1
|
Karasawa T, Takahashi M. Inflammasome Activation and Neutrophil Extracellular Traps in Atherosclerosis. J Atheroscler Thromb 2025; 32:535-549. [PMID: 39828369 DOI: 10.5551/jat.rv22033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
The deposition of cholesterol containing cholesterol crystals and the infiltration of immune cells are features of atherosclerosis. Although the role of cholesterol crystals in the progression of atherosclerosis have long remained unclear, recent studies have clarified the involvement of cholesterol crystals in inflammatory responses. Cholesterol crystals activate the NLRP3 inflammasome, a molecular complex involved in the innate immune system. Activation of NLRP3 inflammasomes in macrophages cause pyroptosis, which is accompanied by the release of inflammatory cytokines such as IL-1β and IL-1α. Furthermore, NLRP3 inflammasome activation drives neutrophil infiltration into atherosclerotic plaques. Cholesterol crystals trigger NETosis against infiltrated neutrophils, a form of cell death characterized by the formation of neutrophil extracellular traps (NETs), which, in turn, prime macrophages to enhance inflammasome-mediated inflammatory responses. Colchicine, an anti-inflammatory drug effective in cardiovascular disease, is expected to inhibit cholesterol crystal-induced NLRP3 inflammasome activation and neutrophil infiltration. In this review, we illustrate the reinforcing cycle of inflammation that is amplified by inflammasome activation and NETosis.
Collapse
Affiliation(s)
- Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University
| |
Collapse
|
2
|
Endo-Umeda K, Makishima M. Exploring the Roles of Liver X Receptors in Lipid Metabolism and Immunity in Atherosclerosis. Biomolecules 2025; 15:579. [PMID: 40305368 DOI: 10.3390/biom15040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
Hypercholesterolemia causes atherosclerosis by inducing immune cell migration and chronic inflammation in arterial walls. Recent single-cell analyses reveal the presence of lipid-enriched foamy macrophages, as well as other macrophage subtypes, neutrophils, T cells, and B cells, in atherosclerotic plaques in both animal models and humans. These cells interact with each other and other cells, including non-immune cells such as endothelial cells and smooth muscle cells. They thereby regulate metabolic, inflammatory, phagocytic, and cell death processes, thus affecting the progression and stability of atherosclerotic plaques. The nuclear receptors liver X receptor (LXR)α and LXRβ are transcription factors that are activated by oxysterols and regulate lipid metabolism and immune responses. LXRs regulate cholesterol homeostasis by controlling cholesterol's transport, absorption, synthesis, and breakdown in the liver and intestine. LXRs are also highly expressed in tissue-resident and monocyte-derived macrophages and other immune cells, including both myeloid cells and lymphocytes, and they regulate both innate and adaptive immune responses. Interestingly, LXRs have immunosuppressive and immunoregulatory functions that are cell-type-dependent. In animal models of atherosclerosis, LXRs have been shown to be involved in both progression and regression phases. The pharmacological activation of LXR enhances cholesterol efflux from macrophages and promotes atherosclerosis progression. Deleting LXR in immune cells, especially myeloid cells, accelerates atherosclerosis by increasing monocyte migration, macrophage proliferation and activation, and neutrophil extracellular traps (NETs); furthermore, the deletion of hematopoietic LXRs impairs the regression of atherosclerotic plaques. Therefore, LXRs in immune cells may be a potent therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Kaori Endo-Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| |
Collapse
|
3
|
Zheng Q, Wu Y, Zhang X, Zhang Y, Zhu Z, Luan B, Zang P, Sun D. Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning. Sci Rep 2025; 15:12316. [PMID: 40210656 PMCID: PMC11985999 DOI: 10.1038/s41598-025-96907-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
Atherosclerosis is the major cause of cardiovascular diseases worldwide, and AIDS linked with chronic inflammation and immune activation, increases atherosclerosis risk. The application of bioinformatics and machine learning to identify hub genes for atherosclerosis and AIDS has yet to be reported. Thus, this study aims to identify the hub genes for atherosclerosis and AIDS. Gene expression profiles were downloaded from the Gene Expression Omnibus database. The Robust Multichip Average was performed for data preprocessing, and the limma package was used for screening differentially expressed genes. Enrichment analysis employed GO and KEGG, protein-protein interaction network was constructed. Hub genes were filtered using topological and machine learning algorithms and validated in external cohorts. Then immune infiltration and correlation analysis of hub genes were constructed. Nomogram, receiver operating curve, and single-sample gene set enrichment analysis were applied to evaluate hub genes. This study identified 48 intersecting genes. Enrichment analyses indicated that these genes are significantly enriched in viral response, inflammatory response, and cytokine signaling pathways. CCR5 and OAS1 were identified as common hub genes in atherosclerosis and AIDS for the first time, highlighting their roles in antiviral immunity, inflammation and immune infiltration. These findings contributed to understanding the shared pathogenesis of Atherosclerosis and AIDS and provided possible potential therapeutic targets for immunomodulatory therapy.
Collapse
Affiliation(s)
- Qirui Zheng
- Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, China
- Shenyang Clinical Medical Research Center for Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, China
| | - Yupeng Wu
- Department of Neurosurgery, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, China
- Pan-Vascular Management Center, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, China
| | - Xiaojiao Zhang
- Department of Cardiology, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, China
| | - Yuzhu Zhang
- Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, China
- Shenyang Clinical Medical Research Center for Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, China
| | - Zaihan Zhu
- Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, China
- Shenyang Clinical Medical Research Center for Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, China
| | - Bo Luan
- Department of Cardiology, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, China
| | - Peizhuo Zang
- Department of Neurosurgery, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, China.
- Pan-Vascular Management Center, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, China.
- Liaoning Provincial Key Laboratory of Neurointerventional Therapy and Biomaterials Research and Development, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, China.
| | - Dandan Sun
- Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, China.
- Shenyang Clinical Medical Research Center for Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, China.
- Liaoning Provincial Key Laboratory of Neurointerventional Therapy and Biomaterials Research and Development, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, China.
| |
Collapse
|
4
|
Jia L, Qu P, Zhao Y, Bai L, Ren H, Cheng A, Ma Z, Ding C, Deng Y, Kong L, Zhao Y, Rom O, Chen Y, Alam N, Cao W, Zhai S, Zheng Z, Hu Z, Wang L, Chen Y, Zhao S, Zhang J, Fan J, Chen YE, Liu E. Tripeptide DT-109 (Gly-Gly-Leu) attenuates atherosclerosis and vascular calcification in nonhuman primates. Signal Transduct Target Ther 2025; 10:122. [PMID: 40195303 PMCID: PMC11977015 DOI: 10.1038/s41392-025-02201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Advanced atherosclerotic lesions and vascular calcification substantially increase the risk of cardiovascular events. However, effective strategies for preventing or treating advanced atherosclerosis and calcification are currently lacking. This study investigated the efficacy of DT-109 (Gly-Gly-Leu) in attenuating atherosclerosis and calcification in nonhuman primates, exploring its broader therapeutic potential. In this study, twenty male cynomolgus monkeys were administered a cholesterol-rich diet ad libitum for 10 months. Then, the animals were treated either orally with DT-109 (150 mg/kg/day) or a vehicle (H2O) for 5 months while continuing on the same diet. Plasma lipid levels were measured monthly and at the end of the experiment, pathological examinations of the aortas and coronary arteries and RNA sequencing of the coronary arteries were performed. To explore possible molecular mechanisms, the effects of DT-109 on smooth muscle cells (SMCs) were examined in vitro. We found that DT-109 administration significantly suppressed atherosclerotic lesion formation in both the aorta and coronary arteries. Pathological examinations revealed that DT-109 treatment reduced lesional macrophage content and calcification. RNA sequencing analysis showed that DT-109 treatment significantly downregulated the pro-inflammatory factors NLRP3, AIM2, and CASP1, the oxidative stress factors NCF2 and NCF4, and the osteogenic factors RUNX2, COL1A1, MMP2, and MMP9, while simultaneously upregulating the expression of the SMCs contraction markers ACTA2, CNN1, and TAGLN. Furthermore, DT-109 inhibited SMC calcification and NLRP3 inflammasome activation in vitro. These results demonstrate that DT-109 effectively suppresses both atherosclerosis and calcification. These findings, in conjunction with insights from our previous studies, position DT-109 as a novel multifaceted therapeutic agent for cardiovascular diseases.
Collapse
Affiliation(s)
- Linying Jia
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Pengxiang Qu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Yang Zhao
- Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Liang Bai
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Honghao Ren
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Ao Cheng
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Zeyao Ma
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Cheng Ding
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Yongjie Deng
- Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Lingxuan Kong
- Department of Biostatistics, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Ying Zhao
- Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Oren Rom
- Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Department of Pathology and Translational Pathobiology, Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Yajie Chen
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529000, China
| | - Naqash Alam
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Wenbin Cao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Sixue Zhai
- Department of Imaging, the Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710038, China
| | - Zuowen Zheng
- Spring Biological Technology Development Co., Ltd, Fangchenggang, Guangxi, 538000, China
| | - Zhi Hu
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Lu Wang
- Department of Biostatistics, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Yabing Chen
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University; Research Department, Portland Veterans Affairs Medical Center, Portland, OR, 97239, USA
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Jifeng Zhang
- Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Jianglin Fan
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529000, China.
| | - Y Eugene Chen
- Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
5
|
Qian J, Zhou Q. Role of lactylation and immune infiltration in atherosclerosis: novel insights from bioinformatics analyses. Front Genet 2025; 16:1520325. [PMID: 40248193 PMCID: PMC12003320 DOI: 10.3389/fgene.2025.1520325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/13/2025] [Indexed: 04/19/2025] Open
Abstract
Introduction The existing evidence indicates that atherosclerosis (AS) plays a pivotal role in the progression and exacerbation of cardiovascular diseases and their associated complications. Current diagnostic and therapeutic strategies for atherosclerosis are limited in their ability to facilitate early detection and personalized treatment. This study employs a systems biology approach to investigate the role of lactylation-related genes (LRGs) in the pathogenesis of atherosclerosis, while considering the well-established correlation between inflammatory responses and atherosclerosis development. Methods In this study, we utilized datasets obtained from the Gene Expression Omnibus (GEO) as well as data from previous studies on lactylation-related genes (LRGs). Following this, we identified 17 lactylation related genes associate with atherosclerosis (AS-LRGs) from the GSE100927 dataset. Subsequently, we employed the validation dataset (GSE43292) to assess these 17 AS-LRGs, resulting in the identification of 12 more reliable candidate genes. These genes were further analyzed for functional enrichment through Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and gene set enrichment analysis (GSEA). To elucidate the potential utility of AS-LRGs in diagnosing high-risk plaques, we assessed their expression in both early and late stages of atherosclerosis, as well as in high- and low-risk plaques. We then constructed interaction networks to elucidate the potential regulatory relationships among LRGs, miRNAs, transcription factors, and drugs. Finally, we utilized the single sample Gene Set Enrichment Analysis (ssGSEA) method to investigate immune infiltration in AS and evaluate the levels of immune cell infiltration. Results We identified 12 lactylation-related genes that are more reliably associated with atherosclerosis: five upregulated genes (LSP1, IKZF1, MNDA, RCC2, and WAS) and seven downregulated genes (CSRP2, PPP1CB, CSRP1, HEXIM1, CALD1, PDLIM1, and RANBP2). Discussion This study elucidates the pivotal role of lactylation in atherosclerosis (AS) and establishes a robust foundation for future research into targeted therapies and clinical applications of the identified biomarkers.
Collapse
Affiliation(s)
| | - Qing Zhou
- Department of Cardiothoracic surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Ren BX, Zeng ZL, Deng L, Hu JM, Chen MZ, Jiang HW, Zang CZ, Fang ST, Weiss SJ, Liu J, Fu R, Wu ZQ. Genetic and pharmacological targeting of Snail inhibits atherosclerosis by relieving intraplaque endothelium dysfunction and associated inflammation. Acta Pharmacol Sin 2025:10.1038/s41401-025-01519-5. [PMID: 40133628 DOI: 10.1038/s41401-025-01519-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
The intraplaque endothelium dysfunction and associated inflammation contribute to the progression of atherosclerosis. We previously show that zinc-finger transcription factor Snail is predominantly expressed in embryonic vascular endothelial cells (ECs), and deletion of Snail in ECs induces severe defects in vascular development and thus causes embryonic lethality. Snail is essentially absent at postnatal stage, and inducible deletion of Snail in ECs has no impact on physiological angiogenesis in postnatally developing or adult mice. In this study we investigated whether Snail was reactivated in vascular ECs during pathologically angiogenic process (e.g. the formation of atherosclerotic plaque) or could play a functional role in atherosclerosis progression. We showed that the expression levels of Snail were significantly elevated in ECs of human and mouse atherosclerotic plaques, and associated with the disease severity. In the accelerated and canonical mouse models of atherosclerosis, tamoxifen-inducible, EC-specific Snail deletion significantly reduced intraplaque endothelial dysfunction, inflammation and lipid uptake accompanied by enhanced plaque stability. By conducting scRNA-sequencing in ECs of ApoE-/-SnailiΔEC versus ApoE-/-Snailfl/fl arterial vessels, we demonstrated that Snail deletion significantly decreased histone acetylation on Ccl5 and Cxcl10 promoters, thereby decreased CCL5/CXCL10-driven vascular damage and inflammation. Administration with recombinant CXCL10 protein (2 μg/kg, i.v., once per week for three weeks) efficiently restored atherosclerosis in EC-specific Snail-deleted mice. Finally, we developed an orally bioavailable small-molecule Snail inhibitor LFW273 that displayed potent anti-atherosclerotic effects in mice. These results reveal Snail as a promising therapeutic target in atherosclerotic disease.
