1
|
Gallego-Navarro C, Jaggers J, Burkhart HM, Carlo WF, Morales DL, Qureshi MY, Rossano JW, Hagen CE, Seisler DK, Peral SC, Nelson TJ. Autologous umbilical cord blood mononuclear cell therapy for hypoplastic left heart syndrome: a nonrandomized control trial of the efficacy and safety of intramyocardial injections. Stem Cell Res Ther 2025; 16:215. [PMID: 40312733 PMCID: PMC12044795 DOI: 10.1186/s13287-025-04316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/07/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Preliminary phase I clinical trial results revealed that autologous umbilical cord blood-derived mononuclear cells (UCB-MNCs) preserved right ventricular cardiac function. To establish the efficacy of intramyocardial injections of an autologous UCB-MNC product at the time of stage II palliation surgery in patients with hypoplastic left heart syndrome (HLHS). METHODS A phase IIb, multicenter, open-label, nonrandomized study was conducted. Ninety-five children (fifty treated and forty-five controls) with HLHS and its variants, a history of stage I palliation surgery, and planned stage II palliation surgery at less than thirteen months were enrolled. We assessed coprimary efficacy endpoints for changes in right ventricular cardiac function through fractional area changes and longitudinal and circumferential strain, both in the short term (three months) and long term (twelve months). Second, we assessed changes in biomarkers of cardiac injury. Safety endpoints included severe adverse events (SAEs), changes in overall health through vital signs, and cumulative hospitalization. RESULTS Assessment of our coprimary efficacy endpoints revealed an unfavorable change in longitudinal cardiac strain in the treatment group compared with an improvement in strain in the control group (unadjusted p =.032) in the short term. No differences were observed between the groups in terms of other coprimary efficacy endpoints in the short or long term. A secondary assessment of biomarkers of cardiac injury revealed higher troponin T levels in the treatment group at three and six hours postsurgery. Regarding safety, no deaths related to the administered product or delivery procedure were reported. The treatment group presented a greater incidence (20%) of at least one SAE than the control group at three months (p =.048). Additionally, no statistically significant differences were found for the other safety endpoints. CONCLUSION Intramyocardial injections of autologous UCB-MNC products into the right ventricular myocardium during stage II palliation surgery failed to enhance cardiac function in patients with hypoplastic left heart syndrome. REGISTERED ON CLINICALTRIALS.GOV: Registered on ClinicalTrials.gov (NCT03779711) on 12/04/2018; URL: https://clinicaltrials.gov/ct2/show/NCT0377971 .
Collapse
Affiliation(s)
- Carlos Gallego-Navarro
- Division of Cardiovascular Diseases, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic Rochester, Rochester, MN, USA
| | - James Jaggers
- Division of Congenital Heart Surgery, Heart Institute, Children's Hospital Colorado, University of Colorado Denver Anschutz Medical Campus, Denver, CO, USA
| | - Harold M Burkhart
- Division of Cardiac, Thoracic and Vascular Surgery, University of Oklahoma Health Sciences, Oklahoma, USA
| | - Waldemar F Carlo
- Division of Pediatric Cardiology, University of Alabama Birmingham, Birmingham, AL, USA
| | - David L Morales
- Division of Congenital Heart Surgery, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - M Yasir Qureshi
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic Rochester, Rochester, MN, USA
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joseph W Rossano
- Department of Pediatrics, Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, USA
| | | | - Drew K Seisler
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic Rochester, Rochester, MN, USA
| | - Susana Cantero Peral
- Division of Cardiovascular Diseases, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic Rochester, Rochester, MN, USA
| | - Timothy J Nelson
- Division of Cardiovascular Diseases, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic Rochester, Rochester, MN, USA.
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.
- HeartWorks Inc. Rochester, Rochester, MN, USA.
- General Internal Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Shahidi M. Identification of Hypoplastic Left Heart Genotypes and Phenotypes; The Window toward Future Cell-Based Therapy: A Narrative Review. Cardiol Rev 2025:00045415-990000000-00433. [PMID: 40019384 DOI: 10.1097/crd.0000000000000878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Hypoplastic left heart syndrome (HLHS) is a prevalent and lethal type of single ventricle anomaly. During early prenatal evaluations, left heart hypoplasia may be neglected due to its progressive features. It is a heterogeneous congenital heart disease with different phenotypes. Currently, there is no definite treatment for HLHS. This is in part due to its heterogeneous phenotypes that require different management. In addition, hindrances in recognizing the etiologic factors do not allow early preventive or therapeutic procedures. Phenotypic determination is fundamental to identifying the etiologic factors and therapeutic strategies. This review article introduces comprehensive information about different phenotypes and genotypes of HLHS and their novel molecular strategy. Genetic defects and flow-mediated mechanisms are the main known factors of HLHS. Recent studies reported additional data about its nonmendelian genetic origins associated with heterogeneous phenotypes. The genetic defects influence endocardium or cardiomyocyte development to yield early or late valve deformities and myocardial malformations. The new molecular therapeutic methods are essentially based on genetic etiologies. The principal therapeutic purpose is reinforcing the function of the right ventricle in patients with nonfunctional left ventricles. The ultimate desire is to create a biventricular heart in selected cases.
Collapse
Affiliation(s)
- Mohsen Shahidi
- From the Department of Pediatric Cardiology, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
3
|
Ali SA, Mahmood Z, Mubarak Z, Asad M, Sarfraz Chaudhri MT, Bilal L, Ashraf T, Khalifa TN, Ashraf T, Saleem F, Masharifa Ahamed F, Tarar S. Assessing the Potential Benefits of Stem Cell Therapy in Cardiac Regeneration for Patients With Ischemic Heart Disease. Cureus 2025; 17:e76770. [PMID: 39897258 PMCID: PMC11786102 DOI: 10.7759/cureus.76770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2025] [Indexed: 02/04/2025] Open
Abstract
Myocardial infarction, commonly known as a heart attack, or ischemic heart disease (IHD), remains one of the most fatal health conditions worldwide due to the limited regenerative capacity of the heart muscle after infarction. Conventional medical treatments primarily focus on symptom control and tissue preservation but fail to address the loss of cardiomyocytes, the cells responsible for heart contraction. This systematic review explores the hypothesis that stem cell therapies can enhance cardiac regeneration by replacing or repairing damaged myocardium, with a focus on mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs). The review was restricted to literature published between 2015 and 2024, sourced from PubMed, Web of Science, and Google Scholar. This timeframe reflects advances in stem cell research and regenerative therapies. Findings from trials such as Bone Marrow-Derived Mononuclear Cell Therapy in Acute Myocardial Infarction (BAMI) and Cardiopoietic Stem Cell Therapy in Heart Failure (C-CURE) suggest that stem cell therapies may improve left ventricular ejection fraction (LVEF) and reduce infarct size. However, the heterogeneity of trials, small sample sizes, and short follow-up durations limit the generalizability of these results. Long-term benefits, including improved survival rates and reduced hospital readmissions, remain inconclusive. Ethical concerns, particularly the use of ESCs, pose additional challenges, including controversies over embryonic sources and varying regulatory landscapes. Key areas for advancement include optimizing stem cell survival and differentiation, with genetic engineering to enhance tissue repair capabilities considered the most critical for improving clinical outcomes. The integration of regenerative treatments such as extracellular vesicle therapy, derived from stem cells to modulate repair, also shows promise. Imaging techniques, such as MRI and PET, provide real-time monitoring of stem cell effects, offering insights into therapeutic efficacy and safety. Despite promising results from preclinical models and early-phase trials, the full therapeutic potential of stem cell therapy for IHD remains unrealized. Effective treatment protocols, addressing patient-specific factors, ethical considerations, and long-term outcome evaluations, are essential. This review emphasizes the need for ongoing research and clinical development to maximize the potential of stem cell-based approaches in cardiac repair.
