1
|
Calle X, Garrido-Moreno V, Becerra B, Troncoso MF, Silva-Agüero JF, Guajardo-Correa E, Venegas-Zamora L, Lopez-Gallardo E, Muñoz-Córdova F, Fredericksen F, Aedo-Cares S, Peñaloza-Otárola A, Ortega A, Raya A, Maracaja-Coutinho V, Chiong M, Parra V, Lavandero S. 17-beta estradiol prevents cardiac myocyte hypertrophy by regulating mitochondrial E3 ubiquitin ligase 1. Cell Death Dis 2025; 16:111. [PMID: 39971924 PMCID: PMC11839923 DOI: 10.1038/s41419-025-07389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/24/2024] [Accepted: 01/24/2025] [Indexed: 02/21/2025]
Abstract
Cardiac hypertrophy is a cellular process characterized by the increased size of cardiomyocytes in response to a high workload or stress. 17-beta estradiol (E2) has cardioprotective and anti-hypertrophic effects by maintaining mitochondrial network and function. MUL1 is a mitochondrial ubiquitin ligase directly involved in the control of mitochondrial fission and mitophagy. Studies from our group and others have previously shown that cardiomyocyte hypertrophy is associated with mitochondrial fission and dysfunction. These findings led us to study in vitro whether E2 regulates MUL1 to prevent cardiac hypertrophy, mitochondrial fission, and dysfunction induced by the catecholamine norepinephrine (NE). Our results showed that NE induces hypertrophy in cultured rat cardiomyocytes. Pre-treatment with E2 (10-100 nM) prevented the NE-dependent increases in cell perimeter and the hypertrophic stress markers ANP and BNP at both the protein and mRNA levels. NE induced the fragmentation of the mitochondrial network and reduced ATP levels, effects that were both prevented by E2. In silico analysis suggested a putative binding site for estrogen receptors on the MUL1 gene promoter. In accordance with this finding, E2 prevented increases in MUL1 mRNA and protein levels induced by NE. Our data also showed that a siRNA MUL1 knockdown counteracted NE-induced cardiomyocyte hypertrophy and mitochondrial dysfunction, mirroring the protective effect triggered by E2. In contrast, a MUL1 adenovirus did not prevent the E2 protection from cardiomyocyte hypertrophy. Further, in vivo analysis in a transgenic mouse model overexpressing MUL1 revealed that only young male mice overexpressed the protein. Consequently, they exhibited increased levels of the hypertrophic marker ANP, an elevated heart weight, and larger cardiomyocyte size. Therefore, our data demonstrate that 17-beta estradiol prevents cardiac myocyte hypertrophy by regulating MUL1.
Collapse
Affiliation(s)
- Ximena Calle
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Valeria Garrido-Moreno
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Brenda Becerra
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mayarling F Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan Francisco Silva-Agüero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Emanuel Guajardo-Correa
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Leslye Venegas-Zamora
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Erik Lopez-Gallardo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Muñoz-Córdova
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fernanda Fredericksen
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Millennium Institute Center for Genome Regulation, Santiago, Chile
| | - Sebastian Aedo-Cares
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Allan Peñaloza-Otárola
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Angelica Ortega
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Angel Raya
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, Program for Clinical Translation of Regenerative Medicine in Catalonia-P-[CMRC], and Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), L'Hospitalet de Llobregat, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- SYSTEMIX Center for Systems Biology, O'Higgins University, Rancagua, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- SYSTEMIX Center for Systems Biology, O'Higgins University, Rancagua, Chile.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
2
|
Takasaki T, Bamba A, Kukita Y, Nishida A, Kanbayashi D, Hagihara K, Satoh R, Ishihara K, Sugiura R. Rcn1, the fission yeast homolog of human DSCR1, regulates arsenite tolerance independently from calcineurin. Genes Cells 2024; 29:589-598. [PMID: 38715219 DOI: 10.1111/gtc.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 07/06/2024]
Abstract
Calcineurin (CN) is a conserved Ca2+/calmodulin-dependent phosphoprotein phosphatase that plays a key role in Ca2+ signaling. Regulator of calcineurin 1 (RCAN1), also known as Down syndrome critical region gene 1 (DSCR1), interacts with calcineurin and inhibits calcineurin-dependent signaling in various organisms. Ppb1, the fission yeast calcineurin regulates Cl--homeostasis, and Ppb1 deletion induces MgCl2 hypersensitivity. Here, we characterize the conserved and novel roles of the fission yeast RCAN1 homolog rcn1+. Consistent with its role as an endogenous calcineurin inhibitor, Rcn1 overproduction reproduced the calcineurin-null phenotypes, including MgCl2 hypersensitivity and inhibition of calcineurin signaling upon extracellular Ca2+ stimuli as evaluated by the nuclear translocation and transcriptional activation of the calcineurin substrate Prz1. Notably, overexpression of rcn1+ causes hypersensitivity to arsenite, whereas calcineurin deletion induces arsenite tolerance, showing a phenotypic discrepancy between Rcn1 overexpression and calcineurin deletion. Importantly, although Rcn1 deletion induces modest sensitivities to arsenite and MgCl2 in wild-type cells, the arsenite tolerance, but not MgCl2 sensitivity, associated with Ppb1 deletion was markedly suppressed by Rcn1 deletion. Collectively, our findings reveal a previously unrecognized functional collaboration between Rcn1 and calcineurin, wherein Rcn1 not only negatively regulates calcineurin in the Cl- homeostasis, but also Rcn1 mediates calcineurin signaling to modulate arsenite cytotoxicity.
Collapse
Affiliation(s)
- Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Asuka Bamba
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Yuka Kukita
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Aiko Nishida
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Daiki Kanbayashi
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
- Laboratory of Hygienic Science, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, Kobe, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Keiichi Ishihara
- Laboratory of Pathological Biochemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| |
Collapse
|
3
|
Li KH, Lin JM, Luo SQ, Li MY, Yang YY, Li MM, Xia PY, Su JZ. Afferent Renal Denervation Attenuates Sympathetic Overactivation From the Paraventricular Nucleus in Spontaneously Hypertensive Rats. Am J Hypertens 2024; 37:477-484. [PMID: 38459938 DOI: 10.1093/ajh/hpae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/06/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND The effectiveness of renal denervation (RDN) in reducing blood pressure and systemic sympathetic activity in hypertensive patients has been established. However, the underlying central mechanism remains unknown. This study aimed to investigate the role of RDN in regulating cardiovascular function via the central renin-angiotensin system (RAS) pathway. METHODS Ten-week-old spontaneously hypertensive rats (SHR) were subjected to selective afferent renal denervation (ADN) using capsaicin solution. We hypothesized that ADN would effectively reduce blood pressure and rebalance the RAS component of the paraventricular nucleus (PVN) in SHR. RESULTS The experimental results show that the ADN group exhibited significantly lower blood pressure, reduced systemic sympathetic activity, decreased chronic neuronal activation marker C-FOS expression in the PVN, and improved arterial baroreflex function, compared with the Sham group. Furthermore, ACE and AT1 protein expression was reduced while ACE2 and MAS protein expression was increased in the PVN of SHR after ADN. CONCLUSIONS These findings suggest that RDN may exert these beneficial effects through modulating the central RAS pathway.
Collapse
Affiliation(s)
- Kun-Hui Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Department of Rehabilitation Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Jie-Min Lin
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Department of Rehabilitation Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Si-Qi Luo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Department of Rehabilitation Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Min-Yan Li
- Department of Rehabilitation and Health, Fujian Vocational College of Bioengineering, Fuzhou, China
| | - Yi-Yong Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Department of Rehabilitation Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Meng-Meng Li
- Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Pan-Yan Xia
- Department of Rehabilitation Medicine, The School of Health, Fujian Medical University, Fuzhou, China
| | - Jin-Zi Su
- Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Bansal P, Banda EC, Glatt-Deeley HR, Stoddard CE, Linsley JW, Arora N, Deleschaux C, Ahern DT, Kondaveeti Y, Massey RE, Nicouleau M, Wang S, Sabariego-Navarro M, Dierssen M, Finkbeiner S, Pinter SF. A dynamic in vitro model of Down syndrome neurogenesis with trisomy 21 gene dosage correction. SCIENCE ADVANCES 2024; 10:eadj0385. [PMID: 38848354 PMCID: PMC11160455 DOI: 10.1126/sciadv.adj0385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Excess gene dosage from chromosome 21 (chr21) causes Down syndrome (DS), spanning developmental and acute phenotypes in terminal cell types. Which phenotypes remain amenable to intervention after development is unknown. To address this question in a model of DS neurogenesis, we derived trisomy 21 (T21) human induced pluripotent stem cells (iPSCs) alongside, otherwise, isogenic euploid controls from mosaic DS fibroblasts and equipped one chr21 copy with an inducible XIST transgene. Monoallelic chr21 silencing by XIST is near-complete and irreversible in iPSCs. Differential expression reveals that T21 neural lineages and iPSCs share suppressed translation and mitochondrial pathways and activate cellular stress responses. When XIST is induced before the neural progenitor stage, T21 dosage correction suppresses a pronounced skew toward astrogenesis in neural differentiation. Because our transgene remains inducible in postmitotic T21 neurons and astrocytes, we demonstrate that XIST efficiently represses genes even after terminal differentiation, which will empower exploration of cell type-specific T21 phenotypes that remain responsive to chr21 dosage.
Collapse
Affiliation(s)
- Prakhar Bansal
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Erin C. Banda
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Heather R. Glatt-Deeley
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Christopher E. Stoddard
- Cell and Genome Engineering Core, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Jeremy W. Linsley
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Neha Arora
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
| | - Cécile Deleschaux
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Darcy T. Ahern
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Yuvabharath Kondaveeti
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Rachael E. Massey
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Michael Nicouleau
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Shijie Wang
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
| | - Miguel Sabariego-Navarro
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, San Francisco, CA, USA
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA, USA
- Neuroscience and Biomedical Sciences Graduate Programs, University of California San Francisco, San Francisco, CA, USA
| | - Stefan F. Pinter
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| |
Collapse
|
5
|
Niu X, Zhang J, Hu S, Dang W, Wang K, Bai M. lncRNA Oip5-as1 inhibits excessive mitochondrial fission in myocardial ischemia/reperfusion injury by modulating DRP1 phosphorylation. Cell Mol Biol Lett 2024; 29:72. [PMID: 38745296 PMCID: PMC11092055 DOI: 10.1186/s11658-024-00588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Aberrant mitochondrial fission, a critical pathological event underlying myocardial ischemia/reperfusion (MI/R) injury, has emerged as a potential therapeutic target. The long non-coding RNA (lncRNA) Oip5-as1 is increasingly recognized for its regulatory roles, particularly in MI/R injury. However, its precise mechanistic role in modulating mitochondrial dynamics remains elusive. This study aims to elucidate the mechanistic role of Oip5-as1 in regulating mitochondrial fission and evaluate its therapeutic potential against MI/R injury. METHODS To simulate in vitro MI/R injury, HL-1 cardiomyocytes were subjected to hypoxia/reoxygenation (H/R). Lentiviral vectors were employed to achieve overexpression or knockdown of Oip5-as1 in HL-1 cells by expressing Oip5-as1 or shRNA targeting Oip5-as1, respectively. The impact of Oip5-as1 on mitochondrial dynamics in HL-1 cells was assessed using CCK-8 assay, flow cytometry, immunofluorescence staining, and biochemical assays. MI/R injury was induced in mice by ligating the left anterior descending coronary artery. Conditional knockout mice for Oip5-as1 were generated using the CRISPR/Cas9 genome editing technology, while overexpression of Oip5-as1 in mice was achieved via intramyocardial administration of AAV9 vectors. In mice, the role of Oip5-as1 was evaluated through echocardiographic assessment, histopathological staining, and transmission electron microscopy. Furthermore, Western blotting, RNA pull-down, RNA immunoprecipitation, and co-immunoprecipitation assays were conducted to investigate Oip5-as1's underlying mechanisms. RESULTS The expression levels of Oip5-as1 are significantly decreased in MI/R-injured HL-1 cells and myocardium. In HL-1 cells undergoing H/R injury, overexpression of Oip5-as1 attenuated excessive mitochondrial fission, preserved mitochondrial functionality, and reduced cellular apoptosis, while knockdown of Oip5-as1 exhibited the opposite effects. Furthermore, in a mouse model of MI/R injury, overexpression of Oip5-as1 diminished mitochondrial fission, myocardial infarct size and improved cardiac function. However, knockout of Oip5-as1 exacerbated myocardial injury and cardiac dysfunction, which were significantly reversed by treatment with a mitochondrial division inhibitor-1 (Mdivi-1). Mechanistically, Oip5-as1 selectively interacts with AKAP1 and CaN proteins, inhibiting CaN activation and subsequent DRP1 dephosphorylation at Ser637, thereby constraining DRP1's translocation to the mitochondria and its involvement in mitochondrial fission. CONCLUSIONS Our study underscores the pivotal role of Oip5-as1 in mitigating excessive mitochondrial fission during MI/R injury. The findings not only enhance our comprehension of the molecular mechanisms underlying MI/R injury but also identify Oip5-as1 as a potential therapeutic target for ameliorating MI/R injury.
