1
|
Rao W, Li D, Zhang Q, Liu T, Gu Z, Huang L, Dai J, Wang J, Hou X. Complex regulation of cardiac fibrosis: insights from immune cells and signaling pathways. J Transl Med 2025; 23:242. [PMID: 40022104 PMCID: PMC11869728 DOI: 10.1186/s12967-025-06260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/16/2025] [Indexed: 03/03/2025] Open
Abstract
Cardiac fibrosis is a physiological process that involves the formation of scar tissue in the heart in response to injury or damage. This process is initially a protective measure characterized by enhanced fibroblasts, which are responsible for producing extracellular matrix proteins that provide structural support to the heart. However, when fibrosis becomes excessive, it can lead to adverse outcomes, including increasing tissue stiffness and impaired cardiac function, which can ultimately result in heart failure with a poor prognosis. While fibroblasts are the primary cells involved in cardiac fibrosis, immune cells have also been found to play a vital role in its progression. Recent research has shown that immune cells exert multifaceted effects besides regulation of inflammatory response. Advanced research techniques such as single-cell sequencing and multiomics have provided insights into the specific subsets of immune cells involved in fibrosis and the complex regulation of the process. Targeted immunotherapy against fibrosis is gaining traction as a potential treatment option, but it is still unclear how immune cells achieve this regulation and whether distinct subsets are involved in different roles. To better understand the role of immune cells in cardiac fibrosis, it is essential to examine the classical signaling pathways that are closely related to fibrosis formation. We have also focused on the unique properties of diverse immune cells in cardiac fibrosis and their specific intercommunications. Therefore, this review will delve into the plasticity and heterogeneity of immune cells and their specific roles in cardiac fibrosis, which propose insights to facilitate the development of anti-fibrosis therapeutic strategies.
Collapse
Affiliation(s)
- Wutian Rao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinghang Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Tianbao Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjie Dai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xumin Hou
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Hospital's Office, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Duan Z, Huang Z, Lei W, Zhang K, Xie W, Jin H, Wu M, Wang N, Li X, Xu A, Zhou H, Wu F, Li Y, Lin Z. Bone Morphogenetic Protein 9 Protects Against Myocardial Infarction by Improving Lymphatic Drainage Function and Triggering DECR1-Mediated Mitochondrial Bioenergetics. Circulation 2024; 150:1684-1701. [PMID: 39315433 DOI: 10.1161/circulationaha.123.065935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/01/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND BMP9 (bone morphogenetic protein 9) is a member of the TGF-β (transforming growth factor β) family of cytokines with pleiotropic effects on glucose metabolism, fibrosis, and lymphatic development. However, the role of BMP9 in myocardial infarction (MI) remains elusive. METHODS The expressional profiles of BMP9 in cardiac tissues and plasma samples of subjects with MI were determined by immunoassay or immunoblot. The role of BMP9 in MI was determined by evaluating the impact of BMP9 deficiency and replenishment with adeno-associated virus-mediated BMP9 expression or recombinant human BMP9 protein in mice. RESULTS We show that circulating BMP9 and its cardiac levels are markedly increased in humans and mice with MI and are negatively associated with cardiac function. It is important to note that BMP9 deficiency exacerbates left ventricular dysfunction, increases infarct size, and augments cardiac fibrosis in mice with MI. In contrast, replenishment of BMP9 significantly attenuates these adverse effects. We further demonstrate that BMP9 improves lymphatic drainage function, thereby leading to a decrease of cardiac edema. In addition, BMP9 increases the expression of mitochondrial DECR1 (2,4-dienoyl-CoA [coenzyme A] reductase 1), a rate-limiting enzyme involved in β-oxidation, which, in turn, promotes cardiac mitochondrial bioenergetics and mitigates MI-induced cardiomyocyte injury. Moreover, DECR1 deficiency exacerbates MI-induced cardiac damage in mice, whereas this adverse effect is restored by the treatment of adeno-associated virus-mediated DECR1. Consistently, DECR1 deletion abrogates the beneficial effect of BMP9 against MI-induced cardiomyopathy and cardiac damage in mice. CONCLUSIONS These results suggest that BMP9 protects against MI by fine-tuning the multiorgan cross-talk among the liver, lymph, and the heart.
Collapse
Affiliation(s)
- Zikun Duan
- Affiliated Dongguan Songshan Lake Central Hospital (Z.D., F.W., Z.L.), Guangdong Medical University, Dongguan, China
| | - Zhouqing Huang
- Department of Cardiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (Z.H., W.X., H.Z., Z.L.)
| | - Wei Lei
- Precision Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China (W.L.)
| | - Ke Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, China (K.Z., H.J., M.W., N.W., X.L., Z.L.)
| | - Wei Xie
- Department of Cardiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (Z.H., W.X., H.Z., Z.L.)
| | - Hua Jin
- School of Pharmaceutical Sciences, Wenzhou Medical University, China (K.Z., H.J., M.W., N.W., X.L., Z.L.)
| | - Maolan Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, China (K.Z., H.J., M.W., N.W., X.L., Z.L.)
| | - Ningrui Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, China (K.Z., H.J., M.W., N.W., X.L., Z.L.)
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, China (K.Z., H.J., M.W., N.W., X.L., Z.L.)
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, China (A.X.)
| | - Hao Zhou
- Department of Cardiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (Z.H., W.X., H.Z., Z.L.)
| | - Fan Wu
- Affiliated Dongguan Songshan Lake Central Hospital (Z.D., F.W., Z.L.), Guangdong Medical University, Dongguan, China
- Innovation Center of Cardiometabolic Disease (F.W., Z.L.), Guangdong Medical University, Dongguan, China
| | - Yulin Li
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Anzhen Hospital of Capital Medical University, China (Y.L.)
| | - Zhuofeng Lin
- Affiliated Dongguan Songshan Lake Central Hospital (Z.D., F.W., Z.L.), Guangdong Medical University, Dongguan, China
- Innovation Center of Cardiometabolic Disease (F.W., Z.L.), Guangdong Medical University, Dongguan, China
- Department of Cardiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (Z.H., W.X., H.Z., Z.L.)
- School of Pharmaceutical Sciences, Wenzhou Medical University, China (K.Z., H.J., M.W., N.W., X.L., Z.L.)
| |
Collapse
|
3
|
Lv F, Xie L, Li L, Lin J. LMK235 ameliorates inflammation and fibrosis after myocardial infarction by inhibiting LSD1-related pathway. Sci Rep 2024; 14:23450. [PMID: 39379699 PMCID: PMC11461967 DOI: 10.1038/s41598-024-74887-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Histone deacetylase 4 (HDAC4) and histone deacetylase 5 (HDAC5) are two isoforms of class IIa HDACs, and LMK235 is an HDAC inhibitor with higher selectivity for HDAC4/5. This study aimed to explore the expression and subcellular localization of HDAC4/5 and determine the mechanisms underlying the impact of LMK235 on ventricular remodelling post-MI. METHODS The MI model was established by left anterior descending branch (LAD) ligation, and LMK235 or vehicle was intraperitoneally injected daily for 21 days. Cardiac function was determined by echocardiography. Inflammation was evaluated by HE staining and measuring inflammatory cytokine expression, and fibrosis was evaluated by Masson staining and measuring fibrotic biomarker expression. RESULTS We found that LMK235 ameliorated cardiac dysfunction post-MI by suppressing inflammation and fibrosis, and LMK235 inhibited upregulation of lysine-specific demethylase 1 (LSD1) expression post-MI. In macrophages, LMK235 attenuated lipopolysaccharide (LPS) - induced inflammatory cytokine expression and inhibited LSD1 expression, while overexpression of LSD1 abrogated the anti-inflammatory effect of LMK235. In cardiac fibroblasts, LMK235 attenuated transforming growth factor-β1 (TGF-β1) - induced fibrotic biomarker expression and inhibited LSD1 expression, while overexpression of LSD1 abrogated the antifibrotic effect of LMK235. CONCLUSION LMK235 attenuates chronic inflammation and fibrosis post-MI, leading to improved cardiac function. The anti-inflammatory effect of LMK235 may result from inhibition of the LSD1-NF-κB pathway in macrophages. The antifibrotic effect of LMK235 may result from inhibition of the LSD1-Smad2/3 pathway in cardiac fibroblasts.
Collapse
Affiliation(s)
- Fangzhou Lv
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Cardiology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Laidi Xie
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Li
- Department of Cardiology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jiafeng Lin
- Department of Cardiology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
4
|
Ye Q, Taleb SJ, Zhao J, Zhao Y. Emerging role of BMPs/BMPR2 signaling pathway in treatment for pulmonary fibrosis. Biomed Pharmacother 2024; 178:117178. [PMID: 39142248 PMCID: PMC11364484 DOI: 10.1016/j.biopha.2024.117178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Pulmonary fibrosis is a fatal and chronic lung disease that is characterized by accumulation of thickened scar in the lungs and impairment of gas exchange. The cases with unknown etiology are referred as idiopathic pulmonary fibrosis (IPF). There are currently no effective therapeutics to cure the disease; thus, the investigation of the pathogenesis of IPF is of great importance. Recent studies on bone morphogenic proteins (BMPs) and their receptors have indicated that reduction of BMP signaling in lungs may play a significant role in the development of lung fibrosis. BMPs are members of TGF-β superfamily, and they have been shown to play an anti-fibrotic role in combating TGF-β-mediated pathways. The impact of BMP receptors, in particular BMPR2, on pulmonary fibrosis is growing attraction to researchers. Previous studies on BMPR2 have often focused on pulmonary arterial hypertension (PAH). Given the strong clinical association between PAH and lung fibrosis, understanding BMPs/BMPR2-mediated signaling pathway is important for development of therapeutic strategies to treat IPF. In this review, we comprehensively review recent studies regarding the biological functions of BMPs and their receptors in lungs, especially focusing on their roles in the pathogenesis of pulmonary fibrosis and fibrosis resolution.
Collapse
Affiliation(s)
- Qinmao Ye
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States
| | - Sarah J Taleb
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States
| | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States; Department of internal Medicine, the Ohio State University, Columbus, OH, United States
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States; Department of internal Medicine, the Ohio State University, Columbus, OH, United States.
| |
Collapse
|
5
|
Yuan Y, Zhang H, Xia E, Zhao X, Gao Q, Mu H, Liu X, Tian Y, Liu L, Shen Q, Sheng L. BMP2 Diminishes Angiotensin II-Induced Atrial Fibrillation by Inhibiting NLRP3 Inflammasome Signaling in Atrial Fibroblasts. Biomolecules 2024; 14:1053. [PMID: 39334820 PMCID: PMC11430365 DOI: 10.3390/biom14091053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia to affect 1% of the global population and increases with age. Atrial fibrosis is a crucial substrate for promoting structural remodeling to cause atrial arrhythmogenesis. Bone morphogenic protein 2 (BMP2) has been reported to be involved in cardiac fibrogenesis. However, its role in modulating atrial fibrosis to affect AF development remains unknown. Our study aimed to investigate the expression of BMP2 under different AF conditions and the effect of BMP2 on the progression of atrial fibrosis using an angiotensin II (Ang II) rat model and an ex vivo cardiac fibroblast model. The qRT-PCR and Western blot assay showed increased BMP2 mRNA and protein levels in the atria of chronic AF patients and the right atria of a tachypacing rabbit model. In contrast, the levels of BMP2 receptor mRNA were comparable. The AF incidence of the Ang II rat was higher than that of a control rat, which was reduced by BMP2 treatment. Masson staining demonstrated an anti-fibrogenic impact on BMP2-subjected rat atria compared to only Ang II-treated rat atria. RNA-sequencing indicated the potential function of blocking NLRP3-associted inflammasome activation in BMP2-treated rat atrial tissues. In vitro, transfecting BMP2 shRNA into neonatal rat atrial fibroblasts upregulated the mRNA levels of NLRP3/Caspase-1/p20/ASC and the secretion of IL-1β and IL-6. In contrast, recombinant BMP2 protein attenuated the increased levels of the NLRP3 inflammasome pathway induced by Ang II. In summary, BMP2 opposes atrial fibrosis to alleviate AF susceptibility by inhibiting the activation of the inflammasome in atrial fibroblasts.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Hang Zhang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Erwen Xia
- Department of General Medicine, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Xinbo Zhao
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Qiang Gao
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Hongyuan Mu
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Xingzuo Liu
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yuanye Tian
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Lei Liu
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Qiuling Shen
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Li Sheng
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| |
Collapse
|
6
|
Xu J, Wang F, Li Y, Huang Y, Li P, Zhang Y, Xu G, Sun K. Estrogen inhibits TGF‑β1‑stimulated cardiac fibroblast differentiation and collagen synthesis by promoting Cdc42. Mol Med Rep 2024; 30:123. [PMID: 38785153 PMCID: PMC11130745 DOI: 10.3892/mmr.2024.13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
17β‑estradiol (E2) can inhibit cardiac fibrosis in female patients with heart failure (HF) and activate cell division cycle 42 (Cdc42), however it is unknown whether 17β‑estradiol (E2) can ameliorate differentiation and collagen synthesis in TGF‑β1‑stimulated mouse cardiac fibroblasts (MCFs) by regulating cell division cycle 42 (Cdc42). The present study aimed to investigate the roles of estrogen and Cdc42 in preventing myocardial fibrosis and the underlying molecular mechanisms. An ELISA was used to measure the levels of E2 and Cdc42 in the serum of patients with heart failure (HF), and western blotting was used to measure the expression levels of Cdc42 in TGF‑β1‑stimulated immortalized MCFs. MCFs were transfected with a Cdc42 overexpression (OE) lentivirus or small interfering RNA (siRNA), or treated with a Cdc42 inhibitor (MLS‑573151), and the function of Cdc42 was assessed by western blotting, immunofluorescence staining, reverse transcription‑quantitative PCR and dual‑luciferase reporter assays. Western blotting and immunofluorescence staining were performed to verify the protective effect of E2 on TGF‑β1‑stimulated MCFs, and the association between the protective effect and Cdc42. The results demonstrated that Cdc42 levels were increased in the serum of patients with HF and were positively correlated with the levels of E2; however, Cdc42 levels were decreased in TGF‑β1‑stimulated MCFs. Cdc42 inhibited MCF differentiation and collagen synthesis, as indicated by the protein expression of α‑smooth muscle actin, collagen I and collagen III. Mechanistically, Cdc42 inhibited the transcription of TGF‑β1 by promoting the expression of p21 (RAC1)‑activated kinase 1 (Pak1)/JNK/c‑Jun signaling pathway proteins and inhibiting the activity of the Tgfb1 gene promoter. In addition, E2 inhibited the differentiation and collagen synthesis of TGF‑β1‑stimulated MCFs, and promoted the protein expression of Pak1, JNK and c‑Jun, consistent with the effects of Cdc42, whereas the effects of E2 were abolished when Cdc42 was knocked down. The aforementioned findings suggested that E2 could inhibit differentiation and collagen synthesis in TGF‑β1‑stimulated MCFs by regulating Cdc42 and the downstream Pak1/JNK/c‑Jun signaling pathway.
