1
|
Dababneh SF, Babini H, Jiménez-Sábado V, Teves SS, Kim KH, Tibbits GF. Dissecting cardiovascular disease-associated noncoding genetic variants using human iPSC models. Stem Cell Reports 2025; 20:102467. [PMID: 40118058 PMCID: PMC12069897 DOI: 10.1016/j.stemcr.2025.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/23/2025] Open
Abstract
Advancements in genomics have revealed hundreds of loci associated with cardiovascular diseases, highlighting the role genetic variants play in disease pathogenesis. Notably, most variants lie within noncoding genomic regions that modulate transcription factor binding, chromatin accessibility, and thereby the expression levels and cell type specificity of gene transcripts. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a powerful tool to delineate the pathogenicity of such variants and elucidate the underlying transcriptional mechanisms. Our review discusses the basics of noncoding variant-mediated pathogenesis, the methodologies utilized, and how hiPSC-based heart models can be leveraged to dissect the mechanisms of noncoding variants.
Collapse
Affiliation(s)
- Saif F Dababneh
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Hosna Babini
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada; Departments of Molecular Biology and Biochemistry / Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Verónica Jiménez-Sábado
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada; Departments of Molecular Biology and Biochemistry / Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Sheila S Teves
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kyoung-Han Kim
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Glen F Tibbits
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada; Departments of Molecular Biology and Biochemistry / Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada.
| |
Collapse
|
2
|
Sivakumar S, Wang Y, Goetsch SC, Pandit V, Wang L, Zhao H, Sundarrajan A, Armendariz D, Takeuchi C, Nzima M, Chen WC, Dederich AE, El Hayek L, Gao T, Ghazawi R, Gogate A, Kaur K, Kim HB, McCoy MK, Niederstrasser H, Oura S, Pinzon-Arteaga CA, Sanghvi M, Schmitz DA, Yu L, Zhang Y, Zhou Q, Kraus WL, Xu L, Wu J, Posner BA, Chahrour MH, Hon GC, Munshi NV. Benchmarking and optimizing Perturb-seq in differentiating human pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.633969. [PMID: 39896670 PMCID: PMC11785042 DOI: 10.1101/2025.01.21.633969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Perturb-seq is a powerful approach to systematically assess how genes and enhancers impact the molecular and cellular pathways of development and disease. However, technical challenges have limited its application in stem cell-based systems. Here, we benchmarked Perturb-seq across multiple CRISPRi modalities, on diverse genomic targets, in multiple human pluripotent stem cells, during directed differentiation to multiple lineages, and across multiple sgRNA delivery systems. To ensure cost-effective production of large-scale Perturb-seq datasets as part of the Impact of Genomic Variants on Function (IGVF) consortium, our optimized protocol dynamically assesses experiment quality across the weeks-long procedure. Our analysis of 1,996,260 sequenced cells across benchmarking datasets reveals shared regulatory networks linking disease-associated enhancers and genes with downstream targets during cardiomyocyte differentiation. This study establishes open tools and resources for interrogating genome function during stem cell differentiation.
Collapse
Affiliation(s)
- Sushama Sivakumar
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yihan Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sean C Goetsch
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vrushali Pandit
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huan Zhao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anjana Sundarrajan
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel Armendariz
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chikara Takeuchi
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mpathi Nzima
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wei-Chen Chen
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ashley E Dederich
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lauretta El Hayek
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Taosha Gao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Renad Ghazawi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ashlesha Gogate
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kiran Kaur
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hyung Bum Kim
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Melissa K McCoy
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Seiya Oura
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carolos A Pinzon-Arteaga
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Menaka Sanghvi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel A Schmitz
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Leqian Yu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yanfeng Zhang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qinbo Zhou
- Quantitative Biomedical Research Center, Peter O’Donnell Jr School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - W. Lee Kraus
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruce A Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maria H Chahrour
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O’Donnell Jr Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nikhil V Munshi
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
3
|
Patel MZ, Jiang Y, Kakumani PK. Somatic piRNA and PIWI-mediated post-transcriptional gene regulation in stem cells and disease. Front Cell Dev Biol 2024; 12:1495035. [PMID: 39717847 PMCID: PMC11663942 DOI: 10.3389/fcell.2024.1495035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small non-coding RNAs that bind to the PIWI subclass of the Argonaute protein family and are essential for maintaining germline integrity. Initially discovered in Drosophila, PIWI proteins safeguard piRNAs, forming ribonucleoprotein (RNP) complexes, crucial for regulating gene expression and genome stability, by suppressing transposable elements (TEs). Recent insights revealed that piRNAs and PIWI proteins, known for their roles in germline maintenance, significantly influence mRNA stability, translation and retrotransposon silencing in both stem cells and bodily tissues. In the current review, we explore the multifaceted roles of piRNAs and PIWI proteins in numerous biological contexts, emphasizing their involvement in stem cell maintenance, differentiation, and the development of human diseases. Additionally, we discussed the up-and-coming animal models, beyond the classical fruit fly and earthworm systems, for studying piRNA-PIWIs in self-renewal and cell differentiation. Further, our review offers new insights and discusses the emerging roles of piRNA-dependent and independent functions of PIWI proteins in the soma, especially the mRNA regulation at the post-transcriptional level, governing stem cell characteristics, tumor development, and cardiovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Pavan Kumar Kakumani
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
4
|
Wen Y, Yang H, Hong Y. Transcriptomic Approaches to Cardiomyocyte-Biomaterial Interactions: A Review. ACS Biomater Sci Eng 2024; 10:4175-4194. [PMID: 38934720 DOI: 10.1021/acsbiomaterials.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Biomaterials, essential for supporting, enhancing, and repairing damaged tissues, play a critical role in various medical applications. This Review focuses on the interaction of biomaterials and cardiomyocytes, emphasizing the unique significance of transcriptomic approaches in understanding their interactions, which are pivotal in cardiac bioengineering and regenerative medicine. Transcriptomic approaches serve as powerful tools to investigate how cardiomyocytes respond to biomaterials, shedding light on the gene expression patterns, regulatory pathways, and cellular processes involved in these interactions. Emerging technologies such as bulk RNA-seq, single-cell RNA-seq, single-nucleus RNA-seq, and spatial transcriptomics offer promising avenues for more precise and in-depth investigations. Longitudinal studies, pathway analyses, and machine learning techniques further improve the ability to explore the complex regulatory mechanisms involved. This review also discusses the challenges and opportunities of utilizing transcriptomic techniques in cardiomyocyte-biomaterial research. Although there are ongoing challenges such as costs, cell size limitation, sample differences, and complex analytical process, there exist exciting prospects in comprehensive gene expression analyses, biomaterial design, cardiac disease treatment, and drug testing. These multimodal methodologies have the capacity to deepen our understanding of the intricate interaction network between cardiomyocytes and biomaterials, potentially revolutionizing cardiac research with the aim of promoting heart health, and they are also promising for studying interactions between biomaterials and other cell types.
Collapse
Affiliation(s)
- Yufeng Wen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
5
|
Logan NJ, Broda KL, Pantelireis N, Williams G, Higgins CA. Chromatin accessibility profiling reveals that human fibroblasts respond to mechanical stimulation in a cell-specific manner. JBMR Plus 2024; 8:ziae025. [PMID: 38682000 PMCID: PMC11055960 DOI: 10.1093/jbmrpl/ziae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 05/01/2024] Open
Abstract
Fibroblasts in the skin are highly heterogeneous, both in vivo and in vitro. One difference between follicular (dermal papilla fibroblasts [DP]) and interfollicular fibroblasts (papillary fibroblasts [PFi]) in vitro is their ability to differentiate in response to osteogenic media (OM), or mechanical stimulation. Here, we asked whether differences in the ability of DP and PFi to respond to differentiation stimuli are due to differences in chromatin accessibility. We performed chromatin accessibility and transcriptional profiling of DP and PFi in human skin, which arise from a common progenitor during development, yet display distinct characteristics in adult tissue and in vitro. We found that cells cultured in growth media had unique chromatin accessibility profiles; however, these profiles control similar functional networks. Upon introduction of a chemical perturbation (OM) to promote differentiation, we observed a divergence not only in the accessible chromatin signatures but also in the functional networks controlled by these signatures. The biggest divergence between DP and PFi was observed when we applied 2 perturbations to cells: growth in OM and mechanical stimulation (a shock wave [OMSW]). DP readily differentiate into bone in OMSW conditions, while PFi lack differentiation capability in vitro. In the DP we found a number of uniquely accessible promoters that controlled osteogenic interaction networks associated with bone and differentiation functions. Using ATAC-seq and RNA-seq we found that the combination of 2 stimuli (OMSW) could result in significant changes in chromatin accessibility associated with osteogenic differentiation, but only within the DP (capable of osteogenic differentiation). De novo motif analysis identified enrichment of motifs bound by the TEA domain (TEAD) family of transcription factors, and inter-cell comparisons (UpSet analysis) displayed large groups of genes to be unique to single cell types and conditions. Our results suggest that these 2 stimuli (OMSW) elicit cell-specific responses by modifying chromatin accessibility of osteogenic-related gene promoters.
Collapse
Affiliation(s)
- Niall J Logan
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Krystyna L Broda
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Nikolaos Pantelireis
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Greg Williams
- Farjo Hair Institute, Manchester, M3 3EJ, United Kingdom
| | - Claire A Higgins
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
6
|
Liu L, Wang C, Wang H, Miao L, Xie T, Tian Y, Li X, Huang Y, Zeng X, Zhu B. Identification of the circRNA-miRNA-mRNA network for treating methamphetamine-induced relapse and behavioral sensitization with cannabidiol. CNS Neurosci Ther 2024; 30:e14737. [PMID: 38702929 PMCID: PMC11069028 DOI: 10.1111/cns.14737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 05/06/2024] Open
Abstract
AIMS This study aims to investigate the pharmacological effects and the underlying mechanism of cannabidiol (CBD) on methamphetamine (METH)-induced relapse and behavioral sensitization in male mice. METHODS The conditioned place preference (CPP) test with a biased paradigm and open-field test were used to assess the effects of CBD on METH-induced relapse and behavioral sensitization in male mice. RNA sequencing and bioinformatics analysis was employed to identify differential expressed (DE) circRNAs, miRNAs, and mRNAs in the nucleus accumbens (NAc) of mice, and the interaction among them was predicted using competing endogenous RNAs (ceRNAs) network analysis. RESULTS Chronic administration of CBD (40 mg/kg) during the METH withdrawal phase alleviated METH (2 mg/kg)-induced CPP reinstatement and behavioral sensitization in mice, as well as mood and cognitive impairments following behavioral sensitization. Furthermore, 42 DEcircRNAs, 11 DEmiRNAs, and 40 DEmRNAs were identified in the NAc of mice. The circMeis2-miR-183-5p-Kcnj5 network in the NAc of mice is involved in the effects of CBD on METH-induced CPP reinstatement and behavioral sensitization. CONCLUSIONS This study constructed the ceRNAs network for the first time, revealing the potential mechanism of CBD in treating METH-induced CPP reinstatement and behavioral sensitization, thus advancing the application of CBD in METH use disorders.