Collapse
Affiliation(s)
- Xiaowei Niu
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
- Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jingjing Zhang
- Medical Genetics Center, Gansu Provincial Central Hospital/Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu, 730000, China
- Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Lanzhou, Gansu, 730000, China
| | - Shuwen Hu
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
- Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wenhui Dang
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Kaiwen Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ming Bai
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China.
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China.
- Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China.
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
6
|
Chapman LR, Ramnarine IVP, Zemke D, Majid A, Bell SM. Gene Expression Studies in Down Syndrome: What Do They Tell Us about Disease Phenotypes? Int J Mol Sci 2024; 25:2968. [PMID: 38474215 DOI: 10.3390/ijms25052968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Down syndrome is a well-studied aneuploidy condition in humans, which is associated with various disease phenotypes including cardiovascular, neurological, haematological and immunological disease processes. This review paper aims to discuss the research conducted on gene expression studies during fetal development. A descriptive review was conducted, encompassing all papers published on the PubMed database between September 1960 and September 2022. We found that in amniotic fluid, certain genes such as COL6A1 and DSCR1 were found to be affected, resulting in phenotypical craniofacial changes. Additionally, other genes such as GSTT1, CLIC6, ITGB2, C21orf67, C21orf86 and RUNX1 were also identified to be affected in the amniotic fluid. In the placenta, dysregulation of genes like MEST, SNF1LK and LOX was observed, which in turn affected nervous system development. In the brain, dysregulation of genes DYRK1A, DNMT3L, DNMT3B, TBX1, olig2 and AQP4 has been shown to contribute to intellectual disability. In the cardiac tissues, dysregulated expression of genes GART, ETS2 and ERG was found to cause abnormalities. Furthermore, dysregulation of XIST, RUNX1, SON, ERG and STAT1 was observed, contributing to myeloproliferative disorders. Understanding the differential expression of genes provides insights into the genetic consequences of DS. A better understanding of these processes could potentially pave the way for the development of genetic and pharmacological therapies.
Collapse
Affiliation(s)
- Laura R Chapman
- Sheffield Children's NHS Foundation Trust, Clarkson St, Sheffield S10 2TH, UK
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Glossop Road, Sheffield S10 2GF, UK
| | - Isabela V P Ramnarine
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Glossop Road, Sheffield S10 2GF, UK
| | - Dan Zemke
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Glossop Road, Sheffield S10 2GF, UK
| | - Arshad Majid
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Glossop Road, Sheffield S10 2GF, UK
- Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2GJ, UK
| | - Simon M Bell
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Glossop Road, Sheffield S10 2GF, UK
- Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2GJ, UK
| |
Collapse
|
7
|
Liu C, Zeng J, Wu J, Wang J, Wang X, Yao M, Zhang M, Fan J. Identification and validation of key genes associated with atrial fibrillation in the elderly. Front Cardiovasc Med 2023; 10:1118686. [PMID: 37063972 PMCID: PMC10090400 DOI: 10.3389/fcvm.2023.1118686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/02/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundAtrial fibrillation (AF) is the most common cardiac arrhythmia and significantly increases the risk of stroke and heart failure (HF), contributing to a higher mortality rate. Increasing age is a major risk factor for AF; however, the mechanisms of how aging contributes to the occurrence and progression of AF remain unclear. This study conducted weighted gene co-expression network analysis (WGCNA) to identify key modules and hub genes and determine their potential associations with aging-related AF.Materials and methodsWGCNA was performed using the AF dataset GSE2240 obtained from the Gene Expression Omnibus, which contained data from atrial myocardium in cardiac patients with permanent AF or sinus rhythm (SR). Hub genes were identified in clinical samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were also performed.ResultsGreen and pink were the most critical modules associated with AF, from which nine hub genes, PTGDS, COLQ, ASTN2, VASH1, RCAN1, AMIGO2, RBP1, MFAP4, and ALDH1A1, were hypothesized to play key roles in the AF pathophysiology in elderly and seven of them have high diagnostic value. Functional enrichment analysis demonstrated that the green module was associated with the calcium, cyclic adenosine monophosphate (cAMP), and peroxisome proliferator-activated receptors (PPAR) signaling pathways, and the pink module may be associated with the transforming growth factor beta (TGF-β) signaling pathway in myocardial fibrosis.ConclusionWe identified nine genes that may play crucial roles in the pathophysiological mechanism of aging-related AF, among which six genes were associated with AF for the first time. This study provided novel insights into the impact of aging on the occurrence and progression of AF, and identified biomarkers and potential therapeutic targets for AF.
Collapse
Affiliation(s)
- Chuanbin Liu
- Western Medical Branch of PLA General Hospital, Beijing, China
| | - Jing Zeng
- Department of Endocrinology, The Second Medical Centre & National Clinical Research Centre for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Jin Wu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jing Wang
- Department of General Medicine, The First Medical Center of PLA General Hospital, Beijing, China
| | - Xin Wang
- Department of Ophthalmology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Minghui Yao
- Department of Cardiovascular Surgery, the First Medical Center of PLA General Hospital, Beijing, China
| | - Minghua Zhang
- Clinical Pharmacy Laboratory, Chinese PLA General Hospital, Beijing, China
- Correspondence: Minghua Zhang Jiao Fan
| | - Jiao Fan
- Institute of Geriatrics, The Second Medical Centre & National Clinical Research Centre for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
- Correspondence: Minghua Zhang Jiao Fan
| |
Collapse
|
8
|
Tan KL, Lee HC, Cheah PS, Ling KH. Mitochondrial Dysfunction in Down Syndrome: From Pathology to Therapy. Neuroscience 2023; 511:1-12. [PMID: 36496187 DOI: 10.1016/j.neuroscience.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/07/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunctions have been described in Down syndrome (DS) caused by either partial or full trisomy of chromosome 21 (HSA21). Mitochondria play a crucial role in various vital functions in eukaryotic cells, especially in energy production, calcium homeostasis and programmed cell death. The function of mitochondria is primarily regulated by genes encoded in the mitochondrion and nucleus. Many genes on HSA21 are involved in oxidative phosphorylation (OXPHOS) and regulation of mitochondrial functions. This review highlights the HSA21 dosage-sensitive nuclear-encoded mitochondrial genes associated with overexpression-related phenotypes seen in DS. This includes impaired mitochondrial dynamics, structural defects and dysregulated bioenergetic profiles such as OXPHOS deficiency and reduced ATP production. Various therapeutic approaches for modulating energy deficits in DS, effects and molecular mechanism of gene therapy and drugs that exert protective effects through modulation of mitochondrial function and attenuation of oxidative stress in DS cells were discussed. It is prudent that improving DS pathophysiological conditions or quality of life may be feasible by targeting something as simple as cellular mitochondrial biogenesis and function.
Collapse
Affiliation(s)
- Kai-Leng Tan
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Han-Chung Lee
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Pike-See Cheah
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - King-Hwa Ling
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Sarver DC, Xu C, Velez LM, Aja S, Jaffe AE, Seldin MM, Reeves RH, Wong GW. Dysregulated systemic metabolism in a Down syndrome mouse model. Mol Metab 2023; 68:101666. [PMID: 36587842 PMCID: PMC9841171 DOI: 10.1016/j.molmet.2022.101666] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Trisomy 21 is one of the most complex genetic perturbations compatible with postnatal survival. Dosage imbalance arising from the triplication of genes on human chromosome 21 (Hsa21) affects multiple organ systems. Much of Down syndrome (DS) research, however, has focused on addressing how aneuploidy dysregulates CNS function leading to cognitive deficit. Although obesity, diabetes, and associated sequelae such as fatty liver and dyslipidemia are well documented in the DS population, only limited studies have been conducted to determine how gene dosage imbalance affects whole-body metabolism. Here, we conduct a comprehensive and systematic analysis of key metabolic parameters across different physiological states in the Ts65Dn trisomic mouse model of DS. METHODS Ts65Dn mice and euploid littermates were subjected to comprehensive metabolic phenotyping under basal (chow-fed) state and the pathophysiological state of obesity induced by a high-fat diet (HFD). RNA sequencing of liver, skeletal muscle, and two major fat depots were conducted to determine the impact of aneuploidy on tissue transcriptome. Pathway enrichments, gene-centrality, and key driver estimates were performed to provide insights into tissue autonomous and non-autonomous mechanisms contributing to the dysregulation of systemic metabolism. RESULTS Under the basal state, chow-fed Ts65Dn mice of both sexes had elevated locomotor activity and energy expenditure, reduced fasting serum cholesterol levels, and mild glucose intolerance. Sexually dimorphic deterioration in metabolic homeostasis became apparent when mice were challenged with a high-fat diet. While obese Ts65Dn mice of both sexes exhibited dyslipidemia, male mice also showed impaired systemic insulin sensitivity, reduced mitochondrial activity, and elevated fibrotic and inflammatory gene signatures in the liver and adipose tissue. Systems-level analysis highlighted conserved pathways and potential endocrine drivers of adipose-liver crosstalk that contribute to dysregulated glucose and lipid metabolism. CONCLUSIONS A combined alteration in the expression of trisomic and disomic genes in peripheral tissues contribute to metabolic dysregulations in Ts65Dn mice. These data lay the groundwork for understanding the impact of aneuploidy on in vivo metabolism.
Collapse
Affiliation(s)
- Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cheng Xu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leandro M Velez
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E Jaffe
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; The Lieber Institute for Brain Development, Baltimore, MD, USA; Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, USA
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Ganguly BB, Kadam NN. Therapeutics for mitochondrial dysfunction-linked diseases in Down syndrome. Mitochondrion 2023; 68:25-43. [PMID: 36371073 DOI: 10.1016/j.mito.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Genome-wide deregulation contributes to mitochondrial dysfunction and impairment in oxidative phosphorylation (OXPHOS) mechanism resulting in oxidative stress, increased production of reactive oxygen species (ROS) and cell death in individuals with Down syndrome (DS). The cells, which require more energy, such as muscles, brain and heart are greatly affected. Impairment in mitochondrial network has a direct link with patho-mechanism at cellular and systemic levels at the backdrop of generalized metabolic perturbations in individuals with DS. Myriads of clinico-phenotypic features, including intellectual disability, early aging and neurodegeneration, and Alzheimer disease (AD)-related dementia are inevitable in DS-population where mitochondrial dysfunctions play the central role. Collectively, the mitochondrial abnormalities and altered energy metabolism perturbs several signaling pathways, particularly related to neurogenesis, which are directly associated with cognitive development and early onset of AD in individuals with DS. Therefore, therapeutic challenges for amelioration of the mitochondrial defects were perceived to improve the quality of life of the DS population. A number of pharmacologically active natural compounds such as polyphenols, antioxidants and flavonoids have shown convincing outcome for reversal of the dysfunctional mitochondrial network and oxidative metabolism, and improvement in intellectual skill in mouse models of DS and humans with DS.
Collapse
Affiliation(s)
- Bani Bandana Ganguly
- MGM New Bombay Hospital and MGM Institute of Health Sciences, Navi Mumbai, India.
| | - Nitin N Kadam
- MGM New Bombay Hospital and MGM Institute of Health Sciences, Navi Mumbai, India
| |
Collapse
|
11
|
Li Y, Costiniti V, Souza Bomfim GH, Neginskaya M, Son GY, Rothermel B, Pavlov E, Lacruz RS. Overexpression of RCAN1, a Gene on Human Chromosome 21, Alters Cell Redox and Mitochondrial Function in Enamel Cells. Cells 2022; 11:3576. [PMID: 36429004 PMCID: PMC9688881 DOI: 10.3390/cells11223576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
The regulator of calcineurin (RCAN1) has been implicated in the pathogenesis of Down syndrome (DS). Individuals with DS show dental abnormalities for unknown reasons, and RCAN1 levels have been found to be elevated in several tissues of DS patients. A previous microarray analysis comparing cells of the two main formative stages of dental enamel, secretory and maturation, showed a significant increase in RCAN1 expression in the latter. Because the function of RCAN1 during enamel formation is unknown, there is no mechanistic evidence linking RCAN1 with the dental anomalies in individuals with DS. We investigated the role of RCAN1 in enamel by overexpressing RCAN1 in the ameloblast cell line LS8 (LS8+RCAN1). We first confirmed that RCAN1 is highly expressed in maturation stage ameloblasts by qRT-PCR and used immunofluorescence to show its localization in enamel-forming ameloblasts. We then analyzed cell redox and mitochondrial bioenergetics in LS8+RCAN1 cells because RCAN1 is known to impact these processes. We show that LS8+RCAN1 cells have increased reactive oxygen species (ROS) and decreased mitochondrial bioenergetics without changes in the expression of the complexes of the electron transport chain, or in NADH levels. However, LS8+RCAN1 cells showed elevated mitochondrial Ca2+ uptake and decreased expression of several enamel genes essential for enamel formation. These results provide insight into the role of RCAN1 in enamel and suggest that increased RCAN1 levels in the ameloblasts of individuals with DS may impact enamel formation by altering both the redox environment and mitochondrial function, as well as decreasing the expression of enamel-specific genes.
