1
|
Xu T, Zhang H, Peng Z, Huang Y, Zhan Q, Ma Z, Zeng X, Liu C, Zeng Q, Dong Y, Xu D. The addition of alpha-ketoglutarate to NT-proBNP improves the prediction of long-term all-cause mortality in acute heart failure patients. Ann Med 2025; 57:2477827. [PMID: 40091615 PMCID: PMC11915736 DOI: 10.1080/07853890.2025.2477827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/21/2025] [Accepted: 02/09/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Alpha-ketoglutarate (AKG), is a major intermediate metabolite of the tricarboxylic acid cycle, and is closely associated with cardiometabolic disease prognosis. Previous studies indicated that AKG is related to myocardial energy expenditure levels and reflects adverse short-term outcomes in heart failure (HF) patients. In this prospective cohort study, we examined the long-term prognostic value of AKG levels in acute HF (AHF) patients. METHODS Plasma AKG levels were assessed in patients hospitalized with AHF. Hazard ratios (HRs) and 95% confidence intervals (CIs) for all-cause mortality were calculated via multiple Cox regression. All-cause mortality was compared between patients with NT-proBNP < 1000 pg/ml and those with NT-proBNP ≥ 1000 pg/ml via subgroup analysis. RESULTS Patients with AKG ≥ 9.83 μg/ml had higher heart rates and NT-proBNP and lower left ventricular ejection fraction (LVEF) and systolic blood pressure (SBP). After multiple adjustment, higher AKG was associated with an increased all-cause mortality risk (HR = 1.078, p < 0.001). Compared with AKG < 9.83 μg/ml, AKG ≥ 9.83 μg/ml nearly doubled (HR = 1.929, p < 0.001) and quadrupled (HR = 4.160, p < 0.001) the all-cause mortality risk in patients with NT-proBNP ≥ 1000 pg/ml and those with NT-proBNP < 1000 pg/ml, respectively. CONCLUSIONS AND RELEVANCE Plasma AKG was independently associated with greater all-cause mortality risk in patients with AHF. Higher AKG levels retained prognostic value for patients with relatively low NT-proBNP.
Collapse
Affiliation(s)
- Tianyu Xu
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hao Zhang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Cardiology, Shunde Hospital, Southern Medical University (the First People’s Hospital of Shunde), Foshan, China
| | - Zhengliang Peng
- Department of Emergency, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (the First People’s Hospital of Shunde), Foshan, China
| | - Qiong Zhan
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhuang Ma
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianghui Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Liu
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yugang Dong
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Surendran A, Zhang H, Stamenkovic A, Ravandi A. Lipidomics and cardiovascular disease. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167806. [PMID: 40122185 DOI: 10.1016/j.bbadis.2025.167806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/05/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, necessitating innovative approaches for early detection and personalized interventions. Lipidomics, leveraging advanced mass spectrometry techniques, has become instrumental in deciphering lipid-mediated mechanisms in CVDs. This review explores the application of lipidomics in identifying biomarkers for myocardial infarction, heart failure, stroke, and calcific aortic valve stenosis (CAVS). This review examines the technological advancements in shotgun lipidomics and LC/MS, which provide unparalleled insights into lipid composition and function. Key lipid biomarkers, including ceramides and lysophospholipids, have been linked to disease progression and therapeutic outcomes. Integrating lipidomics with genomic and proteomic data reveals the molecular underpinnings of CVDs, enhancing risk prediction and intervention strategies. This review positions lipidomics as a transformative tool in reshaping cardiovascular research and clinical practice.
Collapse
Affiliation(s)
- Arun Surendran
- Mass Spectrometry Core Facility, BRIC-Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | - Hannah Zhang
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, Manitoba, Canada; Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada; Precision Cardiovascular Medicine Group, St. Boniface Hospital Research, Manitoba, Canada
| | - Aleksandra Stamenkovic
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, Manitoba, Canada; Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada; Precision Cardiovascular Medicine Group, St. Boniface Hospital Research, Manitoba, Canada
| | - Amir Ravandi
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, Manitoba, Canada; Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada; Precision Cardiovascular Medicine Group, St. Boniface Hospital Research, Manitoba, Canada.
| |
Collapse
|
3
|
Filipp M, Ge ZD, DeBerge M, Lantz C, Glinton K, Gao P, Smolgovsky S, Dai J, Zhao YY, Yvan-Charvet L, Alcaide P, Weinberg SE, Schiattarella GG, Hill JA, Feinstein MJ, Shah SJ, Thorp EB. Myeloid Fatty Acid Metabolism Activates Neighboring Hematopoietic Stem Cells to Promote Heart Failure With Preserved Ejection Fraction. Circulation 2025; 151:1451-1466. [PMID: 40071347 DOI: 10.1161/circulationaha.124.070248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 02/14/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Despite the high morbidity and mortality of heart failure with preserved ejection fraction (HFpEF), treatment options remain limited. The HFpEF syndrome is associated with a high comorbidity burden, including high prevalence of obesity and hypertension. Although inflammation is implicated to play a key role in HFpEF pathophysiology, underlying causal mechanisms remain unclear. METHODS Comparing patient samples and animal models, we defined the innate immune response during HFpEF in situ and through flow cytometry and single-cell RNA sequencing. After identifying transcriptional and cell signatures, we implemented a high-fat diet and hypertensive model of HFpEF and tested roles for myeloid and hematopoietic stem cells during HFpEF. Contributions of macrophage metabolism were also evaluated, including through mass spectrometry and carbon labeling. Primary macrophages were studied ex vivo to gain insight into complementary cell-intrinsic mechanisms. RESULTS Here we report evidence that patients with cardiometabolic HFpEF exhibit elevated peripheral blood hematopoietic stem cells. This phenotype was conserved across species in a murine mode of high-fat diet and hypertension. Hematopoietic stem cell proliferation was coupled to striking remodeling of the peripheral hematopoietic stem cell niche and expression of the macrophage adhesion molecule Vcam1. This could be partially inhibited by sodium-glucose cotransporter-2 inhibitors and explained by elevated fatty acid metabolism in macrophage mitochondria, which in turn remodeled the Vcam1 promoter to enhance its expression. CONCLUSIONS These findings identify a significant new stem cell signature of cardiometabolic HFpEF and support a role for myeloid maladaptive fatty acid metabolism in the promotion of systemic inflammation and cardiac diastolic dysfunction.
Collapse
Affiliation(s)
- Mallory Filipp
- Department of Pathology (MF., Z.-D.G., M.D., C.L., K.G., S.E.W., E.B.T.), Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Medicine (Cardiology) (MF., M.J.F., S.J.S.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Zhi-Dong Ge
- Department of Pathology (MF., Z.-D.G., M.D., C.L., K.G., S.E.W., E.B.T.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Matthew DeBerge
- Department of Pathology (MF., Z.-D.G., M.D., C.L., K.G., S.E.W., E.B.T.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Connor Lantz
- Department of Pathology (MF., Z.-D.G., M.D., C.L., K.G., S.E.W., E.B.T.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Kristofor Glinton
- Department of Pathology (MF., Z.-D.G., M.D., C.L., K.G., S.E.W., E.B.T.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Peng Gao
- Metabolomics Core Facility, Robert H. Lurie Cancer Center (P.G.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sasha Smolgovsky
- Department of Immunology, Tufts University School of Medicine, Boston, MA (S.S., P.A.)
| | - Jingbo Dai
- Department of Pediatrics (J.D., Y.-Y.Z.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - You-Yang Zhao
- Department of Pediatrics (J.D., Y.-Y.Z.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA (S.S., P.A.)
| | - Samuel E Weinberg
- Department of Pathology (MF., Z.-D.G., M.D., C.L., K.G., S.E.W., E.B.T.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Gabriele G Schiattarella
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité-Universitätsmedizin Berlin, Germany (G.G.S.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (G.G.S.)
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. (G.G.S.)
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (G.G.S.)
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), UT Southwestern Medical Center, Dallas, TX (J.A.H.)
| | - Matthew J Feinstein
- Department of Medicine (Cardiology) (MF., M.J.F., S.J.S.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sanjiv J Shah
- Department of Medicine (Cardiology) (MF., M.J.F., S.J.S.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Edward B Thorp
- Department of Pathology (MF., Z.-D.G., M.D., C.L., K.G., S.E.W., E.B.T.), Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
4
|
Xiao J, Li Y, Gao X, Yan B, Chen F, Zhang C, Wang C, Han T, Zhang Y. Association between triglyceride-glucose index and all cause mortality in critically ill patients with heart failure. Sci Rep 2025; 15:16157. [PMID: 40346064 PMCID: PMC12064809 DOI: 10.1038/s41598-025-00129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 04/25/2025] [Indexed: 05/11/2025] Open
Abstract
The triglyceride-glucose (TyG) index is regarded as a surrogate marker of systemic insulin resistance (IR). Studies have substantiated the impact of IR on cardiovascular diseases. Nonetheless, the prognostic value of the TyG index in critical patients with heart failure (HF) with intensive care unit (ICU) admission remains unclear. This study aims to assess the association between the TyG index and all-cause mortality in critically ill patients with HF. Patients with HF requiring ICU admission were identified from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database and subsequently stratified into quartiles based on their TyG index. The primary outcome was 30-day all-cause mortality, and the secondary outcome was 1-year all-cause mortality. The relationship between the TyG index and all-cause mortality in HF patients was analyzed using multivariable Cox proportional hazards models and restricted cubic splines. A total of 1220 patients (62.4% men) were enrolled, with a mean age of 70.6 years. The 30-day and one-year all-cause mortality rate were 15.7% and 34.6%, respectively. Multivariable Cox regression revealed that TyG index was significantly associated with an elevated risk of 30-day all-cause mortality (adjusted HR, 1.360; 95% CI, 1.093-1.694; P = 0.006), but not with one-year mortality (adjusted HR 1.046; 95% CI 0.895-1.222, P = 0.574). Restricted cubic splines showed a progressively increasing risk of 30-day mortality was linearly related to an elevated TyG index. Subgroup analyses indicated a more prominent association between TyG index and 30-day mortality in patients with age ≤ 65, female or BMI > 30 kg/m2. In critically ill patients with HF, the TyG index is significantly associated with short-term all-cause mortality. Our results highlight that the TyG index can be useful in identifying HF patients at high risk of all-cause mortality and require close follow-up after discharge.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ying Li
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiyu Gao
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Bao'e Yan
- Department of Cardiology, Affiliated Hospital of Yan'an University, Yan'an, 716000, China
| | - Fangyao Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Chunyan Zhang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Congxia Wang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Tuo Han
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Yan Zhang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
5
|
Fuchs MAA, Burke EJ, Latic N, Murray SL, Li H, Sparks MA, Abraham D, Zhang H, Rosenberg P, Saleem U, Hansen A, Miller SE, Ferreira D, Hänzelmann S, Hausmann F, Huber T, Erben RG, Fisher-Wellman K, Bursac N, Wolf M, Grabner A. Fibroblast growth factor 23 and fibroblast growth factor receptor 4 promote cardiac metabolic remodeling in chronic kidney disease. Kidney Int 2025; 107:852-868. [PMID: 39923962 DOI: 10.1016/j.kint.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 12/18/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025]
Abstract
Chronic kidney disease (CKD) is a global health epidemic that greatly increases mortality due to cardiovascular disease. Left ventricular hypertrophy (LVH) is an important mechanism of cardiac injury in CKD. High serum levels of fibroblast growth factor (FGF) 23 in patients with CKD may contribute mechanistically to the pathogenesis of LVH by activating FGF receptor (FGFR) 4 signaling in cardiac myocytes. Mitochondrial dysfunction and cardiac metabolic remodeling are early features of cardiac injury that predate development of hypertrophy, but these mechanisms have been insufficiently studied in models of CKD. We found in wild-type mice with CKD induced by adenine diet, that morphological changes occurred in mitochondrial structure and cardiac mitochondrial and that metabolic dysfunction preceded the development of LVH. In bioengineered cardio-bundles and neonatal rat ventricular myocytes grown in vitro, FGF23-mediated activation of FGFR4 caused mitochondrial pathology, characterized by increased bioenergetic stress and increased glycolysis that preceded the development of cellular hypertrophy. The cardiac metabolic changes and associated mitochondrial alterations in mice with CKD were prevented by global and cardiac-specific deletion of FGFR4. Our findings indicate that metabolic remodeling and mitochondrial dysfunction are early cardiac complications of CKD that precede structural remodeling of the heart. Mechanistically, FGF23-mediated activation of FGFR4 causes mitochondrial dysfunction, suggesting that early pharmacologic inhibition of FGFR4 might serve as novel therapeutic intervention to prevent development of LVH and heart failure in patients with CKD.
Collapse
MESH Headings
- Animals
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/chemically induced
- Fibroblast Growth Factors/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Fibroblast Growth Factor-23
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/deficiency
- Disease Models, Animal
- Rats
- Male
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/ultrastructure
- Mice
- Mice, Inbred C57BL
- Ventricular Remodeling
- Mice, Knockout
- Glycolysis
- Signal Transduction
- Cells, Cultured
- Adenine
- Energy Metabolism
Collapse
Affiliation(s)
- Michaela A A Fuchs
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Emily J Burke
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nejla Latic
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA; Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Susan L Murray
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Hanjun Li
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dennis Abraham
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Hengtao Zhang
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Paul Rosenberg
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Umber Saleem
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Heart Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Heart Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Germany
| | - Sara E Miller
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Davis Ferreira
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Huber
- Division of Nephrology, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reinhold G Erben
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital, Vienna, Austria
| | - Kelsey Fisher-Wellman
- Department of Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA; Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA; Department of Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; Duke Regeneration Center, Duke University, Durham, North Carolina, USA
| | - Myles Wolf
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA; Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Alexander Grabner
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA; Division of Nephrology, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
6
|
Hamouche R, Summers SA, Holland WL, Navankasattusas S, Drakos SG, Tseliou E. The role of sphingolipids in heart failure. EUROPEAN HEART JOURNAL OPEN 2025; 5:oeaf035. [PMID: 40322641 PMCID: PMC12046129 DOI: 10.1093/ehjopen/oeaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/07/2025] [Accepted: 03/28/2025] [Indexed: 05/08/2025]
Abstract
Advanced heart failure (HF) is characterized by changes in the structure, function, and metabolism of cardiac muscle. As the disease progresses, cardiomyocytes shift their ATP production from fatty acid oxidation to glycolysis. This shift results in an accumulation of lipid metabolites, particularly sphingolipids, which can disrupt normal cellular function and contribute to cardiac dysfunction. In animal models of obesity, accumulation of toxic sphingolipid metabolites in the heart has been described as cardiac lipotoxicity. In humans, HF is classified into two groups based on ejection fraction (EF): HF with reduced EF of less than 40% (HFrEF) and HF with preserved EF of greater than 50% (HFpEF). Despite shared risk factors and comorbidities, the structural and cellular differences between HFrEF and HFpEF distinguish them as separate conditions. Ceramides (Cer), a type of sphingolipid, have gained significant attention for their involvement in the development and prognosis of atherosclerotic disease and myocardial infarction, while sphingosine-1-phosphate, a downstream product of Cer, has shown cardioprotective properties. The aim of this review is to describe the role of sphingolipids in HF with reduced and preserved EF. By understanding the role of sphingolipids through animal and human studies, this review aims to pave the way for developing strategies that target abnormal signalling pathways in the failing heart, ultimately bridging the gap between scientific research and clinical applications.