Collapse
Affiliation(s)
- Jingyi Xu
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Feng Wang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Yuan Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Ying Huang
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Ping Li
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Yiqing Zhang
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Guidong Xu
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Kangyun Sun
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| |
Collapse
|
7
|
Winters J, Kawczynski MJ, Gilbers MD, Isaacs A, Zeemering S, Bidar E, Maesen B, Rienstra M, van Gelder I, Verheule S, Maessen JG, Schotten U. Circulating BMP10 Levels Associate With Late Postoperative Atrial Fibrillation and Left Atrial Endomysial Fibrosis. JACC Clin Electrophysiol 2024; 10:1326-1340. [PMID: 38639699 DOI: 10.1016/j.jacep.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Serum bone morphogenetic protein 10 (BMP10) blood levels are a marker for history of atrial fibrillation (AF) and for major adverse cardiovascular events in patients with AF, including stroke, AF recurrences after catheter ablations, and mortality. The predictive value of BMP10 in patients undergoing cardiac surgery and association with morphologic properties of atrial tissues are unknown. OBJECTIVES This study sought to study the correlation between BMP10 levels and preoperative clinical traits, occurrence of early and late postoperative atrial fibrillation (POAF), and atrial fibrosis in patients undergoing cardiac surgery. METHODS Patients with and without preoperative AF history undergoing first cardiac surgery were included (RACE V, n = 147). Preoperative blood biomarkers were analyzed, left (n = 114) and right (n = 125) atrial appendage biopsy specimens were histologically investigated after WGA staining, and postoperative rhythm was monitored continuously with implantable loop recorders (n = 133, 2.5 years). RESULTS Adjusted multinomial logistic regression indicated that BMP10 accurately reflected a history of persistent AF (OR: 1.24, 95% CI: 1.10-1.40, P = 0.001), similar to NT-pro-BNP. BMP10 levels were associated with increased late POAF90 occurrence after adjustment for age, sex, AF history, and early POAF occurrence (HR: 1.07 [per 0.1 ng/mL increase], 95% CI: 1.00-1.14, P = 0.041). Left atrial endomysial fibrosis (standardized β = 0.22, P = 0.041) but not overall fibrosis (standardized Β = 0.12, P = 0.261) correlated with circulating BMP10 after adjustment for age, sex, AF history, reduced LVF, and valvular surgery indication. CONCLUSIONS Increased BMP10 levels were associated with persistent AF history, increased late POAF incidence, and LAA endomysial fibrosis in a diverse sample of patients undergoing cardiac surgery.
Collapse
Affiliation(s)
- Joris Winters
- Department of Physiology, Maastricht University, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - Michal J Kawczynski
- Department of Physiology, Maastricht University, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands; Department of Cardiothoracic Surgery, Heart and Vascular Centre Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Martijn D Gilbers
- Department of Physiology, Maastricht University, Maastricht, the Netherlands
| | - Aaron Isaacs
- Department of Physiology, Maastricht University, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands; Maastricht Centre for Systems Biology, University Maastricht, Maastricht, the Netherlands
| | - Stef Zeemering
- Department of Physiology, Maastricht University, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - Elham Bidar
- Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands; Department of Cardiothoracic Surgery, Heart and Vascular Centre Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Bart Maesen
- Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands; Department of Cardiothoracic Surgery, Heart and Vascular Centre Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Michiel Rienstra
- Department of Cardiology, University of Groningen, University Medical Centre, Groningen, the Netherlands
| | - Isabelle van Gelder
- Department of Cardiology, University of Groningen, University Medical Centre, Groningen, the Netherlands
| | - Sander Verheule
- Department of Physiology, Maastricht University, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - Jos G Maessen
- Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands; Department of Cardiothoracic Surgery, Heart and Vascular Centre Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ulrich Schotten
- Department of Physiology, Maastricht University, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands.
| |
Collapse
|
8
|
Bhave S, Swain L, Qiao X, Martin G, Aryaputra T, Everett K, Kapur NK. ALK1 Deficiency Impairs the Wound-Healing Process and Increases Mortality in Murine Model of Myocardial Infarction. J Cardiovasc Transl Res 2024; 17:496-504. [PMID: 38064044 DOI: 10.1007/s12265-023-10471-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/24/2023] [Indexed: 07/03/2024]
Abstract
The functional role of TGFβ type I receptor, activin-like kinase (ALK)-1 in post-myocardial infarction (MI) cardiac remodeling is unknown. We hypothesize that reduced ALK1 activity reduces survival and promotes cardiac fibrosis after MI. MI was induced in wild-type (WT), and ALK+/- mice by left coronary ligation. After 14 days ALK1+/- mice had reduced survival with a higher rate of cardiac rupture compared to WT mice. ALK1+/- left ventricles (LVs) had increased volumes at the end of systole and at the end of diastole. After MI ALK1+/- LVs had increased profibrotic SMAD3 signaling, type 1 collagen, and fibrosis as well as increased levels of TGFβ1 co-receptor, endoglin, VEGF, and ALK1 ligands BMP9 and BMP10. ALK1+/- LVs had decreased levels of stromal-derived factor 1α. These data identify the critical role of ALK1 in post-MI survival and cardiac remodeling and implicate ALK1 as a potential therapeutic target to improve survival after MI.
Collapse
Affiliation(s)
- Shreyas Bhave
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Lija Swain
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Xiaoying Qiao
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Gregory Martin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Tejasvi Aryaputra
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Kay Everett
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Navin K Kapur
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA.
| |
Collapse
|
9
|
Nie W, Zhao Z, Liu Y, Wang Y, Zhang J, Hu Y, Liu Y, Wang Y, Wang Z. Integrative Single-Cell Analysis of Cardiomyopathy Identifies Differences in Cell Stemness and Transcriptional Regulatory Networks among Fibroblast Subpopulations. Cardiol Res Pract 2024; 2024:3131633. [PMID: 38799173 PMCID: PMC11127766 DOI: 10.1155/2024/3131633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/31/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Background Cardiomyopathy encompasses a broad spectrum of diseases affecting myocardial tissue, characterized clinically by abnormalities in cardiac structure, heart failure, and/or arrhythmias. Clinically heterogeneous, major types include dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), restrictive cardiomyopathy (RM), ischemic cardiomyopathy (ICM), among which DCM is more prevalent, while ICM exhibits higher incidence and mortality rates. Myocardial injury during cardiomyopathy progression may lead to myocardial fibrosis. Failure to intervene early and inhibit the process of myocardial fibrosis may culminate in heart failure. Cardiac fibroblasts constitute crucial cellular components determining the extent and quality of myocardial fibrosis, with various subpopulations exerting diverse roles in cardiomyopathy progression. Despite this, understanding of the cellular plasticity and transcriptional regulatory networks of cardiac fibroblasts in cardiomyopathy remains limited. Therefore, in this study, we conducted comprehensive single-cell analysis of cardiac fibroblasts in cardiomyopathy to explore differences in cellular plasticity and transcriptional regulatory networks among fibroblast subpopulations, with the aim of providing as many useful references as possible for the diagnosis, prognosis, and treatment of cardiomyopathy. Materials and Methods Cells with mitochondrial gene expression comprising >20% of total expressed genes were excluded. Differential expression genes (DEGs) and stemness genes within cardiac fibroblast subpopulations were subjected to Gene Ontology (GO) analysis of biological processes (BP) and AUCell analysis. Monocle software was employed to analyze the pseudo-temporal trajectory of cardiac fibroblasts in cardiomyopathy. Additionally, the Python package SCENIC was utilized to assess enrichment of transcription factors and activity of regulators within cardiac fibroblast subpopulations in cardiomyopathy. Results Following batch effect correction, 179,927 cells were clustered into 32 clusters, designated as T_NK cells, endothelial cells, myeloid cells, fibroblasts, pericytes, SMCs, CMs, proliferating cells, EndoCs, and EPCs. Among them, 8148 fibroblasts were further subdivided into 4 subpopulations, namely C0 THBS4+ Fibroblasts, C1 LINC01133+ Fibroblasts, C2 FGF7+ Fibroblasts, and C3 AGT + Fibroblasts. Results from GO_BP and AUCell analyses suggest that C3 AGT + Fibroblasts may be associated with immune response activation, protein transport, and myocardial contractile function, correlating with disease progression in cardiomyopathy. Transcription factor enrichment analysis indicates that FOS is the most significant TF in C3 AGT + Fibroblasts, also associated with the M1 module, possibly implicated in protein hydrolysis, intracellular DNA replication, and cell proliferation. Moreover, correlation analysis of transcriptional regulatory activity between fibroblast subpopulations reveals a more pronounced heterogeneity within C3 AGT + Fibroblasts in cardiomyopathy. Conclusion C3 AGT + Fibroblasts exhibit increased sensitivity towards adverse outcomes in cardiomyopathy, such as myocardial fibrosis and impaired cardiac contractile function, compared to other cardiac fibroblast subpopulations. The differential cellular plasticity and transcriptional regulatory activity between C3 AGT + Fibroblasts and other subgroups offer new perspectives for targeting fibroblast subpopulation activity to treat cardiomyopathy. Additionally, stemness genes EPAS1 and MYC, along with the regulator FOS, may play roles in modulating the biological processes of cardiac fibroblasts in cardiomyopathy.
Collapse
Affiliation(s)
- Wenyang Nie
- Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jing 10 Rd, Jinan 250000, China
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 16369 Jing 10 Rd, Jinan 250000, China
| | - Zhijie Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Rd, Shanghai 200011, China
- Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Rd, Shanghai 200025, China
| | - Yuhang Liu
- School of Acupuncture, Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, 4655 University Rd, Jinan 250355, China
| | - Youcao Wang
- Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jing 10 Rd, Jinan 250000, China
| | - Jingwen Zhang
- Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jing 10 Rd, Jinan 250000, China
| | - Ying Hu
- Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jing 10 Rd, Jinan 250000, China
| | - Yang Liu
- Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jing 10 Rd, Jinan 250000, China
| | - Yong Wang
- Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jing 10 Rd, Jinan 250000, China
| | - Zhen Wang
- Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jing 10 Rd, Jinan 250000, China
| |
Collapse
|
10
|
Motta I, Soccio M, Guidotti G, Lotti N, Pasquinelli G. Hydrogels for Cardio and Vascular Tissue Repair and Regeneration. Gels 2024; 10:196. [PMID: 38534614 DOI: 10.3390/gels10030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Cardiovascular disease (CVD), the leading cause of death globally, affects the heart and arteries with a variety of clinical manifestations, the most dramatic of which are myocardial infarction (MI), abdominal aortic aneurysm (AAA), and intracranial aneurysm (IA) rupture. In MI, necrosis of the myocardium, scar formation, and loss of cardiomyocytes result from insufficient blood supply due to coronary artery occlusion. Beyond stenosis, the arteries that are structurally and functionally connected to the cardiac tissue can undergo pathological dilation, i.e., aneurysmal dilation, with high risk of rupture. Aneurysms of the intracranial arteries (IAs) are more commonly seen in young adults, whereas those of the abdominal aorta (AAA) are predominantly seen in the elderly. IAs, unpredictably, can undergo rupture and cause life-threatening hemorrhage, while AAAs can result in rupture, internal bleeding and high mortality rate. In this clinical context, hydrogels, three-dimensional networks of water-seizing polymers, have emerged as promising biomaterials for cardiovascular tissue repair or protection due to their biocompatibility, tunable properties, and ability to encapsulate and release bioactive molecules. This review provides an overview of the current state of research on the use of hydrogels as an innovative platform to promote cardiovascular-specific tissue repair in MI and functional recovery or protection in aneurysmal dilation.
Collapse
Affiliation(s)
- Ilenia Motta
- Alma Mater Institute on Healthy Planet, University of Bologna, Via Massarenti 11, 40138 Bologna, Italy
| | - Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Gianandrea Pasquinelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
11
|
Liu B, Fu B, Zhou S, Wang H, Bi B, Guo M, Cheng JC, Fang L. Bone morphogenetic protein-9 downregulates StAR expression by inducing snail expression via SMAD1/5/8 signaling in human granulosa-lutein cells. Mol Cell Endocrinol 2024; 582:112126. [PMID: 38109991 DOI: 10.1016/j.mce.2023.112126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Ovarian steroidogenesis mediated by granulosa cells is pivotal in maintaining normal female reproductive function. The steroidogenic acute regulatory protein (StAR) regulates the rate-limiting step in steroidogenesis. Bone morphogenetic protein-9 (BMP-9), also known as growth differentiation factor-2 (GDF-2), is a member of the transforming growth factor-beta (TGF-β) superfamily. BMP-9 induces epithelial-mesenchymal transition (EMT) that contributes to cancer progression. However, the function of BMP-9 in the female reproductive system remains largely unknown. It has been recently shown that BMP-9 is expressed in human follicular fluid and can downregulate StAR expression in human ovarian granulosa cells. However, the underlying molecular mechanisms warrant investigation. Our results show that treatment of primary granulosa-lutein (hGL) cells with BMP-9 downregulates StAR expression. In addition, two EMT-related transcription factors, Snail and Slug, are upregulated by the treatment of BMP-9. Using pharmacological inhibitors and a siRNA-mediated knockdown approach, we show that BMP-9 upregulates Snail and Slug expression by activating SMAD1/5/8 signaling. We also examine the effects of BMP-9 on SMAD-independent signaling pathways, including ERK1/2, p38, JNK, AKT, and CREB. However, none of them is affected by the BMP-9. Moreover, we use gain- and loss-of-function approaches to reveal that only Snail, not Slug, is required for the BMP-9-induced downregulation of StAR expression in hGL cells. This study increases the understanding of the physiology function of BMP-9 in hGL cells and provides important insights into the regulation of StAR expression.
