1
|
Hirai K, Sawada R, Hayashi T, Araki T, Nakagawa N, Kondo M, Yasuda K, Hirata T, Sato T, Nakatsuka Y, Yoshida M, Kasahara S, Baba K, Oh H. Eight-Year Outcomes of Cardiosphere-Derived Cells in Single Ventricle Congenital Heart Disease. J Am Heart Assoc 2024; 13:e038137. [PMID: 39526355 DOI: 10.1161/jaha.124.038137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Cardiosphere-derived cell (CDC) infusion was associated with better clinical outcomes at 2 years in patients with single ventricle heart disease. The current study investigates time-to-event outcomes at 8 years. METHODS AND RESULTS This cohort enrolled patients with single ventricles who underwent stage 2 or stage 3 palliation from January 2011 to January 2015 at 8 centers in Japan. The primary outcomes were time-dependent CDC treatment effects on death and late complications during 8 years of follow-up, assessed by restricted mean survival time. Among 93 patients enrolled (mean age, 2.3±1.3 years; 56% men), 40 received CDC infusion. Overall survival for CDC-treated versus control patients did not differ at 8 years (hazard ratio [HR], 0.60 [95% CI, 0.21-1.77]; P=0.35). Treatment effect had nonproportional hazards for death favoring CDCs at 4 years (restricted mean survival time difference +0.33 years [95% CI, 0.01-0.66]; P=0.043). In patients with heart failure with reduced ejection fraction, CDC treatment effect on survival was greater over 8 years (restricted mean survival time difference +1.58 years [95% CI, 0.05-3.12]; P=0.043). Compared with control participants, CDC-treated patients showed lower incidences of late failure (HR, 0.45 [95% CI, 0.21-0.93]; P=0.027) and adverse events (subdistribution HR, 0.50 [95% CI, 0.27-0.94]; P=0.036) at 8 years. CONCLUSIONS By 8 years, CDC infusion was associated with lower hazards of late failure and adverse events in single ventricle heart disease. CDC treatment effect on survival was notable by 4 years and showed a durable clinical benefit in patients with heart failure with reduced ejection fraction over 8 years. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifiers: NCT01273857 and NCT01829750.
Collapse
Affiliation(s)
- Kenta Hirai
- Department of Pediatrics Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
- Department of Regenerative Medicine, Center for Innovative Clinical Medicine Okayama University Hospital Okayama Japan
| | - Ryusuke Sawada
- Department of Pharmacology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Tomohiro Hayashi
- Department of Pediatrics Kurashiki Central Hospital Okayama Japan
| | - Toru Araki
- Department of Pediatrics National Hospital Organization Fukuyama Medical Center Hiroshima Japan
| | - Naomi Nakagawa
- Department of Pediatric Cardiology Hiroshima City Hiroshima Citizens Hospital Hiroshima Japan
| | - Maiko Kondo
- Department of Pediatrics Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
- Department of Pediatrics Kochi Health Sciences Center Kochi Japan
| | - Kenji Yasuda
- Department of Pediatrics Shimane University Faculty of Medicine Izumo Shimane Japan
| | - Takuya Hirata
- Department of Pediatrics Kyoto University Graduate School of Medicine Kyoto Japan
| | - Tomoyuki Sato
- Department of Pediatrics Jichi Medical University Tochigi Japan
| | - Yuki Nakatsuka
- Department of Data Science, Center for Innovative Clinical Medicine Okayama University Hospital Okayama Japan
| | - Michihiro Yoshida
- Department of Data Science, Center for Innovative Clinical Medicine Okayama University Hospital Okayama Japan
| | - Shingo Kasahara
- Department of Cardiovascular Surgery Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Kenji Baba
- Department of Pediatrics Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Hidemasa Oh
- Department of Regenerative Medicine, Center for Innovative Clinical Medicine Okayama University Hospital Okayama Japan
| |
Collapse
|
2
|
Liang J, He X, Wang Y. Cardiomyocyte proliferation and regeneration in congenital heart disease. PEDIATRIC DISCOVERY 2024; 2:e2501. [PMID: 39308981 PMCID: PMC11412308 DOI: 10.1002/pdi3.2501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/25/2024] [Indexed: 09/25/2024]
Abstract
Despite advances in prenatal screening and a notable decrease in mortality rates, congenital heart disease (CHD) remains the most prevalent congenital disorder in newborns globally. Current therapeutic surgical approaches face challenges due to the significant rise in complications and disabilities. Emerging cardiac regenerative therapies offer promising adjuncts for CHD treatment. One novel avenue involves investigating methods to stimulate cardiomyocyte proliferation. However, the mechanism of altered cardiomyocyte proliferation in CHD is not fully understood, and there are few feasible approaches to stimulate cardiomyocyte cell cycling for optimal healing in CHD patients. In this review, we explore recent progress in understanding genetic and epigenetic mechanisms underlying defective cardiomyocyte proliferation in CHD from development through birth. Targeting cell cycle pathways shows promise for enhancing cardiomyocyte cytokinesis, division, and regeneration to repair heart defects. Advancements in human disease modeling techniques, CRISPR-based genome and epigenome editing, and next-generation sequencing technologies will expedite the exploration of abnormal machinery governing cardiomyocyte differentiation, proliferation, and maturation across diverse genetic backgrounds of CHD. Ongoing studies on screening drugs that regulate cell cycling are poised to translate this nascent technology of enhancing cardiomyocyte proliferation into a new therapeutic paradigm for CHD surgical interventions.
Collapse
Affiliation(s)
- Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Xingyu He
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
3
|
Goto T, Ousaka D, Hirai K, Kotani Y, Kasahara S. Intravenous infusion of cardiac progenitor cells in animal models of single ventricular physiology. Eur J Cardiothorac Surg 2023; 64:ezad304. [PMID: 37824193 PMCID: PMC10576638 DOI: 10.1093/ejcts/ezad304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/17/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVES The goal of this study was to identify the practical applications of intravenous cell therapy for single-ventricle physiology (SVP) by establishing experimental SVP models. METHODS An SVP with a three-stage palliation was constructed in an acute swine model without cardiopulmonary bypass. A modified Blalock-Taussig (MBT) shunt was created using an aortopulmonary shunt with the superior and inferior venae cavae (SVC and IVC, respectively) connected to the left atrium (n = 10). A bidirectional cavopulmonary shunt (BCPS) was constructed using a graft between the IVC and the left atrium with an SVC cavopulmonary connection (n = 10). The SVC and the IVC were connected to the pulmonary artery to establish a total cavopulmonary connection (TCPC, n = 10). The survival times of half of the animal models were studied. The other half and the biventricular sham control (n = 5) were injected intravenously with cardiosphere-derived cells (CDCs), and the cardiac retention of CDCs was assessed after 2 h. RESULTS All SVP models died within 20 h. Perioperative mortality was higher in the BCPS group because of lower oxygen saturation (P < 0.001). Cardiac retention of intravenously delivered CDCs, as detected by magnetic resonance imaging and histologic analysis, was significantly higher in the modified Blalock-Taussig and BCPS groups than in the TCPC group (P < 0.01). CONCLUSIONS Without the total right heart exclusion, stage-specific SVP models can be functionally constructed in pigs with stable outcomes. Intravenous CDC injections may be applicable in patients with SVP before TCPC completion, given that the initial lung trafficking is efficiently bypassed and sufficient systemic blood flow is supplied from the single ventricle.
