1
|
Yoo J, Chung G, Park Y. Bio-Inspired, Miniaturized Magnetic Heart Valve System for Superior Performance Cardiovascular Simulator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419504. [PMID: 39955713 DOI: 10.1002/adma.202419504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/31/2025] [Indexed: 02/17/2025]
Abstract
The demand for accurate vascular simulators is increasing to facilitate effective clinical studies on cardiovascular diseases. The research presents the miniaturized design and precise programable regulation of an artificial magnetic heart valve inspired by the human aortic valve, demonstrating the diverse types of pulsating waves. The heart valve is constructed using an elastomeric silicone composite embedded with neodymium magnetic micro-particles. This valve system responds rapidly to changes in magnetic fields controlled by miniaturized electromagnets, enabling precise regulation of fluid pressure and flow rate. This allows for the generation of various pressure waveforms and accurately replicates diverse blood pressure changes with a compact design. The design, working mechanism, fabrication process, and optimization of the magnetically controlled biomimetic heart valve are discussed and its performance as a cardiovascular simulator for human and animal models is evaluated. This artificial valve system has the potential to be utilized in humanoid robots to generate heart-like pressure, thereby paving the way for replicating human physiological characteristics. This research promises significant advancements in cardiovascular clinical trials and biomedical research along with the development of humanoid robots and biomimetic mechanical systems.
Collapse
Affiliation(s)
- Jeongmin Yoo
- Department of Advanced Materials Science and Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Gooyoon Chung
- Department of Advanced Materials Science and Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Yoonseok Park
- Department of Advanced Materials Science and Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
2
|
Rajab TK, Kalfa DM, Mery CM, Emani SM, Reemtsen BL. Indications and Practical Considerations for Partial Heart Transplantation. Ann Thorac Surg 2025:S0003-4975(25)00203-6. [PMID: 40107593 DOI: 10.1016/j.athoracsur.2025.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/17/2024] [Accepted: 01/19/2025] [Indexed: 03/22/2025]
Abstract
Partial heart transplantation is a new approach to deliver growing heart valve substitutes for children. The rationale for partial heart transplantation is that the valves contained in heart transplants grow. Partial heart transplants differ from heart transplants because only the part of the heart containing the necessary valve is transplanted, while the native ventricles are preserved. Preserving the native ventricles eliminates the risk of graft ventricular dysfunction and allows for utilization of donor hearts with ventricular dysfunction. Here we outline practical considerations for partial heart transplantation, including indications, sources for donor hearts, graft procurement, graft preservation, implantation, recipient immunosuppression, and reimbursement. This invited expert review is intended to help clinical teams implement partial heart transplantation.
Collapse
Affiliation(s)
- Taufiek Konrad Rajab
- Division of Cardiovascular Surgery, Department of Surgery, Arkansas Children's Hospital, Little Rock, Arkansas.
| | - David M Kalfa
- Section of Pediatric and Congenital Cardiac Surgery, Division of Cardiac, Thoracic, and Vascular Surgery, Department of Surgery, Morgan Stanley Children's Hospital, New York, New York
| | - Carlos M Mery
- Division of Pediatric Cardiac Surgery, Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sitaram M Emani
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts
| | - Brian L Reemtsen
- Division of Cardiovascular Surgery, Department of Surgery, Arkansas Children's Hospital, Little Rock, Arkansas
| |
Collapse
|
3
|
Meyer C, Paululat A. Valve cells are crucial for efficient cardiac performance in Drosophila. PLoS Genet 2025; 21:e1011613. [PMID: 40112281 PMCID: PMC11925464 DOI: 10.1371/journal.pgen.1011613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/07/2025] [Indexed: 03/22/2025] Open
Abstract
Blood flow in metazoans is regulated by the activity of the heart. The open circulatory system of insects consists of relatively few structural elements that determine cardiac performance via their coordinated interplay. One of these elements is the intracardiac valve between the aorta and the ventricle. In Drosophila, it is built by only two cells, whose unique histology represents an evolutionary novelty. While the development and differentiation of these highly specialised cells have been elucidated previously, their physiological impact on heart performance is still unsolved. The present study investigated the physiological consequences of cardiac valve malformation in Drosophila. We show that cardiac performance is reduced if valves are malformed or damaged. Less blood is transported through the heart proper, resulting in a decreased overall transport capacity. A reduced luminal opening was identified as a main reason for the decreased heart performance in the absence of functional valves. Intracardiac hemolymph flow was visualised at the valve region by microparticle injection and revealed characteristic similarities to valve blood flow in vertebrates. Based on our data, we propose a model on how the Drosophila intracardiac valves support proper hemolymph flow and distribution, thereby optimising general heart performance.
Collapse
Affiliation(s)
- Christian Meyer
- Department of Biology/Chemistry, Zoology & Developmental Biology, Osnabrück University, Osnabrück, Germany
| | - Achim Paululat
- Department of Biology/Chemistry, Zoology & Developmental Biology, Osnabrück University, Osnabrück, Germany
- Center of Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
4
|
Feng W, Hong N, Wu Y, Huang J, Zhang Q, Liu G, Qian Z, Chen Y, Jin L, Ding X, Zhao P, Chen AF, Yu Y. Deficiency of Sox7 leads to congenital aortic stenosis via abnormal valve remodeling. J Mol Cell Cardiol 2025; 199:81-94. [PMID: 39746830 DOI: 10.1016/j.yjmcc.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/20/2024] [Accepted: 11/30/2024] [Indexed: 01/04/2025]
Abstract
Abnormal valve development is the most common congenital heart malformation. The transcription factor Sox7 plays a critical role in the development of vascular and cardiac septation. However, it remains unclear whether Sox7 is required for heart valve development. In the present study, Sox7 was strongly expressed in the endocardial and mesenchymal cells of the developing aortic valve in mice and humans, and that endocardial cell specific deletion of Sox7 (Nfatc1 Cre;Sox7fl/fl) in mice leads to congenital aortic stenosis basing on our echocardiography data and multiple staining results. Mechanistically, Sox7 influences extracellular matrix (ECM) remodeling of the valve through regulating MMP9. Meanwhile, Sox7 also affects other valvular remodeling processes, including apoptosis and proliferation of valvular cells in Sox7 deficiency mice. Similarly, in valvular interstitial cells (VICs), Sox7 overexpression increased the protein levels of cleaved caspase3 and TUNEL-positive VICs, while Ki67-positive VICs decreased. The reverse trend was observed in VICs with Sox7 deficiency. Significant enhancement of Rbm25 transcriptional levels was observed in the Sox7 overexpression group, and the mRNA and protein levels of calcification markers such as Osterix, Osteopontin and Runx2 were reduced. The reverse trend was observed in VICs with Sox7 deficiency. Von Kossa staining and Alizarin Red staining also demonstrated that sever calcification in Nfatc1 Cre;Sox7fl/fl mice. Moreover, we detected the Sox7 protein expression in human fetal aortic valves in patients with aortic stenosis, in which Sox7 positive mesenchymal cells were decreased. Taken together, these findings identify Sox7 as a potential pathogenic gene responsible for congenital aortic stenosis in human. Our study provides novel strategies for the diagnosis and treatment of congenital valvular malformation.
Collapse
Affiliation(s)
- Weiqi Feng
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Nanchao Hong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Yizhuo Wu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Junxin Huang
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Qi Zhang
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Guizhu Liu
- Wuxi School of Medicine, Jiang Nan University, Wuxi 214122, China
| | - Ziling Qian
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yinghui Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Lihui Jin
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Xiaowei Ding
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Pengjun Zhao
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Yu Yu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| |
Collapse
|
5
|
Trujillo-Flores D, Jiménez-Aguilera FDD, Moreno-Ruíz LA, Coutiño-Pérez Á. Arrhythmic mitral valve complex: diagnostic and therapeutic approach. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2025; 95:225-234. [PMID: 40445931 PMCID: PMC12058091 DOI: 10.24875/acm.24000097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/27/2024] [Indexed: 06/02/2025] Open
Abstract
El prolapso valvular mitral arrítmico es una condición implicada en casos de muerte súbita cardiaca inexplicable que recientemente ha tomado importancia debido a los métodos diagnósticos actuales. Sin embargo, ya que la presencia de prolapso valvular mitral se ha considerado un hallazgo benigno, sus implicaciones arrítmicas han sido subestimadas. La importancia de la presente revisión es destacar parámetros clínicos y de gabinete que permitan identificar individuos con riesgo arrítmico mediante una estratificación apropiada, para así poder aplicar medidas terapéuticas oportunas y evitar desenlaces fatales.
Collapse
Affiliation(s)
- David Trujillo-Flores
- Servicio de Consulta Externa de Cardiología, Hospital de Especialidades 5 de Mayo, Instituto de Seguridad y Servicios Sociales de los Trabajadores al Servicio de los Poderes del Estado de Puebla (ISSSTEP), Puebla
- Servicio de Hospitalización de Cardiología, Hospital de Especialidades 5 de Mayo, ISSSTEP, Puebla
- Servicio de Ecocardiografía, Hospital de Especialidades 5 de Mayo, ISSSTEP, Puebla
| | | | - Luis A. Moreno-Ruíz
- División de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México
| | - Álvaro Coutiño-Pérez
- División de Medicina Interna, Hospital General de Zona No. 2, IMSS, Tuxtla Gutiérrez, Chiapas. México
| |
Collapse
|
6
|
Prabhakar AP, Lopez-Candales A. Calcific aortic valve disease and cardiometabolic triggers: an explanation behind progression of aortic valvular disease and failure of medical therapy interventions. Postgrad Med 2024; 136:810-818. [PMID: 39297302 DOI: 10.1080/00325481.2024.2406740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Calcific aortic valve disease (CAVD), a nonrheumatic stenosis of the trileaflet aortic valve, is a complex, multifaceted cardiovascular condition involving a widespread inflammatory process and an analogous atheromatous process affecting the arteries. It is currently the most encountered valvular abnormality in cardiology. Although distinctive abnormal mechanical forces are at the core propelling a responsive mechanosensitive feedback cascade, implicated in both initiation and perpetuation of CAVD; we propose a conundrum of metabolic abnormalities including hypertension, elevated fasting blood sugar, decreased high-density lipoprotein, hypertriglyceridemia, and abdominal obesity as perpetuators of this process. Furthermore, we suggest CAVD as a cardio metabolic disorder. New perspectives as well as which pathways we believe are critically involved and ideas for early intervention are discussed.
Collapse
Affiliation(s)
- Akruti Patel Prabhakar
- Advanced Cardiac Imaging Research Fellow, Department of Cardiovascular Medicine, University of Louisville, Louisville, KY, USA
| | - Angel Lopez-Candales
- Cardiology Section, Dayton VA Medical Center, Wright State Boonshoft School of Medicine, Dayton, OH, USA
| |
Collapse
|
7
|
Rajab TK, Mitta A, Reemtsen BL. Partial Heart Transplantation. Circulation 2024; 150:1313-1314. [PMID: 39432576 DOI: 10.1161/circulationaha.124.071498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Affiliation(s)
- Taufiek K Rajab
- Division of Pediatric Cardiovascular Surgery, Arkansas Children's Hospital, Little Rock (T.K.R., A.M., B.L.R.)
| | - Alekhya Mitta
- Division of Pediatric Cardiovascular Surgery, Arkansas Children's Hospital, Little Rock (T.K.R., A.M., B.L.R.)