Collapse
Affiliation(s)
- Rana Hamouche
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Scott A Summers
- Diabetes and Metabolism Research Center, Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - William L Holland
- Diabetes and Metabolism Research Center, Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sutip Navankasattusas
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Stavros G Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah Health & School of Medicine, Salt Lake City, UT 84132, USA
| | - Eleni Tseliou
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah Health & School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
7
|
Abou Kamar S, van Ommen AM, Dal Canto E, Valstar G, Akkerhuis KM, Cramer MJ, Umans V, Rutten F, Teske AJ, Menken R, Geleijnse ML, Hofstra L, Verhaar MC, de Boer RA, Boersma E, Asselbergs FW, van Dalen BM, den Ruijter HM, Kardys I. The plasma proteome is linked to echocardiographic parameters and stages of diastolic dysfunction, across the ejection fraction spectrum. Int J Cardiol 2025; 434:133329. [PMID: 40311691 DOI: 10.1016/j.ijcard.2025.133329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/03/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
INTRODUCTION This study investigates the interplay between the circulating plasma proteome and echocardiographic parameters in patients across the spectrum of heart failure (HF) (ranging from patients at risk of/with preserved (HFpEF) to reduced (HFrEF) ejection fraction). METHODS Data from two cohort studies, HELPFul and Bio-SHiFT, were analyzed. We measured 4210 circulating plasma proteins in a total of 750 patients using SomaScan® proteomics. Echocardiographic parameters in both studies included left ventricular ejection fraction (LVEF) and the ratio of the peak early left ventricular (LV) filling velocity and early diastolic mitral annular velocity (E/e'). In further analyses, we classified patients in left ventricular diastolic dysfunction (LVDD) groups according to the prevailing guidelines. RESULTS Out of the 4210 plasma proteins, 21 proteins were significantly associated with E/e' in patients at risk of/with HFpEF, whereas 9 proteins were associated with LVEF. Approximately 43 % (n = 1822) of the proteins showed significant interactions between E/e' and HF subtype. All of these proteins showed weaker associations with E/e' in patients at risk of/with HFpEF compared to the ones with HFrEF. These proteins were related to the extracellular matrix, cellular processes, insulin-like growth factor (IGF) transport, metabolic and catabolic processes. Furthermore, comparisons between LVDD groups and those with normal diastolic function identified 40 proteins associated with grade 2 (top 5: Cystatin C, TMEDA, NT-proBNP, GDF-15 and PXDN) and 198 with grade 3 LVDD (top 5: NT-proBNP, Cystatin C, PXDN, RNasa1, and Factor D). CONCLUSION In patients at risk of/with HFpEF, biological processes and pathways showed weaker associations with E/e' compared to patients with HFrEF. Varying pathways identified through proteomics were associated with deterioration of LVDD across the ejection fraction spectrum. Our results are in line with the mechanistic frameworks currently thought to underlie the various types of HF.
Collapse
Affiliation(s)
- Sabrina Abou Kamar
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Cardiology, Franciscus Gasthuis & Vlietland, Rotterdam, the Netherlands
| | - Anne-Mar van Ommen
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Elisa Dal Canto
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of General Practice & Nursing Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Gideon Valstar
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - K Martijn Akkerhuis
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maarten J Cramer
- Clinical Cardiology Department, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Victor Umans
- Clinical Cardiology Department, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department oF Cardiology, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands
| | - Frans Rutten
- Department of General Practice & Nursing Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Arco J Teske
- Clinical Cardiology Department, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Roxana Menken
- Cardiology Centers of the Netherlands, The Netherlands
| | - Marcel L Geleijnse
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Leonard Hofstra
- Cardiology Centers of the Netherlands, The Netherlands; Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Amsterdam, Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Eric Boersma
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Folkert W Asselbergs
- Clinical Cardiology Department, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Amsterdam, Netherlands; The National Institute for Health Research University College London Hospitals Biomedical Research Center, University College London, London, London, United Kingdom; Institute of Health Informatics, University College London, London, London, United Kingdom
| | - Bas M van Dalen
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Cardiology, Franciscus Gasthuis & Vlietland, Rotterdam, the Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Clinical Cardiology Department, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Isabella Kardys
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
8
|
Kuang H, Li D, Chen Y, Zou H, Li F, Gong Z, Long Y, Zhou H, Du H, Yin Y. Valine acts as an early biomarker and exacerbates pathological cardiac hypertrophy by impairing mitochondrial quality control. Atherosclerosis 2025; 405:119216. [PMID: 40318256 DOI: 10.1016/j.atherosclerosis.2025.119216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025]
Abstract
OBJECTIVE Pathological cardiac hypertrophy is an independent risk factor for heart failure (HF). Early identification and timely treatment are crucial for significantly delaying the progression of HF. METHODS Targeted amino acid metabolomics and RNA sequencing (RNA-seq) were combined to explore the underlying mechanism. In vitro, H9c2 cells were stimulated with angiotensin II (Ang II) or were incubated with extra valine after Ang II stimulation. The branched chain alpha-ketoate dehydrogenase kinase (Bckdk) inhibitor 3,6-dichlorobenzo[b]thiophene-2-carboxylic acid (BT2) and rapamycin were utilized to confirm the role of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway in this process. RESULTS A significant accumulation of valine was detected within hypertrophic hearts from spontaneously hypertensive rats (SHR). When branched chain amino acid (BCAA) degradation was increased by BT2, the most pronounced decrease was observed in the valine level (Δ = 0.185 μmol/g, p < 0.001), and cardiac hypertrophy was ameliorated. The role of imbalanced mitochondrial quality control (MQC), including the suppression of mitophagy and excessive mitochondrial fission, was revealed in myocardial hypertrophy. In vitro, high concentrations of valine exacerbated cardiomyocyte hypertrophy stimulated by Any II, resulting in the accumulation of impaired mitochondria and respiratory chain dysfunction. BT2, rapamycin, and mitochondrial division inhibitor 1 (Mdivi-1) all ameliorated MQC imbalance, mitochondrial damage and oxidative stress in hypertensive models with high valine concentration. CONCLUSION Valine exacerbated pathological cardiac hypertrophy by causing a MQC imbalance, probably as an early biomarker for cardiac hypertrophy under chronic hypertension.
Collapse
Affiliation(s)
- Hongyu Kuang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, China; Chongqing Key Laboratory of Cardiac Electrophysiology, Cardiovascular Neuromodulation Research and Treatment Center, China; Department of Cardiology, University-town Hospital of Chongqing Medical University, China
| | - Dan Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, China; Chongqing Key Laboratory of Cardiac Electrophysiology, Cardiovascular Neuromodulation Research and Treatment Center, China
| | - Yunlin Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, China; Chongqing Key Laboratory of Cardiac Electrophysiology, Cardiovascular Neuromodulation Research and Treatment Center, China
| | - Hongmi Zou
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Fang Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, China; Chongqing Key Laboratory of Cardiac Electrophysiology, Cardiovascular Neuromodulation Research and Treatment Center, China
| | - Zhiyan Gong
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, China
| | - Yuxiang Long
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, China; Chongqing Key Laboratory of Cardiac Electrophysiology, Cardiovascular Neuromodulation Research and Treatment Center, China
| | - Hao Zhou
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, China; Chongqing Key Laboratory of Cardiac Electrophysiology, Cardiovascular Neuromodulation Research and Treatment Center, China
| | - Huaan Du
- Department of Cardiology, University-town Hospital of Chongqing Medical University, China.
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, China; Chongqing Key Laboratory of Cardiac Electrophysiology, Cardiovascular Neuromodulation Research and Treatment Center, China.
| |
Collapse
|
9
|
Asakura J, Nagao M, Shinohara M, Hosooka T, Kuwahara N, Nishimori M, Tanaka H, Satomi-Kobayashi S, Matsui S, Sasaki T, Kitamura T, Otake H, Ishida T, Ogawa W, Hirata KI, Toh R. Impaired cardiac branched-chain amino acid metabolism in a novel model of diabetic cardiomyopathy. Cardiovasc Diabetol 2025; 24:167. [PMID: 40240904 PMCID: PMC12004671 DOI: 10.1186/s12933-025-02725-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/05/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Systemic insulin resistance plays an important role in the pathogenesis of type 2 diabetes and its complications. Although impaired branched-chain amino acid (BCAA) metabolism has been reported to be involved in the development of diabetes, the relationship between cardiac BCAA metabolism and the pathogenesis of diabetic cardiomyopathy (DbCM) remains unclear. OBJECTIVES The aim of this study was to investigate BCAA metabolism in insulin-resistant hearts by using a novel mouse model of DbCM. METHODS The cardiac phenotypes of adipocyte-specific 3'-phosphoinositide-dependent kinase 1 (PDK1)-deficient (A-PDK1KO) mice were assessed by histological analysis and echocardiography. The metabolic characteristics and cardiac gene expression were determined by mass spectrometry or RNA sequencing, respectively. Cardiac protein expression was evaluated by Western blot analysis. RESULTS A-PDK1KO mouse hearts exhibited hypertrophy with prominent insulin resistance, consistent with cardiac phenotypes and metabolic disturbances previously reported as DbCM characteristics. RNA sequencing revealed the activation of BCAA uptake in diabetic hearts. In addition, the key enzymes involved in cardiac BCAA catabolism were downregulated at the protein level in A-PDK1KO mice, leading to the accumulation of BCAAs in the heart. Mechanistically, the accumulation of the BCAA leucine caused cardiac hypertrophy via the activation of mammalian target of rapamycin complex 1 (mTORC1). CONCLUSIONS A-PDK1KO mice closely mimic the cardiac phenotypes and metabolic alterations observed in human DbCM and exhibit impaired BCAA metabolism in the heart. This model may contribute to a better understanding of DbCM pathophysiology and to the development of novel therapies for this disease.
Collapse
Affiliation(s)
- Junko Asakura
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Manabu Nagao
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Masakazu Shinohara
- Division of Molecular Epidemiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Japan
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Tetsuya Hosooka
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Naoya Kuwahara
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Makoto Nishimori
- Division of Molecular Epidemiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Hidekazu Tanaka
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Seimi Satomi-Kobayashi
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Sho Matsui
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology Graduate School of Agriculture, Kyoto University, 7-10-2 Tomogaoka, Suma-ku, Kyoto, 654-0142, Japan
| | - Tsutomu Sasaki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology Graduate School of Agriculture, Kyoto University, 7-10-2 Tomogaoka, Suma-ku, Kyoto, 654-0142, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hiromasa Otake
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
- Division of Nursing Practice, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Ryuji Toh
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
10
|
Naeem F, Leone TC, Petucci C, Shoffler C, Kodihalli RC, Hidalgo T, Tow-Keogh C, Mancuso J, Tzameli I, Bennett D, Groarke JD, Roth Flach RJ, Rader DJ, Kelly DP. Plasma metabolomics identifies signatures that distinguish heart failure with reduced and preserved ejection fraction. ESC Heart Fail 2025. [PMID: 40232999 DOI: 10.1002/ehf2.15285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/06/2025] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
AIMS Two general phenotypes of heart failure (HF) are recognized: HF with reduced ejection fraction (HFrEF) and with preserved EF (HFpEF). To develop phenotype-specific approaches to treatment, distinguishing biomarkers are needed. The goal of this study was to utilize quantitative metabolomics on a large, diverse population to replicate and extend existing knowledge of the plasma metabolic signatures in human HF. METHODS Plasma metabolomics and proteomics was conducted on 787 samples collected by the Penn Medicine BioBank from subjects with HFrEF (n = 219), HFpEF (n = 357) and matched controls (n = 211). A total of 90 metabolites were analysed, comprising 28 amino acids, 8 organic acids and 54 acylcarnitines. Seven hundred thirty-three of these samples also underwent proteomic profiling via the O-Link proteomics panel. RESULTS Unsaturated forms of medium-/long-chain acylcarnitines were elevated in the HFrEF group. Amino acid derivatives, including 1- and 3-methylhistidine, homocitrulline and symmetric and asymmetric (ADMA) dimethylarginine were elevated in HF, with ADMA elevated uniquely in HFpEF. While the branched-chain amino acids (BCAAs) were minimally changed, short-chain acylcarnitine species indicative of BCAA catabolism were elevated in both HF groups. 3-hydroxybutyrate (3-HBA) and its metabolite, C4-OH carnitine, were uniquely elevated in the HFrEF group. Linear regression models demonstrated a significant correlation between plasma 3-HBA and N-terminal pro-brain natriuretic peptide in both forms of HF, stronger in HFrEF. CONCLUSIONS These results identify plasma signatures that are shared as well as potentially distinguish HFrEF and HFpEF. Metabolite markers for ketogenic metabolic re-programming were identified as unique signatures in the HFrEF group, possibly related to increased levels of BNP. Our results set the stage for future studies aimed at assessing selected metabolites as relevant biomarkers to guide HF phenotype-specific therapeutics.
Collapse
Affiliation(s)
- Fawaz Naeem
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Teresa C Leone
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher Petucci
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Clarissa Shoffler
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Tiffany Hidalgo
- Translational Clinical Sciences, Pfizer Inc, Groton, Connecticut, USA
| | - Cheryl Tow-Keogh
- Translational Clinical Sciences, Pfizer Inc, Groton, Connecticut, USA
| | - Jessica Mancuso
- Non-Clinical Statistics, Data Sciences and Analytics, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Iphigenia Tzameli
- Non-Clinical Statistics, Data Sciences and Analytics, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Donald Bennett
- Non-Clinical Statistics, Data Sciences and Analytics, Pfizer Inc, Cambridge, Massachusetts, USA
| | - John D Groarke
- Pfizer Internal Medicine, Clinical Development, Cambridge, Massachusetts, USA
| | - Rachel J Roth Flach
- Pfizer Internal Medicine, Clinical Development, Cambridge, Massachusetts, USA
| | - Daniel J Rader
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel P Kelly
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Kozhevnikova MV, Belenkov YN, Shestakova KM, Ageev AA, Markin PA, Kakotkina AV, Korobkova EO, Moskaleva NE, Kuznetsov IV, Khabarova NV, Kukharenko AV, Appolonova SA. Metabolomic profiling in heart failure as a new tool for diagnosis and phenotyping. Sci Rep 2025; 15:11849. [PMID: 40195403 PMCID: PMC11976976 DOI: 10.1038/s41598-025-95553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/21/2025] [Indexed: 04/09/2025] Open
Abstract
Classifying heart failure (HF) by stages and ejection fraction (EF) remains a debated topic in cardiology. Metabolomic profiling (MP) offers a means to identify unique pathophysiological changes across different phenotypes, presenting a promising approach for the diagnosis and prognosis of HF, as well as for the development of targeted therapies. In our study, MP was performed on 408 HF patients (54.9% male). The mean ages of patients were 62 [53;68], 67 [65;74], 68 [61;72], and 69 [65;73] years for stages A, B, C, and D, respectively. This study demonstrates high accuracy in HF stage classification, distinguishing Stage A from Stage B with an AUC ROC of 0.91 and Stage B from Stage C with an AUC ROC of 0.97, by integrating chromatography-mass spectrometry data through multiparametric machine learning models. The observed metabolic similarities between HF with mildly reduced EF and HF with reduced EF phenotypes (AUC ROC 0.96) once again highlight the fundamental differences at the cellular and molecular levels between HF with preserved EF and HF with EF < 50%. Hierarchical clustering based on MP identified four distinct HF phenotypes and 26 key metabolites, including metabolites of tryptophan catabolism, glutamine, riboflavin, norepinephrine, serine, and long- and medium-chain acylcarnitines. The average follow-up period was 542.37 [16;1271] days. A downward change in the trajectory of EF [HR 3,008, 95% CI 1,035 to 8,743, p = 0,043] and metabolomic cluster 3 [HR 2,880; 95% CI 1,062 to 7,810, p = 0,0376] were associated with increased risk of all-cause mortality. MP can refine HF phenotyping and deepen the understanding of its underlying mechanisms. Metabolomic analysis illuminates the biochemical landscape of HF, aiding in its classification and suggesting new therapeutic pathways.