Collapse
Affiliation(s)
- Boqun Liu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Bingxin Fu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shenghui Zhou
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hailong Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Beibei Bi
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Manman Guo
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
12
|
Moore M, Ryzhov S, Sawyer DB, Gartner C, Vary CP. ALK1 Signaling in Human Cardiac Progenitor Cells Promotes a Pro-angiogenic Secretome. JOURNAL OF CELLULAR SIGNALING 2024; 5:122-142. [PMID: 39430425 PMCID: PMC11488643 DOI: 10.33696/signaling.5.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Pro-angiogenic paracrine/autocrine signaling impacts myocardial repair in cell-based therapies. Activin A receptor-like type 1 (ACVRL1, ALK1) signaling plays a pivotal role in cardiovascular development and maintenance, but its importance in human-derived therapeutic cardiac cells is not well understood. Here, we isolated a subpopulation of human highly proliferative cells (hHiPCs) from adult epicardial tissue and found that they express ALK1, a high affinity receptor for bone morphogenetic protein-9 (BMP9), which signals via SMAD1/5 to regulate paracrine/autocrine signaling and angiogenesis. We show that in humans, circulating BMP9 level is negatively associated with the number of epicardial hHiPC and positively associated with endothelial cell (EC) number in the adult heart, implicating the potential importance of this signaling pathway in cardiac cell fate and vascular maintenance. To investigate BMP9/ALK1 signaling in hHiPCs, we selected a primary cell population of hHiPC from each of 3 individuals and studied their responses to BMP9 and BMP10 treatment in vitro. Proteins were collected in conditioned media (CM) for mass spectrometry and cell-based assays on human ECs and hHiPCs. Proteomic analysis of the hHiPC secretome following BMP9 or BMP10 treatment demonstrates that the secreted proteins, sclerostin (SOST), meflin/immunoglobulin superfamily containing leucine rich repeat (ISLR), and insulin-like growth factor binding protein-3 (IGFBP3), are novel regulated targets of BMP9/ALK1 signaling. Lentiviral shRNA and pharmacological inhibition of ALK1 in hHiPCs suppressed transcription and secretion of SOST, ISLR, and IGFBP3 following BMP9 treatment. Moreover, the BMP9-treated secretome of hHiPC increased capillary-like tube formation of ECs and hHiPCs. Treatment of hHiPCs with recombinant SOST increased VEGF-a expression, increased tube formation and enhanced expression of EC receptor marker annexin A2 (ANXA2). These data provide the first proteomic characterization of hHiPC, identifying BMP9/ALK1-mediated target protein secretion in hHiPCs, and underscore the complex role of BMP9/ALK1 signaling in paracrine/autocrine mediated angiogenesis. Data are available via ProteomeXchange with identifier PXD055302.
Collapse
Affiliation(s)
- Michayla Moore
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth 81 Research Drive, Scarborough, Maine, USA
- Graduate School of Biomedical Science and Engineering, University of Maine Orono, Maine, USA
| | - Sergey Ryzhov
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth 81 Research Drive, Scarborough, Maine, USA
- Graduate School of Biomedical Science and Engineering, University of Maine Orono, Maine, USA
| | - Douglas B. Sawyer
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth 81 Research Drive, Scarborough, Maine, USA
- Graduate School of Biomedical Science and Engineering, University of Maine Orono, Maine, USA
| | - Carlos Gartner
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth 81 Research Drive, Scarborough, Maine, USA
| | - Calvin P.H. Vary
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth 81 Research Drive, Scarborough, Maine, USA
- Graduate School of Biomedical Science and Engineering, University of Maine Orono, Maine, USA
| |
Collapse
|
13
|
Liu T, Shi J, Fu Y, Zhang Y, Bai Y, He S, Deng W, Jin Q, Chen Y, Fang L, He L, Li Y, Yang Y, Zhang L, Lv Q, Wang J, Xie M. New trends in non-pharmacological approaches for cardiovascular disease: Therapeutic ultrasound. Trends Cardiovasc Med 2023; 33:431-440. [PMID: 35461990 DOI: 10.1016/j.tcm.2022.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/05/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022]
Abstract
Significant advances in application of therapeutic ultrasound have been reported in the past decades. Therapeutic ultrasound is an emerging non-invasive stimulation technique. This approach has shown high potential for treatment of various disease including cardiovascular disease. In this review, application principle and significance of the basic parameters of therapeutic ultrasound are summarized. The effects of therapeutic ultrasound in myocardial ischemia, heart failure, myocarditis, arrhythmias, and hypertension are explored, with key focus on the underlying mechanism. Further, the limitations and challenges of ultrasound therapy on clinical translation are evaluated to promote application of the novel strategy in cardiovascular diseases.
Collapse
Affiliation(s)
- Tianshu Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jiawei Shi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yanan Fu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yichan Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ying Bai
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Shukun He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenhui Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lingyun Fang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lin He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yuman Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yali Yang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Qing Lv
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jing Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| |
Collapse
|
14
|
Zhang B, Shi L, Tan Y, Zhou Y, Cui J, Song Y, Liu Y, Zhang M, Duan W, Jin Z, Liu J, Yi D, Sun Y, Yi W. Forkhead box O6 (FoxO6) promotes cardiac pathological remodeling and dysfunction by activating Kif15-TGF-β1 under aggravated afterload. MedComm (Beijing) 2023; 4:e383. [PMID: 37799807 PMCID: PMC10547936 DOI: 10.1002/mco2.383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 10/07/2023] Open
Abstract
Pathological cardiac hypertrophy exhibits complex and abnormal gene expression patterns and progresses to heart failure. Forkhead box protein O6 (FoxO6) is a key transcription factor involved in many biological processes. This study aimed to explore the role of FoxO6 in cardiac hypertrophy. Three groups of mice were established: wild-type, FoxO6 knockout, and FoxO6-overexpressing. The mice received daily administration of angiotensin-II (Ang-II) or saline for 4 weeks, after which they were examined for cardiac hypertrophy, fibrosis, and function. Elevated cardiac expression of FoxO6 was observed in Ang-II-treated mice. FoxO6 deficiency attenuated contractile dysfunction and cardiac remodeling, including cardiomyocyte hypertrophy and fibroblast proliferation and differentiation. Conversely, FoxO6 overexpression aggravated the cardiomyopathy and heart dysfunction. Further studies identified kinesin family member 15 (Kif15) as downstream molecule of FoxO6. Kif15 inhibition attenuated the aggravating effect of FoxO6 overexpression. In vitro, FoxO6 overexpression increased Kif15 expression in cardiomyocytes and elevated the concentration of transforming growth factor-β1 (TGF-β1) in the medium where fibroblasts were grown, exhibiting increased proliferation and differentiation, while FoxO6 knockdown attenuated this effect. Cardiac-derived FoxO6 promoted pathological cardiac remodeling induced by aggravated afterload largely by activating the Kif15/TGF-β1 axis. This result further complements the mechanisms of communication among different cells in the heart, providing novel therapeutic targets for heart failure.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Lei Shi
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Yanzhen Tan
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Yenong Zhou
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Jun Cui
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Yujie Song
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Yingying Liu
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Miao Zhang
- Department of GeriatricsXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Weixun Duan
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Zhenxiao Jin
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Jincheng Liu
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Dinghua Yi
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Yang Sun
- Department of GeriatricsXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Wei Yi
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
15
|
O’Donnell A, Yutzey KE. Quality Over Quantity: BMP-9 Regulation of Scar Formation After Myocardial Infarction. JACC Basic Transl Sci 2023; 8:1331-1333. [PMID: 38094690 PMCID: PMC10714155 DOI: 10.1016/j.jacbts.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Affiliation(s)
- Anna O’Donnell
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
16
|
Ye D, Feng Y, Pan H, Lu X, Wang Z, Wang M, Liu J, Xu Y, Zhang J, Zhao M, Xu S, Ye J, Wan J. Kielin/chordin-like protein deficiency causes cardiac aging in male mice. J Mol Med (Berl) 2023; 101:731-742. [PMID: 37149518 DOI: 10.1007/s00109-023-02320-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 03/16/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
Previous studies have demonstrated that bone morphogenetic proteins (BMPs) play important roles in cardiovascular diseases, including atherosclerosis, artery calcification, myocardial remodeling, pulmonary arterial hypertension, and diabetic cardiomyopathy. Kielin/chordin-like protein (KCP) is a secreted protein that regulates the expression and function of BMPs. However, the role of KCP in cardiac aging remains unknown. In this study, we aimed to investigate the role of KCP in cardiac aging and its possible mechanisms. Echocardiogram showed that heart function was impaired in aged mice (24 months). In addition, analysis of heart structure showed that KCP knockout (KO) aggravated cardiac remodeling in aged mice. Moreover, KCP KO increased p-smad2/3 and TGF-β expression, while decreased BMP-2 expression in aged mice. Furthermore, KCP KO increased the expression of cardiac senescence-related proteins in aged mice. KCP KO aggravated the imbalance of oxidants and antioxidants and increased the expression of proinflammatory cytokines and cardiomyocyte apoptosis in aged mice. Our study demonstrated that KCP KO aggravated cardiac aging in mice by increasing the levels of oxidative stress, inflammation, and cardiomyocyte apoptosis. KEY MESSAGE: KCP KO aggravated aging-related cardiac dysfunction and remodeling in male mice. KCP KO aggravated cardiac aging by increasing the levels of oxidative stress, inflammation, and cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
17
|
Lashkarinia SS, Chan WX, Motakis E, Ho S, Siddiqui HB, Coban M, Sevgin B, Pekkan K, Yap CH. Myocardial Biomechanics and the Consequent Differentially Expressed Genes of the Left Atrial Ligation Chick Embryonic Model of Hypoplastic Left Heart Syndrome. Ann Biomed Eng 2023; 51:1063-1078. [PMID: 37032398 PMCID: PMC10122626 DOI: 10.1007/s10439-023-03187-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/20/2023] [Indexed: 04/11/2023]
Abstract
Left atrial ligation (LAL) of the chick embryonic heart is a model of the hypoplastic left heart syndrome (HLHS) where a purely mechanical intervention without genetic or pharmacological manipulation is employed to initiate cardiac malformation. It is thus a key model for understanding the biomechanical origins of HLHS. However, its myocardial mechanics and subsequent gene expressions are not well-understood. We performed finite element (FE) modeling and single-cell RNA sequencing to address this. 4D high-frequency ultrasound imaging of chick embryonic hearts at HH25 (ED 4.5) were obtained for both LAL and control. Motion tracking was performed to quantify strains. Image-based FE modeling was conducted, using the direction of the smallest strain eigenvector as the orientations of contractions, the Guccione active tension model and a Fung-type transversely isotropic passive stiffness model that was determined via micro-pipette aspiration. Single-cell RNA sequencing of left ventricle (LV) heart tissues was performed for normal and LAL embryos at HH30 (ED 6.5) and differentially expressed genes (DEG) were identified.After LAL, LV thickness increased by 33%, strains in the myofiber direction increased by 42%, while stresses in the myofiber direction decreased by 50%. These were likely related to the reduction in ventricular preload and underloading of the LV due to LAL. RNA-seq data revealed potentially related DEG in myocytes, including mechano-sensing genes (Cadherins, NOTCH1, etc.), myosin contractility genes (MLCK, MLCP, etc.), calcium signaling genes (PI3K, PMCA, etc.), and genes related to fibrosis and fibroelastosis (TGF-β, BMP, etc.). We elucidated the changes to the myocardial biomechanics brought by LAL and the corresponding changes to myocyte gene expressions. These data may be useful in identifying the mechanobiological pathways of HLHS.
Collapse
Affiliation(s)
- S Samaneh Lashkarinia
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK
| | - Wei Xuan Chan
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK
| | | | - Sheldon Ho
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | | | - Mervenur Coban
- Department of Mechanical Engineering, Koc University, Istanbul, Turkey
| | - Bortecine Sevgin
- Department of Mechanical Engineering, Koc University, Istanbul, Turkey
| | - Kerem Pekkan
- Department of Mechanical Engineering, Koc University, Istanbul, Turkey
| | - Choon Hwai Yap
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK.
| |
Collapse
|
18
|
Upton PD, Dunmore BJ, Li W, Morrell NW. An emerging class of new therapeutics targeting TGF, Activin, and BMP ligands in pulmonary arterial hypertension. Dev Dyn 2023; 252:327-342. [PMID: 35434863 PMCID: PMC10952790 DOI: 10.1002/dvdy.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an often fatal condition, the primary pathology of which involves loss of pulmonary vascular perfusion due to progressive aberrant vessel remodeling. The reduced capacity of the pulmonary circulation places increasing strain on the right ventricle of the heart, leading to death by heart failure. Currently, licensed therapies are primarily vasodilators, which have increased the median post-diagnosis life expectancy from 2.8 to 7 years. Although this represents a substantial improvement, the search continues for transformative therapeutics that reverse established disease. The genetics of human PAH heavily implicates reduced endothelial bone morphogenetic protein (BMP) signaling as a causal role for the disease pathobiology. Recent approaches have focused on directly enhancing BMP signaling or removing the inhibitory influence of pathways that repress BMP signaling. In this critical commentary, we review the evidence underpinning the development of two approaches: BMP-based agonists and inhibition of activin/GDF signaling. We also address the key considerations and questions that remain regarding these approaches.