Collapse
Affiliation(s)
- Bo-Xue Ren
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhao-Lan Zeng
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Deng
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jia-Meng Hu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ming-Zhen Chen
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hao-Wei Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chen-Zi Zang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shen-Tong Fang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Stephen J Weiss
- The Life Sciences Institute, Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jie Liu
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
| | - Rong Fu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhao-Qiu Wu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
7
|
Shi Z, Gong S, Li Y, Yan K, Bao Y, Ning K. Neutrophil Extracellular Traps in Atherosclerosis: Research Progress. Int J Mol Sci 2025; 26:2336. [PMID: 40076955 PMCID: PMC11900999 DOI: 10.3390/ijms26052336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/15/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Atherosclerosis (AS) is a disease characterised by the accumulation of atherosclerotic plaques on the inner walls of blood vessels, resulting in their narrowing. In its early stages, atherosclerosis remains asymptomatic and undetectable by conventional pathological methods. However, as the disease progresses, it can lead to a series of cardiovascular diseases, which are a leading cause of mortality among middle-aged and elderly populations worldwide. Neutrophil extracellular traps (NETs) are composed of chromatin and granular proteins released by neutrophils. Upon activation by external stimuli, neutrophils undergo a series of reactions, resulting in the release of NETs and subsequent cell death, a process termed NETosis. Research has demonstrated that NETosis is a means by which neutrophils contribute to immune responses. However, studies on neutrophil extracellular traps have identified NETs as the primary cause of various inflammation-induced diseases, including cystic fibrosis, systemic lupus erythematosus, and rheumatoid arthritis. Consequently, the present review will concentrate on the impact of neutrophil extracellular traps on atherosclerosis formation, analysing it from a molecular biology perspective. This will involve a systematic dissection of their proteomic components and signal pathways.
Collapse
Affiliation(s)
- Zhonghong Shi
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (Z.S.); (S.G.); (Y.L.); (K.Y.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Sihe Gong
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (Z.S.); (S.G.); (Y.L.); (K.Y.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Yanni Li
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (Z.S.); (S.G.); (Y.L.); (K.Y.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Kaijie Yan
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (Z.S.); (S.G.); (Y.L.); (K.Y.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Yimin Bao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (Z.S.); (S.G.); (Y.L.); (K.Y.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Ke Ning
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (Z.S.); (S.G.); (Y.L.); (K.Y.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, Preston Research Building, Room 359, Nashville, TN 37232, USA
| |
Collapse
|
8
|
Gao Y, Hui L, Dou G, Chang X, Tang Y, Liu H, Xu Z, Xu B. Establishment of a prediction model and immune infiltration characteristics of atherosclerosis progression based on neutrophil extracellular traps-related genes. Braz J Med Biol Res 2025; 58:e13639. [PMID: 40053030 PMCID: PMC11884769 DOI: 10.1590/1414-431x2024e13639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 12/18/2024] [Indexed: 03/10/2025] Open
Abstract
Neutrophil extracellular traps (NETs) are a novel regulatory mechanism of neutrophils, which can promote endothelial cell inflammation through direct or indirect pathways and play a crucial role in the occurrence and development of atherosclerosis (AS). This study aimed to explore the mechanism of NETs in AS progression using bioinformatics methods. We acquired datasets from Gene Expression Omnibus (GEO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) and used Weighted Gene Co-expression Network Analysis (WGCNA) to identify communal genes shared by NET-related genes. Gene Ontology (GO) and KEGG enrichment analyses were conducted. Machine learning algorithms were used to identify hub genes, then protein-protein interaction (PPI), CO-expression network construction, nomogram model building and validation, and immune infiltration analysis were performed. Data were verified by qPCR. Four datasets related to AS progression were included. Module genes shared 27 genes with NRGs. Pathways related to immune regulation, leukocyte migration, and others were identified. Machine learning revealed SLC25A4 and C5AR1 as hub genes. SLC25A4 and C5AR1 were confirmed to have predictive value for intraplaque hemorrhage (IPH), advanced AS plaques, ruptured plaques, and unstable plaques. These pathologic changes are closely related to AS progression and are the main contents of AS progression. Immune infiltration analysis revealed 4 immune cells associated with IPH, among them resting dendritic cells, which were closely related to SLC25A4. In qPCR validation, SLC25A4 and C5AR1 were shown to be consistent with the bioinformatic analysis results. These findings provided novel insights into the molecular characteristics of NRGs and potential therapies for AS progression.
Collapse
Affiliation(s)
- Yuan Gao
- Xi'an International Medical Center Hospital, Xi'an, China
| | - Lele Hui
- Xi'an International Medical Center Hospital, Xi'an, China
| | - Gang Dou
- No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, China
| | - Xiaoying Chang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yue Tang
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hao Liu
- Chenggu County Hospital of Traditional Chinese Medicine, Hanzhong, China
| | - Zebiao Xu
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Bing Xu
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
9
|
Shen Z, Zhao M, Lu J, Chen H, Zhang Y, Chen S, Wang Z, Wang M, Liu X, Fu G, Huang H. Integrated multi-omic high-throughput strategies across-species identified potential key diagnostic, prognostic, and therapeutic targets for atherosclerosis under high glucose conditions. Mol Cell Biochem 2025; 480:1785-1805. [PMID: 39223351 DOI: 10.1007/s11010-024-05097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Diabetes is a well-known risk factor for atherosclerosis (AS), but the underlying molecular mechanism remains unknown. The dysregulated immune response is an important reason. High glucose is proven to induce foam cell formation under lipidemia situations in clinical patients. Exploring the potential regulatory programs of accelerated foam cell formation stimulated by high glucose is meaningful. Macrophage-derived foam cells were induced in vitro, and high-throughput sequencing was performed. Coexpression gene modules were constructed using weighted gene co-expression network analysis (WGCNA). Highly related modules were identified. Hub genes were identified by multiple integrative strategies. The potential roles of selected genes were further validated in bulk-RNA and scRNA datasets of human plaques. By transfection of the siRNA, the role of the screened gene during foam cell formation was further explored. Two modules were found to be both positively related to high glucose and ox-LDL. Further enrichment analyses confirmed the association between the brown module and AS. The high correlation between the brown module and macrophages was identified and 4 hub genes (Aldoa, Creg1, Lgmn, and Pkm) were screened. Further validation in external bulk-RNA and scRNA revealed the potential diagnostic and therapeutic value of selected genes. In addition, the survival analysis confirmed the prognostic value of Aldoa while knocking down Aldoa expression alleviated the foam cell formation in vitro. We systematically investigated the synergetic effects of high glucose and ox-LDL during macrophage-derived foam cell formation and identified that ALDOA might be an important diagnostic, prognostic, and therapeutic target in these patients.
Collapse
Affiliation(s)
- Zhida Shen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Meng Zhao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Jiangting Lu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Huanhuan Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Yicheng Zhang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Songzan Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Zhaojing Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Meihui Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Xianglan Liu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China.
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, China.
| | - He Huang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China.
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, China.
| |
Collapse
|
10
|
Yong X, Kang T, Li M, Li S, Yan X, Li J, Lin J, Lu B, Zheng J, Xu Z, Yang Q, Li J. Identification of novel biomarkers for atherosclerosis using single-cell RNA sequencing and machine learning. Mamm Genome 2025; 36:183-199. [PMID: 39400603 PMCID: PMC11880100 DOI: 10.1007/s00335-024-10077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024]
Abstract
Atherosclerosis (AS) is a predominant etiological factor in numerous cardiovascular diseases, with its associated complications such as myocardial infarction and stroke serving as major contributors to worldwide mortality rates. Here, we devised dependable AS-related biomarkers through the utilization of single-cell RNA sequencing, weighted co-expression network (WGCNA), and differential expression analysis. Furthermore, we employed various machine learning techniques (LASSO and SVM-RFE) to enhance the identification of AS biomarkers, subsequently validating them using the GEO dataset. Following this, CIBERSORT was employed to investigate the correlation between biomarkers and infiltrating immune cells. Consequently, 256 differentially expressed genes (DEGs) were selected in samples of AS and normal. GO and KEGG analyses indicated that these DEGs may be related to the negative regulation of leukocyte-mediated immunity, leukocyte cell-cell adhesion, and immune system processes. Notably, C1QC and COL1A1 were pinpointed as potential diagnostic markers for AS, a finding that was further validated in the GSE21545 dataset. Moreover, the area under the curve (AUC) values for these markers exceeded 0.8, underscoring their diagnostic utility. Analysis of immune cell infiltration revealed that the expression of C1QC was correlated with M0 macrophages, gamma delta T cells, activated mast cells and memory B cells. Similarly, COL1A1 expression was linked to M0 macrophages, memory B cells, activated mast cells, gamma delta T cells, and CD4 native T cells. Finally, these results were validated using mice and human samples through immunofluorescence, immunohistochemistry, and ELISA analysis. Overall, C1QC and COL1A1 would be potential biomarkers for AS diagnosis, and that would provides novel perspectives on the diagnosis and treatment of AS.
Collapse
Affiliation(s)
- Xi Yong
- The First Affliated Hospital, Jinan University, Guangzhou, 510632, China
- Vascular Surgery Department of Affiliated Hospital of North, Sichuan Medical College, Nanchong, 63700, China
- Hepatobiliary, Pancreatic and Intestinal Research Institute of North Sichuan Medical College, Nanchong, 63700, China
| | - Tengyao Kang
- Vascular Surgery Department of Affiliated Hospital of North, Sichuan Medical College, Nanchong, 63700, China
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, 63700, China
| | - Mingzhu Li
- School of Pharmacy, Institute of Materia Medical, North Sichuan Medical College, Nanchong, 63700, China
| | - Sixuan Li
- Vascular Surgery Department of Affiliated Hospital of North, Sichuan Medical College, Nanchong, 63700, China
| | - Xiang Yan
- Vascular Surgery Department of Affiliated Hospital of North, Sichuan Medical College, Nanchong, 63700, China
| | - Jiuxin Li
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, 63700, China
| | - Jie Lin
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, 63700, China
| | - Bo Lu
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, 63700, China
| | - Jianghua Zheng
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, 63700, China
| | - Zhengmin Xu
- School of Pharmacy, Institute of Materia Medical, North Sichuan Medical College, Nanchong, 63700, China.
- China Traditional Chinese Medicine for Prevention and Treatment of Musculoskeletal Diseases Key Laboratory of Nanchong City, Nanchong, 63700, China.
| | - Qin Yang
- Infectious Diseases Department of Affiliated Hospital of North, Sichuan Medical College, Nanchong, 63700, China.
| | - Jingdong Li
- The First Affliated Hospital, Jinan University, Guangzhou, 510632, China.
- Hepatobiliary, Pancreatic and Intestinal Research Institute of North Sichuan Medical College, Nanchong, 63700, China.
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, 63700, China.
| |
Collapse
|
11
|
Wu X, Pan J, Pan X, Kang J, Ren J, Huang Y, Gong L, Li Y. Identification of Potential Diagnostic Biomarkers of Carotid Atherosclerosis in Obese Populations. J Inflamm Res 2025; 18:1969-1991. [PMID: 39959637 PMCID: PMC11829119 DOI: 10.2147/jir.s504480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/29/2025] [Indexed: 02/18/2025] Open
Abstract
Objective This study aimed to investigate the potential mechanisms and biomarkers between Obesity (OB) and carotid atherosclerosis (CAS). Methods The GSE12828, GSE125771, GSE43292, and GSE100927 datasets were combined and normalized to obtain CAS-related differentially expressed genes (DEGs), and OB-related DEGs were obtained from the GSE151839 dataset and the GeneCards database. Unsupervised cluster analysis was conducted on CAS samples based on the DEGs of CAS and OB. Subsequently, immune infiltration analysis and gene set enrichment analysis (GESA) were performed. 61 machine learning models were developed to screen for Hub genes. The Single-gene GESA focused on calcium signaling pathway-related genes (CaRGs). Finally, high-fat diet-fed C57BL/6J ApoE-/- mice were used for in vivo validation. Results MMP9, PLA2G7, and SPP1 as regulators of the immune infiltration microenvironment in OB patients with CAS, and stratified CAS samples into subtypes with differences in metabolic pathways based on OB classification. Enrichment analysis indicated abnormalities in immune and inflammatory responses, the calcium signaling, and lipid response in obese CAS patients. The RF+GBM model identified CD52, CLEC5A, MMP9, and SPP1 as Hub genes. 15 CaRGs were up-regulated, and 12 were down-regulated in CAS and OB. PLCB2, PRKCB, and PLCG2 were identified as key genes in the calcium signaling pathway associated with immune cell infiltration. In vivo experiments showed that MMP9, PLA2G7, CD52, SPP1, FYB, and PLCB2 mRNA levels were up-regulated in adipose, aortic tissues and serum of OB and AS model mice, CLEC5A was up-regulated in aorta and serum, and PRKCB was up-regulated in adipose and serum. Conclusion MMP9, PLA2G7, CD52, CLEC5A, SPP1, and FYB may serve as potential diagnostic biomarkers for CAS in obese populations. PLCB2 and PRKCB are key genes in the calcium signaling pathway in OB and CAS. These findings offer new insights into clinical management and therapeutic strategies for CAS in obese individuals.
Collapse
Affiliation(s)
- Xize Wu
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, People’s Republic of China
| | - Jiaxiang Pan
- Department of Cardiology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110032, People’s Republic of China
| | - Xue Pan
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, People’s Republic of China
- College of Traditional Chinese Medicine, Dazhou Vocational College of Chinese Medicine, Dazhou, Sichuan, 635000, People’s Republic of China
| | - Jian Kang
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, People’s Republic of China
| | - Jiaqi Ren
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, People’s Republic of China
| | - Yuxi Huang
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, People’s Republic of China
| | - Lihong Gong
- Department of Cardiology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110032, People’s Republic of China
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, Liaoning, 110032, People’s Republic of China
| | - Yue Li
- Department of Cardiology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110032, People’s Republic of China
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, Liaoning, 110032, People’s Republic of China
| |
Collapse
|
12
|
Yang Y, Dong M. Exploring the role of oxidative stress in carotid atherosclerosis: insights from transcriptomic data and single-cell sequencing combined with machine learning. Biol Direct 2025; 20:15. [PMID: 39881407 PMCID: PMC11780792 DOI: 10.1186/s13062-025-00600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Carotid atherosclerotic plaque is the primary cause of cardiovascular and cerebrovascular diseases. It is closely related to oxidative stress and immune inflammation. This bioinformatic study was conducted to identify key oxidative stress-related genes and key immune cell infiltration involved in the formation, progression, and stabilization of plaques and investigate the relationship between them. RESULTS We show that the up-regulation of oxidative stress-related genes such as IDH1 and CD36 in resident-like macrophages and foam macrophages play a key role in the formation and progression of carotid atherosclerotic plaques. CONCLUSIONS We discuss the role of oxidative stress and immune inflammation in the formation, progression, and stabilization of plaques by combining predictive models with analysis of single-cell data. It introduced novel insights into the mechanisms underlying carotid atherosclerosis formation and plaque progression and may assist in identifying potential therapeutic targets for their treatment.