Collapse
Affiliation(s)
- Syed Ahsan Ali
- Cardiology, Nottingham University Hospitals NHS Trust, Nottingham, GBR
| | - Zahra Mahmood
- Internal Medicine, Akhtar Saeed Medical and Dental College, Lahore, PAK
| | | | - Manahil Asad
- Medicine and Surgery, Foundation University Medical College, Islamabad, PAK
| | | | - Lamiah Bilal
- Medicine and Surgery, Foundation University Medical College, Islamabad, PAK
| | - Tehniat Ashraf
- Internal Medicine, Bhitai Dental & Medical College, Mirpur Khas, PAK
| | | | - Thasneem Ashraf
- General Practice, Cooperative Neethi Healthcare, Thrissur, IND
| | - Falaknaz Saleem
- Internal Medicine, George Eliot Hospital NHS Trust, Nuneaton, GBR
| | | | - Shoaib Tarar
- Internal Medicine, Nishtar Medical University, Multan, PAK
| |
Collapse
|
4
|
Hirai K, Sawada R, Hayashi T, Araki T, Nakagawa N, Kondo M, Yasuda K, Hirata T, Sato T, Nakatsuka Y, Yoshida M, Kasahara S, Baba K, Oh H. Eight-Year Outcomes of Cardiosphere-Derived Cells in Single Ventricle Congenital Heart Disease. J Am Heart Assoc 2024; 13:e038137. [PMID: 39526355 DOI: 10.1161/jaha.124.038137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Cardiosphere-derived cell (CDC) infusion was associated with better clinical outcomes at 2 years in patients with single ventricle heart disease. The current study investigates time-to-event outcomes at 8 years. METHODS AND RESULTS This cohort enrolled patients with single ventricles who underwent stage 2 or stage 3 palliation from January 2011 to January 2015 at 8 centers in Japan. The primary outcomes were time-dependent CDC treatment effects on death and late complications during 8 years of follow-up, assessed by restricted mean survival time. Among 93 patients enrolled (mean age, 2.3±1.3 years; 56% men), 40 received CDC infusion. Overall survival for CDC-treated versus control patients did not differ at 8 years (hazard ratio [HR], 0.60 [95% CI, 0.21-1.77]; P=0.35). Treatment effect had nonproportional hazards for death favoring CDCs at 4 years (restricted mean survival time difference +0.33 years [95% CI, 0.01-0.66]; P=0.043). In patients with heart failure with reduced ejection fraction, CDC treatment effect on survival was greater over 8 years (restricted mean survival time difference +1.58 years [95% CI, 0.05-3.12]; P=0.043). Compared with control participants, CDC-treated patients showed lower incidences of late failure (HR, 0.45 [95% CI, 0.21-0.93]; P=0.027) and adverse events (subdistribution HR, 0.50 [95% CI, 0.27-0.94]; P=0.036) at 8 years. CONCLUSIONS By 8 years, CDC infusion was associated with lower hazards of late failure and adverse events in single ventricle heart disease. CDC treatment effect on survival was notable by 4 years and showed a durable clinical benefit in patients with heart failure with reduced ejection fraction over 8 years. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifiers: NCT01273857 and NCT01829750.
Collapse
Affiliation(s)
- Kenta Hirai
- Department of Pediatrics Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
- Department of Regenerative Medicine, Center for Innovative Clinical Medicine Okayama University Hospital Okayama Japan
| | - Ryusuke Sawada
- Department of Pharmacology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Tomohiro Hayashi
- Department of Pediatrics Kurashiki Central Hospital Okayama Japan
| | - Toru Araki
- Department of Pediatrics National Hospital Organization Fukuyama Medical Center Hiroshima Japan
| | - Naomi Nakagawa
- Department of Pediatric Cardiology Hiroshima City Hiroshima Citizens Hospital Hiroshima Japan
| | - Maiko Kondo
- Department of Pediatrics Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
- Department of Pediatrics Kochi Health Sciences Center Kochi Japan
| | - Kenji Yasuda
- Department of Pediatrics Shimane University Faculty of Medicine Izumo Shimane Japan
| | - Takuya Hirata
- Department of Pediatrics Kyoto University Graduate School of Medicine Kyoto Japan
| | - Tomoyuki Sato
- Department of Pediatrics Jichi Medical University Tochigi Japan
| | - Yuki Nakatsuka
- Department of Data Science, Center for Innovative Clinical Medicine Okayama University Hospital Okayama Japan
| | - Michihiro Yoshida
- Department of Data Science, Center for Innovative Clinical Medicine Okayama University Hospital Okayama Japan
| | - Shingo Kasahara
- Department of Cardiovascular Surgery Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Kenji Baba
- Department of Pediatrics Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Hidemasa Oh
- Department of Regenerative Medicine, Center for Innovative Clinical Medicine Okayama University Hospital Okayama Japan
| |
Collapse
|
5
|
Choubey U, Srinivas V, Trivedi YV, Garg N, Gupta V, Jain R. Regenerating the ailing heart: Stem cell therapies for hypoplastic left heart syndrome. Ann Pediatr Cardiol 2024; 17:124-131. [PMID: 39184114 PMCID: PMC11343389 DOI: 10.4103/apc.apc_24_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/14/2024] [Accepted: 04/14/2024] [Indexed: 08/27/2024] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a complex congenital heart defect (CHD) characterized by a spectrum of underdeveloped left-sided cardiac structures. It is a serious defect and warrants either 3-staged surgical palliation or a heart transplant. Despite numerous surgical advancements, long-term outcomes remain challenging and still have significant morbidity and mortality. There have been notable advancements in stem cell therapy for HLHS, including developments in diverse stem cell origins and methods of administration. Clinical trials have shown safety and potential benefits, including improved ventricular function, reduced heart failure, and fewer adverse events. Younger myocardium seems particularly receptive to stem cell signals, suggesting the importance of early intervention. This review explores the potential of emerging stem cell-based therapies as an adjunctive approach to improve the outcomes for HLHS patients.
Collapse
Affiliation(s)
- Udit Choubey
- Department of General Surgery, Shyam Shah Medical College, Rewa, Madhya Pradesh, India
| | - Varsha Srinivas
- Department of Internal Medicine, PES Institute of Medical Sciences and Research, Kuppam, Andhra Pradesh, India
| | - Yash Vardhan Trivedi
- Department of Internal Medicine, Jawaharlal Nehru Medical College, Ajmer, Rajasthan, India
| | - Nikita Garg
- Department of Pediatric College, Children’s Hospital of Michigan, Detroit, MI, USA
| | - Vasu Gupta
- Department of Internal Medicine, Cleveland Clinic Akron General, Akron, OH, USA
| | - Rohit Jain
- Penn State Milton S Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
6
|
Brizard CP, Elwood NJ, Kowalski R, Horton SB, Jones BO, Hutchinson D, Zannino D, Sheridan BJ, Butt W, Cheung MMH, Pepe S. Safety and feasibility of adjunct autologous cord blood stem cell therapy during the Norwood heart operation. J Thorac Cardiovasc Surg 2023; 166:1746-1755. [PMID: 37527726 DOI: 10.1016/j.jtcvs.2023.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND We conducted this phase I, open-label safety and feasibility trial of autologous cord blood (CB) stem cell (CBSC) therapy via a novel blood cardioplegia-based intracoronary infusion technique during the Norwood procedure in neonates with an antenatal diagnosis of hypoplastic left heart syndrome (HLHS). CBSC therapy may support early cardiac remodeling with enhancement of right ventricle (RV) function during the critical interstage period. METHODS Clinical grade CB mononucleated cells (CBMNCs) were processed to NetCord-FACT International Standards. To maximize yield, CBSCs were not isolated from CBMNCs. CBMNCs were stored at 4 °C (no cryopreservation) for use within 3 days and delivered after each cardioplegia dose (4 × 15 mL). RESULTS Of 16 patients with antenatal diagnosis, 13 were recruited; of these 13 patients, 3 were not treated due to placental abruption (n = 1) or conditions delaying the Norwood for >4 days (n = 2) and 10 received 644.9 ± 134 × 106 CBMNCs, representing 1.5 ± 1.1 × 106 (CD34+) CBSCs. Interstage mortality was 30% (n = 3; on days 7, 25, and 62). None of the 36 serious adverse events (53% linked to 3 deaths) were related to CBMNC therapy. Cardiac magnetic resonance imaging before stage 2 (n = 5) found an RV mass index comparable to that in an exact-matched historical cohort (n = 22), with a mean RV ejection fraction of 66.2 ± 4.5% and mean indexed stroke volume of 47.4 ± 6.2 mL/m2 versus 53.5 ± 11.6% and 37.2 ± 10.3 mL/m2, respectively. All 7 survivors completed stage 2 and are alive with normal RV function (6 with ≤mild and 1 with moderate tricuspid regurgitation). CONCLUSIONS This trial demonstrated that autologous CBMNCs delivered in large numbers without prior cryopreservation via a novel intracoronary infusion technique at cardioplegic arrest during Norwood palliation on days 2 to 3 of life is feasible and safe.
