1
|
Hu H, Wang X, Yu H, Wang Z. Extracellular vesicular microRNAs and cardiac hypertrophy. Front Endocrinol (Lausanne) 2025; 15:1444940. [PMID: 39850481 PMCID: PMC11753959 DOI: 10.3389/fendo.2024.1444940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Cardiac hypertrophy is an adaptive response to pressure or volume overload such as hypertension and ischemic heart diseases. Sustained cardiac hypertrophy eventually leads to heart failure. The pathophysiological alterations of hypertrophy are complex, involving both cellular and molecular systems. Understanding the molecular events that inhibit or repress cardiac hypertrophy may help identify novel therapeutic strategies. Increasing evidence has indicated that extracellular vesicle (EV)-derived microRNAs (miRNAs) play a significant role in the development and progression of cardiac hypertrophy. In this review, we briefly review recent advancements in EV research, especially on biogenesis, cargoes and its role in cardiac hypertrophy. We then describe the latest findings regarding EV-derived miRNAs, highlighting their functions and regulatory mechanisms in cardiac hypertrophy. Finally, the potential role of EV-derived miRNAs as targets in the diagnosis and treatment of cardiac hypertrophy will be discussed.
Collapse
Affiliation(s)
- Hai Hu
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- School of Basic Medicine, Baotou Medical College, Baotou, China
| | - Xiulian Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| | - Hui Yu
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- School of Basic Medicine, Baotou Medical College, Baotou, China
| | - Zhanli Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| |
Collapse
|
2
|
Zhang Y, Deng D, Huang Q, Wu J, Xiang Y, Ou B. Serum microRNA-125b-5p expression in patients with dilated cardiomyopathy combined with heart failure and its effect on myocardial fibrosis. SCAND CARDIOVASC J 2024; 58:2373083. [PMID: 39024033 DOI: 10.1080/14017431.2024.2373083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/07/2024] [Accepted: 06/22/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVE This paper was performed to decipher the serum microRNA (miR)-125b-5p expression in patients with dilated cardiomyopathy (DCM) combined with heart failure (HF) and its effect on myocardial fibrosis. METHODS Serum miR-125b-5p expression, LVEDD, LVESD, LVEF, LVFS, and NT-proBNP levels were evaluated in clinical samples. A rat DCM model was established by continuous intraperitoneal injection of adriamycin and treated with miR-125b-5p agomir and its negative control. Cardiac function, serum TNF-α, hs-CRP, and NT-proBNP levels, pathological changes in myocardial tissues, cardiomyocyte apoptosis, and the expression levels of miR-125b-5p and fibrosis-related factors were detected in rats. RESULTS In comparison to the control group, the case group had higher levels of LVEDD, LVESD, and NT-pro-BNP, and lower levels of LVEF, LVFS, and miR-125b-5p expression levels. Overexpression of miR-125b-5p effectively led to the improvement of cardiomyocyte hypertrophy and collagen arrangement disorder in DCM rats, the reduction of blue-stained collagen fibers in the interstitial myocardium, the reduction of the levels of TNF-α, hs-CRP, and NT-proBNP and the expression levels of TGF-1β, Collagen I, and α-SMA, and the reduction of the number of apoptosis in cardiomyocytes. CONCLUSION Overexpression of miR-125b-5p is effective in ameliorating myocardial fibrosis.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Female
- Humans
- Male
- Middle Aged
- Apoptosis
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/blood
- Cardiomyopathy, Dilated/pathology
- Case-Control Studies
- Circulating MicroRNA/blood
- Circulating MicroRNA/genetics
- Disease Models, Animal
- Fibrosis
- Heart Failure/blood
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/pathology
- MicroRNAs/blood
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Myocardium/pathology
- Myocardium/metabolism
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/metabolism
- Natriuretic Peptide, Brain/blood
- Natriuretic Peptide, Brain/genetics
- Peptide Fragments/blood
- Rats, Sprague-Dawley
- Stroke Volume
- Ventricular Function, Left
- Ventricular Remodeling
Collapse
Affiliation(s)
- Yingjie Zhang
- Department of Cardiovascular and Metabolic Diseases, Hunan Provincial People's Hospital, Changsha, Hunan Province, China
| | - Daqing Deng
- Department of Cardiovascular and Metabolic Diseases, Hunan Provincial People's Hospital, Changsha, Hunan Province, China
| | - Quan Huang
- Department of Cardiovascular and Metabolic Diseases, Hunan Provincial People's Hospital, Changsha, Hunan Province, China
| | - Jiaru Wu
- Department of Cardiovascular and Metabolic Diseases, Hunan Provincial People's Hospital, Changsha, Hunan Province, China
| | - Yi Xiang
- Department of Cardiovascular and Metabolic Diseases, Hunan Provincial People's Hospital, Changsha, Hunan Province, China
| | - Boqing Ou
- Department of Cardiovascular and Metabolic Diseases, Hunan Provincial People's Hospital, Changsha, Hunan Province, China
| |
Collapse
|
3
|
Ragusa R, Di Molfetta A, Mercatanti A, Pitto L, Amodeo A, Trivella MG, Rizzo M, Caselli C. Changes in adiponectin system after ventricular assist device in pediatric heart failure. JHLT OPEN 2024; 3:None. [PMID: 38357297 PMCID: PMC10865272 DOI: 10.1016/j.jhlto.2023.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Background Ventricular assist device (VAD) implant represents a therapeutic option for pediatric patients with end-stage heart failure (HF). Heart unloading by VAD can modify several molecular pathways underlying cardiac function in HF. Among them, the potential role of microRNA (miRNAs) in response to VAD implant is emerging. This study was aimed at investigating in HF pediatric patients the effect of VAD-modified miRNAs on the adiponectin (ADPN) system, known to exert cardioprotective actions. Methods ADPN was measured in plasma samples obtained from HF children, before and 1 month after VAD implant, and from healthy control children. miRNA profile and molecules belonging to ADPN system were determined in cardiac biopsies collected at the time of VAD implantation (pre-VAD) and at the moment of heart transplant (post-VAD). An in vitro study using HL-1 cell line was performed to verify the regulatory role of the VAD-modified miRNA on the ADPN system. Results VAD implant did not affect circulating and cardiac levels of ADPN, but increased the cardiac mRNA expression of ADPN receptors, including AdipoR1, AdipoR2, and T-cad. AdipoR2 and T-cad were inversely related to the VAD-modified miRNA levels. The in vitro study confirmed the regulatory role of miR-1246 and miR-199b-5p on AdipoR2, and of miR-199b-5p on T-cad. Conclusions These data suggest that VAD treatment could regulate the expression of the cardioprotective ADPN system by epigenetic mediators, suggesting that miRNAs have a potential role as therapeutic targets to improve cardiac function in HF pediatric patients.
Collapse
Affiliation(s)
| | - Arianna Di Molfetta
- Department of Cardiothoracic Surgery, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | | | | | - Antonio Amodeo
- Department of Cardiothoracic Surgery, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | | | - Milena Rizzo
- Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Chiara Caselli
- Institute of Clinical Physiology, CNR, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa Italy
| |
Collapse
|
4
|
Caño-Carrillo S, Castillo-Casas JM, Franco D, Lozano-Velasco E. Unraveling the Signaling Dynamics of Small Extracellular Vesicles in Cardiac Diseases. Cells 2024; 13:265. [PMID: 38334657 PMCID: PMC10854837 DOI: 10.3390/cells13030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Effective intercellular communication is essential for cellular and tissue balance maintenance and response to challenges. Cellular communication methods involve direct cell contact or the release of biological molecules to cover short and long distances. However, a recent discovery in this communication network is the involvement of extracellular vesicles that host biological contents such as proteins, nucleic acids, and lipids, influencing neighboring cells. These extracellular vesicles are found in body fluids; thus, they are considered as potential disease biomarkers. Cardiovascular diseases are significant contributors to global morbidity and mortality, encompassing conditions such as ischemic heart disease, cardiomyopathies, electrical heart diseases, and heart failure. Recent studies reveal the release of extracellular vesicles by cardiovascular cells, influencing normal cardiac function and structure. However, under pathological conditions, extracellular vesicles composition changes, contributing to the development of cardiovascular diseases. Investigating the loading of molecular cargo in these extracellular vesicles is essential for understanding their role in disease development. This review consolidates the latest insights into the role of extracellular vesicles in diagnosis and prognosis of cardiovascular diseases, exploring the potential applications of extracellular vesicles in personalized therapies, shedding light on the evolving landscape of cardiovascular medicine.
Collapse
Affiliation(s)
| | | | | | - Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (S.C.-C.); (J.M.C.-C.); (D.F.)
| |
Collapse
|
5
|
Attachaipanich T, Chattipakorn SC, Chattipakorn N. Current evidence regarding the cellular mechanisms associated with cancer progression due to cardiovascular diseases. J Transl Med 2024; 22:105. [PMID: 38279150 PMCID: PMC10811855 DOI: 10.1186/s12967-023-04803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/13/2023] [Indexed: 01/28/2024] Open
Abstract
Several large cohort studies in cardiovascular disease (CVD) patients have shown an increased incidence of cancer. Previous studies in a myocardial infarction (MI) mouse model reported increased colon, breast, and lung cancer growth. The potential mechanisms could be due to secreted cardiokines and micro-RNAs from pathological hearts and immune cell reprogramming. A study in a MI-induced heart failure (HF) mouse demonstrated an increase in cardiac expression of SerpinA3, resulting in an enhanced proliferation of colon cancer cells. In MI-induced HF mice with lung cancer, the attenuation of tumor sensitivity to ferroptosis via the secretion of miR-22-3p from cardiomyocytes was demonstrated. In MI mice with breast cancer, immune cell reprogramming toward the immunosuppressive state was shown. However, a study in mice with renal cancer reported no impact of MI on tumor growth. In addition to MI, cardiac hypertrophy was shown to promote the growth of breast and lung cancer. The cardiokine potentially involved, periostin, was increased in the cardiac tissue and serum of a cardiac hypertrophy model, and was reported to increase breast cancer cell proliferation. Since the concept that CVD could influence the initiation and progression of several types of cancer is quite new and challenging regarding future therapeutic and preventive strategies, further studies are needed to elucidate the potential underlying mechanisms which will enable more effective risk stratification and development of potential therapeutic interventions to prevent cancer in CVD patients.
Collapse
Affiliation(s)
- Tanawat Attachaipanich
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cardiac Electrophysiology Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
6
|
Wang G, Feng L, Liu C, Han Z, Chen X. MiR-378 Inhibits Angiotensin II-Induced Cardiomyocyte Hypertrophy by Targeting AKT2. Int Heart J 2024; 65:528-536. [PMID: 38825497 DOI: 10.1536/ihj.23-485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Cardiomyocyte hypertrophy plays a crucial role in heart failure development, potentially leading to sudden cardiac arrest and death. Previous studies suggest that micro-ribonucleic acids (miRNAs) show promise for the early diagnosis and treatment of cardiomyocyte hypertrophy.To investigate the miR-378 expression in the cardiomyocyte hypertrophy model, reverse transcription-polymerase chain reaction (RT-qPCR), Western blot, and immunofluorescence tests were conducted in angiotensin II (Ang II)-induced H9c2 cells and Ang II-induced mouse model of cardiomyocyte hypertrophy. The functional interaction between miR-378 and AKT2 was studied by dual-luciferase reporter, RNA pull-down, Western blot, and RT-qPCR assays.The results of RT-qPCR analysis showed the downregulated expression of miR-378 in both the cell and animal models of cardiomyocyte hypertrophy. It was observed that the introduction of the miR-378 mimic inhibited the hypertrophy of cardiomyocytes induced by Ang II. Furthermore, the co-transfection of AKT2 expression vector partially mitigated the negative impact of miR-378 overexpression on Ang II-induced cardiomyocytes. Molecular investigations provided evidence that miR-378 negatively regulated AKT2 expression by interacting with the 3' untranslated region (UTR) of AKT2 mRNA.Decreased miR-378 expression and AKT2 activation are linked to Ang II-induced cardiomyocyte hypertrophy. Targeting miR-378/AKT2 axis offers therapeutic opportunity to alleviate cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Guili Wang
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital
| | - Linlin Feng
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital
| | - Chunxiang Liu
- Department of Ultrasound, Beijing Xiaotangshan Hospital
| | - Zongqiang Han
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital
| | - Xia Chen
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital
| |
Collapse
|
7
|
Wafi AM. Nrf2 and autonomic dysregulation in chronic heart failure and hypertension. Front Physiol 2023; 14:1206527. [PMID: 37719456 PMCID: PMC10500196 DOI: 10.3389/fphys.2023.1206527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Redox imbalance plays essential role in the pathogenesis of cardiovascular diseases. Chronic heart failure (CHF) and hypertension are associated with central oxidative stress, which is partly mediated by the downregulation of antioxidant enzymes in the central autonomic neurons that regulate sympathetic outflow, resulting in sympathoexcitation. Antioxidant proteins are partially regulated by the transcriptional factor nuclear factor erythroid 2-related factor 2 (Nrf2). Downregulation of Nrf2 is key to disrupting central redox homeostasis and mediating sympathetic nerve activity in the setting of Chronic heart failure and hypertension. Nrf2, in turn, is regulated by various mechanisms, such as extracellular vesicle-enriched microRNAs derived from several cell types, including heart and skeletal muscle. In this review, we discuss the role of Nrf2 in regulating oxidative stress in the brain and its impact on sympathoexcitation in Chronic heart failure and hypertension. Importantly, we also discuss interorgan communication via extracellular vesicle pathways that mediate central redox imbalance through Nrf2 signaling.
