1
|
Sasaki D, Imai K, Ikoma Y, Matsui K. Plastic vasomotion entrainment. eLife 2024; 13:RP93721. [PMID: 38629828 PMCID: PMC11023696 DOI: 10.7554/elife.93721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The presence of global synchronization of vasomotion induced by oscillating visual stimuli was identified in the mouse brain. Endogenous autofluorescence was used and the vessel 'shadow' was quantified to evaluate the magnitude of the frequency-locked vasomotion. This method allows vasomotion to be easily quantified in non-transgenic wild-type mice using either the wide-field macro-zoom microscopy or the deep-brain fiber photometry methods. Vertical stripes horizontally oscillating at a low temporal frequency (0.25 Hz) were presented to the awake mouse, and oscillatory vasomotion locked to the temporal frequency of the visual stimulation was induced not only in the primary visual cortex but across a wide surface area of the cortex and the cerebellum. The visually induced vasomotion adapted to a wide range of stimulation parameters. Repeated trials of the visual stimulus presentations resulted in the plastic entrainment of vasomotion. Horizontally oscillating visual stimulus is known to induce horizontal optokinetic response (HOKR). The amplitude of the eye movement is known to increase with repeated training sessions, and the flocculus region of the cerebellum is known to be essential for this learning to occur. Here, we show a strong correlation between the average HOKR performance gain and the vasomotion entrainment magnitude in the cerebellar flocculus. Therefore, the plasticity of vasomotion and neuronal circuits appeared to occur in parallel. Efficient energy delivery by the entrained vasomotion may contribute to meeting the energy demand for increased coordinated neuronal activity and the subsequent neuronal circuit reorganization.
Collapse
Affiliation(s)
- Daichi Sasaki
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Ken Imai
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Yoko Ikoma
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Ko Matsui
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| |
Collapse
|
2
|
Li J, Zhang Y, Zhang D, Wang W, Xie H, Ruan J, Jin Y, Li T, Li X, Zhao B, Zhang X, Lin J, Shi H, Jia JM. Ca 2+ oscillation in vascular smooth muscle cells control myogenic spontaneous vasomotion and counteract post-ischemic no-reflow. Commun Biol 2024; 7:332. [PMID: 38491167 PMCID: PMC10942987 DOI: 10.1038/s42003-024-06010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
Ischemic stroke produces the highest adult disability. Despite successful recanalization, no-reflow, or the futile restoration of the cerebral perfusion after ischemia, is a major cause of brain lesion expansion. However, the vascular mechanism underlying this hypoperfusion is largely unknown, and no approach is available to actively promote optimal reperfusion to treat no-reflow. Here, by combining two-photon laser scanning microscopy (2PLSM) and a mouse middle cerebral arteriolar occlusion (MCAO) model, we find myogenic vasomotion deficits correlated with post-ischemic cerebral circulation interruptions and no-reflow. Transient occlusion-induced transient loss of mitochondrial membrane potential (ΔΨm) permanently impairs mitochondria-endoplasmic reticulum (ER) contacts and abolish Ca2+ oscillation in smooth muscle cells (SMCs), the driving force of myogenic spontaneous vasomotion. Furthermore, tethering mitochondria and ER by specific overexpression of ME-Linker in SMCs restores cytosolic Ca2+ homeostasis, remotivates myogenic spontaneous vasomotion, achieves optimal reperfusion, and ameliorates neurological injury. Collectively, the maintaining of arteriolar myogenic vasomotion and mitochondria-ER contacts in SMCs, are of critical importance in preventing post-ischemic no-reflow.