Collapse
Affiliation(s)
- Liu Liu
- Guangzhou Key Laboratory of Forensic Multi‐Omics for Precision IdentificationSchool of Forensic MedicineSouthern Medical UniversityGuangzhouGuangdongChina
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic MedicineKunming Medical UniversityKunmingYunnanChina
| | - Chan Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic MedicineKunming Medical UniversityKunmingYunnanChina
| | - Haowei Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic MedicineKunming Medical UniversityKunmingYunnanChina
| | - Lin Miao
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic MedicineKunming Medical UniversityKunmingYunnanChina
| | - Tong Xie
- Guangzhou Key Laboratory of Forensic Multi‐Omics for Precision IdentificationSchool of Forensic MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yunqing Tian
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic MedicineKunming Medical UniversityKunmingYunnanChina
| | - Xiaodong Li
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic MedicineKunming Medical UniversityKunmingYunnanChina
| | - Yizhen Huang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic MedicineKunming Medical UniversityKunmingYunnanChina
| | - Xiaofeng Zeng
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic MedicineKunming Medical UniversityKunmingYunnanChina
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi‐Omics for Precision IdentificationSchool of Forensic MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
7
|
Peng C, Chen Q, Tan S, Shen X, Jiang C. Generalized reporter score-based enrichment analysis for omics data. Brief Bioinform 2024; 25:bbae116. [PMID: 38546324 PMCID: PMC10976918 DOI: 10.1093/bib/bbae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/25/2024] [Accepted: 03/01/2024] [Indexed: 06/15/2024] Open
Abstract
Enrichment analysis contextualizes biological features in pathways to facilitate a systematic understanding of high-dimensional data and is widely used in biomedical research. The emerging reporter score-based analysis (RSA) method shows more promising sensitivity, as it relies on P-values instead of raw values of features. However, RSA cannot be directly applied to multi-group and longitudinal experimental designs and is often misused due to the lack of a proper tool. Here, we propose the Generalized Reporter Score-based Analysis (GRSA) method for multi-group and longitudinal omics data. A comparison with other popular enrichment analysis methods demonstrated that GRSA had increased sensitivity across multiple benchmark datasets. We applied GRSA to microbiome, transcriptome and metabolome data and discovered new biological insights in omics studies. Finally, we demonstrated the application of GRSA beyond functional enrichment using a taxonomy database. We implemented GRSA in an R package, ReporterScore, integrating with a powerful visualization module and updatable pathway databases, which is available on the Comprehensive R Archive Network (https://cran.r-project.org/web/packages/ReporterScore). We believe that the ReporterScore package will be a valuable asset for broad biomedical research fields.
Collapse
Affiliation(s)
- Chen Peng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Qiong Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shangjin Tan
- BGI Research, Wuhan, Hubei 430074, China
- BGI Research, Shenzhen, Guangdong 518083, China
| | - Xiaotao Shen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Chao Jiang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China
| |
Collapse
|
8
|
Chen P, Long J, Hua T, Zheng Z, Xiao Y, Chen L, Yu K, Wu W, Zhang S. Transcriptome and open chromatin analysis reveals the process of myocardial cell development and key pathogenic target proteins in Long QT syndrome type 7. J Transl Med 2024; 22:307. [PMID: 38528561 PMCID: PMC10964537 DOI: 10.1186/s12967-024-05125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/20/2024] [Indexed: 03/27/2024] Open
Abstract
OBJECTIVE Long QT syndrome type 7 (Andersen-Tawil syndrome, ATS), which is caused by KCNJ2 gene mutation, often leads to ventricular arrhythmia, periodic paralysis and skeletal malformations. The development, differentiation and electrophysiological maturation of cardiomyocytes (CMs) changes promote the pathophysiology of Long QT syndrome type 7(LQT7). We aimed to specifically reproduce the ATS disease phenotype and study the pathogenic mechanism. METHODS AND RESULTS We established a cardiac cell model derived from human induced pluripotent stem cells (hiPSCs) to the phenotypes and electrophysiological function, and the establishment of a human myocardial cell model that specifically reproduces the symptoms of ATS provides a reliable platform for exploring the mechanism of this disease or potential drugs. The spontaneous pulsation rate of myocardial cells in the mutation group was significantly lower than that in the repair CRISPR group, the action potential duration was prolonged, and the Kir2.1 current of the inward rectifier potassium ion channel was decreased, which is consistent with the clinical symptoms of ATS patients. Only ZNF528, a chromatin-accessible TF related to pathogenicity, was continuously regulated beginning from the cardiac mesodermal precursor cell stage (day 4), and continued to be expressed at low levels, which was identified by WGCNA method and verified with ATAC-seq data in the mutation group. Subsequently, it indicated that seven pathways were downregulated (all p < 0.05) by used single sample Gene Set Enrichment Analysis to evaluate the overall regulation of potassium-related pathways enriched in the transcriptome and proteome of late mature CMs. Among them, the three pathways (GO: 0008076, GO: 1990573 and GO: 0030007) containing the mutated gene KCNJ2 is involved that are related to the whole process by which a potassium ion enters the cell via the inward rectifier potassium channel to exert its effect were inhibited. The other four pathways are related to regulation of the potassium transmembrane pathway and sodium:potassium exchange ATPase (p < 0.05). ZNF528 small interfering (si)-RNA was applied to hiPSC-derived cardiomyocytes for CRISPR group to explore changes in potassium ion currents and growth and development related target protein levels that affect disease phenotype. Three consistently downregulated proteins (KCNJ2, CTTN and ATP1B1) associated with pathogenicity were verificated through correlation and intersection analysis. CONCLUSION This study uncovers TFs and target proteins related to electrophysiology and developmental pathogenicity in ATS myocardial cells, obtaining novel targets for potential therapeutic candidate development that does not rely on gene editing.
Collapse
Affiliation(s)
- Peipei Chen
- Department of Clinical Nutrition & Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junyu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianrui Hua
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhifa Zheng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Xiao
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lianfeng Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Kang Yu
- Department of Clinical Nutrition & Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wei Wu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Arthur TD, Nguyen JP, D'Antonio-Chronowska A, Matsui H, Silva NS, Joshua IN, Luchessi AD, Greenwald WWY, D'Antonio M, Pera MF, Frazer KA. Complex regulatory networks influence pluripotent cell state transitions in human iPSCs. Nat Commun 2024; 15:1664. [PMID: 38395976 PMCID: PMC10891157 DOI: 10.1038/s41467-024-45506-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Stem cells exist in vitro in a spectrum of interconvertible pluripotent states. Analyzing hundreds of hiPSCs derived from different individuals, we show the proportions of these pluripotent states vary considerably across lines. We discover 13 gene network modules (GNMs) and 13 regulatory network modules (RNMs), which are highly correlated with each other suggesting that the coordinated co-accessibility of regulatory elements in the RNMs likely underlie the coordinated expression of genes in the GNMs. Epigenetic analyses reveal that regulatory networks underlying self-renewal and pluripotency are more complex than previously realized. Genetic analyses identify thousands of regulatory variants that overlapped predicted transcription factor binding sites and are associated with chromatin accessibility in the hiPSCs. We show that the master regulator of pluripotency, the NANOG-OCT4 Complex, and its associated network are significantly enriched for regulatory variants with large effects, suggesting that they play a role in the varying cellular proportions of pluripotency states between hiPSCs. Our work bins tens of thousands of regulatory elements in hiPSCs into discrete regulatory networks, shows that pluripotency and self-renewal processes have a surprising level of regulatory complexity, and suggests that genetic factors may contribute to cell state transitions in human iPSC lines.
Collapse
Affiliation(s)
- Timothy D Arthur
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jennifer P Nguyen
- Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Hiroko Matsui
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Nayara S Silva
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Isaac N Joshua
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - André D Luchessi
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - William W Young Greenwald
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Matteo D'Antonio
- Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | | | - Kelly A Frazer
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
10
|
Zhou F, Tan P, Liu S, Chang L, Yang J, Sun M, Guo Y, Si Y, Wang D, Yu J, Ma Y. Subcellular RNA distribution and its change during human embryonic stem cell differentiation. Stem Cell Reports 2024; 19:126-140. [PMID: 38134924 PMCID: PMC10828685 DOI: 10.1016/j.stemcr.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
The spatial localization of RNA within cells is closely related to its function and also involved in cell fate determination. However, the atlas of RNA distribution within cells and dynamic changes during the developmental process are largely unknown. In this study, five subcellular components, including cytoplasmic extract, membrane extract, soluble nuclear extract, chromatin-bound nuclear extract, and cytoskeletal extract, were isolated and the rules of subcellular RNA distribution in human embryonic stem cells (hESCs) and its change during hESC differentiation are summarized for the first time. The overall distribution patterns of coding and non-coding RNAs are revealed. Interestingly, some developmental genes are found to be transcribed but confined to the chromatin in undifferentiated hESC. Unexpectedly, alternative splicing and polyadenylation endow spatial heterogeneity among different isoforms of the same gene. Finally, the dynamic pattern of RNA distribution during hESC differentiation is characterized, which provides new clues for a comprehensive understanding hESC pluripotency and differentiation.
Collapse
Affiliation(s)
- Fanqi Zhou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Puwen Tan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Siqi Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Le Chang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiabin Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Mengyao Sun
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yuehong Guo
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yanmin Si
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Dong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Jia Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Yanni Ma
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Gong M, He Y, Wang M, Zhang Y, Ding C. Interpretable single-cell transcription factor prediction based on deep learning with attention mechanism. Comput Biol Chem 2023; 106:107923. [PMID: 37598467 DOI: 10.1016/j.compbiolchem.2023.107923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023]
Abstract
Predicting the transcription factor binding site (TFBS) in the whole genome range is essential in exploring the rule of gene transcription control. Although many deep learning methods to predict TFBS have been proposed, predicting TFBS using single-cell ATAC-seq data and embedding attention mechanisms needs to be improved. To this end, we present IscPAM, an interpretable method based on deep learning with an attention mechanism to predict single-cell transcription factors. Our model adopts the convolution neural network to extract the data feature and optimize the pre-trained model. In particular, the model obtains faster training and prediction due to the embedded attention mechanism. For datasets, we take ATAC-seq, ChIP-seq, and DNA sequences data for the pre-trained model, and single-cell ATAC-seq data is used to predict the TF binding graph in the given cell. We verify the interpretability of the model through ablation experiments and sensitivity analysis. IscPAM can efficiently predict the combination of whole genome transcription factors in single cells and study cellular heterogeneity through chromatin accessibility of related diseases.
Collapse
Affiliation(s)
- Meiqin Gong
- West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yuchen He
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| | - Maocheng Wang
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| | - Yongqing Zhang
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| | - Chunli Ding
- Sichuan Institute of Computer Sciences, Chengdu 610041, China.
| |
Collapse
|
12
|
Liu H, Ma Y, Yu J, Chen X, Wang S, Jia Y, Ding N, Jin X, Zhang Y, Xu J, Li X. Insight into the regulatory mechanism of dynamic chromatin 3D interactions during cardiomyocyte differentiation in human. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:629-641. [PMID: 37650118 PMCID: PMC10462852 DOI: 10.1016/j.omtn.2023.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Cardiogenesis is an extremely complicated process involved with DNA regulatory elements, and trans factors regulate gene expression pattern spatiotemporally. Enhancers, as the well-known DNA elements, activate target gene expression by transcription factors (TFs) occupied to organize dynamic three-dimensional (3D) interactions, which when affected or interrupted might cause heart defects or diseases. In this study, we integrated transcriptome, 3D genome, and regulatome to reorganize the global 3D genome in cardiomyogenesis, showing a gradually decreased trend of both chromatin interactions and topological associating domains (TADs) during cardiomyocyte differentiation. And almost all of the chromatin interactions occurred within the same or between adjacent TADs involved with enhancers, indicating that dynamical rewiring of enhancer-related chromatin interactions in the continuous expansive TADs is closely correlated to cardiogenesis. Moreover, we found stage-specific interactions activate stage-specific expression to be involved within corresponding biological functions, and the stage-specific combined regulations of enhancers and binding TFs form connected networks to control stage-specific expression and biological processes, which promote cardiomyocyte differentiation. Finally, we identified markers based on regulatory networks, which might drive cardiac development. This study demonstrates the power of enhancer interactome combined with active TFs to reveal insights into transcriptional regulatory networks during cardiomyogenesis.