Collapse
Affiliation(s)
- Paul D. Upton
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Benjamin J. Dunmore
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Wei Li
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Nicholas W. Morrell
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| |
Collapse
|
19
|
The circular RNA circHelz enhances cardiac fibrosis by facilitating the nuclear translocation of YAP1. Transl Res 2023; 257:30-42. [PMID: 36775059 DOI: 10.1016/j.trsl.2023.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/07/2023] [Accepted: 01/24/2023] [Indexed: 02/12/2023]
Abstract
Cardiac fibrosis is a common pathological change in the development of heart disease. Circular RNA (circRNA) has been shown to be related to the occurrence and development of various cardiovascular diseases. This study aimed to evaluate the effects and potential mechanisms of circHelz in cardiac fibrosis. Knockdown of circHelz alleviated cardiac fibrosis and myocardial fibroblast activation induced by myocardial infarction (MI) or angiotensin II (AngII) in vivo and transforming growth factor-β (TGF-β) in vitro. Overexpression of circHelz exacerbated cell proliferation and differentiation. Mechanistically, nuclear factor of activated T cells, cytoplasmic 2 (NFATc2) was found to act as a transcriptional activator to upregulate the expression of circHelz. The increased circHelz was demonstrated to bind to Yes-associated protein (YAP) and facilitate its localization in the nucleus to promote cell proliferation and growth. Moreover, silencing YAP1 reversed the detrimental effects caused by circHelz in vitro, as indicated by the observed decreases in cell viability, fibrotic marker expression levels, proliferation and migration. Collectively, the protective effect of circHelz knockdown against cardiac fibrosis injury is accomplished by inhibiting the nuclear translocation of YAP1. Thus, circHelz may be a novel target for the prevention and treatment of cardiovascular disease.
Collapse
|
20
|
Bertaud A, Joshkon A, Heim X, Bachelier R, Bardin N, Leroyer AS, Blot-Chabaud M. Signaling Pathways and Potential Therapeutic Strategies in Cardiac Fibrosis. Int J Mol Sci 2023; 24:ijms24021756. [PMID: 36675283 PMCID: PMC9866199 DOI: 10.3390/ijms24021756] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Cardiac fibrosis constitutes irreversible necrosis of the heart muscle as a consequence of different acute (myocardial infarction) or chronic (diabetes, hypertension, …) diseases but also due to genetic alterations or aging. Currently, there is no curative treatment that is able to prevent or attenuate this phenomenon that leads to progressive cardiac dysfunction and life-threatening outcomes. This review summarizes the different targets identified and the new strategies proposed to fight cardiac fibrosis. Future directions, including the use of exosomes or nanoparticles, will also be discussed.
Collapse
|
21
|
Ye D, Liu Y, Pan H, Feng Y, Lu X, Gan L, Wan J, Ye J. Insights into bone morphogenetic proteins in cardiovascular diseases. Front Pharmacol 2023; 14:1125642. [PMID: 36909186 PMCID: PMC9996008 DOI: 10.3389/fphar.2023.1125642] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are secretory proteins belonging to the transforming growth factor-β (TGF-β) superfamily. These proteins play important roles in embryogenesis, bone morphogenesis, blood vessel remodeling and the development of various organs. In recent years, as research has progressed, BMPs have been found to be closely related to cardiovascular diseases, especially atherosclerosis, vascular calcification, cardiac remodeling, pulmonary arterial hypertension (PAH) and hereditary hemorrhagic telangiectasia (HHT). In this review, we summarized the potential roles and related mechanisms of the BMP family in the cardiovascular system and focused on atherosclerosis and PAH.
Collapse
Affiliation(s)
- Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yinghui Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liren Gan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
22
|
Zhang M, Zhang B, Wang X, Song J, Tong M, Dong Z, Xu J, Liu M, Jiang Y, Wang N, Wang Y, Du Z, Liu Y, Zhang R, Xu C. LncRNA CFAR promotes cardiac fibrosis via the miR-449a-5p/LOXL3/mTOR axis. SCIENCE CHINA LIFE SCIENCES 2022; 66:783-799. [PMID: 36334219 DOI: 10.1007/s11427-021-2132-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/22/2022] [Indexed: 11/06/2022]
Abstract
Cardiac fibrosis is one of the crucial pathological factors in the heart, and various cardiac conditions associated with excessive fibrosis can eventually lead to heart failure. However, the exact molecular mechanism of cardiac fibrosis remains unclear. In the present study, we show that a novel lncRNA that we named cardiac fibrosis-associated regulator (CFAR) is a profibrotic factor in the heart. CFAR was upregulated in cardiac fibrosis and its knockdown attenuated the expression of fibrotic marker genes and the proliferation of cardiac fibroblasts, thereby ameliorating cardiac fibrosis. Moreover, CFAR acted as a ceRNA sponge for miR-449a-5p and derepressed the expression of LOXL3, which we experimentally established as a target gene of miR-449a-5p. In contrast to CFAR, miR-449a-5p was found to be significantly downregulated in cardiac fibrosis, and artificial knockdown of miR-449a-5p exacerbated fibrogenesis, whereas overexpression of miR-449a-5p impeded fibrogenesis. Furthermore, we found that LOXL3 mimicked the fibrotic factor TGF-β1 to promote cardiac fibrosis by activating mTOR. Collectively, our study established CFAR as a new profibrotic factor acting through a novel miR-449a-5p/LOXL3/mTOR axis in the heart and therefore might be considered as a potential molecular target for the treatment of cardiac fibrosis and associated heart diseases.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Bowen Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Xiaohan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Jiahang Song
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ming Tong
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zheng Dong
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jiaonan Xu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Meng Liu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuan Jiang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ning Wang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ying Wang
- Center of Chronic Diseases and Drug Research of Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Zhimin Du
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yanyan Liu
- Zhuhai People's Hospital, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China.
| | - Rong Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Chaoqian Xu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
23
|
Eidizadeh A, Schnelle M, Leha A, Edelmann F, Nolte K, Werhahn SM, Binder L, Wachter R. Biomarker profiles in heart failure with preserved vs. reduced ejection fraction: results from the DIAST-CHF study. ESC Heart Fail 2022; 10:200-210. [PMID: 36184749 PMCID: PMC9871664 DOI: 10.1002/ehf2.14167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/29/2022] [Accepted: 09/15/2022] [Indexed: 01/27/2023] Open
Abstract
AIMS Chronic heart failure (HF) is a common disease and one of the leading causes of death worldwide. Heart failure with preserved ejection fraction (HFpEF) and with reduced ejection fraction (HFrEF) are different diseases with distinct as well as comparable pathophysiologies and diverse responses to therapeutic agents. We aimed to identify possible pathobiochemical signalling pathways and biomarkers in HFpEF and HFrEF by using a broad proteomic approach. METHODS AND RESULTS A total of 180 biomarkers in the plasma of a representative subgroup (71 years old) of HFpEF (70% female) with a left ventricular ejection fraction (LVEF) ≥ 50% and HFrEF (18% female) with an LVEF ≤ 40% patients (n = 127) from the Prevalence and Clinical Course of Diastolic Dysfunction and Diastolic Heart Failure (DIAST-CHF) trial were examined and compared with a healthy control group (n = 40; 48% female). We were able to identify 35 proteins that were expressed significantly different in both HF groups compared with the control group. We determine 29 unique proteins expressed in HFpEF and 33 unique proteins in HFrEF. Significantly up-regulated trefoil factor 3 (TFF3) and down-regulated contactin-1 could be identified as previously unknown biomarkers for HF. However, TFF3 is also a predictive factor for the occurrence of a cardiovascular event in HFpEF patients. In HFpEF, serine protease 27 was found at reduced levels for the first time, which could offer a new therapeutic target. Additionally, network analyses showed a special role of platelet-derived growth factor subunit A, Dickkopf-related protein 1, and tumour necrosis factor receptor superfamily member 6 in HFpEF patients, whereas perlecan and junctional adhesion molecule A stood out in the HFrEF group. Overall, signalling pathways of metabolic processes, cellular stress, and iron metabolism seemed to be important for HFrEF, whereas for HFpEF, oxygen stress, haemostasis, cell renewal, cell migration, and cell proliferation are in the foreground. CONCLUSIONS The identified proteins and signalling pathways offer new therapeutic and diagnostic approaches for patients with chronic HF.
Collapse
Affiliation(s)
- Abass Eidizadeh
- Institute for Clinical Chemistry/Interdisciplinary UMG LaboratoryUniversity Medical Center GöttingenGöttingenGermany
| | - Moritz Schnelle
- Institute for Clinical Chemistry/Interdisciplinary UMG LaboratoryUniversity Medical Center GöttingenGöttingenGermany,DZHK (German Centre for Cardiovascular Research), Partner Site GöttingenGöttingenGermany
| | - Andreas Leha
- DZHK (German Centre for Cardiovascular Research), Partner Site GöttingenGöttingenGermany,Department of Medical StatisticsUniversity Medical Center GöttingenGöttingenGermany
| | - Frank Edelmann
- Department of Internal Medicine and CardiologyCharité‐Universitätsmedizin Berlin, Campus Virchow KlinikumBerlinGermany,DZHK (German Centre for Cardiovascular Research), Partner Site BerlinBerlinGermany,Berlin Institute of HealthBerlinGermany
| | - Kathleen Nolte
- Clinic of Cardiology and PneumologyUniversity Medical Center GöttingenGöttingenGermany
| | | | - Lutz Binder
- Institute for Clinical Chemistry/Interdisciplinary UMG LaboratoryUniversity Medical Center GöttingenGöttingenGermany,DZHK (German Centre for Cardiovascular Research), Partner Site GöttingenGöttingenGermany
| | - Rolf Wachter
- DZHK (German Centre for Cardiovascular Research), Partner Site GöttingenGöttingenGermany,Clinic of Cardiology and PneumologyUniversity Medical Center GöttingenGöttingenGermany,Clinic and Policlinic for CardiologyUniversity Hospital LeipzigLeipzigGermany
| |
Collapse
|
24
|
Chen Q, Wang Y, Sheng L, Huang Y. Metformin suppresses proliferation and differentiation induced by BMP9 via AMPK signaling in human fetal lung fibroblast-1. Front Pharmacol 2022; 13:984730. [PMID: 36091775 PMCID: PMC9448853 DOI: 10.3389/fphar.2022.984730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Adenosine monophosphosphate-activated protein kinase (AMPK) and its activator metformin were found to be involved in the regulation of fibroblast activation and pulmonary fibrosis. However, the regulatory mechanism has been undetermined. Recently, AMPK has been reported to exert its effect through inhibiting bone morphogenetic protein (BMP) pathway. In this study, human fetal lung fibroblast (HFL-1) cells were treated with metformin or specific AMPKα1 mutants, including constitutively activated mutant (AMPK-CA) and dominant negative mutant (AMPK-DN), combined with BMP9, and then the absorbance of these cells was measured by cell counting kit (CCK)-8 assay. The colony number of HFL-1 cells stimulated by metformin with or without BMP9 was examined by colony formation assay. The protein expressions of differentiated markers (α-smooth muscle actin, collagen I and collagen III) and the key molecules of BMP9 signaling, including activin receptor-like kinase (ALK) one and phosphorylated small mother against decapentaplegic (p-Smad)1/5, were also evaluated by western blot. Data revealed that BMP9 induced the proliferation and differentiation of HFL-1 cells which was suppressed by metformin or AMPK-CA. Meanwhile, the effect of metformin on BMP9-induced activation was counteracted by AMPK-DN. In addition, we found that the expressions of ALK1 and p-Smad1/5 induced by BMP9 were attenuated by metformin and AMPK-CA, whereas the inhibitory responses of metformin to the increased ALK1 and p-Smad1/5 were reduced by AMPK-DN. Accordingly, these results suggested that metformin mitigated BMP9-induced proliferation and differentiation of HFL-1 cells, which was achieved partly through the activation of AMPK and inhibition of ALK1/Smad1/5 signaling.
Collapse
Affiliation(s)
- Qiongfeng Chen
- Department of Pathophysiology, Basic Medical College of Nanchang University, Nanchang, China
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, China
| | - Yaqun Wang
- Department of Pathophysiology, Basic Medical College of Nanchang University, Nanchang, China
| | - Linna Sheng
- Department of Pathophysiology, Basic Medical College of Nanchang University, Nanchang, China
| | - Yonghong Huang
- Department of Pathophysiology, Basic Medical College of Nanchang University, Nanchang, China
- *Correspondence: Yonghong Huang,
| |
Collapse
|
25
|
Resveratrol Synergistically Promotes BMP9-Induced Osteogenic Differentiation of Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:8124085. [PMID: 35923297 PMCID: PMC9343184 DOI: 10.1155/2022/8124085] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/21/2022] [Indexed: 01/03/2023] Open
Abstract
Background. Mesenchymal stem cells (MSCs) differentiate into osteocytes, adipocytes, and chondrocytes. Resveratrol and bone morphogenetic protein 9 (BMP9) are known osteogenic induction factors of MSCs, but the effect of both resveratrol and BMP9 on osteogenesis is unknown. Herein, we explored whether resveratrol cooperates with BMP9 to improve osteogenic induction. Methods. The osteogenic induction of resveratrol and BMP9 on C3H10T1/2 cells was evaluated by detecting the staining and activity of the early osteogenic marker alkaline phosphatase (ALP). In addition, the late osteogenic effect was measured by the mRNA and protein levels of osteogenic markers, such as osteopontin (OPN) and osteocalcin (OCN). To assess the bone formation function of resveratrol plus BMP9 in vivo, we transplanted BMP9-infected C3H10T1/2 cells into nude mice followed by intragastric injection of resveratrol. Western blot (WB) analysis was utilized to elucidate the mechanism of resveratrol plus BMP9. Results. Resveratrol not only enhanced osteogenic induction alone but also improved BMP9-induced ALP at 3, 5, and 7 d postinduction. Both the early osteogenic markers (ALP, Runx2, and SP7) and the late osteogenic markers (OPN and OCN) were significantly increased when resveratrol was combined with BMP9. The fetal limb explant culture further verified these results. The in vivo bone formation experiment, which involved transplanting BMP9-overexpressing C3H10T1/2 cells into nude mice, also confirmed that resveratrol synergistically enhanced the BMP9-induced bone formation function. Resveratrol phosphorylated adenosine monophosphate- (AMP-) activated protein kinase (AMPK) and stimulated autophagy, but these effects were abolished by inhibiting AMPK and Beclin1 using an inhibitor or siRNA. Conclusions. Resveratrol combined with BMP9 significantly improves the osteogenic induction of C3H10T1/2 cells by activating AMPK and autophagy.