Collapse
Affiliation(s)
- Christian P Brizard
- Department of Cardiac Surgery, Royal Children's Hospital, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| | - Ngaire J Elwood
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Remi Kowalski
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Department of Cardiology, Royal Children's Hospital, Melbourne, Australia
| | - Stephen B Horton
- Department of Cardiac Surgery, Royal Children's Hospital, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Bryn O Jones
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Department of Cardiology, Royal Children's Hospital, Melbourne, Australia
| | - Darren Hutchinson
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Department of Cardiology, Royal Children's Hospital, Melbourne, Australia
| | - Diana Zannino
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Bennett J Sheridan
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Department of Cardiology, Royal Children's Hospital, Melbourne, Australia; Department of Paediatric Intensive Care, Royal Children's Hospital, Melbourne, Australia
| | - Warwick Butt
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Department of Paediatric Intensive Care, Royal Children's Hospital, Melbourne, Australia
| | - Michael M H Cheung
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Department of Cardiology, Royal Children's Hospital, Melbourne, Australia
| | - Salvatore Pepe
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
7
|
Hoffman JR, Park HJ, Bheri S, Platt MO, Hare JM, Kaushal S, Bettencourt JL, Lai D, Slesnick TC, Mahle WT, Davis ME. Statistical modeling of extracellular vesicle cargo to predict clinical trial outcomes for hypoplastic left heart syndrome. iScience 2023; 26:107980. [PMID: 37868626 PMCID: PMC10589850 DOI: 10.1016/j.isci.2023.107980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/24/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023] Open
Abstract
Cardiac-derived c-kit+ progenitor cells (CPCs) are under investigation in the CHILD phase I clinical trial (NCT03406884) for the treatment of hypoplastic left heart syndrome (HLHS). The therapeutic efficacy of CPCs can be attributed to the release of extracellular vesicles (EVs). To understand sources of cell therapy variability we took a machine learning approach: combining bulk CPC-derived EV (CPC-EV) RNA sequencing and cardiac-relevant in vitro experiments to build a predictive model. We isolated CPCs from cardiac biopsies of patients with congenital heart disease (n = 29) and the lead-in patients with HLHS in the CHILD trial (n = 5). We sequenced CPC-EVs, and measured EV inflammatory, fibrotic, angiogeneic, and migratory responses. Overall, CPC-EV RNAs involved in pro-reparative outcomes had a significant fit to cardiac development and signaling pathways. Using a model trained on previously collected CPC-EVs, we predicted in vitro outcomes for the CHILD clinical samples. Finally, CPC-EV angiogenic performance correlated to clinical improvements in right ventricle performance.
Collapse
Affiliation(s)
- Jessica R. Hoffman
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, GA 30322, USA
- Molecular & Systems Pharmacology Graduate Training Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Hyun-Ji Park
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Sruti Bheri
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Manu O. Platt
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Joshua M. Hare
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sunjay Kaushal
- Departments of Surgery and Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Judith L. Bettencourt
- Coordinating Center for Clinical Trials, Department of Biostatistics and Data Science, University of Texas Health Science Center School of Public Health, Houston, TX 77030, USA
| | - Dejian Lai
- Coordinating Center for Clinical Trials, Department of Biostatistics and Data Science, University of Texas Health Science Center School of Public Health, Houston, TX 77030, USA
| | - Timothy C. Slesnick
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Heart Research & Outcomes (HeRO) Center, Children’s Healthcare of Atlanta & Emory University, Atlanta, GA 30322, USA
| | - William T. Mahle
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Heart Research & Outcomes (HeRO) Center, Children’s Healthcare of Atlanta & Emory University, Atlanta, GA 30322, USA
| | - Michael E. Davis
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, GA 30322, USA
- Molecular & Systems Pharmacology Graduate Training Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
- Children’s Heart Research & Outcomes (HeRO) Center, Children’s Healthcare of Atlanta & Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Datta S, Cao W, Skillman M, Wu M. Hypoplastic Left Heart Syndrome: Signaling & Molecular Perspectives, and the Road Ahead. Int J Mol Sci 2023; 24:15249. [PMID: 37894928 PMCID: PMC10607600 DOI: 10.3390/ijms242015249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a lethal congenital heart disease (CHD) affecting 8-25 per 100,000 neonates globally. Clinical interventions, primarily surgical, have improved the life expectancy of the affected subjects substantially over the years. However, the etiological basis of HLHS remains fundamentally unclear to this day. Based upon the existing paradigm of studies, HLHS exhibits a multifactorial mode of etiology mediated by a complicated course of genetic and signaling cascade. This review presents a detailed outline of the HLHS phenotype, the prenatal and postnatal risks, and the signaling and molecular mechanisms driving HLHS pathogenesis. The review discusses the potential limitations and future perspectives of studies that can be undertaken to address the existing scientific gap. Mechanistic studies to explain HLHS etiology will potentially elucidate novel druggable targets and empower the development of therapeutic regimens against HLHS in the future.
Collapse
Affiliation(s)
| | | | | | - Mingfu Wu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (S.D.); (W.C.); (M.S.)
| |
Collapse
|
9
|
Yu Z, Liu Z, Ravichandran V, Lami B, Gu M. Endocardium in Hypoplastic Left Heart Syndrome: Implications from In Vitro Study. J Cardiovasc Dev Dis 2022; 9:jcdd9120442. [PMID: 36547439 PMCID: PMC9786329 DOI: 10.3390/jcdd9120442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Endocardium lines the inner layer of the heart ventricle and serves as the source of valve endothelial cells and interstitial cells. Previously, endocardium-associated abnormalities in hypoplastic left heart syndrome (HLHS) have been reported, including endocardial fibroelastosis (EFE) and mitral and aortic valve malformation. However, few mechanistic studies have investigated the molecular pathological changes in endocardial cells. Recently, the emergence of a powerful in vitro system-induced pluripotent stem cells (iPSCs)-was applied to study various genetic diseases, including HLHS. This review summarized current in vitro studies in understanding the endocardial pathology in HLHS, emphasizing new findings of the cellular phenotypes and underlying molecular mechanisms. Lastly, a future perspective is provided regarding the better recapitulation of endocardial phenotypes in a dish.
Collapse
Affiliation(s)
- Zhiyun Yu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ziyi Liu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Vidhya Ravichandran
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Bonny Lami
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mingxia Gu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence:
| |
Collapse
|
10
|
Kaushal S, Hare JM, Shah AM, Pietris NP, Bettencourt JL, Piller LB, Khan A, Snyder A, Boyd RM, Abdullah M, Mishra R, Sharma S, Slesnick TC, Si MS, Chai PJ, Davis BR, Lai D, Davis ME, Mahle WT. Autologous Cardiac Stem Cell Injection in Patients with Hypoplastic Left Heart Syndrome (CHILD Study). Pediatr Cardiol 2022; 43:1481-1493. [PMID: 35394149 DOI: 10.1007/s00246-022-02872-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022]
Abstract
Mortality in infants with hypoplastic left heart syndrome (HLHS) is strongly correlated with right ventricle (RV) dysfunction. Cell therapy has demonstrated potential improvements of RV dysfunction in animal models related to HLHS, and neonatal human derived c-kit+ cardiac-derived progenitor cells (CPCs) show superior efficacy when compared to adult human cardiac-derived CPCs (aCPCs). Neonatal CPCs (nCPCs) have yet to be investigated in humans. The CHILD trial (Autologous Cardiac Stem Cell Injection in Patients with Hypoplastic Left Heart Syndrome) is a Phase I/II trial aimed at investigating intramyocardial administration of autologous nCPCs in HLHS infants by assessing the feasibility, safety, and potential efficacy of CPC therapy. Using an open-label, multicenter design, CHILD investigates nCPC safety and feasibility in the first enrollment group (Group A/Phase I). In the second enrollment group, CHILD uses a randomized, double-blinded, multicenter design (Group B/Phase II), to assess nCPC efficacy based on RV functional and structural characteristics. The study plans to enroll 32 patients across 4 institutions: Group A will enroll 10 patients, and Group B will enroll 22 patients. CHILD will provide important insights into the therapeutic potential of nCPCs in patients with HLHS.Clinical Trial Registration https://clinicaltrials.gov/ct2/home NCT03406884, First posted January 23, 2018.
Collapse
Affiliation(s)
- Sunjay Kaushal
- Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Avenue, Chicago, IL, 60611, USA.