Collapse
Affiliation(s)
- Yiqin Yang
- The Second School of Clinical Medicine, Shandong University, Jinan, China
| | - Mei Dong
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
13
|
Lapin D, Sharma A, Wang P. Extracellular cold-inducible RNA-binding protein in CNS injury: molecular insights and therapeutic approaches. J Neuroinflammation 2025; 22:12. [PMID: 39838468 PMCID: PMC11752631 DOI: 10.1186/s12974-025-03340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Central nervous system (CNS) injuries, such as ischemic stroke (IS), intracerebral hemorrhage (ICH) and traumatic brain injury (TBI), are a significant global burden. The complex pathophysiology of CNS injury is comprised of primary and secondary injury. Inflammatory secondary injury is incited by damage-associated molecular patterns (DAMPs) which signal a variety of resident CNS cells and infiltrating immune cells. Extracellular cold-inducible RNA-binding protein (eCIRP) is a DAMP which acts through multiple immune and non-immune cells to promote inflammation. Despite the well-established role of eCIRP in systemic and sterile inflammation, its role in CNS injury is less elucidated. Recent literature suggests that eCIRP is a pleiotropic inflammatory mediator in CNS injury. eCIRP is also being evaluated as a clinical biomarker to indicate prognosis in CNS injuries. This review provides a broad overview of CNS injury, with a focus on immune-mediated secondary injury and neuroinflammation. We then review what is known about eCIRP in CNS injury, and its known mechanisms in both CNS and non-CNS cells, identifying opportunities for further study. We also explore eCIRP's potential as a prognostic marker of CNS injury severity and outcome. Next, we provide an overview of eCIRP-targeting therapeutics and suggest strategies to develop these agents to ameliorate CNS injury. Finally, we emphasize exploring novel molecular mechanisms, aside from neuroinflammation, by which eCIRP acts as a critical mediator with significant potential as a therapeutic target and prognostic biomarker in CNS injury.
Collapse
Affiliation(s)
- Dmitriy Lapin
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Archna Sharma
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| |
Collapse
|
14
|
Zhang Y, Lu S, Qiu L, Qin M, Shan D, Xie L, Yi Y, Yu J. Integrative single-cell and bulk RNA-seq analyses identify CD4 + T-cell subpopulation infiltration and biomarkers of regulatory T cells involved in mediating the progression of atherosclerotic plaque. Front Immunol 2025; 15:1528475. [PMID: 39896809 PMCID: PMC11781991 DOI: 10.3389/fimmu.2024.1528475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/16/2024] [Indexed: 02/04/2025] Open
Abstract
Background Atherosclerosis (AS) is a chronic inflammatory disease with a significant contributor to mortality worldwide. Regulatory T cells (Tregs) are atheroprotective. However, the potential pathways and genes associated with atherosclerotic plaque progression in Tregs remain largely unknown. Therefore, this study aimed to identify critical target genes and pathways of Tregs associated with the progression of AS. Methods The gene expression data and single cell RNA-seq data of AS were downloaded from the Gene Expression Omnibus (GEO) database. Initially, we quantified CD4+ T cell proportions in non-plaque and plaque tissues using cell infiltration by estimation of RNA sequences (CIBERSORT) analysis, identifying pivotal transcription factors regulating the number of Tregs in atherosclerotic plaque. Subsequently, we identified significantly differential expressed genes of Tregs during the progression of atherosclerotic plaque and investigated the key pathways and transcription factors for these differentially expressed genes using gene ontology (GO) analysis and transcription factor enrichment analysis (TFEA), respectively. We also employed high dimensional weighted gene co-expression network analysis (hdWGCNA) and cell-cell communication analysis to elucidate the modules and cascade reaction of Tregs in the progression of AS. The key genes diagnostic potential was assessed via receiver operating characteristic (ROC) curve analysis. Finally, the target genes were validated in AS model using Ldlr-/- mice. Results We found that the proportion of Tregs significantly decreased, and Th2 cells showed a significant increase in atherosclerotic plaque compared to that in non-plaque arterial tissues. The five transcription factors (TEFC, IRF8, ZNF267, KLF2, and JUNB), identified as key targets associated with the function and the number of Tregs driving the progression of AS, primarily regulate immune response, ubiquitination, cytokine production, and T-cell differentiation pathways. ZNF267 may mainly involve in regulating ubiquitination, TGF-beta, and MAPK pathways of Tregs to regulate the function and the number of Tregs during the progress of AS. Interestingly, we found that IRF8 and ZNF267 as potential biomarkers were upregulated in circulating CD4+ T cells in patients with atherosclerotic coronary artery disease. Moreover, we also found that the changes of the function and the number of Tregs could modulate endothelial cell and smooth muscle cell functions to counteract AS through ligand-receptor pairs such as the MIF signaling pathway. Finally, we validated that two of the five transcription factors were also upregulated in mice atherosclerotic plaque through AS model using Ldlr-/- mice. Conclusion Our results indicate that the transcription factors TEFC, IRF8, ZNF267, KLF2, and JUNB in Tregs could be potential targets for the clinical management of AS.
Collapse
Affiliation(s)
- Yifeng Zhang
- Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shuxian Lu
- Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Liang Qiu
- Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Manman Qin
- Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Dan Shan
- Department of Cardiovascular Sciences, Centre for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Lianhua Xie
- Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yao Yi
- Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- Institute of Obstetrics and Gynecology, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jun Yu
- Department of Cardiovascular Sciences, Centre for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
15
|
Zhao N, Liu D, Song H, Zhang X, Yan C, Han Y. Identification of critical endoplasmic reticulum stress-related genes in advanced atherosclerotic plaque. Sci Rep 2025; 15:2107. [PMID: 39814777 PMCID: PMC11735864 DOI: 10.1038/s41598-024-83925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025] Open
Abstract
Atherosclerosis (AS) is the principal pathological cause of atherosclerotic cardiovascular diseases. Chronic endoplasmic reticulum stress (ERS) has been implicated in AS aetiopathogenesis, but the underlying molecular interactions remain unclear. This study aims to identify the molecular mechanisms of ERS in AS pathogenesis to inform innovative diagnostic approaches and therapeutic targets for managing AS. GSE28829 and GSE43292-human early and advanced carotid atherosclerotic tissue samples-were obtained from the Gene Expression Omnibus database. Endoplasmic reticulum stress-related genes (ERSRGs) were obtained from GeneCards. Differential gene expression and weighted gene co-expression network analyses were conducted to identify genes associated with atherosclerosis, and intersection with ER-related genes revealed three ERSRGs (i.e. CTSB, LYN, and CYBB) associated with advanced atherosclerotic plaque. These three ERSRGs exhibited associations with various immune cells. Additionally, the three ERSRGs were upregulated in human atherosclerotic tissues, mouse models of progressive atherosclerotic lesions, and in vitro macrophage models. In conclusion, this study identified CTSB, LYN, and CYBB as potentially critical ERSRGs associated with advanced atherosclerotic plaque, demonstrating their good diagnostic utility and offering novel insights into the potential pathobiology of AS progression, paving the way for exploring innovative therapeutic targets.
Collapse
Affiliation(s)
- Ning Zhao
- Department of Cardiology, Second Norman Bethune Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, China
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan Liu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Haixu Song
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaolin Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
| | - Chenghui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
| | - Yaling Han
- Department of Cardiology, Second Norman Bethune Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, China.
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
16
|
Shao CL, Meng WT, Wang YC, Liu JJ, Ning K, Hou XX, Guo HD. Regulating NETs contributes to a novel antiatherogenic effect of MTHSWD via inhibiting endothelial injury and apoptosis. Int Immunopharmacol 2024; 143:113368. [PMID: 39418732 DOI: 10.1016/j.intimp.2024.113368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
Neutrophil extracellular traps (NETs) are implicated in the occurrence and progression of atherosclerosis (AS), which can result in adverse cardiovascular events. We investigated the potential mechanism of action of Modified Taohong Siwu Decoction (MTHSWD) against AS based on its effect on NETs. A model of unstable plaque in AS was established by tandem stenosis (TS) of the right common carotid artery in ApoE-/- mice combined with a western diet (WD). The research found that MTHSWD reduced the weight of mice with AS to varying degrees, and significantly decreased the levels of plasma total cholesterol (TC) and triglycerides (TG). Meanwhile, we found that MTHSWD not only significantly improved cardiac EF, FS, cardiac hypertrophy, and ventricular remodeling, but also ameliorated the silent and depressed hypoactivity state caused by AS in ApoE-/- mice. Additionally, the study revealed that MTHSWD improved the severity of AS, protected the vascular structure, increased plaque stability and vessel patency. It also significantly reduced vascular cell apoptosis, platelet aggregation, and the presence of inflammatory cells such as neutrophils (NEUs), as well as the expression of neutrocyte elastase (NE) and myeloperoxidase (MPO), which are components of NETs. Subsequently, NEUs studies have shown that MTHSWD not only significantly reduces the dsDNA content of NETs, but also lowers the expression of NETs components NE and citH3. NETs treating the human umbilical vein endothelial cells (HUVECs) demonstrated that NETs differentially increased the protein expression of endothelial inflammatory adhesion factors CD62P, VCAM-1 and ICAM-1, while significantly decreasing the viability of HUVECs. Pharmacological treatment discovered that MTHSWD significantly improved HUVECs viability impaired by NETs, and promoted the growth and proliferation of endothelial cells. Furthermore, it significantly reduced early and late apoptosis of HUVECs caused by NETs, decreased the expression of pro-apoptotic proteins BAX and Cleaved-Caspase-3, and increased the expression of anti-apoptotic protein Bcl-2. Thus, study suggests that MTHSWD may improve body weight, lipid levels, cardiac function, vigour, and the severity of AS in ApoE-/- AS mice. The novel effect of MTHSWD against AS may be attributed to the inhibition of endothelial injury and apoptosis through the regulation of NETs. This, in turn, reduces the levels of platelets, inflammatory cells, and components of NETs in AS plaques, achieving a benign cycle that protects endothelial cells and vascular structure and function. This result provides some clues and evidence for studying the mechanism of action and clinical application of MTHSWD and its active ingredients against AS.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Atherosclerosis/drug therapy
- Atherosclerosis/pathology
- Extracellular Traps/drug effects
- Extracellular Traps/metabolism
- Humans
- Male
- Mice
- Human Umbilical Vein Endothelial Cells
- Mice, Inbred C57BL
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Neutrophils/drug effects
- Neutrophils/immunology
- Apolipoproteins E/genetics
- Mice, Knockout
- Disease Models, Animal
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/pathology
- Mice, Knockout, ApoE
- Cells, Cultured
Collapse
Affiliation(s)
- Chang-le Shao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wan-Ting Meng
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya-Chao Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Liu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Ning
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xin-Xin Hou
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Hai-Dong Guo
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
17
|
Ying X, Chen Q, Yang Y, Wu Z, Zeng W, Miao C, Huang Q, Ai K. Nanomedicines harnessing cGAS-STING pathway: sparking immune revitalization to transform 'cold' tumors into 'hot' tumors. Mol Cancer 2024; 23:277. [PMID: 39710707 DOI: 10.1186/s12943-024-02186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
cGAS-STING pathway stands at the forefront of innate immunity and plays a critical role in regulating adaptive immune responses, making it as a key orchestrator of anti-tumor immunity. Despite the great potential, clinical outcomes with cGAS-STING activators have been disappointing due to their unfavorable in vivo fate, signaling an urgent need for innovative solutions to bridge the gap in clinical translation. Recent advancements in nanotechnology have propelled cGAS-STING-targeting nanomedicines to the cutting-edge of cancer therapy, leveraging precise drug delivery systems and multifunctional platforms to achieve remarkable region-specific biodistribution and potent therapeutic efficacy. In this review, we provide an in-depth exploration of the molecular mechanisms that govern cGAS-STING signaling and its potential to dynamically modulate the anti-tumor immune cycle. We subsequently introduced several investigational cGAS-STING-dependent anti-tumor agents and summarized their clinical trial progress. Additionally, we provided a comprehensive review of the unique advantages of cGAS-STING-targeted nanomedicines, highlighting the transformative potential of nanotechnology in this field. Furthermore, we comprehensively reviewed and comparatively analyzed the latest breakthroughs cGAS-STING-targeting nanomedicine, focusing on strategies that induce cytosolic DNA generation via exogenous DNA delivery, chemotherapy, radiotherapy, or dynamic therapies, as well as the nanodelivery of STING agonists. Lastly, we discuss the future prospects and challenges in cGAS-STING-targeting nanomedicine development, offering new insights to bridge the gap between mechanistic research and drug development, thereby opening new pathways in cancer treatment.