Collapse
Affiliation(s)
- Takuya Goto
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Daiki Ousaka
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Kenta Hirai
- Department of Cardiovascular Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Yasuhiro Kotani
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Shingo Kasahara
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| |
Collapse
|
4
|
Bragança J, Pinto R, Silva B, Marques N, Leitão HS, Fernandes MT. Charting the Path: Navigating Embryonic Development to Potentially Safeguard against Congenital Heart Defects. J Pers Med 2023; 13:1263. [PMID: 37623513 PMCID: PMC10455635 DOI: 10.3390/jpm13081263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Congenital heart diseases (CHDs) are structural or functional defects present at birth due to improper heart development. Current therapeutic approaches to treating severe CHDs are primarily palliative surgical interventions during the peri- or prenatal stages, when the heart has fully developed from faulty embryogenesis. However, earlier interventions during embryonic development have the potential for better outcomes, as demonstrated by fetal cardiac interventions performed in utero, which have shown improved neonatal and prenatal survival rates, as well as reduced lifelong morbidity. Extensive research on heart development has identified key steps, cellular players, and the intricate network of signaling pathways and transcription factors governing cardiogenesis. Additionally, some reports have indicated that certain adverse genetic and environmental conditions leading to heart malformations and embryonic death may be amendable through the activation of alternative mechanisms. This review first highlights key molecular and cellular processes involved in heart development. Subsequently, it explores the potential for future therapeutic strategies, targeting early embryonic stages, to prevent CHDs, through the delivery of biomolecules or exosomes to compensate for faulty cardiogenic mechanisms. Implementing such non-surgical interventions during early gestation may offer a prophylactic approach toward reducing the occurrence and severity of CHDs.
Collapse
Affiliation(s)
- José Bragança
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Rute Pinto
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| | - Bárbara Silva
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- PhD Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Nuno Marques
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| | - Helena S. Leitão
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| | - Mónica T. Fernandes
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- School of Health, University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
5
|
Correia CD, Ferreira A, Fernandes MT, Silva BM, Esteves F, Leitão HS, Bragança J, Calado SM. Human Stem Cells for Cardiac Disease Modeling and Preclinical and Clinical Applications—Are We on the Road to Success? Cells 2023; 12:1727. [DOI: https:/doi.org/10.3390/cells12131727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) are pointed out by the World Health Organization (WHO) as the leading cause of death, contributing to a significant and growing global health and economic burden. Despite advancements in clinical approaches, there is a critical need for innovative cardiovascular treatments to improve patient outcomes. Therapies based on adult stem cells (ASCs) and embryonic stem cells (ESCs) have emerged as promising strategies to regenerate damaged cardiac tissue and restore cardiac function. Moreover, the generation of human induced pluripotent stem cells (iPSCs) from somatic cells has opened new avenues for disease modeling, drug discovery, and regenerative medicine applications, with fewer ethical concerns than those associated with ESCs. Herein, we provide a state-of-the-art review on the application of human pluripotent stem cells in CVD research and clinics. We describe the types and sources of stem cells that have been tested in preclinical and clinical trials for the treatment of CVDs as well as the applications of pluripotent stem-cell-derived in vitro systems to mimic disease phenotypes. How human stem-cell-based in vitro systems can overcome the limitations of current toxicological studies is also discussed. Finally, the current state of clinical trials involving stem-cell-based approaches to treat CVDs are presented, and the strengths and weaknesses are critically discussed to assess whether researchers and clinicians are getting closer to success.
Collapse
Affiliation(s)
- Cátia D. Correia
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Anita Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- School of Health, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bárbara M. Silva
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Helena S. Leitão
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Sofia M. Calado
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
6
|
Correia CD, Ferreira A, Fernandes MT, Silva BM, Esteves F, Leitão HS, Bragança J, Calado SM. Human Stem Cells for Cardiac Disease Modeling and Preclinical and Clinical Applications-Are We on the Road to Success? Cells 2023; 12:1727. [PMID: 37443761 PMCID: PMC10341347 DOI: 10.3390/cells12131727] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Cardiovascular diseases (CVDs) are pointed out by the World Health Organization (WHO) as the leading cause of death, contributing to a significant and growing global health and economic burden. Despite advancements in clinical approaches, there is a critical need for innovative cardiovascular treatments to improve patient outcomes. Therapies based on adult stem cells (ASCs) and embryonic stem cells (ESCs) have emerged as promising strategies to regenerate damaged cardiac tissue and restore cardiac function. Moreover, the generation of human induced pluripotent stem cells (iPSCs) from somatic cells has opened new avenues for disease modeling, drug discovery, and regenerative medicine applications, with fewer ethical concerns than those associated with ESCs. Herein, we provide a state-of-the-art review on the application of human pluripotent stem cells in CVD research and clinics. We describe the types and sources of stem cells that have been tested in preclinical and clinical trials for the treatment of CVDs as well as the applications of pluripotent stem-cell-derived in vitro systems to mimic disease phenotypes. How human stem-cell-based in vitro systems can overcome the limitations of current toxicological studies is also discussed. Finally, the current state of clinical trials involving stem-cell-based approaches to treat CVDs are presented, and the strengths and weaknesses are critically discussed to assess whether researchers and clinicians are getting closer to success.
Collapse
Affiliation(s)
- Cátia D. Correia
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Anita Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- School of Health, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bárbara M. Silva
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Helena S. Leitão
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Sofia M. Calado
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
7
|
Enosawa S. Clinical Trials of Stem Cell Therapy in Japan: The Decade of Progress under the National Program. J Clin Med 2022; 11:7030. [PMID: 36498605 PMCID: PMC9736364 DOI: 10.3390/jcm11237030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Stem cell therapy is a current world-wide topic in medical science. Various therapies have been approved based on their effectiveness and put into practical use. In Japan, research and development-related stem cell therapy, generally referred to as regenerative medicine, has been led by the government. The national scheme started in 2002, and support for the transition to clinical trials has been accelerating since 2011. Of the initial 18 projects that were accepted in the budget for preclinical research, 15 projects have begun clinical trials so far. These include the transplantation of retinal, cardiac, and dopamine-producing cells differentiated from human induced pluripotent stem (iPS) cells and hepatocyte-like cells differentiated from human embryonic stem (ES) cells. The distinctive feature of the stem cell research in Japan is the use of iPS cells. A national framework was also been set-up to attain the final goal: health insurance coverage. Now, insurance covers cell transplantation therapies for the repair and recovery of damaged skin, articular cartilage, and stroke as well as therapies introduced from abroad, such as allogeneic mesenchymal stem cells for graft-versus-host disease and chimeric antigen receptor-T (CAR-T) cell therapy. To prepare this review, original information was sought from Japanese authentic websites, which are reliable but a little hard to access due to the fact of multiple less-organized databases and the language barrier. Then, each fact was corroborated by citing its English version or publication in international journals as much as possible. This review provides a summary of progress over the past decade under the national program and a state-of-the-art factual view of research activities, government policy, and regulation in Japan for the realization of stem cell therapy.