- School of Medicine Columbia, University of South Carolina, Columbia (A.M.)
| | - Brian L Reemtsen
- Division of Pediatric Cardiovascular Surgery, Arkansas Children's Hospital, Little Rock (T.K.R., A.M., B.L.R.)
| |
Collapse
|
8
|
Mutlu O, Saribay M, Yavuz MM, Salman HE, Al-Nabti ARDMH, Yalcin HC. Material modeling and recent findings in transcatheter aortic valve implantation simulations. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 255:108314. [PMID: 39024970 DOI: 10.1016/j.cmpb.2024.108314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/12/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND AND OBJECTIVE Transcatheter aortic valve implantation (TAVI) has significantly transformed the management of aortic valve (AV) diseases, presenting a minimally invasive option compared to traditional surgical valve replacement. Computational simulations of TAVI become more popular and offer a detailed investigation by employing patient-specific models. On the other hand, employing accurate material modeling procedures and applying basic modeling steps are crucial to determining reliable numerical results. Therefore, this review aims to outline the basic modeling approaches for TAVI, focusing on material modeling and geometry extraction, as well as summarizing the important findings from recent computational studies to guide future research in the field. METHODS This paper explains the basic steps and important points in setting up and running TAVI simulations. The material properties of the leaflets, valves, stents, and tissues utilized in TAVI simulations are provided, along with a comprehensive explanation of the geometric extraction methods employed. The differences between the finite element analysis, computational fluid dynamics, and fluid-structure interaction approaches are pointed out and the important aspects of TAVI modeling are described by elucidating the recent computational studies. RESULTS The results of the recent findings on TAVI simulations are summarized to demonstrate its powerful potential. It is observed that the material properties of aortic tissues and components of implanted valves should be modeled realistically to determine accurate results. For patient-specific AV geometries, incorporating calcific deposits on the leaflets is essential for ensuring the accuracy of computational findings. The results of numerical TAVI simulations indicate the significance of the selection of optimal valves and precise deployment within the appropriate anatomical position. These factors collectively contribute to the effective functionality of the implanted valve. CONCLUSIONS Recent studies in the literature have revealed the critical importance of patient-specific modeling, the selection of accurate material models, and bio-prosthetic valve diameters. Additionally, these studies emphasize the necessity of precise positioning of bio-prosthetic valves to achieve optimal performance in TAVI, characterized by an increased effective orifice area and minimal paravalvular leakage.
Collapse
Affiliation(s)
- Onur Mutlu
- Qatar University, Biomedical Research Center, Doha, Qatar
| | - Murat Saribay
- Istanbul Bilgi University, Mechanical Engineering Department, Istanbul, Turkey
| | - Mehmet Metin Yavuz
- Middle East Technical University, Mechanical Engineering Department, Ankara, Turkey
| | - Huseyin Enes Salman
- TOBB University of Economics and Technology, Department of Mechanical Engineering, Ankara, Turkey
| | | | - Huseyin Cagatay Yalcin
- Qatar University, Biomedical Research Center, Doha, Qatar; Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
9
|
Opris CE, Suciu H, Flamand S, Opris CI, Hamida AH, Gurzu S. Update on the genetic profile of mitral valve development and prolapse. Pathol Res Pract 2024; 262:155535. [PMID: 39182449 DOI: 10.1016/j.prp.2024.155535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/21/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
The purpose of this review is to present a comprehensive overview of the literature published up to February 2024 on the PubMed database regarding the development of mitral valve disease, with detailed reference to mitral valve prolapse, from embryology to a genetic profile. Out of the 3291 publications that deal with mitral valve embryology, 215 refer to mitral valve genetics and 83 were selected for further analysis. After reviewing these data, we advocate for the importance of a gene-based therapy that should be available soon, to prevent or treat non-invasively the valvular degeneration.
Collapse
Affiliation(s)
- Carmen Elena Opris
- Department of Adult and Children Cardiovascular Recovery, Emergency Institute for Cardio-Vascular Diseases and Transplantation, Targu Mures 540139, Romania; Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures , Romania; Department of Cardiovascular Surgery, Emergency University Hospital, Romania
| | - Horatiu Suciu
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures 540139, Romania; Romanian Academy of Medical Sciences, Romania; Department of Cardiovascular Surgery, Emergency University Hospital, Romania
| | - Sanziana Flamand
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures 540139, Romania; Department of Cardiovascular Surgery, Emergency University Hospital, Romania
| | - Cosmin Ioan Opris
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures 540139, Romania; Department of Cardiovascular Surgery, Emergency University Hospital, Romania
| | - Al Hussein Hamida
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures 540139, Romania
| | - Simona Gurzu
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures , Romania; Romanian Academy of Medical Sciences, Romania; Research Center for Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania.
| |
Collapse
|
10
|
Șoșdean R, Dănilă MD, Ionică LN, Pescariu AS, Mircea M, Ionac A, Mornoș C, Luca CT, Feier HB, Muntean DM, Sturza A. Monoamine Oxidase Contributes to Valvular Oxidative Stress: A Prospective Observational Pilot Study in Patients with Severe Mitral Regurgitation. Int J Mol Sci 2024; 25:10307. [PMID: 39408637 PMCID: PMC11477003 DOI: 10.3390/ijms251910307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Monoamine oxidases (MAOs), mitochondrial enzymes that constantly produce hydrogen peroxide (H2O2) as a byproduct of their activity, have been recently acknowledged as contributors to oxidative stress in cardiometabolic pathologies. The present study aimed to assess whether MAOs are mediators of valvular oxidative stress and interact in vitro with angiotensin 2 (ANG2) to mimic the activation of the renin-angiotensin system. To this aim, valvular tissue samples were harvested from 30 patients diagnosed with severe primary mitral regurgitation and indication for surgical repair. Their reactive oxygen species (ROS) levels were assessed by means of a ferrous oxidation xylenol orange (FOX) assay, while MAO expression was assessed by immune fluorescence (protein) and qRT-PCR (mRNA). The experiments were performed using native valvular tissue acutely incubated or not with angiotensin 2 (ANG2), MAO inhibitors (MAOI) and the angiotensin receptor blocker, irbesartan (Irb). Correlations between oxidative stress and echocardiographic parameters were also analyzed. Ex vivo incubation with ANG2 increased MAO-A and -B expression and ROS generation. The level of valvular oxidative stress was negatively correlated with the left ventricular ejection fraction. MAOI and Irb reduced valvular H2O2. production. In conclusion, both MAO isoforms are expressed in pathological human mitral valves and contribute to local oxidative stress and ventricular functional impairment and can be modulated by the local renin-angiotensin system.
Collapse
Affiliation(s)
- Raluca Șoșdean
- Department VI—Cardiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania; (R.Ș.); (A.S.P.); (A.I.); (C.M.); (C.T.L.)
- Research Centre of the Institute of Cardiovascular Diseases, G. Adam Str. no 13A, 300310 Timișoara, Romania; (M.M.); (H.B.F.)
| | - Maria D. Dănilă
- Department III—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania; (D.M.M.); (A.S.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania;
| | - Loredana N. Ionică
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania;
- Department X—Medical Semiotics I, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania
| | - Alexandru S. Pescariu
- Department VI—Cardiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania; (R.Ș.); (A.S.P.); (A.I.); (C.M.); (C.T.L.)
- Research Centre of the Institute of Cardiovascular Diseases, G. Adam Str. no 13A, 300310 Timișoara, Romania; (M.M.); (H.B.F.)
| | - Monica Mircea
- Research Centre of the Institute of Cardiovascular Diseases, G. Adam Str. no 13A, 300310 Timișoara, Romania; (M.M.); (H.B.F.)
| | - Adina Ionac
- Department VI—Cardiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania; (R.Ș.); (A.S.P.); (A.I.); (C.M.); (C.T.L.)
- Research Centre of the Institute of Cardiovascular Diseases, G. Adam Str. no 13A, 300310 Timișoara, Romania; (M.M.); (H.B.F.)
| | - Cristian Mornoș
- Department VI—Cardiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania; (R.Ș.); (A.S.P.); (A.I.); (C.M.); (C.T.L.)
- Research Centre of the Institute of Cardiovascular Diseases, G. Adam Str. no 13A, 300310 Timișoara, Romania; (M.M.); (H.B.F.)
| | - Constantin T. Luca
- Department VI—Cardiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania; (R.Ș.); (A.S.P.); (A.I.); (C.M.); (C.T.L.)
- Research Centre of the Institute of Cardiovascular Diseases, G. Adam Str. no 13A, 300310 Timișoara, Romania; (M.M.); (H.B.F.)
| | - Horea B. Feier
- Research Centre of the Institute of Cardiovascular Diseases, G. Adam Str. no 13A, 300310 Timișoara, Romania; (M.M.); (H.B.F.)
- Department VI—Cardiovascular Surgery, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Square no 2, 300041 Timișoara, Romania
| | - Danina M. Muntean
- Department III—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania; (D.M.M.); (A.S.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania;
| | - Adrian Sturza
- Department III—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania; (D.M.M.); (A.S.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania;
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania
| |
Collapse
|
11
|
Matilla L, Martín-Núñez E, Navarro A, Garaikoetxea M, Fernández-Celis A, Goñi-Olóriz M, Gainza A, Fernández-Irigoyen J, Santamaría E, Tamayo I, Álvarez V, Sádaba R, Jover E, López-Andrés N. Neuropilin-1 sex-dependently modulates inflammatory, angiogenic and osteogenic phenotypes in the calcifying valve interstitial cell. Biochem Pharmacol 2024; 226:116336. [PMID: 38844264 DOI: 10.1016/j.bcp.2024.116336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The pathological mechanisms underlying the sex-dependent presentation of calcific aortic stenosis (AS) remain poorly understood. We aim to analyse sex-specific responses of valve interstitial cells (VICs) to calcific environments and to identify new pathological and potentially druggable targets. First, VICs from stenotic patients were modelled using pro-calcifying media (HP). Both male and female VICs were inflamed upon calcific HP challenge, although the inflammatory response was higher in female VICs. The osteogenic and calcification responses were higher in male VICs. To identify new players involved in the responses to HP, proteomics analyses were performed on additional calcifying VICs. Neuropilin-1 (NRP-1) was significantly up-regulated in male calcifying VICs and that was confirmed in aortic valves (AVs), especially nearby neovessels and calcifications. Regardless of the sex, NRP-1 expression was correlated to inflammation, angiogenesis and osteogenic markers, but with stronger associations in male AVs. To further evidence the role of NRP-1, in vitro experiments of silencing or supplementation with soluble NRP-1 (sNRP-1) were performed. NRP-1 silencing or addition of sNRP-1 reduced/mended the expression of any sex-specific response triggered by HP. Moreover, NRP-1 regulation contributed to significantly diminish the baseline enhanced expression of pro-inflammatory, pro-angiogenic and pro-osteogenic markers mainly in male VICs. Validation studies were conducted in stenotic AVs. In summary, pharmacologic targeting of NRP-1 could be used to target sex-specific phenotypes in AS as well as to exert protective effects by reducing the basal expression of pathogenic markers only in male VICs.
Collapse
Affiliation(s)
- Lara Matilla
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Ernesto Martín-Núñez
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Adela Navarro
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Mattie Garaikoetxea
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Amaya Fernández-Celis
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Miriam Goñi-Olóriz
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Alicia Gainza
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Ibai Tamayo
- Research Methodology Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Virginia Álvarez
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Rafael Sádaba
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Eva Jover
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain.
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain.
| |
Collapse
|
12
|
Silva IA, Matos LAL, Sant’Anna C, Croti UA. Infant Barlow's Disease in Association with Atrial Septal Defect. Braz J Cardiovasc Surg 2024; 39:e20230278. [PMID: 38748990 PMCID: PMC11095405 DOI: 10.21470/1678-9741-2023-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/06/2023] [Indexed: 05/19/2024] Open
Abstract
CLINICAL DATA Female, seven years old, referred to our service complaining about congestive heart failure symptoms due to mitral valve regurgitation and atrial septal defect. Technical description: Echocardiographic findings compatible with Barlow's disease and atrial septal defect, ostium secundum type. OPERATION She was submitted to mitral valvuloplasty with chordal shortening and prosthetic posterior ring (Gregori-Braile®) along with patch atrioseptoplasty. COMMENTS Mitral valve regurgitation is a rare congenital heart disease and Barlow's disease is probably rarer. Mitral valve repair is the treatment of choice.