Collapse
Affiliation(s)
- Maria V Kozhevnikova
- Hospital Therapy No. 1 Department, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119435, Russia.
- I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., 119991, Moscow, Russia.
| | - Yuri N Belenkov
- Hospital Therapy No. 1 Department, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119435, Russia
| | - Ksenia M Shestakova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119435, Russia
| | - Anton A Ageev
- Hospital Therapy No. 1 Department, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119435, Russia
| | - Pavel A Markin
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119435, Russia
| | - Anastasiia V Kakotkina
- Hospital Therapy No. 1 Department, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119435, Russia
| | - Ekaterina O Korobkova
- Hospital Therapy No. 1 Department, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119435, Russia
| | - Natalia E Moskaleva
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119435, Russia
| | - Ivan V Kuznetsov
- Hospital Therapy No. 1 Department, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119435, Russia
| | - Natalia V Khabarova
- Hospital Therapy No. 1 Department, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119435, Russia
| | - Alexey V Kukharenko
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119435, Russia
| | - Svetlana A Appolonova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119435, Russia
| |
Collapse
|
12
|
Luo L, Zuo Y, Dai L. Metabolic rewiring and inter-organ crosstalk in diabetic HFpEF. Cardiovasc Diabetol 2025; 24:155. [PMID: 40186193 PMCID: PMC11971867 DOI: 10.1186/s12933-025-02707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents a significant and growing clinical challenge. Initially, for an extended period, HFpEF was simply considered as a subset of heart failure, manifesting as haemodynamic disorders such as hypertension, myocardial hypertrophy, and diastolic dysfunction. However, the rising prevalence of obesity and diabetes has reshaped the HFpEF phenotype, with nearly 45% of cases coexisting with diabetes. Currently, it is recognized as a multi-system disorder that involves the heart, liver, kidneys, skeletal muscle, adipose tissue, along with immune and inflammatory signaling pathways. In this review, we summarize the landscape of metabolic rewiring and the crosstalk between the heart and other organs/systems (e.g., adipose, gut, liver and hematopoiesis system) in diabetic HFpEF for the first instance. A diverse array of metabolites and cytokines play pivotal roles in this intricate crosstalk process, with metabolic rewiring, chronic inflammatory responses, immune dysregulation, endothelial dysfunction, and myocardial fibrosis identified as the central mechanisms at the heart of this complex interplay. The liver-heart axis links nonalcoholic steatohepatitis and HFpEF through shared lipid accumulation, inflammation, and fibrosis pathways, while the gut-heart axis involves dysbiosis-driven metabolites (e.g., trimethylamine N-oxide, indole-3-propionic acid and short-chain fatty acids) impacting cardiac function and inflammation. Adipose-heart crosstalk highlights epicardial adipose tissue as a source of local inflammation and mechanical stress, whereas the hematopoietic system contributes via immune cell activation and cytokine release. We contend that, based on the viewpoints expounded in this review, breaking this inter-organ/system vicious cycle is the linchpin of treating diabetic HFpEF.
Collapse
Affiliation(s)
- Lingyun Luo
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Yuyue Zuo
- Department of Dermatology, Wuhan No. 1 Hospital, Wuhan, 430030, Hubei, China.
| | - Lei Dai
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China.
| |
Collapse
|
13
|
Weng J, Dong W, Liao R, Zheng Y, Fang X, You J, Wang Z, Zuo Y, Chen X, Peng X. High triglyceride-to-high-density lipoprotein cholesterol ratio predicts poor prognosis in new-onset heart failure: a retrospective study. BMC Cardiovasc Disord 2025; 25:251. [PMID: 40175907 PMCID: PMC11963554 DOI: 10.1186/s12872-025-04706-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND There is limited research on the relationship between the triglyceride-to-high-density lipoprotein cholesterol (TG/HDL-C) ratio and outcomes in new-onset heart failure (HF). Therefore, this study aimed to explore the association between TG/HDL-C ratio and clinical outcomes in these patients. METHODS A retrospective cohort of 614 adults with new-onset HF hospitalized at The First Affiliated Hospital of Nanchang University between July 2021 and December 2022 was analyzed. The primary endpoint was major adverse cardiovascular events (MACE), defined as cardiovascular (CV) death and HF rehospitalizations within 12 months after discharge. Kaplan-Meier (K-M) curves, restricted cubic spline (RCS) analysis, and Cox regression evaluated the association between TG/HDL-C ratio and MACE risk. RESULTS Patients were divided into four quartiles (Quartile 1, 2,3 and 4) based on their TG/HDL-C ratios. The mean age was 68.94 ± 14.34 years, with 59.12% male. The mean left ventricular ejection fraction (LVEF) was 46.59 ± 10.89%, with 45.11% having an LVEF ≤ 40%. During the 12-month follow-up, 156 patients experienced MACE, comprising 18 CV deaths and 138 HF rehospitalizations. The Quartile 4 group had the highest MACE risk incidence compared to other groups (P < 0.001). K-M analysis confirmed that the Quartile 4 group was associated with an increased cumulative incidence of MACE, HF rehospitalization, and CV death (all P < 0.001). RCS analysis revealed a positive nonlinear relationship between the TG/HDL-C ratio and MACE risk (P for nonlinear = 0.026), with a sharp risk increase above a ratio of 1.08. After adjustment, TG/HDL-C ratio was independently associated with MACE (HR: 1.44, 95% CI: 1.29-1.60). Compared to Quartile 1, adjusted HRs were significantly higher in Quartiles 2, 3, and 4 (all P < 0.005). CONCLUSIONS The TG/HDL-C ratio is independently associated with 12-month MACE risk in new-onset HF patients. It may serve as a simple, cost-effective marker to improve early risk stratification and guide closer monitoring and tailored management in this high-risk population.
Collapse
Affiliation(s)
- Junfei Weng
- The 1 st affiliated hospital, Jiangxi Medical College, Nanchang University, No. 461, Bayi Avenue, Nanchang City, 330006, Jiangxi Province, People's Republic of China
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Donghu District, Nanchang City, 330006, Jiangxi Province, People's Republic of China
| | - Wei Dong
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Donghu District, Nanchang City, 330006, Jiangxi Province, People's Republic of China
| | - Ruichun Liao
- The 1 st affiliated hospital, Jiangxi Medical College, Nanchang University, No. 461, Bayi Avenue, Nanchang City, 330006, Jiangxi Province, People's Republic of China
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Donghu District, Nanchang City, 330006, Jiangxi Province, People's Republic of China
| | - Yaofu Zheng
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Donghu District, Nanchang City, 330006, Jiangxi Province, People's Republic of China
| | - Xu Fang
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Donghu District, Nanchang City, 330006, Jiangxi Province, People's Republic of China
| | - Jiaxiang You
- The 1 st affiliated hospital, Jiangxi Medical College, Nanchang University, No. 461, Bayi Avenue, Nanchang City, 330006, Jiangxi Province, People's Republic of China
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Donghu District, Nanchang City, 330006, Jiangxi Province, People's Republic of China
| | - Zhichao Wang
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Donghu District, Nanchang City, 330006, Jiangxi Province, People's Republic of China
| | - Yingbing Zuo
- The 1 st affiliated hospital, Jiangxi Medical College, Nanchang University, No. 461, Bayi Avenue, Nanchang City, 330006, Jiangxi Province, People's Republic of China
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Donghu District, Nanchang City, 330006, Jiangxi Province, People's Republic of China
| | - Xuanying Chen
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Donghu District, Nanchang City, 330006, Jiangxi Province, People's Republic of China
| | - Xiaoping Peng
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Donghu District, Nanchang City, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
14
|
Widacha L, Szramel J, Nieckarz Z, Kurpinska A, Smolenski RT, Chlopicki S, Zoladz JA, Majerczak J. Physical activity of moderate-intensity optimizes myocardial citrate cycle in a murine model of heart failure. Front Physiol 2025; 16:1568060. [PMID: 40241718 PMCID: PMC12000009 DOI: 10.3389/fphys.2025.1568060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Introduction There is growing body of evidence that an enhanced concentration of branched-chain amino acids (BCAAs), as a consequence of an impaired myocardial oxidative metabolism, is involved in the occurrence and progression of heart failure (HF). The purpose of this study was to examine the effect of 8 weeks of spontaneous wheel running (8-sWR) (reflecting low-to-moderate intensity physical activity) on the myocardial [BCAAs] and mitochondrial oxidative metabolism markers, such as tricarboxylic acid (TCA) cycle intermediates (TCAi), mitochondrial electron transport chain (ETC) proteins and mitochondrial DNA copy number (mtDNA/nDNA) in a murine model of HF. Methods Adult heart failure (Tgαq*44) and wild-type (WT) mice were randomly assigned to either the sedentary or exercising group. Myocardial concentrations of [TCAi] and [BCAAs] were measured by LC-MS/MS, ETC proteins were determined by Western immunoblotting and mtDNA/nDNA was assessed by qPCR. Results Heart failure mice exhibited decreased exercise performance capacity as reflected by a lower total distance covered and time of running in wheels. This was accompanied by impaired TCA cycle, including higher citrate concentration and greater [BCAAs] in the heart of Tgαq*44 mice compared to their control counterparts. No impact of disease at its current stage i.e., in the transition phase from the compensated to decompensated stage of HF on the myocardial mitochondrial ETC, proteins content was observed, however the altered basal level of mitochondrial biogenesis (lower mtDNA/nDNA) in the heart of Tgαq*44 mice compared to their control counterparts was detected. Interestingly, 8-sWR significantly decreased myocardial citrate content in the presence of unchanged myocardial [BCAAs], ETC proteins content and mtDNA copy number. Conclusion Moderate-intensity physical activity, even of short duration, could be considered an effective intervention in heart failure. Our results suggest that central metabolic pathway - TCA cycle appears to be more sensitive to moderate-intensity physical activity (as reflected by the lowering of myocardial citrate concentration) than the mechanism(s) regulating the BCAAs turnover in the heart. This observation may have a particular importance in heart failure, since an improvement of impaired myocardial oxidative metabolism may contribute to the upgrading of the clinical status of patients.
Collapse
Affiliation(s)
- Lucyna Widacha
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Szramel
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Zenon Nieckarz
- Department of Experimental Computer Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Jerzy A. Zoladz
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Majerczak
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
15
|
Benincasa G, Pepin ME, Russo V, Cacciatore F, D'Alto M, Argiento P, Romeo E, Chiappetti R, Laezza N, Wende AR, Schiattarella GG, Coscioni E, La Montagna A, Amarelli C, Maiello C, Golino P, Condorelli G, Napoli C. High-resolution DNA methylation changes reveal biomarkers of heart failure with preserved ejection fraction versus reduced ejection fraction. Basic Res Cardiol 2025; 120:347-361. [PMID: 39725721 DOI: 10.1007/s00395-024-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/13/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
Novel biomarkers are needed to better identify-and distinguish-heart failure with preserved ejection fraction (HFpEF) from other clinical phenotypes. The goal of our study was to identify epigenetic-sensitive biomarkers useful to a more accurate diagnosis of HFpEF. We performed a network-oriented genome-wide DNA methylation study of circulating CD4+ T lymphocytes isolated from peripheral blood using reduced representation bisulfite sequencing (RRBS) in two cohorts (i.e., discovery/validation) each of both male and female patients with HFpEF (n = 12/10), HF with reduced EF (HFrEF; n = 7/5), and volunteers lacking clinical evidence of HF (CON; n = 7/5). RRBS is the gold-standard platform for measuring genome-wide DNA methylation changes at single-cytosine resolution in hypothesis-generating studies. We identified three hypomethylated HFpEF-specific differentially methylated positions (DMPs) associated with FOXB1, ELMOD1, and DGKH genes wherein ROC curve analysis revealed that increased expression levels had a reasonable diagnostic performance in predicting HFpEF (AUC ≥ 0.8, p < 0.05). Network analysis identified additional three genes including JUNB (p = 0.037), SETD7 (p = 0.003), and MEF2D (p = 0.0001) which were significantly higher in HFpEF vs. HFrEF patients. ROC curve analysis showed that integrating the functional H2FPEF classification with the expression levels of the FOXB1, ELMOD1, and DGKH as well as the JUNB, SETD7, and MEF2D genes improved diagnostic accuracy, with AUC = 0.8 (p < 0.0001) as compared to H2FPEF score alone (p > 0.05). Besides, increased expression levels of SETD7-RELA-IL6 axis significantly discriminated overweight/obese HFpEF vs. HFrEF patients (AUC = 1; p = 0.001, p = 0.006, p = 0.006, respectively). We support an emerging dogma that indirect epigenetic testing via high-resolution RRBS methylomics represents a non-invasive tool that may enable easier access to both diagnostic and mechanistic insights of HFpEF. An epigenetic-oriented dysregulation of network-derived SETD7-RELA-IL6 axis in circulating CD4+ T lymphocytes may drive pro-inflammatory responses which, in turn, may lead to cardiac remodeling in overweight/obese HFpEF.
