associated with the worst prognosis. The rate of occurrence of major adverse cardiac events (MACEs) at 5 years was 55% in PA with cardiomyopathy; 35% in MMA with cardiomyopathy; and 23% in MMA without cardiomyopathy. Liver transplantation was performed in seven patients (12%), all with PA or MMA, due to worsening cardiac impairment, and led to the stabilization of metabolic status and cardiac function. CONCLUSIONS Cardiac involvement was documented in about one third of children diagnosed with classical OAs, confined to PA and MMA, and was often associated with poor outcome in over 50%. Etiological diagnosis of OAs is essential in guiding management and risk stratification.
Collapse
Affiliation(s)
- Silvia Passantino
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Serena Chiellino
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Francesca Girolami
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Mattia Zampieri
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Giovanni Battista Calabri
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Gaia Spaziani
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Elena Bennati
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Giulio Porcedda
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Elena Procopio
- Inborn Metabolic and Muscular Disorders Unit, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy;
| | - Iacopo Olivotto
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Silvia Favilli
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| |
Collapse
|
29
|
Zampieri M, Di Filippo C, Zocchi C, Fico V, Golinelli C, Spaziani G, Calabri G, Bennati E, Girolami F, Marchi A, Passantino S, Porcedda G, Capponi G, Gozzini A, Olivotto I, Ragni L, Favilli S. Focus on Paediatric Restrictive Cardiomyopathy: Frequently Asked Questions. Diagnostics (Basel) 2023; 13:3666. [PMID: 38132249 PMCID: PMC10742619 DOI: 10.3390/diagnostics13243666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Restrictive cardiomyopathy (RCM) is characterized by restrictive ventricular pathophysiology determined by increased myocardial stiffness. While suspicion of RCM is initially raised by clinical evaluation and supported by electrocardiographic and echocardiographic findings, invasive hemodynamic evaluation is often required for diagnosis and management of patients during follow-up. RCM is commonly associated with a poor prognosis and a high incidence of heart failure, and PH is reported in paediatric patients with RCM. Currently, only a few therapies are available for specific RCM aetiologies. Early referral to centres for advanced heart failure treatment is often necessary. The aim of this review is to address questions frequently asked when facing paediatric patients with RCM, including issues related to aetiologies, clinical presentation, diagnostic process and prognosis.
Collapse
Affiliation(s)
- Mattia Zampieri
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
- Cardiomyopathy Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Chiara Di Filippo
- Local Health Unit, Outpatient Cardiology Clinic, 84131 Salerno, Italy
| | - Chiara Zocchi
- Cardiovascular Department, San Donato Hospital, 52100 Arezzo, Italy
| | - Vera Fico
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
- Cardiomyopathy Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Cristina Golinelli
- Pediatric Cardiology and Adult Congenital Heart Disease Program, Department of Cardio—Thoracic and Vascular Medicine, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy
| | - Gaia Spaziani
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
| | - Giovanni Calabri
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
| | - Elena Bennati
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
| | - Francesca Girolami
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
| | - Alberto Marchi
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
- Cardiomyopathy Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Silvia Passantino
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
| | - Giulio Porcedda
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
| | - Guglielmo Capponi
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
| | - Alessia Gozzini
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
| | - Iacopo Olivotto
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
- Cardiomyopathy Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Luca Ragni
- Pediatric Cardiology and Adult Congenital Heart Disease Program, Department of Cardio—Thoracic and Vascular Medicine, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy
| | - Silvia Favilli
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
| |
Collapse
|
30
|
Cha JH, Hwang JK, Choi YJ, Na JY. The risk of pediatric cardiovascular diseases in offspring born to mothers with systemic lupus erythematosus: a nationwide study. Front Pediatr 2023; 11:1294823. [PMID: 38125818 PMCID: PMC10732165 DOI: 10.3389/fped.2023.1294823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE), a common autoimmune disease predominantly affecting women, has been linked to various complications during pregnancy. The transfer of anti-Ro/SSA antibodies from SLE-affected mothers to their offspring can lead to neonatal lupus and cardiac issues. This study investigated the association between maternal SLE and the risk of pediatric cardiovascular disorders. Methods The study utilized South Korea's National Health Insurance Service (NHIS) database, covering 3,505,737 children born between 2007 and 2017 and tracked until 2020. Maternal SLE cases were identified using the World Health Organization's International Classification of Diseases Tenth revision (ICD-10) codes and linked with delivery records. Cardiologic disorders were categorized into congenital heart disease (CHD), arrhythmic disorders, and acquired heart disease. Propensity score matching with 1:4 ratios was applied to the set control group. Results Among 3,505,737 children, 0.7% (n = 23,330) were born to mothers with SLE. The incidence of preterm birth was significantly higher in the maternal SLE group (5.9% vs. 3.0%). Compared with the control group, children born to mothers with SLE exhibited a significantly elevated risk of overall CHDs (5.5%, adjusted odds ratio [aOR] 1.21; 95% confidence interval [CI] 1.14-1.29), including atrial septal defect (1.18; 1.09-1.28) and patent ductus arteriosus (1.15; 1.03-1.30). In addition, a notably higher risk was observed in arrhythmic disorders (complete atrioventricular block 7.20; 2.41-21.49) and acquired cardiac disorders, including cardiomyopathy (1.40; 1.17-1.68) and mucocutaneous lymph node syndrome (MCLS) (1.27; 1.15-1.43). Conclusions Maternal SLE is associated with congenital and acquired cardiac disorders in offspring, including structural, arrhythmic, and MCLS. This study highlights the need for continuous cardiovascular monitoring from the prenatal stage to preadolescence in these children due to multifactorial influences involving maternal autoantibodies, genetic predisposition, and environmental factors.
Collapse
Affiliation(s)
- Jong Ho Cha
- Department of Pediatrics, Hanyang University Hospital, Seoul, Republic of Korea
| | - Jae Kyoon Hwang
- Department of Pediatrics, Hanyang University Guri Hospital, Guri, Republic of Korea
| | - Young-Jin Choi
- Department of Pediatrics, Hanyang University Guri Hospital, Guri, Republic of Korea
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jae Yoon Na
- Department of Pediatrics, Hanyang University Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
31
|
Harrison DJ, Daly KP, Gauvreau K, Epstein SF, Walsh ML, Colan S, Duncan C, Lehmann L, Chen MH. Survivors of Pediatric Hematopoietic Stem Cell Transplantation Exhibit Progressive Diastolic Dysfunction Over Years of Follow-Up. Transplant Cell Ther 2023; 29:774.e1-774.e8. [PMID: 37666455 DOI: 10.1016/j.jtct.2023.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Patients who have undergone hematopoietic stem cell transplantation (HSCT) in childhood have a higher risk of diastolic heart failure (HF). The rate of progression of diastolic dysfunction in aging pediatric patients is unknown and is more difficult to assess in young patients secondary to changes in diastolic indices as they grow. HSCT recipients at our center were previously found to have decline in diastolic function indices at 1 year after HSCT. This study provides follow-up of this cohort, using age-normalized z-scores to assess whether the decline in diastolic function noted at 1-year post-HSCT persists, worsens, or improves over time. Patients age <21 years who underwent HSCT at Boston Children's Hospital/Dana-Farber Cancer Center between 2005 and 2008 with ≥3 surveillance echocardiograms, including 1 performed pre-HSCT, were included. Diastolic measures included mitral inflow (E/A ratio) and Doppler tissue imaging of left ventricular lateral wall (LV lateral e'), LV septal wall (septal e') and right ventricular free wall (RV e'). Systolic function was measured by LV ejection fraction (LVEF). Normalization by age was done using z-scores, and >±2 SD was defined as abnormal in linear modeling of diastolic dysfunction and systolic dysfunction over time. In a subset of patients with adequate post-HSCT images of the entire left atrium (LA), LA volume and LA strain analyses also were performed. The study cohort comprised 61 patients (41% female; median age at HSCT, 10.7 years; median follow-up, 7.4 years). Diastolic index z-scores declined by -.045/year for LV lateral e', -.06/year for LV septal e', and -.14/year for RV e' (P < .01). The E/A ratio z-score increased by .034/year (P = .028). Linear modeling demonstrated that LV lateral e' and LV septal e' would become abnormal at 25 and 20 years post-HSCT, respectively, whereas RV e' would become abnormal sooner, at 12.6 years. LVEF z-score declined by -.04/year (P < .01) and was estimated to become abnormal at 40 years post-HSCT. Exposure to total body irradiation (TBI) was associated with worsening diastolic indices, lower LVEF (P ≤ .002), and decreased LA reservoir strain (42.0% versus 45.0%; P = .016) and conduit strain (-31.5% versus -35.1%; P = .029), although there was significant overlap between TBI and anthracycline exposure. Treatment with anthracyclines even at low doses (median, 150 mg/m2) was associated with declining LVEF but not with changes in diastolic indices. Long-term survivors of childhood HSCT exhibit declines in both LV and RV diastolic function indices. These results inform the rate of progression of LV and RV diastolic dysfunction indices over time in long-term survivors of pediatric HSCT. A significant association was observed between TBI and diastolic dysfunction and a decline in LVEF. Treatment with anthracyclines even at low doses was associated with a mild decline in LVEF. Our results can inform a lifespan perspective on disease management in this population, encourage clinicians and patients to be vigilant in following guideline-directed surveillance echocardiography, and inform anticipatory responses by clinicians as patients transition from pediatric care to adult care.