Collapse
Affiliation(s)
- Hui Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yingying Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jiaxin Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xiang Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Shuyuan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yijie Jia
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Na Ding
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xiaoyan Jin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| |
Collapse
|
13
|
Hong Z, Lu Y, Liu B, Ran C, Lei X, Wang M, Wu S, Yang Y, Wu H. Glycolysis, a new mechanism of oleuropein against liver tumor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154770. [PMID: 36963367 DOI: 10.1016/j.phymed.2023.154770] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Benign and malignant liver tumors are prevalent worldwide. However, there is no effective and comprehensive treatment option for many patients with malignant tumors. Thus, it is critical to prevent benign tumors from worsening, increasing the number of treatment options and effective medications against malignant liver tumors. Oleuropein is a natural and non-toxic product and inhibits tumor growth in various ways. METHODS We employed bioinformatics analysis and molecular docking to identify potential targets of oleuropein. Surface plasmon resonance (SPR) was used to determine the direct binding strength of the target and compounds. Essential functionalities of the targets were analyzed using gene interference approaches. Transcriptomic studies were performed to observe the global genomic alterations occurring inside cells. Changes in glycolytic metabolites and gene and protein expressions were also detected. The anti-tumor benefits of oleuropein in vivo were determined using a tumor-bearing mouse model. RESULTS Glucose-6-phosphate isomerase (GPI) was found to be a direct target of oleuropein. GPI discontinuation in liver tumor cells altered the expression of many genes, causing glycogenolysis. GPI interference was associated with PYGM and PFKFB4 inhibitors to inhibit glycolysis in liver tumors. Oleuropein inhibited glycolysis and showed good anti-tumor activity in vivo without adverse side effects. CONCLUSIONS GPI is a crucial enzyme in glycolysis and the immediate target of oleuropein. GPI expression inside tumor cells affects different physiological functions and signal transduction. Oleuropein has depicted anti-tumor action in vivo without harmful side effects. Moreover, it can control tumor glycolysis through GPI.
Collapse
Affiliation(s)
- Zongchao Hong
- Faculty of Pharmacy, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Hongshan District, Wuhan, Hubei 430065, China
| | - Yi Lu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Hongshan District, Wuhan, Hubei 430065, China
| | - Bo Liu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Hongshan District, Wuhan, Hubei 430065, China
| | - Chongwang Ran
- Faculty of Pharmacy, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Hongshan District, Wuhan, Hubei 430065, China
| | - Xia Lei
- Faculty of Pharmacy, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Hongshan District, Wuhan, Hubei 430065, China
| | - Mengfan Wang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Hongshan District, Wuhan, Hubei 430065, China
| | - Songtao Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Hongshan District, Wuhan, Hubei 430065, China.
| | - Yanfang Yang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Hongshan District, Wuhan, Hubei 430065, China; Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, China.
| | - Hezhen Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Hongshan District, Wuhan, Hubei 430065, China; Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, China; Modern Engineering Research Center of Traditional Chinese Medicine and Ethnic Medicine of Hubei Province, Wuhan, 430065, China.
| |
Collapse
|
14
|
Gong W, Dsouza N, Garry DJ. SeATAC: a tool for exploring the chromatin landscape and the role of pioneer factors. Genome Biol 2023; 24:125. [PMID: 37218013 DOI: 10.1186/s13059-023-02954-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Assay for Transposase-Accessible Chromatin with sequencing (ATAC-seq) reveals chromatin accessibility across the genome. Currently, no method specifically detects differential chromatin accessibility. Here, SeATAC uses a conditional variational autoencoder model to learn the latent representation of ATAC-seq V-plots and outperforms MACS2 and NucleoATAC on six separate tasks. Applying SeATAC to several pioneer factor-induced differentiation or reprogramming ATAC-seq datasets suggests that induction of these factors not only relaxes the closed chromatin but also decreases chromatin accessibility of 20% to 30% of their target sites. SeATAC is a novel tool to accurately reveal genomic regions with differential chromatin accessibility from ATAC-seq data.
Collapse
Affiliation(s)
- Wuming Gong
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA.
- Lillehei Heart Institute, University of Minnesota, 2231 6Th St SE, Minneapolis, MN, 55455, USA.
| | - Nikita Dsouza
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel J Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA.
- Lillehei Heart Institute, University of Minnesota, 2231 6Th St SE, Minneapolis, MN, 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
15
|
Armendariz DA, Goetsch SC, Sundarrajan A, Sivakumar S, Wang Y, Xie S, Munshi NV, Hon GC. CHD-associated enhancers shape human cardiomyocyte lineage commitment. eLife 2023; 12:e86206. [PMID: 37096669 PMCID: PMC10156167 DOI: 10.7554/elife.86206] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/10/2023] [Indexed: 04/26/2023] Open
Abstract
Enhancers orchestrate gene expression programs that drive multicellular development and lineage commitment. Thus, genetic variants at enhancers are thought to contribute to developmental diseases by altering cell fate commitment. However, while many variant-containing enhancers have been identified, studies to endogenously test the impact of these enhancers on lineage commitment have been lacking. We perform a single-cell CRISPRi screen to assess the endogenous roles of 25 enhancers and putative cardiac target genes implicated in genetic studies of congenital heart defects (CHDs). We identify 16 enhancers whose repression leads to deficient differentiation of human cardiomyocytes (CMs). A focused CRISPRi validation screen shows that repression of TBX5 enhancers delays the transcriptional switch from mid- to late-stage CM states. Endogenous genetic deletions of two TBX5 enhancers phenocopy epigenetic perturbations. Together, these results identify critical enhancers of cardiac development and suggest that misregulation of these enhancers could contribute to cardiac defects in human patients.
Collapse
Affiliation(s)
- Daniel A Armendariz
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
| | - Sean C Goetsch
- Department of Internal Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - Anjana Sundarrajan
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
| | - Sushama Sivakumar
- Department of Internal Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - Yihan Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
| | - Shiqi Xie
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
| | - Nikhil V Munshi
- Department of Internal Medicine, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Cardiology, Department of Molecular Biology, McDermott Center for Human Growth and Development, University of Texas Southwestern Medical CenterDallasUnited States
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical CenterDallasUnited States
- Lyda Hill Department of Bioinformatics, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
16
|
Kannan S, Miyamoto M, Zhu R, Lynott M, Guo J, Chen EZ, Colas AR, Lin BL, Kwon C. Trajectory reconstruction identifies dysregulation of perinatal maturation programs in pluripotent stem cell-derived cardiomyocytes. Cell Rep 2023; 42:112330. [PMID: 37014753 PMCID: PMC10545814 DOI: 10.1016/j.celrep.2023.112330] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
A limitation in the application of pluripotent stem cell-derived cardiomyocytes (PSC-CMs) is the failure of these cells to achieve full functional maturity. The mechanisms by which directed differentiation differs from endogenous development, leading to consequent PSC-CM maturation arrest, remain unclear. Here, we generate a single-cell RNA sequencing (scRNA-seq) reference of mouse in vivo CM maturation with extensive sampling of previously difficult-to-isolate perinatal time periods. We subsequently generate isogenic embryonic stem cells to create an in vitro scRNA-seq reference of PSC-CM-directed differentiation. Through trajectory reconstruction, we identify an endogenous perinatal maturation program that is poorly recapitulated in vitro. By comparison with published human datasets, we identify a network of nine transcription factors (TFs) whose targets are consistently dysregulated in PSC-CMs across species. Notably, these TFs are only partially activated in common ex vivo approaches to engineer PSC-CM maturation. Our study can be leveraged toward improving the clinical viability of PSC-CMs.
Collapse
Affiliation(s)
- Suraj Kannan
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Matthew Miyamoto
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Renjun Zhu
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michaela Lynott
- Sanford Burham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Jason Guo
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elaine Zhelan Chen
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alexandre R Colas
- Sanford Burham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Brian Leei Lin
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Astro V, Ramirez-Calderon G, Adamo A. Protocol to measure calcium spikes in cardiomyocytes obtained from human pluripotent stem cells using a ready-to-use media. STAR Protoc 2023; 4:102252. [PMID: 37060558 PMCID: PMC10140149 DOI: 10.1016/j.xpro.2023.102252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023] Open
Abstract
The derivation of cardiomyocytes from human pluripotent stem cells (hPSCs) is a powerful tool to investigate early cardiogenesis and model diseases in vitro. Here, we present an optimized protocol to obtain contracting hPSCs-derived cardiomyocytes using a ready-to-use kit. We describe steps for hPSC culture and differentiation to cardiomyocytes including the identification of key parameters such as starting cell confluency and temperature. We then detail immunofluorescence, flow cytometry, and the quantification of cardiomyocytes' calcium spikes using live imaging. For complete details on the use and execution of this protocol, please refer to Astro et al.1.
Collapse
Affiliation(s)
- Veronica Astro
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Gustavo Ramirez-Calderon
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Antonio Adamo
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
18
|
Ong LP, Bargehr J, Knight-Schrijver VR, Lee J, Colzani M, Bayraktar S, Bernard WG, Marchiano S, Bertero A, Murry CE, Gambardella L, Sinha S. Epicardially secreted fibronectin drives cardiomyocyte maturation in 3D-engineered heart tissues. Stem Cell Reports 2023; 18:936-951. [PMID: 37001515 PMCID: PMC10147941 DOI: 10.1016/j.stemcr.2023.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 04/14/2023] Open
Abstract
Ischemic heart failure is due to irreversible loss of cardiomyocytes. Preclinical studies showed that human pluripotent stem cell (hPSC)-derived cardiomyocytes could remuscularize infarcted hearts and improve cardiac function. However, these cardiomyocytes remained immature. Incorporating hPSC-derived epicardial cells has been shown to improve cardiomyocyte maturation, but the exact mechanisms are unknown. We posited epicardial fibronectin (FN1) as a mediator of epicardial-cardiomyocyte crosstalk and assessed its role in driving hPSC-derived cardiomyocyte maturation in 3D-engineered heart tissues (3D-EHTs). We found that the loss of FN1 with peptide inhibition F(pUR4), CRISPR-Cas9-mediated FN1 knockout, or tetracycline-inducible FN1 knockdown in 3D-EHTs resulted in immature cardiomyocytes with decreased contractile function, and inefficient Ca2+ handling. Conversely, when we supplemented 3D-EHTs with recombinant human FN1, we could recover hPSC-derived cardiomyocyte maturation. Finally, our RNA-sequencing analyses found FN1 within a wider paracrine network of epicardial-cardiomyocyte crosstalk, thus solidifying FN1 as a key driver of hPSC-derived cardiomyocyte maturation in 3D-EHTs.