Collapse
Affiliation(s)
- Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| | - Mark E Pepin
- Brigham and Women's Hospital, Harvard Medical School Boston, Boston, USA
| | - Vincenzo Russo
- Department of Cardiology, Monaldi Hospital, Naples, Italy
| | - Francesco Cacciatore
- Department of Translational Medical Sciences, University of Naples "Federico II", 80131, Naples, Italy
| | - Michele D'Alto
- Department of Cardiology, Monaldi Hospital, Naples, Italy
| | - Paola Argiento
- Department of Cardiology, Monaldi Hospital, Naples, Italy
| | - Emanuele Romeo
- Department of Cardiology, Monaldi Hospital, Naples, Italy
| | - Rosaria Chiappetti
- Department of Translational Medical Sciences, University of Naples "Federico II", 80131, Naples, Italy
| | - Nunzia Laezza
- Department of Cardiology, Monaldi Hospital, Naples, Italy
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gabriele G Schiattarella
- Deutsches Herzzentrum Der Charité (DHZC), Charité -Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131, Naples, Italy
| | - Enrico Coscioni
- Division of Cardiac Surgery, AOU San Giovanni di Dio e Ruggi d'Aragona, 84131, Salerno, Italy
| | - Antonietta La Montagna
- Department of Cardiovascular Surgery and Transplant, Azienda dei Colli, Monaldi Hospital, Naples, Italy
| | - Cristiano Amarelli
- Department of Cardiovascular Surgery and Transplant, Azienda dei Colli, Monaldi Hospital, Naples, Italy
| | - Ciro Maiello
- Department of Cardiovascular Surgery and Transplant, Azienda dei Colli, Monaldi Hospital, Naples, Italy
| | - Paolo Golino
- Department of Cardiology, Monaldi Hospital, Naples, Italy
| | - Gianluigi Condorelli
- Department of Biological Sciences, Humanitas University and Cardio-Center IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| |
Collapse
|
16
|
Zhao Y, Lu Z, Zhang H, Wang L, Sun F, Li Q, Cao T, Wang B, Ma H, You M, Zhou Q, Wei X, Li L, Liao Y, Yan Z, Liu D, Gao P, Zhu Z. Sodium-glucose exchanger 2 inhibitor canagliflozin promotes mitochondrial metabolism and alleviates salt-induced cardiac hypertrophy via preserving SIRT3 expression. J Adv Res 2025; 70:255-269. [PMID: 38744404 PMCID: PMC11976408 DOI: 10.1016/j.jare.2024.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION Excess salt intake is not only an independent risk factor for heart failure, but also one of the most important dietary factors associated with cardiovascular disease worldwide. Metabolic reprogramming in cardiomyocytes is an early event provoking cardiac hypertrophy that leads to subsequent cardiovascular events upon high salt loading. Although SGLT2 inhibitors, such as canagliflozin, displayed impressive cardiovascular health benefits, whether SGLT2 inhibitors protect against cardiac hypertrophy-related metabolic reprogramming upon salt loading remain elusive. OBJECTIVES To investigate whether canagliflozin can improve salt-induced cardiac hypertrophy and the underlying mechanisms. METHODS Dahl salt-sensitive rats developed cardiac hypertrophy by feeding them an 8% high-salt diet, and some rats were treated with canagliflozin. Cardiac function and structure as well as mitochondrial function were examined. Cardiac proteomics, targeted metabolomics and SIRT3 cardiac-specific knockout mice were used to uncover the underlying mechanisms. RESULTS In Dahl salt-sensitive rats, canagliflozin showed a potent therapeutic effect on salt-induced cardiac hypertrophy, accompanied by lowered glucose uptake, reduced accumulation of glycolytic end-products and improved cardiac mitochondrial function, which was associated with the recovery of cardiac expression of SIRT3, a key mitochondrial metabolic regulator. Cardiac-specific knockout of SIRT3 not only exacerbated salt-induced cardiac hypertrophy but also abolished the therapeutic effect of canagliflozin. Mechanistically, high salt intake repressed cardiac SIRT3 expression through a calcium-dependent epigenetic modifications, which could be blocked by canagliflozin by inhibiting SGLT1-mediated calcium uptake. SIRT3 improved myocardial metabolic reprogramming by deacetylating MPC1 in cardiomyocytes exposed to pro-hypertrophic stimuli. Similar to canagliflozin, the SIRT3 activator honokiol also exerted therapeutic effects on cardiac hypertrophy. CONCLUSION Cardiac mitochondrial dysfunction caused by SIRT3 repression is a critical promotional determinant of metabolic pattern switching underlying salt-induced cardiac hypertrophy. Improving SIRT3-mediated mitochondrial function by SGLT2 inhibitors-mediated calcium handling would represent a therapeutic strategy against salt-related cardiovascular events.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Hexuan Zhang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Fang Sun
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Qiang Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Tingbing Cao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Bowen Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Huan Ma
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Mei You
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Qing Zhou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Xiao Wei
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Li Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Yingying Liao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China.
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China; Lead Contact, China.
| |
Collapse
|
17
|
Li Y, Lin Z, Li Y. Visceral obesity and HFpEF: targets and therapeutic opportunities. Trends Pharmacol Sci 2025; 46:337-356. [PMID: 40113531 DOI: 10.1016/j.tips.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
The effectiveness of weight-loss drugs in heart failure (HF) with preserved ejection fraction (HFpEF) highlights the link between obesity (adipose tissue) and HF (the heart). Recent guidelines incorporating the waist:height ratio for diagnosing and treating obesity reflect the growing recognition of the significance of visceral adiposity. However, its unique impact on HFpEF and their complex relationship remain underexplored. With limited treatment options for obesity-related HFpEF, novel disease-modifying treatments are urgently needed. Here, we clarify the relationship between visceral obesity and HFpEF, introducing the concept of the visceral adipose tissue-heart axis to explore its mechanisms and therapeutic potential. We also discuss promising strategies targeting visceral obesity in HFpEF and propose directions for future research.
Collapse
Affiliation(s)
- Yilin Li
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of the Ministry of Education for Cardiovascular Remodeling-Related Diseases, Beijing Collaborative Innovative Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Zhuofeng Lin
- The Innovation Center of Cardiometabolic Disease, Guangdong Medical University, Dongguan 523808, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yulin Li
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of the Ministry of Education for Cardiovascular Remodeling-Related Diseases, Beijing Collaborative Innovative Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China.
| |
Collapse
|
18
|
Guan X, Sun C, Su J, Sun Z, Cheng C. Deciphering the causality of gut microbiota, circulating metabolites and heart failure: a mediation mendelian. Front Pharmacol 2025; 16:1531384. [PMID: 40235532 PMCID: PMC11996798 DOI: 10.3389/fphar.2025.1531384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/13/2025] [Indexed: 04/17/2025] Open
Abstract
Background Growing evidence suggesting a connection between the gut microbiome, plasma metabolites, and the development of heart failure (HF). However, the causality of this relationship remains to be fully elucidated. Methods Utilizing summary statistics from extensive genome-wide association studies (GWAS), we investigated the interplay among the gut microbiome, 1,400 plasma metabolites and heart failure. We conducted bidirectional Mendelian randomization (MR) analyses and MR mediation analysis to discern the causality within these relationships. The inverse variance-weighted (IVW) method served as our primary analytical approach, supported by various MR methods and sensitivity analyses. Results We revealed casual relationships between nine microbial groups/pathways and heart failure. Additionally, 15 metabolites exhibited casual links with HF, with eight exerting protective effects. Through two-step MR analysis we also identified the metabolite, Campesterol, mediated the increasing risk from gut microbiota to HF and a metabolite ratio played the converse role. Conclusion This investigation has provided robust evidence supporting the causal links between the gut microbiome, plasma metabolites, and heart failure. The findings enhance our comprehension of the role of circulating metabolites and offer significant insights for future etiological research and therapeutic development in heart failure.
Collapse
Affiliation(s)
- Xueqing Guan
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chaonan Sun
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, China
| | - Jianyao Su
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijun Sun
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cheng Cheng
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Ghazal R, Wang M, Liu D, Tschumperlin DJ, Pereira NL. Cardiac Fibrosis in the Multi-Omics Era: Implications for Heart Failure. Circ Res 2025; 136:773-802. [PMID: 40146800 PMCID: PMC11949229 DOI: 10.1161/circresaha.124.325402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Cardiac fibrosis, a hallmark of heart failure and various cardiomyopathies, represents a complex pathological process that has long challenged therapeutic intervention. High-throughput omics technologies have begun revolutionizing our understanding of the molecular mechanisms driving cardiac fibrosis and are providing unprecedented insights into its heterogeneity and progression. This review provides a comprehensive analysis of how techniques-encompassing genomics, epigenomics, transcriptomics, proteomics, and metabolomics-are providing insight into our understanding of cardiac fibrosis. Genomic studies have identified novel genetic variants and regulatory networks associated with fibrosis susceptibility and progression, and single-cell transcriptomics has unveiled distinct cardiac fibroblast subpopulations with unique molecular signatures. Epigenomic profiling has revealed dynamic chromatin modifications controlling fibroblast activation states, and proteomic analyses have identified novel biomarkers and potential therapeutic targets. Metabolomic studies have uncovered important alterations in cardiac energetics and substrate utilization during fibrotic remodeling. The integration of these multi-omic data sets has led to the identification of previously unrecognized pathogenic mechanisms and potential therapeutic targets, including cell-type-specific interventions and metabolic modulators. We discuss how these advances are driving the development of precision medicine approaches for cardiac fibrosis while highlighting current challenges and future directions in translating multi-omic insights into effective therapeutic strategies. This review provides a systems-level perspective on cardiac fibrosis that may inform the development of more effective, personalized therapeutic approaches for heart failure and related cardiovascular diseases.
Collapse
Affiliation(s)
- Rachad Ghazal
- Departments of Cardiovascular Diseases (R.G., N.L.P.), Mayo Clinic, Rochester, MN
| | - Min Wang
- Molecular Pharmacology and Experimental Therapeutics (M.W., D.L., N.L.P.), Mayo Clinic, Rochester, MN
| | - Duan Liu
- Molecular Pharmacology and Experimental Therapeutics (M.W., D.L., N.L.P.), Mayo Clinic, Rochester, MN
| | | | - Naveen L. Pereira
- Departments of Cardiovascular Diseases (R.G., N.L.P.), Mayo Clinic, Rochester, MN
- Molecular Pharmacology and Experimental Therapeutics (M.W., D.L., N.L.P.), Mayo Clinic, Rochester, MN
| |
Collapse
|
20
|
Jani VP, Yoo EJ, Binek A, Guo A, Kim JS, Aguilan J, Keykhaei M, Jenkin SR, Sidoli S, Sharma K, Van Eyk JE, Kass DA, Hahn VS. Myocardial Proteome in Human Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 2025; 14:e038945. [PMID: 40079330 DOI: 10.1161/jaha.124.038945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/16/2024] [Indexed: 03/15/2025]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) constitutes more than half of all HF but has few effective therapies. Recent human myocardial transcriptomics and metabolomics have identified major differences between HFpEF and controls. How this translates at the protein level is unknown. METHODS AND RESULTS Myocardial tissue from patients with HFpEF and nonfailing donor controls was analyzed by data-dependent acquisition (n=10 HFpEF, n=10 controls) and data-independent acquisition (n=44 HFpEF, n=5 controls) mass spectrometry-based proteomics. Differential protein expression analysis, pathway overrepresentation, weighted coexpression network analysis, and machine learning were integrated with clinical characteristics and previously reported transcriptomics. Principal component analysis (data-dependent acquisition-mass spectrometry) found HFpEF separated into 2 subgroups: one similar to controls and the other disparate. Downregulated proteins in HFpEF versus controls were enriched in mitochondrial transport/organization, translation, and metabolism including oxidative phosphorylation. Proteins upregulated in HFpEF were related to immune activation, reactive oxygen species, and inflammatory response. Ingenuity pathway analysis predicted downregulation of protein translation, mitochondrial function, and glucose and fat metabolism in HFpEF. Expression of oxidative phosphorylation and metabolism genes (higher) versus proteins (lower) was discordant in HFpEF versus controls. Data-independent acquisition-mass spectrometry proteomics also yielded 2 HFpEF subgroups; the one most different from controls had a higher proportion of patients with severe obesity and exhibited lower proteins related to fuel metabolism, oxidative phosphorylation, and protein translation. Three modules of correlated proteins in HFpEF that correlated with left ventricular hypertrophy and right ventricular load related to (1) proteasome; (2) fuel metabolism; and (3) protein translation, oxidative phosphorylation, and sarcomere organization. CONCLUSIONS Integrative proteomics, transcriptomics, and pathway analysis supports a defect in both metabolism and translation in HFpEF. Patients with HFpEF with more distinct proteomic signatures from control more often had severe obesity, supporting therapeutic efforts targeting metabolism and translation, particularly in this subgroup.
Collapse
Affiliation(s)
- Vivek P Jani
- Division of Cardiology, Department of Medicine Johns Hopkins University School of Medicine Baltimore MD USA
| | - Edwin J Yoo
- Division of Cardiology, Department of Medicine Johns Hopkins University School of Medicine Baltimore MD USA
| | - Aleksandra Binek
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center Los Angeles CA USA
| | - Alina Guo
- Division of Cardiology, Department of Medicine Johns Hopkins University School of Medicine Baltimore MD USA
| | - Julie S Kim
- Department of Biochemistry Albert Einstein College of Medicine Bronx NY USA
| | - Jennifer Aguilan
- Department of Pathology Albert Einstein College of Medicine Bronx NY USA
| | - Mohammad Keykhaei
- Division of Cardiology, Department of Medicine Johns Hopkins University School of Medicine Baltimore MD USA
| | - Sydney R Jenkin
- Division of Cardiology, Department of Medicine Johns Hopkins University School of Medicine Baltimore MD USA
| | - Simone Sidoli
- Department of Biochemistry Albert Einstein College of Medicine Bronx NY USA
| | - Kavita Sharma
- Division of Cardiology, Department of Medicine Johns Hopkins University School of Medicine Baltimore MD USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center Los Angeles CA USA
| | - David A Kass
- Division of Cardiology, Department of Medicine Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Pharmacology and Molecular Sciences, and Department of Biomedical Engineering Johns Hopkins University Baltimore MD USA
| | - Virginia S Hahn
- Division of Cardiology, Department of Medicine Johns Hopkins University School of Medicine Baltimore MD USA
| |
Collapse
|
21
|
Kodur N, Nguyen C, Tang WHW. Therapeutic Ketosis for Heart Failure: A State-of-the-Art Review. J Card Fail 2025:S1071-9164(25)00101-0. [PMID: 40043832 DOI: 10.1016/j.cardfail.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 04/11/2025]
Abstract
Heart failure is characterized by an energy-deprived heart, and in recent years it has been found that the failing heart increases ketone body oxidation to meet its energy demands. Accumulating evidence suggests that this metabolic adaptation is cardioprotective, suggesting that interventions that boost blood ketone levels could aid the failing heart. Indeed, multiple small clinical trials with short-term follow up have demonstrated that supplying the failing heart with exogenous ketone bodies may improve myocardial function across various manifestations of heart failure. As such, therapeutic ketosis, which is a metabolic state in which blood ketone levels are mildly elevated, could have great potential to ameliorate heart failure. Therapeutic ketosis can be achieved endogenously via exercise or dietary practices, exogenously via supplementation with ketone bodies, or pharmacologically via treatment with a sodium-glucose cotransporter-2 inhibitor. Although ketosis-inducing practices cannot be routinely recommended to patients with heart failure at this time due to a lack of robust data regarding the long-term benefits and risks, anecdotal evidence suggests that some patients have begun to adopt ketosis-inducing practices, so it is important for clinicians to be aware of how to manage patients optimally when they are in therapeutic ketosis. In this review, we discuss myocardial ketone metabolism in heart failure, the current evidence for therapeutic ketosis in patients with heart failure, a framework to distinguish between therapeutic ketosis and the pathologic state of ketoacidosis, and practical considerations for managing patients adhering to ketosis-inducing practices.