Collapse
Affiliation(s)
- Xiaohong Ying
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Qiaohui Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Yongqi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Ziyu Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Wan Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Chenxi Miao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Xiangya Hospital, Ministry of Education, Central South University, Changsha, 410008, China.
| |
Collapse
|
18
|
Zhang Y, Zhang L, Jia Y, Fang J, Zhang S, Hou X. Screening of potential regulatory genes in carotid atherosclerosis vascular immune microenvironment. PLoS One 2024; 19:e0307904. [PMID: 39652562 PMCID: PMC11627393 DOI: 10.1371/journal.pone.0307904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/13/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Immune microenvironment is one of the essential characteristics of carotid atherosclerosis (CAS), which cannot be reversed by drug therapy alone. Thus, there is a pressing need to develop novel immunoregulatory strategies to delay this pathological process that drives cardiovascular-related diseases. This study aimed to detect changes in the immune microenvironment of vascular tissues at various stages of carotid atherosclerosis, as well as cluster and stratify vascular tissue samples based on the infiltration levels of immune cell subtypes to distinguish immune phenotypes and identify potential hub genes regulating the immune microenvironment of carotid atherosclerosis. MATERIALS AND METHODS RNA sequencing datasets for CAS vascular tissue and healthy vascular tissue (GSE43292 and GSE28829) were downloaded from the Gene Expression Omnibus (GEO) database. To begin, the immune cell subtype infiltration level of all samples in both GSE43292 and GSE28829 cohorts was assessed using the ssGSEA algorithm. Following this, consensus clustering was performed to stratify CAS samples into different clusters. Finally, hub genes were identified using the maximum neighborhood component algorithm based on the construction of interaction networks, and their diagnostic efficiency was evaluated. RESULTS Compared to the controls, a higher number of immune cell subtypes were enriched in CAS samples with higher immune scores in the GSE43292 cohort. Advanced CAS was characterized by high immune cell infiltration, whereas early CAS was characterized by low immune cell infiltration in the GSE28829 cohort. Moreover, CAS progression may be related to the immune response pathway. Biological processes associated with muscle cell development may impede the progression of CAS. Finally, the hub genes PTPRC, ACTN2, ACTC1, LDB3, MYOZ2, and TPM2 had satisfactory efficacy in the diagnosis and prediction of high and low immune cell infiltration in CAS and distinguishing between early and advanced CAS samples. CONCLUSION The enrichment of immune cells in vascular tissues is a primary factor driving pathological changes in CAS. Additionally, CAS progression may be related to the immune response pathway. Biological processes linked to muscle cell development may delay the progression of CAS. PTPRC, ACTN2, ACTC1, LDB3, MYOZ2, and TPM2 may regulate the immune microenvironment of CAS and participate in the occurrence and progression of the disease.
Collapse
Affiliation(s)
- Yi Zhang
- Heibei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Lingmin Zhang
- Teaching and Research Office of Typhoon Fever Theory at the School of Basic Medicine, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Yunfang Jia
- Teaching and Research Office of Traditional Chinese Medicine History and Literature at the School of Basic Medicine, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Jing Fang
- Teaching and Research Office of Internal Canon of Medicine at the School of Basic Medicine, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Shuancheng Zhang
- Teaching and Research Office of Internal Canon of Medicine at the School of Basic Medicine, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Xianming Hou
- Heibei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, Hebei Province, China
| |
Collapse
|
19
|
Miao S, Liu H, Yang Q, Zhang Y, Chen T, Chen S, Mao X, Zhang Q. Cathelicidin peptide LL-37: A multifunctional peptide involved in heart disease. Pharmacol Res 2024; 210:107529. [PMID: 39615616 DOI: 10.1016/j.phrs.2024.107529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Heart disease is a common human disease with high morbidity and mortality. Timely and effective prevention and treatment is an urgent clinical problem. The pathogenesis of heart disease is complex and diverse, involving hypertension, diabetes, atherosclerosis, drug toxicity, thrombosis, infection and other aspects. LL-37, an endogenous peptide, is well known for its antimicrobial properties. In recent years, LL-37 has been found to have a variety of biological functions, including its role in the regulation of atherosclerosis, thrombosis, inflammatory responses, and cardiac hypertrophy. Engineered LL-37-related peptides were developed and proved to regulate the development of disease, which revealed its potential clinical application. A comprehensive review and summary of LL-37 is presented to clarify its role in heart disease and to provide a reference and direction for future research.
Collapse
Affiliation(s)
- Shuo Miao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China
| | - Houde Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qingyu Yang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaping Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Chen
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Ruipule Medical Technology Co., Ltd, China
| | - Shuai Chen
- School of Basic Medicine, Guizhou University of Traditional Chinese, China
| | - Xin Mao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Qingsong Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
20
|
Xie A, Wang H, Zhao J, Wang Z, Xu J, Xu Y. scPAS: single-cell phenotype-associated subpopulation identifier. Brief Bioinform 2024; 26:bbae655. [PMID: 39681325 DOI: 10.1093/bib/bbae655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/13/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Despite significant advancements in single-cell sequencing analysis for characterizing tissue sample heterogeneity, identifying the associations between cell subpopulations and disease phenotypes remains a challenging task. Here, we introduce scPAS, a new bioinformatics tool designed to integrate bulk data to identify phenotype-associated cell subpopulations within single-cell data. scPAS employs a network-regularized sparse regression model to quantify the association between each cell in single-cell data and a phenotype. Additionally, it estimates the significance of these associations through a permutation test, thereby identifying phenotype-associated cell subpopulations. Utilizing simulated data and various single-cell datasets from breast carcinoma, ovarian cancer, and atherosclerosis, as well as spatial transcriptomics data from multiple cancers, we demonstrated the accuracy, flexibility, and broad applicability of scPAS. Evaluations on large datasets revealed that scPAS exhibits superior operational efficiency compared to other methods. The open-source scPAS R package is available at GitHub website: https://github.com/aiminXie/scPAS.
Collapse
Affiliation(s)
- Aimin Xie
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 157 Baojian Road, Heilongjiang 150081, China
| | - Hao Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 157 Baojian Road, Heilongjiang 150081, China
| | - Jiaxu Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 157 Baojian Road, Heilongjiang 150081, China
| | - Zhaoyang Wang
- Genetron Health (Beijing) Co. Ltd, 1-2/F, Building 11, Zone 1, 8 Life Science Parkway, Changping District, Beijing 102208, China
| | - Jinyuan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 157 Baojian Road, Heilongjiang 150081, China
| | - Yan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 157 Baojian Road, Heilongjiang 150081, China
| |
Collapse
|
21
|
Lu Y, Lu C, Luo Z, Chen P, Xiong H, Li W. Association between the systemic inflammatory response index and mortality in patients with sarcopenia. PLoS One 2024; 19:e0312383. [PMID: 39556533 PMCID: PMC11573146 DOI: 10.1371/journal.pone.0312383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/06/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Sarcopenia is closely linked to inflammation; however, the association between the systemic inflammatory response index (SIRI) and mortality in patients with sarcopenia remains unclear. This study aims to explore the relationship between SIRI and mortality in sarcopenia patients. METHODS We analyzed data from ten cycles of the National Health and Nutrition Examination Survey (NHANES) spanning 1999 to 2018, selecting 3,141 sarcopenia patients. Mortality data were obtained from the National Death Index up to December 31, 2019. Participants were divided into three groups based on the ranking of their SIRI values. The association between SIRI and mortality was assessed using Cox proportional hazards models, with smooth curve fitting employed to test the correlation. Sensitivity analyses, subgroup analyses, and interaction tests were conducted to validate the stability of the findings. RESULTS A total of 101,316 individuals were included in this study. During a median follow-up of 10.4 years (minimum follow-up time of approximately 0.08 years, maximum follow-up time of 20.75 years), 667 participants died. Kaplan-Meier (KM) analysis indicated a higher risk of mortality in the SIRI Q3 group. Cox regression analysis showed a significant association between the SIRI Q3 group and all-cause mortality [HR 1.24 (95% CI: 1.05, 1.47)] and cardiovascular disease mortality [HR 1.46 (95% CI: 1.04, 2.04)]. Subgroup analysis revealed that SIRI was significantly associated with all-cause mortality across various demographic characteristics (e.g., gender, diabetes, hypertension, cardiovascular disease). Sensitivity analysis, excluding participants with cardiovascular disease, those who died within two years of follow-up, and those under 50 years old, indicated higher hazard ratios (HRs) for all-cause and cardiovascular mortality in the SIRI Q3 group. CONCLUSION This study demonstrates a significant association between SIRI and an increased risk of mortality in sarcopenia patients aged 20 years and older.
Collapse
Affiliation(s)
- Yifan Lu
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chengyin Lu
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhiqiang Luo
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Pei Chen
- The First Hospital of Hunan University Chinese Medicine, Changsha, Hunan, China
| | - Hui Xiong
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- The First Hospital of Hunan University Chinese Medicine, Changsha, Hunan, China
| | - Wangyang Li
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
22
|
Hong D, Ma L, Jin L, Tang L, Chen L, Qiu Z. The role of integrin-related genes in atherosclerosis complicated by abdominal aortic aneurysm. Medicine (Baltimore) 2024; 103:e40293. [PMID: 39560590 PMCID: PMC11576009 DOI: 10.1097/md.0000000000040293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/10/2024] [Indexed: 11/20/2024] Open
Abstract
Increasingly, the shared risk factors and pathological processes of atherosclerosis and abdominal aortic aneurysm (AAA) are being recognized. The aim of our study was to identify the hub genes involved in the pathogenesis of atherosclerosis and AAA. The analysis was based on 2 gene expression profiles for atherosclerosis (GSE28829) and AAA (GSE7084), downloaded from the Gene Expression Omnibus database. Common differential genes were identified and an enrichment analysis of differential genes was conducted, with construction of protein-protein interaction networks, and identification of common hub genes, and predicted transcription factors. The analysis identified 133 differentially expressed genes (116 upregulated and 17 downregulated), with the enrichment analysis identifying a potential important role of integrins and chemokines in the common immune and inflammatory responses of atherosclerosis and AAA. Regulation of the complement and coagulation cascades and regulation of the actin cytoskeleton were associated with both diseases, with 10 important hub genes identified: TYROBP, PTPRC, integrin subunit beta 2, ITGAM, PLEK, cathepsin S, lymphocyte antigen 86, ITGAX, CCL4, and FCER1G. Findings identified a common pathogenetic pathway between atherosclerosis and AAA, with integrin-related genes playing a significant role. The common pathways and hub genes identified provide new insights into the shared mechanisms of these 2 diseases and can contribute to identifying new therapeutic targets and predicting the therapeutic effect of biological agents.
Collapse
Affiliation(s)
- Degao Hong
- Department of Cardiology, Shanghang County Hospital, Longyan, Fujian, China
| | - Likang Ma
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Lei Jin
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Lele Tang
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Liangwan Chen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Zhihuang Qiu
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| |
Collapse
|
23
|
Wu X, Kang J, Pan X, Xue C, Pan J, Quan C, Ren L, Gong L, Li Y. Identification of key genes for cuproptosis in carotid atherosclerosis. Front Cardiovasc Med 2024; 11:1471153. [PMID: 39553847 PMCID: PMC11564188 DOI: 10.3389/fcvm.2024.1471153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Background Atherosclerosis is a leading cause of cardiovascular disease worldwide, while carotid atherosclerosis (CAS) is more likely to cause ischemic cerebrovascular events. Emerging evidence suggests that cuproptosis may be associated with an increased risk of atherosclerotic cardiovascular disease. This study aims to explore the potential mechanisms linking cuproptosis and CAS. Methods The GSE100927 and GSE43292 datasets were merged to screen for CAS differentially expressed genes (DEGs) and intersected with cuproptosis-related genes to obtain CAS cuproptosis-related genes (CASCRGs). Unsupervised cluster analysis was performed on CAS samples to identify cuproptosis molecular clusters. Weighted gene co-expression network analysis was performed on all samples and cuproptosis molecule clusters to identify common module genes. CAS-specific DEGs were identified in the GSE100927 dataset and intersected with common module genes to obtain candidate hub genes. Finally, 83 machine learning models were constructed to screen hub genes and construct a nomogram to predict the incidence of CAS. Results Four ASCRGs (NLRP3, SLC31A2, CDKN2A, and GLS) were identified as regulators of the immune infiltration microenvironment in CAS. CAS samples were identified with two cuproptosis-related molecular clusters with significant biological function differences based on ASCRGs. 220 common module hub genes and 1,518 CAS-specific DEGs were intersected to obtain 58 candidate hub genes, and the machine learning model showed that the Lasso + XGBoost model exhibited the best discriminative performance. Further external validation of single gene differential analysis and nomogram identified SGCE, PCDH7, RAB23, and RIMKLB as hub genes; SGCE and PCDH7 were also used as biomarkers to characterize CAS plaque stability. Finally, a nomogram was developed to assess the incidence of CAS and exhibited satisfactory predictive performance. Conclusions Cuproptosis alters the CAS immune infiltration microenvironment and may regulate actin cytoskeleton formation.
Collapse
Affiliation(s)
- Xize Wu
- Department of Critical Care Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, Jiangsu, China
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Jian Kang
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Xue Pan
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
- College of Traditional Chinese Medicine, Dazhou Vocational College of Chinese Medicine, Dazhou, Sichuan, China
| | - Chentian Xue
- Department of Critical Care Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, Jiangsu, China
- Graduate School, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Jiaxiang Pan
- Department of Cardiology, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Chao Quan
- Department of Critical Care Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, Jiangsu, China
| | - Lihong Ren
- Department of Critical Care Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, Jiangsu, China
| | - Lihong Gong
- Department of Cardiology, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, Liaoning, China
| | - Yue Li
- Department of Cardiology, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, Liaoning, China
| |
Collapse
|
24
|
Porsch F, Binder CJ. Autoimmune diseases and atherosclerotic cardiovascular disease. Nat Rev Cardiol 2024; 21:780-807. [PMID: 38937626 DOI: 10.1038/s41569-024-01045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
Autoimmune diseases are associated with a dramatically increased risk of atherosclerotic cardiovascular disease and its clinical manifestations. The increased risk is consistent with the notion that atherogenesis is modulated by both protective and disease-promoting immune mechanisms. Notably, traditional cardiovascular risk factors such as dyslipidaemia and hypertension alone do not explain the increased risk of cardiovascular disease associated with autoimmune diseases. Several mechanisms have been implicated in mediating the autoimmunity-associated cardiovascular risk, either directly or by modulating the effect of other risk factors in a complex interplay. Aberrant leukocyte function and pro-inflammatory cytokines are central to both disease entities, resulting in vascular dysfunction, impaired resolution of inflammation and promotion of chronic inflammation. Similarly, loss of tolerance to self-antigens and the generation of autoantibodies are key features of autoimmunity but are also implicated in the maladaptive inflammatory response during atherosclerotic cardiovascular disease. Therefore, immunomodulatory therapies are potential efficacious interventions to directly reduce the risk of cardiovascular disease, and biomarkers of autoimmune disease activity could be relevant tools to stratify patients with autoimmunity according to their cardiovascular risk. In this Review, we discuss the pathophysiological aspects of the increased cardiovascular risk associated with autoimmunity and highlight the many open questions that need to be answered to develop novel therapies that specifically address this unmet clinical need.