Collapse
Affiliation(s)
- Lay Ping Ong
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, CB2 0AW Cambridge, UK; Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, ACCI Level 6, Hills Road, Box 110, Cambridge CB2 0QQ, UK.
| | - Johannes Bargehr
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, CB2 0AW Cambridge, UK; Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, ACCI Level 6, Hills Road, Box 110, Cambridge CB2 0QQ, UK
| | - Vincent R Knight-Schrijver
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, CB2 0AW Cambridge, UK; Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, ACCI Level 6, Hills Road, Box 110, Cambridge CB2 0QQ, UK
| | - Jonathan Lee
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, CB2 0AW Cambridge, UK; Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, ACCI Level 6, Hills Road, Box 110, Cambridge CB2 0QQ, UK
| | - Maria Colzani
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, CB2 0AW Cambridge, UK; Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, ACCI Level 6, Hills Road, Box 110, Cambridge CB2 0QQ, UK
| | - Semih Bayraktar
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, CB2 0AW Cambridge, UK; Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, ACCI Level 6, Hills Road, Box 110, Cambridge CB2 0QQ, UK
| | - William G Bernard
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, CB2 0AW Cambridge, UK; Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, ACCI Level 6, Hills Road, Box 110, Cambridge CB2 0QQ, UK
| | - Silvia Marchiano
- Departments of Laboratory Medicine & Pathology, Bioengineering, and Medicine/Cardiology, University of Washington, Seattle, WA, USA; Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Alessandro Bertero
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Charles E Murry
- Departments of Laboratory Medicine & Pathology, Bioengineering, and Medicine/Cardiology, University of Washington, Seattle, WA, USA; Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Laure Gambardella
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, CB2 0AW Cambridge, UK; Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, ACCI Level 6, Hills Road, Box 110, Cambridge CB2 0QQ, UK
| | - Sanjay Sinha
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, CB2 0AW Cambridge, UK; Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, ACCI Level 6, Hills Road, Box 110, Cambridge CB2 0QQ, UK.
| |
Collapse
|
19
|
Zhang P, Liu Y, Li C, Stine LD, Wang PH, Turnbull MW, Wu H, Liu Q. Ectopic expression of SARS-CoV-2 S and ORF-9B proteins alters metabolic profiles and impairs contractile function in cardiomyocytes. Front Cell Dev Biol 2023; 11:1110271. [PMID: 36910162 PMCID: PMC9994814 DOI: 10.3389/fcell.2023.1110271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is associated with adverse impacts in the cardiovascular system, but the mechanisms driving this response remain unclear. In this study, we conducted "pseudoviral infection" of SARS-CoV-2 subunits to evaluate their toxic effects in cardiomyocytes (CMs), that were derived from human induced pluripotent stem cells (hiPSCs). We found that the ectopic expression of S and ORF-9B subunits significantly impaired the contractile function and altered the metabolic profiles in human cardiomyocytes. Further mechanistic study has shown that the mitochondrial oxidative phosphorylation (OXPHOS), membrane potential, and ATP production were significantly decreased two days after the overexpression of S and ORF-9B subunits, while S subunits induced higher level of reactive oxygen species (ROS). Two weeks after overexpression, glycolysis was elevated in the ORF-9B group. Based on the transcriptomic analysis, both S and ORF-9B subunits dysregulated signaling pathways associated with metabolism and cardiomyopathy, including upregulated genes involved in HIF-signaling and downregulated genes involved in cholesterol biosynthetic processes. The ORF-9B subunit also enhanced glycolysis in the CMs. Our results collectively provide an insight into the molecular mechanisms underlying SARS-CoV-2 subunits-induced metabolic alterations and cardiac dysfunctions in the hearts of COVID-19 patients.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - Yu Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Chunfeng Li
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, United States
| | - Lindsay D. Stine
- Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Pei-Hui Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Matthew W. Turnbull
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - Haodi Wu
- Department of Medicine, Division of Cardiology, Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qing Liu
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
- Center for Human Genetics, Clemson University, Greenwood, SC, United States
| |
Collapse
|
20
|
Shah PP, Keough KC, Gjoni K, Santini GT, Abdill RJ, Wickramasinghe NM, Dundes CE, Karnay A, Chen A, Salomon REA, Walsh PJ, Nguyen SC, Whalen S, Joyce EF, Loh KM, Dubois N, Pollard KS, Jain R. An atlas of lamina-associated chromatin across twelve human cell types reveals an intermediate chromatin subtype. Genome Biol 2023; 24:16. [PMID: 36691074 PMCID: PMC9869549 DOI: 10.1186/s13059-023-02849-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/05/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Association of chromatin with lamin proteins at the nuclear periphery has emerged as a potential mechanism to coordinate cell type-specific gene expression and maintain cellular identity via gene silencing. Unlike many histone modifications and chromatin-associated proteins, lamina-associated domains (LADs) are mapped genome-wide in relatively few genetically normal human cell types, which limits our understanding of the role peripheral chromatin plays in development and disease. RESULTS To address this gap, we map LAMIN B1 occupancy across twelve human cell types encompassing pluripotent stem cells, intermediate progenitors, and differentiated cells from all three germ layers. Integrative analyses of this atlas with gene expression and repressive histone modification maps reveal that lamina-associated chromatin in all twelve cell types is organized into at least two subtypes defined by differences in LAMIN B1 occupancy, gene expression, chromatin accessibility, transposable elements, replication timing, and radial positioning. Imaging of fluorescently labeled DNA in single cells validates these subtypes and shows radial positioning of LADs with higher LAMIN B1 occupancy and heterochromatic histone modifications primarily embedded within the lamina. In contrast, the second subtype of lamina-associated chromatin is relatively gene dense, accessible, dynamic across development, and positioned adjacent to the lamina. Most genes gain or lose LAMIN B1 occupancy consistent with cell types along developmental trajectories; however, we also identify examples where the enhancer, but not the gene body and promoter, changes LAD state. CONCLUSIONS Altogether, this atlas represents the largest resource to date for peripheral chromatin organization studies and reveals an intermediate chromatin subtype.
Collapse
Affiliation(s)
- Parisha P Shah
- Departments of Medicine and Cell and Developmental Biology, Penn CVI, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Smilow TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Kathleen C Keough
- University of California, San Francisco, CA, 94117, USA
- Gladstone Institute of Data Science and Biotechnology, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Ketrin Gjoni
- University of California, San Francisco, CA, 94117, USA
- Gladstone Institute of Data Science and Biotechnology, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Garrett T Santini
- Departments of Medicine and Cell and Developmental Biology, Penn CVI, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Smilow TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Richard J Abdill
- Departments of Medicine and Cell and Developmental Biology, Penn CVI, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Smilow TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Nadeera M Wickramasinghe
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Carolyn E Dundes
- Department of Developmental Biology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ashley Karnay
- Departments of Medicine and Cell and Developmental Biology, Penn CVI, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Smilow TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Angela Chen
- Department of Developmental Biology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rachel E A Salomon
- Department of Developmental Biology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Patrick J Walsh
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Son C Nguyen
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sean Whalen
- Gladstone Institute of Data Science and Biotechnology, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Eric F Joyce
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kyle M Loh
- Department of Developmental Biology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nicole Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Katherine S Pollard
- University of California, San Francisco, CA, 94117, USA.
- Gladstone Institute of Data Science and Biotechnology, 1650 Owens Street, San Francisco, CA, 94158, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| | - Rajan Jain
- Departments of Medicine and Cell and Developmental Biology, Penn CVI, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Smilow TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
- Smilow TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Svoboda LK, Wang K, Goodrich JM, Jones TR, Colacino JA, Peterson KE, Tellez-Rojo MM, Sartor MA, Dolinoy DC. Perinatal Lead Exposure Promotes Sex-Specific Epigenetic Programming of Disease-Relevant Pathways in Mouse Heart. TOXICS 2023; 11:85. [PMID: 36668811 PMCID: PMC9860846 DOI: 10.3390/toxics11010085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Environmental contaminants such as the metal lead (Pb) are associated with cardiovascular disease, but the underlying molecular mechanisms are poorly understood. In particular, little is known about how exposure to Pb during early development impacts the cardiac epigenome at any point across the life course and potential differences between sexes. In a mouse model of human-relevant perinatal exposures, we utilized RNA-seq and Enhanced Reduced Representation Bisulfite Sequencing (ERRBS) to investigate the effects of Pb exposure during gestation and lactation on gene expression and DNA methylation, respectively, in the hearts of male and female mice at weaning. For ERRBS, we identified differentially methylated CpGs (DMCs) or differentially methylated 1000 bp regions (DMRs) based on a minimum absolute change in methylation of 10% and an FDR < 0.05. For gene expression data, an FDR < 0.05 was considered significant. No individual genes met the FDR cutoff for gene expression; however, we found that Pb exposure leads to significant changes in the expression of gene pathways relevant to cardiovascular development and disease. We further found that Pb promotes sex-specific changes in DNA methylation at hundreds of gene loci (280 DMCs and 99 DMRs in males, 189 DMCs and 121 DMRs in females), and pathway analysis revealed that these CpGs and regions collectively function in embryonic development. In males, differential methylation also occurred at genes related to immune function and metabolism. We then investigated whether genes exhibiting differential methylation at weaning were also differentially methylated in hearts from a cohort of Pb-exposed mice at adulthood. We found that a single gene, Galnt2, showed differential methylation in both sexes and time points. In a human cohort investigating the influence of prenatal Pb exposure on the epigenome, we also observed an inverse association between first trimester Pb concentrations and adolescent blood leukocyte DNA methylation at a locus in GALNT2, suggesting that this gene may represent a biomarker of Pb exposure across species. Together, these data, across two time points in mice and in a human birth cohort study, collectively demonstrate that Pb exposure promotes sex-specific programming of the cardiac epigenome, and provide potential mechanistic insight into how Pb causes cardiovascular disease.
Collapse
Affiliation(s)
- Laurie K. Svoboda
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jaclyn M. Goodrich
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Tamara R. Jones
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Justin A. Colacino
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Karen E. Peterson
- Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Martha M. Tellez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca 62100, Mexico
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Dana C. Dolinoy
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Fluorescence Spectroscopy of Low-Level Endogenous β-adrenergic Receptor Expression at the Plasma Membrane of Differentiating Human iPSC-Derived Cardiomyocytes. Int J Mol Sci 2022; 23:ijms231810405. [PMID: 36142320 PMCID: PMC9499492 DOI: 10.3390/ijms231810405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The potential of human-induced pluripotent stem cells (hiPSCs) to be differentiated into cardiomyocytes (CMs) mimicking adult CMs functional morphology, marker genes and signaling characteristics has been investigated since over a decade. The evolution of the membrane localization of CM-specific G protein-coupled receptors throughout differentiation has received, however, only limited attention to date. We employ here advanced fluorescent spectroscopy, namely linescan Fluorescence Correlation Spectroscopy (FCS), to observe how the plasma membrane abundance of the β1- and β2-adrenergic receptors (β1/2-ARs), labelled using a bright and photostable fluorescent antagonist, evolves during the long-term monolayer culture of hiPSC-derived CMs. We compare it to the kinetics of observed mRNA levels in wildtype (WT) hiPSCs and in two CRISPR/Cas9 knock-in clones. We conduct these observations against the backdrop of our recent report of cell-to-cell expression variability, as well as of the subcellular localization heterogeneity of β-ARs in adult CMs.
Collapse
|
23
|
Destici E, Zhu F, Tran S, Preissl S, Farah EN, Zhang Y, Hou X, Poirion OB, Lee AY, Grinstein JD, Bloomekatz J, Kim HS, Hu R, Evans SM, Ren B, Benner C, Chi NC. Human-gained heart enhancers are associated with species-specific cardiac attributes. NATURE CARDIOVASCULAR RESEARCH 2022; 1:830-843. [PMID: 36817700 PMCID: PMC9937543 DOI: 10.1038/s44161-022-00124-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022]
Abstract
The heart, a vital organ which is first to develop, has adapted its size, structure and function in order to accommodate the circulatory demands for a broad range of animals. Although heart development is controlled by a relatively conserved network of transcriptional/chromatin regulators, how the human heart has evolved species-specific features to maintain adequate cardiac output and function remains to be defined. Here, we show through comparative epigenomic analysis the identification of enhancers and promoters that have gained activity in humans during cardiogenesis. These cis-regulatory elements (CREs) are associated with genes involved in heart development and function, and may account for species-specific differences between human and mouse hearts. Supporting these findings, genetic variants that are associated with human cardiac phenotypic/disease traits, particularly those differing between human and mouse, are enriched in human-gained CREs. During early stages of human cardiogenesis, these CREs are also gained within genomic loci of transcriptional regulators, potentially expanding their role in human heart development. In particular, we discovered that gained enhancers in the locus of the early human developmental regulator ZIC3 are selectively accessible within a subpopulation of mesoderm cells which exhibits cardiogenic potential, thus possibly extending the function of ZIC3 beyond its conserved left-right asymmetry role. Genetic deletion of these enhancers identified a human gained enhancer that was required for not only ZIC3 and early cardiac gene expression at the mesoderm stage but also cardiomyocyte differentiation. Overall, our results illuminate how human gained CREs may contribute to human-specific cardiac attributes, and provide insight into how transcriptional regulators may gain cardiac developmental roles through the evolutionary acquisition of enhancers.