Collapse
|
26
|
Hu W, Yang C, Guo X, Wu Y, Loh XJ, Li Z, Wu YL, Wu C. Research Advances of Injectable Functional Hydrogel Materials in the Treatment of Myocardial Infarction. Gels 2022; 8:423. [PMID: 35877508 PMCID: PMC9316750 DOI: 10.3390/gels8070423] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 12/10/2022] Open
Abstract
Myocardial infarction (MI) has become one of the serious diseases threatening human life and health. However, traditional treatment methods for MI have some limitations, such as irreversible myocardial necrosis and cardiac dysfunction. Fortunately, recent endeavors have shown that hydrogel materials can effectively prevent negative remodeling of the heart and improve the heart function and long-term prognosis of patients with MI due to their good biocompatibility, mechanical properties, and electrical conductivity. Therefore, this review aims to summarize the research progress of injectable hydrogel in the treatment of MI in recent years and to introduce the rational design of injectable hydrogels in myocardial repair. Finally, the potential challenges and perspectives of injectable hydrogel in this field will be discussed, in order to provide theoretical guidance for the development of new and effective treatment strategies for MI.
Collapse
Affiliation(s)
- Wei Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Cui Yang
- School of Medicine, Xiamen University, Xiamen 361003, China;
| | - Xiaodan Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Yihong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore;
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore;
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE) Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| |
Collapse
|
27
|
Zhang Y, Yuan B, Xu Y, Zhou N, Zhang R, Lu L, Feng Z. MiR-208b/miR-21 Promotes the Progression of Cardiac Fibrosis Through the Activation of the TGF-β1/Smad-3 Signaling Pathway: An in vitro and in vivo Study. Front Cardiovasc Med 2022; 9:924629. [PMID: 35865391 PMCID: PMC9294285 DOI: 10.3389/fcvm.2022.924629] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background Regulatory molecule microRNAs (miRNAs) have been implicated in myocardial fibrosis. However, the specific mechanism by which they lead to myocardial fibrosis remains unclear. This study aimed to explore the roles of miR-208b, miR-21 and transforming growth factor-β1 (TGF-β1)/Smad-3 signaling pathway components in cardiac fibrosis development. Materials and Methods Thirty-six consecutive acute myocardial infarction (AMI) patients were included in this study. Plasma was collected on admission and at 24 h, 48 h and 6 d. The levels of plasma miR-208b, miR-21, TGF-β1, and Smad-3 were measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and cardiac calcium protein T (cTnT) and creatine kinase isoenzyme (CK-MB) were detected by electrochemiluminescence analysis. H9C2 cells were exposed to hypoxia and divided into 4 groups (hypoxia treatment for 6 h, 24 h, 48 h, and 72 h). These stimulated cells were then transfected with miRNA inhibitors and mimics for gene overexpression and inhibition. RT-qPCR was used to detect the expression of miR-208b, miR-21, TGF-β1, and Smad-3, and western blot analysis was used to detect TGF-β1 and Smad-3 protein expression. Results The plasma analysis showed cTnT and CK-MB expression peaked at 24 h after symptom onset; miR-208b, miR-21, TGF-β1, and Smad-3 levels showed no peak and increased gradually with time. Cell experiments revealed that miR-208b and TGF-β1 were upregulated along with increased hypoxia exposure; miR-21 expression peaked at 24 h and 72 h, with the highest peak at 72 h, and Smad-3 expression peaked at 6 h and 72 h, with the highest peak at 72 h. miR-208b and miR-21 expressions were positively correlated with TGF-β/Smad-3 expression. TGF-β1/Smad-3 mRNA and protein levels were elevated in the miR-208b and miR-21 overexpression groups and reduced in the miR-208b and miR-21 inhibition groups. Conclusion MiR-208b and miR-21 promote cardiac fibrosis progression through TGF-β1/Smad-3 signaling pathway activation.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Cardiology, Ninth Hospital of Xi’an, Xi’an, China
| | - Bo Yuan
- Department of Cardiology, Ninth Hospital of Xi’an, Xi’an, China
| | - Yue Xu
- Stroke Centre and Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Na Zhou
- Department of Cardiology, Ninth Hospital of Xi’an, Xi’an, China
| | - Ruiqi Zhang
- Department of Cardiology, Ninth Hospital of Xi’an, Xi’an, China
| | - Lan Lu
- Department of Cardiology, Ninth Hospital of Xi’an, Xi’an, China
| | - Zhanbin Feng
- Department of Cardiology, Ninth Hospital of Xi’an, Xi’an, China
| |
Collapse
|
28
|
Martínez-Salgado C, Sánchez-Juanes F, López-Hernández FJ, Muñoz-Félix JM. Endothelial Activin Receptor-Like Kinase 1 (ALK1) Regulates Myofibroblast Emergence and Peritubular Capillary Stability in the Early Stages of Kidney Fibrosis. Front Pharmacol 2022; 13:843732. [PMID: 35770075 PMCID: PMC9234496 DOI: 10.3389/fphar.2022.843732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Renal tubulo-interstitial fibrosis is characterized by the excessive accumulation of extracellular matrix (ECM) in the tubular interstitium during chronic kidney disease. The main source of ECM proteins are emerging and proliferating myofibroblasts. The sources of myofibroblasts in the renal tubular interstitium have been studied during decades, in which the epithelial contribution of the myofibroblast population through the epithelial-to-mesenchymal (EMT) process was assumed to be the major mechanism. However, it is now accepted that the EMT contribution is very limited and other mechanisms such as the proliferation of local resident fibroblasts or the transdifferentiation of endothelial cells seem to be more relevant. Activin receptor-like kinase 1 (ALK1) is a type I receptor which belongs to the transforming growth factor beta (TGF-β) superfamily, with a key role in tissue fibrosis and production of ECM by myofibroblast. Predominantly expressed in endothelial cells, ALK1 also plays an important role in angiogenesis and vessel maturation, but the relation of these processes with kidney fibrosis is not fully understood. We show that after 3 days of unilateral ureteral obstruction (UUO), ALK1 heterozygous mice (Alk1+/−) display lower levels of kidney fibrosis associated to a lower number of myofibroblasts. Moreover, Alk1+/− mice have a lower degree of vascular rarefaction, showing improved peritubular microvasculature after UUO. All these data suggest an important role of ALK1 in regulating vascular rarefaction and emergence of myofibroblasts.
Collapse
Affiliation(s)
- Carlos Martínez-Salgado
- Department of Physiology and Pharmacology, Translational Research on Renal and Cardiovascular Diseases (TRECARD)-REDINREN (ISCIII), University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- *Correspondence: Carlos Martínez-Salgado, ; José M. Muñoz-Félix,
| | - Fernando Sánchez-Juanes
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain
| | - Francisco J. López-Hernández
- Department of Physiology and Pharmacology, Translational Research on Renal and Cardiovascular Diseases (TRECARD)-REDINREN (ISCIII), University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - José M. Muñoz-Félix
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain
- *Correspondence: Carlos Martínez-Salgado, ; José M. Muñoz-Félix,
| |
Collapse
|
29
|
Luo W, Liang P, Zhao T, Cheng Q, Liu H, He L, Zhang L, Huang B, Zhang Y, He T, Yang D. Reversely immortalized mouse salivary gland cells presented a promising metabolic and fibrotic response upon BMP9/Gdf2 stimulation. Cell Mol Biol Lett 2022; 27:46. [PMID: 35690719 PMCID: PMC9188258 DOI: 10.1186/s11658-022-00333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/19/2022] [Indexed: 11/10/2022] Open
Abstract
The submandibular gland (SMG) and the sublingual gland (SLG) are two of the three major salivary glands in mammals. In mice, they are adjacent to each other and open into the oral cavity, producing saliva to lubricate the mouth and aid in food digestion. Though salivary gland dysfunction accompanied with fibrosis and metabolic disturbance is common in clinic, in-depth mechanistic research is lacking. Currently, research on how to rescue salivary function is challenging, as it must resort to using terminally differentiated acinar cells or precursor acinar cells with unknown differentiation. In this study, we established reversely immortalized mouse primary SMG cells (iSMGCs) and SLG cells (iSLGCs) on the first postnatal day (P0). The iSMGCs and iSLGCs grew well, exhibited many salivary gland characteristics, and retained the metabolism-related genes derived from the original tissue as demonstrated using transcriptome sequencing (RNA-seq) analysis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of these two cell lines, which overlapped with those of the SMG and SLG, were enriched in cysteine and methionine metabolism. Furthermore, we investigated the role of bone morphogenetic protein 9 (BMP9), also known as growth differentiation factor 2(Gdf2), on metabolic and fibrotic functions in the SMG and SLG. We demonstrated that iSMGCs and iSLGCs presented promising adipogenic and fibrotic responses upon BMP9/Gdf2 stimulation. Thus, our findings indicate that iSMGCs and iSLGCs faithfully reproduce characteristics of SMG and SLG cells and present a promising prospect for use in future study of salivary gland metabolism and fibrosis upon BMP9/Gdf2 stimulation.
Collapse
Affiliation(s)
- Wenping Luo
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China.,Department of Surgery, Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue MC6035, Chicago, IL, 60637, USA
| | - Panpan Liang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China.,Stomatological Hospital of Chongqing Medical University, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Tianyu Zhao
- Stomatological Hospital of Chongqing Medical University, 426 Songshi North Road, Yubei District, Chongqing, 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Qianyu Cheng
- Stomatological Hospital of Chongqing Medical University, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Huikai Liu
- Stomatological Hospital of Chongqing Medical University, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Liwen He
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China.,Department of Surgery, Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue MC6035, Chicago, IL, 60637, USA
| | - Linghuan Zhang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No.1 Min De Road, Nanchang, 330006, China
| | - Yuxin Zhang
- Stomatological Hospital of Chongqing Medical University, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Tongchuan He
- Department of Surgery, Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue MC6035, Chicago, IL, 60637, USA
| | - Deqin Yang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China. .,Stomatological Hospital of Chongqing Medical University, 426 Songshi North Road, Yubei District, Chongqing, 401147, China.
| |
Collapse
|
30
|
Smad-dependent pathways in the infarcted and failing heart. Curr Opin Pharmacol 2022; 64:102207. [DOI: 10.1016/j.coph.2022.102207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 02/08/2023]
|
31
|
Liu X, Zhou J, Zhang B, Liu G, Hu Q, Chen J. Lysine demethylase 3A is a positive regulator of cardiac myofibroblast transdifferentiation that increases Smad3 phosphorylation following transforming growth factor beta1 stimulation. Mol Biol Rep 2022; 49:3177-3185. [PMID: 35113304 DOI: 10.1007/s11033-022-07150-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The epigenetic modifier molecule lysine demethylase 3A (KDM3A) has been shown to help ameliorate cardiovascular diseases, but its effect on cardiac fibroblasts (CFs) remains unclear. METHODS AND RESULTS We designed gain- and loss-of-function experiments to investigate the biological functions of KDM3A in CFs. Moreover, we used SIS3-HCl (a specific inhibitor of p-Smad3) to explore the underlying mechanism. Cell viability and migration were verified by CCK-8 and cell migration experiments, respectively, and the degree of fibrosis was measured by Western blot analysis. Our data revealed that KDM3A enhanced the proliferation and migration of CFs and increased the fibroblast-to-myofibroblast transition while enabling the Smad3 phosphorylation response to transforming growth factor beta1 (TGFβ1) stimulation. However, these effects were abolished by SIS3-HCl. Furthermore, KDM3A inhibition obviously protected against cardiac myofibroblast transdifferentiation under TGFβ1 stimulation. CONCLUSIONS KDM3A may act as a novel regulator of cardiac myofibroblast transdifferentiation through its ability to modulate the phosphorylation of Smad3 following TGFβ1 stimulation.
Collapse
Affiliation(s)
- Xiaopei Liu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, 430000, Hubei, People's Republic of China
| | - Jining Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, 430000, Hubei, People's Republic of China
| | - Bofang Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, 430000, Hubei, People's Republic of China
| | - Gen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, 430000, Hubei, People's Republic of China
| | - Qi Hu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, 430000, Hubei, People's Republic of China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, 430000, Hubei, People's Republic of China.
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The pathological remodeling of cardiac tissue after injury or disease leads to scar formation. Our knowledge of the role of nonmyocytes, especially fibroblasts, in cardiac injury and repair continues to increase with technological advances in both experimental and clinical studies. Here, we aim to elaborate on cardiac fibroblasts by describing their origins, dynamic cellular states after injury, and heterogeneity in order to understand their role in cardiac injury and repair. RECENT FINDINGS With the improvement in genetic lineage tracing technologies and the capability to profile gene expression at the single-cell level, we are beginning to learn that manipulating a specific population of fibroblasts could mitigate severe cardiac fibrosis and promote cardiac repair after injury. Cardiac fibroblasts play an indispensable role in tissue homeostasis and in repair after injury. Activated fibroblasts or myofibroblasts have time-dependent impacts on cardiac fibrosis. Multiple signaling pathways are involved in modulating fibroblast states, resulting in the alteration of fibrosis. Modulating a specific population of cardiac fibroblasts may provide new opportunities for identifying novel treatment options for cardiac fibrosis.