Collapse
Affiliation(s)
- Ahmed M. Wafi
- Physiology Department, Faculty of Medicine, Jazan University, Jizan, Saudi Arabia
| |
Collapse
|
8
|
Drakos SG, Badolia R, Makaju A, Kyriakopoulos CP, Wever-Pinzon O, Tracy CM, Bakhtina A, Bia R, Parnell T, Taleb I, Ramadurai DKA, Navankasattusas S, Dranow E, Hanff TC, Tseliou E, Shankar TS, Visker J, Hamouche R, Stauder EL, Caine WT, Alharethi R, Selzman CH, Franklin S. Distinct Transcriptomic and Proteomic Profile Specifies Patients Who Have Heart Failure With Potential of Myocardial Recovery on Mechanical Unloading and Circulatory Support. Circulation 2023; 147:409-424. [PMID: 36448446 PMCID: PMC10062458 DOI: 10.1161/circulationaha.121.056600] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/25/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Extensive evidence from single-center studies indicates that a subset of patients with chronic advanced heart failure (HF) undergoing left ventricular assist device (LVAD) support show significantly improved heart function and reverse structural remodeling (ie, termed "responders"). Furthermore, we recently published a multicenter prospective study, RESTAGE-HF (Remission from Stage D Heart Failure), demonstrating that LVAD support combined with standard HF medications induced remarkable cardiac structural and functional improvement, leading to high rates of LVAD weaning and excellent long-term outcomes. This intriguing phenomenon provides great translational and clinical promise, although the underlying molecular mechanisms driving this recovery are largely unknown. METHODS To identify changes in signaling pathways operative in the normal and failing human heart and to molecularly characterize patients who respond favorably to LVAD unloading, we performed global RNA sequencing and phosphopeptide profiling of left ventricular tissue from 93 patients with HF undergoing LVAD implantation (25 responders and 68 nonresponders) and 12 nonfailing donor hearts. Patients were prospectively monitored through echocardiography to characterize their myocardial structure and function and identify responders and nonresponders. RESULTS These analyses identified 1341 transcripts and 288 phosphopeptides that are differentially regulated in cardiac tissue from nonfailing control samples and patients with HF. In addition, these unbiased molecular profiles identified a unique signature of 29 transcripts and 93 phosphopeptides in patients with HF that distinguished responders after LVAD unloading. Further analyses of these macromolecules highlighted differential regulation in 2 key pathways: cell cycle regulation and extracellular matrix/focal adhesions. CONCLUSIONS This is the first study to characterize changes in the nonfailing and failing human heart by integrating multiple -omics platforms to identify molecular indices defining patients capable of myocardial recovery. These findings may guide patient selection for advanced HF therapies and identify new HF therapeutic targets.
Collapse
Affiliation(s)
- Stavros G. Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Rachit Badolia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Aman Makaju
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Christos P. Kyriakopoulos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Omar Wever-Pinzon
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Christopher M. Tracy
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Anna Bakhtina
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Ryan Bia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Timothy Parnell
- Bioinformatics Core, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States
| | - Iosif Taleb
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Dinesh K. A. Ramadurai
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Sutip Navankasattusas
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Elizabeth Dranow
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Thomas C. Hanff
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Eleni Tseliou
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Thirupura S. Shankar
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Joseph Visker
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Rana Hamouche
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Elizabeth L. Stauder
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
| | - William T. Caine
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
| | - Rami Alharethi
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
| | - Craig H. Selzman
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| |
Collapse
|
9
|
Suppression of RBFox2 by Multiple MiRNAs in Pressure Overload-Induced Heart Failure. Int J Mol Sci 2023; 24:ijms24021283. [PMID: 36674797 PMCID: PMC9867119 DOI: 10.3390/ijms24021283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/25/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Heart failure is the final stage of various cardiovascular diseases and seriously threatens human health. Increasing mediators have been found to be involved in the pathogenesis of heart failure, including the RNA binding protein RBFox2. It participates in multiple aspects of the regulation of cardiac function and plays a critical role in the process of heart failure. However, how RBFox2 itself is regulated remains unclear. Here, we dissected transcriptomic signatures, including mRNAs and miRNAs, in a mouse model of heart failure after TAC surgery. A global analysis showed that an asymmetric alternation in gene expression and a large-scale upregulation of miRNAs occurred in heart failure. An association analysis revealed that the latter not only contributed to the degradation of numerous mRNA transcripts, but also suppressed the translation of key proteins such as RBFox2. With the aid of Ago2 CLIP-seq data, luciferase assays verified that RBFox2 was targeted by multiple miRNAs, including Let-7, miR-16, and miR-200b, which were significantly upregulated in heart failure. The overexpression of these miRNAs suppressed the RBFox2 protein and its downstream effects in cardiomyocytes, which was evidenced by the suppressed alternative splicing of the Enah gene and impaired E-C coupling via the repression of the Jph2 protein. The inhibition of Let-7, the most abundant miRNA family targeting RBFox2, could restore the RBFox2 protein as well as its downstream effects in dysfunctional cardiomyocytes induced by ISO treatment. In all, these findings revealed the molecular mechanism leading to RBFox2 depression in heart failure, and provided an approach to rescue RBFox2 through miRNA inhibition for the treatment of heart failure.
Collapse
|
10
|
Analysis of Function Role and Long Noncoding RNA Expression in Chronic Heart Failure Rats Treated with Hui Yang Jiu Ji Decoction. JOURNAL OF HEALTHCARE ENGINEERING 2023; 2023:7438567. [PMID: 36704572 PMCID: PMC9873466 DOI: 10.1155/2023/7438567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/25/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023]
Abstract
Hui Yang Jiu Ji (HYJJ) decoction has been applied as a prescription of traditional Chinese medicine for the treatment of chronic heart failure (CHF). However, its comprehensive molecular mechanism remains unclear now. Our study aimed to explore the possible function and lncRNA-miRNA regulation networks of HYJJ on CHF induced by doxorubicin (DOX) in rats. Our study showed that HYJJ could recover cardiac function and alleviate myocardial injury of DOX-induced CHF. Besides, HYJJ had an effect on restraining myocardial apoptosis in CHF rats. Moreover, RNA-sequencing and bioinformatics analysis indicated that among a total of 548 significantly up- and down-regulated differentially expressed (DE) long noncoding RNA (lncRNA), 511 up- and down-regulated DE miRNAs were identified. Cushing's syndrome and Adrenergic signaling in cardiomyocytes were common pathways between DE-lncRNAs-enriched pathways and DE-miRNAs-enriched pathways. Finally, we observed a new pathway-MSTRG.598.1/Lilrb2 pathway with the HYJJ treatment; however, it needs further studies. In conclusion, this study provided evidence that HYJJ may be a suitable medicine for treating CHF. Moreover, several pivotal miRNAs may serve important roles in these processes by regulating some key miRNAs or pathways in CHF.
Collapse
|
11
|
Temporal Changes in Extracellular Vesicle Hemostatic Protein Composition Predict Favourable Left Ventricular Remodeling after Acute Myocardial Infarction. Int J Mol Sci 2022; 24:ijms24010327. [PMID: 36613770 PMCID: PMC9820565 DOI: 10.3390/ijms24010327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The subset of plasma extracellular vesicles (EVs) that coprecipitate with low-density lipoprotein (LDL-EVs) carry coagulation and fibrinolysis pathway proteins as cargo. We investigated the association between LDL-EV hemostatic/fibrinolysis protein ratios and post-acute myocardial infarction (post-AMI) left ventricular (LV) remodeling which precedes heart failure. Protein concentrations of von Willebrand factor (VWF), SerpinC1 and plasminogen were determined in LDL-EVs extracted from plasma samples obtained at baseline (within 72 h post-AMI), 1 month and 6 months post-AMI from 198 patients. Patients were categorized as exhibiting adverse (n = 98) or reverse (n = 100) LV remodeling based on changes in LV end-systolic volume (increased or decreased ≥15) over a 6-month period. Multiple level longitudinal data analysis with structural equation (ML-SEM) model was used to assess predictive value for LV remodeling independent of baseline differences. At baseline, protein levels of VWF, SerpinC1 and plasminogen in LDL-EVs did not differ between patients with adverse versus reverse LV remodeling. At 1 month post-AMI, protein levels of VWF and SerpinC1 decreased whilst plasminogen increased in patients with adverse LV remodeling. In contrast, VWF and plasminogen decreased whilst SerpinC1 remained unchanged in patients with reverse LV remodeling. Overall, compared with patients with adverse LV remodeling, higher levels of SerpinC1 and VWF but lower levels of plasminogen resulted in higher ratios of VWF:Plasminogen and SerpinC1:Plasminogen at both 1 month and 6 months post-AMI in patients with reverse LV remodeling. More importantly, ratios VWF:Plasminogen (AUC = 0.674) and SerpinC1:Plasminogen (AUC = 0.712) displayed markedly better prognostic power than NT-proBNP (AUC = 0.384), troponin-I (AUC = 0.467) or troponin-T (AUC = 0.389) (p < 0.001) to predict reverse LV remodeling post-AMI. Temporal changes in the ratios of coagulation to fibrinolysis pathway proteins in LDL-EVs outperform current standard plasma biomarkers in predicting post-AMI reverse LV remodeling. Our findings may provide clinical cues to uncover the cellular mechanisms underpinning post-AMI reverse LV remodeling.
Collapse
|
12
|
Xu D, Di K, Fan B, Wu J, Gu X, Sun Y, Khan A, Li P, Li Z. MicroRNAs in extracellular vesicles: Sorting mechanisms, diagnostic value, isolation, and detection technology. Front Bioeng Biotechnol 2022; 10:948959. [PMID: 36324901 PMCID: PMC9618890 DOI: 10.3389/fbioe.2022.948959] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of short, single-stranded, noncoding RNAs, with a length of about 18–22 nucleotides. Extracellular vesicles (EVs) are derived from cells and play a vital role in the development of diseases and can be used as biomarkers for liquid biopsy, as they are the carriers of miRNA. Existing studies have found that most of the functions of miRNA are mainly realized through intercellular transmission of EVs, which can protect and sort miRNAs. Meanwhile, detection sensitivity and specificity of EV-derived miRNA are higher than those of conventional serum biomarkers. In recent years, EVs have been expected to become a new marker for liquid biopsy. This review summarizes recent progress in several aspects of EVs, including sorting mechanisms, diagnostic value, and technology for isolation of EVs and detection of EV-derived miRNAs. In addition, the study reviews challenges and future research avenues in the field of EVs, providing a basis for the application of EV-derived miRNAs as a disease marker to be used in clinical diagnosis and even for the development of point-of-care testing (POCT) platforms.
Collapse
Affiliation(s)
- Dongjie Xu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Kaili Di
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Boyue Fan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinrui Gu
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yifan Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Adeel Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University), Southeast University, Nanjing, China
| | - Peng Li
- College of Animal Science, Yangtze University, Jingzhou, China
- *Correspondence: Peng Li, ; Zhiyang Li,
| | - Zhiyang Li
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Peng Li, ; Zhiyang Li,
| |
Collapse
|
13
|
Abstract
BACKGROUND Chronic heart failure (CHF) is associated with redox imbalance. Downregulation of Nrf2 (nuclear factor [erythroid-derived 2]-like 2) plays important roles in disrupting myocardial redox homeostasis and mediating sympathetic nerve activity in the setting of CHF. However, it is unclear if circulating extracellular vesicles (EVs) elicit sympathetic excitation in CHF by disrupting central redox homeostasis. We tested the hypothesis that cardiac-derived EVs circulate to the presympathetic rostral ventrolateral medulla and contribute to oxidative stress and sympathetic excitation via EV-enriched microRNA-mediated Nrf2 downregulation. METHODS Data were collected on rats with CHF post-myocardial infarction (MI) and on human subjects with ischemic CHF. EVs were isolated from tissue and plasma, and we determined the miRNAs cargo that related to targeting Nrf2 translation. We tracked the distribution of cardiac-derived EVs using in vitro labeled circulating EVs and cardiac-specific membrane GFP+ transgenic mice. Finally, we tested the impact of exogenously loading of antagomirs to specific Nrf2-related miRNAs on CHF-EV-induced pathophysiological phenotypes in normal rats (eg, sympathetic and cardiac function). RESULTS Nrf2 downregulation in CHF rats was associated with an upregulation of Nrf2-targeting miRNAs, which were abundant in cardiac-derived and circulating EVs from rats and humans. EVs isolated from the brain of CHF rats were also enriched with Nrf2-targeting miRNAs and cardiac-specific miRNAs. Cardiac-derived EVs were taken up by neurons in the rostral ventrolateral medulla. The administration of cardiac-derived and circulating EVs from CHF rats into the rostral ventrolateral medulla of normal rats evoked an increase in renal sympathetic nerve activity and plasma norepinephrine compared with Sham-operated rats, which were attenuated by exogenously preloading CHF-EVs with antagomirs to Nrf2-targeting miRNAs. CONCLUSIONS Cardiac microRNA-enriched EVs from animals with CHF can mediate crosstalk between the heart and the brain in the regulation of sympathetic outflow by targeting the Nrf2/antioxidant signaling pathway. This new endocrine signaling pathway regulating sympathetic outflow in CHF may be exploited for novel therapeutics.