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, 9th Floor, Miami, FL, 33136, USA.
| | - Aakash M Shah
- Division of Cardiac Surgery, University of Maryland School of Medicine, 110 S. Paca Street, 7th Floor, Baltimore, MD, 21228, USA
| | - Nicholas P Pietris
- Division of Pediatric Cardiology, University of Maryland School of Medicine, 110 S. Paca Street, 7th Floor, Baltimore, MD, 21228, USA
| | | | - Linda B Piller
- School of Public Health, UT Health, 1200 Pressler, Houston, TX, 77030, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, 9th Floor, Miami, FL, 33136, USA
| | - Abigail Snyder
- Division of Cardiac Surgery, University of Maryland School of Medicine, 110 S. Paca Street, 7th Floor, Baltimore, MD, 21228, USA
| | - Riley M Boyd
- Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Avenue, Chicago, IL, 60611, USA
| | - Mohamed Abdullah
- Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Avenue, Chicago, IL, 60611, USA
| | - Rachana Mishra
- Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Avenue, Chicago, IL, 60611, USA
| | - Sudhish Sharma
- Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Avenue, Chicago, IL, 60611, USA
| | - Timothy C Slesnick
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, 1760 Haygood Drive W200, Atlanta, GA, 30322, USA
| | - Ming-Sing Si
- University of Michigan, CS Mott Children's Hospital, 1540 E. Hospital Drive, 11-735, Ann Arbor, MI, 48109, USA
| | - Paul J Chai
- Department of Cardiac Surgery, Emory University Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Barry R Davis
- School of Public Health, UT Health, 1200 Pressler, Houston, TX, 77030, USA
| | - Dejian Lai
- School of Public Health, UT Health, 1200 Pressler, Houston, TX, 77030, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, 1760 Haygood Drive W200, Atlanta, GA, 30322, USA.,Division of Cardiology, Department of Pediatrics, Emory University, Children's Healthcare of Atlanta, Atlanta, 201 Uppergate Drive, Atlanta, GA, 30322, USA
| | - William T Mahle
- Division of Cardiology, Department of Pediatrics, Emory University, Children's Healthcare of Atlanta, Atlanta, 201 Uppergate Drive, Atlanta, GA, 30322, USA
| |
Collapse
|
11
|
Pettinato AM, Ladha FA, Hinson JT. The Cardiac Sarcomere and Cell Cycle. Curr Cardiol Rep 2022; 24:623-630. [PMID: 35380383 PMCID: PMC11544589 DOI: 10.1007/s11886-022-01682-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/25/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW The lack of adult human cardiomyocyte proliferative capacity impairs cardiac regeneration such as after myocardial injury. The sarcomere, a specialized actin cytoskeletal structure that is essential for twitch contraction in cardiomyocytes, has been considered a critical factor limiting adult human cardiomyocyte proliferation through incompletely understood mechanisms. RECENT FINDINGS This review summarizes known and emerging regulatory mechanisms connecting the human cardiomyocyte sarcomere to cell cycle regulation including structural and signaling mechanisms. Cardiac regeneration could be augmented through targeting the inhibitory effects of the sarcomere on cardiomyocyte proliferation.
Collapse
Affiliation(s)
| | - Feria A Ladha
- University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - J Travis Hinson
- University of Connecticut Health Center, Farmington, CT, 06030, USA.
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA.
- Cardiology Center, UConn Health, Farmington, CT, 06030, USA.
- UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
12
|
Hoffman JR, Park HJ, Bheri S, Jayaraman AR, Davis ME. Comparative computational RNA analysis of cardiac-derived progenitor cells and their extracellular vesicles. Genomics 2022; 114:110349. [PMID: 35346780 PMCID: PMC9510608 DOI: 10.1016/j.ygeno.2022.110349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/18/2022] [Accepted: 03/23/2022] [Indexed: 01/14/2023]
Abstract
Stem/progenitor cells, including cardiac-derived c-kit+ progenitor cells (CPCs), are under clinical evaluation for treatment of cardiac disease. Therapeutic efficacy of cardiac cell therapy can be attributed to paracrine signaling and the release of extracellular vesicles (EVs) carrying diverse cargo molecules. Despite some successes and demonstrated safety, large variation in cell populations and preclinical/clinical outcomes remains a problem. Here, we investigated this variability by sequencing coding and non-coding RNAs of CPCs and CPC-EVs from 30 congenital heart disease patients and used machine learning methods to determine potential mechanistic insights. CPCs retained RNAs related to extracellular matrix organization and exported RNAs related to various signaling pathways to CPC-EVs. CPC-EVs are enriched in miRNA clusters related to cell proliferation and angiogenesis. With network analyses, we identified differences in non-coding RNAs which give insight into age-dependent functionality of CPCs. By taking a quantitative computational approach, we aimed to uncover sources of CPC cell therapy variability.
Collapse
Affiliation(s)
- Jessica R. Hoffman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia, USA.,Molecular & Systems Pharmacology Graduate Training Program, Graduate Division of Biological & Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Hyun-Ji Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sruti Bheri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia, USA
| | - Arun R. Jayaraman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael E. Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia, USA.,Molecular & Systems Pharmacology Graduate Training Program, Graduate Division of Biological & Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA.,Children’s Heart Research & Outcomes (HeRO) Center, Children’s Healthcare of Atlanta & Emory University, Atlanta, Georgia, USA.,Corresponding author at: Professor of Biomedical Engineering, 2015 Uppergate Drive, 310, Atlanta, GA 30322, USA,
| |
Collapse
|
13
|
Streeter BW, Brown ME, Shakya P, Park HJ, Qiu J, Xia Y, Davis ME. Using computational methods to design patient-specific electrospun cardiac patches for pediatric heart failure. Biomaterials 2022; 283:121421. [DOI: 10.1016/j.biomaterials.2022.121421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022]
|
14
|
Ryan CT, Rosengart TK. Commentary: Neonatal applications of cardiac cell therapy: It's good to be young! J Thorac Cardiovasc Surg 2022; 163:248-249. [PMID: 33097214 PMCID: PMC8024413 DOI: 10.1016/j.jtcvs.2020.09.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Christopher T Ryan
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Todd K Rosengart
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex.
| |
Collapse
|
15
|
Yang K, Xie D, Lin W, Xiang P, Peng C. Adipose mesenchymal stem cells and gingival mesenchymal stem cells have a comparable effect in endothelium repair. Exp Ther Med 2021; 22:1415. [PMID: 34676008 PMCID: PMC8524764 DOI: 10.3892/etm.2021.10851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Restenosis is the major factor influencing the long-term success rate of angioplasty and stent implantation and effective strategies to prevent restenosis remain limited. Mesenchymal stem cells (MSCs) are pluripotent stem cells capable of self-renewal and multidirectional differentiation, which may be able to promote endothelium repair, thereby reducing restenosis. The present study aimed to evaluate the effects of adipose MSCs (AMSCs) and gingival MSCs (GMSCs) on endothelium repair. MSCs were isolated from two human tissue types, namely adipose tissue and gingival tissue, and the effects of AMSCs and GMSCs in ex vivo endothelium repair and on vascular smooth muscle cell (SMC) growth were examined. To compare the feasibility of using AMSCs and GMSCs for the repair of endothelium damage in endothelial cell (EC) damage and vasoproliferative disorders, an ex vivo model of endothelium repair in a co-culture system was developed. It was indicated that AMSCs and GMSCs expressed characteristic MSC markers (CD105 and CD166). 3H-thymidine incorporation in the co-culture group of AMSCs and SMCs in the presence of ECs was lower compared with that in the GMSC and SMC co-culture group. The protein expression level of proliferating cell nuclear antigen in the co-culture group of AMSCs and SMCs in the presence of ECs were lower compared with that in the GMSC and SMC co-culture group. After co-culture with ECs for 5 days, 25.71±3.08% of AMSCs began to express CD31 protein and 20.06±2.09% of GMSCs began to express CD31 protein. Furthermore, anti-VEGF antibody was able to inhibit MSC differentiation. Collectively, the present results suggested that seeding of AMSCs had a stronger effect to inhibit the proliferation and migration of SMCs compared with GMSCs.