Collapse
Affiliation(s)
- Eugin Destici
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Fugui Zhu
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Shaina Tran
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Sebastian Preissl
- Ludwig Institute for Cancer Research, La Jolla, CA, 92093, USA
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Elie N. Farah
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yanxiao Zhang
- Ludwig Institute for Cancer Research, La Jolla, CA, 92093, USA
| | - Xiameng Hou
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Olivier B. Poirion
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ah Young Lee
- Ludwig Institute for Cancer Research, La Jolla, CA, 92093, USA
| | - Jonathan D. Grinstein
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Hong Sook Kim
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robert Hu
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Sylvia M. Evans
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, CA, 92093, USA
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, 92093, USA
- Institute of Genomic Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Chris Benner
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Neil C. Chi
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
- Institute of Genomic Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
24
|
Astro V, Ramirez-Calderon G, Pennucci R, Caroli J, Saera-Vila A, Cardona-Londoño K, Forastieri C, Fiacco E, Maksoud F, Alowaysi M, Sogne E, Andrea Falqui, Gonzàlez F, Montserrat N, Battaglioli E, Andrea Mattevi, Adamo A. Fine-tuned KDM1A alternative splicing regulates human cardiomyogenesis through an enzymatic-independent mechanism. iScience 2022; 25:104665. [PMID: 35856020 PMCID: PMC9287196 DOI: 10.1016/j.isci.2022.104665] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/31/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022] Open
Abstract
The histone demethylase KDM1A is a multi-faceted regulator of vital developmental processes, including mesodermal and cardiac tube formation during gastrulation. However, it is unknown whether the fine-tuning of KDM1A splicing isoforms, already shown to regulate neuronal maturation, is crucial for the specification and maintenance of cell identity during cardiogenesis. Here, we discovered a temporal modulation of ubKDM1A and KDM1A+2a during human and mice fetal cardiac development and evaluated their impact on the regulation of cardiac differentiation. We revealed a severely impaired cardiac differentiation in KDM1A−/− hESCs that can be rescued by re-expressing ubKDM1A or catalytically impaired ubKDM1A-K661A, but not by KDM1A+2a or KDM1A+2a-K661A. Conversely, KDM1A+2a−/− hESCs give rise to functional cardiac cells, displaying increased beating amplitude and frequency and enhanced expression of critical cardiogenic markers. Our findings prove the existence of a divergent scaffolding role of KDM1A splice variants, independent of their enzymatic activity, during hESC differentiation into cardiac cells. ubKDM1A and KDM1A+2a isoforms are fine-tuned during fetal cardiac development Depletion of KDM1A isoforms impairs hESC differentiation into cardiac cells KDM1A+2a ablation enhances the expression of key cardiac markers KDM1A isoforms exhibit enzymatic-independent divergent roles during cardiogenesis
Collapse
|
25
|
Grandi FC, Modi H, Kampman L, Corces MR. Chromatin accessibility profiling by ATAC-seq. Nat Protoc 2022; 17:1518-1552. [PMID: 35478247 PMCID: PMC9189070 DOI: 10.1038/s41596-022-00692-9] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
The assay for transposase-accessible chromatin using sequencing (ATAC-seq) provides a simple and scalable way to detect the unique chromatin landscape associated with a cell type and how it may be altered by perturbation or disease. ATAC-seq requires a relatively small number of input cells and does not require a priori knowledge of the epigenetic marks or transcription factors governing the dynamics of the system. Here we describe an updated and optimized protocol for ATAC-seq, called Omni-ATAC, that is applicable across a broad range of cell and tissue types. The ATAC-seq workflow has five main steps: sample preparation, transposition, library preparation, sequencing and data analysis. This protocol details the steps to generate and sequence ATAC-seq libraries, with recommendations for sample preparation and downstream bioinformatic analysis. ATAC-seq libraries for roughly 12 samples can be generated in 10 h by someone familiar with basic molecular biology, and downstream sequencing analysis can be implemented using benchmarked pipelines by someone with basic bioinformatics skills and with access to a high-performance computing environment.
Collapse
Affiliation(s)
- Fiorella C Grandi
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Hailey Modi
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Lucas Kampman
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - M Ryan Corces
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
26
|
The nuclear receptor ERR cooperates with the cardiogenic factor GATA4 to orchestrate cardiomyocyte maturation. Nat Commun 2022; 13:1991. [PMID: 35418170 PMCID: PMC9008061 DOI: 10.1038/s41467-022-29733-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 03/30/2022] [Indexed: 12/19/2022] Open
Abstract
Estrogen-related receptors (ERR) α and γ were shown recently to serve as regulators of cardiac maturation, yet the underlying mechanisms have not been delineated. Herein, we find that ERR signaling is necessary for induction of genes involved in mitochondrial and cardiac-specific contractile processes during human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) differentiation. Genomic interrogation studies demonstrate that ERRγ occupies many cardiomyocyte enhancers/super-enhancers, often co-localizing with the cardiogenic factor GATA4. ERRγ interacts with GATA4 to cooperatively activate transcription of targets involved in cardiomyocyte-specific processes such as contractile function, whereas ERRγ-mediated control of metabolic genes occurs independent of GATA4. Both mechanisms require the transcriptional coregulator PGC-1α. A disease-causing GATA4 mutation is shown to diminish PGC-1α/ERR/GATA4 cooperativity and expression of ERR target genes are downregulated in human heart failure samples suggesting that dysregulation of this circuitry may contribute to congenital and acquired forms of heart failure. Mature cardiac muscle requires high mitochondrial ATP production and specialized contractile proteins. Here the authors demonstrate that cardiomyocyte-specific contractile maturation involves cooperation between the nuclear receptor ERRγ and cardiogenic transcription factor GATA4, but ERRγ controls metabolic genes independently.
Collapse
|
27
|
Gather F, Ihrig-Biedert I, Kohlhas P, Krutenko T, Peitz M, Brüstle O, Pautz A, Kleinert H. A specific, non-immune system-related isoform of the human inducible nitric oxide synthase is expressed during differentiation of human stem cells into various cell types. Cell Commun Signal 2022; 20:47. [PMID: 35392923 PMCID: PMC8991583 DOI: 10.1186/s12964-022-00855-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NOS2 expression is mostly found in bacteria-exposed or cytokine-treated tissues and is mostly connected to innate immune reactions. There are three isoforms of NOS2 (NOS2-1 to -3). In RNA-seq data sets, analyzing inflammatory gene expression, only expression of the NOS2-1 mRNA isoform is detected. However, the expression of NOS2 in differentiating human pluripotent stems (hPSCs) has not been analyzed yet. METHODS Public available RNA-seq databases were screened for data of hPSCs during differentiation to different target cells. An isoform specific algorithm was used to analyze NOS2 mRNA isoform expression. In addition, we differentiated four different human iPSC cell lines toward cortical neurons and analyzed NOS2 mRNA expression by qRT-PCR and 5'-RACE. The functionality of the NOS2-2 protein was analyzed by transient transfection of expression clones in human DLD1 cells and nitrate measurement in the supernatant of these cells. RESULTS In RNA-seq databases we detected a transient expression of the NOS2 mRNA during the differentiation of hPSCs to cardiomyocytes, chondrocytes, mesenchymal stromal cells, neurons, syncytiotrophoblast cells, and trophoblasts. NOS2 mRNA isoform specific analyses showed, that the transiently expressed NOS2 mRNA in differentiating hPSC (NOS2-2; "diff-iNOS") differ remarkably from the already described NOS2 transcript found in colon or induced islets (NOS2-1; "immuno-iNOS"). Also, analysis of the NOS2 mRNA- and protein expression during the differentiation of four different hiPSC lines towards cortical neurons showed a transient expression of the NOS2 mRNA and NOS2 protein on day 18 of the differentiation course. 5'-RACE experiments and isoform specific qRT-PCR analyses revealed that only the NOS2-2 mRNA isoform was expressed in these experiments. To analyze the functionality of the NOS2-2 protein, we transfected human DLD-1 cells with tetracycline inducible expression clones encoding the NOS2-1- or -2 coding sequence. After induction of the NOS2-1 or -2 mRNA expression by tetracycline a similar nitrate production was measured proofing the functionality of the NOS2-2 protein isoform. CONCLUSIONS Our data show that a differentiation specific NOS2 isoform (NOS2-2) is transiently expressed during differentiation of hPSC. Video Abstract.
Collapse
Affiliation(s)
- Fabian Gather
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.,Department of Molecular Embryology, Institute for Anatomy and Cell Biology, Freiburg, Germany
| | - Irmgard Ihrig-Biedert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Paul Kohlhas
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Tamara Krutenko
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Michael Peitz
- Cell Programming Core Facility, Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany.,Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| |
Collapse
|
28
|
Berrens RV, Yang A, Laumer CE, Lun ATL, Bieberich F, Law CT, Lan G, Imaz M, Bowness JS, Brockdorff N, Gaffney DJ, Marioni JC. Locus-specific expression of transposable elements in single cells with CELLO-seq. Nat Biotechnol 2022; 40:546-554. [PMID: 34782740 PMCID: PMC7614850 DOI: 10.1038/s41587-021-01093-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/13/2021] [Indexed: 02/07/2023]
Abstract
Transposable elements (TEs) regulate diverse biological processes, from early development to cancer. Expression of young TEs is difficult to measure with next-generation, single-cell sequencing technologies because their highly repetitive nature means that short complementary DNA reads cannot be unambiguously mapped to a specific locus. Single CELl LOng-read RNA-sequencing (CELLO-seq) combines long-read single cell RNA-sequencing with computational analyses to measure TE expression at unique loci. We used CELLO-seq to assess the widespread expression of TEs in two-cell mouse blastomeres as well as in human induced pluripotent stem cells. Across both species, old and young TEs showed evidence of locus-specific expression with simulations demonstrating that only a small number of very young elements in the mouse could not be mapped back to the reference with high confidence. Exploring the relationship between the expression of individual elements and putative regulators revealed large heterogeneity, with TEs within a class showing different patterns of correlation and suggesting distinct regulatory mechanisms.
Collapse
Affiliation(s)
- Rebecca V Berrens
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Andrian Yang
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Christopher E Laumer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Aaron T L Lun
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Genentech, South San Francisco, CA, USA
| | - Florian Bieberich
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- ETH Zürich, Basel, Switzerland
| | - Cheuk-Ting Law
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Guocheng Lan
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- School of Biomedical Sciences,Stem Cell and Regenerative Consortium, Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Maria Imaz
- Wellcome Sanger Institute, Cambridge, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Joseph S Bowness
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Neil Brockdorff
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Daniel J Gaffney
- Wellcome Sanger Institute, Cambridge, UK
- Genomics Plc, Oxford, UK
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK.
- Wellcome Sanger Institute, Cambridge, UK.
| |
Collapse
|
29
|
Identification of Differentially Expressed and Prognostic lncRNAs for the Construction of ceRNA Networks in Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2021:2659550. [PMID: 34987577 PMCID: PMC8723861 DOI: 10.1155/2021/2659550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/07/2021] [Indexed: 11/18/2022]
Abstract
Background Long noncoding RNAs (lncRNAs) could function as competitive endogenous RNAs (ceRNAs) to competitively adsorb microRNAs (miRNAs), thereby regulating the expression of their target protein-coding mRNAs. In this study, we aim to identify more effective diagnostic and prognostic markers for lung adenocarcinoma (LUAD). Methods We obtained differentially expressed lncRNAs (DElncRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs) for LUAD by using The Cancer Genomes Atlas (TCGA) portal. Weighted gene coexpression network analysis (WGCNA) was performed to unveil core gene modules associated with LUAD. The Cox proportional hazards model was performed to determine the prognostic significance of DElncRNAs. The diagnostic and prognostic significance of DElncRNAs was further verified based on the receiver operating characteristic curve (ROC). Cytoscape was used to construct the ceRNA networks comprising the lncRNAs-miRNAs-mRNAs axis based on the correlation obtained from the miRcode, miRDB, and TargetScan. Results Compared with normal lung tissues, 2355 DElncRNAs, 820 DEmiRNAs, and 17289 DEmRNAs were identified in LUAD tissues. We generated 8 WGCNA core modules in the lncRNAs coexpression network, 5 modules in the miRNAs, and 12 modules in the mRNAs coexpression network, respectively. One lncRNA module (blue) consisting of 441 lncRNAs, two miRNA modules (blue and turquoise) containing 563 miRNAs, and one mRNA module (turquoise), which consisted of 15162 mRNAs, were mostly significantly related to LUAD status. Furthermore, 67 DEmRNAs were found to be tumor-associated as well as the target genes of the DElncRNAs-DEmiRNAs axis. Survival analyses showed that 6 lncRNAs (LINC01447, WWC2-AS2, OGFRP1, LINC00942, LINC01168, and AC005863.1) were significantly correlated with the prognosis of LUAD patients. Ultimately, the potential ceRNA networks including 6 DElncRNAs, 4 DEmiRNAs, and 22 DEmRNAs were constructed. Conclusion Our study indicated that 6 DElncRNAs had the possibilities as diagnostic and prognostic biomarkers for LUAD. The lncRNA-mediated ceRNA networks might provide novel insights into the molecular mechanisms of LUAD progression.