Collapse
Affiliation(s)
- Shin Enosawa
- Division for Advanced Medical Sciences, National Center for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
8
|
Ren J, Zhang N, Li X, Sun X, Song J. Identification of reference genes for gene expression studies among different developmental stages of murine hearts. BMC DEVELOPMENTAL BIOLOGY 2021; 21:13. [PMID: 34496746 PMCID: PMC8425138 DOI: 10.1186/s12861-021-00244-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/24/2021] [Indexed: 02/01/2023]
Abstract
Background Real-time quantitative polymerase chain reaction (RT-qPCR) is a widely-used standard assay for assessing gene expression. RT-qPCR data requires reference genes for normalization to make the results comparable. Therefore, the selected reference gene should be highly stable in its expression throughout the experimental datasets. So far, reports about the optimal set of reference genes in murine left ventricle (LV) across embryonic and postnatal stages are few. The objective of our research was to identify the appropriate reference genes in murine LV among different developmental stages. Methods We investigated the gene expression profiles of 21 widely used housekeeping genes in murine LV from 7 different developmental stages (almost throughout the whole period of the mouse lifespan). The stabilities of the potential reference genes were evaluated by five methods: GeNorm, NormFinder, BestKeeper, Delta-Ct and RefFinder. Results We proposed a set of reliable reference genes for normalization of RT-qPCR experimental data in different conditions. Furthermore, our results showed that 6 genes (18S, Hmbs, Ubc, Psmb4, Tfrc and Actb) are not recommended to be used as reference genes in murine LV development studies. The data also suggested that the Rplp0 gene might serve as an optimal reference gene in gene expression analysis. Conclusions Our study investigated the expression stability of the commonly used reference genes in process of LV development and maturation. We proposed a set of optimal reference genes that are suitable for accurate normalization of RT-qPCR data in specific conditions. Our findings may be helpful in future studies for investigating the gene expression patterns and mechanism of mammalian heart development. Supplementary Information The online version contains supplementary material available at 10.1186/s12861-021-00244-6.
Collapse
Affiliation(s)
- Jie Ren
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, People's Republic of China.
| | - Ningning Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, People's Republic of China
| | - Xiangjie Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, People's Republic of China
| | - Xiaogang Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, People's Republic of China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, People's Republic of China.
| |
Collapse
|
9
|
Gabriel GC, Devine W, Redel BK, Whitworth KM, Samuel M, Spate LD, Cecil RF, Prather RS, Wu Y, Wells KD, Lo CW. Cardiovascular Development and Congenital Heart Disease Modeling in the Pig. J Am Heart Assoc 2021; 10:e021631. [PMID: 34219463 PMCID: PMC8483476 DOI: 10.1161/jaha.121.021631] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Modeling cardiovascular diseases in mice has provided invaluable insights into the cause of congenital heart disease. However, the small size of the mouse heart has precluded translational studies. Given current high‐efficiency gene editing, congenital heart disease modeling in other species is possible. The pig is advantageous given its cardiac anatomy, physiology, and size are similar to human infants. We profiled pig cardiovascular development and generated genetically edited pigs with congenital heart defects. Methods and Results Pig conceptuses and fetuses were collected spanning 7 stages (day 20 to birth at day 115), with at least 3 embryos analyzed per stage. A combination of magnetic resonance imaging and 3‐dimensional histological reconstructions with episcopic confocal microscopy were conducted. Gross dissections were performed in late‐stage or term fetuses by using sequential segmental analysis of the atrial, ventricular, and arterial segments. At day 20, the heart has looped, forming a common atria and ventricle and an undivided outflow tract. Cardiac morphogenesis progressed rapidly, with atrial and outflow septation evident by day 26 and ventricular septation completed by day 30. The outflow and atrioventricular cushions seen at day 20 undergo remodeling to form mature valves, a process continuing beyond day 42. Genetically edited pigs generated with mutation in chromatin modifier SAP130 exhibited tricuspid dysplasia, with tricuspid atresia associated with early embryonic lethality. Conclusions The major events in pig cardiac morphogenesis are largely complete by day 30. The developmental profile is similar to human and mouse, indicating gene edited pigs may provide new opportunities for preclinical studies focused on outcome improvements for congenital heart disease.