Collapse
Affiliation(s)
- Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
25
|
Tang Y, Jiao Y, An X, Tu Q, Jiang Q. Neutrophil extracellular traps and cardiovascular disease: Associations and potential therapeutic approaches. Biomed Pharmacother 2024; 180:117476. [PMID: 39357329 DOI: 10.1016/j.biopha.2024.117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Cardiovascular disease (CVD) is a significant global health concern, ranking among the top five causes of disability-adjusted life-years (DALY) in 190 countries and territories. Neutrophils, key players in the innate immune system, combat infections by releasing neutrophil extracellular traps (NETs) composed of DNA, histones, elastase, myeloperoxidase, and antimicrobial peptides. This paper explores the relationship between NETs and cardiovascular diseases, focusing on conditions such as heart failure, pulmonary hypertension, atrial fibrillation, and ischemia-reperfusion injury. Particularly, it delves into the impact of NETs on atrial fibrillation and pulmonary hypertension, as well as the role of myeloperoxidase (MPO) and neutrophil elastase (NE) in these diseases. Furthermore, the potential of targeting NETs for the treatment of cardiovascular diseases is discussed.
Collapse
Affiliation(s)
- Yiyue Tang
- Department of Cardiovascular Medicine, The First People's Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China; Zunyi Medical University, Zunyi, Guizhou, China
| | - Yang Jiao
- Department of Cardiovascular Medicine, The First People's Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Xiaohua An
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China; Zunyi Medical University, Zunyi, Guizhou, China
| | - Qingxian Tu
- Department of Cardiovascular Medicine, The First People's Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China.
| | - Qianfeng Jiang
- GuizhouAerospaceHospital,(Affiliated AerospaceHospital of Zunyi Medical University), Zunyi, Guizhou, China.
| |
Collapse
|
26
|
Yang Q, Liu J, Zhang T, Zhu T, Yao S, Wang R, Wang W, Dilimulati H, Ge J, An S. Exploring shared biomarkers and shared pathways in insomnia and atherosclerosis using integrated bioinformatics analysis. Front Mol Neurosci 2024; 17:1477903. [PMID: 39439987 PMCID: PMC11493776 DOI: 10.3389/fnmol.2024.1477903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Background Insomnia (ISM) is one of the non-traditional drivers of atherosclerosis (AS) and an important risk factor for AS-related cardiovascular disease. Our study aimed to explore the shared pathways and diagnostic biomarkers of ISM-related AS using integrated bioinformatics analysis. Methods We download the datasets from the Gene Expression Omnibus database and the GeneCards database. Weighted gene co-expression network analysis and gene differential expression analysis were applied to screen the AS-related gene set. The shared genes of ISM and AS were obtained by intersecting with ISM-related genes. Subsequently, candidate diagnostic biomarkers were identified by constructing protein-protein interaction networks and machine learning algorithms, and a nomogram was constructed. Moreover, to explore potential mechanisms, a comprehensive analysis of shared genes was carried out, including enrichment analysis, protein interactions, immune cell infiltration, and single-cell sequencing analysis. Results We successfully screened 61 genes shared by ISM and AS, of which 3 genes (IL10RA, CCR1, and SPI1) were identified as diagnostic biomarkers. A nomogram with excellent predictive value was constructed (the area under curve of the model constructed by the biomarkers was 0.931, and the validation set was 0.745). In addition, the shared genes were mainly enriched in immune and inflammatory response regulation pathways. The biomarkers were associated with a variety of immune cells, especially myeloid immune cells. Conclusion We constructed a diagnostic nomogram based on IL10RA, CCR1, and SPI1 and explored the inflammatory-immune mechanisms, which indicated new insights for early diagnosis and treatment of ISM-related AS.
Collapse
Affiliation(s)
- Qichong Yang
- Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Regenerative Medicine, National Health Commission, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Zhengzhou, Henan, China
| | - Juncheng Liu
- Key Laboratory of Cardiac Regenerative Medicine, National Health Commission, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Zhengzhou, Henan, China
- Henan Province People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tingting Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Province People’s Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tingting Zhu
- Department of Cardiopulmonary Functions Test, Henan Province People’s Hospital, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Siyu Yao
- Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Regenerative Medicine, National Health Commission, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Zhengzhou, Henan, China
| | - Rongzi Wang
- Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Regenerative Medicine, National Health Commission, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Zhengzhou, Henan, China
| | - Wenjuan Wang
- Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Regenerative Medicine, National Health Commission, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Zhengzhou, Henan, China
| | - Haliminai Dilimulati
- Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Regenerative Medicine, National Health Commission, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Zhengzhou, Henan, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Songtao An
- Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Regenerative Medicine, National Health Commission, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Zhengzhou, Henan, China
| |
Collapse
|
27
|
Sun M, Song R, Fang Y, Xu J, Yang Z, Zhang H. DNA-Based Complexes and Composites: A Review of Fabrication Methods, Properties, and Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51899-51915. [PMID: 39314016 DOI: 10.1021/acsami.4c13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Deoxyribonucleic acid (DNA), a macromolecule that stores genetic information in organisms, has recently been gradually developed into a building block for new materials due to its stable chemical structure and excellent biocompatibility. The efficient preparation and functional integration of various molecular complexes and composite materials based on nucleic acid skeletons have been successfully achieved. These versatile materials possess excellent physical and chemical properties inherent to certain inorganic or organic molecules but are endowed with specific physiological functions by nucleic acids, demonstrating unique advantages and potential applications in materials science, nanotechnology, and biomedical engineering in recent years. However, issues such as the production cost, biological stability, and potential immunogenicity of DNA have presented some unprecedented challenges to the application of these materials in the field. This review summarizes the cutting-edge manufacturing techniques and unique properties of DNA-based complexes and composites and discusses the trends, challenges, and opportunities for the future development of nucleic acid-based materials.
Collapse
Affiliation(s)
- Mengqiu Sun
- School of Physical Sciences, Great Bay University, Dongguan 523000, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rui Song
- School of Physical Sciences, Great Bay University, Dongguan 523000, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| | - Yangwu Fang
- School of Physical Sciences, Great Bay University, Dongguan 523000, China
| | - Jiuzhou Xu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhaoqi Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- School of Physical Sciences, Great Bay University, Dongguan 523000, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| |
Collapse
|
28
|
Atzeni F, Rodríguez-Pintó I, Cervera R. Cardiovascular disease risk in systemic lupus erythematous: Certainties and controversies. Autoimmun Rev 2024; 23:103646. [PMID: 39321952 DOI: 10.1016/j.autrev.2024.103646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Patients with systemic lupus erythematosus (SLE) experience greater cardiovascular morbidity and mortality compared to the general population. It is known that endothelial dysfunction, an early indicator of atherosclerosis development, can arise even without the presence of conventional cardiovascular risk factors. In fact, the risk factors contributing to cardiovascular disease can be classified into traditional risk factors and those uniquely associated with SLE such as disease activity, autoantibodies, etc.Furthermore, the pathogenesis of cardiovascular disease in SLE is linked to the activation of both the innate and adaptive immune systems. Given these findings, it is essential for clinicians to acknowledge the heightened CVD risk in SLE patients, perform comprehensive screenings for cardiovascular risk factors, and implement aggressive treatment strategies for those who exhibit signs of clinical CVD. The aim of this review is to summarize the findings on cardiovascular disease in SLE and to examine potential screening and therapeutic strategies for clinical practice.
Collapse
Affiliation(s)
- Fabiola Atzeni
- Rheumatology Unit, Department of Experimental and Internal Medicine, University of Messina, Messina, Italy
| | - Ignasi Rodríguez-Pintó
- Department of Autoimmune Diseases, Reference Centre for Systemic Autoimmune Diseases (UEC/CSUR) of the Catalan and Spanish Health Systems-Member of ERNReCONNET, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.
| | - Ricard Cervera
- Department of Autoimmune Diseases, Reference Centre for Systemic Autoimmune Diseases (UEC/CSUR) of the Catalan and Spanish Health Systems-Member of ERNReCONNET, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.
| |
Collapse
|
29
|
Maier-Begandt D, Alonso-Gonzalez N, Klotz L, Erpenbeck L, Jablonska J, Immler R, Hasenberg A, Mueller TT, Herrero-Cervera A, Aranda-Pardos I, Flora K, Zarbock A, Brandau S, Schulz C, Soehnlein O, Steiger S. Neutrophils-biology and diversity. Nephrol Dial Transplant 2024; 39:1551-1564. [PMID: 38115607 PMCID: PMC11427074 DOI: 10.1093/ndt/gfad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 12/21/2023] Open
Abstract
Neutrophils, the most abundant white blood cells in the human circulation, play crucial roles in various diseases, including kidney disease. Traditionally viewed as short-lived pro-inflammatory phagocytes that release reactive oxygen species, cytokines and neutrophil extracellular traps, recent studies have revealed their complexity and heterogeneity, thereby challenging this perception. Neutrophils are now recognized as transcriptionally active cells capable of proliferation and reverse migration, displaying phenotypic and functional heterogeneity. They respond to a wide range of signals and deploy various cargo to influence the activity of other cells in the circulation and in tissues. They can regulate the behavior of multiple immune cell types, exhibit innate immune memory, and contribute to both acute and chronic inflammatory responses while also promoting inflammation resolution in a context-dependent manner. Here, we explore the origin and heterogeneity of neutrophils, their functional diversity, and the cues that regulate their effector functions. We also examine their emerging role in infectious and non-infectious diseases with a particular emphasis on kidney disease. Understanding the complex behavior of neutrophils during tissue injury and inflammation may provide novel insights, thereby paving the way for potential therapeutic strategies to manage acute and chronic conditions. By deciphering their multifaceted role, targeted interventions can be developed to address the intricacies of neutrophil-mediated immune responses and improve disease outcomes.
Collapse
Affiliation(s)
- Daniela Maier-Begandt
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Luisa Klotz
- Department of Neurology with Institute for Translational Neurology, University Hospital Münster, Münster, Germany
| | - Luise Erpenbeck
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) partner site Düsseldorf/Essen, Essen, Germany
| | - Roland Immler
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anja Hasenberg
- Institute of Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tonina T Mueller
- Department of Medicine I, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andrea Herrero-Cervera
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Universität of Münster, Münster, Germany
| | | | - Kailey Flora
- Renal Division, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Zarbock
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christian Schulz
- Department of Medicine I, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Universität of Münster, Münster, Germany
| | - Stefanie Steiger
- Renal Division, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
30
|
Pi H, Wang G, Wang Y, Zhang M, He Q, Zheng X, Yin K, Zhao G, Jiang T. Immunological perspectives on atherosclerotic plaque formation and progression. Front Immunol 2024; 15:1437821. [PMID: 39399488 PMCID: PMC11466832 DOI: 10.3389/fimmu.2024.1437821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Atherosclerosis serves as the primary catalyst for numerous cardiovascular diseases. Growing evidence suggests that the immune response is involved in every stage of atherosclerotic plaque evolution. Rapid, but not specific, innate immune arms, including neutrophils, monocytes/macrophages, dendritic cells (DCs) and other innate immune cells, as well as pattern-recognition receptors and various inflammatory mediators, contribute to atherogenesis. The specific adaptive immune response, governed by T cells and B cells, antibodies, and immunomodulatory cytokines potently regulates disease activity and progression. In the inflammatory microenvironment, the heterogeneity of leukocyte subpopulations plays a very important regulatory role in plaque evolution. With advances in experimental techniques, the fine mechanisms of immune system involvement in atherosclerotic plaque evolution are becoming known. In this review, we examine the critical immune responses involved in atherosclerotic plaque evolution, in particular, looking at atherosclerosis from the perspective of evolutionary immunobiology. A comprehensive understanding of the interplay between plaque evolution and plaque immunity provides clues for strategically combating atherosclerosis.
Collapse
Affiliation(s)
- Hui Pi
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
- Department of Microbiology and Immunology, Dali University, Dali, Yunnan, China
| | - Guangliang Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Yu Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Ming Zhang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Qin He
- Department of Microbiology and Immunology, Dali University, Dali, Yunnan, China
| | - Xilong Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Ting Jiang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| |
Collapse
|
31
|
Kraaijenhof JM, Nurmohamed NS, Tzolos E, Meah M, Geers J, Kaiser Y, Kroon J, Hovingh GK, Stroes ESG, Dweck MR. Interleukin 6 plasma levels are associated with progression of coronary plaques. Open Heart 2024; 11:e002773. [PMID: 39304297 PMCID: PMC11418485 DOI: 10.1136/openhrt-2024-002773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Inflammation plays a pivotal role in atherogenesis and is a causal risk factor for atherosclerotic cardiovascular disease. Non-invasive coronary CT angiography (CCTA) enables evaluation of coronary plaque phenotype. This study investigates the relationship between a comprehensive panel of inflammatory markers and short-term plaque progression on serial CCTA imaging, hypothesising that inflammation is associated with increased plaque volume. METHODS A total of 161 patients aged ≥40 years with stable multivessel coronary artery disease were included, who underwent CCTA at baseline and 12 months follow-up. Baseline plasma levels of interleukin 6 (IL-6), high-sensitivity C-reactive protein and other inflammatory markers were measured. Plaque volumes were assessed using semiautomated software, calculating total, noncalcified, calcified and low-attenuation noncalcified plaque volumes. Linear regression models, adjusted for ASSIGN score, segment involvement score and body mass index, evaluated associations between inflammatory markers and plaque volume changes. RESULTS The mean±SD age was 65.4±8.4 years, with 129 (80.6%) male participants. Baseline total plaque volume was 1394 (1036, 1993) mm³. After 12 months, total plaque volume changed by 78 (-114, 244) mm³. IL-6 levels were associated with a 4.9% increase in total plaque volume (95% CI: 0.9 to 8.9, p=0.018) and a 4.8% increase in noncalcified plaque volume (95% CI: 0.7 to 8.9, p=0.022). No significant associations were observed for other inflammatory markers. CONCLUSIONS Plasma IL-6 levels are significantly associated with increased total and noncalcified short-term plaque progression in patients with stable coronary artery disease. This supports the potential of IL-6 as a target for reducing plaque progression and cardiovascular risk.