Collapse
|
30
|
Abstract
The Human Genome Project marked a major milestone in the scientific community as it unravelled the ~3 billion bases that are central to crucial aspects of human life. Despite this achievement, it only scratched the surface of understanding how each nucleotide matters, both individually and as part of a larger unit. Beyond the coding genome, which comprises only ~2% of the whole genome, scientists have realized that large portions of the genome, not known to code for any protein, were crucial for regulating the coding genes. These large portions of the genome comprise the 'non-coding genome'. The history of gene regulation mediated by proteins that bind to the regulatory non-coding genome dates back many decades to the 1960s. However, the original definition of 'enhancers' was first used in the early 1980s. In this Review, we summarize benchmark studies that have mapped the role of cardiac enhancers in disease and development. We highlight instances in which enhancer-localized genetic variants explain the missing link to cardiac pathogenesis. Finally, we inspire readers to consider the next phase of exploring enhancer-based gene therapy for cardiovascular disease.
Collapse
|
31
|
Mennen RH, Oldenburger MM, Piersma AH. Endoderm and mesoderm derivatives in embryonic stem cell differentiation and their use in developmental toxicity testing. Reprod Toxicol 2021; 107:44-59. [PMID: 34861400 DOI: 10.1016/j.reprotox.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Embryonic stem cell differentiation models have increasingly been applied in non-animal test systems for developmental toxicity. After the initial focus on cardiac differentiation, attention has also included an array of neuro-ectodermal differentiation routes. Alternative differentiation routes in the mesodermal and endodermal germ lines have received less attention. This review provides an inventory of achievements in the latter areas of embryonic stem cell differentiation, with a view to possibilities for their use in non-animal test systems in developmental toxicology. This includes murine and human stem cell differentiation models, and also gains information from the field of stem cell use in regenerative medicine. Endodermal stem cell derivatives produced in vitro include hepatocytes, pancreatic cells, lung epithelium, and intestinal epithelium, and mesodermal derivatives include cardiac muscle, osteogenic, vascular and hemopoietic cells. This inventory provides an overview of studies on the different cell types together with biomarkers and culture conditions that stimulate these differentiation routes from embryonic stem cells. These models may be used to expand the spectrum of embryonic stem cell based new approach methodologies in non-animal developmental toxicity testing.
Collapse
Affiliation(s)
- R H Mennen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | | | - A H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
32
|
Rowton M, Guzzetta A, Rydeen AB, Moskowitz IP. Control of cardiomyocyte differentiation timing by intercellular signaling pathways. Semin Cell Dev Biol 2021; 118:94-106. [PMID: 34144893 PMCID: PMC8968240 DOI: 10.1016/j.semcdb.2021.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Congenital Heart Disease (CHD), malformations of the heart present at birth, is the most common class of life-threatening birth defect (Hoffman (1995) [1], Gelb (2004) [2], Gelb (2014) [3]). A major research challenge is to elucidate the genetic determinants of CHD and mechanistically link CHD ontogeny to a molecular understanding of heart development. Although the embryonic origins of CHD are unclear in most cases, dysregulation of cardiovascular lineage specification, patterning, proliferation, migration or differentiation have been described (Olson (2004) [4], Olson (2006) [5], Srivastava (2006) [6], Dunwoodie (2007) [7], Bruneau (2008) [8]). Cardiac differentiation is the process whereby cells become progressively more dedicated in a trajectory through the cardiac lineage towards mature cardiomyocytes. Defects in cardiac differentiation have been linked to CHD, although how the complex control of cardiac differentiation prevents CHD is just beginning to be understood. The stages of cardiac differentiation are highly stereotyped and have been well-characterized (Kattman et al. (2011) [9], Wamstad et al. (2012) [10], Luna-Zurita et al. (2016) [11], Loh et al. (2016) [12], DeLaughter et al. (2016) [13]); however, the developmental and molecular mechanisms that promote or delay the transition of a cell through these stages have not been as deeply investigated. Tight temporal control of progenitor differentiation is critically important for normal organ size, spatial organization, and cellular physiology and homeostasis of all organ systems (Raff et al. (1985) [14], Amthor et al. (1998) [15], Kopan et al. (2014) [16]). This review will focus on the action of signaling pathways in the control of cardiomyocyte differentiation timing. Numerous signaling pathways, including the Wnt, Fibroblast Growth Factor, Hedgehog, Bone Morphogenetic Protein, Insulin-like Growth Factor, Thyroid Hormone and Hippo pathways, have all been implicated in promoting or inhibiting transitions along the cardiac differentiation trajectory. Gaining a deeper understanding of the mechanisms controlling cardiac differentiation timing promises to yield insights into the etiology of CHD and to inform approaches to restore function to damaged hearts.
Collapse
|
33
|
Cho SW, Kim HK, Sung JH, Han J. Stage specific transcriptome profiles at cardiac lineage commitment during cardiomyocyte differentiation from mouse and human pluripotent stem cells. BMB Rep 2021. [PMID: 34120677 PMCID: PMC8505231 DOI: 10.5483/bmbrep.2021.54.9.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cardiomyocyte differentiation occurs through complex and finely regulated processes including cardiac lineage commitment and maturation from pluripotent stem cells (PSCs). To gain some insight into the genome-wide characteristics of cardiac lineage commitment, we performed transcriptome analysis on both mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs) at specific stages of cardiomyocyte differentiation. Specifically, the gene expression profiles and the protein–protein interaction networks of the mESC-derived platelet-derived growth factor receptor-alpha (PDGFRα)+ cardiac lineage-committed cells (CLCs) and hiPSC-derived kinase insert domain receptor (KDR)+ and PDGFRα+ cardiac progenitor cells (CPCs) at cardiac lineage commitment were compared with those of mesodermal cells and differentiated cardiomyocytes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the genes significantly upregulated at cardiac lineage commitment were associated with responses to organic substances and external stimuli, extracellular and myocardial contractile components, receptor binding, gated channel activity, PI3K‑AKT signaling, and cardiac hypertrophy and dilation pathways. Protein–protein interaction network analysis revealed that the expression levels of genes that regulate cardiac maturation, heart contraction, and calcium handling showed a consistent increase during cardiac differentiation; however, the expression levels of genes that regulate cell differentiation and multicellular organism development decreased at the cardiac maturation stage following lineage commitment. Additionally, we identified for the first time the protein–protein interaction network connecting cardiac development, the immune system, and metabolism during cardiac lineage commitment in both mESC-derived PDGFRα+ CLCs and hiPSC-derived KDR+PDGFRα+ CPCs. These findings shed light on the regulation of cardiac lineage commitment and the pathogenesis of cardiometabolic diseases.
Collapse
Affiliation(s)
- Sung Woo Cho
- Division of Cardiology, Department of Internal Medicine, Inje University College of Medicine, Ilsan Paik Hospital Vision 21 Cardiac & Vascular Center, Goyang 10380, Korea
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University College of Medicine, Busan 47392, Korea
| | - Hyoung Kyu Kim
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University College of Medicine, Busan 47392, Korea
- Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, Inje University College of Medicine, Busan 47392, Korea
| | - Ji Hee Sung
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University College of Medicine, Busan 47392, Korea
- Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, Inje University College of Medicine, Busan 47392, Korea
| | - Jin Han
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University College of Medicine, Busan 47392, Korea
- Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, Inje University College of Medicine, Busan 47392, Korea
| |
Collapse
|
34
|
Wangsanuwat C, Chialastri A, Aldeguer JF, Rivron NC, Dey SS. A probabilistic framework for cellular lineage reconstruction using integrated single-cell 5-hydroxymethylcytosine and genomic DNA sequencing. CELL REPORTS METHODS 2021; 1:100060. [PMID: 34590075 PMCID: PMC8478284 DOI: 10.1016/j.crmeth.2021.100060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 06/08/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022]
Abstract
Lineage reconstruction is central to understanding tissue development and maintenance. To overcome the limitations of current techniques that typically reconstruct clonal trees using genetically encoded reporters, we report scPECLR, a probabilistic algorithm to endogenously infer lineage trees at a single-cell-division resolution by using 5-hydroxymethylcytosine (5hmC). When applied to 8-cell pre-implantation mouse embryos, scPECLR predicts the full lineage tree with greater than 95% accuracy. In addition, we developed scH&G-seq to sequence both 5hmC and genomic DNA from the same cell. Given that genomic DNA sequencing yields information on both copy number variations and single-nucleotide polymorphisms, when combined with scPECLR it enables more accurate lineage reconstruction of larger trees. Finally, we show that scPECLR can also be used to map chromosome strand segregation patterns during cell division, thereby providing a strategy to test the "immortal strand" hypothesis. Thus, scPECLR provides a generalized method to endogenously reconstruct lineage trees at an individual-cell-division resolution.
Collapse
Affiliation(s)
- Chatarin Wangsanuwat
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Alex Chialastri
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Javier F. Aldeguer
- Hubrecht Institute – KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nicolas C. Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Siddharth S. Dey
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
35
|
Dynamic landscape of chromatin accessibility and transcriptomic changes during differentiation of human embryonic stem cells into dopaminergic neurons. Sci Rep 2021; 11:16977. [PMID: 34417498 PMCID: PMC8379280 DOI: 10.1038/s41598-021-96263-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Chromatin architecture influences transcription by modulating the physical access of regulatory factors to DNA, playing fundamental roles in cell identity. Studies on dopaminergic differentiation have identified coding genes, but the relationship with non-coding genes or chromatin accessibility remains elusive. Using RNA-Seq and ATAC-Seq we profiled differentially expressed transcripts and open chromatin regions during early dopaminergic neuron differentiation. Hierarchical clustering of differentially expressed genes, resulted in 6 groups with unique characteristics. Surprisingly, the abundance of long non-coding RNAs (lncRNAs) was high in the most downregulated transcripts, and depicted positive correlations with target mRNAs. We observed that open chromatin regions decrease upon differentiation. Enrichment analyses of accessibility depict an association between open chromatin regions and specific functional pathways and gene-sets. A bioinformatic search for motifs allowed us to identify transcription factors and structural nuclear proteins that potentially regulate dopaminergic differentiation. Interestingly, we also found changes in protein and mRNA abundance of the CCCTC-binding factor, CTCF, which participates in genome organization and gene expression. Furthermore, assays demonstrated co-localization of CTCF with Polycomb-repressed chromatin marked by H3K27me3 in pluripotent cells, progressively decreasing in neural precursor cells and differentiated neurons. Our work provides a unique resource of transcription factors and regulatory elements, potentially involved in the acquisition of human dopaminergic neuron cell identity.