Collapse
Affiliation(s)
- Maoying Han
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China. .,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
33
|
Ge Z, Yin C, Li Y, Tian D, Xiang Y, Li Q, Tang Y, Zhang Y. Long noncoding RNA NEAT1 promotes cardiac fibrosis in heart failure through increased recruitment of EZH2 to the Smad7 promoter region. J Transl Med 2022; 20:7. [PMID: 34980170 PMCID: PMC8722118 DOI: 10.1186/s12967-021-03211-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/19/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiac fibrosis, a well-known major pathological process that ultimately leads to heart failure, has attracted increasing attention and focus in recent years. A large amount of research indicates that long noncoding RNAs (lncRNAs) play an important role in cardiac fibrosis, but little is known about the specific function and mechanism of the lncRNA NEAT1 in the progression of cardiac fibrosis to heart failure. In the present study, we have demonstrated that the lncRNA NEAT1 is upregulated in patients with heart failure. Similarly, the expression of Neat1 was also increased in the left ventricular tissue of transverse aortic constriction (TAC) surgery mice and cardiac fibroblasts treated with TGF-β1. Further, gain-of-function and loss-of-function experiments showed that silencing of Neat1 attenuated cardiac fibrosis, while overexpression of Neat1 with adenovirus significantly aggravated the in vitro progression of fibrosis. With regard to the underlying mechanism, our experiments showed that Neat1 recruited EZH2 to the promoter region of Smad7 through physical binding of EZH2 to the promoter region, as a result of which Smad7 expression was inhibited and the progression of cardiac fibrosis was ultimately exacerbated. We found that the introduction of shNeat1 carried by adeno-associated virus-9 significantly ameliorated cardiac fibrosis and dysfunction caused by TAC surgery in mice. Overall, our study findings demonstrate that the lncRNA Neat1 accelerates the progression of cardiac fibrosis and dysfunction by recruiting EZH2 to suppress Smad7 expression. Thus, NEAT1 may serve as a target for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Zhuowang Ge
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Chengye Yin
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yingze Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Ding Tian
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yin Xiang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qianhui Li
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yong Tang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yachen Zhang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
34
|
Yin P, Li D, Zhao Q, Cai M, Wu Z, Shi Y, Su L. Gsα deficiency facilitates cardiac remodeling via CREB/ Bmp10-mediated signaling. Cell Death Discov 2021; 7:391. [PMID: 34907172 PMCID: PMC8671484 DOI: 10.1038/s41420-021-00788-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/23/2021] [Accepted: 12/03/2021] [Indexed: 02/05/2023] Open
Abstract
The stimulatory G-protein alpha subunit (Gsα), a ubiquitously expressed protein, mediates G-protein receptor-stimulated signal transduction. To investigate the functions of Gsα in cardiomyocytes. We developed transverse aortic constriction (TAC)-induced heart failure mouse models and tamoxifen-inducible transgenic mice with cardiac-specific Gsα disruption. We detected alterations in Gsα expression in TAC-induced heart failure mice. Moreover, we examined cardiac function and structure in mice with genetic Gsα deletion and investigated the underlying molecular mechanisms of Gsα function. We found that Gsα expression increased during the compensated cardiac hypertrophy period and decreased during the heart failure period. Moreover, cardiac-specific Gsα disruption deteriorated cardiac function and induced severe cardiac remodeling. Mechanistically, Gsα disruption decreased CREB1 expression and inhibited the Bmp10-mediated signaling pathway. In addition, we found that Gsα regulates Bmp10 expression through the binding of CREB1 to the Bmp10 promoter. Our results suggest that fluctuations in Gsα levels may play a vital role in the development of heart failure and that loss of Gsα function facilitates cardiac remodeling.
Collapse
Affiliation(s)
- Ping Yin
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Dan Li
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qi Zhao
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Mingming Cai
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhenru Wu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yujun Shi
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Li Su
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
35
|
Kobayashi M, Ferreira MB, Costa RQ, Fonseca T, Oliveira JC, Marinho A, Carvalho HC, Girerd N, Rossignol P, Zannad F, Rodrigues P, Ferreira JP. Circulating Biomarkers and Cardiac Structure and Function in Rheumatoid Arthritis. Front Cardiovasc Med 2021; 8:754784. [PMID: 34869664 PMCID: PMC8636810 DOI: 10.3389/fcvm.2021.754784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Rheumatoid arthritis (RA) increases the risk for abnormalities of the cardiac structure and function, which may lead to heart failure (HF). Studying the association between circulating biomarkers and echocardiographic parameters is important to screen patients with RA with a higher risk of cardiac dysfunction. Aim: To study the association between circulating biomarkers and echocardiographic parameters in patients with RA. Methods: Echocardiography was performed in 355 patients with RA from RA Porto cohort and the associations between echocardiographic characteristics and 94 circulating biomarkers were assessed. These associations were also assessed in the Metabolic Road to Diastolic Heart Failure (MEDIA-DHF) [392 patients with HF with preserved ejection fraction (HFpEF)] and the Suivi Temporaire Annuel Non-Invasif de la Santé des Lorrains Assurés Sociaux (STANISLAS) (1,672 healthy population) cohorts. Results: In the RA Porto cohort, mean age was 58 ± 13 years, 23% were males and mean RA duration was 12 ± 10 years. After adjustment and multiple testing correction, left ventricular mass index (LVMi), left atrial volume index (LAVi), and E/e′ were independently associated with biomarkers reflecting inflammation [i.e., bone morphogenetic protein 9 (BMP9), pentraxin-related protein 3 (PTX3), tumor necrosis factor receptor superfamily member 11a (TNFRSF11A)], extracellular matrix remodeling [i.e., placental growth factor (PGF)], congestion [i.e., N-terminal pro-brain natriuretic peptide (NT-proBNP), adrenomedullin (ADM)], and myocardial injury (e.g., troponin). Greater LVMi [hazard ratio (HR) (95% CI) per 1 g/m2 = 1.03 (1.02–1.04), p < 0.001], LAVi [HR (95% CI) per 1 ml/m2 = 1.03 (1.01–1.06), p < 0.001], and E/e′ [HR (95% CI) per 1 = 1.08 (1.04–1.13), p < 0.001] were associated with higher rates of cardiovascular events. These associations were externally replicated in patients with HFpEF and asymptomatic individuals. Conclusion: Circulating biomarkers reflecting inflammation, extracellular matrix remodeling, congestion, and myocardial injury were associated with underlying alterations of cardiac structure and function. Biomarkers might be used for the screening of cardiac alterations in patients with RA.
Collapse
Affiliation(s)
- Masatake Kobayashi
- Université de Lorraine, INSERM, Centre d'Investigations Cliniques Plurithématique 1433, INSERM U1116, CHRU de Nancy and F-CRIN INI-CRCT, Nancy, France
| | - Maria Betânia Ferreira
- Unit of Multidisciplinary Research in Biomedicine, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,Hospital da Luz Arrábida, Porto, Portugal
| | - Rita Quelhas Costa
- Internal Medicine Department, Centro Hospitalar de Entre o Douro e Vouga, Aveiro, Portugal
| | - Tomás Fonseca
- Internal Medicine Department, Centro Hospitalar Universitário Do Porto, Porto, Portugal
| | - José Carlos Oliveira
- Clinical Chemistry Service, Centro Hospitalar Universitário Do Porto, Porto, Portugal
| | - António Marinho
- Instituto de Ciências Biomédicas Abel Salazar, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,Internal Medicine Department, Centro Hospitalar Universitário Do Porto, Porto, Portugal
| | - Henrique Cyrne Carvalho
- Unit of Multidisciplinary Research in Biomedicine, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,Cardiology Department, Centro Hospitalar Universitário Do Porto, Porto, Portugal
| | - Nicolas Girerd
- Université de Lorraine, INSERM, Centre d'Investigations Cliniques Plurithématique 1433, INSERM U1116, CHRU de Nancy and F-CRIN INI-CRCT, Nancy, France
| | - Patrick Rossignol
- Université de Lorraine, INSERM, Centre d'Investigations Cliniques Plurithématique 1433, INSERM U1116, CHRU de Nancy and F-CRIN INI-CRCT, Nancy, France
| | - Faiez Zannad
- Université de Lorraine, INSERM, Centre d'Investigations Cliniques Plurithématique 1433, INSERM U1116, CHRU de Nancy and F-CRIN INI-CRCT, Nancy, France
| | - Patrícia Rodrigues
- Unit of Multidisciplinary Research in Biomedicine, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,Cardiology Department, Centro Hospitalar Universitário Do Porto, Porto, Portugal
| | - João Pedro Ferreira
- Université de Lorraine, INSERM, Centre d'Investigations Cliniques Plurithématique 1433, INSERM U1116, CHRU de Nancy and F-CRIN INI-CRCT, Nancy, France.,Department of Surgery and Physiology, Cardiovascular Research and Development Center, Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
36
|
Zeng N, Huang YQ, Yan YM, Hu ZQ, Zhang Z, Feng JX, Guo JS, Zhu JN, Fu YH, Wang XP, Zhang MZ, Duan JZ, Zheng XL, Xu JD, Shan ZX. Diverging targets mediate the pathological roleof miR-199a-5p and miR-199a-3p by promoting cardiac hypertrophy and fibrosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1035-1050. [PMID: 34786209 PMCID: PMC8571541 DOI: 10.1016/j.omtn.2021.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/03/2021] [Accepted: 10/08/2021] [Indexed: 01/29/2023]
Abstract
MicroRNA-199a-5p (miR-199a-5p) and -3p are enriched in the myocardium, but it is unknown whether miR-199a-5p and -3p are co-expressed in cardiac remodeling and what roles they have in cardiac hypertrophy and fibrosis. We show that miR-199a-5p and -3p are co-upregulated in the mouse and human myocardium with cardiac remodeling and in Ang-II-treated neonatal mouse ventricular cardiomyocytes (NMVCs) and cardiac fibroblasts (CFs). miR-199a-5p and -3p could aggravate cardiac hypertrophy and fibrosis in vivo and in vitro. PPAR gamma coactivator 1 alpha (Ppargc1a) and sirtuin 1 (Sirt1) were identified as target genes to mediate miR-199a-5p in promoting both cardiac hypertrophy and fibrosis. However, miR-199a-3p aggravated cardiac hypertrophy and fibrosis through targeting RB transcriptional corepressor 1 (Rb1) and Smad1, respectively. Serum response factor and nuclear factor κB p65 participated in the upregulation of miR-199a-5p and -3p in Ang-II-treated NMVCs and mouse CFs, and could be conversely elevated by miR-199a-5p and -3p. Together, Ppargc1a and Sirt1, Rb1 and Smad1 mediated the pathological effect of miR-199a-5p and -3p by promoting cardiac hypertrophy and fibrosis, respectively. This study suggests a possible new strategy for cardiac remodeling therapy by inhibiting miR-199a-5p and -3p.
Collapse
Affiliation(s)
- Ni Zeng
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Yu-Qing Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510632, China
| | - Yu-Min Yan
- School of Pharmacy, Southern Medical University, Guangzhou 510515, China
| | - Zhi-Qin Hu
- School of Pharmacy, Southern Medical University, Guangzhou 510515, China
| | - Zhuo Zhang
- School of Medicine, South China University of Technology, Guangzhou 510632, China
| | - Jia-Xin Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510632, China
| | - Ji-Shen Guo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Jie-Ning Zhu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Yong-Heng Fu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Xi-Pei Wang
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Meng-Zhen Zhang
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Jin-Zhu Duan
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xi-Long Zheng
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Jin-Dong Xu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Zhi-Xin Shan
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| |
Collapse
|
37
|
Farhan A, Yuan F, Partan E, Weiss CR. Clinical manifestations of patients with GDF2 mutations associated with hereditary hemorrhagic telangiectasia type 5. Am J Med Genet A 2021; 188:199-209. [PMID: 34611981 DOI: 10.1002/ajmg.a.62522] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/05/2021] [Accepted: 09/11/2021] [Indexed: 12/29/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant fibrovascular dysplasia caused by mutations in ENG, ACVRL1, and SMAD4. Increasingly, there has been an appreciation for vascular conditions with phenotypic overlap to HHT but which have distinct clinical manifestations and arise from novel or uncharacterized gene variants. This study reported on a cohort of four unrelated probands who were diagnosed with a rare form of GDF2-related HHT5, for which only five prior cases have been described. Two patients harbored heterozygous missense variants not previously annotated as pathogenic (p.Val403Ile; p.Glu355Gln). Clinically, these patients had features resembling HHT1, including cerebrovascular involvement of their disease (first report documenting cerebral involvement of HHT5), but with earlier onset of epistaxis and a unique anatomic distribution of dermal capillary lesions that involved the upper forelimbs, trunk, and head. The other two patients harbored interstitial deletions larger than five megabases between 10q11.22 and 10q11.23 that included GDF2. To our knowledge, this is the first report detailing large genomic deletions leading to HHT5. These patients also demonstrated mucocutaneous capillary dysplasias, including intranasal vascular lesions complicated by childhood-onset epistasis, with a number of extravascular findings related to their 10q11.21q11.23 deletion. In conclusion, patients with GDF2-related HHT may present with a number of unique characteristics that differ from classically reported features of HHT.