Collapse
Affiliation(s)
- Ke Yang
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Dongmei Xie
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Wanwen Lin
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Peng Xiang
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510600, P.R. China
| | - Chaoquan Peng
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
16
|
Ma S, Zhou J, Huang T, Zhang Z, Xing Q, Zhou X, Zhang K, Yao M, Cheng T, Wang X, Wen X, Guan F. Sodium alginate/collagen/stromal cell-derived factor-1 neural scaffold loaded with BMSCs promotes neurological function recovery after traumatic brain injury. Acta Biomater 2021; 131:185-197. [PMID: 34217903 DOI: 10.1016/j.actbio.2021.06.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 12/16/2022]
Abstract
Stem cell therapy is promising for neural repair in devastating traumatic brain injury (TBI). However, the low survival and differentiation rates of transplanted stem cells are main obstacles to efficient stem cell therapy in TBI. Stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4 are key factors that regulate the survival, recruitment, and differentiation of stem cells. Herein, we synthesized a sodium alginate (SA)/collagen type I (Col)/SDF-1 hydrogel and investigated whether the SA/Col/SDF-1 hydrogel loaded with bone marrow-derived mesenchymal stem cells (BMSCs) had therapeutic effects on a TBI model. Our results showed that the SA/Col/SDF-1 scaffold could stably release SDF-1 and provide biocompatible and biodegradable microenvironment for the survival, migration, and neuronal differentiation of BMSCs in vitro. In a rat model of TBI, the SA/Col/SDF-1 hydrogel loaded with BMSCs significantly ameliorated motor and cognition dysfunction and relieved anxiety and depressive-like behaviors. In addition, the BMSCs/SA/Col/SDF-1 scaffold reduced brain lesions and neuronal cell death and mitigated neuroinflammation. Further studies demonstrated that the BMSCs/SA/Col/SDF-1 hydrogel promoted the migration of BMSCs in the lesions and partly enhanced neurogenesis by activating the SDF-1/CXCR4-mediated FAK/PI3K/AKT pathway. Taken together, our results indicate that the SA/Col/SDF-1 scaffold loaded with BMSCs exerts neuroreparative effects in a TBI rat model, and thus, it may serve as an alternative neural regeneration scaffold for brain injury repair. STATEMENT OF SIGNIFICANCE: Hydrogel facilitates the biological behaviors of transplanted stem cells for tissue regeneration. In this study, we synthesized sodium alginate (SA)/collagen type I (Col)/ scaffold to simultaneously deliver stromal cell derived factor-1 (SDF-1) and bone marrow mesenchymal stem cells (BMSCs) in a rat model of traumatic brain injury (TBI). We found that the SA/Col/SDF-1 hydrogel could continuously release SDF-1 and was conducive to the survival, migration and neuronal differentiation of BMSCs in vitro. In addition, the SA/Col/SDF-1 hydrogel loaded with BMSCs significantly ameliorated neurological deficits, mitigated neuroinflammation, promoted the recruitment of BMSCs and enhanced neurogenesis in TBI partly by activating the SDF-1/CXCR4-mediated FAK/PI3K/AKT pathway. Our results may serve as an alternative neural regeneration strategy for brain injury.
Collapse
|
17
|
Zhang X, Lei T, Du H. Prospect of cell penetrating peptides in stem cell tracking. Stem Cell Res Ther 2021; 12:457. [PMID: 34391472 PMCID: PMC8364034 DOI: 10.1186/s13287-021-02522-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/12/2021] [Indexed: 01/19/2023] Open
Abstract
Stem cell therapy has shown great efficacy in many diseases. However, the treatment mechanism is still unclear, which is a big obstacle for promoting clinical research. Therefore, it is particularly important to track transplanted stem cells in vivo, find out the distribution and condition of the stem cells, and furthermore reveal the treatment mechanism. Many tracking methods have been developed, including magnetic resonance imaging (MRI), fluorescence imaging, and ultrasound imaging (UI). Among them, MRI and UI techniques have been used in clinical. In stem cell tracking, a major drawback of these technologies is that the imaging signal is not strong enough, mainly due to the low cell penetration efficiency of imaging particles. Cell penetrating peptides (CPPs) have been widely used for cargo delivery due to its high efficacy, good safety properties, and wide delivery of various cargoes. However, there are few reports on the application of CPPs in current stem cell tracking methods. In this review, we systematically introduced the mechanism of CPPs into cell membranes and their advantages in stem cell tracking, discussed the clinical applications and limitations of CPPs, and finally we summarized several commonly used CPPs and their specific applications in stem cell tracking. Although it is not an innovation of tracer materials, CPPs as a powerful tool have broad prospects in stem cell tracking. ![]()
Collapse
Affiliation(s)
- Xiaoshuang Zhang
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tong Lei
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongwu Du
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China. .,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
18
|
|
19
|
Gasparini M, Cox N. Role of cardiac magnetic resonance strain analysis in patients with hypoplastic left heart syndrome in evaluating right ventricular (dys)function: a systematic review. Eur J Cardiothorac Surg 2021; 60:497-505. [PMID: 34331061 DOI: 10.1093/ejcts/ezab105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/08/2020] [Accepted: 01/07/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Right ventricular dysfunction predicts death in patients with hypoplastic left heart syndrome (HLHS), but differences in morphology and loading conditions make calculation of the ejection fraction (EF), a challenging measure of its function. Our goal was to evaluate how strain measurements with cardiac magnetic resonance feature tracking could be used to evaluate right ventricular function in patients with HLHS. METHODS A systematic search of the literature was performed by 2 independent researchers using the terms 'population', 'intervention', 'comparison', 'outcome' and 'time criteria'. PubMed and the Ovid database were searched according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. RESULTS Our review included 8 studies with 608 participants with ventricular strain values obtained using cardiac magnetic resonance feature tracking. After stage I palliation, global strain was reduced in patients after a hybrid procedure and a right ventricle-to-pulmonary artery conduit compared with a modified Blalock-Taussig shunt despite similar EFs. Global longitudinal strain did not differ between stage II and stage III (Fontan) palliation. Fontan patients had significantly impaired global longitudinal and circumferential strain compared to the left ventricular strain of the controls. Studies of Fontan patients that included patients with HLHS who were part of a cohort with a single right ventricle showed impaired global circumferential strain compared with the cohort with a single left ventricle, with controls, and over time. In this group, impaired global circumferential strain was associated with major adverse cardiac events. CONCLUSIONS Cardiac magnetic resonance feature tracking can be used in patients with HLHS to evaluate RV strain and demonstrate differences between surgical strategies, over time and compared with controls. It could be used alongside clinical symptoms and EF values to detect ventricular dysfunction.
Collapse
Affiliation(s)
- Marisa Gasparini
- Department of Surgery, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Natasha Cox
- Department of Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
20
|
Xie A, Peng Y, Yao Z, Lu L, Ni T. Effect of a subset of adipose-derived stem cells isolated with liposome magnetic beads to promote cartilage repair. J Cell Mol Med 2021; 25:4204-4215. [PMID: 33768729 PMCID: PMC8093962 DOI: 10.1111/jcmm.16470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 03/05/2021] [Indexed: 12/20/2022] Open
Abstract
This study aimed to investigate the ability of CD146+ subset of ADSCs to repair cartilage defects. In this study, we prepared CD146+ liposome magnetic beads (CD146+LMB) to isolate CD146+ADSCs. The cells were induced for chondrogenic differentiation and verified by cartilage‐specific mRNA and protein expression. Then a mouse model of cartilage defect was constructed and treated by filling the induced cartilage cells into the damaged joint, to evaluate the function of such cells in the cartilage microenvironment. Our results demonstrated that the CD146+LMBs we prepared were uniform, small and highly stable, and cell experiments showed that the CD146+LMB has low cytotoxicity to the ADSCs. ADSCs isolated with CD146+LMB were all CD146+, CD105+, CD166+ and CD73+. After chondrogenic induction, the cells showed significantly increased expression of cartilage markers Sox9, collagen Ⅱ and aggrecan at protein level and significantly increased Sox9, collagen Ⅱ and aggrecan at mRNA level, and the protein expression and mRNA expression of CD146+ADSCs group were higher than those of ADSCs group. The CD146+ADSCs group showed superior tissue repair ability than the ADSCs group and blank control group in the animal experiment, as judged by gross observation, histological observation and histological scoring. The above results proved that CD146+LMB can successfully isolate the CD146+ADSCs, and after chondrogenic induction, these cells successfully promoted repair of articular cartilage defects, which may be a new direction of tissue engineering.