Collapse
Affiliation(s)
- Isaac Azevedo Silva
- CardioPedBrasil® - Centro do Coração da
Criança at Hospital da Criança e Maternidade São José do
Rio Preto, São Paulo, Brazil (FUNFARME/FAMERP)
| | - Larissa Ales Leite Matos
- CardioPedBrasil® - Centro do Coração da
Criança at Hospital da Criança e Maternidade São José do
Rio Preto, São Paulo, Brazil (FUNFARME/FAMERP)
| | - Carolina Sant’Anna
- CardioPedBrasil® - Centro do Coração da
Criança at Hospital da Criança e Maternidade São José do
Rio Preto, São Paulo, Brazil (FUNFARME/FAMERP)
| | - Ulisses Alexandre Croti
- CardioPedBrasil® - Centro do Coração da
Criança at Hospital da Criança e Maternidade São José do
Rio Preto, São Paulo, Brazil (FUNFARME/FAMERP)
| |
Collapse
|
13
|
Cai Z, Zhu M, Xu L, Wang Y, Xu Y, Yim WY, Cao H, Guo R, Qiu X, He X, Shi J, Qiao W, Dong N. Directed Differentiation of Human Induced Pluripotent Stem Cells to Heart Valve Cells. Circulation 2024; 149:1435-1456. [PMID: 38357822 PMCID: PMC11062615 DOI: 10.1161/circulationaha.123.065143] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND A main obstacle in current valvular heart disease research is the lack of high-quality homogeneous functional heart valve cells. Human induced pluripotent stem cells (hiPSCs)-derived heart valve cells may help with this dilemma. However, there are no well-established protocols to induce hiPSCs to differentiate into functional heart valve cells, and the networks that mediate the differentiation have not been fully elucidated. METHODS To generate heart valve cells from hiPSCs, we sequentially activated the Wnt, BMP4, VEGF (vascular endothelial growth factor), and NFATc1 signaling pathways using CHIR-99021, BMP4, VEGF-165, and forskolin, respectively. The transcriptional and functional similarity of hiPSC-derived heart valve cells compared with primary heart valve cells were characterized. Longitudinal single-cell RNA sequencing was used to uncover the trajectory, switch genes, pathways, and transcription factors of the differentiation. RESULTS An efficient protocol was developed to induce hiPSCs to differentiate into functional hiPSC-derived valve endothelial-like cells and hiPSC-derived valve interstitial-like cells. After 6-day differentiation and CD144 magnetic bead sorting, ≈70% CD144+ cells and 30% CD144- cells were obtained. On the basis of single-cell RNA sequencing data, the CD144+ cells and CD144- cells were found to be highly similar to primary heart valve endothelial cells and primary heart valve interstitial cells in gene expression profile. Furthermore, CD144+ cells had the typical function of primary heart valve endothelial cells, including tube formation, uptake of low-density lipoprotein, generation of endothelial nitric oxide synthase, and response to shear stress. Meanwhile, CD144- cells could secret collagen and matrix metalloproteinases, and differentiate into osteogenic or adipogenic lineages like primary heart valve interstitial cells. Therefore, we identified CD144+ cells and CD144- cells as hiPSC-derived valve endothelial-like cells and hiPSC-derived valve interstitial-like cells, respectively. Using single-cell RNA sequencing analysis, we demonstrated that the trajectory of heart valve cell differentiation was consistent with embryonic valve development. We identified the main switch genes (NOTCH1, HEY1, and MEF2C), signaling pathways (TGF-β, Wnt, and NOTCH), and transcription factors (MSX1, SP5, and MECOM) that mediated the differentiation. Finally, we found that hiPSC-derived valve interstitial-like cells might derive from hiPSC-derived valve endothelial-like cells undergoing endocardial-mesenchymal transition. CONCLUSIONS In summary, this is the first study to report an efficient strategy to generate functional hiPSC-derived valve endothelial-like cells and hiPSC-derived valve interstitial-like cells from hiPSCs, as well as to elucidate the differentiation trajectory and transcriptional dynamics of hiPSCs differentiated into heart valve cells.
Collapse
Affiliation(s)
- Ziwen Cai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.C., L.X., Y.X., W.Y.Y., H.C., R.G., X.Q, J.S., W.Q., N.D.)
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, China (Z.C.)
| | - Miaomiao Zhu
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, China (Z.C.)
- Institute of Maternal and Children Health, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji medical College, Huazhong University of Science & Technology, Hubei, China (M.Z.)
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.C., L.X., Y.X., W.Y.Y., H.C., R.G., X.Q, J.S., W.Q., N.D.)
| | - Yue Wang
- Department of Anesthesiology, Union Hospital, Fujian Medical University, Fuzhou, China (Y.W.)
| | - Yin Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.C., L.X., Y.X., W.Y.Y., H.C., R.G., X.Q, J.S., W.Q., N.D.)
| | - Wai Yen Yim
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.C., L.X., Y.X., W.Y.Y., H.C., R.G., X.Q, J.S., W.Q., N.D.)
| | - Hong Cao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.C., L.X., Y.X., W.Y.Y., H.C., R.G., X.Q, J.S., W.Q., N.D.)
| | - Ruikang Guo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.C., L.X., Y.X., W.Y.Y., H.C., R.G., X.Q, J.S., W.Q., N.D.)
| | - Xiang Qiu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.C., L.X., Y.X., W.Y.Y., H.C., R.G., X.Q, J.S., W.Q., N.D.)
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (M.Z., X.H.)
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.C., L.X., Y.X., W.Y.Y., H.C., R.G., X.Q, J.S., W.Q., N.D.)
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.C., L.X., Y.X., W.Y.Y., H.C., R.G., X.Q, J.S., W.Q., N.D.)
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.C., L.X., Y.X., W.Y.Y., H.C., R.G., X.Q, J.S., W.Q., N.D.)
| |
Collapse
|
14
|
Yan C, Wang X, Wang Q, Li H, Song H, Zhou J, Peng Z, Yin W, Fan X, Yang K, Zhou B, Liang Y, Jiang Z, Shi Y, Zhang S, He S, Li R, Xie J. A Novel Conductive Polypyrrole-Chitosan Hydrogel Containing Human Endometrial Mesenchymal Stem Cell-Derived Exosomes Facilitated Sustained Release for Cardiac Repair. Adv Healthc Mater 2024; 13:e2304207. [PMID: 38175149 PMCID: PMC11468178 DOI: 10.1002/adhm.202304207] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 01/05/2024]
Abstract
Myocardial infarction (MI) results in cardiomyocyte necrosis and conductive system damage, leading to sudden cardiac death and heart failure. Studies have shown that conductive biomaterials can restore cardiac conduction, but cannot facilitate tissue regeneration. This study aims to add regenerative capabilities to the conductive biomaterial by incorporating human endometrial mesenchymal stem cell (hEMSC)-derived exosomes (hEMSC-Exo) into poly-pyrrole-chitosan (PPY-CHI), to yield an injectable hydrogel that can effectively treat MI. In vitro, PPY-CHI/hEMSC-Exo, compared to untreated controls, PPY-CHI, or hEMSC-Exo alone, alleviates H2O2-induced apoptosis and promotes tubule formation, while in vivo, PPY-CHI/hEMSC-Exo improves post-MI cardiac functioning, along with counteracting against ventricular remodeling and fibrosis. All these activities are facilitated via increased epidermal growth factor (EGF)/phosphoinositide 3-kinase (PI3K)/AKT signaling. Furthermore, the conductive properties of PPY-CHI/hEMSC-Exo are able to resynchronize cardiac electrical transmission to alleviate arrythmia. Overall, PPY-CHI/hEMSC-Exo synergistically combines the cardiac regenerative capabilities of hEMSC-Exo with the conductive properties of PPY-CHI to improve cardiac functioning, via promoting angiogenesis and inhibiting apoptosis, as well as resynchronizing electrical conduction, to ultimately enable more effective MI treatment. Therefore, incorporating exosomes into a conductive hydrogel provides dual benefits in terms of maintaining conductivity, along with facilitating long-term exosome release and sustained application of their beneficial effects.
Collapse
Affiliation(s)
- Changping Yan
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
- Department of GynecologyAffiliated Cancer Hospital of Shanxi Medical UniversityTaiyuan030013China
| | - Xinzhu Wang
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Qi Wang
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Haiyan Li
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Huifang Song
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
- Department of AnatomyShanxi Medical UniversityTaiyuan030001China
| | - Jingli Zhou
- Shanxi Provincial People's HospitalAffiliated Hospital of Shanxi Medical UniversityTaiyuan030012China
| | - Zexu Peng
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Wenjuan Yin
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Xuemei Fan
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Kun Yang
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Bingrui Zhou
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Yuxiang Liang
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Zengyu Jiang
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Yuwei Shi
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
- NHC Key Laboratory of PneumoconiosisShanxi Province Key Laboratory of RespiratoryDepartment of Pulmonary and Critical Care MedicineThe First Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Sanyuan Zhang
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Sheng He
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Ren‐Ke Li
- Toronto General Hospital Research InstituteDivision of Cardiovascular SurgeryUniversity Health NetworkUniversity of TorontoTorontoONM5G 2C4Canada
| | - Jun Xie
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| |
Collapse
|
15
|
Peters MC, Kruithof BPT, Bouten CVC, Voets IK, van den Bogaerdt A, Goumans MJ, van Wijk A. Preservation of human heart valves for replacement in children with heart valve disease: past, present and future. Cell Tissue Bank 2024; 25:67-85. [PMID: 36725733 PMCID: PMC10902036 DOI: 10.1007/s10561-023-10076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 02/03/2023]
Abstract
Valvular heart disease affects 30% of the new-borns with congenital heart disease. Valve replacement of semilunar valves by mechanical, bioprosthetic or donor allograft valves is the main treatment approach. However, none of the replacements provides a viable valve that can grow and/or adapt with the growth of the child leading to re-operation throughout life. In this study, we review the impact of donor valve preservation on moving towards a more viable valve alternative for valve replacements in children or young adults.
Collapse
Affiliation(s)
- M C Peters
- Department of Pediatric Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands.
- Department of Cardiovascular Cell Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
| | - B P T Kruithof
- Department of Cardiovascular Cell Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - C V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - I K Voets
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - A van den Bogaerdt
- Heart Valve Department, ETB-BISLIFE Multi Tissue Center, 2333 BD, Beverwijk, The Netherlands
| | - M J Goumans
- Department of Cardiovascular Cell Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - A van Wijk
- Department of Pediatric Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
| |
Collapse
|
16
|
Reimann MJ, Cremer S, Christiansen L, Ibragimov E, Gao F, Cirera S, Fredholm M, Olsen LH, Karlskov-Mortensen P. Mitral valve transcriptome analysis in thirty-four age-matched Cavalier King Charles Spaniels with or without congestive heart failure caused by myxomatous mitral valve disease. Mamm Genome 2024; 35:77-89. [PMID: 37938355 PMCID: PMC10884180 DOI: 10.1007/s00335-023-10024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 10/08/2023] [Indexed: 11/09/2023]
Abstract
We here report the results of a mitral valve transcriptome study designed to identify genes and molecular pathways involved in development of congestive heart failure (CHF) following myxomatous mitral valve disease (MMVD) in dogs. The study is focused on a cohort of elderly age-matched dogs (n = 34, age ~ 10 years) from a single breed-Cavalier King Charles Spaniels (CKCS)-with a high incidence of MMVD. The cohort comprises 19 dogs (10♀, 9♂) without MMVD-associated CHF, and 15 dogs (6♀, 9♂) with CHF caused by MMVD; i.e., we compare gene expression in breed and age-matched groups of dogs, which only differ with respect to CHF status. We identify 56 genes, which are differentially expressed between the two groups. In this list of genes, we confirm an enrichment of genes related to the TNFβ-signaling pathway, extracellular matrix organization, vascular development, and endothelium damage, which also have been identified in previous studies. However, the genes with the greatest difference in expression between the two groups are CNTN3 and MYH1. Both genes encode proteins, which are predicted to have an effect on the contractile activity of myocardial cells, which in turn may have an effect on valvular performance and hemodynamics across the mitral valve. This may result in shear forces with impact on MMVD progression.