Collapse
Affiliation(s)
- David J Harrison
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
| | - Kevin P Daly
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Kimberlee Gauvreau
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Sonia F Epstein
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
| | - Michelle L Walsh
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
| | - Steve Colan
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Christine Duncan
- Harvard Medical School, Boston, Massachusetts; Division of Pediatric Oncology, Department of Pediatrics, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts
| | - Leslie Lehmann
- Harvard Medical School, Boston, Massachusetts; Division of Pediatric Oncology, Department of Pediatrics, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts
| | - Ming Hui Chen
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Boston Children's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts; Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts.
| |
Collapse
|
32
|
Tjoeng YL, Olsen J, Friedland-Little JM, Chan T. Association Between Race/Ethnicity and Severity of Illness in Pediatric Cardiomyopathy and Myocarditis. Pediatr Cardiol 2023; 44:1788-1799. [PMID: 37329452 DOI: 10.1007/s00246-023-03203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Previous reports demonstrate racial/ethnic differences in survival for children hospitalized with cardiomyopathy and myocarditis. The impact of illness severity, a potential mechanism for disparities, has not been explored. METHODS Using the Virtual Pediatric Systems (VPS, LLC), we identified patients ≤ 18 years old admitted to the intensive care unit (ICU) for cardiomyopathy/myocarditis. Multivariate regression models were used to evaluate the association between race/ethnicity and Pediatric Risk of Mortality (PRISM 3). Multivariate logistic and competing risk regression was used to examine the relationship between race/ethnicity and mortality, CPR, and ECMO. RESULTS Black patients had higher PRISM 3 scores on first admission (𝛽 = 2.02, 95% CI: 0.15, 3.90). There was no difference in survival across race/ethnicity over multiple hospitalizations. Black patients were less likely to receive a heart transplant (SHR = 0.65, 95% CI: 0.45-0.92). Black and unreported race/ethnicity had higher odds of CPR on first admission (OR = 1.64, 95% CI: 1.01-2.45; OR = 2.12, 95% CI: 1.11-4.08, respectively). CONCLUSION Black patients have higher severity of illness on first admission to the ICU, which may reflect differences in access to care. Black patients are less likely to receive a heart transplant. Additionally, Black patients and those with unreported race/ethnicity had higher odds of CPR, which was not mediated by severity of illness, suggesting variations in care may persist after admission.
Collapse
Affiliation(s)
- Yuen Lie Tjoeng
- Seattle Children's Hospital, Division of Pediatric Critical Care, University of Washington, 4800 Sand Point Way NE M/S RC2.820, Seattle, WA, 98105, USA.
| | - Jillian Olsen
- Boston Children's Hospital, Division of Critical Care Medicine, Harvard Medical School, Boston, Massachusetts), USA
| | - Joshua M Friedland-Little
- Seattle Children's Hospital, Division of Pediatric Cardiology, University of Washington, Seattle, Washington), USA
| | - Titus Chan
- Seattle Children's Hospital, Division of Pediatric Critical Care, University of Washington, 4800 Sand Point Way NE M/S RC2.820, Seattle, WA, 98105, USA
| |
Collapse
|
33
|
Akinrinade O, Lesurf R, Lougheed J, Mondal T, Smythe J, Altamirano-Diaz L, Oechslin E, Mital S. Age and Sex Differences in the Genetics of Cardiomyopathy. J Cardiovasc Transl Res 2023; 16:1287-1302. [PMID: 37477868 PMCID: PMC10721711 DOI: 10.1007/s12265-023-10411-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
Cardiomyopathy has variable penetrance. We analyzed age and sex-related genetic differences in 1,397 cardiomyopathy patients (Ontario, UK) with whole genome sequencing. Pediatric cases (n = 471) harbored more deleterious protein-coding variants in Tier 1 cardiomyopathy genes compared to adults (n = 926) (34.6% vs 25.9% respectively, p = 0.0015), with variant enrichment in constrained coding regions. Pediatric patients had a higher burden of sarcomere and lower burden of channelopathy gene variants compared to adults. Specifically, pediatric patients had more MYH7 and MYL3 variants in hypertrophic cardiomyopathy, and fewer TTN truncating variants in dilated cardiomyopathy. MYH7 variants clustered in the myosin head and neck domains in children. OBSCN was a top mutated gene in adults, enriched for protein-truncating variants. In dilated cardiomyopathy, female patients had a higher burden of z-disc gene variants compared to males. Genetic differences may explain age and sex-related variability in cardiomyopathy penetrance. Genotype-guided predictions of age of onset can inform pre-test genetic counseling. Pediatric cardiomyopathy patients were more likely to be genotype-positive than adults with a higher burden of variants in MYH7, MYL3, TNNT2, VCL. Adults had a higher burden of OBSCN and TTN variants. Females with dilated cardiomyopathy (DCM) had a higher burden of z-disc gene variants compared to males.
Collapse
Affiliation(s)
- Oyediran Akinrinade
- Genetics and Genome Biology Program, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- St. George's University School of Medicine, St. George's, West Indies, Grenada
| | - Robert Lesurf
- Genetics and Genome Biology Program, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Jane Lougheed
- Division of Cardiology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Tapas Mondal
- Division of Cardiology, Department of Pediatrics, McMaster Children's Hospital, Hamilton, ON, Canada
| | - John Smythe
- Division of Cardiology, Department of Pediatrics, Kingston General Hospital, Kingston, ON, Canada
| | - Luis Altamirano-Diaz
- Division of Cardiology, Department of Pediatrics, London Health Sciences Centre, London, ON, Canada
| | - Erwin Oechslin
- Division of Cardiology, Toronto Adult Congenital Heart Disease Program at Peter Munk Cardiac Centre, Department of Medicine, University Health Network, and University of Toronto, Toronto, ON, Canada
| | - Seema Mital
- Genetics and Genome Biology Program, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Ted Rogers Centre for Heart Research, Toronto, ON, Canada.