Collapse
Affiliation(s)
- Changhai Tian
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536
| | - Lie Gao
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Tara L. Rudebush
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Li Yu
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
14
|
Role of Different Types of miRNAs in Some Cardiovascular Diseases and Therapy-Based miRNA Strategies: A Mini Review. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2738119. [PMID: 36187500 PMCID: PMC9519277 DOI: 10.1155/2022/2738119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022]
Abstract
The role of microRNAs (miRNAs) in the pathogenesis of cardiovascular disease has been extensively studied. miRNAs have been highlighted as an important physiological regulator for activities like cardiac protection. miRNAs are present in the circulation, and they have been investigated as physiological markers, especially in the condition of heart failure. However, there is less compelling verification that miRNAs can outperform traditional biomarkers. However, clinical evidence is still required. In this review article, we explored the feasibility of miRNAs as diagnostic biomarkers for heart failure in a systematic study. Searching in the PubMed database to identify miRNA molecules that are differentially expressed between groups of patients with heart failure or heart disease and controls, throughout the investigation, we discovered no significant overlap in differentially expressed miRNAs. Only four miRNAs (“miR-126,” “miR-150-5p,” “hsa-miR-233,” and “miR-423-5p”) were differentially expressed. Results from our review show that there is not enough evidence to support the use of miRNAs as biomarkers in clinical settings.
Collapse
|
15
|
Jedrzejewska A, Braczko A, Kawecka A, Hellmann M, Siondalski P, Slominska E, Kutryb-Zajac B, Yacoub MH, Smolenski RT. Novel Targets for a Combination of Mechanical Unloading with Pharmacotherapy in Advanced Heart Failure. Int J Mol Sci 2022; 23:9886. [PMID: 36077285 PMCID: PMC9456495 DOI: 10.3390/ijms23179886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/19/2022] Open
Abstract
LVAD therapy is an effective rescue in acute and especially chronic cardiac failure. In several scenarios, it provides a platform for regeneration and sustained myocardial recovery. While unloading seems to be a key element, pharmacotherapy may provide powerful tools to enhance effective cardiac regeneration. The synergy between LVAD support and medical agents may ensure satisfying outcomes on cardiomyocyte recovery followed by improved quality and quantity of patient life. This review summarizes the previous and contemporary strategies for combining LVAD with pharmacotherapy and proposes new therapeutic targets. Regulation of metabolic pathways, enhancing mitochondrial biogenesis and function, immunomodulating treatment, and stem-cell therapies represent therapeutic areas that require further experimental and clinical studies on their effectiveness in combination with mechanical unloading.
Collapse
Affiliation(s)
- Agata Jedrzejewska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| | - Ada Kawecka
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| | - Marcin Hellmann
- Department of Cardiac Diagnostics, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Piotr Siondalski
- Department of Cardiac Surgery, Medical University of Gdansk, Debinki 7 Street, 80-211 Gdansk, Poland
| | - Ewa Slominska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| | - Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| | - Magdi H. Yacoub
- Heart Science Centre, Imperial College of London at Harefield Hospital, Harefield UB9 6JH, UK
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| |
Collapse
|
16
|
Hnat T, Veselka J, Honek J. Left ventricular reverse remodelling and its predictors in non-ischaemic cardiomyopathy. ESC Heart Fail 2022; 9:2070-2083. [PMID: 35437948 PMCID: PMC9288763 DOI: 10.1002/ehf2.13939] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/16/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Adverse remodelling following an initial insult is the hallmark of heart failure (HF) development and progression. It is manifested as changes in size, shape, and function of the myocardium. While cardiac remodelling may be compensatory in the short term, further neurohumoral activation and haemodynamic overload drive this deleterious process that is associated with impaired prognosis. However, in some patients, the changes may be reversed. Left ventricular reverse remodelling (LVRR) is characterized as a decrease in chamber volume and normalization of shape associated with improvement in both systolic and diastolic function. LVRR might occur spontaneously or more often in response to therapeutic interventions that either remove the initial stressor or alleviate some of the mechanisms that contribute to further deterioration of the failing heart. Although the process of LVRR in patients with new‐onset HF may take up to 2 years after initiating treatment, there is a significant portion of patients who do not improve despite optimal therapy, which has serious clinical implications when considering treatment escalation towards more aggressive options. On the contrary, in patients that achieve delayed improvement in cardiac function and architecture, waiting might avoid untimely implantable cardioverter‐defibrillator implantation. Therefore, prognostication of successful LVRR based on clinical, imaging, and biomarker predictors is of utmost importance. LVRR has a positive impact on prognosis. However, reverse remodelled hearts continue to have abnormal features. In fact, most of the molecular, cellular, interstitial, and genome expression abnormalities remain and a susceptibility to dysfunction redevelopment under biomechanical stress persists in most patients. Hence, a distinction should be made between reverse remodelling and true myocardial recovery. In this comprehensive review, current evidence on LVRR, its predictors, and implications on prognostication, with a specific focus on HF patients with non‐ischaemic cardiomyopathy, as well as on novel drugs, is presented.
Collapse
Affiliation(s)
- Tomas Hnat
- Department of Cardiology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84/1, Prague, 15006, Czech Republic
| | - Josef Veselka
- Department of Cardiology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84/1, Prague, 15006, Czech Republic
| | - Jakub Honek
- Department of Cardiology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84/1, Prague, 15006, Czech Republic
| |
Collapse
|
17
|
Marinescu MC, Lazar AL, Marta MM, Cozma A, Catana CS. Non-Coding RNAs: Prevention, Diagnosis, and Treatment in Myocardial Ischemia-Reperfusion Injury. Int J Mol Sci 2022; 23:ijms23052728. [PMID: 35269870 PMCID: PMC8911068 DOI: 10.3390/ijms23052728] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/17/2022] Open
Abstract
Recent knowledge concerning the role of non-coding RNAs (ncRNAs) in myocardial ischemia/reperfusion (I/R) injury provides new insight into their possible roles as specific biomarkers for early diagnosis, prognosis, and treatment. MicroRNAs (miRNAs) have fewer than 200 nucleotides, while long ncRNAs (lncRNAs) have more than 200 nucleotides. The three types of ncRNAs (miRNAs, lncRNAs, and circRNAs) act as signaling molecules strongly involved in cardiovascular disorders (CVD). I/R injury of the heart is the main CVD correlated with acute myocardial infarction (AMI), cardiac surgery, and transplantation. The expression levels of many ncRNAs and miRNAs are highly modified in the plasma of MI patients, and thus they have the potential to diagnose and treat MI. Cardiomyocyte and endothelial cell death is the major trigger for myocardial ischemia–reperfusion syndrome (MIRS). The cardioprotective effect of inflammasome activation in MIRS and the therapeutics targeting the reparative response could prevent progressive post-infarction heart failure. Moreover, the pharmacological and genetic modulation of these ncRNAs has the therapeutic potential to improve clinical outcomes in AMI patients.
Collapse
Affiliation(s)
- Mihnea-Cosmin Marinescu
- County Clinical Emergency Hospital of Brasov Romania, 500326 Brașov, Romania;
- Department of Vascular Surgery, Second Surgical Clinic, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrada-Luciana Lazar
- Department of Dermatology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Monica Mihaela Marta
- Department of Medical Education, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Angela Cozma
- Department of Internal Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Cristina-Sorina Catana
- Department of Medical Biochemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
18
|
Ragusa R, Di Molfetta A, Del Turco S, Cabiati M, Del Ry S, Basta G, Mercatanti A, Pitto L, Amodeo A, Trivella MG, Rizzo M, Caselli C. Epigenetic Regulation of Cardiac Troponin Genes in Pediatric Patients with Heart Failure Supported by Ventricular Assist Device. Biomedicines 2021; 9:biomedicines9101409. [PMID: 34680526 PMCID: PMC8533380 DOI: 10.3390/biomedicines9101409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 11/16/2022] Open
Abstract
Ventricular Assist Device (VAD) therapy is considered as a part of standard care for end-stage Heart Failure (HF) children unresponsive to medical management, but the potential role of miRNAs in response to VAD therapy on molecular pathways underlying LV remodeling and cardiac function in HF is unknown. The aims of this study were to evaluate the effects of VAD on miRNA expression profile in cardiac tissue obtained from HF children, to determine the putative miRNA targets by an in-silico analysis as well as to verify the changes of predicated miRNA target in the same cardiac samples. The regulatory role of selected miRNAs on predicted targets was evaluated by a dedicated in vitro study. miRNA profile was determined in cardiac samples obtained from 13 HF children [median: 29 months; 19 LVEF%; 9 Kg] by NGS before VAD implant (pre-VAD) and at the moment of heart transplant (Post-VAD). Only hsa-miR-199b-5p, hsa-miR-19a-3p, hsa-miR-1246 were differentially expressed at post-VAD when compared to pre-VAD, and validated by real-time PCR. Putative targets of the selected miRNAs were involved in regulation of sarcomere genes, such as cardiac troponin (cTns) complex. The expression levels of fetal ad adult isoforms of cTns resulted significantly higher after VAD in cardiac tissue of HF pediatric patients when compared with HF adults. An in vitro study confirmed a down-regulatory effect of hsa-miR-19a-3p on cTnC expression. The effect of VAD on sarcomere organization through cTn isoform expression may be epigenetically regulated, suggesting for miRNAs a potential role as therapeutic targets to improve heart function in HF pediatric patients.
Collapse
Affiliation(s)
- Rosetta Ragusa
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy; (R.R.); (S.D.T.); (M.C.); (S.D.R.); (G.B.); (A.M.); (L.P.); (M.G.T.); (M.R.)
- Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Arianna Di Molfetta
- Departement of Cardiothoracic Surgery, Ospedale Pediatrico Bambino Gesù, 00165 Rome, Italy; (A.D.M.); (A.A.)
| | - Serena Del Turco
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy; (R.R.); (S.D.T.); (M.C.); (S.D.R.); (G.B.); (A.M.); (L.P.); (M.G.T.); (M.R.)
| | - Manuela Cabiati
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy; (R.R.); (S.D.T.); (M.C.); (S.D.R.); (G.B.); (A.M.); (L.P.); (M.G.T.); (M.R.)
| | - Silvia Del Ry
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy; (R.R.); (S.D.T.); (M.C.); (S.D.R.); (G.B.); (A.M.); (L.P.); (M.G.T.); (M.R.)
| | - Giuseppina Basta
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy; (R.R.); (S.D.T.); (M.C.); (S.D.R.); (G.B.); (A.M.); (L.P.); (M.G.T.); (M.R.)
| | - Alberto Mercatanti
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy; (R.R.); (S.D.T.); (M.C.); (S.D.R.); (G.B.); (A.M.); (L.P.); (M.G.T.); (M.R.)
| | - Letizia Pitto
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy; (R.R.); (S.D.T.); (M.C.); (S.D.R.); (G.B.); (A.M.); (L.P.); (M.G.T.); (M.R.)
| | - Antonio Amodeo
- Departement of Cardiothoracic Surgery, Ospedale Pediatrico Bambino Gesù, 00165 Rome, Italy; (A.D.M.); (A.A.)
| | - Maria Giovanna Trivella
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy; (R.R.); (S.D.T.); (M.C.); (S.D.R.); (G.B.); (A.M.); (L.P.); (M.G.T.); (M.R.)
| | - Milena Rizzo
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy; (R.R.); (S.D.T.); (M.C.); (S.D.R.); (G.B.); (A.M.); (L.P.); (M.G.T.); (M.R.)
| | - Chiara Caselli
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy; (R.R.); (S.D.T.); (M.C.); (S.D.R.); (G.B.); (A.M.); (L.P.); (M.G.T.); (M.R.)
- Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-3153551; Fax: +39-050-3152166
| |
Collapse
|
19
|
Bär C, Chatterjee S, Falcão Pires I, Rodrigues P, Sluijter JPG, Boon RA, Nevado RM, Andrés V, Sansonetti M, de Windt L, Ciccarelli M, Hamdani N, Heymans S, Figuinha Videira R, Tocchetti CG, Giacca M, Zacchigna S, Engelhardt S, Dimmeler S, Madonna R, Thum T. Non-coding RNAs: update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovasc Res 2021; 116:1805-1819. [PMID: 32638021 DOI: 10.1093/cvr/cvaa195] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Vast parts of mammalian genomes are actively transcribed, predominantly giving rise to non-coding RNA (ncRNA) transcripts including microRNAs, long ncRNAs, and circular RNAs among others. Contrary to previous opinions that most of these RNAs are non-functional molecules, they are now recognized as critical regulators of many physiological and pathological processes including those of the cardiovascular system. The discovery of functional ncRNAs has opened up new research avenues aiming at understanding ncRNA-related disease mechanisms as well as exploiting them as novel therapeutics in cardiovascular therapy. In this review, we give an update on the current progress in ncRNA research, particularly focusing on cardiovascular physiological and disease processes, which are under current investigation at the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. This includes a range of topics such as extracellular vesicle-mediated communication, neurohormonal regulation, inflammation, cardiac remodelling, cardio-oncology as well as cardiac development and regeneration, collectively highlighting the wide-spread involvement and importance of ncRNAs in the cardiovascular system.
Collapse
Affiliation(s)
- Christian Bär
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Shambhabi Chatterjee
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Inês Falcão Pires
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Rodrigues
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands.,Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,Partner site Rhein/Main, German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany
| | - Rosa M Nevado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Marida Sansonetti
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Leon de Windt
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Italy
| | - Nazha Hamdani
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Stephane Heymans
- Department of Cardiology, Maastricht University Medical Centre, University Hospital Maastricht, The Netherlands.,Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), University Hospital Maastricht, The Netherlands
| | - Raquel Figuinha Videira
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,School of Cardiovascular Medicine & Sciences, King's College London, London, UK.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Serena Zacchigna
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Str. 29, Munich 80802, Germany.,DZHK (German Center for Cardiovascular Research), Partner site Munich Heart Alliance, Biedersteiner Str. 29, Munich 80802, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy.,Department of Internal Medicine, University of Texas Medical School, Houston, TX, USA
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
20
|
Abstract
This review provides a comprehensive overview of the past 25+ years of research into the development of left ventricular assist device (LVAD) to improve clinical outcomes in patients with severe end-stage heart failure and basic insights gained into the biology of heart failure gleaned from studies of hearts and myocardium of patients undergoing LVAD support. Clinical aspects of contemporary LVAD therapy, including evolving device technology, overall mortality, and complications, are reviewed. We explain the hemodynamic effects of LVAD support and how these lead to ventricular unloading. This includes a detailed review of the structural, cellular, and molecular aspects of LVAD-associated reverse remodeling. Synergisms between LVAD support and medical therapies for heart failure related to reverse remodeling, remission, and recovery are discussed within the context of both clinical outcomes and fundamental effects on myocardial biology. The incidence, clinical implications and factors most likely to be associated with improved ventricular function and remission of the heart failure are reviewed. Finally, we discuss recognized impediments to achieving myocardial recovery in the vast majority of LVAD-supported hearts and their implications for future research aimed at improving the overall rates of recovery.
Collapse
Affiliation(s)
| | | | - Gabriel Sayer
- Cardiovascular Research Foundation, New York, NY (D.B.)
| | - Nir Uriel
- Cardiovascular Research Foundation, New York, NY (D.B.)
| |
Collapse
|
21
|
Tian C, Gao L, Zucker IH. Regulation of Nrf2 signaling pathway in heart failure: Role of extracellular vesicles and non-coding RNAs. Free Radic Biol Med 2021; 167:218-231. [PMID: 33741451 PMCID: PMC8096694 DOI: 10.1016/j.freeradbiomed.2021.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
The balance between pro- and antioxidant molecules has been established as an important driving force in the pathogenesis of cardiovascular disease. Chronic heart failure is associated with oxidative stress in the myocardium and globally. Redox balance in the heart and brain is controlled, in part, by antioxidant proteins regulated by the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which is reduced in the heart failure state. Nrf2 can, in turn, be regulated by a variety of mechanisms including circulating microRNAs (miRNAs) encapsulated in extracellular vesicles (EVs) derived from multiple cell types in the heart. Here, we review the role of the Nrf2 and antioxidant enzyme signaling pathway in mediating redox balance in the myocardium and the brain in the heart failure state. This review focuses on Nrf2 and antioxidant protein regulation in the heart and brain by miRNA-enriched EVs in the setting of heart failure. We discuss EV-mediated intra- and inter-organ communications especially, communication between the heart and brain via an EV pathway that mediates cardiac function and sympatho-excitation in heart failure. Importantly, we speculate how engineered EVs with specific miRNAs or antagomirs may be used in a therapeutic manner in heart failure.
Collapse
Affiliation(s)
- Changhai Tian
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
| |
Collapse
|
22
|
Taking Data Science to Heart: Next Scale of Gene Regulation. Curr Cardiol Rep 2021; 23:46. [PMID: 33721129 DOI: 10.1007/s11886-021-01467-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW Technical advances have facilitated high-throughput measurements of the genome in the context of cardiovascular biology. These techniques bring a deluge of gargantuan datasets, which in turn present two fundamentally new opportunities for innovation-data processing and knowledge integration-toward the goal of meaningful basic and translational discoveries. RECENT FINDINGS Big data, integrative analyses, and machine learning have brought cardiac investigations to the cutting edge of chromatin biology, not only to reveal basic principles of gene regulation in the heart, but also to aid in the design of targeted epigenetic therapies. SUMMARY Cardiac studies using big data are only beginning to integrate the millions of recorded data points and the tools of machine learning are aiding this process. Future experimental design should take into consideration insights from existing genomic datasets, thereby focusing on heretofore unexplored epigenomic contributions to disease pathology.
Collapse
|
23
|
McNeill SM, Baltos JA, White PJ, May LT. Biased agonism at adenosine receptors. Cell Signal 2021; 82:109954. [PMID: 33610717 DOI: 10.1016/j.cellsig.2021.109954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 01/14/2023]
Abstract
Adenosine modulates many aspects of human physiology and pathophysiology through binding to the adenosine family of G protein-coupled receptors, which are comprised of four subtypes, the A1R, A2AR, A2BR and A3R. Modulation of adenosine receptor function by exogenous agonists, antagonists and allosteric modulators can be beneficial for a number of conditions including cardiovascular disease, Parkinson's disease, and cancer. Unfortunately, many preclinical drug candidates targeting adenosine receptors have failed in clinical trials due to limited efficacy and/or severe on-target undesired effects. To overcome the key barriers typically encountered when transitioning adenosine receptor ligands into the clinic, research efforts have focussed on exploiting the phenomenon of biased agonism. Biased agonism provides the opportunity to develop ligands that favour therapeutic signalling pathways, whilst avoiding signalling associated with on-target undesired effects. Recent studies have begun to define the structure-function relationships that underpin adenosine receptor biased agonism and establish how this phenomenon can be harnessed therapeutically. In this review we describe the recent advancements made towards achieving therapeutically relevant biased agonism at adenosine receptors.
Collapse
Affiliation(s)
- Samantha M McNeill
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Jo-Anne Baltos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia; Department of Pharmacology, Monash University, Melbourne, VIC, Australia.
| | - Paul J White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia; Department of Pharmacology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
24
|
Liu T, Zhang G, Wang Y, Rao M, Zhang Y, Guo A, Wang M. Identification of Circular RNA-MicroRNA-Messenger RNA Regulatory Network in Atrial Fibrillation by Integrated Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8037273. [PMID: 33062700 PMCID: PMC7545447 DOI: 10.1155/2020/8037273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Circular RNA (circRNA) is a noncoding RNA that forms a closed-loop structure, and its abnormal expression may cause disease. We aimed to find potential network for circRNA-related competitive endogenous RNA (ceRNA) in atrial fibrillation (AF). METHODS The circRNA, miRNA, and mRNA expression profiles in the heart tissue from AF patients were retrieved from the Gene Expression Omnibus database and analyzed comprehensively. Differentially expressed circRNAs (DEcircRNAs), differentially expressed miRNAs (DEmiRNAs), and differentially expressed mRNAs (DEmRNAs) were identified, followed by the establishment of DEcircRNA-DEmiRNA-DEmRNA regulatory network. Functional annotation analysis of host gene of DEcircRNAs and DEmRNAs in ceRNA regulatory network was performed. In vitro experiment and electronic validation were used to validate the expression of DEcircRNAs, DEmiRNAs, and DEmRNAs. RESULTS A total of 1611 DEcircRNAs, 51 DEmiRNAs, and 1250 DEmRNAs were identified in AF. The DEcircRNA-DEmiRNA-DEmRNA network contained 62 circRNAs, 14 miRNAs, and 728 mRNAs. Among which, two ceRNA regulatory pairs of hsa-circRNA-100053-hsa-miR-455-5p-TRPV1 and hsa-circRNA-005843-hsa-miR-188-5p-SPON1 were identified. In addition, six miRNA-mRNA regulatory pairs including hsa-miR-34c-5p-INMT, hsa-miR-1253-DDIT4L, hsa-miR-508-5p-SMOC2, hsa-miR-943-ACTA1, hsa-miR-338-3p-WIPI1, and hsa-miR-199a-3p-RAP1GAP2 were also obtained. MTOR was a significantly enriched signaling pathway of host gene of DEcircRNAs. In addition, arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy, and hypertrophic cardiomyopathy were remarkably enriched signaling pathways of DEmRNAs in DEcircRNA-DEmiRNA-DEmRNA regulatory network. The expression validation of hsa-circRNA-402565, hsa-miR-34c-5p, hsa-miR-188-5p, SPON1, DDIT4L, SMOC2, and WIPI1 was consistent with the integrated analysis. CONCLUSION We speculated that hsa-circRNA-100053-hsa-miR-455-5p-TRPV1 and hsa-circRNA-005843-hsa-miR-188-5p-SPON1 interaction pairs may be involved in AF.
Collapse
Affiliation(s)
- Tao Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Guoru Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yaling Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Mingyue Rao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yang Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Anjun Guo
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Mei Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
25
|
Ogawa K, Noda A, Ueda J, Ogata T, Matsuyama R, Nishizawa Y, Qiao S, Iwata S, Ito M, Fujihara Y, Ichihara M, Adachi K, Takaoka Y, Iwamoto T. Forced expression of miR-143 and -145 in cardiomyocytes induces cardiomyopathy with a reductive redox shift. Cell Mol Biol Lett 2020; 25:40. [PMID: 32855642 PMCID: PMC7444248 DOI: 10.1186/s11658-020-00232-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 08/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Animal model studies show that reductive stress is involved in cardiomyopathy and myopathy, but the exact physiological relevance remains unknown. In addition, the microRNAs miR-143 and miR-145 have been shown to be upregulated in cardiac diseases, but the underlying mechanisms associated with these regulators have yet to be explored. METHODS We developed transgenic mouse lines expressing exogenous miR-143 and miR-145 under the control of the alpha-myosin heavy chain (αMHC) promoter/enhancer. RESULTS The two transgenic lines showed dilated cardiomyopathy-like characteristics and early lethality with markedly increased expression of miR-143. The expression of hexokinase 2 (HK2), a cardioprotective gene that is a target of miR-143, was strongly suppressed in the transgenic hearts, but the in vitro HK activity and adenosine triphosphate (ATP) content were comparable to those observed in wild-type mice. In addition, transgenic complementation of HK2 expression did not reduce mortality rates. Although HK2 is crucial for the pentose phosphate pathway (PPP) and glycolysis, the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) was unexpectedly higher in the hearts of transgenic mice. The expression of gamma-glutamylcysteine synthetase heavy subunit (γ-GCSc) and the in vitro activity of glutathione reductase (GR) were also higher, suggesting that the recycling of GSH and its de novo biosynthesis were augmented in transgenic hearts. Furthermore, the expression levels of glucose-6-phosphate dehydrogenase (G6PD, a rate-limiting enzyme for the PPP) and p62/SQSTM1 (a potent inducer of glycolysis and glutathione production) were elevated, while p62/SQSTM1 was upregulated at the mRNA level rather than as a result of autophagy inhibition. Consistent with this observation, nuclear factor erythroid-2 related factor 2 (Nrf2), Jun N-terminal kinase (JNK) and inositol-requiring enzyme 1 alpha (IRE1α) were activated, all of which are known to induce p62/SQSTM1 expression. CONCLUSIONS Overexpression of miR-143 and miR-145 leads to a unique dilated cardiomyopathy phenotype with a reductive redox shift despite marked downregulation of HK2 expression. Reductive stress may be involved in a wider range of cardiomyopathies than previously thought.