Collapse
Affiliation(s)
- Jordan M Kraaijenhof
- Department of Vascular Medicine, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Nick S Nurmohamed
- Department of Vascular Medicine, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Evangelos Tzolos
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Mo Meah
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Jolien Geers
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Department of Cardiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yannick Kaiser
- Department of Vascular Medicine, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeffrey Kroon
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - G Kees Hovingh
- Department of Vascular Medicine, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
32
|
Li R, Xiong Y, Ma L, Peng C, Qi S, Gao R, Wang P, Li F, Li J, Li Q, Chen A. Neutrophil extracellular traps promote macrophage inflammation in psoriasis. Clin Immunol 2024; 266:110308. [PMID: 39002794 DOI: 10.1016/j.clim.2024.110308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/23/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease connected with immune dysregulation. Macrophages are key inflammatory cells in psoriasis but the specific mechanism of their activation is not fully understood. Neutrophil extracellular traps (NETs) have been shown to regulate macrophage function. Here, we found that NET deposition was increased in psoriasis lesions. Peptidylarginine deaminase 4 (PAD4, a key enzyme for NET formation) deficiency attenuated skin lesions and inflammation in an imiquimod-induced psoriatic mouse model. Furthermore, the STING signaling pathway was markedly activated in psoriasis and abolished by PAD4 deficiency. PAD4-deficient mice treated with the STING agonist DMXAA exhibited more severe symptoms and inflammation than control mice. Mechanistically, the STING inhibitor C-176 inhibited NET-induced macrophage inflammation and further inhibited the proliferation of HaCaT cells. Our findings suggest an important role of NETs in the pathogenesis of psoriasis, and activation of macrophage STING/NF-κB signaling pathway might involve in NETs related psoriasis.
Collapse
Affiliation(s)
- Ruolin Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunjie Xiong
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linqiang Ma
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuan Peng
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuangxin Qi
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rufei Gao
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Ping Wang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengzeng Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junlong Li
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qifu Li
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Aijun Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
33
|
Long P, Si J, Zhu Z, Jiang Y, Wang Y, Jiang Q, Li W, Xu X, You Y, Qu M, Wang H, Mo T, Liu K, Jiang J, Wang Q, Yu C, Guo Y, Millwood IY, Walters RG, He X, Yuan Y, Wang H, Zhang X, He M, Guo H, Chen Z, Li L, Lv J, Wang C, Wu T. Genome-wide DNA methylation profiling in blood reveals epigenetic signature of incident acute coronary syndrome. Nat Commun 2024; 15:7431. [PMID: 39198424 PMCID: PMC11358540 DOI: 10.1038/s41467-024-51751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
DNA methylation (DNAm) has been implicated in acute coronary syndrome (ACS), but the causality remains unclear in cross-sectional studies. Here, we conduct a prospective epigenome-wide association study of incident ACS in two Chinese cohorts (discovery: 751 nested case-control pairs; replication: 476 nested case-control pairs). We identified and validated 26 differentially methylated positions (DMPs, false discovery rate [FDR] <0.05), including three mapped to known cardiovascular disease genes (PRKCZ, PRDM16, EHBP1L1) and four with causal evidence from Mendelian randomization (PRKCZ, TRIM27, EMC2, EHBP1L1). Two hypomethylated DMPs were negatively correlated with the expression in blood of their mapped genes (PIGG and EHBP1L1), which were further found to overexpress in leukocytes and/or atheroma plaques. Finally, our DMPs could substantially improve the prediction of ACS over traditional risk factors and polygenic scores. These findings demonstrate the importance of DNAm in the pathogenesis of ACS and highlight DNAm as potential predictive biomarkers and treatment targets.
Collapse
Affiliation(s)
- Pinpin Long
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiahui Si
- National Institute of Health Data Science at Peking University, Peking University, Beijing, China
| | - Ziwei Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yufei Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qin Jiang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wending Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuedan Xu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yutong You
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Minghan Qu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huihui Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Mo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kang Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Jiang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiuhong Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Yu Guo
- Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Iona Y Millwood
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Robin G Walters
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China.
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China.
| | - Chaolong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Tangchun Wu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
34
|
Qing L, Wu W. The mechanism of geniposide in patients with COVID-19 and atherosclerosis: A pharmacological and bioinformatics analysis. Medicine (Baltimore) 2024; 103:e39065. [PMID: 39093733 PMCID: PMC11296471 DOI: 10.1097/md.0000000000039065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
In patients with severe acute respiratory syndrome coronavirus 2 (which causes coronavirus disease 2019 [COVID-19]), oxidative stress (OS) is associated with disease severity and death. OS is also involved in the pathogenesis of atherosclerosis (AS). Previous studies have shown that geniposide has anti-inflammatory and anti-viral properties, and can protect cells against OS. However, the potential target(s) of geniposide in patients with COVID-19 and AS, as well as the mechanism it uses, are unclear. We combined pharmacology and bioinformatics analysis to obtain geniposide against COVID-19/AS targets, and build protein-protein interaction network to filter hub genes. The hub genes were performed an enrichment analysis by ClueGO, including Gene Ontology and KEGG. The Enrichr database and the target microRNAs (miRNAs) of hub genes were predicted through the MiRTarBase via Enrichr. The common miRNAs were used to construct the miRNAs-mRNAs regulated network, and the miRNAs' function was evaluated by mirPath v3.0 software. Two hundred forty-seven targets of geniposide were identified in patients with COVID-19/AS comorbidity by observing the overlap between the genes modulated by geniposide, COVID-19, and AS. A protein-protein interaction network of geniposide in patients with COVID-19/AS was constructed, and 27 hub genes were identified. The results of enrichment analysis suggested that geniposide may be involved in regulating the OS via the FoxO signaling pathway. MiRNA-mRNA network revealed that hsa-miR-34a-5p may play an important role in the therapeutic mechanism of geniposide in COVID-19/AS patients. Our study found that geniposide represents a promising therapy for patients with COVID-19 and AS comorbidity. Furthermore, the target genes and miRNAs that we identified may aid the development of new treatment strategies against COVID-19/AS.
Collapse
Affiliation(s)
- Lijin Qing
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Wei Wu
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| |
Collapse
|
35
|
Zielke C, Nielsen JE, Lin JS, Barron AE. Between good and evil: Complexation of the human cathelicidin LL-37 with nucleic acids. Biophys J 2024; 123:1316-1328. [PMID: 37919905 PMCID: PMC11163296 DOI: 10.1016/j.bpj.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
The innate immune system provides a crucial first line of defense against invading pathogens attacking the body. As the only member of the human cathelicidin family, the antimicrobial peptide LL-37 has been shown to have antiviral, antifungal, and antibacterial properties. In complexation with nucleic acids, LL-37 is suggested to maintain its beneficial health effects while also acting as a condensation agent for the nucleic acid. Complexes formed by LL-37 and nucleic acids have been shown to be immunostimulatory with a positive impact on the human innate immune system. However, some studies also suggest that in some circumstances, LL-37/nucleic acid complexes may be a contributing factor to autoimmune disorders such as psoriasis and systemic lupus erythematosus. This review provides a comprehensive discussion of research highlighting the beneficial health effects of LL-37/nucleic acid complexes, as well as discussing observed detrimental effects. We will emphasize why it is important to investigate and elucidate structural characteristics, such as condensation patterns of nucleic acids within complexation, and their mechanisms of action, to shed light on the intricate physiological effects of LL-37 and the seemingly contradictory role of LL-37/nucleic acid complexes in the innate immune response.
Collapse
Affiliation(s)
- Claudia Zielke
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California
| | - Josefine Eilsø Nielsen
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California; Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jennifer S Lin
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California
| | - Annelise E Barron
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California.
| |
Collapse
|
36
|
Song L, Zhang B, Li R, Duan Y, Chi Y, Xu Y, Hua X, Xu Q. Significance of neutrophil extracellular traps-related gene in the diagnosis and classification of atherosclerosis. Apoptosis 2024; 29:605-619. [PMID: 38367202 DOI: 10.1007/s10495-023-01923-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2023] [Indexed: 02/19/2024]
Abstract
Atherosclerosis (AS) is a pathological process associated with various cardiovascular diseases. Upon different stimuli, neutrophils release reticular complexes known as neutrophil extracellular traps (NETs). Numerous researches have indicated a strong correlation between NETs and AS. However, its role in cardiovascular disease requires further investigation. By utilizing a machine learning algorithm, we examined the genes associated with NETs that were expressed differently in individuals with AS compared to normal controls. As a result, we identified four distinct genes. A nomogram model was built to forecast the incidence of AS. Additionally, we conducted analysis on immune infiltration, functional enrichment and consensus clustering in AS samples. The findings indicated that individuals with AS could be categorized into two groups, exhibiting notable variations in immune infiltration traits among the groups. Furthermore, to measure the NETs model, the principal component analysis algorithm was developed and cluster B outperformed cluster A in terms of NETs. Additionally, there were variations in the expression of multiple chemokines between the two subtypes. By studying AS NETs, we acquired fresh knowledge about the molecular patterns and immune mechanisms implicated, which could open up new possibilities for AS immunotherapy.
Collapse
Affiliation(s)
- Liantai Song
- Basic Medical College of Chengde Medical University, Chengde, 067000, China
| | - Boyu Zhang
- Basic Medical College of Chengde Medical University, Chengde, 067000, China
| | - Reng Li
- Basic Medical College of Chengde Medical University, Chengde, 067000, China
| | - Yibing Duan
- Basic Medical College of Chengde Medical University, Chengde, 067000, China
| | - Yifan Chi
- Basic Medical College of Chengde Medical University, Chengde, 067000, China
| | - Yangyi Xu
- Basic Medical College of Chengde Medical University, Chengde, 067000, China
| | - Xucong Hua
- Basic Medical College of Chengde Medical University, Chengde, 067000, China
| | - Qian Xu
- Department of Biochemistry, Chengde Medical University, Chengde, 067000, Hebei, People's Republic of China.
| |
Collapse
|
37
|
Adams NM, Das A, Yun TJ, Reizis B. Ontogeny and Function of Plasmacytoid Dendritic Cells. Annu Rev Immunol 2024; 42:347-373. [PMID: 38941603 DOI: 10.1146/annurev-immunol-090122-041105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Plasmacytoid dendritic cells (pDCs) represent a unique cell type within the innate immune system. Their defining property is the recognition of pathogen-derived nucleic acids through endosomal Toll-like receptors and the ensuing production of type I interferon and other soluble mediators, which orchestrate innate and adaptive responses. We review several aspects of pDC biology that have recently come to the fore. We discuss emerging questions regarding the lineage affiliation and origin of pDCs and argue that these cells constitute an integral part of the dendritic cell lineage. We emphasize the specific function of pDCs as innate sentinels of virus infection, particularly their recognition of and distinct response to virus-infected cells. This essential evolutionary role of pDCs has been particularly important for the control of coronaviruses, as demonstrated by the recent COVID-19 pandemic. Finally, we highlight the key contribution of pDCs to systemic lupus erythematosus, in which therapeutic targeting of pDCs is currently underway.
Collapse
Affiliation(s)
- Nicholas M Adams
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Annesa Das
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Tae Jin Yun
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| |
Collapse
|
38
|
Ding SA, Liu H, Zheng R, Ge Y, Fu Z, Mei J, Tang M. Downregulation of MYBL1 in endothelial cells contributes to atherosclerosis by repressing PLEKHM1-inducing autophagy. Cell Biol Toxicol 2024; 40:40. [PMID: 38797732 PMCID: PMC11128406 DOI: 10.1007/s10565-024-09873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
MYBL1 is a strong transcriptional activator involved in the cell signaling. However, there is no systematic study on the role of MYBL1 in atherosclerosis. The aim of this study is to elucidate the role and mechanism of MYBL1 in atherosclerosis. GSE28829, GSE43292 and GSE41571 were downloaded from NCBI for differentially expressed analysis. The expression levels of MYBL1 in atherosclerotic plaque tissue and normal vessels were detected by qRT-PCR, Western blot and Immunohistochemistry. Transwell and CCK-8 were used to detect the migration and proliferation of HUVECs after silencing MYBL1. RNA-seq, Western blot, qRT-PCR, Luciferase reporter system, Immunofluorescence, Flow cytometry, ChIP and CO-IP were used to study the role and mechanism of MYBL1 in atherosclerosis. The microarray data of GSE28829, GSE43292, and GSE41571 were analyzed and intersected, and then MYBL1 were verified. MYBL1 was down-regulated in atherosclerotic plaque tissue. After silencing of MYBL1, HUVECs were damaged, and their migration and proliferation abilities were weakened. Overexpression of MYBL1 significantly enhanced the migration and proliferation of HUVECs. MYBL1 knockdown induced abnormal autophagy in HUVEC cells, suggesting that MYBL1 was involved in the regulation of HUVECs through autophagy. Mechanistic studies showed that MYBL1 knockdown inhibited autophagosome and lysosomal fusion in HUVECs by inhibiting PLEKHM1, thereby exacerbating atherosclerosis. Furthermore, MYBL1 was found to repress lipid accumulation in HUVECs after oxLDL treatment. MYBL1 knockdown in HUVECs was involved in atherosclerosis by inhibiting PLEKHM1-induced autophagy, which provided a novel target of therapy for atherosclerosis.