Collapse
Affiliation(s)
- Aiguo Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinbo Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zuochao Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Lu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Ni
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Ma L, Zhou N, Zou R, Shi W, Luo Y, Du N, Zhong J, Zhao X, Chen X, Xia H, Wu Y. Single-Cell RNA Sequencing and Quantitative Proteomics Analysis Elucidate Marker Genes and Molecular Mechanisms in Hypoplastic Left Heart Patients With Heart Failure. Front Cell Dev Biol 2021; 9:617853. [PMID: 33718359 PMCID: PMC7946977 DOI: 10.3389/fcell.2021.617853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/01/2021] [Indexed: 12/30/2022] Open
Abstract
Objective To probe markers and molecular mechanisms of the hypoplastic left heart (HLH) by single-cell RNA sequencing (scRNA-seq) and quantitative proteomics analysis. Methods Following data preprocessing, scRNA-seq data of pluripotent stem cell (iPSC)-derived cardiomyocytes from one HLH patient and one control were analyzed by the Seurat package in R. Cell clusters were characterized, which was followed by a pseudotime analysis. Markers in the pseudotime analysis were utilized for functional enrichment analysis. Quantitative proteomics analysis was based on peripheral blood samples from HLH patients without heart failure (HLH-NHF), HLH patients with heart failure (HLH-HF), and healthy controls. Hub genes were identified by the intersection of pseudotime markers and differentially expressed proteins (DE-proteins), which were validated in the GSE77798 dataset, RT-qPCR, and western blot. Results Cardiomyocytes derived from iPSCs were clustered into mesenchymal stem cells, myocardium, and fibroblast cells. Pseudotime analysis revealed their differentiation trajectory. Markers in the three pseudotime clusters were significantly associated with distinct biological processes and pathways. Finally, three hub genes (MMP2, B2M, and COL5A1) were identified, which were highly expressed in the left (LV) and right (RV) ventricles of HLH patients compared with controls. Furthermore, higher expression levels were detected in HLH patients with or without HF than in controls. Conclusion Our findings elucidate marker genes and molecular mechanisms of HLH, deepening the understanding of the pathogenesis of HLH.
Collapse
Affiliation(s)
- Li Ma
- The First Affiliated Hospital of Jinan University, Guangzhou, China.,Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Na Zhou
- Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Rongjun Zou
- Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wanting Shi
- Department of Paediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yuanyuan Luo
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Na Du
- Department of Surgical Nursing, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jing Zhong
- Department of Surgical Nursing, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaodong Zhao
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xinxin Chen
- Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huimin Xia
- The First Affiliated Hospital of Jinan University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yueheng Wu
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangzhou, China.,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
22
|
Abdullah M, Kegel S, Gunasekaran M, Saha P, Fu X, Mishra R, Sharma S, Sunjay Kaushal. Stem Cell Therapy in Single-Ventricle Physiology: Recent Progress and Future Directions. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2021; 24:67-76. [PMID: 34116785 DOI: 10.1053/j.pcsu.2021.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/08/2021] [Accepted: 03/09/2021] [Indexed: 12/29/2022]
Abstract
Current surgical and medical treatment options for single ventricle physiology conditions remain palliative. On the long term, despite treatment, the systemic ventricle has a significant risk of developing failure. There are unmet needs to develop novel treatment modalities to help ameliorate the ventricular dysfunction. Advances in the field of stem cell therapy have been promising for the treatment of heart failure. Numerous stem cell populations have been identified. Preclinical studies in small and large animal models provide evidence for effectiveness of this treatment modality and reveal several mechanisms of action by which stem cells exert their effect. Many clinical trials have been designed to further investigate the therapeutic potential that stem cell therapy may hold for pediatric populations with single ventricle physiology. In this review, we discuss the stem cell types used in these populations, some preclinical studies, and the clinical trials of stem cell therapy in single ventricle patients.
Collapse
Affiliation(s)
| | - Samantha Kegel
- University of Maryland School of Medicine, Baltimore, Maryland
| | - Muthukumar Gunasekaran
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinburg School of Medicine, Chicago, Illinois
| | - Progyaparamita Saha
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinburg School of Medicine, Chicago, Illinois
| | - Xuebin Fu
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinburg School of Medicine, Chicago, Illinois
| | - Rachana Mishra
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinburg School of Medicine, Chicago, Illinois
| | - Sudhish Sharma
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinburg School of Medicine, Chicago, Illinois
| | - Sunjay Kaushal
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinburg School of Medicine, Chicago, Illinois.
| |
Collapse
|
23
|
Vincenti M, O'Leary PW, Qureshi MY, Seisler DK, Burkhart HM, Cetta F, Nelson TJ. Clinical Impact of Autologous Cell Therapy on Hypoplastic Left Heart Syndrome After Bidirectional Cavopulmonary Anastomosis. Semin Thorac Cardiovasc Surg 2021; 33:791-801. [DOI: 10.1053/j.semtcvs.2020.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/05/2020] [Indexed: 01/29/2023]
|
24
|
Abstract
Pediatric heart failure (PHF) affects 0.87 to 7.4 per 100,000 children. It has a 5-year mortality or heart transplant rate of 40%. Diagnosis often is delayed because initial symptoms are similar to common pediatric illnesses. Disease progression is tracked by symptoms, echocardiogram, and biomarkers. Treatment is extrapolated from mostly adult heart failure (HF) literature. Recent studies demonstrate differences between pediatric and adult HF pathophysiology. Increased collaboration among PHF programs is advancing the management of PHF. Unfortunately, there are patients who ultimately require heart transplantation, with increasing numbers supported by a ventricular assist device as a bridge to transplantation.
Collapse
Affiliation(s)
- Kae Watanabe
- Northwestern University, 225 East Chicago Avenue, Box 21, Chicago, IL 60611-2605, USA.
| | - Renata Shih
- University of Florida, 1600 Southwest Archer Road PO Box 100296, Gainesville, FL 32610, USA
| |
Collapse
|
25
|
Keller BB, Kowalski WJ, Tinney JP, Tobita K, Hu N. Validating the Paradigm That Biomechanical Forces Regulate Embryonic Cardiovascular Morphogenesis and Are Fundamental in the Etiology of Congenital Heart Disease. J Cardiovasc Dev Dis 2020; 7:E23. [PMID: 32545681 PMCID: PMC7344498 DOI: 10.3390/jcdd7020023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/31/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
The goal of this review is to provide a broad overview of the biomechanical maturation and regulation of vertebrate cardiovascular (CV) morphogenesis and the evidence for mechanistic relationships between function and form relevant to the origins of congenital heart disease (CHD). The embryonic heart has been investigated for over a century, initially focusing on the chick embryo due to the opportunity to isolate and investigate myocardial electromechanical maturation, the ability to directly instrument and measure normal cardiac function, intervene to alter ventricular loading conditions, and then investigate changes in functional and structural maturation to deduce mechanism. The paradigm of "Develop and validate quantitative techniques, describe normal, perturb the system, describe abnormal, then deduce mechanisms" was taught to many young investigators by Dr. Edward B. Clark and then validated by a rapidly expanding number of teams dedicated to investigate CV morphogenesis, structure-function relationships, and pathogenic mechanisms of CHD. Pioneering studies using the chick embryo model rapidly expanded into a broad range of model systems, particularly the mouse and zebrafish, to investigate the interdependent genetic and biomechanical regulation of CV morphogenesis. Several central morphogenic themes have emerged. First, CV morphogenesis is inherently dependent upon the biomechanical forces that influence cell and tissue growth and remodeling. Second, embryonic CV systems dynamically adapt to changes in biomechanical loading conditions similar to mature systems. Third, biomechanical loading conditions dynamically impact and are regulated by genetic morphogenic systems. Fourth, advanced imaging techniques coupled with computational modeling provide novel insights to validate regulatory mechanisms. Finally, insights regarding the genetic and biomechanical regulation of CV morphogenesis and adaptation are relevant to current regenerative strategies for patients with CHD.
Collapse
Affiliation(s)
- Bradley B. Keller
- Cincinnati Children’s Heart Institute, Greater Louisville and Western Kentucky Practice, Louisville, KY 40202, USA
| | - William J. Kowalski
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA;
| | - Joseph P. Tinney
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA;
| | - Kimimasa Tobita
- Department of Medical Affairs, Abiomed Japan K.K., Muromachi Higashi Mitsui Bldg, Tokyo 103-0022, Japan;
| | - Norman Hu
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA;
| |
Collapse
|
26
|
Mohanty SR, Patel A, Kundan S, Radhakrishnan HB, Rao SG. Hypoplastic left heart syndrome: current modalities of treatment and outcomes. Indian J Thorac Cardiovasc Surg 2020; 37:26-35. [PMID: 33584025 DOI: 10.1007/s12055-019-00919-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 11/27/2022] Open
Abstract
Hypoplastic left heart syndrome is a constellation of malformations which result from the severe underdevelopment of any left-sided cardiac structures. Once considered to be universally fatal, the prognosis for this condition has tremendously improved over the past four decades since the work of William Norwood in the early 1980s. Today, a staged surgical approach is applied for palliating this distinctive cohort of patients, in which they undergo three operative procedures in the first 10 years of their life. Advancements in medical technologies, surgical techniques, and our growing experience in the management of HLHS have made survival into adulthood a possibility. Through this review, we present the different phases of the staged approach with primary focus on stage 1-its modifications, current technique, alternatives, and latest outcomes.