Collapse
Affiliation(s)
- Kota Ogawa
- Department of Biomedical Sciences, Chubu University Graduate School of Life and Health Sciences, Kasugai, Aichi Japan
| | - Akiko Noda
- Department of Biomedical Sciences, Chubu University Graduate School of Life and Health Sciences, Kasugai, Aichi Japan
| | - Jun Ueda
- Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi Japan
- Present address: Center for Advanced Research and Education, Asahikawa Medical University, Asahikawa, Hokkaido Japan
| | - Takehiro Ogata
- Department of Pathology and Cell Regulation, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Rumiko Matsuyama
- Department of Biomedical Sciences, Chubu University Graduate School of Life and Health Sciences, Kasugai, Aichi Japan
| | - Yuji Nishizawa
- Department of Biomedical Sciences, Chubu University Graduate School of Life and Health Sciences, Kasugai, Aichi Japan
| | - Shanlou Qiao
- Department of Biomedical Sciences, Chubu University Graduate School of Life and Health Sciences, Kasugai, Aichi Japan
| | - Satoru Iwata
- Department of Biomedical Sciences, Chubu University Graduate School of Life and Health Sciences, Kasugai, Aichi Japan
- Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi Japan
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi Japan
| | - Morihiro Ito
- Department of Biomedical Sciences, Chubu University Graduate School of Life and Health Sciences, Kasugai, Aichi Japan
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Present address: Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masatoshi Ichihara
- Department of Biomedical Sciences, Chubu University Graduate School of Life and Health Sciences, Kasugai, Aichi Japan
| | - Koichi Adachi
- Radioisotope Research Center Medical Division, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Yuji Takaoka
- Department of Biomedical Sciences, Chubu University Graduate School of Life and Health Sciences, Kasugai, Aichi Japan
| | - Takashi Iwamoto
- Department of Biomedical Sciences, Chubu University Graduate School of Life and Health Sciences, Kasugai, Aichi Japan
- Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi Japan
| |
Collapse
|
26
|
Ma Q, Ma Y, Wang X, Li S, Yu T, Duan W, Wu J, Wen Z, Jiao Y, Sun Z, Hou Y. Circulating miR-1 as a potential predictor of left ventricular remodeling following acute ST-segment myocardial infarction using cardiac magnetic resonance. Quant Imaging Med Surg 2020; 10:1490-1503. [PMID: 32676367 PMCID: PMC7358417 DOI: 10.21037/qims-19-829] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 05/28/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The identification of patients with a high likelihood of left ventricular (LV) remodeling with a high-risk prognosis has critical implications for risk stratification after acute ST-segment elevation myocardial infarction (STEMI). This study aimed to evaluate the relationship between circulating miR-1 and 6-month post-infarct LV remodeling based on cardiac magnetic resonance (CMR) imaging. METHODS A total of 80 patients with a first STEMI treated with primary percutaneous coronary intervention (PCI) who underwent CMR imaging 1 week and 6 months after STEMI were evaluated. The percentage changes of LV ejection fraction (LVEF), LV end-diastolic volume (LVEDV), LV end-systolic volume index (LVESV) at 1 week and 6 months after PCI (%ΔLVEF, %ΔLVEDV and %ΔLVESV) were calculated. miR-1 was measured using polymerase chain reaction (PCR)-based technologies in plasma samples that were collected at admission. The study group was divided into two groups based on a 10% cutoff value for the percentage of change in the LV end-diastolic volume (%ΔLVEDV): remodeling at high risk of major adverse cardiac events (MACEs) (%ΔLVEDV ≥10%, termed the LV remodeling group) and remodeling at lower risk of MACEs (%ΔLVEDV <10%, termed the non-LV remodeling group). The associations of miR-1 expression with the %ΔLVEDV, percentage change in the LV end-systolic volume (%ΔLVESV), and percentage change in the LV ejection fraction at follow-up were estimated. RESULTS Twenty-two patients (27.5%) showed adverse LV remodeling, and 58 patients (72.5%) did not show adverse LV remodeling at the 6-month follow-up of CMR. The mean LVEF, LVEDV index, and LVESV index values at 1 week were 50.6%±8.2%, 74.6±12.8 mL/m2, and 37.2±10.2 mL/m2, respectively. Mean LVEF at follow-up (53.5%±10.6%) was increased compared with baseline (P<0.001). There were significant decreases in LVEDV index and LVESV index values at follow-up (72.0±14.9 mL/m2 and 33.7±11.0 mL/m2, respectively; P=0.009 and P<0.001, respectively). The expression of miR-1 at admission was positively correlated with the %ΔLVEDV (r=0.611, P<0.001) and %ΔLVESV (r=0.268, P=0.016). Receiver operating characteristic (ROC) analysis showed that miR-1 expression predicted LV remodeling with an area under the curve (AUC) value of 0.68 (95% CI: 0.56-0.78). Compared with the clinical factors of peak creatine kinase-myocardial band (CK-MB) and peak troponin T level, peak logNT-proBNP showed the highest predictive power, with an AUC value of 0.75 (95% CI: 0.64-0.84). A model including the clinical, CMR, and miR-1 factors showed greater predictive power (P=0.034) than a model including only clinical and CMR factors, with AUCs of 0.89 (95% CI: 0.80-0.95) and 0.81 (95% CI: 0.71-0.89), respectively. CONCLUSIONS Circulating miR-1 at admission is an independent predictor of LV remodeling 6 months after STEMI. miR-1 showed incremental value in predicting LV remodeling compared with the clinical and CMR measurements.
Collapse
Affiliation(s)
- Quanmei Ma
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Ma
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaonan Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shanshan Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tongtong Yu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weili Duan
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiake Wu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zongyu Wen
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yundi Jiao
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhaoqing Sun
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
27
|
Sadat-Ebrahimi SR, Aslanabadi N. Role of MicroRNAs in Diagnosis, Prognosis, and Treatment of Acute Heart Failure: Ambassadors from Intracellular Zone. Galen Med J 2020; 9:e1818. [PMID: 34466598 PMCID: PMC8343948 DOI: 10.31661/gmj.v9i0.1818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Acute heart failure (AHF) is one of the burdensome diseases affecting a considerable proportion of the population. Recently, it has been demonstrated that micro-ribonucleic acids (miRNAs) can exert diagnostic, prognostic, and therapeutic roles in a variety of conditions including AHF. These molecules play essential roles in HF-related pathophysiology, particularly, cardiac fibrosis, and hypertrophy. Some miRNAs namely miRNA-423-5p are reported to have both diagnostic and prognostic capabilities. However, some studies suggest that combination of biomarkers is a much better way to achieve the highest accuracy such as the combination of miRNAs and N-terminal pro b-type Natriuretic Peptide (NT pro-BNP). Therefore, this review discusses different views towards various roles of miRNAs in AHF.
Collapse
Affiliation(s)
- Seyyed-Reza Sadat-Ebrahimi
- Cardiovascular Research Center, Madani Heart Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Aslanabadi
- Cardiovascular Research Center, Madani Heart Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Correspondence to: Naser Aslanabadi, Professor of Cardiology, Cardiovascular Research Center, Madani Heart Center, Tabriz University of Medical Sciences, Tabriz, Iran Telephone Number: +989143110844 Email Address:
| |
Collapse
|
28
|
Tian C, Hu G, Gao L, Hackfort BT, Zucker IH. Extracellular vesicular MicroRNA-27a* contributes to cardiac hypertrophy in chronic heart failure. J Mol Cell Cardiol 2020; 143:120-131. [PMID: 32370947 DOI: 10.1016/j.yjmcc.2020.04.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/17/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
Under stress, the heart undergoes extensive remodeling resulting in cardiac fibrosis and hypertrophy, ultimately contributing to chronic heart failure (CHF). Alterations in microRNA levels are associated with dysfunctional gene expression profiles involved in the pathogenesis of heart failure. We previously showed that myocardial infarction-induced microRNA-enriched extracellular vesicles (EVs) contribute to the reduction in antioxidant enzymes by targeting Nrf2 signaling in CHF. MicroRNA-27a (miRNA-27a) is the predominant microRNA contained in cardiac fibroblast-derived EVs contributing to oxidative stress along with hypertrophic gene expression in cardiomyocytes. In the present study, we observed that miRNA-27a passenger strand (miRNA-27a*) was markedly upregulated in the non-infarcted area of the left ventricle of rats with CHF and encapsulated into EVs and secreted into the circulation. Bioinformatic analysis revealed that PDZ and LIM domain 5 (PDLIM5) is one of the major targets of miRNA-27a*, playing a major role in cardiac structure and function, and potentially contributing to the progression of cardiac hypertrophy. Our in vivo data demonstrate that PDLIM5 is down-regulated in the progression of heart failure, accompanied with the upregulation of hypertrophic genes and consistent with alterations in miRNA-27a*. Moreover, exogenous administration of miRNA27a* mimics inhibit PDLIM5 translation in cardiomyocytes whereas a miRNA27a* inhibitor enhanced PDLIM5 expression. Importantly, we confirmed that infarcted hearts have higher abundance of miRNA-27a* in EVs compared to normal hearts and further demonstrated that cultured cardiac fibroblasts secrete miRNA27a*-enriched EVs into the extracellular space in response to Angiotensin II stimulation, which inhibited PDLIM5 translation, leading to cardiomyocyte hypertrophic gene expression. In vivo studies suggest that the administration of a miRNA-27a* inhibitor in CHF rats partially blocks endogenous miR-27a* expression, prevents hypertrophic gene expression and improves myocardial contractility. These findings suggest that cardiac fibroblast-secretion of miRNA27a*-enriched EVs may act as a paracrine signaling mediator of cardiac hypertrophy that has potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Changhai Tian
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, United States of America.
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, United States of America
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, United States of America
| | - Bryan T Hackfort
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, United States of America
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, United States of America
| |
Collapse
|
29
|
Yeh CF, Chang YCE, Lu CY, Hsuan CF, Chang WT, Yang KC. Expedition to the missing link: Long noncoding RNAs in cardiovascular diseases. J Biomed Sci 2020; 27:48. [PMID: 32241300 PMCID: PMC7114803 DOI: 10.1186/s12929-020-00647-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/27/2020] [Indexed: 12/31/2022] Open
Abstract
With the advances in deep sequencing-based transcriptome profiling technology, it is now known that human genome is transcribed more pervasively than previously thought. Up to 90% of the human DNA is transcribed, and a large proportion of the human genome is transcribed as long noncoding RNAs (lncRNAs), a heterogenous group of non-coding transcripts longer than 200 nucleotides. Emerging evidence suggests that lncRNAs are functional and contribute to the complex regulatory networks involved in cardiovascular development and diseases. In this article, we will review recent evidence on the roles of lncRNAs in the biological processes of cardiovascular development and disorders. The potential applications of lncRNAs as biomarkers and targets for therapeutics are also discussed.
Collapse
Affiliation(s)
- Chih-Fan Yeh
- Graduate Institute and Department of Pharmacology, National Taiwan University School of Medicine, No.1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, No.1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, Taiwan
| | - Yu-Chen Eugene Chang
- Graduate Institute and Department of Pharmacology, National Taiwan University School of Medicine, No.1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, Taiwan
| | - Cheng-Yuan Lu
- Graduate Institute and Department of Pharmacology, National Taiwan University School of Medicine, No.1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, Taiwan
| | - Chin-Feng Hsuan
- Division of Cardiology, Department of Internal Medicine, E-Da Dachang Hospital, Kaohsiung, Taiwan.,Department of Medicine, I-Shou University School of Medicine, Kaohsiung, Taiwan
| | - Wei-Tien Chang
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kai-Chien Yang
- Graduate Institute and Department of Pharmacology, National Taiwan University School of Medicine, No.1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, Taiwan. .,Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, No.1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, Taiwan.
| |
Collapse
|
30
|
Zhao X, Wang Y, Sun X. The functions of microRNA-208 in the heart. Diabetes Res Clin Pract 2020; 160:108004. [PMID: 31911250 DOI: 10.1016/j.diabres.2020.108004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/15/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is a major chronic complication of obesity and diabetes. Due to several patients with obesity and diabetes, it is necessary to urgently explore early diagnostic biomarkers and innovative therapeutic strategies to prevent the progression of cardiovascular diseases. Recently, microRNAs (also known as miRNAs) have emerged as important players in heart disease and energy regulation. MiRNAs are a group of small, highly conserved non-coding RNA molecules that regulate gene expression by suppressing the translation of messenger RNA of target genes or by promoting mRNA degradation. These act as a class of potential biomarkers and may provide key information in diagnosing common diseases such as tumors, tissue damage, and autoimmune diseases. Among all the known miRNAs, microRNA-208 (miR-208) is specifically expressed in myocardial cells and showed close association with the development of cardiac diseases, such as myocardial hypertrophy, cardiac fibrosis, myocardial infarction, arrhythmia, and heart failure. However, the functions and underlying mechanisms of miR-208 in heart are still unclear. In this review, we highlighted the novel insights of miR-208 functions and associated mechanisms in the regulation of cardiac diseases.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Outpatient Clinic, ShanDong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yao Wang
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xianglan Sun
- Department of Geriatrics, Department of Geriatric Endocrinology, ShanDong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
31
|
Ni YQ, Lin X, Zhan JK, Liu YS. Roles and Functions of Exosomal Non-coding RNAs in Vascular Aging. Aging Dis 2020; 11:164-178. [PMID: 32010490 PMCID: PMC6961769 DOI: 10.14336/ad.2019.0402] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Aging is a progressive loss of physiological integrity and functionality process which increases susceptibility and mortality to diseases. Vascular aging is a specific type of organic aging. The structure and function changes of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are the main cause of vascular aging, which could influence the threshold, process, and severity of vascular related diseases. Accumulating evidences demonstrate that exosomes serve as novel intercellular information communicator between cell to cell by delivering variety biologically active cargos, especially exosomal non-coding RNAs (ncRNAs), which are associated with most of aging-related biological and functional disorders. In this review, we will summerize the emerging roles and mechanisms of exosomal ncRNAs in vascular aging and vascular aging related diseases, focusing on the role of exosomal miRNAs and lncRNAs in regulating the functions of ECs and VSMCs. Moreover, the relationship between the ECs and VSMCs linked by exosomes, the potential diagnostic and therapeutic application of exosomes in vascular aging and the clinical evaluation and treatment of vascular aging and vascular aging related diseases will also be discussed.