Collapse
Affiliation(s)
- Yi Li
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Veronica Costiniti
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Guilherme H. Souza Bomfim
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Maria Neginskaya
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Ga-Yeon Son
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Beverly Rothermel
- Department of Internal Medicine and Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Evgeny Pavlov
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Rodrigo S. Lacruz
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| |
Collapse
|
12
|
Sun S, Yu W, Xu H, Li C, Zou R, Wu NN, Wang L, Ge J, Ren J, Zhang Y. TBC1D15-Drp1 interaction-mediated mitochondrial homeostasis confers cardioprotection against myocardial ischemia/reperfusion injury. Metabolism 2022; 134:155239. [PMID: 35680100 DOI: 10.1016/j.metabol.2022.155239] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/17/2022] [Accepted: 06/03/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Mitochondria are essential for myocardial ischemia/reperfusion (I/R) injury. TBC domain family member 15 (TBC1D15) participates in the regulation of mitochondrial homeostasis although its role remains elusive in I/R injury. METHODS AND MATERIALS This study examined the role of TBC1D15 in mitochondrial homeostasis under myocardial I/R injury using inducible cardiac-specific TBC1D15 knockin (TBC1D15CKI) and knockout (TBC1D15CKO) mice. RESULTS TBC1D15 mRNA/protein levels were downregulated in human ischemic cardiomyopathy samples, mouse I/R hearts and neonatal mouse cardiomyocytes with H/R injury, consistent with scRNA sequencing finding from patients with coronary heart disease. Cardiac-specific knockin of TBC1D15 attenuated whereas cardiac-specific knockout of TBC1D15 overtly aggravated I/R-induced cardiomyocyte apoptosis and cardiac dysfunction. TBC1D15CKI mice exhibited reduced mitochondrial damage and mitochondrial fragmentation following myocardial I/R injury, while TBC1D15CKO mice displayed opposite results. TBC1D15 preserved mitochondrial function evidenced by safeguarding MMP and oxygen consumption capacity, antagonizing ROS accumulation and cytochrome C release, which were nullified by TBC1D15 knockdown. Time-lapse confocal microscopy revealed that TBC1D15 activated asymmetrical mitochondrial fission through promoting mitochondria-lysosome contacts untethering in NMCMs under H/R injury, whereas overexpression of TBC1D15 mutants (R400K and ∆231-240) failed to regulate asymmetrical fission and knockdown of TBC1D15 slowed down asymmetrical fission. Moreover, TBC1D15-offered benefits were mitigated by knockdown of Fis1 and Drp1. Mechanistically, TBC1D15 recruited Drp1 to mitochondria-lysosome contact sites via direct interaction with Drp1 through its C terminus (574-624) domain. Interfering with interaction between TBC1D15 and Drp1 abrogated asymmetrical mitochondrial fission and mitochondrial function. Cardiac phenotypes of TBC1D15CKO mice upon I/R injury were rescued by adenovirus-mediated overexpression of wild-type but not mutants (R400K, ∆231-240 and ∆574-624) TBC1D15. CONCLUSIONS TBC1D15 ameliorated I/R injury through a novel modality to preserve mitochondrial homeostasis where mitochondria-lysosome contacts (through the TBC1D15/Fis1/RAB7 cascade) regulate asymmetrical mitochondrial fission (TBC1D15/Drp1 interaction), suggesting promises of targeting TBC1D15 in the management of myocardial I/R injury.
Collapse
Affiliation(s)
- Shiqun Sun
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenjun Yu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Haixia Xu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, the Air Force Military Medical University, Xi'an 710038, China
| | - Rongjun Zou
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ne N Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Junbo Ge
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
13
|
Progress in mesenchymal stem cell mitochondria transfer for the repair of tissue injury and treatment of disease. Biomed Pharmacother 2022; 153:113482. [DOI: 10.1016/j.biopha.2022.113482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022] Open
|
14
|
Lerchenmüller C, Vujic A, Mittag S, Wang A, Rabolli CP, Heß C, Betge F, Rangrez AY, Chaklader M, Guillermier C, Gyngard F, Roh JD, Li H, Steinhauser ML, Frey N, Rothermel B, Dieterich C, Rosenzweig A, Lee RT. Restoration of Cardiomyogenesis in Aged Mouse Hearts by Voluntary Exercise. Circulation 2022; 146:412-426. [PMID: 35862076 PMCID: PMC9357140 DOI: 10.1161/circulationaha.121.057276] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The human heart has limited capacity to generate new cardiomyocytes and this capacity declines with age. Because loss of cardiomyocytes may contribute to heart failure, it is crucial to explore stimuli of endogenous cardiac regeneration to favorably shift the balance between loss of cardiomyocytes and the birth of new cardiomyocytes in the aged heart. We have previously shown that cardiomyogenesis can be activated by exercise in the young adult mouse heart. Whether exercise also induces cardiomyogenesis in aged hearts, however, is still unknown. Here, we aim to investigate the effect of exercise on the generation of new cardiomyocytes in the aged heart. METHODS Aged (20-month-old) mice were subjected to an 8-week voluntary running protocol, and age-matched sedentary animals served as controls. Cardiomyogenesis in aged hearts was assessed on the basis of 15N-thymidine incorporation and multi-isotope imaging mass spectrometry. We analyzed 1793 cardiomyocytes from 5 aged sedentary mice and compared these with 2002 cardiomyocytes from 5 aged exercised mice, followed by advanced histology and imaging to account for ploidy and nucleation status of the cell. RNA sequencing and subsequent bioinformatic analyses were performed to investigate transcriptional changes induced by exercise specifically in aged hearts in comparison with young hearts. RESULTS Cardiomyogenesis was observed at a significantly higher frequency in exercised compared with sedentary aged hearts on the basis of the detection of mononucleated/diploid 15N-thymidine-labeled cardiomyocytes. No mononucleated/diploid 15N-thymidine-labeled cardiomyocyte was detected in sedentary aged mice. The annual rate of mononucleated/diploid 15N-thymidine-labeled cardiomyocytes in aged exercised mice was 2.3% per year. This compares with our previously reported annual rate of 7.5% in young exercised mice and 1.63% in young sedentary mice. Transcriptional profiling of young and aged exercised murine hearts and their sedentary controls revealed that exercise induces pathways related to circadian rhythm, irrespective of age. One known oscillating transcript, however, that was exclusively upregulated in aged exercised hearts, was isoform 1.4 of regulator of calcineurin, whose regulation and functional role were explored further. CONCLUSIONS Our data demonstrate that voluntary running in part restores cardiomyogenesis in aged mice and suggest that pathways associated with circadian rhythm may play a role in physiologically stimulated cardiomyogenesis.
Collapse
Affiliation(s)
- Carolin Lerchenmüller
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ana Vujic
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Sonja Mittag
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Annie Wang
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Charles P. Rabolli
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Chiara Heß
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Fynn Betge
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Ashraf Y. Rangrez
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Malay Chaklader
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christelle Guillermier
- Harvard Medical School, Boston, MA 02115, USA
- Center for NanoImaging and Division of Genetics, Brigham and Women’s Hospital, Cambridge, MA 02115, USA
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Frank Gyngard
- Harvard Medical School, Boston, MA 02115, USA
- Center for NanoImaging and Division of Genetics, Brigham and Women’s Hospital, Cambridge, MA 02115, USA
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Jason D. Roh
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Haobo Li
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Matthew L. Steinhauser
- Harvard Medical School, Boston, MA 02115, USA
- Center for NanoImaging and Division of Genetics, Brigham and Women’s Hospital, Cambridge, MA 02115, USA
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Norbert Frey
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Beverly Rothermel
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christoph Dieterich
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Anthony Rosenzweig
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
15
|
Yang X, Yun Y, Wang P, Zhao J, Sun X. Upregulation of RCAN1.4 by HIF1α alleviates OGD-induced inflammatory response in astrocytes. Ann Clin Transl Neurol 2022; 9:1224-1240. [PMID: 35836352 PMCID: PMC9380140 DOI: 10.1002/acn3.51624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Ischemic stroke is a leading cause of human mortality and long-term disability worldwide. As one of the main forms of regulator of calcineurin 1 (RCAN1), the contribution of RCAN1.4 in diverse biological and pathological conditions has been implicated. But the role of RCAN1.4 in ischemic stroke progression remains elusive. This study is to explore the expression changes and roles of RCAN1.4 in ischemic stroke as well as the underlying mechanisms for these changes and effects of RCAN1.4 in ischemic stroke. METHODS Middle cerebral artery occlusion model in C57BL/6J mice and oxygen-glucose deprivation (OGD) model in primary astrocytes were performed to induce the cerebral ischemic stroke. The expression pattern of RCAN1.4 was assessed using real-time quantitative PCR and western blotting in vivo and in vitro. Mechanistically, the underlying mechanism for the elevation of RCAN1.4 in the upstream was investigated. Lentiviruses were administrated, and the effect of RCAN1.4 in postischemic inflammation was clearly clarified. RESULTS Here we uncovered that RCAN1.4 was dramatically increased in mouse ischemic brains and OGD-induced primary astrocytes. HIF1α, activated upon OGD, significantly upregulated RCAN1.4 gene expression through specifically binding to the RCAN1.4 promoter region and activating its promoter activity. The functional hypoxia-responsive element (HRE) was located between -254 and -245 bp in the RCAN1.4 promoter region. Moreover, elevated RCAN1.4 alleviated the release of pro-inflammatory cytokines TNFα, IL1β, IL6 and reduced expression of iNOS, COX2 in primary astrocytes upon OGD, whereas RCAN1.4 silencing has the opposite effect. Of note, RCAN1.4 overexpression inhibited OGD-induced NF-κB activation in primary astrocytes, leading to decreased degradation of IκBα and reduced nuclear translocation of NF-κB/p65. INTERPRETATION Our results reveal a novel mechanism underscoring the upregulation of RCAN1.4 by HIF1α and the protective effect of RCAN1.4 against postischemic inflammation, suggesting its significance as a promising therapeutic target for ischemic stroke treatment.
Collapse
Affiliation(s)
- Xiaxin Yang
- Department of NeurologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
| | - Yan Yun
- Department of RadiologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
| | - Pin Wang
- NHC Key Laboratory of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
- Department of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
| | - Juan Zhao
- NHC Key Laboratory of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
- Department of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
| | - Xiulian Sun
- NHC Key Laboratory of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
- Brain Research InstituteQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health CommissionQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
| |
Collapse
|
16
|
Zhang Q, Wang L, Yin Y, Shen J, Xie J, Yuan J. Hydrogen sulfide releasing hydrogel for alleviating cardiac inflammation and protecting against myocardial ischemia-reperfusion injury. J Mater Chem B 2022; 10:5344-5351. [PMID: 35792619 DOI: 10.1039/d2tb00971d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Myocardial infarction is one of the leading causes of death worldwide. Thus, protection against myocardial ischemia-reperfusion injury is particularly important to improve the prognosis of myocardial infarction. Recently, hydrogen sulfide (H2S) has been reported to possess a protective effect against myocardial ischemia-reperfusion injury. However, an effective gas delivery system to release H2S controllably at an appropriate concentration needs to be further investigated. In this study, a new H2S-releasing hydrogel system was constructed and applied in an experimental I/R model of rats. The administration of the hydrogel significantly ameliorated microvascular obstruction, prevented myocardial fibrosis, and attenuated cardiac inflammation. This suggested that the novel H2S-releasing hydrogel represented a promising therapeutic strategy targeting myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Cardiology, Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Lijuan Wang
- National and Local Joint Engineering Research Center of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - Yong Yin
- Department of Cardiology, Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - Jun Xie
- Department of Cardiology, Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Jiang Yuan
- National and Local Joint Engineering Research Center of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
17
|
Espinoza S, Grunenwald F, Gomez W, García F, Abarzúa-Catalan L, Oyarce-Pezoa S, Hernandez MF, Cortés BI, Uhrig M, Ponce DP, Durán-Aniotz C, Hetz C, SanMartín CD, Cornejo VH, Ezquer F, Parra V, Behrens MI, Manque PA, Rojas-Rivera D, Vidal RL, Woehlbier U, Nassif M. Neuronal Rubicon Represses Extracellular APP/Amyloid β Deposition in Alzheimer's Disease. Cells 2022; 11:1860. [PMID: 35740989 PMCID: PMC9221152 DOI: 10.3390/cells11121860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent age-associated neurodegenerative disease. A decrease in autophagy during aging contributes to brain disorders by accumulating potentially toxic substrates in neurons. Rubicon is a well-established inhibitor of autophagy in all cells. However, Rubicon participates in different pathways depending on cell type, and little information is currently available on neuronal Rubicon's role in the AD context. Here, we investigated the cell-specific expression of Rubicon in postmortem brain samples from AD patients and 5xFAD mice and its impact on amyloid β burden in vivo and neuroblastoma cells. Further, we assessed Rubicon levels in human-induced pluripotent stem cells (hiPSCs), derived from early-to-moderate AD and in postmortem samples from severe AD patients. We found increased Rubicon levels in AD-hiPSCs and postmortem samples and a notable Rubicon localization in neurons. In AD transgenic mice lacking Rubicon, we observed intensified amyloid β burden in the hippocampus and decreased Pacer and p62 levels. In APP-expressing neuroblastoma cells, increased APP/amyloid β secretion in the medium was found when Rubicon was absent, which was not observed in cells depleted of Atg5, essential for autophagy, or Rab27a, required for exosome secretion. Our results propose an uncharacterized role of Rubicon on APP/amyloid β homeostasis, in which neuronal Rubicon is a repressor of APP/amyloid β secretion, defining a new way to target AD and other similar diseases therapeutically.