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
34
|
Conway J, Barrett O, Pidborochynski T, Schroeder K, Cunningham C, Jeewa A, Kaul P. Administrative Databases: Friend or Foe in Paediatric Cardiomyopathy. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2023; 2:490-493. [PMID: 38205436 PMCID: PMC10777199 DOI: 10.1016/j.cjcpc.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 01/12/2024]
Abstract
Background Cardiomyopathy (CM) is a rare childhood disease associated with morbidity and mortality. Limited data exist on paediatric CM in Canada. Given the rare nature, single-centre studies are not sufficiently powered to address important questions. Therefore, administrative health data may serve as a resource for the study of childhood CM. The goal of this study was to validate the accuracy of International Classification of Diseases (ICD)-based algorithms to identify paediatric CM in health databases using a clinical registry as the gold standard. Methods The clinical registry was compiled from outpatient and inpatient records at the Stollery Children's Hospital (January 1, 2013, to December 31, 2021). Patients were categorized as having CM or screened without CM. Data were linked to administrative health databases using the patient's Unique Lifetime Identifier. Algorithms based on the presence of ICD, 10th Revision, codes for CM were then evaluated, and cross-tabulations against the clinical registry were generated. Accuracy, positive predictive value, negative predictive value, sensitivity, and specificity were calculated. Results The clinical registry had 90 patients with CM and 249 screened without CM. The algorithms ruled out CM (high negative predictive value) but had variability in the ability to diagnose CM positive predictive value. The algorithm that performed the best was based on a diagnosis of CM in a hospitalization or 2 ambulatory visits. Conclusions A combination of inpatient and outpatient databases can be used, with acceptable accuracy, to identify paediatric patients with CM. This finding allows for the use of the identified algorithm for the comprehensive study of paediatric CM in Canada.
Collapse
Affiliation(s)
- Jennifer Conway
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Stollery Children’s Hospital, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Katie Schroeder
- Stollery Children’s Hospital, University of Alberta, Edmonton, Alberta, Canada
| | - Chentel Cunningham
- Stollery Children’s Hospital, University of Alberta, Edmonton, Alberta, Canada
| | - Aamir Jeewa
- Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Padma Kaul
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
35
|
Poleg T, Eskin-Schwartz M, Proskorovski-Ohayon R, Aminov I, Dolgin V, Agam N, Jean M, Safran A, Freund O, Levitas A, Konstantino Y, Birk OS, Westreich R, Haim M. Compound Heterozygosity for Late-Onset Cardiomyopathy-Causative ALPK3 Coding Variant and Novel Intronic Variant Cause Infantile Hypertrophic Cardiomyopathy. J Cardiovasc Transl Res 2023; 16:1325-1331. [PMID: 37973666 DOI: 10.1007/s12265-023-10461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Hypertrophic and dilated cardiomyopathy (HCM, DCM) are leading causes of cardiovascular morbidity and mortality in children. The pseudokinase alpha-protein kinase 3 (ALPK3) plays an essential role in sarcomere organization and cardiomyocyte differentiation. ALPK3 coding mutations are causative of recessively inherited pediatric-onset DCM and HCM with variable expression of facial dysmorphism and skeletal abnormalities and implicated in dominantly inherited adult-onset cardiomyopathy. We now report two variants in ALPK3-a coding variant and a novel intronic variant affecting splicing. We demonstrate that compound heterozygosity for both variants is highly suggestive to be causative of infantile-onset HCM with webbed neck, and heterozygosity for the coding variant presents with adult-onset HCM. Our data validate partial penetrance of heterozygous loss-of-function ALPK3 mutations in late-onset hypertrophic cardiomyopathy and expand the genotypic spectrum of autosomal recessive ALPK3-related cardiac disease with Noonan-like features.
Collapse
Affiliation(s)
- Tomer Poleg
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Marina Eskin-Schwartz
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Genetics Institute, Soroka University Medical Center, Beer Sheva, Israel
| | - Regina Proskorovski-Ohayon
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ilana Aminov
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Vadim Dolgin
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Nadav Agam
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Matan Jean
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Amit Safran
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ofek Freund
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Aviva Levitas
- Department of Pediatric Cardiology, Soroka University Medical Center, affiliated to the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yuval Konstantino
- Department of Cardiology, Cardiac Electrophysiology and Pacing, Soroka University Medical Center, affiliated to the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
- Genetics Institute, Soroka University Medical Center, Beer Sheva, Israel.
| | - Roi Westreich
- Department of Cardiology, Cardiac Electrophysiology and Pacing, Soroka University Medical Center, affiliated to the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Moti Haim
- Department of Cardiology, Cardiac Electrophysiology and Pacing, Soroka University Medical Center, affiliated to the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
36
|
刘 露, 郑 奎, 张 英. [Phenotype and genotype characteristics of children with cardiomyopathy associated with MYH7 gene mutation: a retrospective analysis]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:1156-1160. [PMID: 37990461 PMCID: PMC10672950 DOI: 10.7499/j.issn.1008-8830.2306108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/14/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVES To investigate the clinical phenotype and genotype characteristics of children withcardiomyopathy (CM) associated with MYH7 gene mutation. METHODS A retrospective analysis was conducted on the medical data of five children with CM caused by MYH7 gene mutation who were diagnosed and treated in the Department of Cardiology, Hebei Children's Hospital. RESULTS Among the five children with CM, there were three girls and two boys, all of whom carried MYH7 gene mutation. Seven mutation sites were identified, among which five were not reported before. Among the five children, there were three children with hypertrophic cardiomyopathy, one child with dilated cardiomyopathy, and one child with noncompaction cardiomyopathy. The age ranged from 6 to 156 months at the initial diagnosis. At the initial diagnosis, two children had the manifestations of heart failure such as cough, shortness of breath, poor feeding, and cyanosis of lips, as well as delayed development; one child had palpitation, blackness, and syncope; one child had fever, runny nose, and abnormal liver function; all five children had a reduction in activity endurance. All five children received pharmacotherapy for improving cardiac function and survived after follow-up for 7-24 months. CONCLUSIONS The age of onset varies in children with CM caused by MYH7 gene mutation, and most children lack specific clinical manifestations at the initial diagnosis and may have the phenotype of hypertrophic cardiomyopathy, dilated cardiomyopathy or noncompaction cardiomyopathy. The children receiving early genetic diagnosis and pharmacological intervention result in a favorable short-term prognosis.