Collapse
Affiliation(s)
| | | | - Jun-Kun Zhan
- Department of Geriatrics, Institute of Aging and Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - You-Shuo Liu
- Department of Geriatrics, Institute of Aging and Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
32
|
Affiliation(s)
| | - Javid Moslehi
- Division of Cardiovascular MedicineClinical PharmacologyCardio‐Oncology ProgramVanderbilt University Medical Center and Vanderbilt‐Ingram Cancer CenterNashvilleTN
- Division of OncologyVanderbilt University Medical Center and Vanderbilt‐Ingram Cancer CenterNashvilleTN
| | - Rudolf A. de Boer
- Department of CardiologyUniversity Medical Center GroningenUniversity of Groningenthe Netherlands
| |
Collapse
|
33
|
Boen JRA, Gevaert AB, De Keulenaer GW, Van Craenenbroeck EM, Segers VFM. The role of endothelial miRNAs in myocardial biology and disease. J Mol Cell Cardiol 2019; 138:75-87. [PMID: 31756323 DOI: 10.1016/j.yjmcc.2019.11.151] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023]
Abstract
The myocardium is a highly structured pluricellular tissue which is governed by an intricate network of intercellular communication. Endothelial cells are the most abundant cell type in the myocardium and exert crucial roles in both healthy myocardium and during myocardial disease. In the last decade, microRNAs have emerged as new actors in the regulation of cellular function in almost every cell type. Here, we review recent evidence on the regulatory function of different microRNAs expressed in endothelial cells, also called endothelial microRNAs, in healthy and diseased myocardium. Endothelial microRNA emerged as modulators of angiogenesis in the myocardium, they are implicated in the paracrine role of endothelial cells in regulating cardiac contractility and homeostasis, and interfere in the crosstalk between endothelial cells and cardiomyocytes.
Collapse
Affiliation(s)
- Jente R A Boen
- Research group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Andreas B Gevaert
- Research group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Cardiology, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, Belgium.
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Cardiology, ZNA Middelheim Hospital, Lindendreef 1, 2020 Antwerp, Belgium.
| | - Emeline M Van Craenenbroeck
- Research group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Cardiology, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, Belgium.
| | - Vincent F M Segers
- Department of Cardiology, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, Belgium; Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
34
|
Lin F, Gong X, Yu P, Yue A, Meng Q, Zheng L, Chen T, Han L, Cao H, Cao J, Liang X, Hu H, Li Y, Liu Z, Zhou X, Fan H. Distinct Circulating Expression Profiles of Long Noncoding RNAs in Heart Failure Patients With Ischemic and Nonischemic Dilated Cardiomyopathy. Front Genet 2019; 10:1116. [PMID: 31781171 PMCID: PMC6861296 DOI: 10.3389/fgene.2019.01116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022] Open
Abstract
Ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM), with distinct long-term prognosis and responses to treatment, are two major problems that lead to heart failure (HF) ultimately. In this study, we investigated the long noncoding RNA (lncRNA) and messenger RNA (mRNA) expressions in the plasma of patients with DCM and ICM and analyzed the different lncRNA profile between the two groups. The microarray analysis identified 3,222 and 1,911 significantly differentially expressed lncRNAs and mRNAs between DCM and ICM group. The most enriched upregulated functional terms included positive regulation of I-kappaB kinase/nuclear factor-kappaB signaling and regulation of cellular localization, while the top 10 downregulated genes mainly consisted of acid secretion and myosin heavy chain binding. Furthermore, the Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the differentially expressed lncRNA-coexpressed mRNAs between DCM and ICM group were significantly enriched in the natural killer cell mediated cytotoxicity and ras signaling pathway respectively. Quantitative real-time PCR confirmed 8 of 12 lncRNAs were upregulated in DCM group compared to ICM group which was consistent with the initial microarray results. The lncRNA/mRNA coexpression network indicated the possible functions of the validated lncRNAs. These findings revealed for the first time the specific expression pattern of both protein-coding RNAs and lncRNAs in plasma of HF patients due to DCM and ICM which may provide some important evidence to conveniently identify the etiology of myocardial dysfunctions and help to explore a better strategy for future HF prognosis evaluation.
Collapse
Affiliation(s)
- Fang Lin
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai, China
| | - Xin Gong
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping Yu
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Aixue Yue
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qingshu Meng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai, China
| | - Liang Zheng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai, China
| | - Tian Chen
- Department of Ultrasound, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Han
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Cao
- Department of Cardiothoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianhong Cao
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoting Liang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Hu
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuan Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongmin Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai, China.,Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Ultrasound, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiothoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai, China
| | - Huimin Fan
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai, China.,Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Ultrasound, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiothoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Zamani P, Fereydouni N, Butler AE, Navashenaq JG, Sahebkar A. The therapeutic and diagnostic role of exosomes in cardiovascular diseases. Trends Cardiovasc Med 2019; 29:313-323. [PMID: 30385010 DOI: 10.1016/j.tcm.2018.10.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022]
Abstract
Exosomes are nano-sized membranous vesicles that are secreted by cells. They have an important role in transferring proteins, mRNA, miRNA and other bioactive molecules between cells and regulate gene expression in recipient cells. Therefore, exosomes are a mechanism by which communication between cells is achieved and they are involved in a wide range of physiological processes, especially those requiring cell-cell communication. In the cardiovascular system, exosomes are associated with endothelial cells, cardiac myocytes, vascular cells, stem and progenitor cells, and play an essential role in development, injury and disease of the cardiovascular system. In recent years, accumulating evidence implicates exosomes in the development and progression of cardiovascular disease. Additionally, exosomal microRNAs are considered to be key players in cardiac regeneration and confer cardioprotective and regenerative properties on both cardiac and non-cardiac cells and, additionally, stem and progenitor cells. Notably, miRNAs may be isolated from blood and offer a potential source of novel diagnostic and prognostic biomarkers for cardiovascular disease. In this review, we summarize and assess the functional roles of exosomes in cardiovascular physiology, cell-to-cell communication and cardio-protective effects in cardiovascular disease.
Collapse
Affiliation(s)
- Parvin Zamani
- Nanotechnology Research Center, Student Research Committee, Department of Medical biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Fereydouni
- Student Research Committee, Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
36
|
Saucerman JJ, Tan PM, Buchholz KS, McCulloch AD, Omens JH. Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nat Rev Cardiol 2019; 16:361-378. [PMID: 30683889 PMCID: PMC6525041 DOI: 10.1038/s41569-019-0155-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intact heart undergoes complex and multiscale remodelling processes in response to altered mechanical cues. Remodelling of the myocardium is regulated by a combination of myocyte and non-myocyte responses to mechanosensitive pathways, which can alter gene expression and therefore function in these cells. Cellular mechanotransduction and its downstream effects on gene expression are initially compensatory mechanisms during adaptations to the altered mechanical environment, but under prolonged and abnormal loading conditions, they can become maladaptive, leading to impaired function and cardiac pathologies. In this Review, we summarize mechanoregulated pathways in cardiac myocytes and fibroblasts that lead to altered gene expression and cell remodelling under physiological and pathophysiological conditions. Developments in systems modelling of the networks that regulate gene expression in response to mechanical stimuli should improve integrative understanding of their roles in vivo and help to discover new combinations of drugs and device therapies targeting mechanosignalling in heart disease.
Collapse
Affiliation(s)
- Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Philip M Tan
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kyle S Buchholz
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew D McCulloch
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Jeffrey H Omens
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
37
|
Abstract
After myocardial injury, cardiomyocyte loss cannot be corrected by using currently available clinical treatments. In recent years, considerable effort has been made to develop cell-based cardiac repair therapies aimed at correcting for this loss. An exciting crop of recent studies reveals that inducing endogenous repair and proliferation of cardiomyocytes may be a viable option for regenerating injured myocardium. Here, we review current heart failure treatments, the state of cardiomyocyte renewal in mammals, and the molecular signals that stimulate cardiomyocyte proliferation. These signals include growth factors, intrinsic signaling pathways, microRNAs, and cell cycle regulators. Animal model cardiac regeneration studies reveal that modulation of exogenous and cell-intrinsic signaling pathways can induce reentry of adult cardiomyocytes into the cell cycle. Using direct myocardial injection, epicardial patch delivery, or systemic administration of growth molecules, these studies show that inducing endogenous cardiomyocytes to self-renew is an exciting and promising therapeutic strategy to treat cardiac injury in humans.
Collapse
Affiliation(s)
- Todd R Heallen
- From the Cardiomyocyte Renewal Lab, Texas Heart Institute, Houston (T.R.H., J.H.K., J.F.M.)
- Department of Molecular Physiology and Biophysics (T.R.H., Z.A.K., J.F.M.), Baylor College of Medicine, Houston, TX
| | - Zachary A Kadow
- Department of Molecular Physiology and Biophysics (T.R.H., Z.A.K., J.F.M.), Baylor College of Medicine, Houston, TX
- Program in Developmental Biology (Z.A.K., J.F.M.), Baylor College of Medicine, Houston, TX
| | - Jong H Kim
- From the Cardiomyocyte Renewal Lab, Texas Heart Institute, Houston (T.R.H., J.H.K., J.F.M.)
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (J.W.)
| | - James F Martin
- From the Cardiomyocyte Renewal Lab, Texas Heart Institute, Houston (T.R.H., J.H.K., J.F.M.)
- Department of Molecular Physiology and Biophysics (T.R.H., Z.A.K., J.F.M.), Baylor College of Medicine, Houston, TX
- Program in Developmental Biology (Z.A.K., J.F.M.), Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute, Baylor College of Medicine (J.F.M.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
38
|
Valkov N, King ME, Moeller J, Liu H, Li X, Zhang P. MicroRNA-1-Mediated Inhibition of Cardiac Fibroblast Proliferation Through Targeting Cyclin D2 and CDK6. Front Cardiovasc Med 2019; 6:65. [PMID: 31157242 PMCID: PMC6533459 DOI: 10.3389/fcvm.2019.00065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/01/2019] [Indexed: 12/24/2022] Open
Abstract
MicroRNA-1 (miRNA-1) has been long viewed as a muscle-specific miRNA and plays a critical role in myocardium and cardiomyocytes by controlling myocyte growth and rhythm. We identified that miRNA-1 is expressed in cardiac fibroblasts, which are one of the major non-muscle cell types in myocardium and are responsible for cardiac fibrosis in pathological conditions. In this study, we aimed to investigate the effect and mechanism of action of miRNA-1 on cardiac fibroblast proliferation. Subcutaneous angiotensin II (Ang II) infusion via osmotic minipumps for 4 weeks was used to induce myocardial interstitial fibrosis in male Sprague-Dawley rats. MiRNA-1 expression was significantly down-regulated by 68% in freshly isolated ventricular fibroblasts from Ang II-infused rats than that from control rats. Similar results were obtained in adult rat ventricular fibroblasts that were stimulated in culture by Ang II or TGFβ for 48 h. Functionally, overexpression of miRNA-1 inhibited fibroblast proliferation, whereas knockdown of endogenous miRNA-1 increased fibroblast proliferation. We then identified and validated cyclin D2 and cyclin-dependent kinase 6 (CDK6) as direct targets of miRNA-1 in cardiac fibroblasts using biochemical assays. Moreover, we showed that the inhibitory effects of miRNA-1 on cardiac fibroblast proliferation can be blunted by overexpression of its target, cyclin D2. In conclusion, our findings demonstrate miRNA-1 expression and regulation in adult ventricular fibroblasts, where it acts as a novel negative regulator of adult cardiac fibroblast proliferation that is at least partially mediated by direct targeting of two cell cycle regulators. Our results expand the understanding of the regulatory roles of miRNA-1 in cardiac cells (i.e., from myocytes to a major non-muscle cells in the heart).