Collapse
Affiliation(s)
- George C Gabriel
- Department of Developmental Biology University of Pittsburgh School of Medicine Pittsburgh PA
| | - William Devine
- Department of Developmental Biology University of Pittsburgh School of Medicine Pittsburgh PA
| | - Bethany K Redel
- Division of Animal Sciences Animal Science Research CenterNational Swine Resource and Research CenterUniversity of Missouri Columbia MO
| | - Kristin M Whitworth
- Division of Animal Sciences Animal Science Research CenterNational Swine Resource and Research CenterUniversity of Missouri Columbia MO
| | - Melissa Samuel
- Division of Animal Sciences Animal Science Research CenterNational Swine Resource and Research CenterUniversity of Missouri Columbia MO
| | - Lee D Spate
- Division of Animal Sciences Animal Science Research CenterNational Swine Resource and Research CenterUniversity of Missouri Columbia MO
| | - Raissa F Cecil
- Division of Animal Sciences Animal Science Research CenterNational Swine Resource and Research CenterUniversity of Missouri Columbia MO
| | - Randall S Prather
- Division of Animal Sciences Animal Science Research CenterNational Swine Resource and Research CenterUniversity of Missouri Columbia MO
| | - Yijen Wu
- Department of Developmental Biology University of Pittsburgh School of Medicine Pittsburgh PA
| | - Kevin D Wells
- Division of Animal Sciences Animal Science Research CenterNational Swine Resource and Research CenterUniversity of Missouri Columbia MO
| | - Cecilia W Lo
- Department of Developmental Biology University of Pittsburgh School of Medicine Pittsburgh PA
| |
Collapse
|
10
|
Hirai K, Ousaka D, Fukushima Y, Kondo M, Eitoku T, Shigemitsu Y, Hara M, Baba K, Iwasaki T, Kasahara S, Ohtsuki S, Oh H. Cardiosphere-derived exosomal microRNAs for myocardial repair in pediatric dilated cardiomyopathy. Sci Transl Med 2021; 12:12/573/eabb3336. [PMID: 33298561 DOI: 10.1126/scitranslmed.abb3336] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022]
Abstract
Although cardiosphere-derived cells (CDCs) improve cardiac function and outcomes in patients with single ventricle physiology, little is known about their safety and therapeutic benefit in children with dilated cardiomyopathy (DCM). We aimed to determine the safety and efficacy of CDCs in a porcine model of DCM and translate the preclinical results into this patient population. A swine model of DCM using intracoronary injection of microspheres created cardiac dysfunction. Forty pigs were randomized as preclinical validation of the delivery method and CDC doses, and CDC-secreted exosome (CDCex)-mediated cardiac repair was analyzed. A phase 1 safety cohort enrolled five pediatric patients with DCM and reduced ejection fraction to receive CDC infusion. The primary endpoint was to assess safety, and the secondary outcome measure was change in cardiac function. Improved cardiac function and reduced myocardial fibrosis were noted in animals treated with CDCs compared with placebo. These functional benefits were mediated via CDCex that were highly enriched with proangiogenic and cardioprotective microRNAs (miRNAs), whereas isolated CDCex did not recapitulate these reparative effects. One-year follow-up of safety lead-in stage was completed with favorable profile and preliminary efficacy outcomes. Increased CDCex-derived miR-146a-5p expression was associated with the reduction in myocardial fibrosis via suppression of proinflammatory cytokines and transcripts. Collectively, intracoronary CDC administration is safe and improves cardiac function through CDCex in a porcine model of DCM. The safety lead-in results in patients provide a translational framework for further studies of randomized trials and CDCex-derived miRNAs as potential paracrine mediators underlying this therapeutic strategy.
Collapse
Affiliation(s)
- Kenta Hirai
- Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Daiki Ousaka
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yosuke Fukushima
- Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Maiko Kondo
- Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Takahiro Eitoku
- Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yusuke Shigemitsu
- Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Mayuko Hara
- Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kenji Baba
- Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Tatsuo Iwasaki
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Shingo Kasahara
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Shinichi Ohtsuki
- Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hidemasa Oh
- Department of Regenerative Medicine, Center for Innovative Clinical Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
11
|
Holst KA, Dearani JA, Qureshi MY, Wackel P, Cannon BC, O'Leary PW, Olson TM, Seisler DK, Nelson TJ. From Safety to Benefit in Cell Delivery During Surgical Repair of Ebstein Anomaly: Initial Results. Ann Thorac Surg 2021; 113:890-895. [PMID: 33539782 DOI: 10.1016/j.athoracsur.2020.11.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND The objective of this study is to assess the safety and early impact of intramyocardial delivery of autologous bone marrow-derived mononuclear cells (BM-MNC) at time of surgical Ebstein repair. METHODS Patients with Ebstein anomaly (ages 6 months to 30 years) scheduled to undergo repair of the tricuspid valve were eligible to participate in this open-label, non-randomized phase I clinical trial. BM-MNC target dose was 1-3 million cells/kg. Ten patients have undergone surgical intervention and cell delivery to the right ventricle (RV) and completed 6-month follow-up. RESULTS All patients underwent surgical tricuspid valve repair and uneventful BM-MNC delivery; there were no ventricular arrhythmias and no adverse events related to study product or delivery. Echocardiographic RV myocardial performance index improved and RV fractional area change showed an initial decline and then through study follow-up. There was no evidence of delayed myocardial enhancement or regional wall motion abnormalities at injection sites on 6-month follow-up magnetic resonance imaging. CONCLUSIONS Intramyocardial delivery of BM-MNC after surgical repair in Ebstein anomaly can be performed safely. Echocardiography variables suggest a positive impact of cell delivery on the RV myocardium with improvements in both RV size and wall motion over time. Additional follow-up and comparison to control groups are required to better characterize the impact of cell therapy on the myopathic RV in Ebstein anomaly.
Collapse
Affiliation(s)
- Kimberly A Holst
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota
| | - Joseph A Dearani
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota
| | - M Yasir Qureshi
- Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota.
| | - Philip Wackel
- Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota
| | - Bryan C Cannon
- Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota
| | | | - Timothy M Olson
- Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota
| | - Drew K Seisler
- Wanek HLHS Consortium Clinical Pipeline, Mayo Clinic, Rochester, Minnesota
| | - Timothy J Nelson
- Wanek HLHS Consortium Clinical Pipeline, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
12
|
Makkar RR, Kereiakes DJ, Aguirre F, Kowalchuk G, Chakravarty T, Malliaras K, Francis GS, Povsic TJ, Schatz R, Traverse JH, Pogoda JM, Smith RR, Marbán L, Ascheim DD, Ostovaneh MR, Lima JAC, DeMaria A, Marbán E, Henry TD. Intracoronary ALLogeneic heart STem cells to Achieve myocardial Regeneration (ALLSTAR): a randomized, placebo-controlled, double-blinded trial. Eur Heart J 2020; 41:3451-3458. [DOI: 10.1093/eurheartj/ehaa541] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/13/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Aims
Cardiosphere-derived cells (CDCs) are cardiac progenitor cells that exhibit disease-modifying bioactivity in various models of cardiomyopathy and in previous clinical studies of acute myocardial infarction (MI), dilated cardiomyopathy, and Duchenne muscular dystrophy. The aim of the study was to assess the safety and efficacy of intracoronary administration of allogeneic CDCs in the multicentre, randomized, double-blinded, placebo-controlled, intracoronary ALLogeneic heart STem cells to Achieve myocardial Regeneration (ALLSTAR) trial.
Methods and results
We enrolled patients 4 weeks to 12 months after MI, with left ventricular ejection fraction (LVEF) ≤45% and LV scar size ≥15% of LV mass by magnetic resonance imaging (MRI). A pre-specified interim analysis was performed when 6-month MRI data were available. The trial was subsequently stopped due to the low probability of detecting a significant treatment effect of CDCs based on the primary endpoint. Patients were randomly allocated in a 2:1 ratio to receive CDCs or placebo in the infarct-related artery by stop-flow technique. The primary safety endpoint was the occurrence, during 1-month post-intracoronary infusion, of acute myocarditis attributable to allogeneic CDCs, ventricular tachycardia- or ventricular fibrillation-related death, sudden unexpected death, or a major adverse cardiac event (death or hospitalization for heart failure or non-fatal MI or need for left ventricular assist device or heart transplant). The primary efficacy endpoint was the relative percentage change in infarct size at 12 months post-infusion as assessed by contrast-enhanced cardiac MRI. We randomly allocated 142 eligible patients of whom 134 were treated (90 to the CDC group and 44 to the placebo group). The mean baseline LVEF was 40% and the mean scar size was 22% of LV mass. No primary safety endpoint events occurred. There was no difference in the percentage change from baseline in scar size (P = 0.51) between CDCs and placebo groups at 6 months. Compared with placebo, there were significant reductions in LV end-diastolic volume (P = 0.02), LV end-systolic volume (P = 0.02), and N-terminal pro b-type natriuretic peptide (NT-proBNP) (P = 0.02) at 6 months in CDC-treated patients.