Collapse
Affiliation(s)
- Jinze Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Yiyi Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Dongdong Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Wentao Wang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Huiqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jiayu Ruan
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuxiao Jin
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Tingbo Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xuzhao Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Bingrui Zhao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaoxuan Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jiayi Lin
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Hongjun Shi
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jie-Min Jia
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
3
|
Kim DH, Choi JY, Kim SM, Son SM, Choi SY, Koo B, Rah CS, Nam JH, Ju MJ, Lee JS, You RY, Hong SH, Lee J, Bae JW, Kim CH, Choi W, Kim HS, Xu WX, Lee SJ, Kim YC, Yun HY. Vasomotion in human arteries and their regulations based on ion channel regulations: 10 years study. J Cell Physiol 2023; 238:2076-2089. [PMID: 37672477 DOI: 10.1002/jcp.31067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/21/2023] [Accepted: 05/30/2023] [Indexed: 09/08/2023]
Abstract
Vasomotion is the oscillation of vascular tone which gives rise to flow motion of blood into an organ. As is well known, spontaneous contractile organs such as heart, GI, and genitourinary tract produce rhythmic contraction. It imposes or removes pressure on their vessels alternatively for exchange of many substances. It was first described over 150 years ago, however the physiological mechanism and pathophysiological implications are not well understood. This study aimed to elucidate underlying mechanisms and physiological function of vasomotion in human arteries. Conventional contractile force measurement, immunohistochemistry, and Western blot analysis were employed to study human left gastric artery (HLGA) and uterine arteries (HUA). RESULTS: Circular muscle of HLGA and/or HUA produced sustained tonic contraction by high K+ (50 mM) which was blocked by 2 µM nifedipine. Stepwise stretch and high K+ produced nerve-independent spontaneous contraction (vasomotion) (around 45% of tested tissues). Vasomotion was also produced by application of BayK 8644, 5-HT, prostagrandins, oxytocin. It was blocked by nifedipine (2 µM) and blockers of intracellular Ca2+ stores. Inhibitors of Ca2+ -activated Cl- channels (DIDS and/or niflumic acid) and ATP-sensitive K+ (KATP ) channels inhibited vasomotion reversibly. Metabolic inhibition by sodium cyanide (NaCN) and several neuropeptides also regulated vasomotion in KATP channel-sensitive and -insensitive manner. Finally, we identified TMEM16A Ca2+ -activated Cl- channels and subunits of KATP channels (Kir 6.1/6.2 and sulfonylurea receptor 2B [SUR2B]), and c-Kit positivity by Western blot analysis. We conclude that vasomotion is sensitive to TMEM16A Ca2+ -activated Cl- channels and metabolic changes in human gastric and uterine arteries. Vasomotion might play an important role in the regulation of microcirculation dynamics even in pacemaker-related autonomic contractile organs in humans.
Collapse
Affiliation(s)
- Dae Hoon Kim
- Department of Surgery, College of Medicine, Chungbuk National University Hospital (CBNUH), Chungbuk National University (CBNU), Cheongju, Chungbuk, Korea
| | - Jin Young Choi
- Department of OBGY, College of Medicine, CBNU, College of Medicine, CBNU, (CBNUH), Cheongju, Korea
| | - Su Mi Kim
- Department of OBGY, College of Medicine, CBNU, College of Medicine, CBNU, (CBNUH), Cheongju, Korea
| | - Seung-Myoung Son
- Department of Pathology, College of Medicine, CBNU, Cheongju, Korea
| | - Song-Yi Choi
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Beommo Koo
- College of Medicine, CBNU, Cheongju, Korea
| | - Cheong-Sil Rah
- Department of Surgery, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu-si, Gyeonggi-do, Korea
| | | | | | - Jong Sung Lee
- Department of Family Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ra Young You
- Department of Physiology, College of Medicine, CBNU, Cheongju, Korea
| | - Seung Hwa Hong
- Department of OBGY, College of Medicine, CBNU, College of Medicine, CBNU, (CBNUH), Cheongju, Korea
| | - Junyoung Lee
- Department of Internal Medicine, College of Medicine, CBNU & CBNUH, Cheongju, Korea
| | - Jang-Whan Bae
- Department of Internal Medicine, College of Medicine, CBNU & CBNUH, Cheongju, Korea
| | - Chan Hyung Kim
- Department of Pharmacology, College of Medicine, CBNU, Cheongju, Korea
| | - Woong Choi
- Department of Pharmacology, College of Medicine, CBNU, Cheongju, Korea