Collapse
Affiliation(s)
- Maria J Reimann
- Preclinical Disease Biology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Signe Cremer
- Preclinical Disease Biology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Liselotte Christiansen
- Preclinical Disease Biology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Emil Ibragimov
- Animal Genetics and Breeding, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Fei Gao
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Susanna Cirera
- Animal Genetics and Breeding, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Merete Fredholm
- Animal Genetics and Breeding, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lisbeth H Olsen
- Preclinical Disease Biology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Peter Karlskov-Mortensen
- Animal Genetics and Breeding, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
17
|
Chen Q, Wang C, Wang H, Xiao J, Zhou Y, Gu S, Xu W, Yang H. Strengthened Decellularized Porcine Valves via Polyvinyl Alcohol as a Template Improving Processability. Polymers (Basel) 2023; 16:16. [PMID: 38201681 PMCID: PMC10780456 DOI: 10.3390/polym16010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
The heart valve is crucial for the human body, which directly affects the efficiency of blood transport and the normal functioning of all organs. Generally, decellularization is one method of tissue-engineered heart valve (TEHV), which can deteriorate the mechanical properties and eliminate allograft immunogenicity. In this study, removable polyvinyl alcohol (PVA) is used to encapsulate decellularized porcine heart valves (DHVs) as a dynamic template to improve the processability of DHVs, such as suturing. Mechanical tests show that the strength and elastic modulus of DHVs treated with different concentrations of PVA significantly improve. Without the PVA layer, the valve would shift during suture puncture and not achieve the desired suture result. The in vitro results indicate that decellularized valves treated with PVA can sustain the adhesion and growth of human umbilical vein endothelial cells (HUVECs). All results above show that the DHVs treated with water-soluble PVA have good mechanical properties and cytocompatibility to ensure post-treatment. On this basis, the improved processability of DHV treated with PVA enables a new paradigm for the manufacturing of scaffolds, making it easy to apply.
Collapse
Affiliation(s)
- Qingqing Chen
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (Q.C.); (C.W.); (Y.Z.); (S.G.)
| | - Chaorong Wang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (Q.C.); (C.W.); (Y.Z.); (S.G.)
| | - Han Wang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, China (J.X.); (W.X.)
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Jinfeng Xiao
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, China (J.X.); (W.X.)
| | - Yingshan Zhou
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (Q.C.); (C.W.); (Y.Z.); (S.G.)
| | - Shaojin Gu
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (Q.C.); (C.W.); (Y.Z.); (S.G.)
| | - Weilin Xu
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, China (J.X.); (W.X.)
| | - Hongjun Yang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (Q.C.); (C.W.); (Y.Z.); (S.G.)
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, China (J.X.); (W.X.)
| |
Collapse
|
18
|
Lansakara M, Unai S. An overview of aortic valve anatomy: the current understanding. Indian J Thorac Cardiovasc Surg 2023; 39:246-252. [PMID: 38093909 PMCID: PMC10713916 DOI: 10.1007/s12055-023-01645-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2024] Open
Abstract
The traditional view of the aortic valve and aortic root as a simple conduit for blood flow between the left ventricle and the aorta is evolving with new insights from anatomy, physiology, cell biology, and advanced imaging techniques. This article provides an overview of the changing understanding of aortic root anatomy, shedding light on the intricate structures that contribute to maintaining unidirectional blood flow and the durability of the aortic valve. From historical perspectives to contemporary microscopic details, the components of the aortic root are explored, including the sinutubular junction, aortic sinuses, valve leaflets, and interleaflet triangles. Microscopically, the aortic annulus and leaflets reveal a complex architecture that facilitates blood flow while withstanding lifetime stresses. Additionally, the clinical relevance of aortic anatomy in surgical interventions is emphasized, highlighting the importance of preserving natural anatomy and physiology. A thorough understanding of the aortic root's complexity is crucial for optimizing therapeutic approaches and improving patient outcomes, paving the way for future advancements in aortic valve repair and regeneration techniques.
Collapse
Affiliation(s)
| | - Shinya Unai
- The Peter and Elizabeth C. Tower and Family Endowed Chair in Cardiothoracic Research, Aortic Valve Center, Heart Vascular and Thoracic Institute, Cleveland Clinic, 9500 Euclid Ave., Desk J4-1, Cleveland, OH 44915 USA
| |
Collapse
|
19
|
Lansakara M, Unai S, Ozaki S. Ozaki procedure-re-construction of aortic valve leaflets using autologous pericardial tissue: a review. Indian J Thorac Cardiovasc Surg 2023; 39:260-269. [PMID: 38093925 PMCID: PMC10713953 DOI: 10.1007/s12055-023-01635-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 12/17/2023] Open
Abstract
The Ozaki procedure has emerged as a valuable option for treating various aortic valve pathologies. This review article delves into the intricacies of this innovative surgical approach by exploring its adaptation to the complex anatomy and physiology of the aortic root. The diverse etiologies of aortic valve diseases, ranging from congenital anomalies to degenerative changes, make treatment selection a complex challenge. Aortic valve replacement has traditionally been the gold standard, but emerging evidence supports valve repair techniques, emphasizing the importance of preserving native tissue. Nevertheless, issues like lifelong anticoagulation with mechanical valves and patient-prosthetic mismatch remain. The Ozaki procedure offers a compelling alternative by utilizing autologous pericardium or a tissue substitute to construct new aortic valve leaflets. This technique, standardized by Dr. Ozaki in 2007, provides a customizable and adaptable solution. The article highlights the anatomy of the aortic root, emphasizing the critical role of the sinus of Valsalva and interleaflet triangles in maintaining proper valve function. The procedure's unique adaptation to aortic root dynamics allows for reduced mechanical stress during systole and diastole, mimicking the natural valve's behavior. Furthermore, Ozaki leaflets exhibit promising hemodynamics and reduced risks of complications, such as permanent pacemaker implantation and patient-prosthetic mismatch. The use of autologous pericardium in the Ozaki procedure presents advantages, including enhanced tissue strength, minimal immunogenicity, and reduced risk of immune-mediated calcification. These factors contribute to the longevity and resilience of the reconstructed valve. This comprehensive review aims to shed light on the procedure's intricacies, its alignment with aortic root anatomy and physiology, and its potential as a valuable tool in the armamentarium of aortic surgeons.
Collapse
Affiliation(s)
| | - Shinya Unai
- The Peter and Elizabeth C. Tower and Family Endowed Chair in Cardiothoracic Research, Aortic Valve Center, Heart Vascular and Thoracic Institute, Cleveland Clinic, 9500 Euclid Ave., Desk J4-1, Cleveland, OH 44915 USA
| | - Shigeyuki Ozaki
- Department of Cardiovascular Surgery, Toho University Ohashi Hospital, 2-17-6 Ohashi, Meguro-Ku, Tokyo, 153-8515 Japan
| |
Collapse
|
20
|
Sadipour M, Azadani AN. The Measurement of Bovine Pericardium Density and Its Implications on Leaflet Stress Distribution in Bioprosthetic Heart Valves. Cardiovasc Eng Technol 2023; 14:853-861. [PMID: 37932655 DOI: 10.1007/s13239-023-00692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
PURPOSE Bioprosthetic Heart Valves (BHVs) are widely used in clinical practice, showing promising outcomes. Computational modeling offers a valuable tool for quantitatively characterizing BHVs. To ensure the accuracy of computational models, it is crucial to consider precise leaflet properties, including mechanical properties and density. Bovine pericardium (BP) serves as a common material for BHV leaflets. Previous computational studies often assume BP density to approximate that of water or blood. Given that BP leaflets undergo various treatments, such as tissue fixation and anti-calcification, this study aims to measure the density of BP used in BHVs and assess its impact on leaflet stress distribution. METHODS Eight square BP samples were laser cut from Edwards BP patches and their density was determined. Specimen weight was measured using an A&D Analytical Balance, while volume was assessed through high-resolution imaging. Additionally, finite element models resembling a BHV, like the Carpentier-Edwards PERIMOUNT Magna, were constructed in ABAQUS. RESULTS The average density of the BP samples was found to be 1,410 kg/m3. During the acceleration phase of a cardiac cycle, the maximum stress reached 1.89 MPa for a density of 1,410 kg/m3 and 2.47 MPa for a density of 1,000 kg/m3 (a 30.7% difference). In the deceleration phase, the maximum stress reached 713 kPa and 669 kPa, respectively. CONCLUSION Leaflet stress distribution and motion in BHVs are influenced by density variations. Establishing an accurate density value for BHV leaflets is imperative for enhancing the computational models, which can ultimately contribute to improved BHV design and outcomes.
Collapse
Affiliation(s)
- Masod Sadipour
- Department of Mechanical and Materials Engineering, University of Denver, 2155 E. Wesley Ave #439, Denver, CO, 80208, USA
| | - Ali N Azadani
- Department of Mechanical and Materials Engineering, University of Denver, 2155 E. Wesley Ave #439, Denver, CO, 80208, USA.
| |
Collapse
|
21
|
Chen X, Dong N, Xu X, Zhou Y, Shi J, Qiao W, Hong H. Re-endothelialization of Decellularized Scaffolds With Endothelial Progenitor Cell Capturing Aptamer: A New Strategy for Tissue-Engineered Heart Valve. ASAIO J 2023; 69:885-893. [PMID: 37506117 DOI: 10.1097/mat.0000000000001979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
Tissue-engineered heart valve (TEHV) is a promising alternative to current heart valve substitute. Decellularized porcine aortic heart valves (DAVs) are the most common scaffolds of TEHV. Hard to endothelialization is one of the disadvantages of DAVs. Therefore, we aimed to immobilize endothelial progenitor cell (EPC)-aptamer onto DAVs for accelerating endothelialization. In this study, three groups of scaffolds were constructed: DAVs, aptamer-immobilized DAVs (aptamer-DAVs), and glutaraldehyde crosslinked DAVs (GA-DAVs). The results of flow cytometry revealed that EPC-aptamer was specific to EPCs and was immobilized onto DAVs. Cells adhesion experiments demonstrated that EPCs adhered more tightly onto aptamer-DAVs group than other two groups of scaffolds. And cell proliferation assay indicated that EPCs seeded onto aptamer-DAVs group grew faster than DAVs group and GA-DAVs group. Moreover, dynamic capture experiment in flow conditions revealed that the number of EPCs captured by aptamer-DAVs group was more than other two groups. In conclusion, aptamer-DAVs could specifically promote adhesion and proliferation of EPCs and had ability to capture EPCs in simulated flow condition. This could promote re-endothelialization of scaffolds.
Collapse
Affiliation(s)
- Xue Chen
- From the Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Yoshiba S, Nakagawa H, Kuwata H, Nabuchi A, Yaso A, Shirota T. Metagenomic analysis of oral plaques and aortic valve tissues reveals oral bacteria associated with aortic stenosis. Clin Oral Investig 2023; 27:4335-4344. [PMID: 37157029 DOI: 10.1007/s00784-023-05053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/30/2023] [Indexed: 05/10/2023]
Abstract
OBJECTIVES Bacteria derived from the oral cavity enter the bloodstream and cause the onset of various systemic diseases, including heart valve disease. However, information on the oral bacteria involved in aortic stenosis is limited. MATERIALS AND METHODS We comprehensively analyzed the microbiota in aortic valve tissues collected from aortic stenosis patients using metagenomic sequencing and investigated the relationships between the valve microbiota, the oral microbiota, and oral cavity conditions. RESULTS Metagenomic analysis revealed the presence of 629 bacterial species in five oral plaques and 15 aortic valve clinical specimens. Patients were classified into two groups (A and B) according to their aortic valve microbiota composition using principal coordinate analysis. Examination of the oral conditions of the patients showed no difference in the decayed/missing/filled teeth index. Bacteria in group B tend to be associated with severe disease, and the number of bacteria on the dorsum of the tongue and the positive rate of bleeding during probing were significantly higher in this group than in group A. The pathophysiology of aortic stenosis may be related to the presence of oral bacteria such as Streptococcus oralis and Streptococcus sanguinis following bacteremia. CONCLUSIONS Systemic inflammation in severe periodontitis may be driven by the oral microbiota, supporting the indirect (inflammatory) association between oral bacteria and aortic stenosis. CLINICAL RELEVANCE Appropriate oral hygiene management may contribute to the prevention and treatment of aortic stenosis.
Collapse
Affiliation(s)
- Sayaka Yoshiba
- Department of Oral and Maxillofacial Surgery, Tokyo Women's Medical University Adachi Medical Center, Tokyo, Japan.
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo, Japan.