Collapse
Affiliation(s)
- Sandra Espinoza
- Laboratory of Neuroprotection and Autophagy, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; (S.E.); (W.G.); (F.G.); (S.O.-P.)
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; (F.G.); (L.A.-C.); (M.F.H.); (B.I.C.); (P.A.M.); (R.L.V.); (U.W.)
| | - Felipe Grunenwald
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; (F.G.); (L.A.-C.); (M.F.H.); (B.I.C.); (P.A.M.); (R.L.V.); (U.W.)
| | - Wileidy Gomez
- Laboratory of Neuroprotection and Autophagy, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; (S.E.); (W.G.); (F.G.); (S.O.-P.)
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; (F.G.); (L.A.-C.); (M.F.H.); (B.I.C.); (P.A.M.); (R.L.V.); (U.W.)
| | - Felipe García
- Laboratory of Neuroprotection and Autophagy, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; (S.E.); (W.G.); (F.G.); (S.O.-P.)
| | - Lorena Abarzúa-Catalan
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; (F.G.); (L.A.-C.); (M.F.H.); (B.I.C.); (P.A.M.); (R.L.V.); (U.W.)
| | - Sebastián Oyarce-Pezoa
- Laboratory of Neuroprotection and Autophagy, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; (S.E.); (W.G.); (F.G.); (S.O.-P.)
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; (F.G.); (L.A.-C.); (M.F.H.); (B.I.C.); (P.A.M.); (R.L.V.); (U.W.)
| | - Maria Fernanda Hernandez
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; (F.G.); (L.A.-C.); (M.F.H.); (B.I.C.); (P.A.M.); (R.L.V.); (U.W.)
| | - Bastián I. Cortés
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; (F.G.); (L.A.-C.); (M.F.H.); (B.I.C.); (P.A.M.); (R.L.V.); (U.W.)
| | - Markus Uhrig
- Center for Regenerative Medicine, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7550000, Chile; (M.U.); (F.E.)
| | - Daniela P. Ponce
- Centro de Investigación Clínica Avanzada, Universidad de Chile, Santiago 8380456, Chile; (D.P.P.); (C.D.S.); (M.I.B.)
| | - Claudia Durán-Aniotz
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibañez, Santiago 7550313, Chile;
| | - Claudio Hetz
- Center for Geroscience, Brain Health, and Metabolism, Santiago 8380453, Chile;
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile;
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Carol D. SanMartín
- Centro de Investigación Clínica Avanzada, Universidad de Chile, Santiago 8380456, Chile; (D.P.P.); (C.D.S.); (M.I.B.)
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile
| | - Victor H. Cornejo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile;
| | - Fernando Ezquer
- Center for Regenerative Medicine, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7550000, Chile; (M.U.); (F.E.)
| | - Valentina Parra
- Autophagy Research Center, Universidad de Chile, Santiago 8380456, Chile;
- Departamento de Bioquímica y Biología Molecular and Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380456, Chile
| | - Maria Isabel Behrens
- Centro de Investigación Clínica Avanzada, Universidad de Chile, Santiago 8380456, Chile; (D.P.P.); (C.D.S.); (M.I.B.)
- Departamento de Bioquímica y Biología Molecular and Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380456, Chile
- Departamento de Neurociencia, Facultad de Medicina Universidad de Chile, Santiago 8380456, Chile
- Clínica Alemana de Santiago, Universidad del Desarrollo, Santiago 13132, Chile
| | - Patricio A. Manque
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; (F.G.); (L.A.-C.); (M.F.H.); (B.I.C.); (P.A.M.); (R.L.V.); (U.W.)
- Centro de Oncologia de Precision (COP), Escuela de Medicina, Universidad Mayor, Santiago 8580745, Chile
| | - Diego Rojas-Rivera
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile;
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad Mayor, Santiago 8580745, Chile
| | - René L. Vidal
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; (F.G.); (L.A.-C.); (M.F.H.); (B.I.C.); (P.A.M.); (R.L.V.); (U.W.)
- Center for Geroscience, Brain Health, and Metabolism, Santiago 8380453, Chile;
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile;
| | - Ute Woehlbier
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; (F.G.); (L.A.-C.); (M.F.H.); (B.I.C.); (P.A.M.); (R.L.V.); (U.W.)
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile;
| | - Melissa Nassif
- Laboratory of Neuroprotection and Autophagy, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; (S.E.); (W.G.); (F.G.); (S.O.-P.)
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; (F.G.); (L.A.-C.); (M.F.H.); (B.I.C.); (P.A.M.); (R.L.V.); (U.W.)
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile;
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad Mayor, Santiago 8580745, Chile
| |
Collapse
|
18
|
Chehaitly A, Guihot AL, Proux C, Grimaud L, Aurrière J, Legouriellec B, Rivron J, Vessieres E, Tétaud C, Zorzano A, Procaccio V, Joubaud F, Reynier P, Lenaers G, Loufrani L, Henrion D. Altered Mitochondrial Opa1-Related Fusion in Mouse Promotes Endothelial Cell Dysfunction and Atherosclerosis. Antioxidants (Basel) 2022; 11:antiox11061078. [PMID: 35739974 PMCID: PMC9219969 DOI: 10.3390/antiox11061078] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
Flow (shear stress)-mediated dilation (FMD) of resistance arteries is a rapid endothelial response involved in tissue perfusion. FMD is reduced early in cardiovascular diseases, generating a major risk factor for atherosclerosis. As alteration of mitochondrial fusion reduces endothelial cells’ (ECs) sprouting and angiogenesis, we investigated its role in ECs responses to flow. Opa1 silencing reduced ECs (HUVECs) migration and flow-mediated elongation. In isolated perfused resistance arteries, FMD was reduced in Opa1+/− mice, a model of the human disease due to Opa1 haplo-insufficiency, and in mice with an EC specific Opa1 knock-out (EC-Opa1). Reducing mitochondrial oxidative stress restored FMD in EC-Opa1 mice. In isolated perfused kidneys from EC-Opa1 mice, flow induced a greater pressure, less ATP, and more H2O2 production, compared to control mice. Opa1 expression and mitochondrial length were reduced in ECs submitted in vitro to disturbed flow and in vivo in the atheroprone zone of the mouse aortic cross. Aortic lipid deposition was greater in Ldlr−/--Opa1+/- and in Ldlr−/--EC-Opa1 mice than in control mice fed with a high-fat diet. In conclusion, we found that reduction in mitochondrial fusion in mouse ECs altered the dilator response to shear stress due to excessive superoxide production and induced greater atherosclerosis development.
Collapse
Affiliation(s)
- Ahmad Chehaitly
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
| | - Anne-Laure Guihot
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
| | - Coralyne Proux
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
| | - Linda Grimaud
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
| | - Jade Aurrière
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
| | - Benoit Legouriellec
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
| | - Jordan Rivron
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
| | - Emilie Vessieres
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
| | - Clément Tétaud
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10–12, 08028 Barcelona, Spain;
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biologie, University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, C/ de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - Vincent Procaccio
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
- University Hospital (CHU) of Angers, 4 rue Larrey, F-49933 Angers, France;
| | - Françoise Joubaud
- University Hospital (CHU) of Angers, 4 rue Larrey, F-49933 Angers, France;
| | - Pascal Reynier
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
- University Hospital (CHU) of Angers, 4 rue Larrey, F-49933 Angers, France;
| | - Guy Lenaers
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
- University Hospital (CHU) of Angers, 4 rue Larrey, F-49933 Angers, France;
| | - Laurent Loufrani
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
| | - Daniel Henrion
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
- University Hospital (CHU) of Angers, 4 rue Larrey, F-49933 Angers, France;
- Correspondence: ; Tel.: +33-2-41-73-58-45
| |
Collapse
|
19
|
Triplication of HSA21 on alterations in structure and function of mitochondria. Mitochondrion 2022; 65:88-101. [PMID: 35623559 DOI: 10.1016/j.mito.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 01/22/2023]
Abstract
Triplication of genes encoded in human chromosome 21 (HSA21) is responsible for the phenotypes of Down syndrome (DS). The dosage-imbalance of the nuclear genes and the extra-nuclear mitochondrial DNA (mtDNA) jointly contributes to patho-mechanisms in DS. The mitochondrial organelles are the power house of cells for generation of ATP and maintaining cellular calcium and redox homeostasis, and cellular energy-metabolism processes. Each cell contains hundreds to thousands of mitochondria depending on their energy consumption. The dynamic structure of mitochondria is maintained with continuous fission and fusion events, and thus, content of mtDNA and its genetic composition are widely variable among cells. Cells of brain and heart tissues of DS patients and DS-mouse models have demonstrated elevated number but reduced amount of mtDNA due to higher fission process. This mechanism perturbs the oxidative phosphorylation (OXPHOS) and generates more free radicals such as reactive oxygen species (ROS), suggesting contribution of mtDNA in proliferation and protection of cells from endogenous toxic environment and external stressors. Gene-dosage in DS population collectively contributes to mitochondrial dysfunction by lowering energy production and respiratory capacity via the impaired OXPHOS, and damaged redox homeostasis and mitochondrial dynamics in all types of cells in DS. The context is highly complex and affects the functioning of all organs. The effect in brain and heart tissues promotes myriads of neurodegenerative diseases and cardiac complexities in individuals with DS. Crosstalk between trisomic nuclear and mitochondrial genome has been crucial for identification of potential therapeutic targets.
Collapse
|
20
|
Venegas-Zamora L, Bravo-Acuña F, Sigcho F, Gomez W, Bustamante-Salazar J, Pedrozo Z, Parra V. New Molecular and Organelle Alterations Linked to Down Syndrome Heart Disease. Front Genet 2022; 12:792231. [PMID: 35126461 PMCID: PMC8808411 DOI: 10.3389/fgene.2021.792231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by a trisomy of the human chromosome 21 (Hsa21). Overexpression of Hsa21 genes that encode proteins and non-coding RNAs (ncRNAs) can disrupt several cellular functions and biological processes, especially in the heart. Congenital heart defects (CHDs) are present in 45–50% of individuals with DS. Here, we describe the genetic background of this condition (Hsa21 and non-Hsa21 genes), including the role of ncRNAs, and the relevance of these new players in the study of the pathophysiology of DS heart diseases. Additionally, we discuss several distinct pathways in cardiomyocytes which help maintain a functional heart, but that might trigger hypertrophy and oxidative stress when altered. Moreover, we highlight the importance of investigating how mitochondrial and lysosomal dysfunction could eventually contribute to understanding impaired heart function and development in subjects with the Hsa21 trisomy. Altogether, this review focuses on the newest insights about the gene expression, molecular pathways, and organelle alterations involved in the cardiac phenotype of DS.