Collapse
Affiliation(s)
- Shi-Ao Ding
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Hao Liu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Rui Zheng
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Yang Ge
- Department of Pediatric Cardiovascular Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Fu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Ju Mei
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Min Tang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, China.
| |
Collapse
|
39
|
Wang K, Zhang B, Li M, Duan H, Jiang Z, Gao S, Chen J, Fang S. Evaluation of the causal effects of immune cells on ischemic stroke: a Mendelian randomization study. Front Immunol 2024; 15:1374350. [PMID: 38855113 PMCID: PMC11157000 DOI: 10.3389/fimmu.2024.1374350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Abstract
Background Ischemic stroke (IS) is a cerebrovascular disease caused by various factors, and its etiology remains inadequately understood. The role of immune system dysfunction in IS has been increasingly recognized. Our objective was to evaluate whether circulating immune cells causally impact IS risk. Methods We conducted two-sample Mendelian randomization analyses to evaluate the causal effects of 731 immune cell traits on IS, utilizing publicly available genome-wide association studies (GWAS) summary statistics for 731 immune cell traits as exposure data, and two GWAS statistics for IS as outcome data. A set of sensitivity analyses, including Cochran's Q test, I 2 statistics, MR-Egger intercept test, MR-PRESSO global test, and leave-one-out sensitivity analyses, were performed to assess the robustness of the results. Additionally, meta-analyses were conducted to combine the results from the two different IS datasets. Finally, we extracted instrumental variables of immune cell traits with causal effects on IS in both IS datasets for SNP annotation. Results A total of 41 and 35 immune cell traits were identified to have significant causal effects on IS based on two different IS datasets, respectively. Among them, the immune cell trait CD62L- plasmacytoid Dendritic Cell AC and CD4+ CD8dim T cell%leukocyte respectively served as risk factor and protective element in both IS datasets. The robustness of the causal effects was confirmed through the sensitivity analyses. The results of the meta-analyses further support the causal effects of CD62L- plasmacytoid Dendritic Cell AC (pooled OR=1.030, 95%CI: 1.011-1.049, P=0.002) and CD4+ CD8dim T cell%leukocyte (pooled OR=0.959, 95%CI: 0.935-0.984, P=0.001). Based on these two immune cell traits, 33 genes that may be related to the causal effects were mapped. Conclusions Our study demonstrated the potential causal effects of circulating immune cells on IS, providing valuable insights for future studies aimed at preventing IS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shaokuan Fang
- Department of Neurology, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
40
|
Huan JM, Wang XJ, Li Y, Zhang SJ, Hu YL, Li YL. The biomedical knowledge graph of symptom phenotype in coronary artery plaque: machine learning-based analysis of real-world clinical data. BioData Min 2024; 17:13. [PMID: 38773619 PMCID: PMC11110203 DOI: 10.1186/s13040-024-00365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 05/17/2024] [Indexed: 05/24/2024] Open
Abstract
A knowledge graph can effectively showcase the essential characteristics of data and is increasingly emerging as a significant means of integrating information in the field of artificial intelligence. Coronary artery plaque represents a significant etiology of cardiovascular events, posing a diagnostic challenge for clinicians who are confronted with a multitude of nonspecific symptoms. To visualize the hierarchical relationship network graph of the molecular mechanisms underlying plaque properties and symptom phenotypes, patient symptomatology was extracted from electronic health record data from real-world clinical settings. Phenotypic networks were constructed utilizing clinical data and protein‒protein interaction networks. Machine learning techniques, including convolutional neural networks, Dijkstra's algorithm, and gene ontology semantic similarity, were employed to quantify clinical and biological features within the network. The resulting features were then utilized to train a K-nearest neighbor model, yielding 23 symptoms, 41 association rules, and 61 hub genes across the three types of plaques studied, achieving an area under the curve of 92.5%. Weighted correlation network analysis and pathway enrichment were subsequently utilized to identify lipid status-related genes and inflammation-associated pathways that could help explain the differences in plaque properties. To confirm the validity of the network graph model, we conducted coexpression analysis of the hub genes to evaluate their potential diagnostic value. Additionally, we investigated immune cell infiltration, examined the correlations between hub genes and immune cells, and validated the reliability of the identified biological pathways. By integrating clinical data and molecular network information, this biomedical knowledge graph model effectively elucidated the potential molecular mechanisms that collude symptoms, diseases, and molecules.
Collapse
Affiliation(s)
- Jia-Ming Huan
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiao-Jie Wang
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuan Li
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shi-Jun Zhang
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuan-Long Hu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yun-Lun Li
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
- Precision Diagnosis and Treatment of Cardiovascular Diseases with Traditional Chinese Medicine Shandong Engineering Research Center, Jinan, 250355, China.
| |
Collapse
|
41
|
Peng Z, Kan Q, Wang K, Deng T, Wang S, Wu R, Yao C. Deciphering smooth muscle cell heterogeneity in atherosclerotic plaques and constructing model: a multi-omics approach with focus on KLF15/IGFBP4 axis. BMC Genomics 2024; 25:490. [PMID: 38760675 PMCID: PMC11102212 DOI: 10.1186/s12864-024-10379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Ruptured atherosclerotic plaques often precipitate severe ischemic events, such as stroke and myocardial infarction. Unraveling the intricate molecular mechanisms governing vascular smooth muscle cell (VSMC) behavior in plaque stabilization remains a formidable challenge. METHODS In this study, we leveraged single-cell and transcriptomic datasets from atherosclerotic plaques retrieved from the gene expression omnibus (GEO) database. Employing a combination of single-cell population differential analysis, weighted gene co-expression network analysis (WGCNA), and transcriptome differential analysis techniques, we identified specific genes steering the transformation of VSMCs in atherosclerotic plaques. Diagnostic models were developed and validated through gene intersection, utilizing the least absolute shrinkage and selection operator (LASSO) and random forest (RF) methods. Nomograms for plaque assessment were constructed. Tissue localization and expression validation were performed on specimens from animal models, utilizing immunofluorescence co-localization, western blot, and reverse-transcription quantitative-polymerase chain reaction (RT-qPCR). Various online databases were harnessed to predict transcription factors (TFs) and their interacting compounds, with determination of the cell-specific localization of TF expression using single-cell data. RESULTS Following rigorous quality control procedures, we obtained a total of 40,953 cells, with 6,261 representing VSMCs. The VSMC population was subsequently clustered into 5 distinct subpopulations. Analyzing inter-subpopulation cellular communication, we focused on the SMC2 and SMC5 subpopulations. Single-cell subpopulation and WGCNA analyses revealed significant module enrichments, notably in collagen-containing extracellular matrix and cell-substrate junctions. Insulin-like growth factor binding protein 4 (IGFBP4), apolipoprotein E (APOE), and cathepsin C (CTSC) were identified as potential diagnostic markers for early and advanced plaques. Notably, gene expression pattern analysis suggested that IGFBP4 might serve as a protective gene, a hypothesis validated through tissue localization and expression analysis. Finally, we predicted TFs capable of binding to IGFBP4, with Krüppel-like family 15 (KLF15) emerging as a prominent candidate showing relative specificity within smooth muscle cells. Predictions about compounds associated with affecting KLF15 expression were also made. CONCLUSION Our study established a plaque diagnostic and assessment model and analyzed the molecular interaction mechanisms of smooth muscle cells within plaques. Further analysis revealed that the transcription factor KLF15 may regulate the biological behaviors of smooth muscle cells through the KLF15/IGFBP4 axis, thereby influencing the stability of advanced plaques via modulation of the PI3K-AKT signaling pathway. This could potentially serve as a target for plaque stability assessment and therapy, thus driving advancements in the management and treatment of atherosclerotic plaques.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Gene Expression Profiling
- Gene Regulatory Networks
- Insulin-Like Growth Factor Binding Protein 4/metabolism
- Insulin-Like Growth Factor Binding Protein 4/genetics
- Kruppel-Like Transcription Factors/metabolism
- Kruppel-Like Transcription Factors/genetics
- Multiomics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/pathology
- Single-Cell Analysis
- Transcriptome
- Rats
Collapse
Affiliation(s)
- Zhanli Peng
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qinghui Kan
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Kangjie Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Tang Deng
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Shenming Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Ridong Wu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, P.R. China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China.
| | - Chen Yao
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, P.R. China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China.
| |
Collapse
|
42
|
Sacre K, Vinet E, Pineau CA, Mendel A, Kalache F, Grenier LP, Huynh T, Bernatsky S. N-terminal pro-brain natriuretic peptide is a biomarker for cardiovascular damage in systemic lupus erythematous: a cross-sectional study. Rheumatology (Oxford) 2024; 63:1739-1745. [PMID: 37802912 DOI: 10.1093/rheumatology/kead522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/08/2023] Open
Abstract
OBJECTIVES Prediction models based on traditional risk factors underestimate cardiovascular (CV) risk in systemic lupus erythematosus (SLE). In a large sample of unselected SLE patients, we investigated cross-sectional associations of NT-proBNP with cardiovascular damage (CVD). METHODS Serum NT-proBNP was measured in SLE patients enrolled in the MUHC Lupus Clinic registry. Serum was collected between March 2022 and April 2023 at annual research visits. The primary outcome was CVD identified on the SLICC Damage Index. Factors associated with CVD and NT-proBNP levels were determined. RESULTS Overall, 270 SLE patients [female 91%, median age 50.7 (first quartile to third quartile: 39.6-62.1) years] were analysed for the primary outcome. Among them, 33 (12%) had CVD. The ROC curve for NT-proBNP demonstrated strong associations with CVD (AUC 0.78, 95% CI 0.69-0.87) with a threshold of 133 pg/ml providing the best discrimination for those with/without CVD. Hypertension (OR 3.3, 95% CI 1.2-9.0), dyslipidaemia (OR 3.6, 95% CI 1.3-9.6) and NT-proBNP >133 pg/ml (OR 7.0, 95% CI, 2.6-19.1) were associated with CVD in the multivariable logistic regression model. Increased NT-proBNP levels were associated with age (OR 4.2, 95% CI 2.2-8.3), ever smoking (OR 1.9, 95% CI 1.0-3.5), reduced eGFR (4.1, 95% CI 1.3-13.1), prior pericarditis/pleuritis (OR 2.5, 95% CI 1.4-4.5) and aPL antibodies (OR 2.6, 95% CI 1.4-4.9). CONCLUSION NT-proBNP is a biomarker for CV damage in SLE. The novel associations of NT-proBNP levels with prior pericarditis/pleuritis and aPL antibodies suggest new avenues for research to better understand what drives CV risk in SLE.
Collapse
Affiliation(s)
- Karim Sacre
- Division of Clinical Epidemiology, McGill University Health Centre, Montreal, QC, Canada
- Departement de Médecine Interne, Université Paris-Cité, Assistance Publique Hopitaux de Paris, Hopital Bichat, Paris, France
| | - Evelyne Vinet
- Division of Clinical Epidemiology, McGill University Health Centre, Montreal, QC, Canada
- Division of Rheumatology, McGill University Health Centre, Montreal, QC, Canada
| | - Christian A Pineau
- Division of Rheumatology, McGill University Health Centre, Montreal, QC, Canada
| | - Arielle Mendel
- Division of Rheumatology, McGill University Health Centre, Montreal, QC, Canada
| | - Fares Kalache
- Division of Rheumatology, McGill University Health Centre, Montreal, QC, Canada
| | | | - Thao Huynh
- Division of Cardiology, McGill University Health Centre, Montreal, QC, Canada
| | - Sasha Bernatsky
- Division of Clinical Epidemiology, McGill University Health Centre, Montreal, QC, Canada
- Division of Rheumatology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
43
|
Nguyen TK, Paone S, Baxter AA, Mayfosh AJ, Phan TK, Chan E, Peter K, Poon IKH, Thomas SR, Hulett MD. Heparanase promotes the onset and progression of atherosclerosis in apolipoprotein E gene knockout mice. Atherosclerosis 2024; 392:117519. [PMID: 38581737 DOI: 10.1016/j.atherosclerosis.2024.117519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND AND AIMS Atherosclerosis is the primary underlying cause of myocardial infarction and stroke, which are the major causes of death globally. Heparanase (Hpse) is a pro-inflammatory extracellular matrix degrading enzyme that has been implicated in atherogenesis. However, to date the precise roles of Hpse in atherosclerosis and its mechanisms of action are not well defined. This study aims to provide new insights into the contribution of Hpse in different stages of atherosclerosis in vivo. METHODS We generated Hpse gene-deficient mice on the atherosclerosis-prone apolipoprotein E gene knockout (ApoE-/-) background to investigate the impact of Hpse gene deficiency on the initiation and progression of atherosclerosis after 6 and 14 weeks high-fat diet feeding, respectively. Atherosclerotic lesion development, blood serum profiles, lesion composition and aortic immune cell populations were evaluated. RESULTS Hpse-deficient mice exhibited significantly reduced atherosclerotic lesion burden in the aortic sinus and aorta at both time-points, independent of changes in plasma cholesterol levels. A significant reduction in the necrotic core size and an increase in smooth muscle cell content were also observed in advanced atherosclerotic plaques of Hpse-deficient mice. Additionally, Hpse deficiency reduced circulating and aortic levels of VCAM-1 at the initiation and progression stages of disease and circulating MCP-1 levels in the initiation but not progression stage. Moreover, the aortic levels of total leukocytes and dendritic cells in Hpse-deficient ApoE-/- mice were significantly decreased compared to control ApoE-/-mice at both disease stages. CONCLUSIONS This study identifies Hpse as a key pro-inflammatory enzyme driving the initiation and progression of atherosclerosis and highlighting the potential of Hpse inhibitors as novel anti-inflammatory treatments for cardiovascular disease.
Collapse
Affiliation(s)
- Tien K Nguyen
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Stephanie Paone
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Amy A Baxter
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Alyce J Mayfosh
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Enoch Chan
- Department of Pathology, School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Shane R Thomas
- Department of Pathology, School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Mark D Hulett
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia.
| |
Collapse
|
44
|
Fan CN, Tsai TN, Lu XJ, Lai HF, Wang CH, Chiu YL. Transcriptomic analysis reveals Cilostazol's role in ameliorating cardiovascular disease: Inhibition of monocyte-to-macrophage differentiation and reduction of endothelial cell reactive oxygen species production. Heliyon 2024; 10:e29194. [PMID: 38601627 PMCID: PMC11004659 DOI: 10.1016/j.heliyon.2024.e29194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Background Cardiovascular diseases (CVDs) are the leading global cause of death, with atherosclerosis as the primary cause. Chronic inflammation, endothelial dysfunction, and the role of molecules like nitric oxide and reactive oxygen species are crucial in this context. Our previous research indicated that cilostazol and ginkgo biloba extract could enhance the ability of endothelial cells to dissolve blood clots, but the effects of cilostazol on monocytes remain unexplored. Method This study utilized peripheral blood mononuclear cells from 10 healthy donors, treated ex vivo with cilostazol. RNA-sequencing, over-representation analysis, xCell stromal cell analysis, and Gene Set Enrichment Analysis were employed to investigate the gene expression changes and biological pathways affected by cilostazol treatment. Results The study identified specific gene sets and pathways that were enriched or reduced in response to cilostazol treatment, providing insights into its effects on monocytes and potential therapeutic applications in CVD. The analysis also revealed the potential impact of cilostazol on the stromal cell compartment, further broadening our understanding of its multifaceted role. Conclusion The findings offer a nuanced understanding of the advantages and mechanisms of cilostazol in CVD, uncovering novel therapeutic targets and strategies to enhance the clinical application of cilostazol and contributing to the broader implications of this therapy in cardiovascular health.