- Department of Dentistry and Oral Surgery, Showa University Northern Yokohama Hospital, Kanagawa, Japan.
| | - Hirofumi Nakagawa
- Department of Cardiovascular Surgery, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Hirotaka Kuwata
- Department of Oral Microbiology, Showa University, Tokyo, Japan
| | - Akihiro Nabuchi
- Department of Cardiovascular Surgery, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Atsutoshi Yaso
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo, Japan
| |
Collapse
|
23
|
Ren T, Maitusong M, Zhou X, Hong X, Cheng S, Lin Y, Xue J, Xu D, Chen J, Qian Y, Lu Y, Liu X, Zhu Y, Wang J. Programing Cell Assembly via Ink-Free, Label-Free Magneto-Archimedes Based Strategy. ACS NANO 2023; 17:12072-12086. [PMID: 37363813 DOI: 10.1021/acsnano.2c10704] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Tissue engineering raised a high requirement to control cell distribution in defined materials and structures. In "ink"-based bioprintings, such as 3D printing and photolithography, cells were associated with inks for spatial orientation; the conditions suitable for one ink are hard to apply on other inks, which increases the obstacle in their universalization. The Magneto-Archimedes effect based (Mag-Arch) strategy can modulate cell locomotion directly without impelling inks. In a paramagnetic medium, cells were repelled from high magnetic strength zones due to their innate diamagnetism, which is independent of substrate properties. However, Mag-Arch has not been developed into a powerful bioprinting strategy as its precision, complexity, and throughput are limited by magnetic field distribution. By controlling the paramagnetic reagent concentration in the medium and the gaps between magnets, which decide the cell repelling scope of magnets, we created simultaneously more than a hundred micrometer scale identical assemblies into designed patterns (such as alphabets) with single/multiple cell types. Cell patterning models for cell migration and immune cell adhesion studies were conveniently created by Mag-Arch. As a proof of concept, we patterned a tumor/endothelial coculture model within a covered microfluidic channel to mimic epithelial-mesenchymal transition (EMT) under shear stress in a cancer pathological environment, which gave a potential solution to pattern multiple cell types in a confined space without any premodification. Overall, our Mag-Arch patterning presents an alternative strategy for the biofabrication and biohybrid assembly of cells with biomaterials featured in controlled distribution and organization, which can be broadly employed in tissue engineering, regenerative medicine, and cell biology research.
Collapse
Affiliation(s)
- Tanchen Ren
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Miribani Maitusong
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Xuhao Zhou
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Xiaoqian Hong
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Si Cheng
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Yin Lin
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Junhui Xue
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Dilin Xu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Jinyong Chen
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Yi Qian
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Yuwen Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Xianbao Liu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Jian'an Wang
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| |
Collapse
|
24
|
Bouhamida E, Morciano G, Pedriali G, Ramaccini D, Tremoli E, Giorgi C, Pinton P, Patergnani S. The Complex Relationship between Hypoxia Signaling, Mitochondrial Dysfunction and Inflammation in Calcific Aortic Valve Disease: Insights from the Molecular Mechanisms to Therapeutic Approaches. Int J Mol Sci 2023; 24:11105. [PMID: 37446282 DOI: 10.3390/ijms241311105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Calcific aortic valve stenosis (CAVS) is among the most common causes of cardiovascular mortality in an aging population worldwide. The pathomechanisms of CAVS are such a complex and multifactorial process that researchers are still making progress to understand its physiopathology as well as the complex players involved in CAVS pathogenesis. Currently, there is no successful and effective treatment to prevent or slow down the disease. Surgical and transcatheter valve replacement represents the only option available for treating CAVS. Insufficient oxygen availability (hypoxia) has a critical role in the pathogenesis of almost all CVDs. This process is orchestrated by the hallmark transcription factor, hypoxia-inducible factor 1 alpha subunit (HIF-1α), which plays a pivotal role in regulating various target hypoxic genes and metabolic adaptations. Recent studies have shown a great deal of interest in understanding the contribution of HIF-1α in the pathogenesis of CAVS. However, it is deeply intertwined with other major contributors, including sustained inflammation and mitochondrial impairments, which are attributed primarily to CAVS. The present review aims to cover the latest understanding of the complex interplay effect of hypoxia signaling pathways, mitochondrial dysfunction, and inflammation in CAVS. We propose further hypotheses and interconnections on the complexity of these impacts in a perspective of better understanding the pathophysiology. These interplays will be examined considering recent studies that shall help us better dissect the molecular mechanism to enable the design and development of potential future therapeutic approaches that can prevent or slow down CAVS processes.
Collapse
Affiliation(s)
- Esmaa Bouhamida
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Giampaolo Morciano
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Gaia Pedriali
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Daniela Ramaccini
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Elena Tremoli
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Simone Patergnani
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
25
|
Hoareau M, El Kholti N, Debret R, Lambert E. Characterization of the Zebrafish Elastin a ( elnasa12235) Mutant: A New Model of Elastinopathy Leading to Heart Valve Defects. Cells 2023; 12:1436. [PMID: 37408270 DOI: 10.3390/cells12101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 07/07/2023] Open
Abstract
Elastic fibers are extracellular macromolecules that provide resilience and elastic recoil to elastic tissues and organs in vertebrates. They are composed of an elastin core surrounded by a mantle of fibrillin-rich microfibrils and are essentially produced during a relatively short period around birth in mammals. Thus, elastic fibers have to resist many physical, chemical, and enzymatic constraints occurring throughout their lives, and their high stability can be attributed to the elastin protein. Various pathologies, called elastinopathies, are linked to an elastin deficiency, such as non-syndromic supravalvular aortic stenosis (SVAS), Williams-Beuren syndrome (WBS), and autosomal dominant cutis laxa (ADCL). To understand these diseases, as well as the aging process related to elastic fiber degradation, and to test potential therapeutic molecules in order to compensate for elastin impairments, different animal models have been proposed. Considering the many advantages of using zebrafish, we here characterize a zebrafish mutant for the elastin a paralog (elnasa12235) with a specific focus on the cardiovascular system and highlight premature heart valve defects at the adult stage.
Collapse
Affiliation(s)
- Marie Hoareau
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Institut de Biologie et Chimie des Protéines, Université de Lyon 1, 7 Passage du Vercors, CEDEX 07, F-69367 Lyon, France
| | - Naïma El Kholti
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Institut de Biologie et Chimie des Protéines, Université de Lyon 1, 7 Passage du Vercors, CEDEX 07, F-69367 Lyon, France
| | - Romain Debret
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Institut de Biologie et Chimie des Protéines, Université de Lyon 1, 7 Passage du Vercors, CEDEX 07, F-69367 Lyon, France
| | - Elise Lambert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Institut de Biologie et Chimie des Protéines, Université de Lyon 1, 7 Passage du Vercors, CEDEX 07, F-69367 Lyon, France
| |
Collapse
|
26
|
Shu L, Yuan Z, Li F, Cai Z. Oxidative stress and valvular endothelial cells in aortic valve calcification. Biomed Pharmacother 2023; 163:114775. [PMID: 37116353 DOI: 10.1016/j.biopha.2023.114775] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/15/2023] [Accepted: 04/23/2023] [Indexed: 04/30/2023] Open
Abstract
Calcified aortic valve disease (CAVD) is a common cardiovascular disease in elderly individuals. Although it was previously considered a degenerative disease, it is, in fact, a progressive disease involving multiple mechanisms. Aortic valve endothelial cells, which cover the outermost layer of the aortic valve and are directly exposed to various pathogenic factors, play a significant role in the onset and progression of CAVD. Hemodynamic changes can directly damage the structure and function of valvular endothelial cells (VECs). This leads to inflammatory infiltration and oxidative stress, which promote the progression of CAVD. VECs can regulate the pathological differentiation of valvular interstitial cells (VICs) through NO and thus affect the process of CAVD. Under the influence of pathological factors, VECs can also be transformed into VICs through EndMT, and then the pathological differentiation of VICs eventually leads to the formation of calcification. This review discusses the role of VECs, especially the role of oxidative stress in VECs, in the process of aortic valve calcification.
Collapse
Affiliation(s)
- Li Shu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China
| | - Zhen Yuan
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, Hubei, China.
| | - Zhejun Cai
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China.
| |
Collapse
|
27
|
Wal P, Rathore S, Aziz N, Singh YK, Gupta A. Aortic stenosis: a review on acquired pathogenesis and ominous combination with diabetes mellitus. Egypt Heart J 2023; 75:26. [PMID: 37027109 PMCID: PMC10082141 DOI: 10.1186/s43044-023-00345-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Aortic stenosis (AS) is a progressive disease, with no pharmacological treatment. The prevalence of diabetes mellitus (DM) among AS patients is higher than in the general population. DM significantly increases the risk of AS development and progression from mild to severe. The interplay between AS and DM's mechanism is not entirely known yet. MAIN BODY The increased accumulation of advanced glycation end products (AGEs) was linked to increased valvular oxidative stress, inflammation, expression of coagulation factors, and signs of calcification, according to an analysis of aortic stenotic valves. It is interesting to note that in diabetic AS patients, valvular inflammation did not correlate with serum glucose levels but rather only with long-term glycemic management markers like glycated haemoglobin and fructosamine. Transcatheter aortic valve replacement, which has been shown to be safer than surgical aortic valve replacement, is advantageous for AS patients who also have concurrent diabetes. Additionally, novel anti-diabetic medications have been proposed to lower the risk of AS development in DM patients, including sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonist that target reduction of AGEs-mediated oxidative stress. CONCLUSIONS There are little data on the effects of hyperglycemia on valvular calcification, but understanding the interactions between them is essential to develop a successful treatment strategy to stop or at least slow the progression of AS in DM patients. There is a link among AS and DM and that DM negatively impacts the quality of life and longevity of AS patients. The sole successful treatment, despite ongoing efforts to find new therapeutic modalities, involves aortic valve replacement. More research is required to find methods that can slow the advancement of these conditions, enhancing the prognosis and course of people with AS and DM.
Collapse
Affiliation(s)
- Pranay Wal
- Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP, 209305, India.
| | - Shruti Rathore
- LCIT School of Pharmacy, Bilaspur, Chhattisgarh, 495220, India
| | - Namra Aziz
- Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP, 209305, India
| | - Yash Kumar Singh
- Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP, 209305, India
| | - Arpit Gupta
- Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP, 209305, India
| |
Collapse
|
28
|
Liu Y, Chen C, Lu T, Liu S, Wu Z, Tang Z. Free-aldehyde neutralized and oligohyaluronan loaded bovine pericardium with improved anti-calcification and endothelialization for bioprosthetic heart valves. Front Bioeng Biotechnol 2023; 11:1138972. [PMID: 37077226 PMCID: PMC10106738 DOI: 10.3389/fbioe.2023.1138972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
The number of patients with valvular heart disease is increasing yearly, and valve replacement is the most effective treatment, during which bioprosthetic heart valves (BHVs) are the most widely used. Commercial BHVs are mainly prepared with glutaraldehyde (Glut) cross-linked bovine pericardial or porcine aortic valves, but the residual free aldehyde groups in these tissues can cause calcification and cytotoxicity. Moreover, insufficient glycosaminoglycans (GAGs) in tissues can further reduce biocompatibility and durability. However, the anti-calcification performance and biocompatibility might be improved by blocking the free aldehyde groups and increasing the GAGs content in Glut-crosslinked tissues. In our study, adipic dihydrazide (ADH) was used to neutralize the residual free aldehyde groups in tissues and provide sites to blind with oligohyaluronan (OHA) to increase the content of GAGs in tissues. The modified bovine pericardium was evaluated for its content of residual aldehyde groups, the amount of OHA loaded, physical/chemical characteristics, biomechanical properties, biocompatibility, and in vivo anticalcification assay and endothelialization effects in juvenile Sprague-Dawley rats. The results showed that ADH could completely neutralize the free aldehyde groups in the Glut-crosslinked bovine pericardium, the amount of OHA loaded increased and the cytotoxicity was reduced. Moreover, the in vivo results also showed that the level of calcification and inflammatory response in the modified pericardial tissue was significantly reduced in a rat subcutaneous implantation model, and the results from the rat abdominal aorta vascular patch repair model further demonstrated the improved capability of the modified pericardial tissues for endothelialization. Furthermore, more α-SMA+ smooth muscle cells and fewer CD68+ macrophages infiltrated in the neointima of the modified pericardial patch. In summary, blocking free-aldehydes and loading OHA improved the anti-calcification, anti-inflammation and endothelialization properties of Glut-crosslinked BHVs and in particularly, this modified strategy may be a promising candidate for the next-generation of BHVs.