Collapse
Affiliation(s)
- Nandan Kodur
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| | - Christopher Nguyen
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH; Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH; Cardiovascular Innovation Research Center, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
| | - W H Wilson Tang
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH; Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH; Cardiovascular Innovation Research Center, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
22
|
Kuhs AC, Ohl L, Thurston T, Singh J, Bhuyan S, Grandinette S, Xu J, Siemsgluess SA, Jakher Y, Ahrens-Nicklas RC. Contribution of Brain Intrinsic Branched-Chain Amino Acid Metabolism in a Novel Mouse Model of Maple Syrup Urine Disease. J Inherit Metab Dis 2025; 48:e70003. [PMID: 39902813 DOI: 10.1002/jimd.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/10/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Maple syrup urine disease (MSUD) results from loss of branched-chain ketoacid dehydrogenase (BCKDH) activity, the committed, rate-limiting step of branched-chain amino acid (BCAA) oxidation. Current treatments, including a low protein diet and liver transplantation, improve peripheral biochemistry and limit episodes of metabolic decompensation but do not fully prevent chronic neuropsychiatric symptoms. The mechanisms underlying chronic neurologic phenotypes remain poorly understood. Currently available MSUD mouse models do not survive long enough to evaluate chronic central nervous system (CNS) pathology. To investigate if loss of brain-intrinsic BCAA metabolism contributes to chronic neurologic disease, we developed a new brain-specific knockout mouse model of MSUD. First, we generated a mouse harboring a floxed Dbt allele (Dbtflox/flox). Then we crossed this line with Cre recombinase driver lines to induce loss of Dbt expression in (1) all developing CNS cell populations (2) neurons alone or (3) astrocytes alone. We found that brain-specific KO mice have elevations in BCAA levels in cortex that are exacerbated by a high protein diet. They also have secondary changes in amino acids in brain that are important for neuronal function, including glutamine and glycine. These metabolic differences result in subtle functional deficits as measured by electroencephalogram and behavioral testing. Astrocyte and neuron-specific KO mice each also demonstrate mild biochemical features of MSUD in the cortex, suggesting that both cell populations may contribute to disease pathology. Collectively, these data suggest that therapies targeting the CNS directly, in addition to the periphery, may improve outcomes in MSUD.
Collapse
Affiliation(s)
- Amanda C Kuhs
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Laura Ohl
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tegan Thurston
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jeet Singh
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sangeetha Bhuyan
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah Grandinette
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jing Xu
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sophie A Siemsgluess
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Youseff Jakher
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rebecca C Ahrens-Nicklas
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Hahn VS, Koleini N. Have Your Sodium-Glucose Cotransporter 2 Inhibitor-Derived Ketones and Eat Them Too. JACC Basic Transl Sci 2025; 10:304-306. [PMID: 40139872 PMCID: PMC12013850 DOI: 10.1016/j.jacbts.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 03/29/2025]
Affiliation(s)
- Virginia S Hahn
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Navid Koleini
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Tamburro MK, Bonilla KA, Shetye SS, Leahy TP, Eekhoff JD, Kim M, Petucci C, Tobias JW, Farber DC, Soslowsky LJ. Moderate- and High-Speed Treadmill Running Exercise Have Minimal Impact on Rat Achilles Tendon. J Orthop Res 2025; 43:519-530. [PMID: 39731286 PMCID: PMC11806652 DOI: 10.1002/jor.26030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 12/08/2024] [Indexed: 12/29/2024]
Abstract
Exercise influences clinical Achilles tendon health in humans, but animal models of exercise-related Achilles tendon changes are lacking. Moreover, previous investigations of the effects of treadmill running exercise on rat Achilles tendon demonstrate variable outcomes. Our objective was to assess the functional, structural, cellular, and biomechanical impacts of treadmill running exercise on rat Achilles tendon with sensitive in and ex vivo approaches. Three running levels were assessed over the course of 8 weeks: control (cage activity), moderate-speed (treadmill running at 10 m/min, no incline), and high-speed (treadmill running at 20 m/min, 10° incline). We hypothesized that moderate-speed treadmill running would beneficially impact tendon biomechanics through increased tenocyte cellularity, metabolism, and anabolism whereas high-speed treadmill running would cause a tendinopathic phenotype with compromised tendon biomechanics due to pathologic tenocyte differentiation, metabolism, and catabolism. Contrary to our hypothesis, treadmill running exercise at these speeds had a nominal effect on the rat Achilles tendon. Treadmill running modestly influenced tenocyte metabolism and nuclear aspect ratio as well as viscoelastic tendon properties but did not cause a tendinopathic phenotype. These findings highlight the need for improved models of exercise- and loading-related tendon changes that can be leveraged to develop strategies for tendinopathy prevention and treatment.
Collapse
Affiliation(s)
- Margaret K. Tamburro
- McKay Orthopaedic LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kelsey A. Bonilla
- McKay Orthopaedic LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Snehal S. Shetye
- McKay Orthopaedic LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Thomas P. Leahy
- McKay Orthopaedic LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jeremy D. Eekhoff
- McKay Orthopaedic LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Min‐Soo Kim
- Department of MedicinePerelman School of Medicine, Metabolomics Core, Cardiovascular Institute, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Christopher Petucci
- Department of MedicinePerelman School of Medicine, Metabolomics Core, Cardiovascular Institute, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - John W. Tobias
- Department of MedicinePerelman School of Medicine, Penn Genomics and Sequencing Core, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Daniel C. Farber
- McKay Orthopaedic LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Louis J. Soslowsky
- McKay Orthopaedic LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
25
|
Fu L, Du Y, Yang P, Hu J, Chen Q. Glucagon-like peptide-1 receptor agonist for patients with heart failure with preserved ejection fraction and obesity. Eur J Intern Med 2025:S0953-6205(25)00063-9. [PMID: 40000362 DOI: 10.1016/j.ejim.2025.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Affiliation(s)
- Linghua Fu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Yao Du
- Department of Cardiovascular Medicine, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Pingping Yang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China.
| | - Jinzhu Hu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China.
| | - Qi Chen
- Department of Cardiovascular Medicine, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
26
|
Filipski KJ, Martinez-Alsina LA, Reese MR, Evrard E, Buzon LM, Cameron KO, Zhang Y, Coffman KJ, Bradow J, Kormos BL, Liu S, Knafels JD, Sahasrabudhe PV, Chen J, Kalgutkar AS, Bessire AJ, Orozco CC, Balesano A, Cerny MA, Bollinger E, Reyes AR, Laforest B, Rosado A, Williams G, Marshall M, Tam Neale K, Chen X, Hirenallur-Shanthappa D, Stansfield JC, Groarke J, Qiu R, Karas S, Roth Flach RJ, Esler WP. Discovery of First Branched-Chain Ketoacid Dehydrogenase Kinase (BDK) Inhibitor Clinical Candidate PF-07328948. J Med Chem 2025; 68:2466-2482. [PMID: 39560668 DOI: 10.1021/acs.jmedchem.4c02230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Inhibition of branched-chain ketoacid dehydrogenase kinase (BDK or BCKDK), a negative regulator of branched-chain amino acid (BCAA) metabolism, is hypothesized to treat cardio-metabolic diseases. From a starting point with potential idiosyncratic toxicity risk, modification to a benzothiophene core and discovery of a cryptic pocket allowed for improved potency with 3-aryl substitution to arrive at PF-07328948, which was largely devoid of protein covalent binding liability. This BDK inhibitor was shown also to be a BDK degrader in cells and in vivo rodent studies. Plasma biomarkers, including BCAAs and branched-chain ketoacids (BCKAs), were lowered in vivo with enhanced pharmacodynamic effect upon chronic dosing due to BDK degradation. This molecule improves metabolic and heart failure end points in rodent models. PF-07328948 is the first known selective BDK inhibitor candidate to be examined in clinical studies, with Phase 1 single ascending dose data showing good tolerability and a pharmacokinetic profile commensurate with once-daily dosing.
Collapse
Affiliation(s)
- Kevin J Filipski
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Luis A Martinez-Alsina
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Matthew R Reese
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Edelweiss Evrard
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Leanne M Buzon
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kimberly O Cameron
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Yuan Zhang
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Karen J Coffman
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - James Bradow
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Bethany L Kormos
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Shenping Liu
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - John D Knafels
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Parag V Sahasrabudhe
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jie Chen
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Amit S Kalgutkar
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Andrew J Bessire
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christine C Orozco
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Amanda Balesano
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Matthew A Cerny
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Eliza Bollinger
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Allan R Reyes
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Brigitte Laforest
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Amy Rosado
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - George Williams
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Mackenzie Marshall
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Kelly Tam Neale
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Xian Chen
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | | | - John C Stansfield
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - John Groarke
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Ruolun Qiu
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Spinel Karas
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Rachel J Roth Flach
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - William P Esler
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
27
|
Fayyaz AU, Eltony M, Prokop LJ, Koepp KE, Borlaug BA, Dasari S, Bois MC, Margulies KB, Maleszewski JJ, Wang Y, Redfield MM. Pathophysiological insights into HFpEF from studies of human cardiac tissue. Nat Rev Cardiol 2025; 22:90-104. [PMID: 39198624 PMCID: PMC11750620 DOI: 10.1038/s41569-024-01067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/01/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major, worldwide health-care problem. Few therapies for HFpEF exist because the pathophysiology of this condition is poorly defined and, increasingly, postulated to be diverse. Although perturbations in other organs contribute to the clinical profile in HFpEF, altered cardiac structure, function or both are the primary causes of this heart failure syndrome. Therefore, studying myocardial tissue is fundamental to improve pathophysiological insights and therapeutic discovery in HFpEF. Most studies of myocardial changes in HFpEF have relied on cardiac tissue from animal models without (or with limited) confirmatory studies in human cardiac tissue. Animal models of HFpEF have evolved based on theoretical HFpEF aetiologies, but these models might not reflect the complex pathophysiology of human HFpEF. The focus of this Review is the pathophysiological insights gained from studies of human HFpEF myocardium. We outline the rationale for these studies, the challenges and opportunities in obtaining myocardial tissue from patients with HFpEF and relevant comparator groups, the analytical approaches, the pathophysiological insights gained to date and the remaining knowledge gaps. Our objective is to provide a roadmap for future studies of cardiac tissue from diverse cohorts of patients with HFpEF, coupling discovery biology with measures to account for pathophysiological diversity.
Collapse
Affiliation(s)
- Ahmed U Fayyaz
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Muhammad Eltony
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Larry J Prokop
- Mayo Clinic College of Medicine and Science, Library Reference Service, Rochester, MN, USA
| | - Katlyn E Koepp
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Barry A Borlaug
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Mayo Clinic College of Medicine and Science, Computational Biology, Rochester, MN, USA
| | - Melanie C Bois
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joesph J Maleszewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ying Wang
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Margaret M Redfield
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
28
|
Tan W, Wang Y, Cheng S, Liu Z, Xie M, Song L, Qiu Q, Wang X, Li Z, Liu T, Guo F, Wang J, Zhou X. AdipoRon ameliorates the progression of heart failure with preserved ejection fraction via mitigating lipid accumulation and fibrosis. J Adv Res 2025; 68:299-315. [PMID: 38382593 PMCID: PMC11785573 DOI: 10.1016/j.jare.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024] Open
Abstract
INTRODUCTION Obesity and imbalance in lipid homeostasis contribute greatly to heart failure with preserved ejection fraction (HFpEF), the dominant form of heart failure. Few effective therapies exist to control metabolic alterations and lipid homeostasis. OBJECTIVES We aimed to investigate the cardioprotective roles of AdipoRon, the adiponectin receptor agonist, in regulating lipid accumulation in the two-hit HFpEF model. METHODS HFpEF mouse model was induced using 60 % high-fat diet plus L-NAME drinking water. Then, AdipoRon (50 mg/kg) or vehicle were administered by gavage to the two-hit HFpEF mouse model once daily for 4 weeks. Cardiac function was evaluated using echocardiography, and Postmortem analysis included RNA-sequencing, untargeted metabolomics, transmission electron microscopy and molecular biology methods. RESULTS Our study presents the pioneering evidence that AdipoR was downregulated and impaired fatty acid oxidation in the myocardia of HFpEF mice, which was associated with lipid metabolism as indicated by untargeted metabolomics. AdipoRon, orally active synthetic adiponectin receptor agonist, could upregulate AdipoR1/2 (independently of adiponectin) and reduce lipid droplet accumulation, and alleviate fibrosis to restore HFpEF phenotypes. Finally, AdipoRon primarily exerted its effects through restoring the balance of myocardial fatty acid intake, transport, and oxidation via the downstream AMPKα or PPARα signaling pathways. The protective effects of AdipoRon in HFpEF mice were reversed by compound C and GW6471, inhibitors of AMPKα and PPARα, respectively. CONCLUSIONS AdipoRon ameliorated the HFpEF phenotype by promoting myocardial fatty acid oxidation, decreasing fatty acid transport, and inhibiting fibrosis via the upregulation of AdipoR and the activation of AdipoR1/AMPKα and AdipoR2/PPARα-related downstream pathways. These findings underscore the therapeutic potential of AdipoRon in HFpEF. Importantly, all these parameters get restored in the context of continued mechanical and metabolic stressors associated with HFpEF.
Collapse
Affiliation(s)
- Wuping Tan
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Yijun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Siyi Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Zhihao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Mengjie Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Lingpeng Song
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Qinfang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Xiaofei Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Zeyan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Tianyuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Fuding Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China.
| | - Jun Wang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China.
| | - Xiaoya Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China.
| |
Collapse
|
29
|
Chourasia S, Petucci C, Shoffler C, Abbasian D, Wang H, Han X, Sivan E, Brandis A, Mehlman T, Malitsky S, Itkin M, Sharp A, Rotkopf R, Dassa B, Regev L, Zaltsman Y, Gross A. MTCH2 controls energy demand and expenditure to fuel anabolism during adipogenesis. EMBO J 2025; 44:1007-1038. [PMID: 39753955 PMCID: PMC11832942 DOI: 10.1038/s44318-024-00335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 02/19/2025] Open
Abstract
Mitochondrial carrier homolog 2 (MTCH2) is a regulator of apoptosis, mitochondrial dynamics, and metabolism. Loss of MTCH2 results in mitochondrial fragmentation, an increase in whole-body energy utilization, and protection against diet-induced obesity. In this study, we used temporal metabolomics on HeLa cells to show that MTCH2 deletion results in a high ATP demand, an oxidized cellular environment, and elevated utilization of lipids, amino acids, and carbohydrates, accompanied by a decrease in several metabolites. Lipidomics analysis revealed a strategic adaptive reduction in membrane lipids and an increase in storage lipids in MTCH2 knockout cells. Importantly, MTCH2 knockout cells showed an increase in mitochondrial oxidative function, which may explain the higher energy demand. Interestingly, this imbalance in energy metabolism and reductive potential triggered by MTCH2-deletion prevents NIH3T3L1 preadipocytes from differentiating into mature adipocytes, an energy consuming reductive biosynthetic process. In summary, the loss of MTCH2 leads to increased mitochondrial oxidative activity and energy demand, creating a catabolic and oxidative environment that fails to fuel the anabolic processes required for lipid accumulation and adipocyte differentiation.