Collapse
Affiliation(s)
- 露 刘
- 河北省儿童医院心内科/ 河北省小儿心血管重点实验室,河北石家庄050031
| | | | - 英谦 张
- 河北省儿童医院心内科/ 河北省小儿心血管重点实验室,河北石家庄050031
| |
Collapse
|
37
|
Polich M, Hershey D, Chau P, Levy M. Poor Weight Gain in a 6-month-old Girl. Pediatr Rev 2023; 44:650-654. [PMID: 37907422 DOI: 10.1542/pir.2021-005208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Affiliation(s)
- Michelle Polich
- University of California San Diego, San Diego, CA
- Rady Children's Hospital, San Diego, CA
| | - Daniel Hershey
- University of California San Diego, San Diego, CA
- Rady Children's Hospital, San Diego, CA
| | - Peter Chau
- University of California San Diego, San Diego, CA
- Rady Children's Hospital, San Diego, CA
| | - Michael Levy
- University of California San Diego, San Diego, CA
- Rady Children's Hospital, San Diego, CA
| |
Collapse
|
38
|
Arbelo E, Protonotarios A, Gimeno JR, Arbustini E, Barriales-Villa R, Basso C, Bezzina CR, Biagini E, Blom NA, de Boer RA, De Winter T, Elliott PM, Flather M, Garcia-Pavia P, Haugaa KH, Ingles J, Jurcut RO, Klaassen S, Limongelli G, Loeys B, Mogensen J, Olivotto I, Pantazis A, Sharma S, Van Tintelen JP, Ware JS, Kaski JP. 2023 ESC Guidelines for the management of cardiomyopathies. Eur Heart J 2023; 44:3503-3626. [PMID: 37622657 DOI: 10.1093/eurheartj/ehad194] [Citation(s) in RCA: 794] [Impact Index Per Article: 397.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
|
39
|
Mukhtar G, Sasidharan B, Krishnamoorthy KM, Kurup HKN, Gopalakrishnan A, SasiKumar D, P SS, Valaparambil AK, Sivasubramonian S, Sivadasanpillai H. Clinical profile and outcomes of pediatric hypertrophic cardiomyopathy in a South Indian tertiary care cardiac center: a three decade experience. BMC Pediatr 2023; 23:446. [PMID: 37679699 PMCID: PMC10483701 DOI: 10.1186/s12887-023-04255-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
INTRODUCTION Although much research has been done on adult hypertrophic cardiomyopathy, data on pediatric hypertrophic cardiomyopathy is still limited. METHODS AND RESULTS The study enrolled all patients with cardiomyopathy who presented to us between 1990 to 2020 and were younger than 18 yrs. During the thirty-year study period, we identified 233 cases of pediatric cardiomyopathy. Sixty-three cases (27%) had hypertrophic cardiomyopathy. Out of the 63 HCM cases, 12% presented in the neonatal period and 37% presented in the first year of life. The median age of presentation was 7 yrs (Range 0.1-18 yrs). Sixteen patients had proven syndromic, metabolic, or genetic disease (25%). LV outflow obstruction was present in 30 patients (47%). Noonan syndrome was present in 9 of the 63 patients (14%). Dyspnea on exertion was the most common mode of presentation. Cardiac MRI was done in 28 patients, out of which 17 had late gadolinium enhancement (LGE). Mid myocardial enhancement was the most common pattern. Four patients had LGE of more than 15%. Over a mean follow-up period of 5.6 years (0.1-30 years), twenty-one were lost to follow-up (33%). Among the patients whose outcome was known, eleven died (26%), and thirty-one (73%) were alive. The 5-year survival rate of HCM patients was 82%, and the 10-year survival rate was 78%. Seven died of sudden cardiac death, three from heart failure, and one from ventricular arrhythmias. Sustained ventricular arrhythmias were seen in three patients and atrial arrhythmias in two. First-degree AV block was seen in 10 patients (15%) and bundle branch blocks (BBB) in five (8%). Eight patients required ICD or transplant (12.7%). Two patients underwent ICD for primary prevention, and one underwent PPI for distal AV conduction disease. Among the various clinical, echocardiographic, and radiological risk factors studied, only consanguinity showed a trend towards higher events of death or ventricular arrhythmias (P-value 0.08). CONCLUSION More than one-third of our HCM cohort presented in infancy. LV outflow tract obstruction is common (47%). Mid myocardial enhancement was the most common pattern of late gadolinium enhancement. SCD was the most common cause of death. The outcome in our HCM cohort is good and similar to other population cohorts. Only Consanguinity showed a trend towards higher events of death or ventricular arrhythmias.
Collapse
Affiliation(s)
- Gousia Mukhtar
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, SCTIMST, Thiruvananthapuram, Kerala, 695011, India.
| | - Bijulal Sasidharan
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, SCTIMST, Thiruvananthapuram, Kerala, 695011, India
| | - Kavassery Mahadevan Krishnamoorthy
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, SCTIMST, Thiruvananthapuram, Kerala, 695011, India
| | - Harikrishnan K N Kurup
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, SCTIMST, Thiruvananthapuram, Kerala, 695011, India
| | - Arun Gopalakrishnan
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, SCTIMST, Thiruvananthapuram, Kerala, 695011, India
| | - Deepa SasiKumar
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, SCTIMST, Thiruvananthapuram, Kerala, 695011, India
| | - Sankara Sarma P
- Achutha Menon Center for Health Science Studies, Thiruvananthapuram, Kerala, 695011, India
| | - Ajit Kumar Valaparambil
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, SCTIMST, Thiruvananthapuram, Kerala, 695011, India
| | - Sivasankaran Sivasubramonian
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, SCTIMST, Thiruvananthapuram, Kerala, 695011, India
| | - Harikrishnan Sivadasanpillai
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, SCTIMST, Thiruvananthapuram, Kerala, 695011, India
| |
Collapse
|
40
|
Dai HL, Wang QH, Su X, Ding YC, Guang XF. Pediatric restrictive cardiomyopathy: a case report. J Int Med Res 2023; 51:3000605231188276. [PMID: 37646638 PMCID: PMC10469232 DOI: 10.1177/03000605231188276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/29/2023] [Indexed: 09/01/2023] Open
Abstract
Restrictive cardiomyopathy (RCM) is a rare childhood cardiomyopathy that is a challenging diagnostic problem for clinicians. We describe a case of an 8-year-old girl with a 2-year history of shortness of breath on exertion. Electrocardiogram and echocardiography showed biatrial enlargement, while cardiac magnetic resonance showed biatrial dilation and normal pericardial thickness. Left and right heart catheterization revealed a left ventricular (LV) end-diastolic pressure (EDP) of 20 mmHg, right ventricular (RV) EDP of 13 mmHg, and pulmonary arterial systolic pressure of 51 mmHg. LV and RV pressure traces showed that LV and RV pressures moved concordantly with respiration, and that the systolic area index was 0.98. Cardiac catheterization data were therefore supportive of RCM. Next-generation sequencing identified a heterozygous variant of the troponin I gene (TNNI3; c.574C>T). Combining these findings led to a diagnosis of RCM. The patient's parents chose conservative treatment, but at the 12-month follow-up she died of worsening heart failure and cerebral infarction. This case emphasizes the need for cardiac catheterization and genetic testing in RCM, and suggests that anticoagulants should be recommended to reduce the risk of thromboembolic events.