Collapse
Affiliation(s)
- Leslye Venegas-Zamora
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Francisco Bravo-Acuña
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Francisco Sigcho
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Wileidy Gomez
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - José Bustamante-Salazar
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Zully Pedrozo
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Red para El Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
- *Correspondence: Zully Pedrozo, ; Valentina Parra,
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Red para El Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
- *Correspondence: Zully Pedrozo, ; Valentina Parra,
| |
Collapse
|
21
|
Evidence of Energy Metabolism Alterations in Cultured Neonatal Astrocytes Derived from the Ts65Dn Mouse Model of Down Syndrome. Brain Sci 2022; 12:brainsci12010083. [PMID: 35053826 PMCID: PMC8773919 DOI: 10.3390/brainsci12010083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/10/2022] Open
Abstract
For many decades, neurons have been the central focus of studies on the mechanisms underlying the neurodevelopmental and neurodegenerative aspects of Down syndrome (DS). Astrocytes, which were once thought to have only a passive role, are now recognized as active participants of a variety of essential physiological processes in the brain. Alterations in their physiological function have, thus, been increasingly acknowledged as likely initiators of or contributors to the pathogenesis of many nervous system disorders and diseases. In this study, we carried out a series of real-time measurements of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in hippocampal astrocytes derived from neonatal Ts65Dn and euploid control mice using a Seahorse XFp Flux Analyzer. Our results revealed a significant basal OCR increase in neonatal Ts65Dn astrocytes compared with those from control mice, indicating increased oxidative phosphorylation. ECAR did not differ between the groups. Given the importance of astrocytes in brain metabolic function and the linkage between astrocytic and neuronal energy metabolism, these data provide evidence against a pure “neurocentric” vision of DS pathophysiology and support further investigations on the potential contribution of disturbances in astrocytic energy metabolism to cognitive deficits and neurodegeneration associated with DS.
Collapse
|
22
|
Eynaudi A, Díaz-Castro F, Bórquez JC, Bravo-Sagua R, Parra V, Troncoso R. Differential Effects of Oleic and Palmitic Acids on Lipid Droplet-Mitochondria Interaction in the Hepatic Cell Line HepG2. Front Nutr 2021; 8:775382. [PMID: 34869541 PMCID: PMC8632770 DOI: 10.3389/fnut.2021.775382] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022] Open
Abstract
Fatty acid overload, either of the saturated palmitic acid (PA) or the unsaturated oleic acid (OA), causes triglyceride accumulation into specialized organelles termed lipid droplets (LD). However, only PA overload leads to liver damage mediated by mitochondrial dysfunction. Whether these divergent outcomes stem from differential effects of PA and OA on LD and mitochondria joint dynamics remains to be uncovered. Here, we contrast how both fatty acids impact the morphology and interaction between both organelles and mitochondrial bioenergetics in HepG2 cells. Using confocal microscopy, we showed that short-term (2–24 h) OA overload promotes more and bigger LD accumulation than PA. Oxygen polarography indicated that both treatments stimulated mitochondrial respiration; however, OA favored an overall build-up of the mitochondrial potential, and PA evoked mitochondrial fragmentation, concomitant with an ATP-oriented metabolism. Even though PA-induced a lesser increase in LD-mitochondria proximity than OA, those LD associated with highly active mitochondria suggest that they interact mainly to fuel fatty acid oxidation and ATP synthesis (that is, metabolically “active” LD). On the contrary, OA overload seemingly stimulated LD-mitochondria interaction mainly for LD growth (thus metabolically “passive” LDs). In sum, these differences point out that OA readily accumulates in LD, likely reducing their toxicity, while PA preferably stimulates mitochondrial oxidative metabolism, which may contribute to liver damage progression.
Collapse
Affiliation(s)
- Andrea Eynaudi
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Francisco Díaz-Castro
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Juan Carlos Bórquez
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Roberto Bravo-Sagua
- Laboratorio de Obesidad y Metabolismo Energético (OMEGA), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Red de Investigación en Envejecimiento Saludable, Consorcio de Universidades del Estado de Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Red Para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
23
|
Xu H, Yu W, Sun S, Li C, Ren J, Zhang Y. TAX1BP1 protects against myocardial infarction-associated cardiac anomalies through inhibition of inflammasomes in a RNF34/MAVS/NLRP3-dependent manner. Sci Bull (Beijing) 2021; 66:1669-1683. [PMID: 36654301 DOI: 10.1016/j.scib.2021.01.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/03/2020] [Accepted: 01/18/2021] [Indexed: 02/03/2023]
Abstract
Acute myocardial infarction (MI), one of the most common cardiovascular emergencies, is a leading cause of morbidity and mortality. Ample evidence has revealed an essential role for inflammasome activation and autophagy in the pathogenesis of acute MI. Tax1-binding protein 1 (TAX1BP1), an adaptor molecule involved in termination of proinflammatory signaling, serves as an important selective autophagy adaptor, but its role in cardiac ischemia remains elusive. This study examined the role of TAX1BP1 in myocardial ischemic stress and the underlying mechanisms involved. Levels of TAX1BP1 were significantly downregulated in heart tissues of patients with ischemic heart disease and in a left anterior descending (LAD) ligation-induced model of acute MI. Adenovirus carrying TAX1BP1 was delivered into the myocardium. The acute MI induced procedure elicited an infarct and cardiac dysfunction, the effect of which was mitigated by TAX1BP1 overexpression with little effect from viral vector alone. TAX1BP1 nullified acute MI-induced activation of the NLRP3 inflammasome and associated mitochondrial dysfunction. TAX1BP1 overexpression suppressed NLRP3 mitochondrial localization by inhibiting the interaction of NLRP3 with mitochondrial antiviral signaling protein (MAVS). Further investigation revealed that ring finger protein 34 (RNF34) was recruited to interact with TAX1BP1 thereby facilitating autophagic degradation of MAVS through K27-linked polyubiquitination of MAVS. Knockdown of RNF34 using siRNA nullified TAX1BP1 yielded protection against hypoxia-induced MAVS mitochondrial accumulation, NLRP3 inflammasome activation and associated loss of mitochondrial membrane potential. Taken together, our results favor a cardioprotective role for TAX1BP1 in acute MI through repression of inflammasome activation in a RNF34/MAVS-dependent manner.
Collapse
Affiliation(s)
- Haixia Xu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Wenjun Yu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Shiqun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an 710038, China
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of Pathology, University of Washington, Seattle WA 98195, USA.
| | - Yingmei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| |
Collapse
|
24
|
Dierssen M, Herault Y, Helguera P, Martínez de Lagran M, Vazquez A, Christian B, Carmona-Iragui M, Wiseman F, Mobley W, Fisher EMC, Brault V, Esbensen A, Jacola LM, Potier MC, Hamlett ED, Abbeduto L, Del Hoyo Soriano L, Busciglio J, Iulita MF, Crispino J, Malinge S, Barone E, Perluigi M, Costanzo F, Delabar JM, Bartesaghi R, Dekker AD, De Deyn P, Fortea Ormaechea J, Shaw PA, Haydar TF, Sherman SL, Strydom A, Bhattacharyya A. Building the Future Therapies for Down Syndrome: The Third International Conference of the T21 Research Society. Mol Syndromol 2021; 12:202-218. [PMID: 34421499 DOI: 10.1159/000514437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/13/2021] [Indexed: 11/19/2022] Open
Abstract
Research focused on Down syndrome has increased in the last several years to advance understanding of the consequences of trisomy 21 (T21) on molecular and cellular processes and, ultimately, on individuals with Down syndrome. The Trisomy 21 Research Society (T21RS) is the premier scientific organization for researchers and clinicians studying Down syndrome. The Third International Conference of T21RS, held June 6-9, 2019, in Barcelona, Spain, brought together 429 scientists, families, and industry representatives to share the latest discoveries on underlying cellular and molecular mechanisms of T21, define cognitive and behavioral challenges and better understand comorbidities associated with Down syndrome, including Alzheimer's disease and leukemia. Presentation of cutting-edge results in neuroscience, neurology, model systems, psychology, cancer, biomarkers and molecular and phar-ma-cological therapeutic approaches demonstrate the compelling interest and continuing advancement in all aspects of understanding and ameliorating conditions associated with T21.
Collapse
Affiliation(s)
- Mara Dierssen
- Centre for Genomic Regulation, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Pablo Helguera
- Instituto Ferreyra, INIMEC-CONICET-UNC, Córdoba, Argentina
| | - Maria Martínez de Lagran
- Centre for Genomic Regulation, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Anna Vazquez
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Bradley Christian
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Maria Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Frances Wiseman
- UK Dementia Research Institute, University College London, London, United Kingdom
| | - William Mobley
- University of California-San Diego, San Diego, California, USA
| | | | - Veronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Anna Esbensen
- University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lisa M Jacola
- St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Marie Claude Potier
- Brain & Spine Institute (ICM), CNRS UMR7225 - INSERM U1127 - UPMC Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Eric D Hamlett
- Medical University of South Carolina, Columbia, South Carolina, USA
| | | | | | | | | | | | - Sébastien Malinge
- Telethon Kids Institute - Cancer Centre, Nedlands, Washington, Australia
| | | | | | | | - Jean Maurice Delabar
- Brain & Spine Institute (ICM), CNRS UMR7225 - INSERM U1127 - UPMC Hôpital de la Pitié-Salpêtrière, Paris, France
| | | | - Alain D Dekker
- University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Peter De Deyn
- University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.,University of Antwerp, Antwerp, Belgium
| | - Juan Fortea Ormaechea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
25
|
Ramírez-Sagredo A, Quiroga C, Garrido-Moreno V, López-Crisosto C, Leiva-Navarrete S, Norambuena-Soto I, Ortiz-Quintero J, Díaz-Vesga MC, Perez W, Hendrickson T, Parra V, Pedrozo Z, Altamirano F, Chiong M, Lavandero S. Polycystin-1 regulates cardiomyocyte mitophagy. FASEB J 2021; 35:e21796. [PMID: 34324238 DOI: 10.1096/fj.202002598r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/29/2022]
Abstract
Polycystin-1 (PC1) is a transmembrane protein found in different cell types, including cardiomyocytes. Alterations in PC1 expression have been linked to mitochondrial damage in renal tubule cells and in patients with autosomal dominant polycystic kidney disease. However, to date, the regulatory role of PC1 in cardiomyocyte mitochondria is not well understood. The analysis of mitochondrial morphology from cardiomyocytes of heterozygous PC1 mice (PDK1+/- ) using transmission electron microscopy showed that cardiomyocyte mitochondria were smaller with increased mitochondria density and circularity. These parameters were consistent with mitochondrial fission. We knocked-down PC1 in cultured rat cardiomyocytes and human-induced pluripotent stem cells (iPSC)-derived cardiomyocytes to evaluate mitochondrial function and morphology. The results showed that downregulation of PC1 expression results in reduced protein levels of sub-units of the OXPHOS complexes and less functional mitochondria (reduction of mitochondrial membrane potential, mitochondrial respiration, and ATP production). This mitochondrial dysfunction activates the elimination of defective mitochondria by mitophagy, assessed by an increase of autophagosome adapter protein LC3B and the recruitment of the Parkin protein to the mitochondria. siRNA-mediated PC1 knockdown leads to a loss of the connectivity of the mitochondrial network and a greater number of mitochondria per cell, but of smaller sizes, which characterizes mitochondrial fission. PC1 silencing also deregulates the AKT-FoxO1 signaling pathway, which is involved in the regulation of mitochondrial metabolism, mitochondrial morphology, and processes that are part of cell quality control, such as mitophagy. Together, these data provide new insights about the controls that PC1 exerts on mitochondrial morphology and function in cultured cardiomyocytes dependent on the AKT-FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Andrea Ramírez-Sagredo
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Clara Quiroga
- Advanced Center for Chronic Diseases (ACCDiS), División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valeria Garrido-Moreno
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Camila López-Crisosto
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastian Leiva-Navarrete
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Autophagy Research Center, Universidad de Chile, Santiago, Chile.,Network for the Study of High-lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jafet Ortiz-Quintero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Bioanálisis e Inmunología, Escuela de Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Magda C Díaz-Vesga
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Grupo de Investigación en Ciencias Básicas y Clínicas de la Salud, Pontificia Universidad Javeriana de Cali, Cali, Colombia
| | - William Perez
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Troy Hendrickson
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.,Texas A&M MD/PhD Program, Texas A&M Health Science Center, College Station, TX, USA
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Autophagy Research Center, Universidad de Chile, Santiago, Chile.,Network for the Study of High-lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile
| | - Zully Pedrozo
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Network for the Study of High-lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile.,Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Francisco Altamirano
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.,Department of Cardiothoracic Surgery, Weill Cornell Medical College, Cornell University, Ithaca, NY, USA
| | - Mario Chiong
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile.,Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
26
|
Tong D, Schiattarella GG, Jiang N, Altamirano F, Szweda PA, Elnwasany A, Lee DI, Yoo H, Kass DA, Szweda LI, Lavandero S, Verdin E, Gillette TG, Hill JA. NAD + Repletion Reverses Heart Failure With Preserved Ejection Fraction. Circ Res 2021; 128:1629-1641. [PMID: 33882692 PMCID: PMC8159891 DOI: 10.1161/circresaha.120.317046] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Dan Tong
- Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
| | - Gabriele G. Schiattarella
- Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
| | - Nan Jiang
- Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
| | - Francisco Altamirano
- Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
| | - Pamela A. Szweda
- Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
| | - Abdallah Elnwasany
- Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
| | - Dong Ik Lee
- Medicine (Cardiology), Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Heesoo Yoo
- Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
| | - David A. Kass
- Medicine (Cardiology), Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Luke I. Szweda
- Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
| | - Sergio Lavandero
- Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
- Advanced Center for Chronic Diseases (ACCDiS) & Corporacion Estudios Cientificos de las Enfermedades Cronicas (CECEC), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago 8380492, Chile
| | - Eric Verdin
- Bulk Institute for Research on Aging, Novato, CA, USA, 94945
| | - Thomas G. Gillette
- Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
| | - Joseph A. Hill
- Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
| |
Collapse
|
27
|
Schiattarella GG, Altamirano F, Kim SY, Tong D, Ferdous A, Piristine H, Dasgupta S, Wang X, French KM, Villalobos E, Spurgin SB, Waldman M, Jiang N, May HI, Hill TM, Luo Y, Yoo H, Zaha VG, Lavandero S, Gillette TG, Hill JA. Xbp1s-FoxO1 axis governs lipid accumulation and contractile performance in heart failure with preserved ejection fraction. Nat Commun 2021; 12:1684. [PMID: 33727534 PMCID: PMC7966396 DOI: 10.1038/s41467-021-21931-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is now the dominant form of heart failure and one for which no efficacious therapies exist. Obesity and lipid mishandling greatly contribute to HFpEF. However, molecular mechanism(s) governing metabolic alterations and perturbations in lipid homeostasis in HFpEF are largely unknown. Here, we report that cardiomyocyte steatosis in HFpEF is coupled with increases in the activity of the transcription factor FoxO1 (Forkhead box protein O1). FoxO1 depletion, as well as over-expression of the Xbp1s (spliced form of the X-box-binding protein 1) arm of the UPR (unfolded protein response) in cardiomyocytes each ameliorates the HFpEF phenotype in mice and reduces myocardial lipid accumulation. Mechanistically, forced expression of Xbp1s in cardiomyocytes triggers ubiquitination and proteasomal degradation of FoxO1 which occurs, in large part, through activation of the E3 ubiquitin ligase STUB1 (STIP1 homology and U-box-containing protein 1) a novel and direct transcriptional target of Xbp1s. Our findings uncover the Xbp1s-FoxO1 axis as a pivotal mechanism in the pathogenesis of cardiometabolic HFpEF and unveil previously unrecognized mechanisms whereby the UPR governs metabolic alterations in cardiomyocytes.