| | - Hun Sik Kim
- Department of Pharmacology, College of Medicine, CBNU, Cheongju, Korea
| | - Wen-Xie Xu
- Department of Physiology, College of Medcine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Sang Jin Lee
- Department of Physiology, College of Medicine, CBNU, Cheongju, Korea
| | - Young Chul Kim
- Department of Physiology, College of Medicine, CBNU, Cheongju, Korea
| | - Hyo-Yung Yun
- Department of Surgery, College of Medicine, Chungbuk National University Hospital (CBNUH), Chungbuk National University (CBNU), Cheongju, Chungbuk, Korea
| |
Collapse
|
4
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
5
|
Anderson GK, Rickards CA. The potential therapeutic benefits of low frequency haemodynamic oscillations. J Physiol 2022; 600:3905-3919. [PMID: 35883272 PMCID: PMC9444954 DOI: 10.1113/jp282605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
Haemodynamic oscillations occurring at frequencies below the rate of respiration have been observed experimentally for more than a century. Much of the research regarding these oscillations, observed in arterial pressure and blood flow, has focused on mechanisms of generation and methods of quantification. However, examination of the physiological role of these oscillations has been limited. Multiple studies have demonstrated that oscillations in arterial pressure and blood flow are associated with the protection in tissue oxygenation or functional capillary density during conditions of reduced tissue perfusion. There is also evidence that oscillatory blood flow can improve clearance of interstitial fluid, with a growing number of studies demonstrating a role for oscillatory blood flow to aid in clearance of debris from the brain. The therapeutic potential of these haemodynamic oscillations is an important new area of research which may have beneficial impact in treating conditions such as stroke, cardiac arrest, blood loss injuries, sepsis, or even Alzheimer's disease and vascular dementia.
Collapse
Affiliation(s)
- Garen K Anderson
- Cerebral & Cardiovascular Physiology Laboratory, Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Caroline A Rickards
- Cerebral & Cardiovascular Physiology Laboratory, Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
6
|
Hypoxic Conditions Promote Rhythmic Contractile Oscillations Mediated by Voltage-Gated Sodium Channels Activation in Human Arteries. Int J Mol Sci 2021; 22:ijms22052570. [PMID: 33806419 PMCID: PMC7961413 DOI: 10.3390/ijms22052570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/17/2022] Open
Abstract
Arterial smooth muscle exhibits rhythmic oscillatory contractions called vasomotion and believed to be a protective mechanism against tissue hypoperfusion or hypoxia. Oscillations of vascular tone depend on voltage and follow oscillations of the membrane potential. Voltage-gated sodium channels (Nav), responsible for the initiation and propagation of action potentials in excitable cells, have also been evidenced both in animal and human vascular smooth muscle cells (SMCs). For example, they contribute to arterial contraction in rats, but their physiopathological relevance has not been established in human vessels. In the present study, we investigated the functional role of Nav in the human artery. Experiments were performed on human uterine arteries obtained after hysterectomy and on SMCs dissociated from these arteries. In SMCs, we recorded a tetrodotoxin (TTX)-sensitive and fast inactivating voltage-dependent INa current. Various Nav genes, encoding α-subunit isoforms sensitive (Nav 1.2; 1.3; 1.7) and resistant (Nav 1.5) to TTX, were detected both in arterial tissue and in SMCs. Nav channels immunostaining showed uniform distribution in SMCs and endothelial cells. On arterial tissue, we recorded variations of isometric tension, ex vivo, in response to various agonists and antagonists. In arterial rings placed under hypoxic conditions, the depolarizing agent KCl and veratridine, a specific Nav channels agonist, both induced a sustained contraction overlaid with rhythmic oscillations of tension. After suppression of sympathetic control either by blocking the release of catecholamine or by antagonizing the target adrenergic response, rhythmic activity persisted while the sustained contraction was abolished. This rhythmic activity of the arteries was suppressed by TTX but, in contrast, only attenuated by antagonists of calcium channels, Na+/Ca2+ exchanger, Na+/K+-ATPase and the cardiac Nav channel. These results highlight the role of Nav as a novel key element in the vasomotion of human arteries. Hypoxia promotes activation of Nav channels involved in the initiation of rhythmic oscillatory contractile activity.