Collapse
Affiliation(s)
- Ahmed Farhan
- Division of Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Frank Yuan
- Division of Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth Partan
- McKusick-Nathans Institute of Genetic Medicine, Department of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Clifford R Weiss
- Division of Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
38
|
Liang Y, Xu Y, Ding L, Chen X, Li H. Urotensin II Induces Cardiac Fibrosis through the TGF-β/Smad Signaling Pathway during the Development of Cardiac Hypertrophy. Int Heart J 2021; 62:1135-1144. [PMID: 34588407 DOI: 10.1536/ihj.21-032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Myocardial fibrosis is an important pathological phenomenon of cardiac remodeling that is induced by hypertension, myocardial ischemia, valvular heart disease, hypertrophic cardiomyopathy, and other heart diseases and can progress to heart failure. Urotensin II (UII) is regarded as a cardiovascular autacoid/hormone that is not only the most potent vasoconstrictor in mammals but also involved in cardiac remodeling. However, the molecular mechanisms responsible for UII-induced cardiac fibrosis have not yet been fully elucidated. Therefore, we aimed to investigate the effect of UII on myocardial fibrosis in cardiac hypertrophy and the mechanism of UII-induced cardiac fibrosis. Cardiac tissue from mice subjected to Transverse aortic constriction (TAC) was collected. Cardiac hypertrophy, myocardial fibrosis, and the expression of UII protein were assessed using echocardiography and pathological and molecular biological analyses. The effect of UII on fibrosis was evaluated in UII-treated mice and isolated rat primary cardiac fibroblasts, and the results indicated that UII induced significant myocardial fibrosis and increases in the proliferation and fibrotic responses both in mice and cultured fibroblasts. Mechanistically, UII treatment induced activation of the TGF-β/Smad signaling pathway, which was suppressed by the UII receptor antagonist. In conclusion, UII plays critical roles in cardiac fibrosis by modulating the TGF-β/Smads signaling pathway, which may be a promising therapeutic target in hypertrophic cardiomyopathy and related problems, such as cardiac remodeling and heart failure.
Collapse
Affiliation(s)
- Yanyan Liang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Yifeng Xu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Lin Ding
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Xiaoqing Chen
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Hongli Li
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University
| |
Collapse
|
39
|
BMP-9 downregulates StAR expression and progesterone production by activating both SMAD1/5/8 and SMAD2/3 signaling pathways in human granulosa-lutein cells obtained from gonadotropins induced ovarian cycles. Cell Signal 2021; 86:110089. [PMID: 34265413 DOI: 10.1016/j.cellsig.2021.110089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/10/2021] [Accepted: 07/10/2021] [Indexed: 12/22/2022]
Abstract
Bone morphogenetic proteins (BMPs) are expressed in different cell types of the human ovarian follicle and play important roles in the regulation of ovarian function. BMP-9, also known as growth differentiation factor-2 (GDF-2), belongs to the transforming growth factor-beta (TGF-β) superfamily. BMP-9 is mainly synthesized in the liver and secreted into the blood which allows it to regulate various physiological and pathological functions. To date, the expression of BMP-9 in the human ovary and its function in human granulosa cells remains unknown. In the present study, we detect the protein expression of BMP-9 in the human follicular fluid. Using the primary culture of human granulosa-lutein (hGL) cells obtained from patients undergoing in vitro fertilization as a cell model, we show that treatment with BMP-9 downregulates steroidogenic acute regulatory protein (StAR) expression and suppresses progesterone (P4) production. The expression levels of the P450 side-chain cleavage enzyme (P450scc) and 3β-hydroxysteroid dehydrogenase (3β-HSD) are not affected by BMP-9 treatment. Mechanistically, treatment of hGL cells with BMP-9 activates both SMAD1/5/8 and SMAD2/3 signaling pathways. Blocking the activations of SMAD1/5/8 and SMAD2/3 by pharmacological inhibitors or knockdown of SMAD4 attenuates the inhibitory effects of BMP-9 on StAR expression and P4 production. This study reveals a novel function of BMP-9 in the regulation of ovarian steroidogenesis.
Collapse
|
40
|
Desroches-Castan A, Tillet E, Bouvard C, Bailly S. BMP9 and BMP10: two close vascular quiescence partners that stand out. Dev Dyn 2021; 251:178-197. [PMID: 34240497 DOI: 10.1002/dvdy.395] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are dimeric transforming growth factor ß (TGFß) family cytokines that were first described in bone and cartilage formation but have since been shown to be involved in many pleiotropic functions. In human, there are 15 BMP ligands, which initiate their cellular signaling by forming a complex with two copies of type I receptors and two copies of type II receptors, both of which are transmembrane receptors with an intracellular serine/threonine kinase domain. Within this receptor family, ALK1 (Activin receptor-Like Kinase 1), which is a type I receptor mainly expressed on endothelial cells, and BMPRII (BMP Receptor type II), a type II receptor also highly expressed on endothelial cells, have been directly linked to two rare vascular diseases: hereditary haemorrhagic telangiectasia (HHT), and pulmonary arterial hypertension (PAH), respectively. BMP9 (gene name GDF2) and BMP10, two close members of the BMP family, are the only known ligands for the ALK1 receptor. This specificity gives them a unique role in physiological and pathological angiogenesis and tissue homeostasis. The aim of this current review is to present an overview of what is known about BMP9 and BMP10 on vascular regulation with a particular emphasis on recent results and the many questions that remain unanswered regarding the roles and specificities between BMP9 and BMP10. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Emmanuelle Tillet
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| | - Claire Bouvard
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| | - Sabine Bailly
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| |
Collapse
|
41
|
Wang Y, Wang M, Samuel CS, Widdop RE. Preclinical rodent models of cardiac fibrosis. Br J Pharmacol 2021; 179:882-899. [PMID: 33973236 DOI: 10.1111/bph.15450] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/30/2022] Open
Abstract
Cardiac fibrosis (scarring), characterised by an increased deposition of extracellular matrix (ECM) proteins, is a hallmark of most types of cardiovascular disease and plays an essential role in heart failure progression. Inhibition of cardiac fibrosis could improve outcomes in patients with cardiovascular diseases and particularly heart failure. However, pharmacological treatment of the ECM build-up is still lacking. In this context, preclinical models of heart disease are important tools for understanding the complex pathogenesis involved in the development of cardiac fibrosis which in turn could identify new therapeutic targets and the facilitation of antifibrotic drug discovery. Many preclinical models have been used to study cardiac fibrosis and each model provides mechanistic insights into the many factors that contribute to cardiac fibrosis. This review discusses the most frequently used rodent models of cardiac fibrosis and also provides context for the use of particular models of heart failure.
Collapse
Affiliation(s)
- Yan Wang
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
42
|
Wang Y, Sima X, Ying Y, Huang Y. Exogenous BMP9 promotes lung fibroblast HFL-1 cell activation via ALK1/Smad1/5 signaling in vitro. Exp Ther Med 2021; 22:728. [PMID: 34007337 PMCID: PMC8120641 DOI: 10.3892/etm.2021.10160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenetic protein 9 (BMP9) has recently been described as a crucial regulator in modulating fibroblast-type cell activation. Activin receptor-like kinase 1 (ALK1) is a high affinity receptor for BMP9 that exerts its role via Smad1/5. However, the functional roles of BMP9 in activating lung fibroblasts and the underlying signaling pathway are not completely understood. The present study aimed to explore the effect of exogenous BMP9 on human lung fibroblast HFL-1 cell proliferation and differentiation, as well as the potential role of the ALK1/Smad1/5 signaling pathway. In the present study, fibroblast proliferation was assessed using Cell Counting Kit-8 and colony formation assays, and the mRNA and protein expression of target genes was examined using reverse transcription-quantitative PCR and western blot assays, respectively. Compared with the control group, BMP9 treatment increased HFL-1 cell proliferation, mRNA and protein expression of differentiated markers, including α-smooth muscle actin, type I collagen and type III collagen, and the expression of ALK1 and phosphorylated Smad1/5 expression. Furthermore, the effects of BMP9 were partially rescued by dorsomorphin-1, an inhibitor of ALK1. The results indicated that BMP9 may serve as a key inducer of lung fibroblast activation and ALK1/Smad1/5 signaling might be associated with BMP9-mediated effects in HFL-1 cells. Therefore, the present study highlighted that the potential role of the BMP9/ALK1/Smad1/5 signaling pathway in the development of pulmonary fibrosis requires further investigation.
Collapse
Affiliation(s)
- Yaqun Wang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Graduate College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaonan Sima
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Ying Ying
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yonghong Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
43
|
Assembly of the Cardiac Pacemaking Complex: Electrogenic Principles of Sinoatrial Node Morphogenesis. J Cardiovasc Dev Dis 2021; 8:jcdd8040040. [PMID: 33917972 PMCID: PMC8068396 DOI: 10.3390/jcdd8040040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 11/24/2022] Open
Abstract
Cardiac pacemaker cells located in the sinoatrial node initiate the electrical impulses that drive rhythmic contraction of the heart. The sinoatrial node accounts for only a small proportion of the total mass of the heart yet must produce a stimulus of sufficient strength to stimulate the entire volume of downstream cardiac tissue. This requires balancing a delicate set of electrical interactions both within the sinoatrial node and with the downstream working myocardium. Understanding the fundamental features of these interactions is critical for defining vulnerabilities that arise in human arrhythmic disease and may provide insight towards the design and implementation of the next generation of potential cellular-based cardiac therapeutics. Here, we discuss physiological conditions that influence electrical impulse generation and propagation in the sinoatrial node and describe developmental events that construct the tissue-level architecture that appears necessary for sinoatrial node function.
Collapse
|
44
|
Wu HH, Meng TT, Chen JM, Meng FL, Wang SY, Liu RH, Chen JN, Ning B, Li Y, Su GH. Asenapine maleate inhibits angiotensin II-induced proliferation and activation of cardiac fibroblasts via the ROS/TGFβ1/MAPK signaling pathway. Biochem Biophys Res Commun 2021; 553:172-179. [PMID: 33773140 DOI: 10.1016/j.bbrc.2021.03.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cardiac fibrosis will increase wall stiffness and diastolic dysfunction, which will eventually lead to heart failure. Asenapine maleate (AM) is widely used in the treatment of schizophrenia. In the current study, we explored the potential mechanism underlying the role of AM in angiotensin II (Ang II)-induced cardiac fibrosis. METHODS Cardiac fibroblasts (CFs) were stimulated using Ang II with or without AM. Cell proliferation was measured using the cell counting kit-8 assay and the Cell-Light EdU Apollo567 In Vitro Kit. The expression levels of proliferating cell nuclear antigen (PCNA) and α-smooth muscle actin (α-SMA) were detected using immunofluorescence or western blotting. At the protein level, the expression levels of the components of the transforming growth factor beta 1 (TGFβ1)/mitogen-activated protein kinase (MAPK) signaling pathway were also detected. RESULTS After Ang II stimulation, TGFβ1, TGFβ1 receptor, α-SMA, fibronectin (Fn), collagen type I (Col1), and collagen type III (Col3) mRNA levels increased; the TGFβ1/MAPK signaling pathway was activated in CFs. After AM pretreatment, cell proliferation was inhibited, the numbers of PCNA -positive cells and the levels of cardiac fibrosis markers decreased. The activity of the TGFβ1/MAPK signaling pathway was also inhibited. Therefore, AM can inhibit cardiac fibrosis by blocking the Ang II-induced activation through TGFβ1/MAPK signaling pathway. CONCLUSIONS This is the first report to demonstrate that AM can inhibit Ang II-induced cardiac fibrosis by down-regulating the TGFβ1/MAPK signaling pathway. In this process, AM inhibited the proliferation and activation of CFs and reduced the levels of cardiac fibrosis markers. Thus, AM represents a potential treatment strategy for cardiac fibrosis.
Collapse
Affiliation(s)
- Hui-Hui Wu
- Research Center for Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting-Ting Meng
- Research Center for Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jia-Min Chen
- Research Center for Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan-Liang Meng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shu-Ya Wang
- Research Center for Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rong-Han Liu
- Research Center for Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jia-Nan Chen
- Research Center for Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bin Ning
- Research Center for Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying Li
- Research Center for Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guo-Hai Su
- Research Center for Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
45
|
Zhu JX, Ling W, Xue C, Zhou Z, Zhang YS, Yan C, Wu MP. Higenamine attenuates cardiac fibroblast abstract and fibrosis via inhibition of TGF-β1/Smad signaling. Eur J Pharmacol 2021; 900:174013. [PMID: 33766620 DOI: 10.1016/j.ejphar.2021.174013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/21/2021] [Accepted: 02/28/2021] [Indexed: 11/25/2022]
Abstract
RATIONALE Higenamine (HG), is one of the main active components in many widely used Chinese herbs, and a common ingredient of health products in Europe and North America. Several groups, including our own, have previously shown the beneficial effects of HG against cardiomyocyte death during acute ischemic damage. However, the effect of HG on chronic cardiac remodeling, such as cardiac fibrosis, remains unknown. OBJECTIVE Herein, we aim to investigate the role of HG in cardiac fibrosis in vivo as well as its cellular and molecular mechanisms. METHODS AND RESULTS Chronic pressure overload with transverse aortic constriction (TAC) significantly increased cardiac hypertrophy, fibrosis, and cardiac dysfunction in mice, which were significantly attenuated by HG. Consistently, cardiac fibrosis induced by the chronic infusion of isoproterenol (ISO), was also significantly reduced by HG. Interestingly, our results showed that HG had no effect on adult mouse CM hypertrophy in vitro. However, HG suppressed the activation of cardiac fibroblasts (CFs) in vitro. Furthermore, TGF-β1-induced expression of ACTA2, a marker of fibroblast activation, was significantly suppressed by HG. Concomitantly, HG inhibited TGF-β1-induced phosphorylation of Smad2/3 in CFs. HG also reduced the expression of extracellular matrix molecules such as collagen I and collagen III. To our surprise, the inhibitory effect of HG on CFs activation was independent of the activation of the beta2 adrenergic receptor (β2-AR) that is known to mediate the effect of HG on antagonizing CMs apoptosis. CONCLUSION Our findings suggest that HG ameliorates pathological cardiac fibrosis and dysfunction at least partially by suppressing TGF-β1/Smad signaling and CFs activation.