Collapse
Affiliation(s)
- Chia-Ning Fan
- Department of Surgery, Taoyuan Armed Forces General Hospital, Taoyuan, 325, Taiwan (R.O.C.)
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan (R.O.C.)
| | - Tsung-Neng Tsai
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan (R.O.C.)
| | - Xin-Jie Lu
- Department of Biochemistry, National Defense Medical Center, Taipei, 114, Taiwan (R.O.C.)
| | - Hsing-Fan Lai
- Department of Biochemistry, National Defense Medical Center, Taipei, 114, Taiwan (R.O.C.)
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei city, 114, Taiwan (R.O.C.)
| | - Chun-Hua Wang
- Department of Biochemistry, National Defense Medical Center, Taipei, 114, Taiwan (R.O.C.)
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei, 114, Taiwan (R.O.C.)
| |
Collapse
|
45
|
Wu X, Zhang H. Omics Approaches Unveiling the Biology of Human Atherosclerotic Plaques. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:482-498. [PMID: 38280419 PMCID: PMC10988765 DOI: 10.1016/j.ajpath.2023.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/29/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall, characterized by the buildup of plaques with the accumulation and transformation of lipids, immune cells, vascular smooth muscle cells, and necrotic cell debris. Plaques with collagen-poor thin fibrous caps infiltrated by macrophages and lymphocytes are considered unstable because they are at the greatest risk of rupture and clinical events. However, the current histologic definition of plaque types may not fully capture the complex molecular nature of atherosclerotic plaque biology and the underlying mechanisms contributing to plaque progression, rupture, and erosion. The advances in omics technologies have changed the understanding of atherosclerosis plaque biology, offering new possibilities to improve risk prediction and discover novel therapeutic targets. Genomic studies have shed light on the genetic predisposition to atherosclerosis, and integrative genomic analyses expedite the translation of genomic discoveries. Transcriptomic, proteomic, metabolomic, and lipidomic studies have refined the understanding of the molecular signature of atherosclerotic plaques, aiding in data-driven hypothesis generation for mechanistic studies and offering new prospects for biomarker discovery. Furthermore, advancements in single-cell technologies and emerging spatial analysis techniques have unveiled the heterogeneity and plasticity of plaque cells. This review discusses key omics-based discoveries that have advanced the understanding of human atherosclerotic plaque biology, focusing on insights derived from omics profiling of human atherosclerotic vascular specimens.
Collapse
Affiliation(s)
- Xun Wu
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Hanrui Zhang
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|
46
|
Aherrahrou R, Baig F, Theofilatos K, Lue D, Beele A, Örd T, Kaikkonen MU, Aherrahrou Z, Cheng Q, Ghosh S, Karnewar S, Karnewar V, Finn A, Owens GK, Joner M, Mayr M, Civelek M. Secreted Protein Profiling of Human Aortic Smooth Muscle Cells Identifies Vascular Disease Associations. Arterioscler Thromb Vasc Biol 2024; 44:898-914. [PMID: 38328934 PMCID: PMC10978267 DOI: 10.1161/atvbaha.123.320274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Smooth muscle cells (SMCs), which make up the medial layer of arteries, are key cell types involved in cardiovascular disease, the leading cause of mortality and morbidity worldwide. In response to microenvironment alterations, SMCs dedifferentiate from a contractile to a synthetic phenotype characterized by an increased proliferation, migration, production of ECM (extracellular matrix) components, and decreased expression of SMC-specific contractile markers. These phenotypic changes result in vascular remodeling and contribute to the pathogenesis of cardiovascular disease, including coronary artery disease, stroke, hypertension, and aortic aneurysms. Here, we aim to identify the genetic variants that regulate ECM secretion in SMCs and predict the causal proteins associated with vascular disease-related loci identified in genome-wide association studies. METHODS Using human aortic SMCs from 123 multiancestry healthy heart transplant donors, we collected the serum-free media in which the cells were cultured for 24 hours and conducted liquid chromatography-tandem mass spectrometry-based proteomic analysis of the conditioned media. RESULTS We measured the abundance of 270 ECM and related proteins. Next, we performed protein quantitative trait locus mapping and identified 20 loci associated with secreted protein abundance in SMCs. We functionally annotated these loci using a colocalization approach. This approach prioritized the genetic variant rs6739323-A at the 2p22.3 locus, which is associated with lower expression of LTBP1 (latent-transforming growth factor beta-binding protein 1) in SMCs and atherosclerosis-prone areas of the aorta, and increased risk for SMC calcification. We found that LTBP1 expression is abundant in SMCs, and its expression at mRNA and protein levels was reduced in unstable and advanced atherosclerotic plaque lesions. CONCLUSIONS Our results unravel the SMC proteome signature associated with vascular disorders, which may help identify potential therapeutic targets to accelerate the pathway to translation.
Collapse
Affiliation(s)
- Rédouane Aherrahrou
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
- Institute for Cardiogenetics, Universität zu Lübeck; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany; University Heart Centre Lübeck, Germany
| | - Ferheen Baig
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
| | | | - Dillon Lue
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alicia Beele
- CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD
| | - Tiit Örd
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Minna U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, Universität zu Lübeck; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany; University Heart Centre Lübeck, Germany
| | - Qi Cheng
- CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD
| | - Saikat Ghosh
- CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD
| | - Santosh Karnewar
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Vaishnavi Karnewar
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Aloke Finn
- CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD
| | - Gary K. Owens
- Department of Molecular Physiology and Biological Physics, Department of Medicine, Division of Cardiology, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States of America
| | - Michael Joner
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Manuel Mayr
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
47
|
Britsch S, Langer H, Duerschmied D, Becher T. The Evolving Role of Dendritic Cells in Atherosclerosis. Int J Mol Sci 2024; 25:2450. [PMID: 38397127 PMCID: PMC10888834 DOI: 10.3390/ijms25042450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Atherosclerosis, a major contributor to cardiovascular morbidity and mortality, is characterized by chronic inflammation of the arterial wall. This inflammatory process is initiated and maintained by both innate and adaptive immunity. Dendritic cells (DCs), which are antigen-presenting cells, play a crucial role in the development of atherosclerosis and consist of various subtypes with distinct functional abilities. Following the recognition and binding of antigens, DCs become potent activators of cellular responses, bridging the innate and adaptive immune systems. The modulation of specific DC subpopulations can have either pro-atherogenic or atheroprotective effects, highlighting the dual pro-inflammatory or tolerogenic roles of DCs. In this work, we provide a comprehensive overview of the evolving roles of DCs and their subtypes in the promotion or limitation of atherosclerosis development. Additionally, we explore antigen pulsing and pharmacological approaches to modulate the function of DCs in the context of atherosclerosis.
Collapse
Affiliation(s)
- Simone Britsch
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 13092 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Harald Langer
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 13092 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 13092 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Tobias Becher
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
| |
Collapse
|
48
|
Xiao L, Lin S, Zhan F. Identification of hub genes and transcription factors in patients with primary gout complicated with atherosclerosis. Sci Rep 2024; 14:3992. [PMID: 38368442 PMCID: PMC10874450 DOI: 10.1038/s41598-024-54581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 02/14/2024] [Indexed: 02/19/2024] Open
Abstract
Evidence shows that primary gout is prone to develop to atherosclerosis, but the mechanism of its occurrence is still not fully clarified. The aim of this study was to explore the molecular mechanism of the occurrence of this complication in gout. The gene expression profiles of primary gout and atherosclerosis were downloaded from the gene expression omnibus database. Overlapping differentially expressed genes (DEGs) between gout and atherosclerosis were identified. The biological roles of common DEGs were explored through enrichment analyses. Hub genes were identified using protein-protein interaction networks. The immune infiltrations of 28 types of immune cells in gout and control samples from GSE160170 were evaluated by the ssGSEA method. Transcription factors (TFs) were predicted using Transcriptional Regulatory Relationships Unraveled by Sentence Based Text Mining (TRRUST) database. A total of 168 overlapping DEGs were identified. Functional enrichment analyses indicated that DEGs were mostly enriched in chemokine signaling pathway, regulation of actin cytoskeleton, and TNF signaling pathway. CytoScape demonstrated 11 hub genes and two gene cluster modules. The immune infiltration analysis showed that the expression of DEGs in gout was significantly upregulated in activated CD4 T cells, gamma delta T cells, T follicular helper cell, CD56dim natural killer cells, and eosinophil. TRRUST predicted one TF, RUNX family transcription factor 1. Our study explored the pathogenesis of gout with atherosclerosis and discovered the immune infiltration of gout. These results may guide future experimental research and clinical transformation.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Rheumatology and immunology, Affiliated Wuxi Fifth Hospital of Jiangnan University, The Fifth People's Hospital of Wuxi, Wuxi, Jiangsu, China.
| | - Shudian Lin
- Department of Rheumatology and immunology, Hainan general hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Feng Zhan
- Department of Rheumatology and immunology, Hainan general hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| |
Collapse
|
49
|
Huang K, Chen S, Yu LJ, Wu ZM, Chen QJ, Wang XQ, Li FF, Liu JM, Wang YX, Mao LS, Shen WF, Zhang RY, Shen Y, Lu L, Dai Y, Ding FH. Serum secreted phosphoprotein 1 level is associated with plaque vulnerability in patients with coronary artery disease. Front Immunol 2024; 15:1285813. [PMID: 38426091 PMCID: PMC10902157 DOI: 10.3389/fimmu.2024.1285813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Background Vulnerable plaque was associated with recurrent cardiovascular events. This study was designed to explore predictive biomarkers of vulnerable plaque in patients with coronary artery disease. Methods To reveal the phenotype-associated cell type in the development of vulnerable plaque and to identify hub gene for pathological process, we combined single-cell RNA and bulk RNA sequencing datasets of human atherosclerotic plaques using Single-Cell Identification of Subpopulations with Bulk Sample Phenotype Correlation (Scissor) and Weighted gene co-expression network analysis (WGCNA). We also validated our results in an independent cohort of patients by using intravascular ultrasound during coronary angiography. Results Macrophages were found to be strongly correlated with plaque vulnerability while vascular smooth muscle cell (VSMC), fibrochondrocyte (FC) and intermediate cell state (ICS) clusters were negatively associated with unstable plaque. Weighted gene co-expression network analysis showed that Secreted Phosphoprotein 1 (SPP1) in the turquoise module was highly correlated with both the gene module and the clinical traits. In a total of 593 patients, serum levels of SPP1 were significantly higher in patients with vulnerable plaques than those with stable plaque (113.21 [73.65 - 147.70] ng/ml versus 71.08 [20.64 - 135.68] ng/ml; P < 0.001). Adjusted multivariate regression analysis revealed that serum SPP1 was an independent determinant of the presence of vulnerable plaque. Receiver operating characteristic curve analysis indicated that the area under the curve was 0.737 (95% CI 0.697 - 0.773; P < 0.001) for adding serum SPP1 in predicting of vulnerable plaques. Conclusion Elevated serum SPP1 levels confer an increased risk for plaque vulnerability in patients with coronary artery disease.
Collapse
Affiliation(s)
- Ke Huang
- Department of Vascular and Cardiology, Rui Jin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Shuai Chen
- Department of Vascular and Cardiology, Rui Jin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Lin-Jun Yu
- Department of Vascular and Cardiology, Rui Jin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Zhi-Ming Wu
- Department of Vascular and Cardiology, Rui Jin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Qiu-Jing Chen
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Xiao-Qun Wang
- Department of Vascular and Cardiology, Rui Jin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Fei-Fei Li
- Department of Vascular and Cardiology, Rui Jin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jing-Meng Liu
- Department of Vascular and Cardiology, Rui Jin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Yi-Xuan Wang
- Department of Vascular and Cardiology, Rui Jin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Lin-Shuang Mao
- Department of Vascular and Cardiology, Rui Jin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Wei-Feng Shen
- Department of Vascular and Cardiology, Rui Jin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Rui-Yan Zhang
- Department of Vascular and Cardiology, Rui Jin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Ying Shen
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Lin Lu
- Department of Vascular and Cardiology, Rui Jin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Yang Dai
- Department of Vascular and Cardiology, Rui Jin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Feng-Hua Ding
- Department of Vascular and Cardiology, Rui Jin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| |
Collapse
|
50
|
Pan Q, Chen C, Yang YJ. Top Five Stories of the Cellular Landscape and Therapies of Atherosclerosis: Current Knowledge and Future Perspectives. Curr Med Sci 2024; 44:1-27. [PMID: 38057537 DOI: 10.1007/s11596-023-2818-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/22/2023] [Indexed: 12/08/2023]
Abstract
Atherosclerosis (AS) is characterized by impairment and apoptosis of endothelial cells, continuous systemic and focal inflammation and dysfunction of vascular smooth muscle cells, which is documented as the traditional cellular paradigm. However, the mechanisms appear much more complicated than we thought since a bulk of studies on efferocytosis, transdifferentiation and novel cell death forms such as ferroptosis, pyroptosis, and extracellular trap were reported. Discovery of novel pathological cellular landscapes provides a large number of therapeutic targets. On the other side, the unsatisfactory therapeutic effects of current treatment with lipid-lowering drugs as the cornerstone also restricts the efforts to reduce global AS burden. Stem cell- or nanoparticle-based strategies spurred a lot of attention due to the attractive therapeutic effects and minimized adverse effects. Given the complexity of pathological changes of AS, attempts to develop an almighty medicine based on single mechanisms could be theoretically challenging. In this review, the top stories in the cellular landscapes during the initiation and progression of AS and the therapies were summarized in an integrated perspective to facilitate efforts to develop a multi-targets strategy and fill the gap between mechanism research and clinical translation. The future challenges and improvements were also discussed.
Collapse
Affiliation(s)
- Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Cheng Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|