Collapse
Affiliation(s)
- Gabriele G Schiattarella
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
- Center for Cardiovascular Research (CCR), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Francisco Altamirano
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Soo Young Kim
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dan Tong
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anwarul Ferdous
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hande Piristine
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Subhajit Dasgupta
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xuliang Wang
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kristin M French
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elisa Villalobos
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephen B Spurgin
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maayan Waldman
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nan Jiang
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Herman I May
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Theodore M Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuxuan Luo
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Heesoo Yoo
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vlad G Zaha
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Parkland Health & Hospital System, Dallas, TX, USA
| | - Sergio Lavandero
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Thomas G Gillette
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
28
|
RCAN1.4 mediates high glucose-induced matrix production by stimulating mitochondrial fission in mesangial cells. Biosci Rep 2021; 40:221739. [PMID: 31894838 PMCID: PMC6970086 DOI: 10.1042/bsr20192759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/30/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022] Open
Abstract
High glucose (HG)-induced mitochondrial dynamic changes and oxidative damage are closely related to the development and progression of diabetic kidney disease (DKD). Recent studies suggest that regulators of calcineurin 1 (RCAN1) is involved in the regulation of mitochondrial function in different cell types, so we investigate the role of RCAN1 in mitochondrial dynamics under HG ambience in rat glomerular mesangial cells (MCs). MCs subjected to HG exhibited an isoform-specific up-regulation of RCAN1.4 at both mRNA and protein levels. RCAN1.4 overexpression induced translocation of Dynamin related protein 1 (Drp1) to mitochondria, mitochondrial fragmentation and depolarization, accompanied by increased matrix production under normal glucose and HG ambience. In contrast, decreasing the expression of RCAN1.4 by siRNA inhibited HG-induced mitochondrial fragmentation and matrix protein up-regulation. Moreover, both mitochondrial fission inhibitor Mdivi-1 and Drp1 shRNA prevented RCAN1.4-induced fibronectin up-regulation, suggesting that RCAN1.4-induced matrix production is dependent on its modulation of mitochondrial fission. Although HG-induced RCAN1.4 up-regulation was achieved by activating calcineurin, RCAN1.4-mediated mitochondrial fragmentation and matrix production is independent of calcineurin activity. These results provide the first evidence for the HG-induced RCAN1.4 up-regulation involving increased mitochondrial fragmentation, leading to matrix protein up-regulation.
Collapse
|
29
|
Novel Identified Circular Transcript of RCAN2, circ-RCAN2, Shows Deviated Expression Pattern in Pig Reperfused Infarcted Myocardium and Hypoxic Porcine Cardiac Progenitor Cells In Vitro. Int J Mol Sci 2021; 22:ijms22031390. [PMID: 33573240 PMCID: PMC7866528 DOI: 10.3390/ijms22031390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/10/2023] Open
Abstract
Circular RNAs (circRNAs) are crucial in gene regulatory networks and disease development, yet circRNA expression in myocardial infarction (MI) is poorly understood. Here, we harvested myocardium samples from domestic pigs 3 days after closed-chest reperfused MI or sham surgery. Cardiac circRNAs were identified by RNA-sequencing of rRNA-depleted RNA from infarcted and healthy myocardium tissue samples. Bioinformatics analysis was performed using the CIRIfull and KNIFE algorithms, and circRNAs identified with both algorithms were subjected to differential expression (DE) analysis and validation by qPCR. Circ-RCAN2 and circ-C12orf29 expressions were significantly downregulated in infarcted tissue compared to healthy pig heart. Sanger sequencing was performed to identify the backsplice junctions of circular transcripts. Finally, we compared the expressions of circ-C12orf29 and circ-RCAN2 between porcine cardiac progenitor cells (pCPCs) that were incubated in a hypoxia chamber for different time periods versus normoxic pCPCs. Circ-C12orf29 did not show significant DE in vitro, whereas circ-RCAN2 exhibited significant ischemia-time-dependent upregulation in hypoxic pCPCs. Overall, our results revealed novel cardiac circRNAs with DE patterns in pCPCs, and in infarcted and healthy myocardium. Circ-RCAN2 exhibited differential regulation by myocardial infarction in vivo and by hypoxia in vitro. These results will improve our understanding of circRNA regulation during acute MI.
Collapse
|
30
|
Hevener AL, Ribas V, Moore TM, Zhou Z. ERα in the Control of Mitochondrial Function and Metabolic Health. Trends Mol Med 2021; 27:31-46. [PMID: 33020031 DOI: 10.1016/j.molmed.2020.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/27/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Decrements in metabolic health elevate disease risk, including type 2 diabetes, heart disease, and certain cancers. Thus, treatment strategies to combat metabolic dysfunction are needed. Reduced ESR1 (estrogen receptor, ERα) expression is observed in muscle from women, men, and animals presenting clinical features of the metabolic syndrome. Human studies of natural expression of ESR1 in metabolic tissues show that muscle expression of ESR1 is positively correlated with markers of metabolic health, including insulin sensitivity. Herein, we highlight the important impact of ERα on mitochondrial form and function and present how these actions of the receptor govern metabolic homeostasis. Studies identifying ERα-regulated pathways for disease prevention will lay the foundation for the design of novel therapeutics to improve the health of women while limiting secondary complications that have plagued traditional hormone replacement interventions.
Collapse
Affiliation(s)
- Andrea L Hevener
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, CA 90095, USA; Iris Cantor-UCLA Women's Health Research Center, University of California, Los Angeles, CA 90095, USA.
| | - Vicent Ribas
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, CA 90095, USA
| | - Timothy M Moore
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, CA 90095, USA
| | - Zhenqi Zhou
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
31
|
Kim SY, Zhang X, Schiattarella GG, Altamirano F, Ramos TAR, French KM, Jiang N, Szweda PA, Evers BM, May HI, Luo X, Li H, Szweda LI, Maracaja-Coutinho V, Lavandero S, Gillette TG, Hill JA. Epigenetic Reader BRD4 (Bromodomain-Containing Protein 4) Governs Nucleus-Encoded Mitochondrial Transcriptome to Regulate Cardiac Function. Circulation 2020; 142:2356-2370. [PMID: 33113340 PMCID: PMC7736324 DOI: 10.1161/circulationaha.120.047239] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND BET (bromodomain and extraterminal) epigenetic reader proteins, in particular BRD4 (bromodomain-containing protein 4), have emerged as potential therapeutic targets in a number of pathological conditions, including cancer and cardiovascular disease. Small-molecule BET protein inhibitors such as JQ1 have demonstrated efficacy in reversing cardiac hypertrophy and heart failure in preclinical models. Yet, genetic studies elucidating the biology of BET proteins in the heart have not been conducted to validate pharmacological findings and to unveil potential pharmacological side effects. METHODS By engineering a cardiomyocyte-specific BRD4 knockout mouse, we investigated the role of BRD4 in cardiac pathophysiology. We performed functional, transcriptomic, and mitochondrial analyses to evaluate BRD4 function in developing and mature hearts. RESULTS Unlike pharmacological inhibition, loss of BRD4 protein triggered progressive declines in myocardial function, culminating in dilated cardiomyopathy. Transcriptome analysis of BRD4 knockout mouse heart tissue identified early and specific disruption of genes essential to mitochondrial energy production and homeostasis. Functional analysis of isolated mitochondria from these hearts confirmed that BRD4 ablation triggered significant changes in mitochondrial electron transport chain protein expression and activity. Computational analysis identified candidate transcription factors participating in the BRD4-regulated transcriptome. In particular, estrogen-related receptor α, a key nuclear receptor in metabolic gene regulation, was enriched in promoters of BRD4-regulated mitochondrial genes. CONCLUSIONS In aggregate, we describe a previously unrecognized role for BRD4 in regulating cardiomyocyte mitochondrial homeostasis, observing that its function is indispensable to the maintenance of normal cardiac function.
Collapse
MESH Headings
- Animals
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/physiopathology
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cell Nucleus/pathology
- Electron Transport Chain Complex Proteins/genetics
- Electron Transport Chain Complex Proteins/metabolism
- Energy Metabolism/genetics
- Epigenesis, Genetic
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Gene Expression Profiling
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/pathology
- Heart Failure/physiopathology
- Mice, Knockout
- Mitochondria, Heart/genetics
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptome
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left/genetics
Collapse
Affiliation(s)
- Soo Young Kim
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Xin Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Gabriele G. Schiattarella
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Francisco Altamirano
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX
| | - Thais A. R. Ramos
- Advanced Center for Chronic Disease, Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile
- Bioinformatics Multidisciplinary Environment, Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Kristin M. French
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Nan Jiang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Pamela A. Szweda
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Bret M. Evers
- Department of Pathology, University of Texas Southwestern, Dallas, TX, USA
| | - Herman I. May
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Xiang Luo
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Hongliang Li
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Luke I. Szweda
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Disease, Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile
- Bioinformatics Multidisciplinary Environment, Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sergio Lavandero
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
- Advanced Center for Chronic Disease, Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile
| | - Thomas G. Gillette
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Joseph A. Hill
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
- Department of Molecular Biology, University of Texas Southwestern, Dallas, TX, USA
| |
Collapse
|
32
|
Wang S, Wang Y, Qiu K, Zhu J, Wu Y. RCAN1 in cardiovascular diseases: molecular mechanisms and a potential therapeutic target. Mol Med 2020; 26:118. [PMID: 33267791 PMCID: PMC7709393 DOI: 10.1186/s10020-020-00249-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Considerable efforts are needed to elucidate the underlying mechanisms for the prevention and treatment of CVDs. Regulator of calcineurin 1 (RCAN1) is involved in both development/maintenance of the cardiovascular system and the pathogenesis of CVDs. RCAN1 reduction protects against atherosclerosis by reducing the uptake of oxidized low-density lipoproteins, whereas RCAN1 has a protective effect on myocardial ischemia/reperfusion injury, myocardial hypertrophy and intramural hematoma/aortic rupture mainly mediated by maintaining mitochondrial function and inhibiting calcineurin and Rho kinase activity, respectively. In this review, the regulation and the function of RCAN1 are summarized. Moreover, the dysregulation of RCAN1 in CVDs is reviewed. In addition, the beneficial role of RCAN1 reduction in atherosclerosis and the protective role of RCAN1 in myocardial ischemia/reperfusion injury, myocardial hypertrophy and intramural hematoma /aortic rupture are discussed, as well as underlying mechanisms. Furthermore, the therapeutic potential and challenges of targeting RCAN1 for CVDs treatment are also discussed.