Collapse
Affiliation(s)
- Yuhong Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
| | - Chunyang Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
| | - Ting Lu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
| | - Sixi Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
| | - Zhongshi Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
- *Correspondence: Zhongshi Wu, ; Zhenjie Tang,
| | - Zhenjie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
- *Correspondence: Zhongshi Wu, ; Zhenjie Tang,
| |
Collapse
|
29
|
Cordoves EM, Vunjak-Novakovic G, Kalfa DM. Designing Biocompatible Tissue Engineered Heart Valves In Situ: JACC Review Topic of the Week. J Am Coll Cardiol 2023; 81:994-1003. [PMID: 36889879 PMCID: PMC10666973 DOI: 10.1016/j.jacc.2022.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 03/08/2023]
Abstract
Valvular heart disease is a globally prevalent cause of morbidity and mortality, with both congenital and acquired clinical presentations. Tissue engineered heart valves (TEHVs) have the potential to radically shift the treatment landscape for valvular disease by functioning as life-long valve replacements that overcome the current limitations of bioprosthetic and mechanical valves. TEHVs are envisioned to meet these goals by functioning as bioinstructive scaffolds that guide the in situ generation of autologous valves capable of growth, repair, and remodeling within the patient. Despite their promise, clinical translation of in situ TEHVs has proven challenging largely because of the unpredictable and patient-specific nature of the TEHV and host interaction following implantation. In light of this challenge, we propose a framework for the development and clinical translation of biocompatible TEHVs, wherein the native valvular environment actively informs the valve's design parameters and sets the benchmarks by which it is functionally evaluated.
Collapse
Affiliation(s)
- Elizabeth M Cordoves
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA; Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, New York, USA; Department of Medicine, Columbia University, New York, New York, USA.
| | - David M Kalfa
- Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian-Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, New York, USA.
| |
Collapse
|
30
|
Sun P, Wu H, Bai X, Zhang L, Zhang C, Wang X, Lou C, Li B, Li Z, Bai H. Decellularized fish swim bladder patch loaded with mesenchymal stem cells inhibits neointimal hyperplasia. J Biomed Mater Res B Appl Biomater 2023; 111:551-559. [PMID: 36200602 DOI: 10.1002/jbm.b.35172] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Accepted: 09/03/2022] [Indexed: 01/21/2023]
Abstract
We previously showed decellularized fish swim bladder can be used as vascular patch and tube graft in rats, mesenchymal stem cells (MSCs) have showed the capability to inhibit neointimal hyperplasia in different animal models. We hypothesized that decellularized fish swim bladder patch loaded with MSCs (bioinspired patch) can inhibit neointimal hyperplasia in a rat aortic patch angioplasty model. Rat MSCs were grown in vitro and flow cytometry was used to confirm their quality. 3.6 × 105 MSCs were mixed into 100 μl of sodium alginate (SA)/hyaluronic acid (HA) hydrogel, two layers of fish swim bladders (5 mm × 5 mm) were sutured together, bioinspired patch was created by injection of hydrogel with MSCs into the space between two layers of fish swim bladder patches. Decellularized rat thoracic aorta patch was used as control. Patches were harvested at days 1 and 14 after implantation. Samples were examined by histology, immunohistochemistry, and immunofluorescence. The decellularized rat thoracic aorta patch and the fish swim bladder patch had a similar healing process after implantation. The bioinspired patch had a similar structure like native aorta. Bioinspired patch showed a decreased neointimal thickness (p = .0053), fewer macrophages infiltration (p = .0090), and lower proliferation rate (p = .0291) compared to the double layers fish swim bladder patch group. Decellularized fish swim bladder patch loaded with MSCs can inhibit neointimal hyperplasia effectively. Although this is a preliminary animal study, it may have a potential application in large animals or clinical research.
Collapse
Affiliation(s)
- Peng Sun
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoliang Wu
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiche Bai
- Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China.,The First Zhongyuan Middle School, Zhengzhou, China
| | - Liwei Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cong Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueyun Wang
- Department of Physiology, Medical School of Zhengzhou University, Zhengzhou, China
| | - Chunyang Lou
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Li
- Department of Physiology, Medical School of Zhengzhou University, Zhengzhou, China
| | - Zhuo Li
- Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China.,Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hualong Bai
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China
| |
Collapse
|
31
|
Fu M, Song J. Single-cell RNA sequencing reveals the diversity and biology of valve cells in cardiac valve disease. J Cardiol 2023; 81:49-56. [PMID: 35414472 DOI: 10.1016/j.jjcc.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022]
Abstract
From highly aligned extracellular fibrils to the cells, a multilevel ordered hierarchy in valve leaflets is crucial for their biological function. Cardiac valve pathology most frequently involves a disruption in normal structure-function correlations through abnormal and complex interaction of cells, extracellular matrix, and their environment. At present, effective treatment for valve disease is limited and frequently ends with surgical repair or replacement with a mechanical or artificial biological cardiac valve, which comes with insuperable complications for many high-risk patients including aged and pediatric populations. Therefore, there is a critical need to fully appreciate the pathobiology of valve disease in order to develop better, alternative therapies. To date, the majority of studies have focused on delineating valve disease mechanisms at the cellular level. However, the cellular heterogeneity and function is still unclear. In this review, we summarize the body of work on valve cells, with a particular focus on the discoveries about valve cells heterogeneity and functions using single-cell RNA sequencing. We conclude by discussing state-of-the-art strategies for deciphering heterogeneity of these complex cell types, and argue this knowledge could translate into the improved personalized treatment of cardiac valve disease.
Collapse
Affiliation(s)
- Mengxia Fu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; The Cardiomyopathy Research Group at Fuwai Hospital, Beijing, China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; The Cardiomyopathy Research Group at Fuwai Hospital, Beijing, China; Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
32
|
Clift CL, Saunders J, Drake RR, Angel PM. Perspectives on pediatric congenital aortic valve stenosis: Extracellular matrix proteins, post translational modifications, and proteomic strategies. Front Cardiovasc Med 2022; 9:1024049. [PMID: 36439995 PMCID: PMC9685993 DOI: 10.3389/fcvm.2022.1024049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
In heart valve biology, organization of the extracellular matrix structure is directly correlated to valve function. This is especially true in cases of pediatric congenital aortic valve stenosis (pCAVS), in which extracellular matrix (ECM) dysregulation is a hallmark of the disease, eventually leading to left ventricular hypertrophy and heart failure. Therapeutic strategies are limited, especially in pediatric cases in which mechanical and tissue engineered valve replacements may not be a suitable option. By identifying mechanisms of translational and post-translational dysregulation of ECM in CAVS, potential drug targets can be identified, and better bioengineered solutions can be developed. In this review, we summarize current knowledge regarding ECM proteins and their post translational modifications (PTMs) during aortic valve development and disease and contributing factors to ECM dysregulation in CAVS. Additionally, we aim to draw parallels between other fibrotic disease and contributions to ECM post-translational modifications. Finally, we explore the current treatment options in pediatrics and identify how the field of proteomics has advanced in recent years, highlighting novel characterization methods of ECM and PTMs that may be used to identify potential therapeutic strategies relevant to pCAVS.
Collapse
Affiliation(s)
- Cassandra L. Clift
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
- Division of Cardiovascular Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Janet Saunders
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
- *Correspondence: Peggi M. Angel,
| |
Collapse
|
33
|
Wang Y, Li G, Yang L, Luo R, Guo G. Development of Innovative Biomaterials and Devices for the Treatment of Cardiovascular Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201971. [PMID: 35654586 DOI: 10.1002/adma.202201971] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Cardiovascular diseases have become the leading cause of death worldwide. The increasing burden of cardiovascular diseases has become a major public health problem and how to carry out efficient and reliable treatment of cardiovascular diseases has become an urgent global problem to be solved. Recently, implantable biomaterials and devices, especially minimally invasive interventional ones, such as vascular stents, artificial heart valves, bioprosthetic cardiac occluders, artificial graft cardiac patches, atrial shunts, and injectable hydrogels against heart failure, have become the most effective means in the treatment of cardiovascular diseases. Herein, an overview of the challenges and research frontier of innovative biomaterials and devices for the treatment of cardiovascular diseases is provided, and their future development directions are discussed.
Collapse
Affiliation(s)
- Yunbing Wang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Li Yang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Gaoyang Guo
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| |
Collapse
|
34
|
The Medical versus Zoological Concept of Outflow Tract Valves of the Vertebrate Heart. J Cardiovasc Dev Dis 2022; 9:jcdd9100318. [PMID: 36286270 PMCID: PMC9604109 DOI: 10.3390/jcdd9100318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
The anatomical elements that in humans prevent blood backflow from the aorta and pulmonary artery to the left and right ventriclesare the aortic and pulmonary valves, respectively. Each valve regularly consists of three leaflets (cusps), each supported by its valvular sinus. From the medical viewpoint, each set of three leaflets and sinuses is regarded as a morpho-functional unit. This notion also applies to birds and non-human mammals. However, the structures that prevent the return of blood to the heart in other vertebrates are notably different. This has led to discrepancies between physicians and zoologists in defining what a cardiac outflow tract valve is. The aim here is to compare the gross anatomy of the outflow tract valvular system among several groups of vertebrates in order to understand the conceptual and nomenclature controversies in the field.
Collapse
|
35
|
Liu Y, Wu Z, Chen C, Lu T, Song M, Qi X, Jiang Z, Liu S, Tang Z. The hybrid crosslinking method improved the stability and anti-calcification properties of the bioprosthetic heart valves. Front Bioeng Biotechnol 2022; 10:1008664. [PMID: 36159659 PMCID: PMC9500414 DOI: 10.3389/fbioe.2022.1008664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
The bioprosthetic heart valves (BHVs) are the best option for the treatment of valvular heart disease. Glutaraldehyde (Glut) is commonly used as the golden standard reagent for the crosslinking of BHVs. However, the obvious defects of Glut, including residual aldehyde toxicity, degradation and calcification, increase the probability of valve failure in vivo and motivated the exploration of alternatives. Thus, the aim of this study is to develop a non-glutaraldehyde hybrid cross-linking method composed of Neomycin Trisulfate, Polyethylene glycol diglycidyl ether and Tannic acid as a substitute for Glut, which was proven to reduce calcification, degradation, inflammation of the biomaterial. Evaluations of the crosslinked bovine pericardial included histological and ultrastructural characterization, biomechanical performance, biocompatibility and structural stability test, and in vivo anti-inflammation and anti-calcification assay by subcutaneous implantation in juvenile Sprague Dawley rats. The results revealed that the hybrid crosslinked bovine pericardial were superior to Glut crosslinked biomaterial in terms of better hydrophilicity, thermodynamics stability, hemocompatibility and cytocompatibility, higher Young’s Modulus, better stability and resistance to enzymatic hydrolysis, and lower inflammation, degradation and calcification levels in subcutaneous implants. Considering all above performances, it indicates that the hybrid cross-linking method is appropriate to replace Glut as the method for BHV preparation, and particularly this hybrid crosslinked biomaterials may be a promising candidate for next-generation BHVs.
Collapse
Affiliation(s)
- Yuhong Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
| | - Zhongshi Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
| | - Chunyang Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ting Lu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mingzhe Song
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoke Qi
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhenlin Jiang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Sixi Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
| | - Zhenjie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
- *Correspondence: Zhenjie Tang,
| |
Collapse
|
36
|
Salinas SD, Farra YM, Amini Khoiy K, Houston J, Lee CH, Bellini C, Amini R. The role of elastin on the mechanical properties of the anterior leaflet in porcine tricuspid valves. PLoS One 2022; 17:e0267131. [PMID: 35560311 PMCID: PMC9106221 DOI: 10.1371/journal.pone.0267131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/02/2022] [Indexed: 11/19/2022] Open
Abstract
Elastin is present in the extracellular matrix (ECM) of connective tissues, and its mechanical properties are well documented. In Marfan syndrome, however, the inability to properly code for the protein fibrillin-1 prematurely leads to the degradation and loss of elastin fiber integrity in the ECM. In this study, the role of elastin in the ECM of the anterior leaflet of the tricuspid valve was investigated by examining the biomechanical behavior of porcine leaflets before and after the application of the enzyme elastase. Five loading protocols were applied to the leaflet specimens in two groups (elastase-treated and control samples). The mechanical response following elastase application yielded a significantly stiffer material in both the radial and circumferential directions. At a physiological level of stress (85 kPa), the elastase group had an average strain of 26.21% and 6.32% in the radial and circumferential directions, respectively, at baseline prior to elastase application. Following elastase treatment, the average strain was 5.28% and 0.97% in the radial and circumferential directions, respectively. No statistically significant change was found in the control group following sham treatment with phosphate-buffered saline (PBS). Two-photon microscopy images confirmed that after the removal of elastin, the collagen fibers displayed a loss of undulation. With a significant reduction in radial compliance, the ability to withstand physiological loads may be compromised. As such, an extracellular matrix that is structurally deficient in elastin may hinder normal tricuspid valve function.