Conclusion
Intracoronary infusion of allogeneic CDCs in patients with post-MI LV dysfunction was safe but did not reduce scar size relative to placebo at 6 months. Nevertheless, the reductions in LV volumes and NT-proBNP reveal disease-modifying bioactivity of CDCs.
Trial registration
Clinicaltrials.gov identifier: NCT01458405.
Collapse
Affiliation(s)
- Raj R Makkar
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Dean J Kereiakes
- The Christ Hospital, Cincinnati, 2139 Auburn Ave, Cincinnati, OH 45219, USA
| | - Frank Aguirre
- Prairie/St. Johns Hospital, Springfield, 800 E Carpenter St, Springfield, IL 62769, USA
| | - Glenn Kowalchuk
- Sanger Heart & Vascular, Charlotte, 1001 Blythe Blvd Ste 300, Charlotte, NC 28203, USA
| | - Tarun Chakravarty
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | | | - Gary S Francis
- University of Minnesota Heart Care, Minneapolis, 6405 France Ave S, Edina, MN 55435, USA
| | - Thomas J Povsic
- Duke University Hospital, Durham, 2301 Erwin Rd, Durham, NC 27710, USA
| | - Richard Schatz
- Scripps Green Hospital, 10666 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Jay H Traverse
- Minneapolis Heart Institute Foundation, 920 E 28th St Ste 100, Minneapolis, MN 55407, USA
| | - Janice M Pogoda
- 10Capricor Therapeutics, Los Angeles, 8840 Wilshire Blvd Ste 2, Beverly Hills, CA 90211, USA
| | - Rachel R Smith
- 10Capricor Therapeutics, Los Angeles, 8840 Wilshire Blvd Ste 2, Beverly Hills, CA 90211, USA
| | - Linda Marbán
- 10Capricor Therapeutics, Los Angeles, 8840 Wilshire Blvd Ste 2, Beverly Hills, CA 90211, USA
| | - Deborah D Ascheim
- 10Capricor Therapeutics, Los Angeles, 8840 Wilshire Blvd Ste 2, Beverly Hills, CA 90211, USA
| | | | - João A C Lima
- J ohns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Anthony DeMaria
- University of California San Diego Medical Center, 200 W. Arbor Drive, San Diego, CA 92103, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Timothy D Henry
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| |
Collapse
|
13
|
Xu C, Su X, Ma S, Shu Y, Zhang Y, Hu Y, Mo X. Effects of Exercise Training in Postoperative Patients With Congenital Heart Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc 2020; 9:e013516. [PMID: 32070206 PMCID: PMC7335558 DOI: 10.1161/jaha.119.013516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background The purpose of this meta‐analysis is to assess the effects of exercise training on quality of life, specific biomarkers, exercise capacity, and vascular function in congenital heart disease (CHD) subjects after surgery. Methods and Results We searched the Cochrane Central Register of Controlled Trials, MEDLINE, and EMBASE from the date of the inception of the database through April 2019. Altogether, 1161 records were identified in the literature search. Studies evaluating outcomes before and after exercise training among postoperative patients with congenital heart disease were included. The assessed outcomes were exercise capacity, vascular function, serum NT‐proBNP (N‐terminal pro‐B‐type natriuretic peptide) levels and quality of life. We analyzed heterogeneity by using the I2 statistic and evaluated the evidence quality according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) guidelines. Nine randomized controlled trials were included. The evidence indicated that exercise interventions increased the one of the quality of life questionnaire score (mean difference=3.19 [95% CI, 0.23, 6.16]; P=0.03; I2=39%) from the score before the interventions. However, no alterations in exercise capacity, vascular function, NT‐proBNP or quality of life were observed after exercise training. The results of the subgroup analysis showed that NT‐proBNP levels were lower in the group with exercise training than in the group without exercise training over the same duration of follow‐up. The evidence quality was generally assessed to be low. Conclusions In conclusion, there is insufficient evidence to suggest that physical exercise improves long‐term follow‐up outcomes of congenital heart disease, although it has some minor effects on quality of life.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Cardiothoracic Surgery Children's Hospital of Nanjing Medical University Nanjing China
| | - Xiaoqi Su
- Department of Cardiothoracic Surgery Children's Hospital of Nanjing Medical University Nanjing China
| | - Siyu Ma
- Department of Cardiothoracic Surgery Children's Hospital of Nanjing Medical University Nanjing China
| | - Yaqin Shu
- Department of Cardiothoracic Surgery Children's Hospital of Nanjing Medical University Nanjing China
| | - Yuxi Zhang
- Department of Cardiothoracic Surgery Children's Hospital of Nanjing Medical University Nanjing China
| | - Yuanli Hu
- Department of Cardiothoracic Surgery Children's Hospital of Nanjing Medical University Nanjing China
| | - Xuming Mo
- Department of Cardiothoracic Surgery Children's Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
14
|
Luo ZW, Li FXZ, Liu YW, Rao SS, Yin H, Huang J, Chen CY, Hu Y, Zhang Y, Tan YJ, Yuan LQ, Chen TH, Liu HM, Cao J, Liu ZZ, Wang ZX, Xie H. Aptamer-functionalized exosomes from bone marrow stromal cells target bone to promote bone regeneration. NANOSCALE 2019; 11:20884-20892. [PMID: 31660556 DOI: 10.1039/c9nr02791b] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In elderly people particularly in postmenopausal women, inadequate bone formation by osteoblasts originating from bone marrow mesenchymal stem cells (BMSCs) for compensation of bone resorption by osteoclasts is a major reason for osteoporosis. Enhancing osteoblastic differentiation of BMSCs is a feasible therapeutic strategy for osteoporosis. Here, bone marrow stromal cell (ST)-derived exosomes (STExos) are found to remarkably enhance osteoblastic differentiation of BMSCs in vitro. However, intravenous injection of STExos is inefficient in ameliorating osteoporotic phenotypes in an ovariectomy (OVX)-induced postmenopausal osteoporosis mouse model, which may be because STExos are predominantly accumulated in the liver and lungs, but not in bone. Hereby, the STExo surface is conjugated with a BMSC-specific aptamer, which delivers STExos into BMSCs within bone marrow. Intravenous injection of the STExo-Aptamer complex enhances bone mass in OVX mice and accelerates bone healing in a femur fracture mouse model. These results demonstrate the efficiency of BMSC-specific aptamer-functionalized STExos in targeting bone to promote bone regeneration, providing a novel promising approach for the treatment of osteoporosis and fracture.