Collapse
Affiliation(s)
- Shuai Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China
| | - Yuqing Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Cheeloo College of Medicine, Shandong University, Wenhua West Road No. 44, Lixia District, JinanShandong, 250012, China
| | - Kaixin Qiu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Cheeloo College of Medicine, Shandong University, Wenhua West Road No. 44, Lixia District, JinanShandong, 250012, China
| | - Jin Zhu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China
| | - Yili Wu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China. .,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.
| |
Collapse
|
33
|
Xu W, Jain MK, Zhang L. Molecular link between circadian clocks and cardiac function: a network of core clock, slave clock, and effectors. Curr Opin Pharmacol 2020; 57:28-40. [PMID: 33189913 DOI: 10.1016/j.coph.2020.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/27/2020] [Accepted: 10/06/2020] [Indexed: 02/08/2023]
Abstract
The circadian rhythm has a strong influence on both cardiac physiology and disease in humans. Preclinical studies primarily using tissue-specific transgenic mouse models have contributed to our understanding of the molecular mechanism of the circadian clock in the cardiovascular system. The core clock driven by CLOCK:BMAL1 complex functions as a universal timing machinery that primarily sets the pace in all mammalian cell types. In one specific cell or tissue type, core clock may control a secondary transcriptional oscillator, conceptualized as slave clock, which confers the oscillatory expression of tissue-specific effectors. Here, we discuss a core clock-slave clock-effectors network, which links the molecular clock to cardiac function.
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, USA; School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Lilei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Shuo W, Li H, Muneko N, Yoshikazu N, Kato N, Kasamaki Y, Ueda T, Kanda T. Combination effects of a fatty diet and exercise on the depressive state and cardioprotection in apolipoprotein E knockout mice with a change in RCAN1 expression. J Int Med Res 2020; 48:300060520964016. [PMID: 33251902 PMCID: PMC7708711 DOI: 10.1177/0300060520964016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Regulator of calcineurin 1 (RCAN1) controls plasticity of the nervous system and depressive conditions by regulating brain-derived neurotropic factor (BDNF) and plays a crucial role in neural and cardiac pathways. The apolipoprotein E gene (ApoE) is a robust risk factor for progression of Alzheimer's disease. A fatty diet is considered detrimental for metabolic disorders, such as obesity and cardiovascular diseases. METHODS We examined the neuronal and cardiac protective roles of RCAN1 in ApoE-/- mice that were fed a high- or low-fat diet with and without voluntary movement for 3 months. Organ weights, laboratory data, histology, RNA expression, and behavior were examined. RESULTS A high-fat diet with exercise improved depressive function, as examined by the forced swimming test, and RCAN1 mRNA expression was induced in the hippocampus. A low-fat diet with exercise resulted in a reduced body weight, higher heart weight/body weight ratio, and lower circulating triglyceride levels compared with a low-fat diet without exercise. RCAN1 mRNA expression was increased in cardiomyocytes in ApoE-/- mice. CONCLUSIONS The combination of a high-fat diet and exercise might reduce depressive function, whereas a low-fat diet with exercise leads to cardioprotection. Induction of RCAN1 expression might affect neuroplasticity and cardiac function.
Collapse
Affiliation(s)
- Wang Shuo
- Department of Community Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
- Department of Geriatrics, China-Japan Friendship Hospital, He Ping Li, Chaoyang District, Beijing, China
| | - Haicong Li
- Department of Geriatrics, China-Japan Friendship Hospital, He Ping Li, Chaoyang District, Beijing, China
| | - Nishijo Muneko
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| | - Nishino Yoshikazu
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| | - Nobuo Kato
- Department of Public Health, Kanazawa Medical University, Ishikawa, Japan
| | - Yuji Kasamaki
- Department of Community Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Tadashi Ueda
- Department of Community Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Tsugiyasu Kanda
- Department of Community Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
35
|
Cisterna B, Sobolev AP, Costanzo M, Malatesta M, Zancanaro C. Combined Microscopic and Metabolomic Approach to Characterize the Skeletal Muscle Fiber of the Ts65Dn Mouse, A Model of Down Syndrome. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:1014-1023. [PMID: 32867866 DOI: 10.1017/s143192762002437x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Down syndrome (DS) is a genetically based disease caused by triplication of chromosome 21. DS is characterized by severe muscle weakness associated with motor deficits; however, understanding the DS-associated skeletal muscle condition is limited. In this study, we used a combined methodological approach involving light and electron microscopy, as well as nuclear magnetic resonance spectroscopy metabolomics, to investigate morphology and composition of the quadriceps muscles in the Ts65Dn mouse, a model of DS, to identify structural and/or functional trisomy-associated alterations. Morphometric analysis demonstrated a larger size of myofibers in trisomic versus euploid mice; however, myofibrils were thinner and contained higher amounts of mitochondria and lipid droplets. In trisomic mice, magnetic resonance spectroscopy showed a tendency to an overall increase in muscle metabolites involved in protein synthesis. These data strongly suggest that in DS, a sarcoplasmic hypertrophy associated with myofibril loss characterizes quadriceps myofibers. In addition, large-sized mitochondria suggestive of impaired fission/fusion events, as well as metabolites modifications suggestive of decreased mitochondrial function, were found in the trisomic muscle. Albeit preliminary, the results provided by this novel approach consistently indicate structural and compositional alterations of the DS skeletal muscle, which are typical of early aging.
Collapse
Affiliation(s)
- Barbara Cisterna
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, VeronaI-37134, Italy
| | - Anatoly P Sobolev
- Magnetic Resonance Laboratory "Annalaura Segre", Institute for Biological Systems, National Research Council, via Salaria km 29.300, Monterotondo, RomeI-00015, Italy
| | - Manuela Costanzo
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, VeronaI-37134, Italy
| | - Manuela Malatesta
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, VeronaI-37134, Italy
| | - Carlo Zancanaro
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, VeronaI-37134, Italy
| |
Collapse
|
36
|
Sang XY, Xiao JJ, Liu Q, Zhu R, Dai JJ, Zhang C, Yu H, Yang SJ, Zhang BF. Regulators of calcineurin 1 deficiency attenuates tubulointerstitial fibrosis through improving mitochondrial fitness. FASEB J 2020; 34. [PMID: 32896034 DOI: 10.1096/fj.202000781rrr] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
Renal fibrosis is the common pathological process of various chronic kidney diseases (CKD). Recent studies indicate that mitochondrial fragmentation is closely associated with renal fibrosis in CKD. However, the molecular mechanisms leading to mitochondrial fragmentation remain to be elucidated. The present study investigated the role of regulators of calcineurin 1 (RCAN1) in mitochondrial fission and renal interstitial fibrosis using conditional knockout mice in which RCAN1 was genetically deleted in tubular epithelial cells (TECs). TEC-specific deletion of RCAN1 attenuated tubulointerstitial fibrosis and epithelial to mesenchymal transition (EMT)-like phenotype change after unilateral ureteral obstruction (UUO) and ischemia reperfusion injury (IRI) through suppressing TGF-β1/Smad3 signaling pathway. TEC-specific deletion of RCAN1 also reduced the tubular apoptosis after UUO by inhibiting cytochrome c/caspase-9 pathway. Ultrastructure analysis revealed a marked decrease in mitochondrial fragmentation in TECs of RCAN1-deficient mice in experimental CKD models. The expression of mitochondrial profission proteins dynamin-related protein 1 (Drp1) and mitochondrial fission factor (Mff) was also downregulated in obstructed kidney of TEC-specific RCAN1-deficient mice. Furthermore, TEC-specific deletion of RCAN1 attenuated the dysfunctional tubular autophagy by regulating PINK1/Parkin-induced mitophagy in CKD. RCAN1 knockdown and knockout similarly improved the mitochondrial quality control in HK-2 cells and primary cultured mouse tubular cells stimulated by TGF-β1. Put together, our data indicated that RCAN1 plays an important role in the progression of tubulointerstitial fibrosis through regulating the mitochondrial quality. Therefore, targeting RCAN1 may provide a potential therapeutic approach in CKD.
Collapse
Affiliation(s)
- Xue-Yu Sang
- Department of Biochemistry, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
| | - Jing-Jie Xiao
- Department of Biochemistry, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
| | - Qing Liu
- Department of Biochemistry, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
| | - Rui Zhu
- Department of Biochemistry, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
| | - Jia-Jia Dai
- Department of Biochemistry, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
| | - Cheng Zhang
- Department of Biochemistry, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
| | - Hong Yu
- Department of Biochemistry, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
| | - Si-Jun Yang
- ABSL-3 Laboratory at the Center for Animal Experiment, State Key Laboratory of Virology, Wuhan University School of Medicine, Wuhan, P.R. China
| | - Bai-Fang Zhang
- Department of Biochemistry, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
| |
Collapse
|
37
|
Sotomayor-Flores C, Rivera-Mejías P, Vásquez-Trincado C, López-Crisosto C, Morales PE, Pennanen C, Polakovicova I, Aliaga-Tobar V, García L, Roa JC, Rothermel BA, Maracaja-Coutinho V, Ho-Xuan H, Meister G, Chiong M, Ocaranza MP, Corvalán AH, Parra V, Lavandero S. Angiotensin-(1-9) prevents cardiomyocyte hypertrophy by controlling mitochondrial dynamics via miR-129-3p/PKIA pathway. Cell Death Differ 2020; 27:2586-2604. [PMID: 32152556 PMCID: PMC7429871 DOI: 10.1038/s41418-020-0522-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
Angiotensin-(1-9) is a peptide from the noncanonical renin-angiotensin system with anti-hypertrophic effects in cardiomyocytes via an unknown mechanism. In the present study we aimed to elucidate it, basing us initially on previous work from our group and colleagues who proved a relationship between disturbances in mitochondrial morphology and calcium handling, associated with the setting of cardiac hypertrophy. Our first finding was that angiotensin-(1-9) can induce mitochondrial fusion through DRP1 phosphorylation. Secondly, angiotensin-(1-9) blocked mitochondrial fission and intracellular calcium dysregulation in a model of norepinephrine-induced cardiomyocyte hypertrophy, preventing the activation of the calcineurin/NFAT signaling pathway. To further investigate angiotensin-(1-9) anti-hypertrophic mechanism, we performed RNA-seq studies, identifying the upregulation of miR-129 under angiotensin-(1-9) treatment. miR-129 decreased the transcript levels of the protein kinase A inhibitor (PKIA), resulting in the activation of the protein kinase A (PKA) signaling pathway. Finally, we showed that PKA activity is necessary for the effects of angiotensin-(1-9) over mitochondrial dynamics, calcium handling and its anti-hypertrophic effects.
Collapse
Affiliation(s)
- Cristian Sotomayor-Flores
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Pablo Rivera-Mejías
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - César Vásquez-Trincado
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Camila López-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Pennanen
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Iva Polakovicova
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Víctor Aliaga-Tobar
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lorena García
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan Carlos Roa
- Departamento de Patologia, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Hung Ho-Xuan
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María Paz Ocaranza
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for New Drugs for Hypertension (CENDH), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro H Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Autophagy Research Center, Universidad de Chile, Santiago, Chile.
- Network for the Study of High-Lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile.
| |
Collapse
|
38
|
Lee SK, Ahnn J. Regulator of Calcineurin (RCAN): Beyond Down Syndrome Critical Region. Mol Cells 2020; 43:671-685. [PMID: 32576715 PMCID: PMC7468584 DOI: 10.14348/molcells.2020.0060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
The regulator of calcineurin (RCAN) was first reported as a novel gene called DSCR1, encoded in a region termed the Down syndrome critical region (DSCR) of human chromosome 21. Genome sequence comparisons across species using bioinformatics revealed three members of the RCAN gene family, RCAN1, RCAN2, and RCAN3, present in most jawed vertebrates, with one member observed in most invertebrates and fungi. RCAN is most highly expressed in brain and striated muscles, but expression has been reported in many other tissues, as well, including the heart and kidneys. Expression levels of RCAN homologs are responsive to external stressors such as reactive oxygen species, Ca2+, amyloid β, and hormonal changes and upregulated in pathological conditions, including Alzheimer's disease, cardiac hypertrophy, diabetes, and degenerative neuropathy. RCAN binding to calcineurin, a Ca2+/calmodulin-dependent phosphatase, inhibits calcineurin activity, thereby regulating different physiological events via dephosphorylation of important substrates. Novel functions of RCANs have recently emerged, indicating involvement in mitochondria homeostasis, RNA binding, circadian rhythms, obesity, and thermogenesis, some of which are calcineurin-independent. These developments suggest that besides significant contributions to DS pathologies and calcineurin regulation, RCAN is an important participant across physiological systems, suggesting it as a favorable therapeutic target.