Collapse
Affiliation(s)
- Hai-Long Dai
- Department of Cardiology, Key Laboratory of Cardiovascular Disease of Yunnan Province, Clinical Medicine Center for Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, P. R. China
| | - Qing-Hui Wang
- Department of Ultrasound, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, P. R. China
| | - Xuan Su
- Department of Ultrasound, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, P. R. China
| | - Yun-Chuan Ding
- Department of Ultrasound, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, P. R. China
| | - Xue-Feng Guang
- Department of Cardiology, Key Laboratory of Cardiovascular Disease of Yunnan Province, Clinical Medicine Center for Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, P. R. China
| |
Collapse
|
41
|
Kurzlechner LM, Kishnani S, Chowdhury S, Atkins SL, Moya-Mendez ME, Parker LE, Rosamilia MB, Tadros HJ, Pace LA, Patel V, Chahal CAA, Landstrom AP. DiscoVari: A Web-Based Precision Medicine Tool for Predicting Variant Pathogenicity in Cardiomyopathy- and Channelopathy-Associated Genes. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:317-327. [PMID: 37409478 PMCID: PMC10527712 DOI: 10.1161/circgen.122.003911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 05/30/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND With genetic testing advancements, the burden of incidentally identified cardiac disease-associated gene variants is rising. These variants may carry a risk of sudden cardiac death, highlighting the need for accurate diagnostic interpretation. We sought to identify pathogenic hotspots in sudden cardiac death-associated genes using amino acid-level signal-to-noise (S:N) analysis and develop a web-based precision medicine tool, DiscoVari, to improve variant evaluation. METHODS The minor allele frequency of putatively pathogenic variants was derived from cohort-based cardiomyopathy and channelopathy studies in the literature. We normalized disease-associated minor allele frequencies to rare variants in an ostensibly healthy population (Genome Aggregation Database) to calculate amino acid-level S:N. Amino acids with S:N above the gene-specific threshold were defined as hotspots. DiscoVari was built using JavaScript ES6 and using open-source JavaScript library ReactJS, web development framework Next.js, and JavaScript runtime NodeJS. We validated the ability of DiscoVari to identify pathogenic variants using variants from ClinVar and individuals clinically evaluated at the Duke University Hospitals with cardiac genetic testing. RESULTS We developed DiscoVari as an internet-based tool for S:N-based variant hotspots. Upon validation, a higher proportion of ClinVar likely pathogenic/pathogenic variants localized to DiscoVari hotspots (43.1%) than likely benign/benign variants (17.8%; P<0.0001). Further, 75.3% of ClinVar variants reclassified to likely pathogenic/pathogenic were in hotspots, compared with 41.3% of those reclassified as variants of uncertain significance (P<0.0001) and 23.4% of those reclassified as likely benign/benign (P<0.0001). Of the clinical cohort variants, 73.1% of likely pathogenic/pathogenic were in hotspots, compared with 0.0% of likely benign/benign (P<0.01). CONCLUSIONS DiscoVari reliably identifies disease-susceptible amino acid residues to evaluate variants by searching amino acid-specific S:N ratios.
Collapse
Affiliation(s)
| | - Sujata Kishnani
- Dept of Pediatrics, Division of Pediatric Cardiology, Durham, NC
| | - Shawon Chowdhury
- Dept of Pediatrics, Division of Pediatric Cardiology, Durham, NC
| | - Sage L. Atkins
- Dept of Pediatrics, Division of Pediatric Cardiology, Durham, NC
| | | | - Lauren E. Parker
- Dept of Pediatrics, Division of Pediatric Cardiology, Durham, NC
| | | | - Hanna J. Tadros
- Dept of Pediatrics, Section of Pediatric Cardiology, Baylor College of Medicine, Houston, TX
| | - Leslie A. Pace
- Dept of Pediatrics, Division of Pediatric Cardiology, Durham, NC
| | - Viraj Patel
- North West Thames Regional Genetics Service, St Mark’s Hospital, London, United Kingdom
| | - C. Anwar A. Chahal
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, PA
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
- Cardiac Electrophysiology, Cardiovascular Division, Hospital of the Univ of Pennsylvania, Philadelphia, PA
- Dept of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Andrew P. Landstrom
- Dept of Pediatrics, Division of Pediatric Cardiology, Durham, NC
- Dept of Cell Biology, Duke Univ School of Medicine, Durham, NC
| |
Collapse
|
42
|
Moscatelli S, Leo I, Bianco F, Borrelli N, Beltrami M, Garofalo M, Milano EG, Bisaccia G, Iellamo F, Bassareo PP, Pradhan A, Cimini A, Perrone MA. The Role of Multimodality Imaging in Pediatric Cardiomyopathies. J Clin Med 2023; 12:4866. [PMID: 37510983 PMCID: PMC10381492 DOI: 10.3390/jcm12144866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Cardiomyopathies are a heterogeneous group of myocardial diseases representing the first cause of heart transplantation in children. Diagnosing and classifying the different phenotypes can be challenging, particularly in this age group, where cardiomyopathies are often overlooked until the onset of severe symptoms. Cardiovascular imaging is crucial in the diagnostic pathway, from screening to classification and follow-up assessment. Several imaging modalities have been proven to be helpful in this field, with echocardiography undoubtedly representing the first imaging approach due to its low cost, lack of radiation, and wide availability. However, particularly in this clinical context, echocardiography may not be able to differentiate from cardiomyopathies with similar phenotypes and is often complemented with cardiovascular magnetic resonance. The latter allows a radiation-free differentiation between different phenotypes with unique myocardial tissue characterization, thus identifying the presence and extent of myocardial fibrosis. Nuclear imaging and computed tomography have a complementary role, although they are less used in daily clinical practice due to the concern related to the use of radiation in pediatric patients. However, these modalities may have some advantages in evaluating children with cardiomyopathies. This paper aims to review the strengths and limitations of each imaging modality in evaluating pediatric patients with suspected or known cardiomyopathies.
Collapse
Affiliation(s)
- Sara Moscatelli
- Inherited Cardiovascular Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK;
- Paediatric Cardiology Department, Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 5NP, UK
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy;
- Cardiology Department, CMR Unit, Royal Brompton and Harefield Hospitals, Guys’ and St. Thomas’ NHS Trust, London SW3 5NP, UK
| | - Francesco Bianco
- Cardiovascular Sciences Department—AOU “Ospedali Riuniti”, 60126 Ancona, Italy;
| | - Nunzia Borrelli
- Adult Congenital Heart Disease Unit, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy;
| | | | - Manuel Garofalo
- Department of Clinical and Experimental Medicine, Careggi University Hospital, 50134 Florence, Italy;
| | - Elena Giulia Milano
- Centre for Cardiovascular Imaging, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK;
| | - Giandomenico Bisaccia
- Department of Neuroscience, Imaging and Clinical Sciences, “G.d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Ferdinando Iellamo
- Division of Cardiology and Cardio Lab, Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Pier Paolo Bassareo
- School of Medicine, University College of Dublin, Mater Misericordiae University Hospital and Children’s Health Ireland Crumlin, D07 R2WY Dublin, Ireland;
| | - Akshyaya Pradhan
- Department of Cardiology, King George’s Medical University, Lucknow 226003, India;
| | - Andrea Cimini
- Nuclear Medicine Unit, St. Salvatore Hospital, 67100 L’Aquila, Italy;
| | - Marco Alfonso Perrone
- Division of Cardiology and Cardio Lab, Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
- Clinical Pathways and Epidemiology Unit, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy
| |
Collapse
|
43
|
Tsuru H, Yoshihara C, Suginobe H, Matsumoto M, Ishii Y, Narita J, Ishii R, Wang R, Ueyama A, Ueda K, Hirose M, Hashimoto K, Nagano H, Tanaka R, Okajima T, Ozono K, Ishida H. Pathogenic Roles of Cardiac Fibroblasts in Pediatric Dilated Cardiomyopathy. J Am Heart Assoc 2023; 12:e029676. [PMID: 37345811 PMCID: PMC10356057 DOI: 10.1161/jaha.123.029676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023]
Abstract
Background Dilated cardiomyopathy (DCM) is a major cause of heart failure in children. Despite intensive genetic analyses, pathogenic gene variants have not been identified in most patients with DCM, which suggests that cardiomyocytes are not solely responsible for DCM. Cardiac fibroblasts (CFs) are the most abundant cell type in the heart. They have several roles in maintaining cardiac function; however, the pathological role of CFs in DCM remains unknown. Methods and Results Four primary cultured CF cell lines were established from pediatric patients with DCM and compared with 3 CF lines from healthy controls. There were no significant differences in cellular proliferation, adhesion, migration, apoptosis, or myofibroblast activation between DCM CFs compared with healthy CFs. Atomic force microscopy revealed that cellular stiffness, fluidity, and viscosity were not significantly changed in DCM CFs. However, when DCM CFs were cocultured with healthy cardiomyocytes, they deteriorated the contractile and diastolic functions of cardiomyocytes. RNA sequencing revealed markedly different comprehensive gene expression profiles in DCM CFs compared with healthy CFs. Several humoral factors and the extracellular matrix were significantly upregulated or downregulated in DCM CFs. The pathway analysis revealed that extracellular matrix receptor interactions, focal adhesion signaling, Hippo signaling, and transforming growth factor-β signaling pathways were significantly affected in DCM CFs. In contrast, single-cell RNA sequencing revealed that there was no specific subpopulation in the DCM CFs that contributed to the alterations in gene expression. Conclusions Although cellular physiological behavior was not altered in DCM CFs, they deteriorated the contractile and diastolic functions of healthy cardiomyocytes through humoral factors and direct cell-cell contact.