Collapse
Affiliation(s)
- Zhong-Wei Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China. and Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Fu-Xing-Zi Li
- The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yi-Wei Liu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China and Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shan-Shan Rao
- Xiangya Nursing School, Central South University, Changsha, Hunan 410013, China
| | - Hao Yin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China. and Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jie Huang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China. and Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China. and Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yin Hu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China. and Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Zhang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China and Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yi-Juan Tan
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ling-Qing Yuan
- The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tuan-Hui Chen
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hao-Ming Liu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jia Cao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China. and Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zheng-Zhao Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China. and Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China and Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China. and Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China. and Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China and Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China and Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan 410008, China and Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan 410008, China
| |
Collapse
|
15
|
Augmenting canonical Wnt signalling in therapeutically inert cells converts them into therapeutically potent exosome factories. Nat Biomed Eng 2019; 3:695-705. [PMID: 31451800 PMCID: PMC6736698 DOI: 10.1038/s41551-019-0448-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 07/16/2019] [Indexed: 01/02/2023]
Abstract
Cardiosphere-derived cells (CDCs) are therapeutic candidates with disease-modifying bioactivity, but their variable potency has complicated their clinical translation. Transcriptomic analyses of CDCs from human donors have revealed that the therapeutic potency of these cells correlates with Wnt/β-catenin signalling and with β-catenin protein levels. Here, we show that skin fibroblasts engineered to overexpress β-catenin and the transcription factor Gata4 become immortal and therapeutically potent. Transplantation of the engineered fibroblasts into a mouse model of acute myocardial infarction led to improved cardiac function and mouse survival. And in the mdx mouse model of Duchenne muscular dystrophy, exosomes secreted by the engineered fibroblasts improved exercise capacity and reduced skeletal-muscle fibrosis. We also demonstrate that exosomes from high-potency CDCs exhibit enhanced levels of miR-92a (a known potentiator of the Wnt/β-catenin pathway), and that they activate cardioprotective bone-morphogenetic-protein signalling in cardiomyocytes. Our findings show that the modulation of canonical Wnt signalling can turn therapeutically inert mammalian cells into immortal exosome factories for cell-free therapies. Overexpression of β-catenin and the transcription factor Gata4 in skin fibroblasts converts them into therapeutically active cells that secrete reparative exosomes as shown in mice models of myocardial infarction and Duchenne muscular dystrophy.
Collapse
|
16
|
Graupner O, Enzensberger C, Axt-Fliedner R. New Aspects in the Diagnosis and Therapy of Fetal Hypoplastic Left Heart Syndrome. Geburtshilfe Frauenheilkd 2019; 79:863-872. [PMID: 31423021 PMCID: PMC6690741 DOI: 10.1055/a-0828-7968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/29/2018] [Accepted: 12/30/2018] [Indexed: 12/26/2022] Open
Abstract
Fetal hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease with a lethal prognosis without postnatal therapeutic intervention or surgery. The aim of this article is to give a brief overview of new findings in the field of prenatal diagnosis and the therapy of HLHS. As cardiac output in HLHS children depends on the right ventricle (RV), prenatal assessment of fetal RV function is of interest to predict poor functional RV status before the RV becomes the systemic ventricle. Prenatal cardiac interventions such as fetal aortic valvuloplasty and non-invasive procedures such as maternal hyperoxygenation seem to be promising treatment options but will need to be evaluated with regard to long-term outcomes. Novel approaches such as stem cell therapy or neuroprotection provide important clues about the complexity of the disease. New aspects in diagnostics and therapy of HLHS show the potential of a targeted prenatal treatment planning. This could be used to optimize parental counseling as well as pre- and postnatal management of affected children.
Collapse
Affiliation(s)
- Oliver Graupner
- Department of Obstetrics and Gynecology, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Enzensberger
- Department of Obstetrics and Gynecology, Division of Prenatal Medicine, University Hospital UKGM, Justus-Liebig University, Giessen, Germany
| | - Roland Axt-Fliedner
- Department of Obstetrics and Gynecology, Division of Prenatal Medicine, University Hospital UKGM, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
17
|
Sano S, Ishigami S, Sano T. New era of heart failure therapy in pediatrics: Cardiac stem cell therapy on the start line. J Thorac Cardiovasc Surg 2019; 158:845-849. [PMID: 31248633 DOI: 10.1016/j.jtcvs.2019.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Shunji Sano
- Department of Pediatric Cardiothoracic Surgery, University of California, San Francisco, San Francisco, Calif.
| | - Shuta Ishigami
- Department of Pediatric Cardiothoracic Surgery, University of California, San Francisco, San Francisco, Calif
| | - Toshikazu Sano
- Department of Pediatric Cardiothoracic Surgery, University of California, San Francisco, San Francisco, Calif
| |
Collapse
|
18
|
Michel-Behnke I, Pavo I, Recla S, Khalil M, Jux C, Schranz D. Regenerative therapies in young hearts with structural or congenital heart disease. Transl Pediatr 2019; 8:140-150. [PMID: 31161081 PMCID: PMC6514281 DOI: 10.21037/tp.2019.03.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pediatric heart failure (HF) is rare. The prognosis is generally poor. HF is most frequently related to cardiomyopathy or congenital heart disease (CHD). Associated phenotypes are HF with preserved (HFpEF) or reduced ejection fraction (HFrEF); both in children with biventricular or univentricular circulation. Cardiac growth, differentiation, proliferation and consecutively regenerative and repair mechanisms are inversely related to the patient's age; edaphic and circulating cardiac progenitor cells as well; in sum, there are enormous endogenous potentials repairing a diseased heart in particular in young children. Efforts supporting pediatric cardiac regeneration are clearly justified; cell-based therapies have been addressed in small series of children with end-stage HF of either the left or right ventricle, more recently in randomized clinical trials. Different cell populations like autologous bone marrow mononuclear cells, progenitor cells or cardiac derived cells have been injected into coronaries or directly into the myocardium. Beneficial at least transient improvement of cardiac function was observed in patients with dilative cardiomyopathy and CHD, mainly hypoplastic left heart syndrome (HLHS). Cellular repopulation and possibly more crucial, paracrine effects contributed in slowing down progression of pediatric end-stage HF. Our review summarizes the current knowledge in different scenarios of HF by cell-based cardiac therapies in critically ill children. Based on the actual clinical experience future work to distinguish responders from non-responders among other refinements will lead to individualized precision treatment of HF in children, what means a lot to a child on a long list waiting for heart transplantation (HTX).