Collapse
Affiliation(s)
- Nedyalka Valkov
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, United States.,Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, United States
| | - Michelle E King
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, United States
| | - Jacob Moeller
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, United States
| | - Hong Liu
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, United States
| | - Xiaofei Li
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, United States
| | - Peng Zhang
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
39
|
Fung EC, Butt AN, Eastwood J, Swaminathan R, Sodi R. Circulating microRNA in cardiovascular disease. Adv Clin Chem 2019; 91:99-122. [PMID: 31331491 DOI: 10.1016/bs.acc.2019.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Acute myocardial infarction (AMI) and heart failure (HF) are two major causes of cardiovascular mortality and morbidity. Early diagnosis of these conditions is essential to instigate immediate treatment that may result in improved outcomes. Traditional biomarkers of AMI include cardiac troponins and other proteins released from the injured myocardium but there are a number of limitations with these biomarkers especially with regard to specificity. In the past few years circulating nucleic acids, notably microRNA that are small non-coding RNAs that regulate various cellular processes, have been investigated as biomarkers of disease offering improved sensitivity and specificity in the diagnosis and prognostication of various conditions. In this review, the role of microRNAs as biomarkers used in the diagnosis of AMI and HF is discussed, their advantage over traditional biomarkers is outlined and the potential for their implementation in clinical practice is critically assessed.
Collapse
Affiliation(s)
- En C Fung
- Department of Laboratory Services, Raja Isteri Pengiran Anak Saleha (RIPAS) Hospital, Bandar Seri Begawan, Brunei Darussalam
| | - Asif N Butt
- Department of Clinical Biochemistry, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Jarlath Eastwood
- Aberdeen Royal Infirmary, NHS Grampian, Aberdeen, United Kingdom
| | - Ramasamyiyer Swaminathan
- Department of Clinical Biochemistry, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Ravinder Sodi
- Department of Blood Sciences, University Hospitals of Morecambe Bay NHS Foundation Trust, Lancaster, United Kingdom; Lancaster Medical School, Lancaster University, Lancaster, United Kingdom.
| |
Collapse
|
40
|
Song J, Xie Q, Wang L, Lu Y, Liu P, Yang P, Chen R, Shao C, Qiao C, Wang Z, Yan J. The TIR/BB-loop mimetic AS-1 prevents Ang II-induced hypertensive cardiac hypertrophy via NF-κB dependent downregulation of miRNA-143. Sci Rep 2019; 9:6354. [PMID: 31015570 PMCID: PMC6478826 DOI: 10.1038/s41598-019-42936-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/22/2019] [Indexed: 12/28/2022] Open
Abstract
Untreated pathological cardiac hypertrophy, which can be caused by sustained systemic hypertension, may lead to heart failure. In the present study, we investigated whether AS-1 had attenuating effects on hypertension-induced cardiac hypertrophy, and whether this process was mediated by the regulation of miRNA-143. To induce the hypertrophic response in vitro, cardiomyocytes were stimulated with Ang II for 24hs. AS-1 administration strongly attenuated Ang II-induced hypertrophic response of cardiomyocytes. Chronical infusion of Ang II via implanted osmotic mini-pump induced increased blood pressure and cardiac hypertrophy in vivo. AS-1 administration attenuated hypertension-induced cardiac hypertrophy by, at least in part, inhibin of MAPK signaling. We observed, for the first time, upregulated expression of miRNA-143 in Ang II-induced cardiomyocytes, and inhibition of miRNA-143 significantly reduced the Ang II-induced hypertrophic responses. Importantly, AS-1 administration diminished the Ang II-induced upregulation of miRNA-143. Overexpression of miRNA-143 abolished the attenuating effects of AS-1 on Ang II-induced hypertrophic response of cardiomyocytes. Additionally, AS-1 administration abrogates Ang II-induced nuclear translocation of p50 NF-κB subunit in hypertrophic cardiomyocytes. Application of NF-κB inhibitor significantly suppressed Ang II-induced upregulation of miRNA-143. Our data suggest a novel mechanism by which AS-1 attenuates Ang II-induced hypertrophic response through downregulation miRNA-143 expression in a NF-κB-dependent manner.
Collapse
Affiliation(s)
- Juan Song
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, P.R. China
| | - Qifei Xie
- Department of Cardiology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, P.R. China
| | - Lin Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, P.R. China
| | - Yi Lu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, P.R. China
| | - Peijing Liu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, P.R. China
| | - Ping Yang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, P.R. China
| | - Rui Chen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, P.R. China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, P.R. China
| | - Chen Qiao
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, P.R. China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, P.R. China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, P.R. China.
| |
Collapse
|
41
|
Sotiri I, Robichaud M, Lee D, Braune S, Gorbet M, Ratner BD, Brash JL, Latour RA, Reviakine I. BloodSurf 2017: News from the blood-biomaterial frontier. Acta Biomater 2019; 87:55-60. [PMID: 30660001 DOI: 10.1016/j.actbio.2019.01.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 12/26/2022]
Abstract
From stents and large-diameter vascular grafts, to mechanical heart valves and blood pumps, blood-contacting devices are enjoying significant clinical success owing to the application of systemic antiplatelet and anticoagulation therapies. On the contrary, research into material and device hemocompatibility aimed at alleviating the need for systemic therapies has suffered a decline. This research area is undergoing a renaissance fueled by recent fundamental insights into coagulation and inflammation that are offering new avenues of investigation, the growing recognition of the limitations facing existing therapeutic approaches, and the severity of the cardiovascular disorders epidemic. This Opinion article discusses clinical needs for hemocompatible materials and the emerging research directions for fulfilling those needs. Based on the 2017 BloodSurf conference that brought together clinicians, scientists, and engineers from academia, industry, and regulatory bodies, its purpose is to draw the attention of the wider clinical and scientific community to stimulate further growth. STATEMENT OF SIGNIFICANCE: The article highlights recent fundamental insights into coagulation, inflammation, and blood-biomaterial interactions that are fueling a renaissance in the field of material hemocompatibility. It will be useful for clinicians, scientists, engineers, representatives of industry and regulatory bodies working on the problem of developing hemocompatible materials and devices for treating cardiovascular disorders.
Collapse
|
42
|
Bencsik P, Kiss K, Ágg B, Baán JA, Ágoston G, Varga A, Gömöri K, Mendler L, Faragó N, Zvara Á, Sántha P, Puskás LG, Jancsó G, Ferdinandy P. Sensory Neuropathy Affects Cardiac miRNA Expression Network Targeting IGF-1, SLC2a-12, EIF-4e, and ULK-2 mRNAs. Int J Mol Sci 2019; 20:ijms20040991. [PMID: 30823517 PMCID: PMC6412859 DOI: 10.3390/ijms20040991] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Here we examined myocardial microRNA (miRNA) expression profile in a sensory neuropathy model with cardiac diastolic dysfunction and aimed to identify key mRNA molecular targets of the differentially expressed miRNAs that may contribute to cardiac dysfunction. Methods: Male Wistar rats were treated with vehicle or capsaicin for 3 days to induce systemic sensory neuropathy. Seven days later, diastolic dysfunction was detected by echocardiography, and miRNAs were isolated from the whole ventricles. Results: Out of 711 known miRNAs measured by miRNA microarray, the expression of 257 miRNAs was detected in the heart. As compared to vehicle-treated hearts, miR-344b, miR-466b, miR-98, let-7a, miR-1, miR-206, and miR-34b were downregulated, while miR-181a was upregulated as validated also by quantitative real time polymerase chain reaction (qRT-PCR). By an in silico network analysis, we identified common mRNA targets (insulin-like growth factor 1 (IGF-1), solute carrier family 2 facilitated glucose transporter member 12 (SLC2a-12), eukaryotic translation initiation factor 4e (EIF-4e), and Unc-51 like autophagy activating kinase 2 (ULK-2)) targeted by at least three altered miRNAs. Predicted upregulation of these mRNA targets were validated by qRT-PCR. Conclusion: This is the first demonstration that sensory neuropathy affects cardiac miRNA expression network targeting IGF-1, SLC2a-12, EIF-4e, and ULK-2, which may contribute to cardiac diastolic dysfunction. These results further support the need for unbiased omics approach followed by in silico prediction and validation of molecular targets to reveal novel pathomechanisms.
Collapse
Affiliation(s)
- Péter Bencsik
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary.
- Pharmahungary Group, Graphisoft Park, Záhony utca 7, H-1031 Budapest, Hungary.
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary.
| | - Krisztina Kiss
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary.
| | - Bence Ágg
- Pharmahungary Group, Graphisoft Park, Záhony utca 7, H-1031 Budapest, Hungary.
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary.
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68, H-1122 Budapest, Hungary.
| | - Júlia A Baán
- Muscle Adaptation Group, Department of Biochemistry, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary.
| | - Gergely Ágoston
- Institute of Family Medicine, University of Szeged, Tisza Lajos krt. 109., H-6720 Szeged, Hungary.
| | - Albert Varga
- Institute of Family Medicine, University of Szeged, Tisza Lajos krt. 109., H-6720 Szeged, Hungary.
| | - Kamilla Gömöri
- Pharmahungary Group, Graphisoft Park, Záhony utca 7, H-1031 Budapest, Hungary.
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary.
| | - Luca Mendler
- Muscle Adaptation Group, Department of Biochemistry, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary.
- Institute of Biochemistry II, Goethe University Medical School, University Hospital Building 75, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Nóra Faragó
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári körút 62, H-6726 Szeged, Hungary.
| | - Ágnes Zvara
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári körút 62, H-6726 Szeged, Hungary.
| | - Péter Sántha
- Department of Physiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - László G Puskás
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári körút 62, H-6726 Szeged, Hungary.
| | - Gábor Jancsó
- Department of Physiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - Péter Ferdinandy
- Pharmahungary Group, Graphisoft Park, Záhony utca 7, H-1031 Budapest, Hungary.
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary.
| |
Collapse
|
43
|
Qin R, Murakoshi N, Xu D, Tajiri K, Feng D, Stujanna EN, Yonebayashi S, Nakagawa Y, Shimano H, Nogami A, Koike A, Aonuma K, Ieda M. Exercise training reduces ventricular arrhythmias through restoring calcium handling and sympathetic tone in myocardial infarction mice. Physiol Rep 2019; 7:e13972. [PMID: 30806037 PMCID: PMC6389758 DOI: 10.14814/phy2.13972] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022] Open
Abstract
Exercise can improve morbidity and mortality in heart failure patients; however, the underlying mechanisms remain to be fully investigated. Thus, we investigated the effects of exercise on cardiac function and ventricular arrhythmias in myocardial infarction (MI) induced heart failure mice. Wild-type male mice underwent sham-operation or permanent left coronary artery ligation to induce MI. MI mice were divided into a sedentary (MI-Sed) and two intervention groups: MI-Ex (underwent 6-week treadmill exercise training) and MI-βb (oral bisoprolol treatment (1 mg/kg/d) without exercise). Cardiac function and structure were assessed by echocardiography and histology. Exercise capacity and cardiopulmonary function was accepted as oxygen consumption at peak exercise (peak VO2 ). Autonomic nervous system function and the incidence of spontaneous ventricular arrhythmia were evaluated via telemetry recording. mRNA and protein expressions in the left ventricle (LV) were investigated by real-time PCR and Western blotting. There were no differences in survival rate, MI size, cardiac function and structure, while exercise training improved peak VO2 . Compared with MI-Sed, MI-Ex, and MI-βb showed decreased sympathetic tone and lower incidence of spontaneous ventricular arrhythmia. By Western blot, the hyperphosphorylation of CaMKII and RyR2 were restored by exercise and β-blocker treatment. Furthermore, elevated expression of miR-1 and decreased expression of its target protein PP2A were recovered by exercise and β-blocker treatment. Continuous intensive exercise training can suppress ventricular arrhythmias in subacute to chronic phase of MI through restoring autonomic imbalance and impaired calcium handling, similarly to that for β-blockers.