Collapse
Affiliation(s)
- Hirofumi Tsuru
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
- Department of PediatricsNiigata University School of MedicineNiigataJapan
| | - Chika Yoshihara
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Hidehiro Suginobe
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Mizuki Matsumoto
- Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
| | - Yoichiro Ishii
- Department of Pediatric CardiologyOsaka Medical Center for Maternal and Child HealthOsakaJapan
| | - Jun Narita
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Ryo Ishii
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Renjie Wang
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Atsuko Ueyama
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Kazutoshi Ueda
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Masaki Hirose
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Kazuhisa Hashimoto
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Hiroki Nagano
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Ryosuke Tanaka
- Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
| | - Takaharu Okajima
- Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
| | - Keiichi Ozono
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Hidekazu Ishida
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
44
|
Tsatsopoulou A, Protonotarios I, Xylouri Z, Papagiannis I, Anastasakis A, Germanakis I, Patrianakos A, Nyktari E, Gavras C, Papadopoulos G, Meditskou S, Lazarou E, Miliou A, Lazaros G. Cardiomyopathies in children: An overview. Hellenic J Cardiol 2023; 72:43-56. [PMID: 36870438 DOI: 10.1016/j.hjc.2023.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Paediatric cardiomyopathies form a heterogeneous group of disorders characterized by structural and electrical abnormalities of the heart muscle, commonly due to a gene variant of the myocardial cell structure. Mostly inherited as a dominant or occasionally recessive trait, they might be part of a syndromic disorder of underlying metabolic or neuromuscular defects or combine early developing extracardiac abnormalities (i.e., Naxos disease). The annual incidence of 1 per 100,000 children appears higher during the first two years of life. Dilated and hypertrophic cardiomyopathy phenotypes share an incidence of 60% and 25%, respectively. Arrhythmogenic right ventricular cardiomyopathy (ARVC), restrictive cardiomyopathy, and left ventricular noncompaction are less commonly diagnosed. Adverse events such as severe heart failure, heart transplantation, or death usually appear early after the initial presentation. In ARVC patients, high-intensity aerobic exercise has been associated with worse clinical outcomes and increased penetrance in at-risk genotype-positive relatives. Acute myocarditis in children has an incidence of 1.4-2.1 cases/per 100,000 children per year, with a 6-14% mortality rate during the acute phase. A genetic defect is considered responsible for the progression to dilated cardiomyopathy phenotype. Similarly, a dilated or arrhythmogenic cardiomyopathy phenotype might emerge with an episode of acute myocarditis in childhood or adolescence. This review provides an overview of childhood cardiomyopathies focusing on clinical presentation, outcome, and pathology.
Collapse
Affiliation(s)
- Adalena Tsatsopoulou
- General Paediatrics and Clinical Research, Private Clinic, Naxos, Greece; Unit of Inherited Cardiac Conditions and Sports Cardiology, 1st Department of Cardiology, National and Kapodistrian University of Athens, Athens, Greece; Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Centre, Athens, Greece; Laboratory of Histology and Embryology, Department of Medicine, School of Life Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Protonotarios
- University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, Hampshire, SO16 6YD, UK
| | - Zafeirenia Xylouri
- University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, Hampshire, SO16 6YD, UK
| | - Ioannis Papagiannis
- Department of Paediatric Cardiology and Adult Congenital Heart Disease, Onassis Cardiac Surgery Centre, Athens, Greece
| | - Aris Anastasakis
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Centre, Athens, Greece
| | - Ioannis Germanakis
- Department of Paediatrics, University Hospital Heraklion, School of Medicine, University of Crete, Heraklion, Greece
| | | | | | | | | | - Soultana Meditskou
- Laboratory of Histology and Embryology, Department of Medicine, School of Life Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Emilia Lazarou
- Unit of Inherited Cardiac Conditions and Sports Cardiology, 1st Department of Cardiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Antigoni Miliou
- Unit of Inherited Cardiac Conditions and Sports Cardiology, 1st Department of Cardiology, National and Kapodistrian University of Athens, Athens, Greece
| | - George Lazaros
- Unit of Inherited Cardiac Conditions and Sports Cardiology, 1st Department of Cardiology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
45
|
Karki KB, Towbin JA, Shah SH, Philip RR, West AN, Tadphale SD, Saini A. Elevated Copeptin Levels Are Associated with Heart Failure Severity and Adverse Outcomes in Children with Cardiomyopathy. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1138. [PMID: 37508636 PMCID: PMC10377870 DOI: 10.3390/children10071138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
In children with cardiomyopathy, the severity of heart failure (HF) varies. However, copeptin, which is a biomarker of neurohormonal adaptation in heart failure, has not been studied in these patients. In this study, we evaluated the correlation of copeptin level with functional HF grading, B-type natriuretic peptide (BNP), and echocardiography variables in children with cardiomyopathy. Furthermore, we determined if copeptin levels are associated with adverse outcomes, including cardiac arrest, mechanical circulatory support, heart transplant, or death. In forty-two children with cardiomyopathy with a median (IQR) age of 13.1 years (2.5-17.2) and a median follow-up of 2.5 years (2.2-2.7), seven (16.7%) children had at least one adverse outcome. Copeptin levels were highest in the patients with adverse outcomes, followed by the patients without adverse outcomes, and then the healthy children. The copeptin levels in patients showed a strong correlation with their functional HF grading, BNP level, and left ventricular ejection fraction (LVEF). Patients with copeptin levels higher than the median value of 25 pg/mL had a higher likelihood of experiencing adverse outcomes, as revealed by Kaplan-Meier survival analysis (p = 0.024). Copeptin level was an excellent predictor of outcomes, with an area under the curve of 0.861 (95% CI, 0.634-1.089), a sensitivity of 86%, and a specificity of 60% for copeptin level of 25 pg/mL. This predictive value was superior in patients with dilated and restrictive cardiomyopathies (0.97 (CI 0.927-1.036), p < 0.0001, n = 21) than in those with hypertrophic and LV non-compaction cardiomyopathies (0.60 (CI 0.04-1.16), p = 0.7, n = 21).