Collapse
Affiliation(s)
- Samuel D. Salinas
- Department of Bioengineering, Northeastern University, Boston, MA, United States of America
- Department of Biomedical Engineering, The University of Akron, Akron, OH, United States of America
| | - Yasmeen M. Farra
- Department of Bioengineering, Northeastern University, Boston, MA, United States of America
| | - Keyvan Amini Khoiy
- Department of Biomedical Engineering, The University of Akron, Akron, OH, United States of America
| | - James Houston
- Department of Psychology, Middle Tennessee State University, Murfreesboro, TN, United States of America
| | - Chung-Hao Lee
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, United States of America
| | - Chiara Bellini
- Department of Biomedical Engineering, The University of Akron, Akron, OH, United States of America
| | - Rouzbeh Amini
- Department of Bioengineering, Northeastern University, Boston, MA, United States of America
- Department of Biomedical Engineering, The University of Akron, Akron, OH, United States of America
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
37
|
Greenberg HZE, Zhao G, Shah AM, Zhang M. Role of oxidative stress in calcific aortic valve disease and its therapeutic implications. Cardiovasc Res 2022; 118:1433-1451. [PMID: 33881501 PMCID: PMC9074995 DOI: 10.1093/cvr/cvab142] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the end result of active cellular processes that lead to the progressive fibrosis and calcification of aortic valve leaflets. In western populations, CAVD is a significant cause of cardiovascular morbidity and mortality, and in the absence of effective drugs, it will likely represent an increasing disease burden as populations age. As there are currently no pharmacological therapies available for preventing, treating, or slowing the development of CAVD, understanding the mechanisms underlying the initiation and progression of the disease is important for identifying novel therapeutic targets. Recent evidence has emerged of an important causative role for reactive oxygen species (ROS)-mediated oxidative stress in the pathophysiology of CAVD, inducing the differentiation of valve interstitial cells into myofibroblasts and then osteoblasts. In this review, we focus on the roles and sources of ROS driving CAVD and consider their potential as novel therapeutic targets for this debilitating condition.
Collapse
Affiliation(s)
- Harry Z E Greenberg
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Guoan Zhao
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Ajay M Shah
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Min Zhang
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
38
|
Wang S, Yu H, Gao J, Chen J, He P, Zhong H, Tan X, Staines KA, Macrae VE, Fu X, Jiang L, Zhu D. PALMD regulates aortic valve calcification via altered glycolysis and NF-κB-mediated inflammation. J Biol Chem 2022; 298:101887. [PMID: 35367413 PMCID: PMC9065630 DOI: 10.1016/j.jbc.2022.101887] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/25/2022] Open
Abstract
Recent genome-wide association and transcriptome-wide association studies have identified an association between the PALMD locus, encoding palmdelphin, a protein involved in myoblast differentiation, and calcific aortic valve disease (CAVD). Nevertheless, the function and underlying mechanisms of PALMD in CAVD remain unclear. We herein investigated whether and how PALMD affects the pathogenesis of CAVD using clinical samples from CAVD patients and a human valve interstitial cell (hVIC) in vitro calcification model. We showed that PALMD was upregulated in calcified regions of human aortic valves and calcified hVICs. Furthermore, silencing of PALMD reduced hVIC in vitro calcification, osteogenic differentiation, and apoptosis, whereas overexpression of PALMD had the opposite effect. RNA-Seq of PALMD-depleted hVICs revealed that silencing of PALMD reduced glycolysis and nuclear factor-κB (NF-κB)–mediated inflammation in hVICs and attenuated tumor necrosis factor α–induced monocyte adhesion to hVICs. Having established the role of PALMD in hVIC glycolysis, we examined whether glycolysis itself could regulate hVIC osteogenic differentiation and inflammation. Intriguingly, the inhibition of PFKFB3-mediated glycolysis significantly attenuated osteogenic differentiation and inflammation of hVICs. However, silencing of PFKFB3 inhibited PALMD-induced hVIC inflammation, but not osteogenic differentiation. Finally, we showed that the overexpression of PALMD enhanced hVIC osteogenic differentiation and inflammation, as opposed to glycolysis, through the activation of NF-κB. The present study demonstrates that the genome-wide association– and transcriptome-wide association–identified CAVD risk gene PALMD may promote CAVD development through regulation of glycolysis and NF-κB–mediated inflammation. We propose that targeting PALMD-mediated glycolysis may represent a novel therapeutic strategy for treating CAVD.
Collapse
Affiliation(s)
- Siying Wang
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hongjiao Yu
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China
| | - Jun Gao
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jiaxin Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pengcheng He
- Guangdong Provincial Geriatrics Institute, and Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hui Zhong
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao Tan
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Katherine A Staines
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Vicky E Macrae
- Functional Genetics and Development, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Xiaodong Fu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Lei Jiang
- Guangdong Provincial Geriatrics Institute, and Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Dongxing Zhu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
39
|
Wu S, Li Y, Zhang C, Tao L, Kuss M, Lim JY, Butcher J, Duan B. Tri-Layered and Gel-Like Nanofibrous Scaffolds with Anisotropic Features for Engineering Heart Valve Leaflets. Adv Healthc Mater 2022; 11:e2200053. [PMID: 35289986 PMCID: PMC10976923 DOI: 10.1002/adhm.202200053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/28/2022] [Indexed: 12/17/2022]
Abstract
3D heterogeneous and anisotropic scaffolds that approximate native heart valve tissues are indispensable for the successful construction of tissue engineered heart valves (TEHVs). In this study, novel tri-layered and gel-like nanofibrous scaffolds, consisting of poly(lactic-co-glycolic) acid (PLGA) and poly(aspartic acid) (PASP), are fabricated by a combination of positive/negative conjugate electrospinning and bioactive hydrogel post-processing. The nanofibrous PLGA-PASP scaffolds present tri-layered structures, resulting in anisotropic mechanical properties that are comparable with native heart valve leaflets. Biological tests show that nanofibrous PLGA-PASP scaffolds with high PASP ratios significantly promote the proliferation and collagen and glycosaminoglycans (GAGs) secretions of human aortic valvular interstitial cells (HAVICs), compared to PLGA scaffolds. Importantly, the nanofibrous PLGA-PASP scaffolds are found to effectively inhibit the osteogenic differentiation of HAVICs. Two types of porcine VICs, from young and adult age groups, are further seeded onto the PLGA-PASP scaffolds. The adult VICs secrete higher amounts of collagens and GAGs and undergo a significantly higher level of osteogenic differentiation than young VICs. RNA sequencing analysis indicates that age has a pivotal effect on the VIC behaviors. This study provides important guidance and a reference for the design and development of 3D tri-layered, gel-like nanofibrous PLGA-PASP scaffolds for TEHV applications.
Collapse
Affiliation(s)
- Shaohua Wu
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yiran Li
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
| | - Caidan Zhang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Litao Tao
- Department of Biomedical Science, Creighton University, Omaha, NE, 68178, USA
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jonathan Butcher
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
40
|
Liu Y, Jiang P, An L, Zhu M, Li J, Wang Y, Huang Q, Xiang Y, Li X, Shi Q, Weng Y. The role of neutrophil elastase in aortic valve calcification. J Transl Med 2022; 20:167. [PMID: 35397552 PMCID: PMC8994374 DOI: 10.1186/s12967-022-03363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background Calcific aortic valve disease (CAVD) is the most commonly valvular disease in the western countries initiated by inflammation and abnormal calcium deposition. Currently, there is no clinical drug for CAVD. Neutrophil elastase (NE) plays a causal role in inflammation and participates actively in cardiovascular diseases. However, the effect of NE on valve calcification remains unclear. So we next explore whether it is involved in valve calcification and the molecular mechanisms involved. Methods NE expression and activity in calcific aortic valve stenosis (CAVD) patients (n = 58) and healthy patients (n = 30) were measured by enzyme-linked immunosorbent assay (ELISA), western blot and immunohistochemistry (IHC). Porcine aortic valve interstitial cells (pVICs) were isolated and used in vitro expriments. The effects of NE on pVICs inflammation, apoptosis and calcification were detected by TUNEL assay, MTT assay, reverse transcription polymerase chain reaction (RT-PCR) and western blot. The effects of NE knockdown and NE activity inhibitor Alvelestat on pVICs inflammation, apoptosis and calcification under osteogenic medium induction were also detected by RT-PCR, western blot, alkaline phosphatase staining and alizarin red staining. Changes of Intracellular signaling pathways after NE treatment were measured by western blot. Apolipoprotein E−/− (APOE−/−) mice were employed in this study to establish the important role of Alvelestat in valve calcification. HE was used to detected the thickness of valve. IHC was used to detected the NE and α-SMA expression in APOE−/− mice. Echocardiography was employed to assess the heat function of APOE−/− mice. Results The level and activity of NE were evaluated in patients with CAVD and calcified valve tissues. NE promoted inflammation, apoptosis and phenotype transition in pVICs in the presence or absence of osteogenic medium. Under osteogenic medium induction, NE silencing or NE inhibitor Alvelestat both suppressed the osteogenic differentiation of pVICs. Mechanically, NE played its role in promoting osteogenic differentiation of pVICs by activating the NF-κB and AKT signaling pathway. Alvelestat alleviated valve thickening and decreased the expression of NE and α-SMA in western diet-induced APOE−/− mice. Alvelestat also reduced NE activity and partially improved the heart function of APOE−/−mice. Conclusions Collectively, NE is highly involved in the pathogenesis of valve calcification. Targeting NE such as Alvelestat may be a potential treatment for CAVD. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03363-1.
Collapse
|
41
|
Bouten CVC, Cheng C, Vermue IM, Gawlitta D, Passier R. Cardiovascular tissue engineering and regeneration: A plead for further knowledge convergence. Tissue Eng Part A 2022; 28:525-541. [PMID: 35382591 DOI: 10.1089/ten.tea.2021.0231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular tissue engineering and regeneration strive to provide long-term, effective solutions for a growing group of patients in need of myocardial repair, vascular (access) grafts, heart valves, and regeneration of organ microcirculation. In the past two decades, ongoing convergence of disciplines and multidisciplinary collaborations between cardiothoracic surgeons, cardiologists, bioengineers, material scientists, and cell biologists have resulted in better understanding of the problems at hand and novel regenerative approaches. As a side effect, however, the field has become strongly organized and differentiated around topical areas at risk of reinvention of technologies and repetition of approaches and across the areas. A better integration of knowledge and technologies from the individual topical areas and regenerative approaches and technologies may pave the way towards faster and more effective treatments to cure the cardiovascular system. This review summarizes the evolution of research and regenerative approaches in the areas of myocardial regeneration, heart valve and vascular tissue engineering, and regeneration of microcirculations and discusses previous and potential future integration of these individual areas and developed technologies for improved clinical impact. Finally, it provides a perspective on the further integration of research organization, knowledge implementation, and valorization as a contributor to advancing cardiovascular tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Carlijn V C Bouten
- Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- Experimental Cardiology, Department of Cardiology, Thoraxcenter Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ijsbrand M Vermue
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery, Prosthodontics and Special Dental Care, University Medical Center, Utrecht, The Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
42
|
Luketich SK, Cosentino F, Di Giuseppe M, Menallo G, Nasello G, Livreri P, Wagner WR, D'Amore A. Engineering in-plane mechanics of electrospun polyurethane scaffolds for cardiovascular tissue applications. J Mech Behav Biomed Mater 2022; 128:105126. [DOI: 10.1016/j.jmbbm.2022.105126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
|
43
|
Karakaya C, van Asten JGM, Ristori T, Sahlgren CM, Loerakker S. Mechano-regulated cell-cell signaling in the context of cardiovascular tissue engineering. Biomech Model Mechanobiol 2022; 21:5-54. [PMID: 34613528 PMCID: PMC8807458 DOI: 10.1007/s10237-021-01521-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
Cardiovascular tissue engineering (CVTE) aims to create living tissues, with the ability to grow and remodel, as replacements for diseased blood vessels and heart valves. Despite promising results, the (long-term) functionality of these engineered tissues still needs improvement to reach broad clinical application. The functionality of native tissues is ensured by their specific mechanical properties directly arising from tissue organization. We therefore hypothesize that establishing a native-like tissue organization is vital to overcome the limitations of current CVTE approaches. To achieve this aim, a better understanding of the growth and remodeling (G&R) mechanisms of cardiovascular tissues is necessary. Cells are the main mediators of tissue G&R, and their behavior is strongly influenced by both mechanical stimuli and cell-cell signaling. An increasing number of signaling pathways has also been identified as mechanosensitive. As such, they may have a key underlying role in regulating the G&R of tissues in response to mechanical stimuli. A more detailed understanding of mechano-regulated cell-cell signaling may thus be crucial to advance CVTE, as it could inspire new methods to control tissue G&R and improve the organization and functionality of engineered tissues, thereby accelerating clinical translation. In this review, we discuss the organization and biomechanics of native cardiovascular tissues; recent CVTE studies emphasizing the obtained engineered tissue organization; and the interplay between mechanical stimuli, cell behavior, and cell-cell signaling. In addition, we review past contributions of computational models in understanding and predicting mechano-regulated tissue G&R and cell-cell signaling to highlight their potential role in future CVTE strategies.