Collapse
Affiliation(s)
- Rujie Qin
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Nobuyuki Murakoshi
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - DongZhu Xu
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Kazuko Tajiri
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Duo Feng
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Endin N. Stujanna
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Saori Yonebayashi
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Yoshimi Nakagawa
- Department of Internal Medicine (Endocrinology and Metabolism)Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism)Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Akihiko Nogami
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Akira Koike
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
- Medical ScienceFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Kazutaka Aonuma
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Masaki Ieda
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| |
Collapse
|
44
|
Jourkesh M, Soori R, Earnest CP, Mirheidari L, Ravasi AA, Stannard SR, Monsalves-Alvarez M. Effects of six weeks of resistance-endurance training on microRNA-29 expression in the heart of ovariectomised rats. PRZEGLAD MENOPAUZALNY = MENOPAUSE REVIEW 2018; 17:155-160. [PMID: 30766462 PMCID: PMC6372852 DOI: 10.5114/pm.2018.81737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Heart disease risk rises with age. However, women's symptoms become more pronounced following the onset of menopause. The aim of the present study was to evaluate the effects of six weeks of combined resistance-endurance (RE) training on microRNA-29 expression in the heart of ovariectomised rats. MATERIAL AND METHODS Thirty female Wistar rats were divided into three groups: 1) sham (SHAM); 2) ovariectomy (OVX); and 3) OVX with RE training (OVX + RE). The effects of these treatments on cardiac microRNA-29 expression were measured using real-time PCR. Data were analysed using a 2 × 3 ANOVA and Tukey post-hoc comparisons and presented as mean ±SEM. RESULTS Ovariectomy resulted in a significant down-regulation in the heart microRNA-29 gene expression of OVX (0.265 ±0.031 fold changes), OVX + RE (0.699 ±0.038 fold changes) in animals vs. sham animals (1 ±0 fold changes; all, p < 0.05) following six weeks of treatment. However, microRNA-29 expression in the OVX + RE group was significantly greater than in the OVX group (p < 0.05). CONCLUSIONS Our findings suggest that the six weeks of regular RE training attenuate the reduction in heart muscle microRNA-29 expression observed in ovariectomised rates. If our findings carry over to humans, such an exercise regimen could be beneficial to the cardiovascular disease risk in women during menopause.
Collapse
Affiliation(s)
- Morteza Jourkesh
- Department of Physical Education and Sports Science, Shabestar Branch, Islamic Azad University, Iran
| | - Rahman Soori
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Conrad P. Earnest
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas, United States
| | - Lamia Mirheidari
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Aras International Campus, Tehran, Iran
| | - Ali Asghar Ravasi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Stephen R. Stannard
- School of Sport, Exercise, and Nutrition, Massey University, Palmerston North, New Zealand
| | - Matias Monsalves-Alvarez
- Nutrition and Physical Activity Laboratory, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
- Department of Biological Sciences, Faculty of Life Sciences, University Andres Bello, Santiago, Chile
| |
Collapse
|
45
|
Dandel M, Hetzer R. Recovery of failing hearts by mechanical unloading: Pathophysiologic insights and clinical relevance. Am Heart J 2018; 206:30-50. [PMID: 30300847 DOI: 10.1016/j.ahj.2018.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 09/08/2018] [Indexed: 12/23/2022]
Abstract
By reduction of ventricular wall-tension and improving the blood supply to vital organs, ventricular assist devices (VADs) can eliminate the major pathophysiological stimuli for cardiac remodeling and even induce reverse remodeling occasionally accompanied by clinically relevant reversal of cardiac structural and functional alterations allowing VAD explantation, even if the underlying cause for the heart failure (HF) was dilated cardiomyopathy. Accordingly, a tempting potential indication for VADs in the future might be their elective implantation as a therapeutic strategy to promote cardiac recovery in earlier stages of HF, when the reversibility of morphological and functional alterations is higher. However, the low probability of clinically relevant cardiac improvement after VAD implantation and the lack of criteria which can predict recovery already before VAD implantation do not allow so far VAD implantations primarily designed as a bridge to cardiac recovery. The few investigations regarding myocardial reverse remodeling at cellular and sub-cellular level in recovered patients who underwent VAD explantation, the differences in HF etiology and pre-implant duration of HF in recovered patients and also the differences in medical therapy used by different institutions during VAD support make it currently impossible to understand sufficiently all the biological processes and mechanisms involved in cardiac improvement which allows even VAD explantation in some patients. This article aims to provide an overview of the existing knowledge about VAD-promoted cardiac improvement focusing on the importance of bench-to-bedside research which is mandatory for attaining the future goal to use long-term VADs also as therapy-devices for reversal of chronic HF.
Collapse
|
46
|
Syed M, Ball JP, Mathis KW, Hall ME, Ryan MJ, Rothenberg ME, Yanes Cardozo LL, Romero DG. MicroRNA-21 ablation exacerbates aldosterone-mediated cardiac injury, remodeling, and dysfunction. Am J Physiol Endocrinol Metab 2018; 315:E1154-E1167. [PMID: 30153065 PMCID: PMC6336952 DOI: 10.1152/ajpendo.00155.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/30/2018] [Accepted: 08/24/2018] [Indexed: 12/21/2022]
Abstract
Primary aldosteronism is characterized by excess aldosterone secretion by the adrenal gland independent of the renin-angiotensin system and accounts for ~10% of hypertensive patients. Excess aldosterone causes cardiac hypertrophy, fibrosis, inflammation, and hypertension. The molecular mechanisms that trigger the onset and progression of aldosterone-mediated cardiac injury remain incompletely understood. MicroRNAs (miRNAs) are endogenous, small, noncoding RNAs that have been implicated in multiple cardiac pathologies; however, their regulation and role in aldosterone-mediated cardiac injury and dysfunction remains mostly unknown. We previously reported that microRNA-21 (miR-21) is the most upregulated miRNA by excess aldosterone in the left ventricle in a rat experimental model of primary aldosteronism. To elucidate the role of miR-21 in aldosterone-mediated cardiac injury and dysfunction, miR-21 knockout mice and their wild-type littermates were treated with aldosterone infusion and salt in the drinking water for 2 or 8 wk. miR-21 genetic ablation exacerbated aldosterone/salt-mediated cardiac hypertrophy and cardiomyocyte cross-sectional area. Furthermore, miR-21 genetic ablation increased the cardiac expression of fibrosis and inflammation markers and fetal gene program. miR-21 genetic ablation increased aldosterone/salt-mediated cardiac dysfunction but did not affect aldosterone/salt-mediated hypertension. miR-21 target gene Sprouty 2 may be implicated in the cardiac effects of miR-21 genetic ablation. Our study shows that miR-21 genetic ablation exacerbates aldosterone/salt-mediated cardiac hypertrophy, injury, and dysfunction blood pressure independently. These results suggest that miR-21 plays a protective role in the cardiac pathology triggered by excess aldosterone. Furthermore, miR-21 supplementation may be a novel therapeutic approach to abolish or mitigate excess aldosterone-mediated cardiovascular deleterious effects in primary aldosteronism.
Collapse
Affiliation(s)
- Maryam Syed
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jana P Ball
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Keisa W Mathis
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
| | - Michael E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
- Department of Medicine, University of Mississippi Medical Center , Jackson, Mississippi
| | - Michael J Ryan
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
- Women's Health Research Center, University of Mississippi Medical Center , Jackson, Mississippi
- Cardio Renal Research Center, University of Mississippi Medical Center , Jackson, Mississippi
- G.V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Licy L Yanes Cardozo
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Medicine, University of Mississippi Medical Center , Jackson, Mississippi
- Women's Health Research Center, University of Mississippi Medical Center , Jackson, Mississippi
- Cardio Renal Research Center, University of Mississippi Medical Center , Jackson, Mississippi
- Mississippi Center for Excellence in Perinatal Research, University of Mississippi Medical Center , Jackson, Mississippi
| | - Damian G Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
- Women's Health Research Center, University of Mississippi Medical Center , Jackson, Mississippi
- Cardio Renal Research Center, University of Mississippi Medical Center , Jackson, Mississippi
- Mississippi Center for Excellence in Perinatal Research, University of Mississippi Medical Center , Jackson, Mississippi
| |
Collapse
|
47
|
Cerf ME. High Fat Programming and Cardiovascular Disease. MEDICINA (KAUNAS, LITHUANIA) 2018; 54:E86. [PMID: 30428585 PMCID: PMC6262472 DOI: 10.3390/medicina54050086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023]
Abstract
Programming is triggered through events during critical developmental phases that alter offspring health outcomes. High fat programming is defined as the maintenance on a high fat diet during fetal and/or early postnatal life that induces metabolic and physiological alterations that compromise health. The maternal nutritional status, including the dietary fatty acid composition, during gestation and/or lactation, are key determinants of fetal and postnatal development. A maternal high fat diet and obesity during gestation compromises the maternal metabolic state and, through high fat programming, presents an unfavorable intrauterine milieu for fetal growth and development thereby conferring adverse cardiac outcomes to offspring. Stressors on the heart, such as a maternal high fat diet and obesity, alter the expression of cardiac-specific factors that alter cardiac structure and function. The proper nutritional balance, including the fatty acid balance, particularly during developmental windows, are critical for maintaining cardiac structure, preserving cardiac function and enhancing the cardiac response to metabolic challenges.
Collapse
Affiliation(s)
- Marlon E Cerf
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg 7505, South Africa.
| |
Collapse
|
48
|
Onrat ST, Onrat E, Ercan Onay E, Yalım Z, Avşar A. The Genetic Determination of the Differentiation Between Ischemic Dilated Cardiomyopathy and Idiopathic Dilated Cardiomyopathy. Genet Test Mol Biomarkers 2018; 22:644-651. [DOI: 10.1089/gtmb.2018.0188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Serap Tutgun Onrat
- Department of Medical Genetics, Faculty of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Ersel Onrat
- Department of Cardiology, Faculty of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | | | - Zafer Yalım
- Department of Cardiology, Faculty of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Alaettin Avşar
- Department of Cardiology, Faculty of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
49
|
Goldberg-Smith P. Lisa Dorn. Circ Res 2018; 123:1115-1117. [PMID: 30359186 DOI: 10.1161/circresaha.118.314188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Guerrero Orriach JL, Escalona Belmonte JJ, Ramirez Aliaga M, Ramirez Fernandez A, Raigón Ponferrada A, Rubio Navarro M, Cruz Mañas J. Anesthetic-induced Myocardial Conditioning: Molecular Fundamentals and Scope. Curr Med Chem 2018; 27:2147-2160. [PMID: 30259804 DOI: 10.2174/0929867325666180926161427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 08/03/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND The pre- and post-conditioning effects of halogenated anesthetics make them most suitable for cardiac surgery. Several studies have demonstrated that the mechanism of drug-induced myocardial conditioning is enzyme-mediated via messenger RNA and miRNA regulation. The objective of this study was to investigate the role that miRNAs play in the cardioprotective effect of halogenated anesthetics. For such purpose, we reviewed the literature to determine the expression profile of miRNAs in ischemic conditioning and in the complications prevented by these phenomena. METHODS A review was conducted of more than 100 studies to identify miRNAs involved in anesthetic-induced myocardial conditioning. Our objective was to determine the miRNAs that play a relevant role in ischemic disease, heart failure and arrhythmogenesis, which expression is modulated by the perioperative administration of halogenated anesthetics. So far, no studies have been performed to assess the role of miRNAs in anesthetic-induced myocardial conditioning. The potential of miRNAs as biomarkers and miRNAs-based therapies involving the synthesis, inhibition or stimulation of miRNAs are a promising avenue for future research in the field of cardiology. RESULTS Each of the cardioprotective effects of myocardial conditioning is related to the expression of several (not a single) miRNAs. The cumulative evidence on the role of miRNAs in heart disease and myocardial conditioning opens new therapeutic and diagnostic opportunities. CONCLUSION Halogenated anesthetics regulate the expression of miRNAs involved in heart conditions. Further research is needed to determine the expression profile of miRNAs after the administration of halogenated drugs. The results of these studies would contribute to the development of new hypnotics for cardiac surgery patients.
Collapse
Affiliation(s)
- Jose Luis Guerrero Orriach
- Institute of Biomedical Research in Malaga [IBIMA], Malaga, Spain.,Department of Cardio- Anaesthesiology, Virgen de la Victoria University Hospital, Malaga, Spain.,Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, Malaga, Spain
| | | | - Marta Ramirez Aliaga
- Department of Cardio- Anaesthesiology, Virgen de la Victoria University Hospital, Malaga, Spain
| | | | - Aida Raigón Ponferrada
- Department of Cardio- Anaesthesiology, Virgen de la Victoria University Hospital, Malaga, Spain
| | - Manuel Rubio Navarro
- Department of Cardio- Anaesthesiology, Virgen de la Victoria University Hospital, Malaga, Spain
| | - Jose Cruz Mañas
- Department of Cardio- Anaesthesiology, Virgen de la Victoria University Hospital, Malaga, Spain
| |
Collapse
|