Collapse
Affiliation(s)
- Karan B Karki
- Division of Pediatric Cardiology, Department of Pediatrics, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Jeffrey A Towbin
- Division of Pediatric Cardiology, Department of Pediatrics, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Samir H Shah
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Ranjit R Philip
- Division of Pediatric Cardiology, Department of Pediatrics, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Alina N West
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Sachin D Tadphale
- Division of Pediatric Cardiology, Department of Pediatrics, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Arun Saini
- Section of Pediatric, Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine and Affiliated Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
46
|
Wanert C, El Louali F, Al Dybiat S, Nguyen K, Zaffran S, Ovaert C. Genetic profile and genotype-phenotype correlations in childhood cardiomyopathy. Arch Cardiovasc Dis 2023; 116:309-315. [PMID: 37246080 DOI: 10.1016/j.acvd.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Genetic cardiomyopathy is a rare disease in childhood. AIMS To analyse clinical and genetic aspects of a paediatric cardiomyopathy population, and to establish genotype-phenotype correlations. METHODS We performed a retrospective study of all patients with idiopathic cardiomyopathy aged<18years in Southeast France. Secondary causes of cardiomyopathy were excluded. All data (clinical, echocardiography, genetic testing) were collected retrospectively. Patients were classified into six groups: hypertrophic cardiomyopathy; dilated cardiomyopathy; restrictive cardiomyopathy; left ventricular non-compaction; arrhythmogenic right ventricular dysplasia; and mixed cardiomyopathy. Patients who did not have a complete genetic test according to current scientific developments had another deoxyribonucleic acid blood sample during the study time. Genetic tests were considered positive if the variant found was classified as pathogenic, likely pathogenic or a variant of uncertain significance. RESULTS Eighty-three patients were included between 2005 and 2019. Most patients had hypertrophic cardiomyopathy (39.8%) or dilated cardiomyopathy (27.7%). The median age at diagnosis was 1.28years (interquartile range: 0.27-10.48years). Heart transplantation was performed in 30.1% of patients, and 10.8% died during follow-up. Among 64 patients with a complete genetic analysis, 64.1% had genetic anomalies, mostly in MYH7 (34.2%) and MYBPC3 (12.2%) genes. There were no differences in the whole cohort between genotype-positive and genotype-negative patients. In the hypertrophic cardiomyopathy group, 63.6% had a positive genetic test. Patients with a positive genetic test more often had extracardiac impact (38.1% vs. 8.3%; P=0.009), and more often required an implantable cardiac defibrillator (23.8% vs. 0%; P=0.025) or a heart transplant (19.1% vs. 0%; P=0.047). CONCLUSIONS In our population, children with cardiomyopathy had a high positive genetic test rate. Hypertrophic cardiomyopathy with a positive genetic test is associated with a worse outcome.
Collapse
Affiliation(s)
- Chloé Wanert
- Department of Paediatric Cardiology, Timone Infant Hospital, AP-HM, 13005 Marseille, France; Marseille Medical Genetics, Inserm UMR 1251, Aix-Marseille University, 13385 Marseille, France.
| | - Fedoua El Louali
- Department of Paediatric Cardiology, Timone Infant Hospital, AP-HM, 13005 Marseille, France
| | - Sarab Al Dybiat
- Department of Paediatric Cardiology, Timone Infant Hospital, AP-HM, 13005 Marseille, France
| | - Karine Nguyen
- Marseille Medical Genetics, Inserm UMR 1251, Aix-Marseille University, 13385 Marseille, France; Department of Specialized Cardiogenetics, Timone Infant Hospital, AP-HM, 13005 Marseille, France
| | - Stéphane Zaffran
- Marseille Medical Genetics, Inserm UMR 1251, Aix-Marseille University, 13385 Marseille, France
| | - Caroline Ovaert
- Department of Paediatric Cardiology, Timone Infant Hospital, AP-HM, 13005 Marseille, France; Department of Specialized Cardiogenetics, Timone Infant Hospital, AP-HM, 13005 Marseille, France
| |
Collapse
|
47
|
ter Bekke RMA, de Schouwer K, Conti S, Claes GRF, Vanoevelen J, Gommers S, Helderman-van den Enden ATJM, Brunner-LaRocca HP. Juvenile-onset multifocal atrial arrhythmias, atrial standstill and compound heterozygosity of genetic variants in TAF1A: sentinel event for evolving dilated cardiomyopathy-a case report. Eur Heart J Case Rep 2023; 7:ytad255. [PMID: 37501913 PMCID: PMC10371049 DOI: 10.1093/ehjcr/ytad255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/20/2023] [Accepted: 05/19/2023] [Indexed: 07/29/2023]
Abstract
Background Juvenile onset of extensive atrial electromechanical failure, including atrial standstill, is a rare disease entity that may precede ventricular cardiomyopathy. Genetic variants associated with early-onset atrioventricular (AV) cardiomyopathy are increasingly recognized. Case summary A 16-year-old patient presented with atrial brady- and tachyarrhythmias and concomitant impaired atrial electromechanical function (atrial standstill). The atrial phenotype preceded the development of a predominantly right-sided AV dilated cardiomyopathy with pronounced myocardial fibrosis. A His-bundle pacemaker was installed for high-degree AV conduction block and sinus arrest. Using familial-based whole-exome sequencing, a missense mutation and a copy number variant deletion (compound heterozygosity) of the TAF1A gene (involved in ribosomal RNA synthesis) were identified. Discussion Juvenile onset of severe atrial electromechanical failure with atrial arrhythmias should prompt deep pheno- and genotyping and calls for vigilance for downstream cardiomyopathic deterioration.
Collapse
Affiliation(s)
| | - Koen de Schouwer
- Department of Cardiology, Cardiovascular Center Onze-Lieve-Vrouwziekenhuis Hospital, Aalst, Belgium
| | - Sergio Conti
- Department of Cardiac Electrophysiology, ARNAS Civico Hospital, Palermo, Italy
| | - Godelieve R F Claes
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jo Vanoevelen
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Suzanne Gommers
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | |
Collapse
|
48
|
Sono R, Larrinaga TM, Huang A, Makhlouf F, Kang X, Su J, Lau R, Arboleda VA, Biniwale R, Fishbein GA, Khanlou N, Si MS, Satou GM, Halnon N, Van Arsdell GS, Gregorio CC, Nelson S, Touma M. Whole-Exome Sequencing Identifies Homozygote Nonsense Variants in LMOD2 Gene Causing Infantile Dilated Cardiomyopathy. Cells 2023; 12:1455. [PMID: 37296576 PMCID: PMC10252268 DOI: 10.3390/cells12111455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
As an essential component of the sarcomere, actin thin filament stems from the Z-disk extend toward the middle of the sarcomere and overlaps with myosin thick filaments. Elongation of the cardiac thin filament is essential for normal sarcomere maturation and heart function. This process is regulated by the actin-binding proteins Leiomodins (LMODs), among which LMOD2 has recently been identified as a key regulator of thin filament elongation to reach a mature length. Few reports have implicated homozygous loss of function variants of LMOD2 in neonatal dilated cardiomyopathy (DCM) associated with thin filament shortening. We present the fifth case of DCM due to biallelic variants in the LMOD2 gene and the second case with the c.1193G>A (p.W398*) nonsense variant identified by whole-exome sequencing. The proband is a 4-month male infant of Hispanic descent with advanced heart failure. Consistent with previous reports, a myocardial biopsy exhibited remarkably short thin filaments. However, compared to other cases of identical or similar biallelic variants, the patient presented here has an unusually late onset of cardiomyopathy during infancy. Herein, we present the phenotypic and histological features of this variant, confirm the pathogenic impact on protein expression and sarcomere structure, and discuss the current knowledge of LMOD2-related cardiomyopathy.
Collapse
Affiliation(s)
- Reiri Sono
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Tania M. Larrinaga
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85721, USA; (T.M.L.); (C.C.G.)
| | - Alden Huang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Frank Makhlouf
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Xuedong Kang
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jonathan Su
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ryan Lau
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Valerie A. Arboleda
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Eli and Edyth Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
| | - Reshma Biniwale
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Gregory A. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Negar Khanlou
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ming-Sing Si
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Gary M. Satou
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Nancy Halnon
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | - Glen S. Van Arsdell
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85721, USA; (T.M.L.); (C.C.G.)