Collapse
Affiliation(s)
- Sabita Chourasia
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.
| | - Christopher Petucci
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Clarissa Shoffler
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dina Abbasian
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hu Wang
- Barshop Institute for Longevity and Aging Studies, and Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, and Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Ehud Sivan
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Alexander Brandis
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Tevie Mehlman
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Ayala Sharp
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Ron Rotkopf
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Bareket Dassa
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Limor Regev
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Yehudit Zaltsman
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Atan Gross
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
30
|
Ketema EB, Lopaschuk GD. The Impact of Obesity on Cardiac Energy Metabolism and Efficiency in Heart Failure With Preserved Ejection Fraction. Can J Cardiol 2025:S0828-282X(25)00099-6. [PMID: 39892611 DOI: 10.1016/j.cjca.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025] Open
Abstract
The incidence and prevalence of heart failure with preserved ejection fraction (HFpEF) continues to rise, and now comprises more than half of all heart failure cases. There are many risk factors for HFpEF, including older age, hypertension, diabetes, dyslipidemia, sedentary behaviour, and obesity. The rising prevalence of obesity in society is a particularly important contributor to HFpEF development and severity. Obesity can adversely affect the heart, including inducing marked alterations in cardiac energy metabolism. This includes obesity-induced impairments in mitochondrial function, and an increase in fatty acid uptake and mitochondrial fatty acid β-oxidation. This increase in myocardial fatty acid metabolism is accompanied by an impaired myocardial insulin signaling and a marked decrease in glucose oxidation. This switch from glucose to fatty acid metabolism decreases cardiac efficiency and can contribute to severity of HFpEF. Increased myocardial fatty acid uptake in obesity is also associated with the accumulation of fatty acids, resulting in cardiac lipotoxicity. Obesity also results in dramatic changes in the release of adipokines, which can negatively impact cardiac function and energy metabolism. Obesity-induced increases in epicardial fat can also increase cardiac insulin resistance and negatively affect cardiac energy metabolism and HFpEF. However, optimizing cardiac energy metabolism in obese subjects may be one approach to preventing and treating HFpEF. This review discusses what is presently known about the effects of obesity on cardiac energy metabolism and insulin signaling in HFpEF. The clinical implications of obesity and energy metabolism on HFpEF are also discussed.
Collapse
Affiliation(s)
- Ezra B Ketema
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada. https://twitter.com/Ketema
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
31
|
Doiron JE, Elbatreek MH, Xia H, Yu X, Gehred ND, Gromova T, Chen J, Driver IH, Muraoka N, Jensen M, Shambhu S, Tang WHW, LaPenna KB, Sharp TE, Goodchild TT, Xian M, Xu S, Quiriarte H, Allerton TD, Zagouras A, Wilcox J, Shah SJ, Pfeilschifter J, Beck KF, Vondriska TM, Li Z, Lefer DJ. Hydrogen Sulfide Deficiency and Therapeutic Targeting in Cardiometabolic HFpEF: Evidence for Synergistic Benefit with GLP-1/Glucagon Agonism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.16.613349. [PMID: 39345440 PMCID: PMC11429683 DOI: 10.1101/2024.09.16.613349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background Heart failure with preserved ejection fraction (HFpEF) is a significant public health concern with limited treatment options. Dysregulated nitric oxide-mediated signaling has been implicated in HFpEF pathophysiology, however, little is known about the role of endogenous hydrogen sulfide (H 2 S) in HFpEF. Objectives This study evaluated H 2 S bioavailability in patients and two animal models of cardiometabolic HFpEF and assessed the impact of H 2 S on HFpEF severity through alterations in endogenous H 2 S production and pharmacological supplementation. We also evaluated the effects of the H 2 S donor, diallyl trisulfide (DATS) in combination with the GLP-1/glucagon receptor agonist, survodutide, in HFpEF. Methods HFpEF patients and two rodent models of HFpEF ("two-hit" L-NAME + HFD mouse and ZSF1 obese rat) were evaluated for H 2 S bioavailability. Two cohorts of two-hit mice were investigated for changes in HFpEF pathophysiology: (1) endothelial cell cystathionine-γ-lyase (EC-CSE) knockout; (2) H 2 S donor, JK-1, supplementation. DATS and survodutide combination therapy was tested in ZSF1 obese rats. Results H 2 S levels were significantly reduced (i.e., 81%) in human HFpEF patients and in both preclinical HFpEF models. This depletion was associated with reduced CSE expression and activity, and increased SQR expression. Genetic knockout of H 2 S -generating enzyme, CSE, worsened HFpEF characteristics, including elevated E/e' ratio and LVEDP, impaired aortic vasorelaxation and increased mortality. Pharmacologic H 2 S supplementation restored H 2 S bioavailability, improved diastolic function and attenuated cardiac fibrosis corroborating an improved HFpEF phenotype. DATS synergized with survodutide to attenuate obesity, improve diastolic function, exercise capacity, and reduce oxidative stress and cardiac fibrosis. Conclusions H 2 S deficiency is evident in HFpEF patients and conserved across multiple preclinical HFpEF models. Increasing H 2 S bioavailability improved cardiovascular function, while knockout of endogenous H 2 S production exacerbated HFpEF pathology and mortality. These results suggest H 2 S dysregulation contributes to HFpEF and increasing H 2 S bioavailability may represent a novel therapeutic strategy for HFpEF. Furthermore, our data demonstrate that combining H 2 S supplementation with GLP-1/glucagon receptor agonist may provide synergistic benefits in improving HFpEF outcomes. Highlights H 2 S deficiency is evident in both human HFpEF patients and two clinically relevant models. Reduced H 2 S production by CSE and increased metabolism by SQR impair H 2 S bioavailability in HFpEF. Pharmacological H 2 S supplementation improves diastolic function and reduces cardiac fibrosis in HFpEF models. Targeting H 2 S dysregulation presents a novel therapeutic strategy for managing HFpEF. H 2 S synergizes with GLP-1/glucagon agonist and ameliorates HFpEF.
Collapse
|
32
|
Ni W, Jiang R, Xu D, Zhu J, Chen J, Lin Y, Zhou H. Association between insulin resistance indices and outcomes in patients with heart failure with preserved ejection fraction. Cardiovasc Diabetol 2025; 24:32. [PMID: 39844150 PMCID: PMC11755915 DOI: 10.1186/s12933-025-02595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/11/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Insulin resistance (IR) plays a pivotal role in the interplay between metabolic disorders and heart failure with preserved ejection fraction (HFpEF). Various non-insulin-based indices emerge as reliable surrogate markers for assessing IR, including the triglyceride-glucose (TyG) index, the TyG index with body mass index (TyG-BMI), atherogenic index of plasma (AIP), and the metabolic score for insulin resistance (METS-IR). However, the ability of different IR indices to predict outcome in HFpEF patients has not been extensively explored. METHODS Patients having HFpEF were recruited from January 2012 and December 2023. The outcome was defined as major adverse cardiovascular event (MACE), encompassing all-cause mortality and rehospitalization for heart failure. The potential linear relationship was visualized by the restricted cubic spline (RCS) curve. Both univariable and multivariable Cox proportional hazards models were employed to examine the association between the IR indexes and MACE. Furthermore, to assess the incremental prognostic value of the TyG index, we conducted comprehensive analyses using area under the curve (AUC), the continuous net reclassification index (cNRI), and the integrated discrimination index (IDI). RESULTS A total of 8693 patients met the inclusion criteria and were included in the final analysis. The mean age of the patients was 70.59 ± 10.6 years, with 5045 (58.04%) being male. The Kaplan-Meier survival analysis revealed that higher degree of the four IR indexes was associated with higher risk of MACE (all log-rank P < 0.05). When treated as a continuous variable, the TyG index showed a significant association with MACE (HR 2.1, 95% CI 1.98-2.23, P < 0.001 in model 1; HR 1.81, 95% CI 1.73-1.9, P < 0.001 in model 2; HR 1.68, 95% CI 1.6-1.76, P < 0.001 in model 3). When categorized into quartiles, the highest quartile of the TyG index (Q4) was significantly associated with MACE (HR 2.48, 95% CI 2.24-2.76, P < 0.001 in model 3). Similar significant associations were found between TyG-BMI, AIP, METS-IR, and MACE. The TyG index was found to enhance the risk stratification capability of the MAGGIC score (AUC from 0.601 to 0.666). When compared to other IR indicators, the TyG index exhibited superior discrimination and reclassification abilities in predicting MACE. Additionally, the TyG-BMI index revealed a U-shaped correlation with MACE, indicating that both an elevated and a lower TyG-BMI index were associated with an increased risk. CONCLUSION All four IR indices are independently associated with MACE in patients with HFpEF. Notably, these IR indices significantly enhance the predictive accuracy of the MAGGIC score, a widely used risk assessment tool in HFpEF. Among these indices, the TyG index demonstrated the highest discriminatory and reclassification abilities, providing the greatest incremental value in predicting MACE and exhibiting significant superiority compared to the other indices. These findings highlight the importance of assessing IR indices, particularly the TyG index, in the risk assessment and management strategies for HFpEF patients. However, it should be noted that our findings need to be validated in diverse populations to ensure their applicability and generalizability.
Collapse
Affiliation(s)
- Weicheng Ni
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang Avenue, Ouhai District, Wenzhou, 325000, China
| | - Ruihao Jiang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang Avenue, Ouhai District, Wenzhou, 325000, China
| | - Di Xu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang Avenue, Ouhai District, Wenzhou, 325000, China
| | - Jianhan Zhu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang Avenue, Ouhai District, Wenzhou, 325000, China
| | - Jing Chen
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang Avenue, Ouhai District, Wenzhou, 325000, China
| | - Yuanzhen Lin
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang Avenue, Ouhai District, Wenzhou, 325000, China
| | - Hao Zhou
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang Avenue, Ouhai District, Wenzhou, 325000, China.
| |
Collapse
|
33
|
He L, Zhu M, Yin R, Dai L, Chen J, Zhou J. Baicalin Mitigates Cardiac Hypertrophy and Fibrosis by Inhibiting the p85a Subunit of PI3K. Biomedicines 2025; 13:232. [PMID: 39857815 PMCID: PMC11763245 DOI: 10.3390/biomedicines13010232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Heart failure (HF) is a serious public health concern. Baicalin is one of the major active ingredients of a traditional Chinese herbal medicine, Huang Qin, which is used to treat patients with chest pain or cardiac discomfort. However, the underlying mechanism(s) of the cardioprotective effect of baicalin are still not fully understood. Methods: Isoprenaline injection or transverse aortic constriction-induced animal models and isoprenaline or angiotensin 2 administration-induced cell models of heart failure were established. Baicalin (15 mg/kg/day or 25 mg/kg/day) was administered in vivo, and 10 μM baicalin was administered in vitro. Potential pharmacological targets of baicalin and genes related to heart failure were identified via different databases, which suggested that PI3K-Akt may be involved in the effects of baicalin. Molecular docking was carried out to reveal the effect of baicalin on p85a. Results: We observed significant antihypertrophic and antifibrotic effects of baicalin both in vivo and in vitro. The mean cross-sectional area of cardiomyocytes recovered from 390 μm2 in the HF group to 195 μm2 in the baicalin-treated group. The area of fibrosis was reduced from 2.8-fold in the HF group to 1.62-fold in the baicalin-treated group. Baicalin displayed a significant cardioprotective effect via the inhibition of the PI3K signaling pathway by binding with five amino acid residues of the p85a regulatory subunit of PI3K. The combination treatment of baicalin and an inhibitor of PI3K p110 demonstrated a stronger cardioprotective effect. The mean ejection fraction increased from 54% in the baicalin-treated group to 67% in the combination treatment group. Conclusions: Our work identified baicalin as a new active herbal ingredient that is able to treat isoprenaline-induced heart dysfunction and suggests that p85a is a pharmacological target. These findings reveal the significant potential of baicalin combined with an inhibitor of PI3K p110 for the treatment of heart failure and support more clinical trials in the future.
Collapse
Affiliation(s)
- Lu He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.H.); (M.Z.); (R.Y.); (L.D.)
- Division of Neonatology, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Min Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.H.); (M.Z.); (R.Y.); (L.D.)
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.H.); (M.Z.); (R.Y.); (L.D.)
| | - Liangli Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.H.); (M.Z.); (R.Y.); (L.D.)
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.H.); (M.Z.); (R.Y.); (L.D.)
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.H.); (M.Z.); (R.Y.); (L.D.)
| |
Collapse
|
34
|
Fuerlinger A, Stockner A, Sedej S, Abdellatif M. Caloric restriction and its mimetics in heart failure with preserved ejection fraction: mechanisms and therapeutic potential. Cardiovasc Diabetol 2025; 24:21. [PMID: 39827109 PMCID: PMC11742808 DOI: 10.1186/s12933-024-02566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025] Open
Abstract
The global increase in human life expectancy, coupled with an unprecedented rise in the prevalence of obesity, has led to a growing clinical and socioeconomic burden of heart failure with preserved ejection fraction (HFpEF). Mechanistically, the molecular and cellular hallmarks of aging are omnipresent in HFpEF and are further exacerbated by obesity and associated metabolic diseases. Conversely, weight loss strategies, particularly caloric restriction, have shown promise in improving health status in patients with HFpEF and are considered the gold standard for promoting longevity and healthspan (disease-free lifetime) in model organisms. In this review, we implicate fundamental mechanisms of aging in driving HFpEF and elucidate how caloric restriction mitigates the disease progression. Furthermore, we discuss the potential for pharmacologically mimicking the beneficial effects of caloric restriction in HFpEF using clinically approved and emerging caloric restriction mimetics. We surmise that these compounds could offer novel therapeutic avenues for HFpEF and alleviate the challenges associated with the implementation of caloric restriction and other lifestyle modifications to reduce the burden of HFpEF at a population level.
Collapse
Affiliation(s)
- Alexander Fuerlinger
- Department of Cardiology, Medical University of Graz, 8036, Graz, Austria
- BioTechMed-Graz, 8010, Graz, Austria
| | - Alina Stockner
- Department of Cardiology, Medical University of Graz, 8036, Graz, Austria
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, 8036, Graz, Austria
- BioTechMed-Graz, 8010, Graz, Austria
- Faculty of Medicine, University of Maribor, 2000, Maribor, Slovenia
| | - Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, 8036, Graz, Austria.
- BioTechMed-Graz, 8010, Graz, Austria.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805, Villejuif, France.