Collapse
Affiliation(s)
- Sun-Kyung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Joohong Ahnn
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
39
|
Drosophila melanogaster Mitochondrial Carriers: Similarities and Differences with the Human Carriers. Int J Mol Sci 2020; 21:ijms21176052. [PMID: 32842667 PMCID: PMC7504413 DOI: 10.3390/ijms21176052] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial carriers are a family of structurally related proteins responsible for the exchange of metabolites, cofactors and nucleotides between the cytoplasm and mitochondrial matrix. The in silico analysis of the Drosophila melanogaster genome has highlighted the presence of 48 genes encoding putative mitochondrial carriers, but only 20 have been functionally characterized. Despite most Drosophila mitochondrial carrier genes having human homologs and sharing with them 50% or higher sequence identity, D. melanogaster genes display peculiar differences from their human counterparts: (1) in the fruit fly, many genes encode more transcript isoforms or are duplicated, resulting in the presence of numerous subfamilies in the genome; (2) the expression of the energy-producing genes in D. melanogaster is coordinated from a motif known as Nuclear Respiratory Gene (NRG), a palindromic 8-bp sequence; (3) fruit-fly duplicated genes encoding mitochondrial carriers show a testis-biased expression pattern, probably in order to keep a duplicate copy in the genome. Here, we review the main features, biological activities and role in the metabolism of the D. melanogaster mitochondrial carriers characterized to date, highlighting similarities and differences with their human counterparts. Such knowledge is very important for obtaining an integrated view of mitochondrial function in D. melanogaster metabolism.
Collapse
|
40
|
Diaz-Vegas A, Sanchez-Aguilera P, Krycer JR, Morales PE, Monsalves-Alvarez M, Cifuentes M, Rothermel BA, Lavandero S. Is Mitochondrial Dysfunction a Common Root of Noncommunicable Chronic Diseases? Endocr Rev 2020; 41:5807952. [PMID: 32179913 PMCID: PMC7255501 DOI: 10.1210/endrev/bnaa005] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/12/2020] [Indexed: 12/19/2022]
Abstract
Mitochondrial damage is implicated as a major contributing factor for a number of noncommunicable chronic diseases such as cardiovascular diseases, cancer, obesity, and insulin resistance/type 2 diabetes. Here, we discuss the role of mitochondria in maintaining cellular and whole-organism homeostasis, the mechanisms that promote mitochondrial dysfunction, and the role of this phenomenon in noncommunicable chronic diseases. We also review the state of the art regarding the preclinical evidence associated with the regulation of mitochondrial function and the development of current mitochondria-targeted therapeutics to treat noncommunicable chronic diseases. Finally, we give an integrated vision of how mitochondrial damage is implicated in these metabolic diseases.
Collapse
Affiliation(s)
- Alexis Diaz-Vegas
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW, Australia
| | - Pablo Sanchez-Aguilera
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - James R Krycer
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW, Australia
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Matías Monsalves-Alvarez
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile
| | - Mariana Cifuentes
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile.,Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas.,Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
41
|
Gomez W, Morales R, Maracaja-Coutinho V, Parra V, Nassif M. Down syndrome and Alzheimer's disease: common molecular traits beyond the amyloid precursor protein. Aging (Albany NY) 2020; 12:1011-1033. [PMID: 31918411 PMCID: PMC6977673 DOI: 10.18632/aging.102677] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer’s disease (AD) is the most prevalent type of dementia. Down syndrome (DS) is the leading genetic risk factor for Early-Onset AD, prematurely presenting the classic pathological features of the brain with AD. Augmented gene dosage, including the APP gene, could partially cause this predisposition. Recent works have revealed that alterations in chromosome location due to the extra Chromosome 21, as well as epigenetic modifications, could promote changes in gene expression other than those from Chromosome 21. As a result, similar pathological features and cellular dysfunctions in DS and AD, including impaired autophagy, lysosomal activity, and mitochondrial dysfunction, could be controlled beyond APP overexpression. In this review, we highlight some recent data regarding the origin of the shared features between DS and AD and explore the mechanisms concerning cognitive deficiencies in DS associated with dementia, which could shed some light into the search for new therapeutic targets for AD treatment.
Collapse
Affiliation(s)
- Wileidy Gomez
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile.,Departamento de Bioquímica y Biología Molecular and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,CIBQA, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Vinicius Maracaja-Coutinho
- Departamento de Bioquímica y Biología Molecular and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Valentina Parra
- Departamento de Bioquímica y Biología Molecular and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Center for Exercise, Metabolism, and Cancer Studies (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Autophagy Research Center, Universidad de Chile, Santiago, Chile
| | - Melissa Nassif
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
42
|
Clarke RA, Furlong TM, Eapen V. Tourette Syndrome Risk Genes Regulate Mitochondrial Dynamics, Structure, and Function. Front Psychiatry 2020; 11:556803. [PMID: 33776808 PMCID: PMC7987655 DOI: 10.3389/fpsyt.2020.556803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a neurodevelopmental disorder characterized by motor and vocal tics with an estimated prevalence of 1% in children and adolescents. GTS has high rates of inheritance with many rare mutations identified. Apart from the role of the neurexin trans-synaptic connexus (NTSC) little has been confirmed regarding the molecular basis of GTS. The NTSC pathway regulates neuronal circuitry development, synaptic connectivity and neurotransmission. In this study we integrate GTS mutations into mitochondrial pathways that also regulate neuronal circuitry development, synaptic connectivity and neurotransmission. Many deleterious mutations in GTS occur in genes with complementary and consecutive roles in mitochondrial dynamics, structure and function (MDSF) pathways. These genes include those involved in mitochondrial transport (NDE1, DISC1, OPA1), mitochondrial fusion (OPA1), fission (ADCY2, DGKB, AMPK/PKA, RCAN1, PKC), mitochondrial metabolic and bio-energetic optimization (IMMP2L, MPV17, MRPL3, MRPL44). This study is the first to develop and describe an integrated mitochondrial pathway in the pathogenesis of GTS. The evidence from this study and our earlier modeling of GTS molecular pathways provides compounding support for a GTS deficit in mitochondrial supply affecting neurotransmission.
Collapse
Affiliation(s)
- Raymond A Clarke
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Teri M Furlong
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Valsamma Eapen
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.,South West Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
43
|
Muñiz Moreno MDM, Brault V, Birling MC, Pavlovic G, Herault Y. Modeling Down syndrome in animals from the early stage to the 4.0 models and next. PROGRESS IN BRAIN RESEARCH 2019; 251:91-143. [PMID: 32057313 DOI: 10.1016/bs.pbr.2019.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The genotype-phenotype relationship and the physiopathology of Down Syndrome (DS) have been explored in the last 20 years with more and more relevant mouse models. From the early age of transgenesis to the new CRISPR/CAS9-derived chromosomal engineering and the transchromosomic technologies, mouse models have been key to identify homologous genes or entire regions homologous to the human chromosome 21 that are necessary or sufficient to induce DS features, to investigate the complexity of the genetic interactions that are involved in DS and to explore therapeutic strategies. In this review we report the new developments made, how genomic data and new genetic tools have deeply changed our way of making models, extended our panel of animal models, and increased our understanding of the neurobiology of the disease. But even if we have made an incredible progress which promises to make DS a curable condition, we are facing new research challenges to nurture our knowledge of DS pathophysiology as a neurodevelopmental disorder with many comorbidities during ageing.
Collapse
Affiliation(s)
- Maria Del Mar Muñiz Moreno
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Marie-Christine Birling
- Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France
| | - Guillaume Pavlovic
- Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France.
| |
Collapse
|
44
|
Conditional deletion of Rcan1 predisposes to hypertension-mediated intramural hematoma and subsequent aneurysm and aortic rupture. Nat Commun 2018; 9:4795. [PMID: 30442942 PMCID: PMC6237779 DOI: 10.1038/s41467-018-07071-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022] Open
Abstract
Aortic intramural hematoma (IMH) can evolve toward reabsorption, dissection or aneurysm. Hypertension is the most common predisposing factor in IMH and aneurysm patients, and the hypertensive mediator angiotensin-II induces both in mice. We have previously shown that constitutive deletion of Rcan1 isoforms prevents Angiotensin II-induced aneurysm in mice. Here we generate mice conditionally lacking each isoform or all isoforms in vascular smooth muscle cells, endothelial cells, or ubiquitously, to determine the contribution to aneurysm development of Rcan1 isoforms in vascular cells. Surprisingly, conditional Rcan1 deletion in either vascular cell-type induces a hypercontractile phenotype and aortic medial layer disorganization, predisposing to hypertension-mediated aortic rupture, IMH, and aneurysm. These processes are blocked by ROCK inhibition. We find that Rcan1 associates with GSK-3β, whose inhibition decreases myosin activation. Our results identify potential therapeutic targets for intervention in IMH and aneurysm and call for caution when interpreting phenotypes of constitutively and inducibly deficient mice.
Collapse
|
45
|
Rotter D, Peiris H, Grinsfelder DB, Martin AM, Burchfield J, Parra V, Hull C, Morales CR, Jessup CF, Matusica D, Parks BW, Lusis AJ, Nguyen NUN, Oh M, Iyoke I, Jakkampudi T, McMillan DR, Sadek HA, Watt MJ, Gupta RK, Pritchard MA, Keating DJ, Rothermel BA. Regulator of Calcineurin 1 helps coordinate whole-body metabolism and thermogenesis. EMBO Rep 2018; 19:embr.201744706. [PMID: 30389725 DOI: 10.15252/embr.201744706] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/12/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
Increasing non-shivering thermogenesis (NST), which expends calories as heat rather than storing them as fat, is championed as an effective way to combat obesity and metabolic disease. Innate mechanisms constraining the capacity for NST present a fundamental limitation to this approach, yet are not well understood. Here, we provide evidence that Regulator of Calcineurin 1 (RCAN1), a feedback inhibitor of the calcium-activated protein phosphatase calcineurin (CN), acts to suppress two distinctly different mechanisms of non-shivering thermogenesis (NST): one involving the activation of UCP1 expression in white adipose tissue, the other mediated by sarcolipin (SLN) in skeletal muscle. UCP1 generates heat at the expense of reducing ATP production, whereas SLN increases ATP consumption to generate heat. Gene expression profiles demonstrate a high correlation between Rcan1 expression and metabolic syndrome. On an evolutionary timescale, in the context of limited food resources, systemic suppression of prolonged NST by RCAN1 might have been beneficial; however, in the face of caloric abundance, RCAN1-mediated suppression of these adaptive avenues of energy expenditure may now contribute to the growing epidemic of obesity.
Collapse
Affiliation(s)
- David Rotter
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Heshan Peiris
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - D Bennett Grinsfelder
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alyce M Martin
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Jana Burchfield
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Valentina Parra
- Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS) and Center for Exercise Metabolism and Cancer (CEMC), University of Chile, Santiago, Chile
| | - Christi Hull
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cyndi R Morales
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Claire F Jessup
- Department of Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Dusan Matusica
- Department of Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Brian W Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ngoc Uyen Nhi Nguyen
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Misook Oh
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Chemistry, Pohang University of Science and Technology, Pohang, South Korea
| | - Israel Iyoke
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tanvi Jakkampudi
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - D Randy McMillan
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Children's Medical Centre, Dallas, TX, USA
| | - Hesham A Sadek
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew J Watt
- The Department of Physiology and Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, Monash University, Clayton, Vic., Australia
| | - Rana K Gupta
- Touchstone Diabetes Center and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Melanie A Pritchard
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Vic., Australia
| | - Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia .,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Beverly A Rothermel
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA .,Department of Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| |
Collapse
|
46
|
Affiliation(s)
- J Jose Corbalan
- From the Division of Cardiology, Department of Medicine (J.J.C., R.N.K.), Department of Cell Biology (R.N.K.), Wilf Family Cardiovascular Research Institute (J.J.C., R.N.K.), Albert Einstein Cancer Center (R.N.K.), and Einstein-Mount Sinai Diabetes Research Center (R.N.K.), Albert Einstein College of Medicine, Bronx, NY
| | - Richard N Kitsis
- From the Division of Cardiology, Department of Medicine (J.J.C., R.N.K.), Department of Cell Biology (R.N.K.), Wilf Family Cardiovascular Research Institute (J.J.C., R.N.K.), Albert Einstein Cancer Center (R.N.K.), and Einstein-Mount Sinai Diabetes Research Center (R.N.K.), Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|