Collapse
Affiliation(s)
- Jin-Xing Zhu
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang RD, Shanghai, 200071, China; Department of Emergency Intensive Care Unit, Traditional Chinese Hospital of LuAn, Anhui University of Traditional Chinese Medicine, 76 Renmin RD, LuAn Anhui, 237001, China
| | - Wang Ling
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang RD, Shanghai, 200071, China
| | - Chao Xue
- Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave Box CVRI, Rochester, NY, 14642, United States
| | - Zhen Zhou
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang RD, Shanghai, 200071, China
| | - Yi-Shuai Zhang
- Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave Box CVRI, Rochester, NY, 14642, United States
| | - Chen Yan
- Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave Box CVRI, Rochester, NY, 14642, United States
| | - Mei-Ping Wu
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang RD, Shanghai, 200071, China; Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave Box CVRI, Rochester, NY, 14642, United States.
| |
Collapse
|
46
|
Wu Y, Chang T, Chen W, Wang X, Li J, Chen Y, Yu Y, Shen Z, Yu Q, Zhang Y. Release of VEGF and BMP9 from injectable alginate based composite hydrogel for treatment of myocardial infarction. Bioact Mater 2021; 6:520-528. [PMID: 32995677 PMCID: PMC7492819 DOI: 10.1016/j.bioactmat.2020.08.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/21/2020] [Accepted: 08/29/2020] [Indexed: 12/28/2022] Open
Abstract
Myocardial infarction (MI) is one of cardiovascular diseases that pose a serious threat to human health. The pathophysiology of MI is complex and contains several sequential phases including blockage of a coronary artery, necrosis of myocardial cells, inflammation, and myocardial fibrosis. Aiming at the treatment of different stages of MI, in this work, an injectable alginate based composite hydrogel is developed to load vascular endothelial active factor (VEGF) and silk fibroin (SF) microspheres containing bone morphogenetic protein 9 (BMP9) for releasing VEGF and BMP9 to realize their respective functions. The results of in vitro experiments indicate a rapid initial release of VEGF during the first few days and a relatively slow and sustained release of BMP9 for days, facilitating the formation of blood vessels in the early stage and inhibiting myocardial fibrosis in the long-term stage, respectively. Intramyocardial injection of such composite hydrogel into the infarct border zone of mice MI model via multiple points promotes angiogenesis and reduces the infarction size. Taken together, these results indicate that the dual-release of VEGF and BMP9 from the composite hydrogel results in a collaborative effect on the treatment of MI and improvement of heart function, showing a promising potential for cardiac clinical application.
Collapse
Affiliation(s)
- Yong Wu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| | - Tianqi Chang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| | - Weiqian Chen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| | - Xiaoyu Wang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| | - Jingjing Li
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| | - Yueqiu Chen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| | - You Yu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| | - Zhenya Shen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Yanxia Zhang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| |
Collapse
|
47
|
Bracco Gartner TCL, Stein JM, Muylaert DEP, Bouten CVC, Doevendans PA, Khademhosseini A, Suyker WJL, Sluijter JPG, Hjortnaes J. Advanced In Vitro Modeling to Study the Paradox of Mechanically Induced Cardiac Fibrosis. Tissue Eng Part C Methods 2021; 27:100-114. [PMID: 33407000 DOI: 10.1089/ten.tec.2020.0298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In heart failure, cardiac fibrosis is the result of an adverse remodeling process. Collagen is continuously synthesized in the myocardium in an ongoing attempt of the heart to repair itself. The resulting collagen depositions act counterproductively, causing diastolic dysfunction and disturbing electrical conduction. Efforts to treat cardiac fibrosis specifically have not been successful and the molecular etiology is only partially understood. The differentiation of quiescent cardiac fibroblasts to extracellular matrix-depositing myofibroblasts is a hallmark of cardiac fibrosis and a key aspect of the adverse remodeling process. This conversion is induced by a complex interplay of biochemical signals and mechanical stimuli. Tissue-engineered 3D models to study cardiac fibroblast behavior in vitro indicate that cyclic strain can activate a myofibroblast phenotype. This raises the question how fibroblast quiescence is maintained in the healthy myocardium, despite continuous stimulation of ultimately profibrotic mechanotransductive pathways. In this review, we will discuss the convergence of biochemical and mechanical differentiation signals of myofibroblasts, and hypothesize how these affect this paradoxical quiescence. Impact statement Mechanotransduction pathways of cardiac fibroblasts seem to ultimately be profibrotic in nature, but in healthy human myocardium, cardiac fibroblasts remain quiescent, despite continuous mechanical stimulation. We propose three hypotheses that could explain this paradoxical state of affairs. Furthermore, we provide suggestions for future research, which should lead to a better understanding of fibroblast quiescence and activation, and ultimately to new strategies for the prevention and treatment of cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Thomas C L Bracco Gartner
- Division of Heart and Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jeroen M Stein
- Division of Heart and Lungs, Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dimitri E P Muylaert
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Carlijn V C Bouten
- Division of Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Pieter A Doevendans
- Division of Heart and Lungs, Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands.,Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands.,University Utrecht, Utrecht, the Netherlands.,Netherlands Heart Institute, Utrecht, the Netherlands.,Central Military Hospital, Utrecht, the Netherlands
| | - Ali Khademhosseini
- Department of Bioengineering, Radiology, Chemical and Biomolecular Engineering, Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
| | - Willem J L Suyker
- Division of Heart and Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands.,University Utrecht, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Division of Heart and Lungs, Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands.,University Utrecht, Utrecht, the Netherlands
| | - Jesper Hjortnaes
- Division of Heart and Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands.,University Utrecht, Utrecht, the Netherlands
| |
Collapse
|
48
|
Singh R, Kaundal RK, Zhao B, Bouchareb R, Lebeche D. Resistin induces cardiac fibroblast-myofibroblast differentiation through JAK/STAT3 and JNK/c-Jun signaling. Pharmacol Res 2021; 167:105414. [PMID: 33524540 DOI: 10.1016/j.phrs.2020.105414] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/06/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022]
Abstract
Cardiac fibrosis is characterized by excessive deposition of extracellular matrix proteins and myofibroblast differentiation. Our previous findings have implicated resistin in cardiac fibrosis; however, the molecular mechanisms underlying this process are still unclear. Here we investigated the role of resistin in fibroblast-to-myofibroblast differentiation and elucidated the pathways involved in this process. Fibroblast-to-myofibroblast transdifferentiation was induced with resistin or TGFβ1 in NIH-3T3 and adult cardiac fibroblasts. mRNA and protein expression of fibrotic markers were analyzed by qPCR and immunoblotting. Resistin-knockout mice, challenged with a high-fat diet (HFD) for 20 weeks to stimulate cardiac impairment, were analyzed for cardiac function and fibrosis using histologic and molecular methods. Cardiac fibroblasts stimulated with resistin displayed increased fibroblast-to-myofibroblast conversion, with increased levels of αSma, col1a1, Fn, Ccn2 and Mmp9, with remarkable differences in the actin network appearance. Mechanistically, resistin promotes fibroblast-to-myofibroblast transdifferentiation and fibrogenesis via JAK2/STAT3 and JNK/c-Jun signaling pathways, independent of TGFβ1. Resistin-null mice challenged with HFD showed an improvement in cardiac function and a decrease in tissue fibrosis and reduced mRNA levels of fibrogenic markers. These findings are the first to delineate the role of resistin in the process of cardiac fibroblast-to-myofibroblast differentiation via JAK/STAT3 and JNK/c-Jun pathways, potentially leading to stimulation of cardiac fibrosis.
Collapse
Affiliation(s)
- Rajvir Singh
- Cardiovascular Research Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ravinder K Kaundal
- Cardiovascular Research Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Baoyin Zhao
- Cardiovascular Research Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rihab Bouchareb
- Cardiovascular Research Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Djamel Lebeche
- Cardiovascular Research Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Diabetes, Obesity and Metabolism Institute, Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
49
|
Song J, Frieler RA, Whitesall SE, Chung Y, Vigil TM, Muir LA, Ma J, Brombacher F, Goonewardena SN, Lumeng CN, Goldstein DR, Mortensen RM. Myeloid interleukin-4 receptor α is essential in postmyocardial infarction healing by regulating inflammation and fibrotic remodeling. Am J Physiol Heart Circ Physiol 2021; 320:H323-H337. [PMID: 33164548 PMCID: PMC7847075 DOI: 10.1152/ajpheart.00251.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Interleukin-4 receptor α (IL4Rα) signaling plays an important role in cardiac remodeling during myocardial infarction (MI). However, the target cell type(s) of IL4Rα signaling during this remodeling remains unclear. Here, we investigated the contribution of endogenous myeloid-specific IL4Rα signaling in cardiac remodeling post-MI. We established a murine myeloid-specific IL4Rα knockout (MyIL4RαKO) model with LysM promoter-driven Cre recombination. Macrophages from MyIL4RαKO mice showed significant downregulation of alternatively activated macrophage markers but an upregulation of classical activated macrophage markers both in vitro and in vivo, indicating the successful inactivation of IL4Rα signaling in macrophages. To examine the role of myeloid IL4Rα during MI, we subjected MyIL4RαKO and littermate floxed control (FC) mice to MI. We found that cardiac function was significantly impaired as a result of myeloid-specific IL4Rα deficiency. This deficiency resulted in a dysregulated inflammatory response consisting of decreased production of anti-inflammatory cytokines. Myeloid IL4Rα deficiency also led to reduced collagen 1 deposition and an imbalance of matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs), with upregulated MMPs and downregulated TIMPs, which resulted in insufficient fibrotic remodeling. In conclusion, this study identifies that myeloid-specific IL4Rα signaling regulates inflammation and fibrotic remodeling during MI. Therefore, myeloid-specific activation of IL4Rα signaling could offer protective benefits after MI.NEW & NOTEWORTHY This study showed, for the first time, the role of endogenous IL4Rα signaling in myeloid cells during cardiac remodeling and the underlying mechanisms. We identified myeloid cells are the critical target cell types of IL4Rα signaling during cardiac remodeling post-MI. Deficiency of myeloid IL4Rα signaling causes deteriorated cardiac function post-MI, due to dysregulated inflammation and insufficient fibrotic remodeling. This study sheds light on the potential of activating myeloid-specific IL4Rα signaling to modify remodeling post-MI. This brings hope to patients with MI and diminishes side effects by cell type-specific instead of whole body treatment.
Collapse
Affiliation(s)
- Jianrui Song
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Ryan A Frieler
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Steven E Whitesall
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Yutein Chung
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Thomas M Vigil
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Lindsey A Muir
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Jun Ma
- Department of Thoracic Surgery, Shanxi Province People's Hospital, Taiyuan, People's Republic of China
| | - Frank Brombacher
- International Center for Genetic Engineering and Biotechnology, University of Cape Town, Cape Town, South Africa
| | - Sascha N Goonewardena
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Carey N Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Daniel R Goldstein
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Richard M Mortensen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
50
|
Fan X, Gao Y, Zhang X, Lughmani HY, Kennedy DJ, Haller ST, Pierre SV, Shapiro JI, Tian J. A strategic expression method of miR-29b and its anti-fibrotic effect based on RNA-sequencing analysis. PLoS One 2020; 15:e0244065. [PMID: 33332475 PMCID: PMC7746150 DOI: 10.1371/journal.pone.0244065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Tissue fibrosis is a significant health issue associated with organ dysfunction and failure. Increased deposition of collagen and other extracellular matrix (ECM) proteins in the interstitial area is a major process in tissue fibrosis. The microRNA-29 (miR-29) family has been demonstrated as anti-fibrotic microRNAs. Our recent work showed that dysregulation of miR-29 contributes to the formation of cardiac fibrosis in animal models of uremic cardiomyopathy, whereas replenishing miR-29 attenuated cardiac fibrosis in these animals. However, excessive overexpression of miR-29 is a concern because microRNAs usually have multiple targets, which could result in unknown and unexpected side effect. In the current study, we constructed a novel Col1a1-miR-29b vector using collagen 1a1 (Col1a1) promoter, which can strategically express miR-29b-3p (miR-29b) in response to increased collagen synthesis and reach a dynamic balance between collagen and miR-29b. Our experimental results showed that in mouse embryonic fibroblasts (MEF cells) transfected with Col1a1-miR-29b vector, the miR-29b expression is about 1000 times less than that in cells transfected with CMV-miR-29b vector, which uses cytomegalovirus (CMV) as a promoter for miR-29b expression. Moreover, TGF-β treatment increased the miR-29b expression by about 20 times in cells transfected with Col1a1-miR-29b, suggesting a dynamic response to fibrotic stimulation. Western blot using cell lysates and culture media demonstrated that transfection of Col1a1-miR-29b vector significantly reduced TGF-β induced collagen synthesis and secretion, and the effect was as effective as the CMV-miR-29b vector. Using RNA-sequencing analysis, we found that 249 genes were significantly altered (180 upregulated and 69 downregulated, at least 2-fold change and adjusted p-value <0.05) after TGF-β treatment in MEF cells transfected with empty vector. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis using GAGE R-package showed that the top 5 upregulated pathways after TGF-β treatment were mostly fibrosis-related, including focal adhesion, ECM reaction, and TGF-β signaling pathways. As expected, transfection of Col1a1-miR-29b or CMV-miR-29b vector partially reversed the activation of these pathways. We also analyzed the expression pattern of the top 100 miR-29b targeting genes in these cells using the RNA-sequencing data. We identified that miR-29b targeted a broad spectrum of ECM genes, but the inhibition effect is mostly moderate. In summary, our work demonstrated that the Col1a1-miR-29b vector can be used as a dynamic regulator of collagen and other ECM protein expression in response to fibrotic stimulation, which could potentially reduce unnecessary side effect due to excessive miR-29b levels while remaining an effective potential therapeutic approach for fibrosis.
Collapse
Affiliation(s)
- Xiaoming Fan
- Department of Medicine, University of Toledo, Toledo, Ohio, United States of America
| | - Yingnyu Gao
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States of America
| | - Xiaolu Zhang
- Department of Medicine, University of Toledo, Toledo, Ohio, United States of America
| | - Haroon Y. Lughmani
- Department of Medicine, University of Toledo, Toledo, Ohio, United States of America
| | - David J. Kennedy
- Department of Medicine, University of Toledo, Toledo, Ohio, United States of America
| | - Steven T. Haller
- Department of Medicine, University of Toledo, Toledo, Ohio, United States of America
| | - Sandrine V. Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States of America
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine, Department of Biomedical Sciences, Marshall University, Huntington, West Virginia, United States of America
| | - Jiang Tian
- Joan C. Edwards School of Medicine, Department of Biomedical Sciences, Marshall University, Huntington, West Virginia, United States of America
| |
Collapse
|