Collapse
Affiliation(s)
- Smruti Ranjan Mohanty
- Department of Pediatric and Congenital Heart Surgery, Kokilaben Dhirubhai Ambani Hospital, Four Bungalows, Andheri (West), Mumbai, 400053 India
| | | | - Simran Kundan
- Department of Pediatric and Congenital Heart Surgery, Kokilaben Dhirubhai Ambani Hospital, Four Bungalows, Andheri (West), Mumbai, 400053 India
| | - Hari Bipin Radhakrishnan
- Department of Pediatric and Congenital Heart Surgery, Kokilaben Dhirubhai Ambani Hospital, Four Bungalows, Andheri (West), Mumbai, 400053 India
| | - Suresh Gururaja Rao
- Department of Pediatric and Congenital Heart Surgery, Kokilaben Dhirubhai Ambani Hospital, Four Bungalows, Andheri (West), Mumbai, 400053 India
| |
Collapse
|
27
|
Toubat O, Kumar SR. Molecular Approaches in Single Ventricle Management. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2020; 23:77-85. [PMID: 32354551 PMCID: PMC9232387 DOI: 10.1053/j.pcsu.2020.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/05/2020] [Indexed: 04/21/2023]
Abstract
Advances in medical and surgical management have significantly improved early outcomes in single ventricle congenital heart disease over the last 2 decades. Despite these advances, long-term outcomes remain suboptimal and therapeutic options to address systemic ventricular and/or Fontan failure are limited even in the modern era. Intricate molecular biologic techniques have shed light into the mechanisms of development of single ventricle disease. Efforts are underway to leverage this knowledge to improve clinical diagnosis, therapy, and prognostication. Cell-based therapies aimed at inducing cardiomyocyte proliferation and preventing delayed cardiac dysfunction have already entered the clinical realm. Several more novel biological therapies are expected to become available for patients with single ventricle disease in the near future. These scientific advancements provide us hope and reaffirm our faith that molecular medicine will usher in the next generation of therapies for single ventricle management.
Collapse
Affiliation(s)
- Omar Toubat
- Division of Cardiac Surgery, Department of Surgery, University of Southern California, Los Angeles, California
| | - S Ram Kumar
- Division of Cardiac Surgery, Department of Surgery, University of Southern California, Los Angeles, California; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California; Heart Institute, Children's Hospital, Los Angeles, Los Angeles, California.
| |
Collapse
|
28
|
Kutty S, Jacobs ML, Thompson WR, Danford DA. Fontan Circulation of the Next Generation: Why It's Necessary, What it Might Look Like. J Am Heart Assoc 2019; 9:e013691. [PMID: 31852419 PMCID: PMC6988165 DOI: 10.1161/jaha.119.013691] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shelby Kutty
- The Helen B. Taussig Heart Center The Johns Hopkins Hospital and Johns Hopkins University Baltimore MD
| | - Marshall L Jacobs
- The Helen B. Taussig Heart Center The Johns Hopkins Hospital and Johns Hopkins University Baltimore MD
| | - W Reid Thompson
- The Helen B. Taussig Heart Center The Johns Hopkins Hospital and Johns Hopkins University Baltimore MD
| | - David A Danford
- Pediatric Cardiology University of Nebraska College of Medicine Omaha NE
| |
Collapse
|
29
|
Mohamed IA, El-Badri N, Zaher A. Wnt Signaling: The double-edged sword diminishing the potential of stem cell therapy in congenital heart disease. Life Sci 2019; 239:116937. [PMID: 31629761 DOI: 10.1016/j.lfs.2019.116937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 12/26/2022]
Abstract
Stem cell therapy using bone marrow derived or mesenchymal stem cells has become a popular option for cardiovascular disease treatment, however the administration of embryonic stem cells has been mostly experimental. Remarkably, most of these ongoing clinical trials involve adult patients, but little is known regarding the safety and efficacy of stem cell therapy in newborns and children battling congenital heart diseases. Furthermore, cell delivery methods involve the administration of stem cells without pre-differentiation, and without consideration for the consequent process of cardiac development. Interestingly, in-vitro studies have demonstrated that the differentiation of embryonic stem cells into cardiomyocytes imitates the stages of cardiogenesis. Wnt signaling plays a profound role during the earliest stages of cardiogenesis and cardiac differentiation. In fact inappropriate Wnt signaling is associated with numerous cardiac disorders especially congenital heart disease. Furthermore, cell-extracellular matrix interactions were shown to be critical for stem cell differentiation and adequate cardiogenesis. Since extracellular matrix molecules are fundamental for maintenance and repair during heart disease and congenital heart disease, they may offer a novel approach for therapy. Herein we aim to review the critical role of Wnt signaling, as well as the profound importance of cell extracellular matrix interaction, during cardiogenesis. Both of these processes are crucial for precise stem cell differentiation into cardiomyocytes and developing efficacious regenerative therapy for congenital heart disease.
Collapse
Affiliation(s)
- Iman A Mohamed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, 12588, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, 12588, Egypt
| | - Amr Zaher
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, 12588, Egypt; National Heart Institute, Giza, Egypt.
| |
Collapse
|
30
|
Madeddu P, Avolio E, Alvino VV, Santopaolo M, Spinetti G. Personalized Cardiovascular Regenerative Medicine: Targeting the Extreme Stages of Life. Front Cardiovasc Med 2019; 6:177. [PMID: 31828079 PMCID: PMC6890607 DOI: 10.3389/fcvm.2019.00177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/14/2019] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular regenerative medicine is an exciting new approach that promises to change the current care of million people world-wide. Major emphasis was given to the quality and quantities of regenerative products, but recent evidence points to the importance of a better specification of the target population that may take advantage of these advanced medical treatments. Patient stratification is an important step in drug development. Tailoring treatment to the patient's specificity allowed significant improvement in cancer therapy, but personalized regenerative medicine is still at the initial stage in the cardiovascular field. For example, new-borns with a congenital heart condition and elderly people require dedicated therapeutic approaches, which adapt to their lifetime needs. In these people, personalized treatments may overcome the benefits delivered by standard protocols. In this review, we provide insights into these extreme stages of life as potential targets for cardiovascular reconstitution.
Collapse
Affiliation(s)
- Paolo Madeddu
- Translational Health Sciences, Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Elisa Avolio
- Translational Health Sciences, Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Valeria Vincenza Alvino
- Translational Health Sciences, Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Marianna Santopaolo
- Translational Health Sciences, Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Gaia Spinetti
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
31
|
Saraf A, Book WM, Nelson TJ, Xu C. Hypoplastic left heart syndrome: From bedside to bench and back. J Mol Cell Cardiol 2019; 135:109-118. [PMID: 31419439 PMCID: PMC10831616 DOI: 10.1016/j.yjmcc.2019.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 02/09/2023]
Abstract
Hypoplastic Left Heart Syndrome (HLHS) is a complex Congenital Heart Disease (CHD) that was almost universally fatal until the advent of the Norwood operation in 1981. Children with HLHS who largely succumbed to the disease within the first year of life, are now surviving to adulthood. However, this survival is associated with multiple comorbidities and HLHS infants have a higher mortality rate as compared to other non-HLHS single ventricle patients. In this review we (a) discuss current clinical challenges associated in the care of HLHS patients, (b) explore the use of systems biology in understanding the molecular framework of this disease, (c) evaluate induced pluripotent stem cells as a translational model to understand molecular mechanisms and manipulate them to improve outcomes, and (d) investigate cell therapy, gene therapy, and tissue engineering as a potential tool to regenerate hypoplastic cardiac structures and improve outcomes.