Collapse
|
36
|
Xu Q, Georgiou G, Frölich S, van der Sande M, Veenstra G, Zhou H, van Heeringen S. ANANSE: an enhancer network-based computational approach for predicting key transcription factors in cell fate determination. Nucleic Acids Res 2021; 49:7966-7985. [PMID: 34244796 PMCID: PMC8373078 DOI: 10.1093/nar/gkab598] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
Proper cell fate determination is largely orchestrated by complex gene regulatory networks centered around transcription factors. However, experimental elucidation of key transcription factors that drive cellular identity is currently often intractable. Here, we present ANANSE (ANalysis Algorithm for Networks Specified by Enhancers), a network-based method that exploits enhancer-encoded regulatory information to identify the key transcription factors in cell fate determination. As cell type-specific transcription factors predominantly bind to enhancers, we use regulatory networks based on enhancer properties to prioritize transcription factors. First, we predict genome-wide binding profiles of transcription factors in various cell types using enhancer activity and transcription factor binding motifs. Subsequently, applying these inferred binding profiles, we construct cell type-specific gene regulatory networks, and then predict key transcription factors controlling cell fate transitions using differential networks between cell types. This method outperforms existing approaches in correctly predicting major transcription factors previously identified to be sufficient for trans-differentiation. Finally, we apply ANANSE to define an atlas of key transcription factors in 18 normal human tissues. In conclusion, we present a ready-to-implement computational tool for efficient prediction of transcription factors in cell fate determination and to study transcription factor-mediated regulatory mechanisms. ANANSE is freely available at https://github.com/vanheeringen-lab/ANANSE.
Collapse
Affiliation(s)
- Quan Xu
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| | - Georgios Georgiou
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| | - Siebren Frölich
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| | - Maarten van der Sande
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| | - Gert Jan C Veenstra
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| | - Huiqing Zhou
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
- Radboud University Medical Center, Department of Human Genetics, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| | - Simon J van Heeringen
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| |
Collapse
|
37
|
Simmons AD, Palecek SP. Rational, Unbiased Selection of Reference Genes for Pluripotent Stem Cell-Derived Cardiomyocytes. Tissue Eng Part C Methods 2021; 27:322-336. [PMID: 33843289 DOI: 10.1089/ten.tec.2021.0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reverse transcription, quantitative polymerase chain reaction (RT-qPCR) is a powerful technique to quantify gene expression by transcript abundance. Expression of target genes is normalized to expression of stable reference genes to account for sample preparation variability. Thus, the identification and validation of stably expressed reference genes is crucial for making accurate, quantitative, statistical conclusions in gene expression studies. Traditional housekeeping genes identified decades ago based on high and relatively stable expression are often used, although many have shown these to not be valid, particularly in highly dynamic systems such as stem cell differentiation. In this study we outline a rational approach to identify stable reference genes valid throughout human pluripotent stem cell (hPSC) differentiation to hPSC-derived cardiomyocytes (hPSC-CMs). Several publicly available transcriptomic data sets were analyzed to identify genes with low variability in expression throughout differentiation. These putative novel reference genes were subsequently validated in RT-qPCR analyses to assess their stability under various perturbations, including maturation during extended culture, lactate purification, and various differentiation efficiencies. Expression in hPSC-CMs was also compared with whole human heart tissue. A core set of three novel reference genes (EDF1, DDB1, and ZNF384) exhibited robust stability across the conditions tested, whereas expression of the traditional housekeeping genes tested (ACTB, B2M, GAPDH, and RPL13A) varied significantly under these conditions. Impact statement This article presents an unbiased method for the selection and validation of novel reference genes for real-time quantitative polymerase chain reaction normalization using data from RNA sequencing datasets. This method identified more robust and stable reference genes for gene expression studies during human pluripotent stem cell differentiation to cardiomyocytes than commonly used reference genes. This study also provides a roadmap for identifying reference genes for assessing gene expression during other dynamic cellular processes, including stem cell differentiation to other cell types.
Collapse
Affiliation(s)
- Aaron D Simmons
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
38
|
Fan T, Huang Y. Accessible chromatin reveals regulatory mechanisms underlying cell fate decisions during early embryogenesis. Sci Rep 2021; 11:7896. [PMID: 33846424 PMCID: PMC8042068 DOI: 10.1038/s41598-021-86919-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
This study was conducted to investigate epigenetic landscape across multiple species and identify transcription factors (TFs) and their roles in controlling cell fate decision events during early embryogenesis. We made a comprehensively joint-research of chromatin accessibility of five species during embryogenesis by integration of ATAC-seq and RNA-seq datasets. Regulatory roles of candidate early embryonic TFs were investigated. Widespread accessible chromatin in early embryos overlapped with putative cis-regulatory sequences. Sets of cell-fate-determining TFs were identified. YOX1, a key cell cycle regulator, were found to homologous to clusters of TFs that are involved in neuron and epidermal cell-fate determination. Our research provides an intriguing insight into evolution of cell-fate decision during early embryogenesis among organisms.
Collapse
Affiliation(s)
- Tongqiang Fan
- grid.443483.c0000 0000 9152 7385State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 People’s Republic of China
| | - Youjun Huang
- grid.443483.c0000 0000 9152 7385State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 People’s Republic of China
| |
Collapse
|
39
|
Gacita AM, Fullenkamp DE, Ohiri J, Pottinger T, Puckelwartz MJ, Nobrega MA, McNally EM. Genetic Variation in Enhancers Modifies Cardiomyopathy Gene Expression and Progression. Circulation 2021; 143:1302-1316. [PMID: 33478249 PMCID: PMC8009836 DOI: 10.1161/circulationaha.120.050432] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Inherited cardiomyopathy associates with a range of phenotypes, mediated by genetic and nongenetic factors. Noninherited cardiomyopathy also displays varying progression and outcomes. Expression of cardiomyopathy genes is under the regulatory control of promoters and enhancers, and human genetic variation in promoters and enhancers may contribute to this variability. METHODS We superimposed epigenomic profiling from hearts and cardiomyocytes, including promoter-capture chromatin conformation information, to identify enhancers for 2 cardiomyopathy genes, MYH7 and LMNA. Enhancer function was validated in human cardiomyocytes derived from induced pluripotent stem cells. We also conducted a genome-wide search to ascertain genomic variation in enhancers positioned to alter cardiac expression and correlated one of these variants to cardiomyopathy progression using biobank data. RESULTS Multiple enhancers were identified and validated for LMNA and MYH7, including a key enhancer that regulates the switch from MYH6 expression to MYH7 expression. Deletion of this enhancer resulted in a dose-dependent increase in MYH6 and faster contractile rate in engineered heart tissues. We searched for genomic variation in enhancer sequences across the genome, with a focus on nucleotide changes that create or interrupt transcription factor binding sites. The sequence variant, rs875908, disrupts a T-Box Transcription Factor 5 binding motif and maps to an enhancer region 2 kilobases from the transcriptional start site of MYH7. Gene editing to remove the enhancer that harbors this variant markedly reduced MYH7 expression in human cardiomyocytes. Using biobank-derived data, rs875908 associated with longitudinal echocardiographic features of cardiomyopathy. CONCLUSIONS Enhancers regulate cardiomyopathy gene expression, and genomic variation within these enhancer regions associates with cardiomyopathic progression over time. This integrated approach identified noncoding modifiers of cardiomyopathy and is applicable to other cardiac genes.
Collapse
Affiliation(s)
- Anthony M. Gacita
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Dominic E. Fullenkamp
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Joyce Ohiri
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Tess Pottinger
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Megan J. Puckelwartz
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | | | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| |
Collapse
|
40
|
Lv R, Wang Y, Lin B, Peng X, Liu J, Lü WD, Tian J. Targeted Luminescent Probes for Precise Upconversion/NIR II Luminescence Diagnosis of Lung Adenocarcinoma. Anal Chem 2021; 93:4984-4992. [PMID: 33705098 DOI: 10.1021/acs.analchem.1c00374] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this research, the antibody of the searched hub genes has been proposed to combine with a rare-earth composite for an upconversion luminescence (UCL) and downconversion (DCL) NIR-II imaging strategy for the diagnosis of lung adenocarcinoma (LUAD). Weighted gene co-expression network analysis is used to search the most relevant hub genes, and the required top genes that contribute to tumorigenesis (negative: CLEC3B, MFAP4, PECAM1, and FHL1; positive: CCNB2, CDCA5, HMMR, and TOP2A) are identified and validated by survival analysis and transcriptional and translational results. Meanwhile, fluorescence imaging probes (NaYF4:Yb,Er,Eu@NaYF4:Nd, denoted as NYF:Eu NPs) with multimodal optical imaging properties of downconversion and upconversion luminescence in the visible region and luminescence in the near infrared II region are designed with various uniform sizes and enhanced penetration and sensitivity. Finally, when the NYF:Eu NP probe is combined with antibodies of these chosen positive hub genes (such as, TOP2A and CCNB2), the in vitro and in vivo animal experiments (flow cytometry, cell counting kit-8 assay using A549 cells, and in vivo immunohistochemistry IHC microscopy images of LUAD from patient cases) indicate that the designed nanoprobes can be excellently used as a targeted optical probe for future accurate diagnosis and surgery navigation of LUAD in contrast with other cancer cells and normal cells. This strategy of antibodies combined with optical probes provides a dual-modal luminescence imaging method for precise medicine.
Collapse
Affiliation(s)
- Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China
| | - Yanxing Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China
| | - Xiangrong Peng
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China
| | - Jun Liu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China
| | - Wei-Dong Lü
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
41
|
Yuan X, Scott IC, Wilson MD. Heart Enhancers: Development and Disease Control at a Distance. Front Genet 2021; 12:642975. [PMID: 33777110 PMCID: PMC7987942 DOI: 10.3389/fgene.2021.642975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Bound by lineage-determining transcription factors and signaling effectors, enhancers play essential roles in controlling spatiotemporal gene expression profiles during development, homeostasis and disease. Recent synergistic advances in functional genomic technologies, combined with the developmental biology toolbox, have resulted in unprecedented genome-wide annotation of heart enhancers and their target genes. Starting with early studies of vertebrate heart enhancers and ending with state-of-the-art genome-wide enhancer discovery and testing, we will review how studying heart enhancers in metazoan species has helped inform our understanding of cardiac development and disease.
Collapse
Affiliation(s)
- Xuefei Yuan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ian C. Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael D. Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
42
|
He J, Babarinde IA, Sun L, Xu S, Chen R, Shi J, Wei Y, Li Y, Ma G, Zhuang Q, Hutchins AP, Chen J. Identifying transposable element expression dynamics and heterogeneity during development at the single-cell level with a processing pipeline scTE. Nat Commun 2021; 12:1456. [PMID: 33674594 PMCID: PMC7935913 DOI: 10.1038/s41467-021-21808-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) make up a majority of a typical eukaryote’s genome, and contribute to cell heterogeneity in unclear ways. Single-cell sequencing technologies are powerful tools to explore cells, however analysis is typically gene-centric and TE expression has not been addressed. Here, we develop a single-cell TE processing pipeline, scTE, and report the expression of TEs in single cells in a range of biological contexts. Specific TE types are expressed in subpopulations of embryonic stem cells and are dynamically regulated during pluripotency reprogramming, differentiation, and embryogenesis. Unexpectedly, TEs are expressed in somatic cells, including human disease-specific TEs that are undetectable in bulk analyses. Finally, we apply scTE to single-cell ATAC-seq data, and demonstrate that scTE can discriminate cell type using chromatin accessibly of TEs alone. Overall, our results classify the dynamic patterns of TEs in single cells and their contributions to cell heterogeneity. How transposable elements (TE) contribute to cell fate changes is unclear. Here, the authors generate a pipeline to quantify TE expression from single cell data. They show the dynamic expression of TEs from gastrulation to somatic cell reprogramming and human disease
Collapse
Affiliation(s)
- Jiangping He
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Isaac A Babarinde
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Li Sun
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Shuyang Xu
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ruhai Chen
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Junjie Shi
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuanjie Wei
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yuhao Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Gang Ma
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Qiang Zhuang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Andrew P Hutchins
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.