Collapse
Affiliation(s)
- Ina Michel-Behnke
- University Hospital for Children and Adolescent Medicine, Division of Pediatric Cardiology, Pediatric Heart Center, Medical University Vienna, Vienna, Austria
| | - Imre Pavo
- University Hospital for Children and Adolescent Medicine, Division of Pediatric Cardiology, Pediatric Heart Center, Medical University Vienna, Vienna, Austria
| | - Sabine Recla
- Pediatric Heart Center, Justus-Liebig University, Giessen, Germany
| | - Markus Khalil
- Pediatric Heart Center, Justus-Liebig University, Giessen, Germany
| | - Christian Jux
- Pediatric Heart Center, Justus-Liebig University, Giessen, Germany
| | - Dietmar Schranz
- Pediatric Heart Center, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
19
|
Huang W, Liang J, Feng Y, Jia Z, Jiang L, Cai W, Paul C, Gu JG, Stambrook PJ, Millard RW, Zhu XL, Zhu P, Wang Y. Heterogeneity of adult masseter muscle satellite cells with cardiomyocyte differentiation potential. Exp Cell Res 2018; 371:20-30. [PMID: 29842877 PMCID: PMC7291879 DOI: 10.1016/j.yexcr.2018.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 01/25/2023]
Abstract
Although resident cardiac stem cells have been reported, regeneration of functional cardiomyocytes (CMs) remains a challenge. The present study identifies an alternative progenitor source for CM regeneration without the need for genetic manipulation or invasive heart biopsy procedures. Unlike limb skeletal muscles, masseter muscles (MM) in the mouse head are developed from Nkx2-5 mesodermal progenitors. Adult masseter muscle satellite cells (MMSCs) display heterogeneity in developmental origin and cell phenotypes. The heterogeneous MMSCs that can be characterized by cell sorting based on stem cell antigen-1 (Sca1) show different lineage potential. While cardiogenic potential is preserved in Sca1+ MMSCs as shown by expression of cardiac progenitor genes (including Nkx2-5), skeletal myogenic capacity is maintained in Sca1- MMSCs with Pax7 expression. Sca1+ MMSC-derived beating cells express cardiac genes and exhibit CM-like morphology. Electrophysiological properties of MMSC-derived CMs are demonstrated by calcium transients and action potentials. These findings show that MMSCs could serve as a novel cell source for cardiomyocyte replacement.
Collapse
Affiliation(s)
- Wei Huang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jialiang Liang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yuliang Feng
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Zhanfeng Jia
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lin Jiang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wenfeng Cai
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jianguo G Gu
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Peter J Stambrook
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ronald W Millard
- Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Xiao-Lan Zhu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Ping Zhu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
20
|
Abe J, Yamada Y, Harashima H. The use of cardiac progenitor cells for transplantation in congenital heart disease and an innovative strategy for activating mitochondrial function in such cells. J Thorac Dis 2018; 10:S2119-S2121. [PMID: 30123537 DOI: 10.21037/jtd.2018.06.76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiro Abe
- Department of Pediatrics, Graduate School of Medicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuma Yamada
- Laboratory for molecular design of pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hideyoshi Harashima
- Laboratory for molecular design of pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
21
|
Abstract
Congenital heart disease (CHD) is the most common birth defect, affecting 1 in 100 babies. Among CHDs, single ventricle (SV) physiologies, such as hypoplastic left heart syndrome and tricuspid atresia, are particularly severe conditions that require multiple palliative surgeries, including the Fontan procedure. Although the management strategies for SV patients have markedly improved, the prevalence of ventricular dysfunction continues to increase over time, especially after the Fontan procedure. At present, the final treatment for SV patients who develop heart failure is heart transplantation; however, transplantation is difficult to achieve because of severe donor shortages. Recently, various regenerative therapies for heart failure have been developed that increase cardiomyocytes and restore cardiac function, with promising results in adults. The clinical application of various forms of regenerative medicine for CHD patients with heart failure is highly anticipated, and the latest research in this field is reviewed here. In addition, regenerative therapy is important for children with CHD because of their natural growth. The ideal pediatric cardiovascular device would have the potential to adapt to a child's growth. Therefore, if a device that increases in size in accordance with the patient's growth could be developed using regenerative medicine, it would be highly beneficial. This review provides an overview of the available regenerative technologies for CHD patients.
Collapse
|
22
|
Marbán E. A mechanistic roadmap for the clinical application of cardiac cell therapies. Nat Biomed Eng 2018; 2:353-361. [PMID: 30740264 DOI: 10.1038/s41551-018-0216-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of cells for regenerative therapy has encountered many pitfalls on its path to clinical translation. In cardiology, clinical studies of heart-targeted cell therapies began two decades ago, yet progress towards reaching an approved product has been slow. In this Perspective, I provide an overview of recent cardiac cell therapies, with a focus on the hurdles limiting the translation of cell products from research laboratories to clinical practice. By focusing on heart failure as a target indication, I argue that strategies for overcoming limitations in clinical translation require an increasing emphasis on mechanism-supported efficacy, rather than on phenomenological observations. As research progresses from cells to paracrine mechanisms to defined factors, identifying those defined factors that are involved in achieving superior therapeutic efficacy will better inform the use of cells as therapeutic candidates. The next generation of cell-free biologics may provide the benefits of cell therapy without the intrinsic limitations of whole-cell products.
Collapse
Affiliation(s)
- Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Sano T, Ousaka D, Goto T, Ishigami S, Hirai K, Kasahara S, Ohtsuki S, Sano S, Oh H. Impact of Cardiac Progenitor Cells on Heart Failure and Survival in Single Ventricle Congenital Heart Disease. Circ Res 2018; 122:994-1005. [PMID: 29367212 DOI: 10.1161/circresaha.117.312311] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/09/2018] [Accepted: 01/23/2018] [Indexed: 01/14/2023]
Abstract
RATIONALE Intracoronary administration of cardiosphere-derived cells (CDCs) in patients with single ventricles resulted in a short-term improvement in cardiac function. OBJECTIVE To test the hypothesis that CDC infusion is associated with improved cardiac function and reduced mortality in patients with heart failure. METHODS AND RESULTS We evaluated the effectiveness of CDCs using an integrated cohort study in 101 patients with single ventricles, including 41 patients who received CDC infusion and 60 controls treated with staged palliation alone. Heart failure with preserved ejection fraction (EF) or reduced EF was stratified by the cardiac function after surgical reconstruction. The main outcome measure was to evaluate the magnitude of improvement in cardiac function and all-cause mortality at 2 years. Animal studies were conducted to clarify the underlying mechanisms of heart failure with preserved EF and heart failure with reduced EF phenotypes. At 2 years, CDC infusion increased ventricular function (stage 2: +8.4±10.0% versus +1.6±6.4%, P=0.03; stage 3: +7.9±7.5% versus -1.1±5.5%, P<0.001) compared with controls. In all available follow-up data, survival did not differ between the 2 groups (log-rank P=0.225), whereas overall patients treated by CDCs had lower incidences of late failure (P=0.022), adverse events (P=0.013), and catheter intervention (P=0.005) compared with controls. CDC infusion was associated with a lower risk of adverse events (hazard ratio, 0.411; 95% CI, 0.179-0.942; P=0.036). Notably, CDC infusion reduced mortality (P=0.038) and late complications (P<0.05) in patients with heart failure with reduced EF but not with heart failure with preserved EF. CDC-treated rats significantly reversed myocardial fibrosis with differential collagen deposition and inflammatory responses between the heart failure phenotypes. CONCLUSIONS CDC administration in patients with single ventricles showed favorable effects on ventricular function and was associated with reduced late complications except for all-cause mortality after staged procedures. Patients with heart failure with reduced EF but not heart failure with preserved EF treated by CDCs resulted in significant improvement in clinical outcome. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifiers: NCT01273857 and NCT01829750.