Collapse
Affiliation(s)
- Anita Saraf
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Wendy M Book
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Timothy J Nelson
- Division of General Internal Medicine, Center for Regenerative Medicine, Pediatric Cardiothoracic Surgery, Division of Cardiovascular Diseases, Transplant Center, Division of Biomedical Statistics and Informatics, Division of Pediatric Cardiology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Chunhui Xu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
32
|
Affiliation(s)
- Eugene Braunwald
- From the TIMI Study Group, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
33
|
Graupner O, Enzensberger C, Axt-Fliedner R. New Aspects in the Diagnosis and Therapy of Fetal Hypoplastic Left Heart Syndrome. Geburtshilfe Frauenheilkd 2019; 79:863-872. [PMID: 31423021 PMCID: PMC6690741 DOI: 10.1055/a-0828-7968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/29/2018] [Accepted: 12/30/2018] [Indexed: 12/26/2022] Open
Abstract
Fetal hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease with a lethal prognosis without postnatal therapeutic intervention or surgery. The aim of this article is to give a brief overview of new findings in the field of prenatal diagnosis and the therapy of HLHS. As cardiac output in HLHS children depends on the right ventricle (RV), prenatal assessment of fetal RV function is of interest to predict poor functional RV status before the RV becomes the systemic ventricle. Prenatal cardiac interventions such as fetal aortic valvuloplasty and non-invasive procedures such as maternal hyperoxygenation seem to be promising treatment options but will need to be evaluated with regard to long-term outcomes. Novel approaches such as stem cell therapy or neuroprotection provide important clues about the complexity of the disease. New aspects in diagnostics and therapy of HLHS show the potential of a targeted prenatal treatment planning. This could be used to optimize parental counseling as well as pre- and postnatal management of affected children.
Collapse
Affiliation(s)
- Oliver Graupner
- Department of Obstetrics and Gynecology, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Enzensberger
- Department of Obstetrics and Gynecology, Division of Prenatal Medicine, University Hospital UKGM, Justus-Liebig University, Giessen, Germany
| | - Roland Axt-Fliedner
- Department of Obstetrics and Gynecology, Division of Prenatal Medicine, University Hospital UKGM, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
34
|
Burkhart HM, Qureshi MY, Rossano JW, Cantero Peral S, O'Leary PW, Hathcock M, Kremers W, Nelson TJ. Autologous stem cell therapy for hypoplastic left heart syndrome: Safety and feasibility of intraoperative intramyocardial injections. J Thorac Cardiovasc Surg 2019; 158:1614-1623. [PMID: 31345560 DOI: 10.1016/j.jtcvs.2019.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Staged surgical palliation for hypoplastic left heart syndrome results in an increased workload on the right ventricle serving as the systemic ventricle. Concerns for cardiac dysfunction and long-term heart failure have generated interest in first-in-infant, cell-based therapies as an additional surgical treatment modality. METHODS A phase 1 clinical trial was conducted to evaluate the safety and feasibility of direct intramyocardial injection of autologous umbilical cord blood-derived mononuclear cells in 10 infants with hypoplastic left heart syndrome at the time of stage II palliation. RESULTS All 10 patients underwent successful stage II palliation and intramyocardial injection of umbilical cord blood-derived mononuclear cells. Operative mortality was 0%. There was a single adverse event related to cell delivery: An injection site epicardial bleed that required simple oversew. The cohort did not demonstrate any significant safety concerns over 6 months. Additionally, the treatment group did not demonstrate any reduction in cardiac function in the context of the study related intramyocardial injections of autologous cells. CONCLUSIONS This phase 1 clinical trial showed that delivering autologous umbilical cord blood-derived mononuclear cells directly into the right ventricular myocardium during planned stage II surgical palliation for hypoplastic left heart syndrome was safe and feasible. Secondary findings of preservation of baseline right ventricular function throughout follow-up and normalized growth rates support the design of a phase 2b follow-up trial.
Collapse
Affiliation(s)
- Harold M Burkhart
- Division of Cardiovascular and Thoracic Surgery, University of Oklahoma, Oklahoma City, Okla.
| | | | - Joseph W Rossano
- Cardiac Center, Children's Hospital of Philadelphia, Philadelphia, Pa
| | | | | | - Matthew Hathcock
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minn
| | - Walter Kremers
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minn
| | - Timothy J Nelson
- Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minn; Division of General Internal Medicine, Mayo Clinic, Rochester, Minn; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minn; Center for Regenerative Medicine, Mayo Clinic, Rochester, Minn
| |
Collapse
|
35
|
Streeter BW, Xue J, Xia Y, Davis ME. Electrospun Nanofiber-Based Patches for the Delivery of Cardiac Progenitor Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18242-18253. [PMID: 31021079 DOI: 10.1021/acsami.9b04473] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Congenital heart disease is the number one cause of birth defect-related death because it often leads to right ventricular heart failure (RVHF). One promising avenue to combat this RVHF is the use of cardiac patches composed of stem cells and scaffolds. Herein, we demonstrate a reparative cardiac patch by combining neonatal or child c-kit+ progenitor cells (CPCs) with a scaffold composed of electrospun polycaprolactone nanofibers. We examined different parameters of the patch, including the alignment, composition, and surface properties of the nanofibers, as well as the age of the CPCs. The patch based on uniaxially aligned nanofibers successfully aligned the CPCs. With the inclusion of gelatin in the nanofiber matrix and/or coating of fibronectin on the surface of the nanofibers, the metabolism of both neonatal and child CPCs was generally enhanced. The conditioned media collected from both patches based on aligned and random nanofibers could reduce the fibrotic gene expression in rat cardiac fibroblasts, following stimulation with transforming growth factor β. Furthermore, the conditioned media collected from the nanofiber-based patches could lead to the formation of tubes of human umbilical vein endothelial cells, indicating the pro-angiogenic capability of the patch. Taken together, the electrospun nanofiber-based patches are a suitable delivery vehicle for CPCs and can confer reparative benefit through anti-fibrotic and pro-angiogenic paracrine signaling.
Collapse
Affiliation(s)
- Benjamin W Streeter
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University School of Medicine , Atlanta , Georgia 30332 , United States
| | - Jiajia Xue
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University School of Medicine , Atlanta , Georgia 30332 , United States
| | - Younan Xia
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University School of Medicine , Atlanta , Georgia 30332 , United States
- School of Chemistry and Biochemistry, School of Chemical and Biological Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University School of Medicine , Atlanta , Georgia 30332 , United States
- Division of Cardiology , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
- Children's Heart Research and Outcomes (HeRO) Center , Children's Healthcare of Atlanta and Emory University , Atlanta , Georgia 30322 , United States
| |
Collapse
|
36
|
Kuan II, Lee CC, Chen CH, Lu J, Kuo YS, Wu HC. The extracellular domain of epithelial cell adhesion molecule (EpCAM) enhances multipotency of mesenchymal stem cells through EGFR-LIN28-LET7 signaling. J Biol Chem 2019; 294:7769-7786. [PMID: 30926604 DOI: 10.1074/jbc.ra119.007386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/19/2019] [Indexed: 11/06/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are widely considered to be an attractive cell source for regenerative therapies, but maintaining multipotency and self-renewal in cultured MSCs is especially challenging. Hence, the development and mechanistic description of strategies that help promote multipotency in MSCs will be vital to future clinical use. Here, using an array of techniques and approaches, including cell biology, RT-quantitative PCR, immunoblotting, immunofluorescence, flow cytometry, and ChIP assays, we show that the extracellular domain of epithelial cell adhesion molecule (EpCAM) (EpEX) significantly increases the levels of pluripotency factors through a signaling cascade that includes epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), and Lin-28 homolog A (LIN28) and enhances the proliferation of human bone marrow MSCs. Moreover, we found that EpEX-induced LIN28 expression reduces the expression of the microRNA LET7 and up-regulates that of the transcription factor high-mobility group AT-hook 2 (HMGA2), which activates the transcription of pluripotency factors. Surprisingly, we found that EpEX treatment also enhances osteogenesis of MSCs under differentiation conditions, as evidenced by increases in osteogenic markers, including Runt-related transcription factor 2 (RUNX2). Taken together, our results indicate that EpEX stimulates EGFR signaling and thereby context-dependently controls MSC states and activities, promoting cell proliferation and multipotency under maintenance conditions and osteogenesis under differentiation conditions.
Collapse
Affiliation(s)
- I-I Kuan
- From the Institute of Cellular and Organismic Biology and
| | - Chi-Chiu Lee
- From the Institute of Cellular and Organismic Biology and
| | - Chien-Hsu Chen
- From the Institute of Cellular and Organismic Biology and
| | - Jean Lu
- Genomic Research Center, Academia Sinica, Taipei 115 and
| | - Yuan-Sung Kuo
- the Department of Surgery, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Han-Chung Wu
- From the Institute of Cellular and Organismic Biology and .,Genomic Research Center, Academia Sinica, Taipei 115 and
| |
Collapse
|