Collapse
Affiliation(s)
- Cansu Karakaya
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jordy G M van Asten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
44
|
Maleszewski JJ, Lai CK, Nair V, Veinot JP. Anatomic considerations and examination of cardiovascular specimens (excluding devices). Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
45
|
Butany J, Schoen FJ. Cardiac valve replacement and related interventions. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
46
|
Tandon I, Ozkizilcik A, Ravishankar P, Balachandran K. Aortic valve cell microenvironment: Considerations for developing a valve-on-chip. BIOPHYSICS REVIEWS 2021; 2:041303. [PMID: 38504720 PMCID: PMC10903420 DOI: 10.1063/5.0063608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/15/2021] [Indexed: 03/21/2024]
Abstract
Cardiac valves are sophisticated, dynamic structures residing in a complex mechanical and hemodynamic environment. Cardiac valve disease is an active and progressive disease resulting in severe socioeconomic burden, especially in the elderly. Valve disease also leads to a 50% increase in the possibility of associated cardiovascular events. Yet, valve replacement remains the standard of treatment with early detection, mitigation, and alternate therapeutic strategies still lacking. Effective study models are required to further elucidate disease mechanisms and diagnostic and therapeutic strategies. Organ-on-chip models offer a unique and powerful environment that incorporates the ease and reproducibility of in vitro systems along with the complexity and physiological recapitulation of the in vivo system. The key to developing effective valve-on-chip models is maintaining the cell and tissue-level microenvironment relevant to the study application. This review outlines the various components and factors that comprise and/or affect the cell microenvironment that ought to be considered while constructing a valve-on-chip model. This review also dives into the advancements made toward constructing valve-on-chip models with a specific focus on the aortic valve, that is, in vitro studies incorporating three-dimensional co-culture models that incorporate relevant extracellular matrices and mechanical and hemodynamic cues.
Collapse
Affiliation(s)
- Ishita Tandon
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Asya Ozkizilcik
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Prashanth Ravishankar
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Kartik Balachandran
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
47
|
Deb N, Lacerda CMR. The Individual and Combined Effects of Shear, Tension, and Flexure on Aortic Heart Valve Endothelial Cells in Culture. Cardiovasc Eng Technol 2021; 13:443-451. [PMID: 34811659 DOI: 10.1007/s13239-021-00592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/02/2021] [Indexed: 12/01/2022]
Abstract
PURPOSE The necessity of living engineered heart valves to treat patients with severe heart disease poses a challenge to tissue engineers. To reach such goal it is crucial to fully understand the role and the activities of valvular endothelial cells (VECs) when they face different types of mechanical stimuli. This study focuses on decomposing the roles of different mechanical stimuli on heart valve endothelial surfaces and the response of VECs in terms of morphology and phenotype change. METHODS This study utilizes soft hydrogel-based scaffolds to use as a substrate for cell culture to mimic heart valve tissue leaflet. VECs were cultured as a monolayer on the gel surface and different types of mechanical stimuli were applied. Finally, the response of cells was investigated in terms of morphology and protein expression changes. RESULTS Single stimuli introduces actin fibers reorganization in VECs, change in cell morphology, and higher mesenchymal protein expression. On the other hand, combined stimuli application has lower impact on actin fibers reorganization and cell morphology change, with lower mesenchymal protein expression. CONCLUSIONS When VECs face a single mechanical stimuli, they undergo transdifferentiation and transform into mesenchymal cells. However, when these cells face a combination of mechanical stimuli, the rate of transformation decreases compared to single stimuli applications. This indicates that a single stimulus induces endothelial to mesenchymal transition in VECs while the process is slower under the combination of multiple mechanical stimuli.
Collapse
Affiliation(s)
- Nandini Deb
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409-3121, USA
| | - Carla M R Lacerda
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409-3121, USA. .,The Jasper Department of Chemical Engineering, The University of Texas at Tyler, Tyler, TX, 75799, USA.
| |
Collapse
|
48
|
Jana S, Morse D, Lerman A. Leaflet Tissue Generation from Microfibrous Heart Valve Leaflet Scaffolds with Native Characteristics. ACS APPLIED BIO MATERIALS 2021; 4:7836-7847. [PMID: 35006765 DOI: 10.1021/acsabm.1c00768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mechanical and bioprosthetic valves that are currently applied for replacing diseased heart valves are not fully efficient. Heart valve tissue engineering may solve the issues faced by the prosthetic valves in heart valve replacement. The leaflets of native heart valves have a trilayered structure with layer-specific orientations; thus, it is imperative to develop functional leaflet tissue constructs with a native trilayered, oriented structure. Its key solution is to develop leaflet scaffolds with a native morphology and structure. In this study, microfibrous leaflet scaffolds with a native trilayered and oriented structure were developed in an electrospinning system. The scaffolds were implanted for 3 months in rats subcutaneously to study the scaffold efficiencies in generating functional tissue-engineered leaflet constructs. These in vivo tissue-engineered leaflet constructs had a trilayered, oriented structure similar to native leaflets. The tensile properties of constructs indicated that they were able to endure the hydrodynamic load of the native heart valve. Collagen, glycosaminoglycans, and elastin─the predominant extracellular matrix components of native leaflets─were found sufficiently in the leaflet tissue constructs. The residing cells in the leaflet tissue constructs showed vimentin and α-smooth muscle actin expression, i.e., the constructs were in a growing state. Thus, the trilayered, oriented fibrous leaflet scaffolds produced in this study could be useful to develop heart valve scaffolds for successful heart valve replacements.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States.,Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - David Morse
- Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - Amir Lerman
- Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| |
Collapse
|
49
|
Hu M, Peng X, Zhao Y, Yu X, Cheng C, Yu X. Dialdehyde pectin-crosslinked and hirudin-loaded decellularized porcine pericardium with improved matrix stability, enhanced anti-calcification and anticoagulant for bioprosthetic heart valves. Biomater Sci 2021; 9:7617-7635. [PMID: 34671797 DOI: 10.1039/d1bm01297e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To conveniently and effectively cure heart valve diseases or defects, combined with transcatheter valve technology, bioprosthetic heart valves (BHVs) originated from the decellularized porcine pericardium (D-PP) have been broadly used in clinics. Unfortunately, most clinically available BHVs crosslinked with glutaraldehyde (GA) were challenged in their long-term tolerance, degenerative structural changes, and even failure, owing to the synergistic impact of multitudinous elements (cytotoxicity, calcification, immune responses, etc.). In this work, dialdehyde pectin (AP) was prepared by oxidizing the o-dihydroxy of pectin with sodium periodate. Hereafter, the AP-fixed PP model was obtained by crosslinking D-PP with AP with high aldehyde content (6.85 mmol g-1), for acquiring excellent mechanical properties and outstanding biocompatibility. To further improve the hemocompatibility of the AP-fixed PP, a natural and specific inhibitor of thrombin (hirudin) was introduced to achieve surface modification of the AP-fixed PP. The feasibility of crosslinking and functionalizing AP-fixed PP, which was a potential leaflet material of BHVs, was exhaustively and systematically evaluated. In vitro studies found that hirudin-loaded and AP-fixed PP (AP + Hirudin-PP) had synchronously achieved effective fixation of collagen, highly effective anticoagulation, and good HUVECs-cytocompatibility. In vivo results revealed that the AP + Hirudin-PP specimens recruited the minimum immune cells in the implantation experiment, and also presented an excellent anti-calcification effect. Overall, AP + Hirudin-PP was endowed with competitive collagen stability (compared with GA-fixed PP), excellent hemocompatibility, good HUVECs-cytocompatibility, low immunogenicity and outstanding anti-calcification, suggesting that AP + Hirudin-PP might be a promising alternative to GA-fixed PP and exhibited a bright prospect in the clinical applications of BHVs.
Collapse
Affiliation(s)
- Mengyue Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China. .,Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P.R. China
| | - Yang Zhao
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | - Xiaoshuang Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | - Can Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| |
Collapse
|
50
|
Zhang W, Motiwale S, Hsu MC, Sacks MS. Simulating the time evolving geometry, mechanical properties, and fibrous structure of bioprosthetic heart valve leaflets under cyclic loading. J Mech Behav Biomed Mater 2021; 123:104745. [PMID: 34482092 PMCID: PMC8482999 DOI: 10.1016/j.jmbbm.2021.104745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
Currently, the most common replacement heart valve design is the 'bioprosthetic' heart valve (BHV), which has important advantages in that it does not require permanent anti-coagulation therapy, operates noiselessly, and has blood flow characteristics similar to the native valve. BHVs are typically fabricated from glutaraldehyde-crosslinked pericardial xenograft tissue biomaterials (XTBs) attached to a rigid, semi-flexible, or fully collapsible stent in the case of the increasingly popular transcutaneous aortic valve replacement (TAVR). While current TAVR assessments are positive, clinical results to date are generally limited to <2 years. Since TAVR leaflets are constructed using thinner XTBs, their mechanical demands are substantially greater than surgical BHV due to the increased stresses during in vivo operation, potentially resulting in decreased durability. Given the functional complexity of heart valve operation, in-silico predictive simulations clearly have potential to greatly improve the TAVR development process. As such simulations must start with accurate material models, we have developed a novel time-evolving constitutive model for pericardial xenograft tissue biomaterials (XTB) utilized in BHV (doi: 10.1016/j.jmbbm.2017.07.013). This model was able to simulate the observed tissue plasticity effects that occur in approximately in the first two years of in vivo function (50 million cycles). In the present work, we implemented this model into a complete simulation pipeline to predict the BHV time evolving geometry to 50 million cycles. The pipeline was implemented within an isogeometric finite element formulation that directly integrated our established BHV NURBS-based geometry (doi: 10.1007/s00466-015-1166-x). Simulations of successive loading cycles indicated continual changes in leaflet shape, as indicated by spatially varying increases in leaflet curvature. While the simulation model assumed an initial uniform fiber orientation distribution, anisotropic regional changes in leaflet tissue plastic strain induced a complex changes in regional fiber orientation. We have previously noted in our time-evolving constitutive model that the increases in collagen fiber recruitment with cyclic loading placed an upper bound on plastic strain levels. This effect was manifested by restricting further changes in leaflet geometry past 50 million cycles. Such phenomena was accurately captured in the valve-level simulations due to the use of a tissue-level structural-based modeling approach. Changes in basic leaflet dimensions agreed well with extant experimental studies. As a whole, the results of the present study indicate the complexity of BHV responses to cyclic loading, including changes in leaflet shape and internal fibrous structure. It should be noted that the later effect also influences changes in local mechanical behavior (i.e. changes in leaflet anisotropic tissue stress-strain relationship) due to internal fibrous structure resulting from plastic strains. Such mechanism-based simulations can help pave the way towards the application of sophisticated simulation technologies in the development of replacement heart valve technology.
Collapse
Affiliation(s)
- Will Zhang
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712-0027, USA
| | - Shruti Motiwale
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712-0027, USA
| | - Ming-Chen Hsu
- Computational Fluid-Structure Interaction Laboratory, Department of Mechanical Engineering, Iowa State University, Ames, IA 50011-2030, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712-0027, USA.
| |
Collapse
|