| | - Jiekai Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China. .,Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
43
|
Lam CK, Wu JC. Clinical Trial in a Dish: Using Patient-Derived Induced Pluripotent Stem Cells to Identify Risks of Drug-Induced Cardiotoxicity. Arterioscler Thromb Vasc Biol 2021; 41:1019-1031. [PMID: 33472401 PMCID: PMC11006431 DOI: 10.1161/atvbaha.120.314695] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-induced cardiotoxicity is a significant clinical issue, with many drugs in the market being labeled with warnings on cardiovascular adverse effects. Treatments are often prematurely halted when cardiotoxicity is observed, which limits their therapeutic potential. Moreover, cardiotoxicity is a major reason for abandonment during drug development, reducing available treatment options for diseases and creating a significant financial burden and disincentive for drug developers. Thus, it is important to minimize the cardiotoxic effects of medications that are in use or in development. To this end, identifying patients at a higher risk of developing cardiovascular adverse effects for the drug of interest may be an effective strategy. The discovery of human induced pluripotent stem cells has enabled researchers to generate relevant cell types that retain a patient's own genome and examine patient-specific disease mechanisms, paving the way for precision medicine. Combined with the rapid development of pharmacogenomic analysis, the ability of induced pluripotent stem cell-derivatives to recapitulate patient-specific drug responses provides a powerful platform to identify subsets of patients who are particularly vulnerable to drug-induced cardiotoxicity. In this review, we will discuss the current use of patient-specific induced pluripotent stem cells in identifying populations who are at risk to drug-induced cardiotoxicity and their potential applications in future precision medicine practice. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Chi Keung Lam
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
44
|
Varshney A, Chahal G, Santos L, Stolper J, Hallab JC, Nim HT, Nikolov M, Yip A, Ramialison M. Human Cardiac Transcription Factor Networks. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
45
|
Wang L, Yuan W, Huang J. Identification of Myocardial Infarction-Associated Genes Using Integrative microRNA-Gene Expression Network Analysis. DNA Cell Biol 2020; 40:348-358. [PMID: 33395357 DOI: 10.1089/dna.2020.6222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It is crucial to identify potential molecular targets and their interaction involved in myocardial infarction (MI). In our study, we obtained microarray data of MI from GEO database and identify differentially expressed mRNAs and microRNAs (miRNAs). Compared with normal tissues, 686 mRNAs and 16 miRNAs were differentially expressed in MI. Subsequently, function enrichment analysis was performed to further investigate their biological functions. Also, gene set enrichment analysis indicated they were enriched into Pathway in cancer. Besides, protein-protein interaction analysis was performed to assess the interactions of the differentially expressed mRNAs. Finally, we constructed an mRNA-miRNA interaction network based on the overlapping genes between the differentially expressed mRNAs and predicted target genes of dysregulated miRNAs. The network demonstrated three MI-associated miRNAs, miR-498, miR-181a, and miR-612, and 45 novel target genes, as well as their interaction involved in MI. What is more, in vitro and in vivo quantitative real-time PCR confirmed our results were consistent. In conclusion, miR-498, miR-181a, and miR-612 may participate in the pathogenesis of MI and may serve as the potential therapeutic targets or biomarkers.
Collapse
Affiliation(s)
- Long Wang
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Yuan
- Department of Cardiology, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Jinyu Huang
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
46
|
Li H, Zou J, Yu XH, Ou X, Tang CK. Zinc finger E-box binding homeobox 1 and atherosclerosis: New insights and therapeutic potential. J Cell Physiol 2020; 236:4216-4230. [PMID: 33275290 DOI: 10.1002/jcp.30177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022]
Abstract
Zinc finger E-box binding homeobox 1 (ZEB1), an important transcription factor belonging to the ZEB family, plays a crucial role in regulating gene expression required for both normal physiological and pathological processes. Accumulating evidence has shown that ZEB1 participates in the initiation and progression of atherosclerotic cardiovascular disease. Recent studies suggest that ZEB1 protects against atherosclerosis by regulation of endothelial cell angiogenesis, endothelial dysfunction, monocyte-endothelial cell interaction, macrophage lipid accumulation, macrophage polarization, monocyte-vascular smooth muscle cell (VSMC) interaction, VSMC proliferation and migration, and T cell proliferation. In this review, we summarize the recent progress of ZEB1 in the pathogenesis of atherosclerosis and provide insights into the prevention and treatment of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Instrument and Equipment Technology Laboratory of Hengyang Medical College, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Instrument and Equipment Technology Laboratory of Hengyang Medical College, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China.,Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiang Ou
- Department of Endocrinology, The First Hospital of Changsha, Changsha, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Instrument and Equipment Technology Laboratory of Hengyang Medical College, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
47
|
Ma Z, Shen Z, Gong Y, Zhou J, Chen X, Lv Q, Wang M, Chen J, Yu M, Fu G, He H, Lai D. Weighted gene co-expression network analysis identified underlying hub genes and mechanisms in the occurrence and development of viral myocarditis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1348. [PMID: 33313093 PMCID: PMC7723587 DOI: 10.21037/atm-20-3337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Myocarditis is an inflammatory myocardial disease, which may lead to heart failure and sudden death. Despite extensive research into the pathogenesis of myocarditis, effective treatments for this condition remain elusive. This study aimed to explore the potential pathogenesis and hub genes for viral myocarditis. Methods A weighted gene co-expression network analysis (WGCNA) was performed based on the gene expression profiles derived from mouse models at different stages of viral myocarditis (GSE35182). Functional annotation was executed within the key modules. Potential hub genes were predicted based on the intramodular connectivity (IC). Finally, potential microRNAs that regulate gene expression were predicted by miRNet analysis. Results Three gene co-expression modules showed the strongest correlation with the acute or chronic disease stage. A significant positive correlation was detected between the acute disease stage and the turquoise module, the genes of which were mainly enriched in antiviral response and immune-inflammatory activation. Furthermore, a significant positive correlation and a negative correlation were identified between the chronic disease stage and the brown and yellow modules, respectively. These modules were mainly associated with the cytoskeleton, phosphorylation, cellular catabolic process, and autophagy. Subsequently, we predicted the underlying hub genes and microRNAs in the three modules. Conclusions This study revealed the main biological processes in different stages of viral myocarditis and predicted hub genes in both the acute and chronic disease stages. Our results may be helpful for developing new therapeutic targets for viral myocarditis in future research.
Collapse
Affiliation(s)
- Zetao Ma
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhida Shen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingchao Gong
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoou Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingbo Lv
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meihui Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiawen Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mei Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong He
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongwu Lai
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
48
|
Wu G, Xia P, Yan S, Chen D, Xie L, Fan G. Identification of unique long non-coding RNAs as putative biomarkers for chromophobe renal cell carcinoma. Per Med 2020; 18:9-19. [PMID: 33052074 DOI: 10.2217/pme-2020-0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To investigate whether long non-coding RNAs (lncRNAs) can be utilized as molecular biomarkers in predicting the occurrence and progression of chromophobe renal cell carcinoma. Methods & results: Genetic and related clinical traits of chromophobe renal cell carcinoma were downloaded from the Cancer Genome Atlas and used to construct modules using weighted gene coexpression network analysis. In total, 44,889 genes were allocated into 21 coexpression modules depending on intergenic correlation. Among them, the green module was the most significant key module identified by module-trait correlation calculations (R2 = 0.43 and p = 4e-04). Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses demonstrated that genes in the green module were enriched in many pathways. Coexpression, protein-protein interaction networks, screening for differentially expressed genes, and survival analysis were used to select hub lncRNAs. Five hub lncRNAs (TTK, CENPE, KIF2C, BUB1, and RAD51AP1) were selected out. Conclusion: Our findings suggest that the five lncRNAs may act as potential biomarkers for chromophobe renal cell carcinoma progression and prognosis.
Collapse
Affiliation(s)
- Guanlin Wu
- Experimental & Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin-Buch, Germany.,Max DelbrückCenter for Molecular Medicine (MDC) in the Helmholtz Association, Berlin-Buch, Germany
| | - Pengfei Xia
- Max DelbrückCenter for Molecular Medicine (MDC) in the Helmholtz Association, Berlin-Buch, Germany
| | - Shixian Yan
- Experimental & Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin-Buch, Germany.,Max DelbrückCenter for Molecular Medicine (MDC) in the Helmholtz Association, Berlin-Buch, Germany
| | - Dongming Chen
- Department of Cerebral Surgery, First People's Hospital of Tianmen, Tianmen, PR China
| | - Lei Xie
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, PR China
| | - Gang Fan
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, PR China.,The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, PR China
| |
Collapse
|
49
|
Wang Y, Yi N, Hu Y, Zhou X, Jiang H, Lin Q, Chen R, Liu H, Gu Y, Tong C, Lu M, Zhang J, Zhang B, Peng L, Li L. Molecular Signatures and Networks of Cardiomyocyte Differentiation in Humans and Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:696-711. [PMID: 32769060 PMCID: PMC7412763 DOI: 10.1016/j.omtn.2020.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/05/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022]
Abstract
Cardiomyocyte differentiation derived from embryonic stem cells (ESCs) is a complex process involving molecular regulation of multiple levels. In this study, we first identify and compare differentially expressed gene (DEG) signatures of ESC-derived cardiomyocyte differentiation (ESCDCD) in humans and mice. Then, the multiscale embedded gene co-expression network analysis (MEGENA) of the human ESCDCD dataset is performed to identify 212 significantly co-expressed gene modules, which capture well the regulatory information of cardiomyocyte differentiation. Three modules respectively involved in the regulation of stem cell pluripotency, Wnt, and calcium pathways are enriched in the DEG signatures of the differentiation phase transition in the two species. Three human-specific cardiomyocyte differentiation phase transition modules are identified. Moreover, the potential regulation mechanisms of transcription factors during cardiomyocyte differentiation are also illustrated. Finally, several novel key drivers of ESCDCD are identified with the evidence of their expression during mouse embryonic cardiomyocyte differentiation. Using an integrative network analysis, the core molecular signatures and gene subnetworks (modules) underlying cardiomyocyte lineage commitment are identified in both humans and mice. Our findings provide a global picture of gene-gene co-regulation and identify key regulators during ESCDCD.
Collapse
Affiliation(s)
- Yumei Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Na Yi
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Yi Hu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Hanyu Jiang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qin Lin
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Rou Chen
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Huan Liu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Yanqiong Gu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Chang Tong
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Min Lu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Junfang Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China.
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China.
| |
Collapse
|
50
|
Jha R, Li D, Wu Q, Ferguson KE, Forghani P, Gibson GC, Xu C. A long non-coding RNA GATA6-AS1 adjacent to GATA6 is required for cardiomyocyte differentiation from human pluripotent stem cells. FASEB J 2020; 34:14336-14352. [PMID: 32888237 DOI: 10.1096/fj.202000206r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/26/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs (lncRNAs) are crucial in many cellular processes, yet relatively few have been shown to regulate human cardiomyocyte differentiation. Here, we demonstrate an essential role of GATA6 antisense RNA 1 (GATA6-AS1) in cardiomyocyte differentiation from human pluripotent stem cells (hPSCs). GATA6-AS1 is adjacent to cardiac transcription factor GATA6. We found that GATA6-AS1 was nuclear-localized and transiently upregulated along with GATA6 during the early stage of cardiomyocyte differentiation. The knockdown of GATA6-AS1 did not affect undifferentiated cell pluripotency but inhibited cardiomyocyte differentiation, as indicated by no or few beating cardiomyocytes and reduced expression of cardiomyocyte-specific proteins. Upon cardiac induction, the knockdown of GATA6-AS1 decreased GATA6 expression, altered Wnt-signaling gene expression, and reduced mesoderm development. Further characterization of the intergenic region between genomic regions of GATA6-AS1 and GATA6 indicated that the expression of GATA6-AS1 and GATA6 were regulated by a bidirectional promoter within the intergenic region. Consistently, GATA6-AS1 and GATA6 were co-expressed in several human tissues including the heart, similar to the mirror expression pattern of GATA6-AS1 and GATA6 during cardiomyocyte differentiation. Overall, these findings reveal a previously unrecognized and functional role of lncRNA GATA6-AS1 in controlling human cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Rajneesh Jha
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Dong Li
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Qingling Wu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Katherine E Ferguson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Parvin Forghani
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Gregory C Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Chunhui Xu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| |
Collapse
|