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, 75006, France.
| |
Collapse
|
35
|
Jie H, Zhang J, Wu S, Yu L, Li S, Dong B, Yan F. Interplay between energy metabolism and NADPH oxidase-mediated pathophysiology in cardiovascular diseases. Front Pharmacol 2025; 15:1503824. [PMID: 39867658 PMCID: PMC11757639 DOI: 10.3389/fphar.2024.1503824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Sustained production of reactive oxygen species (ROS) and an imbalance in the antioxidant system have been implicated in the development of cardiovascular diseases (CVD), especially when combined with diabetes, hypercholesterolemia, and other metabolic disorders. Among them, NADPH oxidases (NOX), including NOX1-5, are major sources of ROS that mediate redox signaling in both physiological and pathological processes, including fibrosis, hypertrophy, and remodeling. Recent studies have demonstrated that mitochondria produce more proteins and energy in response to adverse stress, corresponding with an increase in superoxide radical anions. Novel NOX4-mediated modulatory mechanisms are considered crucial for maintaining energy metabolism homeostasis during pathological states. In this review, we integrate the latest data to elaborate on the interactions between oxidative stress and energy metabolism in various CVD, aiming to elucidate the higher incidence of CVD in individuals with metabolic disorders. Furthermore, the correlations between NOX and ferroptosis, based on energy metabolism, are preliminarily discussed. Further discoveries of these mechanisms might promote the development of novel therapeutic drugs targeting NOX and their crosstalk with energy metabolism, potentially offering efficient management strategies for CVD.
Collapse
Affiliation(s)
- Haipeng Jie
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingjing Zhang
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuzhen Wu
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Luyao Yu
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shengnan Li
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Yan
- Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
36
|
Berger JH, Shi Y, Matsuura TR, Batmanov K, Chen X, Tam K, Marshall M, Kue R, Patel J, Taing R, Callaway R, Griffin J, Kovacs A, Hirenallur-Shanthappa D, Miller R, Zhang BB, Flach RJR, Kelly DP. Two-hit mouse model of heart failure with preserved ejection fraction combining diet-induced obesity and renin-mediated hypertension. Sci Rep 2025; 15:422. [PMID: 39747575 PMCID: PMC11696687 DOI: 10.1038/s41598-024-84515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is increasingly common but its pathogenesis is poorly understood. The ability to assess genetic and pharmacologic interventions is hampered by the lack of robust preclinical mouse models of HFpEF. We developed a novel "two-hit" model, which combines obesity and insulin resistance with chronic pressure overload to recapitulate clinical features of HFpEF. C57Bl6/NJ mice fed a high-fat diet (HFD) for > 10 weeks were administered an AAV8-driven vector resulting in constitutive overexpression of mouse Renin1d. HFD-Renin (aka "HFpEF") mice demonstrated obesity and insulin resistance, moderate left ventricular hypertrophy, preserved systolic function, and diastolic dysfunction indicated by echocardiographic measurements; increased left atrial mass; elevated natriuretic peptides; and exercise intolerance. Transcriptomic and metabolomic profiling of HFD-Renin myocardium demonstrated upregulation of pro-fibrotic pathways and downregulation of metabolic pathways, in particular branched chain amino acid catabolism, similar to human HFpEF. Treatment with empagliflozin, an effective but incompletely understood HFpEF therapy, improved multiple endpoints. The HFD-Renin mouse model recapitulates key features of human HFpEF and will enable studies dissecting the contribution of individual pathogenic drivers to this complex syndrome. Additional preclinical HFpEF models allow for orthogonal studies to increase validity in assessment of interventions.
Collapse
Affiliation(s)
- Justin H Berger
- Cardiovascular Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclide, MSC 8116-0043-08, St. Louis, MO, 63110, USA.
| | - Yuji Shi
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, Cambridge, USA
| | - Timothy R Matsuura
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirill Batmanov
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xian Chen
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclide, MSC 8116-0043-08, St. Louis, MO, 63110, USA
| | - Kelly Tam
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, Cambridge, USA
| | - Mackenzie Marshall
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, Cambridge, USA
| | - Richard Kue
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, Cambridge, USA
| | - Jiten Patel
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Renee Taing
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell Callaway
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joanna Griffin
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Attila Kovacs
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Russell Miller
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, Cambridge, USA
| | - Bei B Zhang
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, Cambridge, USA
| | - Rachel J Roth Flach
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, Cambridge, USA
| | - Daniel P Kelly
- Cardiovascular Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
37
|
Thorp EB, Filipp M. Contributions of Inflammation to Cardiometabolic Heart Failure with Preserved Ejection Fraction. ANNUAL REVIEW OF PATHOLOGY 2025; 20:143-167. [PMID: 39357068 DOI: 10.1146/annurev-pathmechdis-111523-023405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The most common form of heart failure is heart failure with preserved ejection fraction (HFpEF). While heterogeneous in origin, the most common form of HFpEF is the cardiometabolic manifestation. Obesity and aging promote systemic inflammation that appears integral to cardiometabolic HFpEF pathophysiology. Accumulation of immune cells within the heart, fueled by an altered metabolome, contribute to cardiac inflammation and fibrosis. In spite of this, broad anti-inflammatory therapy has not shown significant benefit in patient outcomes. Thus, understanding of the nuances to metabolic and age-related inflammation during HFpEF is paramount for more targeted interventions. Here, we review clinical evidence of inflammation in the context of HFpEF and summarize our mechanistic understanding of immunometabolic inflammation, highlighting pathways of therapeutic potential along the way.
Collapse
Affiliation(s)
- Edward B Thorp
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; ,
| | - Mallory Filipp
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; ,
| |
Collapse
|
38
|
He H, Huang W, Pan Z, Wang L, Yang Z, Chen Z. Intercellular Mitochondrial transfer: Therapeutic implications for energy metabolism in heart failure. Pharmacol Res 2025; 211:107555. [PMID: 39710083 DOI: 10.1016/j.phrs.2024.107555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Heart failure (HF) remains one of the leading causes of high morbidity and mortality globally. Impaired cardiac energy metabolism plays a critical role in the pathological progression of HF. Various forms of HF exhibit marked differences in energy metabolism, particularly in mitochondrial function and substrate utilization. Recent studies have increasingly highlighted that improving energy metabolism in HF patients as a crucial treatment strategy. Mitochondrial transfer is emerging as a promising and precisely regulated therapeutic strategy for treating metabolic disorders. This paper specifically reviews the characteristics of mitochondrial energy metabolism across different types of HF and explores the modes and mechanisms of mitochondrial transfer between different cell types in the heart, such as cardiomyocytes, fibroblasts, and immune cells. We focused on the therapeutic potential of intercellular mitochondrial transfer in improving energy metabolism disorders in HF. We also discuss the role of signal transduction in mitochondrial transfer, highlighting that mitochondria not only function as energy factories but also play crucial roles in intercellular communication, metabolic regulation, and tissue repair. This study provides new insights into improving energy metabolism in heart failure patients and proposes promising new therapeutic strategies.
Collapse
Affiliation(s)
- Huan He
- State Key Laboratory of Traditional Chinese Medicine Syndrome, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Weiwei Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Zigang Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Lingjun Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Zhongqi Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China.
| | - Zixin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China.
| |
Collapse
|
39
|
Wang TY, Yang Q, Cheng XY, Ding JC, Hu PF. Beyond weight loss: the potential of glucagon-like peptide-1 receptor agonists for treating heart failure with preserved ejection fraction. Heart Fail Rev 2025; 30:17-38. [PMID: 39269643 DOI: 10.1007/s10741-024-10438-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome with various phenotypes, and obesity is one of the most common and clinically relevant phenotypes of HFpEF. Obesity contributes to HFpEF through multiple mechanisms, including sodium retention, neurohormonal dysregulation, altered energy substrate metabolism, expansion of visceral adipose tissue, and low-grade systemic inflammation. Glucagon-like peptide-1 (GLP-1) is a hormone in the incretin family. It is produced by specialized cells called neuroendocrine L cells located in the distal ileum and colon. GLP-1 reduces blood glucose levels by promoting glucose-dependent insulin secretion from pancreatic β cells, suppressing glucagon release from pancreatic α cells, and blocking hepatic gluconeogenesis. Recent evidence suggests that GLP-1 receptor agonists (GLP-1 RAs) can significantly improve physical activity limitations and exercise capacity in obese patients with HFpEF. The possible cardioprotective mechanisms of GLP-1 RAs include reducing epicardial fat tissue thickness, preventing activation of the renin-angiotensin-aldosterone system, improving myocardial energy metabolism, reducing systemic inflammation and cardiac oxidative stress, and delaying the progression of atherosclerosis. This review examines the impact of obesity on the underlying mechanisms of HFpEF, summarizes the trial data on cardiovascular outcomes of GLP-1 RAs in patients with type 2 diabetes mellitus, and highlights the potential cardioprotective mechanisms of GLP-1 RAs to give a pathophysiological and clinical rationale for using GLP-1 RAs in obese HFpEF patients.
Collapse
Affiliation(s)
- Tian-Yu Wang
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Yang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin-Yi Cheng
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun-Can Ding
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peng-Fei Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
40
|
Zhou L, Mei S, Ma X, Wuyun Q, Cai Z, Chen C, Ding H, Yan J. Multi-omics insights into the pathogenesis of diabetic cardiomyopathy: epigenetic and metabolic profiles. Epigenomics 2025; 17:33-48. [PMID: 39623870 PMCID: PMC11727868 DOI: 10.1080/17501911.2024.2435257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
AIM Diabetic cardiomyopathy (DbCM), a complex metabolic disease, greatly threatens human health due to therapeutic limitations. Multi-omics approaches facilitate the elucidation of its intrinsic pathological changes. METHODS Metabolomics, RNA-seq, proteomics, and assay of transposase-accessible chromatin (ATAC-seq) were utilized to elucidate multidimensional molecular alterations in DbCM. RESULTS In the heart and plasma of mice with DbCM, metabolomic analysis demonstrated significant differences in branched-chain amino acids (BCAAs) and lipids. Subsequent RNA-seq and proteomics showed that the key genes, including BCKDHB, PPM1K, Cpt1b, Fabp4, Acadm, Acadl, Acadvl, HADH, HADHA, HADHB, Eci1, Eci2, PDK4, and HMGCS2, were aberrantly regulated, contributing to the disorder of BCAAs and fatty acids. ATAC-seq analysis underscored the pivotal role of epigenetic regulation by revealing dynamic shifts in chromatin accessibility and a robust positive correlation with gene expression patterns in diabetic cardiomyopathy mice. Furthermore, motif analysis identified that KLF15 as a critical transcription factor in DbCM, regulating the core genes implicated with BCAAs metabolism. CONCLUSION Our research delved into the metabolic alterations and epigenetic landscape and revealed that KLF15 may be a promising candidate for therapeutic intervention in DbCM.
Collapse
Affiliation(s)
- Li Zhou
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Shuai Mei
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xiaozhu Ma
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Qidamugai Wuyun
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ziyang Cai
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chen Chen
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jiangtao Yan
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
41
|
Alhasan KA, King MA, Pattar BSB, Lewis IA, Lopaschuk GD, Greenway SC. Anaplerotic filling in heart failure: a review of mechanism and potential therapeutics. Cardiovasc Res 2024; 120:2166-2178. [PMID: 39570879 PMCID: PMC11687400 DOI: 10.1093/cvr/cvae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/08/2024] [Accepted: 11/12/2024] [Indexed: 01/01/2025] Open
Abstract
Heart failure (HF) is a complex syndrome and a leading cause of mortality worldwide. While current medical treatment is based on known pathophysiology and is effective for many patients, the underlying cellular mechanisms are poorly understood. Energy deficiency is a characteristic of HF, marked by complex alterations in metabolism. Within the tricarboxylic acid cycle, anaplerosis emerges as an essential metabolic process responsible for replenishing lost intermediates, thereby playing a crucial role in sustaining energy metabolism and consequently cardiac function. Alterations in cardiac anaplerosis are commonly observed in HF, demonstrating potential for therapeutic intervention. This review discusses recent advances in understanding the anaplerotic adaptations that occur in HF. We also explore therapeutics that can directly modulate anaplerosis or are likely to confer cardioprotective effects through anaplerosis, which could potentially be implemented to rescue the failing heart.
Collapse
Affiliation(s)
- Karm A Alhasan
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
- Department of Pediatrics and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 1N4
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Melissa A King
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Badal S B Pattar
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Ian A Lewis
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada T6G 2S2
| | - Steven C Greenway
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
- Department of Pediatrics and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 1N4
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| |
Collapse
|
42
|
Sun Q, Karwi QG, Wong N, Lopaschuk GD. Advances in myocardial energy metabolism: metabolic remodelling in heart failure and beyond. Cardiovasc Res 2024; 120:1996-2016. [PMID: 39453987 PMCID: PMC11646102 DOI: 10.1093/cvr/cvae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 07/03/2024] [Indexed: 10/27/2024] Open
Abstract
The very high energy demand of the heart is primarily met by adenosine triphosphate (ATP) production from mitochondrial oxidative phosphorylation, with glycolysis providing a smaller amount of ATP production. This ATP production is markedly altered in heart failure, primarily due to a decrease in mitochondrial oxidative metabolism. Although an increase in glycolytic ATP production partly compensates for the decrease in mitochondrial ATP production, the failing heart faces an energy deficit that contributes to the severity of contractile dysfunction. The relative contribution of the different fuels for mitochondrial ATP production dramatically changes in the failing heart, which depends to a large extent on the type of heart failure. A common metabolic defect in all forms of heart failure [including heart failure with reduced ejection fraction (HFrEF), heart failure with preserved EF (HFpEF), and diabetic cardiomyopathies] is a decrease in mitochondrial oxidation of pyruvate originating from glucose (i.e. glucose oxidation). This decrease in glucose oxidation occurs regardless of whether glycolysis is increased, resulting in an uncoupling of glycolysis from glucose oxidation that can decrease cardiac efficiency. The mitochondrial oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in HFpEF and diabetic cardiomyopathies myocardial fatty acid oxidation increases, while in HFrEF myocardial fatty acid oxidation either decreases or remains unchanged. The oxidation of ketones (which provides the failing heart with an important energy source) also differs depending on the type of heart failure, being increased in HFrEF, and decreased in HFpEF and diabetic cardiomyopathies. The alterations in mitochondrial oxidative metabolism and glycolysis in the failing heart are due to transcriptional changes in key enzymes involved in the metabolic pathways, as well as alterations in redox state, metabolic signalling and post-translational epigenetic changes in energy metabolic enzymes. Of importance, targeting the mitochondrial energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac function and cardiac efficiency in the failing heart.