- Department of Medicine and Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stanly Nelson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Marlin Touma
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Eli and Edyth Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
- Children’s Discovery and Innovation Institute, University of California, Los Angeles, CA 90095, USA
- Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
49
|
Mukhtar G, Sasidharan B, Krishnamoorthy KM, Kurup HKN, Gopalakrishnan A, Sasikumar D, Sarma S, Valaparambil AK, Sivasubramonian S. Clinical profile and outcomes of childhood dilated cardiomyopathy - A single-center three-decade experience. Ann Pediatr Cardiol 2023; 16:175-181. [PMID: 37876955 PMCID: PMC10593277 DOI: 10.4103/apc.apc_149_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/18/2023] [Accepted: 03/04/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction and Aims Dilated cardiomyopathy (DCM) is an important cause of heart failure (HF) among children. Research on pediatric DCM remains surprisingly scarce. The primary objective of the study was to evaluate the clinical profile and outcomes of pediatric DCM and the secondary objective was to study the predictors of outcome. Methods and Results We enrolled all patients with cardiomyopathy who presented to us between 1990 and 2020 and were younger than 18 years. During the 30-year study period, we identified 233 cases of pediatric cardiomyopathy. One hundred and nineteen (51%) cases had DCM. This retrospective cohort was analyzed to study their outcome and the possible predictors of outcome. Nearly, 8% presented in the neonatal period, and 37% in infancy. The most common mode of presentation was dyspnea on exertion (71%). Ninety-three patients presented in heart failure (78%). The median left ventricular dimension z-score in diastole was 4.3 (range 2.5-9.06). The median left ventricle (LV) ejection fraction was 31%. Seventy-two percent of this cohort were on angiotensin-converting-enzyme inhibitors, 40% on aldosterone antagonists, and 47% on beta-blockers. One-third had syndromic, metabolic, genetic, or any secondary cause identified. Twenty-seven patients satisfied the three-tiered clinical classification for the diagnosis of probable acute myocarditis. Over a mean follow-up of 3.29 years, 27% were lost to follow-up. Among the remaining patients who were on follow-up (n = 86), 39 (45%) died, 31 (36%) recovered, and 16 (18%) had persistent LV dysfunction. Heart Failure was the most common cause of death. Eight patients in this cohort (4.2%) had thromboembolic phenomena. Nine had sustained ventricular arrhythmias and six had atrial/junctional arrhythmias. Among the various risk factors studied, only infantile onset had a significant relationship with death or ventricular arrhythmias (P value- 0.05). The 5-year survival rate of DCM patients was 59%. Conclusion A reasonably good percentage of our population showed recovery of the left ventricular function (36%). Only infantile onset had a significant relationship with death or ventricular arrhythmias. The outcome in our DCM cohort is similar to other population cohorts.
Collapse
Affiliation(s)
- Gousia Mukhtar
- Department of Cardiology, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Bijulal Sasidharan
- Department of Cardiology, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | | | - Harikrishnan K. N. Kurup
- Department of Cardiology, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Arun Gopalakrishnan
- Department of Cardiology, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Deepa Sasikumar
- Department of Cardiology, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Sankara Sarma
- Achutha Menon Centre for Health Science Studies, Thiruvananthapuram, Kerala, India
| | - Ajit Kumar Valaparambil
- Department of Cardiology, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Sivasankaran Sivasubramonian
- Department of Cardiology, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
50
|
Chun YW, Miyamoto M, Williams CH, Neitzel LR, Silver-Isenstadt M, Cadar AG, Fuller DT, Fong DC, Liu H, Lease R, Kim S, Katagiri M, Durbin MD, Wang KC, Feaster TK, Sheng CC, Neely MD, Sreenivasan U, Cortes-Gutierrez M, Finn AV, Schot R, Mancini GMS, Ament SA, Ess KC, Bowman AB, Han Z, Bichell DP, Su YR, Hong CC. Impaired Reorganization of Centrosome Structure Underlies Human Infantile Dilated Cardiomyopathy. Circulation 2023; 147:1291-1303. [PMID: 36970983 PMCID: PMC10133173 DOI: 10.1161/circulationaha.122.060985] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/22/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND During cardiomyocyte maturation, the centrosome, which functions as a microtubule organizing center in cardiomyocytes, undergoes dramatic structural reorganization where its components reorganize from being localized at the centriole to the nuclear envelope. This developmentally programmed process, referred to as centrosome reduction, has been previously associated with cell cycle exit. However, understanding of how this process influences cardiomyocyte cell biology, and whether its disruption results in human cardiac disease, remains unknown. We studied this phenomenon in an infant with a rare case of infantile dilated cardiomyopathy (iDCM) who presented with left ventricular ejection fraction of 18% and disrupted sarcomere and mitochondria structure. METHODS We performed an analysis beginning with an infant who presented with a rare case of iDCM. We derived induced pluripotent stem cells from the patient to model iDCM in vitro. We performed whole exome sequencing on the patient and his parents for causal gene analysis. CRISPR/Cas9-mediated gene knockout and correction in vitro were used to confirm whole exome sequencing results. Zebrafish and Drosophila models were used for in vivo validation of the causal gene. Matrigel mattress technology and single-cell RNA sequencing were used to characterize iDCM cardiomyocytes further. RESULTS Whole exome sequencing and CRISPR/Cas9 gene knockout/correction identified RTTN, the gene encoding the centrosomal protein RTTN (rotatin), as the causal gene underlying the patient's condition, representing the first time a centrosome defect has been implicated in a nonsyndromic dilated cardiomyopathy. Genetic knockdowns in zebrafish and Drosophila confirmed an evolutionarily conserved requirement of RTTN for cardiac structure and function. Single-cell RNA sequencing of iDCM cardiomyocytes showed impaired maturation of iDCM cardiomyocytes, which underlie the observed cardiomyocyte structural and functional deficits. We also observed persistent localization of the centrosome at the centriole, contrasting with expected programmed perinuclear reorganization, which led to subsequent global microtubule network defects. In addition, we identified a small molecule that restored centrosome reorganization and improved the structure and contractility of iDCM cardiomyocytes. CONCLUSIONS This study is the first to demonstrate a case of human disease caused by a defect in centrosome reduction. We also uncovered a novel role for RTTN in perinatal cardiac development and identified a potential therapeutic strategy for centrosome-related iDCM. Future study aimed at identifying variants in centrosome components may uncover additional contributors to human cardiac disease.
Collapse
Affiliation(s)
- Young Wook Chun
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| | - Matthew Miyamoto
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| | - Charles H. Williams
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| | - Leif R. Neitzel
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| | - Maya Silver-Isenstadt
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| | - Adrian G. Cadar
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37201
| | - Daniela T. Fuller
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| | - Daniel C. Fong
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| | - Hanhan Liu
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| | - Robert Lease
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sungseek Kim
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37201
| | - Mikako Katagiri
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37201
| | - Matthew D. Durbin
- Division of Neonatology-Perinatology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 26202
| | - Kuo-Chen Wang
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| | - Tromondae K. Feaster
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37201
| | - Calvin C. Sheng
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37201
| | - M. Diana Neely
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37201
| | - Urmila Sreenivasan
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| | - Marcia Cortes-Gutierrez
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aloke V. Finn
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| | - Rachel Schot
- Division of Neonatology-Perinatology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 26202
| | - Grazia M. S. Mancini
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Seth A. Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kevin C. Ess
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN37201
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47906
| | - Zhe Han
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| | - David P. Bichell
- Department of Pediatric Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN 37201
| | - Yan Ru Su
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37201
| | - Charles C. Hong
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| |
Collapse
|