Collapse
Affiliation(s)
- Toshikazu Sano
- From the Department of Cardiovascular Surgery (T.S., D.O., T.G., S.I., S.K.) and Department of Pediatrics (K.H., S.O.), Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Japan; Department of Regenerative Medicine, Center for Innovative Clinical Medicine, Okayama University Hospital, Japan, (H.O.); and Department of Pediatric Cardiothoracic Surgery, University of California, San Francisco (S.I., S.S.)
| | - Daiki Ousaka
- From the Department of Cardiovascular Surgery (T.S., D.O., T.G., S.I., S.K.) and Department of Pediatrics (K.H., S.O.), Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Japan; Department of Regenerative Medicine, Center for Innovative Clinical Medicine, Okayama University Hospital, Japan, (H.O.); and Department of Pediatric Cardiothoracic Surgery, University of California, San Francisco (S.I., S.S.)
| | - Takuya Goto
- From the Department of Cardiovascular Surgery (T.S., D.O., T.G., S.I., S.K.) and Department of Pediatrics (K.H., S.O.), Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Japan; Department of Regenerative Medicine, Center for Innovative Clinical Medicine, Okayama University Hospital, Japan, (H.O.); and Department of Pediatric Cardiothoracic Surgery, University of California, San Francisco (S.I., S.S.)
| | - Shuta Ishigami
- From the Department of Cardiovascular Surgery (T.S., D.O., T.G., S.I., S.K.) and Department of Pediatrics (K.H., S.O.), Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Japan; Department of Regenerative Medicine, Center for Innovative Clinical Medicine, Okayama University Hospital, Japan, (H.O.); and Department of Pediatric Cardiothoracic Surgery, University of California, San Francisco (S.I., S.S.)
| | - Kenta Hirai
- From the Department of Cardiovascular Surgery (T.S., D.O., T.G., S.I., S.K.) and Department of Pediatrics (K.H., S.O.), Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Japan; Department of Regenerative Medicine, Center for Innovative Clinical Medicine, Okayama University Hospital, Japan, (H.O.); and Department of Pediatric Cardiothoracic Surgery, University of California, San Francisco (S.I., S.S.)
| | - Shingo Kasahara
- From the Department of Cardiovascular Surgery (T.S., D.O., T.G., S.I., S.K.) and Department of Pediatrics (K.H., S.O.), Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Japan; Department of Regenerative Medicine, Center for Innovative Clinical Medicine, Okayama University Hospital, Japan, (H.O.); and Department of Pediatric Cardiothoracic Surgery, University of California, San Francisco (S.I., S.S.)
| | - Shinichi Ohtsuki
- From the Department of Cardiovascular Surgery (T.S., D.O., T.G., S.I., S.K.) and Department of Pediatrics (K.H., S.O.), Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Japan; Department of Regenerative Medicine, Center for Innovative Clinical Medicine, Okayama University Hospital, Japan, (H.O.); and Department of Pediatric Cardiothoracic Surgery, University of California, San Francisco (S.I., S.S.)
| | - Shunji Sano
- From the Department of Cardiovascular Surgery (T.S., D.O., T.G., S.I., S.K.) and Department of Pediatrics (K.H., S.O.), Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Japan; Department of Regenerative Medicine, Center for Innovative Clinical Medicine, Okayama University Hospital, Japan, (H.O.); and Department of Pediatric Cardiothoracic Surgery, University of California, San Francisco (S.I., S.S.)
| | - Hidemasa Oh
- From the Department of Cardiovascular Surgery (T.S., D.O., T.G., S.I., S.K.) and Department of Pediatrics (K.H., S.O.), Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Japan; Department of Regenerative Medicine, Center for Innovative Clinical Medicine, Okayama University Hospital, Japan, (H.O.); and Department of Pediatric Cardiothoracic Surgery, University of California, San Francisco (S.I., S.S.).
| |
Collapse
|
24
|
Zhong J, Wang S, Shen WB, Kaushal S, Yang P. The current status and future of cardiac stem/progenitor cell therapy for congenital heart defects from diabetic pregnancy. Pediatr Res 2018; 83:275-282. [PMID: 29016556 PMCID: PMC5876137 DOI: 10.1038/pr.2017.259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/03/2017] [Indexed: 02/07/2023]
Abstract
Pregestational maternal diabetes induces congenital heart defects (CHDs). Cardiac dysfunction after palliative surgical procedures contributes to the high mortality of CHD patients. Autologous or allogeneic stem cell therapies are effective for improving cardiac function in animal models and clinical trials. c-kit+ cardiac progenitor cells (CPCs), the most recognized CPCs, have the following basic properties of stem cells: self-renewal, multicellular clone formation, and differentiation into multiple cardiac lineages. However, there is ongoing debate regarding whether c-kit+ CPCs can give rise to sufficient cardiomyocytes. A new hypothesis to address the beneficial effect of c-kit+ CPCs is that these cells stimulate endogenous cardiac cells through a paracrine function in producing a robust secretome and exosomes. The values of other cardiac CPCs, including Sca1+ CPCs and cardiosphere-derived cells, are beginning to be revealed. These cells may be better choices than c-kit+ CPCs for generating cardiomyocytes. Adult mesenchymal stem cells are considered immune-incompetent and effective for improving cardiac function. Autologous CPC therapy may be limited by the observation that maternal diabetes adversely affects the biological function of embryonic stem cells and CPCs. Future studies should focus on determining the mechanistic action of these cells, identifying new CPC markers, selecting highly effective CPCs, and engineering cell-free products.
Collapse
Affiliation(s)
- Jianxiang Zhong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shengbing Wang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wei-Bin Shen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sunjay Kaushal
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
25
|
Santoso MR, Yang PC. Molecular Imaging of Stem Cells and Exosomes for Myocardial Regeneration. CURRENT CARDIOVASCULAR IMAGING REPORTS 2017. [DOI: 10.1007/s12410-017-9433-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|