Collapse
Affiliation(s)
- Qiuyu Sun
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John’s, NL A1B 3V6, Canada
| | - Nathan Wong
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
43
|
Ng YH, Koay YC, Marques FZ, Kaye DM, O’Sullivan JF. Leveraging metabolism for better outcomes in heart failure. Cardiovasc Res 2024; 120:1835-1850. [PMID: 39351766 PMCID: PMC11630082 DOI: 10.1093/cvr/cvae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/26/2024] [Accepted: 08/07/2024] [Indexed: 12/11/2024] Open
Abstract
Whilst metabolic inflexibility and substrate constraint have been observed in heart failure for many years, their exact causal role remains controversial. In parallel, many of our fundamental assumptions about cardiac fuel use are now being challenged like never before. For example, the emergence of sodium-glucose cotransporter 2 inhibitor therapy as one of the four 'pillars' of heart failure therapy is causing a revisit of metabolism as a key mechanism and therapeutic target in heart failure. Improvements in the field of cardiac metabolomics will lead to a far more granular understanding of the mechanisms underpinning normal and abnormal human cardiac fuel use, an appreciation of drug action, and novel therapeutic strategies. Technological advances and expanding biorepositories offer exciting opportunities to elucidate the novel aspects of these metabolic mechanisms. Methodologic advances include comprehensive and accurate substrate quantitation such as metabolomics and stable-isotope fluxomics, improved access to arterio-venous blood samples across the heart to determine fuel consumption and energy conversion, high quality cardiac tissue biopsies, biochemical analytics, and informatics. Pairing these technologies with recent discoveries in epigenetic regulation, mitochondrial dynamics, and organ-microbiome metabolic crosstalk will garner critical mechanistic insights in heart failure. In this state-of-the-art review, we focus on new metabolic insights, with an eye on emerging metabolic strategies for heart failure. Our synthesis of the field will be valuable for a diverse audience with an interest in cardiac metabolism.
Collapse
Affiliation(s)
- Yann Huey Ng
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room 3E71 D17, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Office 3E72, Camperdown, NSW 2006, Australia
| | - Yen Chin Koay
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room 3E71 D17, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Office 3E72, Camperdown, NSW 2006, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC 3800, Australia
- Victorian Heart Institute, Monash University, Melbourne, VIC 3800, Australia
| | - David M Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC 3800, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC 3004, Australia
- Monash-Alfred-Baker Centre for Cardiovascular Research, Monash University, Melbourne, VIC 3800, Australia
| | - John F O’Sullivan
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room 3E71 D17, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Office 3E72, Camperdown, NSW 2006, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Department of Medicine, Technische Univeristat Dresden, 01062 Dresden, Germany
| |
Collapse
|
44
|
Chang CY, Chen CC, Tsai ML, Hsieh MJ, Chen TH, Chen SW, Chang SH, Chu PH, Hsieh IC, Wen MS, Chen DY. Predicting Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction by Using Machine Learning. JACC. ASIA 2024; 4:956-968. [PMID: 39802984 PMCID: PMC11711994 DOI: 10.1016/j.jacasi.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/19/2024] [Accepted: 09/08/2024] [Indexed: 01/16/2025]
Abstract
Background Few studies have incorporated echocardiography and laboratory data to predict clinical outcomes in heart failure with preserved ejection fraction (HFpEF). Objectives This study aimed to use machine learning to find predictors of heart failure (HF) hospitalization and cardiovascular (CV) death in HFpEF. Methods From the Chang Gung Research Database in Taiwan, 6,092 HFpEF patients (2,898 derivation, 3,194 validation) identified between 2008 and 2017 were followed until 2019. A random survival forest model, using 58 variables, was developed to predict the composite outcome of HF hospitalization and CV death. Results During 2.9-year follow-up, 37.7% of derivation and 36.0% of validation cohort patients experienced HF hospitalization or CV death. The study identified 15 predictive indicators, including age ≥65 years, B-type natriuretic peptide level ≥600 pg/mL, left atrium size ≥46 mm, atrial fibrillation, frequency of HF hospitalization within 3 years, body mass index <30 kg/m2, moderate or severe mitral regurgitation, left ventricular (LV) posterior wall thickness of <10 or ≥13 mm, dysnatremia, LV end-diastolic dimension of <40 or ≥56 mm, uric acid level ≥7 mg/dL, triglyceride level of <70 or ≥200 mg/dL, blood urea nitrogen level ≥20 mg/dL, interventricular septum thickness of <11 or ≥20 mm, and glycated hemoglobin (HbA1c) level of <6% or ≥8%. The random survival forest model demonstrated robust external generalizability with an 86.9% area under curve in validation. Conclusions Machine learning identified 15 predictors of HF hospitalization and CV death in HFpEF patients, helping doctors identify high-risk individuals for tailored treatment.
Collapse
Affiliation(s)
- Chieh-Yu Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chun-Chi Chen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ming-Lung Tsai
- Division of Cardiology, New Taipei Municipal TuCheng Hospital, Taiwan, and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ming-Jer Hsieh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tien-Hsing Chen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Keelung, and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shao-Wei Chen
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital at Linkou, and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Center for Big Data Analytics and Statistics, Department of Medical Research and Development, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shang-Hung Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Pao-Hsien Chu
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - I-Chang Hsieh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ming-Shien Wen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Dong-Yi Chen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, and Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
45
|
Sharma G, Chaurasia SS, Carlson MA, Mishra PK. Recent advances associated with cardiometabolic remodeling in diabetes-induced heart failure. Am J Physiol Heart Circ Physiol 2024; 327:H1327-H1342. [PMID: 39453429 PMCID: PMC11684949 DOI: 10.1152/ajpheart.00539.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Diabetes mellitus (DM) is characterized by chronic hyperglycemia, and despite intensive glycemic control, the risk of heart failure in patients with diabetes remains high. Diabetes-induced heart failure (DHF) presents a unique metabolic challenge, driven by significant alterations in cardiac substrate metabolism, including increased reliance on fatty acid oxidation, reduced glucose utilization, and impaired mitochondrial function. These metabolic alterations lead to oxidative stress, lipotoxicity, and energy deficits, contributing to the progression of heart failure. Emerging research has identified novel mechanisms involved in the metabolic remodeling of diabetic hearts, such as autophagy dysregulation, epigenetic modifications, polyamine regulation, and branched-chain amino acid (BCAA) metabolism. These processes exacerbate mitochondrial dysfunction and metabolic inflexibility, further impairing cardiac function. Therapeutic interventions targeting these pathways-such as enhancing glucose oxidation, modulating fatty acid metabolism, and optimizing ketone body utilization-show promise in restoring metabolic homeostasis and improving cardiac outcomes. This review explores the key molecular mechanisms driving metabolic remodeling in diabetic hearts, highlights advanced methodologies, and presents the latest therapeutic strategies for mitigating the progression of DHF. Understanding these emerging pathways offers new opportunities to develop targeted therapies that address the root metabolic causes of heart failure in diabetes.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Cardiovascular and Thoracic Surgery, UT Southwestern Medical Center, Dallas, Texas, United States
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, United States
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Shyam S Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department Ophthalmology & Visual Sciences, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Mark A Carlson
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| |
Collapse
|
46
|
Chang JWH, Chen S, Hamilton C, Shanks J, Pachen M, Pauza A, George B, Ramchandra R. Characterization of a novel ovine model of hypertensive heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 2024; 327:H1490-H1502. [PMID: 39546298 PMCID: PMC11684944 DOI: 10.1152/ajpheart.00548.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
The lack of animal models that accurately represent heart failure with preserved ejection fraction (HFpEF) has been a major barrier to the mechanistic understanding and development of effective therapies for this prevalent and debilitating syndrome characterized by multisystem impairments. Herein, we describe the development and characterization of a novel large animal model of HFpEF in older, female sheep with chronic 2-kidney, 1-clip hypertension. At 6-wk post unilateral renal artery clipping, hypertensive HFpEF sheep had higher mean arterial pressure compared with similarly aged ewes without unilateral renal artery clipping (mean arterial pressure = 112.7 ± 15.9 vs. 76.0 ± 10.1 mmHg, P < 0.0001). The hypertensive HFpEF sheep were characterized by 1) echocardiographic evidence of diastolic dysfunction (lateral e' = 0.11 ± 0.02 vs. 0.14 ± 0.04 m/s, P = 0.011; lateral E/e' = 4.25 ± 0.77 vs. 3.63 ± 0.54, P = 0.028) and concentric left ventricular hypertrophy without overt systolic impairment, 2) elevated directly measured left ventricular end-diastolic pressure (13 ± 5 vs. 0.5 ± 1 mmHg, P = 2.1 × 10-6), and 3) normal directly measured cardiac output. Crucially, these hypertensive HFpEF sheep had impaired exercise capacity as demonstrated by their 1) attenuated cardiac output (P = 0.001), 2) augmented pulmonary capillary wedge pressure (P = 0.026), and 3) attenuated hindlimb blood flow (P = 3.4 × 10-4) responses, during graded treadmill exercise testing. In addition, exercise renal blood flow responses were also altered. Collectively, our data indicates that this novel ovine model of HFpEF may be a useful translational research tool because it exhibits similar and clinically relevant impairments as that of patients with HFpEF.NEW & NOTEWORTHY We show that older, female sheep with chronic 2-kidney, 1-clip hypertension have similar cardiac and noncardiac exercise hemodynamic abnormalities as patients with HFpEF. This clinically relevant, translatable, and novel large animal model of HFpEF may be useful for elucidating mechanisms and developing treatments for this increasingly common syndrome with few clinically impactful therapies.
Collapse
Affiliation(s)
- Joshua W-H Chang
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Siyi Chen
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Charlotte Hamilton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Julia Shanks
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Mridula Pachen
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Audrys Pauza
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Bindu George
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Rohit Ramchandra
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
47
|
Moraña-Fernández S, Vázquez-Abuín X, Aragón-Herrera A, Anido-Varela L, García-Seara J, Otero-García Ó, Rodríguez-Penas D, Campos-Toimil M, Otero-Santiago M, Rodrigues A, Gonçalves A, Pereira Morais J, Alves IN, Sousa-Mendes C, Falcão-Pires I, González-Juanatey JR, Feijóo-Bandín S, Lago F. Cardiometabolic effects of sacubitril/valsartan in a rat model of heart failure with preserved ejection fraction. Biochem Pharmacol 2024; 230:116571. [PMID: 39424202 DOI: 10.1016/j.bcp.2024.116571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/30/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
The promising results obtained in the PARADIGM-HF trial prompted the approval of sacubitril/valsartan (SAC/VAL) as a first-in-class treatment for heart failure with reduced ejection fraction (HFrEF) patients. The effect of SAC/VAL treatment was also studied in patients with heart failure with preserved ejection fraction (HFpEF) and, although improvements in New York Heart Association (NYHA) class, HF hospitalizations, and cardiovascular deaths were observed, these results were not so promising. However, the demand for HFpEF therapies led to the approval of SAC/VAL as an alternative treatment, although further studies are needed. We aimed to elucidate the effects of a 9-week SAC/VAL treatment in cardiac function and metabolism using a preclinical model of HFpEF, the Zucker Fatty and Spontaneously Hypertensive (ZSF1) rats. We found that SAC/VAL significantly improved diastolic function parameters and modulated respiratory quotient during exercise. Ex-vivo studies showed that SAC/VAL treatment significantly decreased heart, liver, spleen, and visceral fat weights; cardiac hypertrophy and percentage of fibrosis; lipid infiltration in liver and circulating levels of cholesterol and sodium. Moreover, SAC/VAL reduced glycerophospholipids, cholesterol, and cholesteryl esters while increasing triglyceride levels in cardiac tissue. In conclusion, SAC/VAL treatment improved diastolic and hepatic function, respiratory metabolism, reduced hypercholesterolemia and cardiac fibrosis and hypertrophy, and was able to modulate cardiac metabolic profile. Our findings might provide further insight into the therapeutic benefits of SAC/VAL treatment in obese patients with HFpEF.
Collapse
Affiliation(s)
- Sandra Moraña-Fernández
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Xocas Vázquez-Abuín
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alana Aragón-Herrera
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.
| | - Laura Anido-Varela
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier García-Seara
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Arrhytmia Unit, Cardiology Department, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Óscar Otero-García
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Cardiology Department, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain
| | - Diego Rodríguez-Penas
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Cardiology Department Clinical Trial Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain
| | - Manuel Campos-Toimil
- Physiology and Pharmacology of Chronic Diseases (FIFAEC), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Otero-Santiago
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Clinical Biochemistry Laboratory, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain
| | - Alexandre Rodrigues
- Cardiovascular R&D Centre - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Alexandre Gonçalves
- Cardiovascular R&D Centre - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Juliana Pereira Morais
- CINTESIS@RISE, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, UnIC@RISE - Cardiovascular Research Centre, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Inês N Alves
- Cardiovascular R&D Centre - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Cláudia Sousa-Mendes
- Cardiovascular R&D Centre - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Cardiovascular R&D Centre - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Cardiology Department, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain
| | - Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
48
|
Quiriarte H, Noland RC, Stampley JE, Davis G, Li Z, Cho E, Kim Y, Doiron J, Spielmann G, Ghosh S, Shah SJ, Irving BA, Lefer DJ, Allerton TD. Exercise Therapy Rescues Skeletal Muscle Dysfunction and Exercise Intolerance in Cardiometabolic HFpEF. JACC Basic Transl Sci 2024; 9:1409-1425. [PMID: 39822600 PMCID: PMC11733766 DOI: 10.1016/j.jacbts.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 01/19/2025]
Abstract
Exercise intolerance, a hallmark of heart failure with preserved ejection fraction (HFpEF) exacerbated by obesity, involves unclear mechanisms related to skeletal muscle metabolism. In a "2-hit" model of HFpEF, we investigated the ability of exercise therapy (voluntary wheel running) to reverse skeletal muscle dysfunction and exercise intolerance. Using state-of-the-art metabolic cages and a multiomic approach, we demonstrate exercise can rescue dysfunctional skeletal muscle lipid and branched-chain amino acid oxidation and restore exercise capacity in mice with cardiometabolic HFpEF. These results underscore the importance of skeletal muscle metabolism to improve exercise intolerance in HFpEF.
Collapse
Affiliation(s)
- Heather Quiriarte
- Vascular Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Department of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Robert C. Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - James E. Stampley
- Department of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Gregory Davis
- Department of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Zhen Li
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Eunhan Cho
- Department of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Youyoung Kim
- Department of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jake Doiron
- Vascular Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Guillaume Spielmann
- Department of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Sujoy Ghosh
- Bioinformatics and Computational Biology Core, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Sanjiv J. Shah
- Division of Cardiology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian A. Irving
- Department of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - David J. Lefer
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Timothy D. Allerton
- Vascular Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Louisiana State University Cardiovascular Center of Excellence, New Orleans, Louisiana, USA
| |
Collapse
|
49
|
Lopaschuk GD, Sun Q, Ketema EB. Glycolysis in heart failure with preserved ejection fraction. Eur J Heart Fail 2024; 26:2576-2578. [PMID: 39192674 DOI: 10.1002/ejhf.3432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Center, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Qiuyu Sun
- Cardiovascular Research Center, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Ezra B Ketema
- Cardiovascular Research Center, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
50
|
Voorrips SN, Westenbrink BD. Ketone Treatment in Heart Failure With Preserved Ejection Fraction: Recharging the Heart or Reducing Filling Pressures? Circulation 2024; 150:1584-1587. [PMID: 39527663 DOI: 10.1161/circulationaha.124.071608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Affiliation(s)
- Suzanne N Voorrips
- University Medical Center Groningen, University of Groningen, the Netherlands
| | - B Daan Westenbrink
- University Medical Center Groningen, University of Groningen, the Netherlands
| |
Collapse
|