Collapse
|
7
|
Frees A, Assersen KB, Jensen M, Hansen PB, Vanhoutte PM, Madsen K, Federlein A, Lund L, Toft A, Jensen BL. Natriuretic peptides relax human intrarenal arteries through natriuretic peptide receptor type-A recapitulated by soluble guanylyl cyclase agonists. Acta Physiol (Oxf) 2021; 231:e13565. [PMID: 33010104 DOI: 10.1111/apha.13565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/07/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023]
Abstract
AIM Natriuretic peptides, BNP and ANP increase renal blood flow in experimental animals. The signalling pathway in human kidney vasculature is unknown. It was hypothesized that BNP and ANP cause endothelium-independent relaxation of human intrarenal arteries by vascular natriuretic peptide receptor-A, but not -B and -C, which is mimicked by agonists of soluble guanylyl cyclase sGC. METHODS Human (n = 54, diameter: 665 ± 29 µm 95% CI) and control murine intrarenal arteries (n = 83, diameter 300 ± 6 µm 95% CI) were dissected and used for force recording by four-channel wire myography. Arterial segments were pre-contracted, then subjected to increasing concentrations of BNP, ANP, phosphodiesterase 5-inhibitor sildenafil, sGC-activator BAY 60-2770 and -stimulator BAY 41-2272. Endothelial nitric oxide synthase (eNOS) dependence was examined by use of L-NAME and eNOS knockout respectively. Molecular targets (NPR A-C, sGC, phosphodiesterase-5 and neprilysin) were mapped by PCR, immunohistochemistry and RNAscope. RESULTS BNP, ANP, sildenafil, sGC-activation and -stimulation caused concentration-dependent relaxation of human and murine intrarenal arteries. BNP responses were independent of eNOS and were not potentiated by low concentration of phosphodiesterase-5-inhibitor, sGC-stimulator or NPR-C blocker. PCR showed NPR-A and C, phosphodiesterase-5, neprilysin and sGC mRNA in renal arteries. NPR-A mRNA and protein was observed in vascular smooth muscle and endothelial cells in arteries, podocytes, Bowmans capsule and vasa recta. NPR-C was observed in tubules, glomeruli and vasculature. CONCLUSION Activation of transmembrane NPR-A and soluble guanylyl cyclase relax human preglomerular arteries similarly to phosphodiestase-5 inhibition. The human renal arterial bed relaxes in response to cGMP pathway.
Collapse
Affiliation(s)
- Andreas Frees
- Department of Cardiovascular and Renal Research Institute of Molecular Medicine University of Southern Denmark Odense Denmark
| | - Kasper B. Assersen
- Department of Cardiovascular and Renal Research Institute of Molecular Medicine University of Southern Denmark Odense Denmark
| | - Mia Jensen
- Department of Cardiovascular and Renal Research Institute of Molecular Medicine University of Southern Denmark Odense Denmark
| | - Pernille B.L. Hansen
- Department of Cardiovascular and Renal Research Institute of Molecular Medicine University of Southern Denmark Odense Denmark
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - Paul M. Vanhoutte
- Department of Cardiovascular and Renal Research Institute of Molecular Medicine University of Southern Denmark Odense Denmark
| | - Kirsten Madsen
- Department of Cardiovascular and Renal Research Institute of Molecular Medicine University of Southern Denmark Odense Denmark
- Department of Pathology Odense University Hospital Odense Denmark
| | - Anna Federlein
- Institute of Physiology University of Regensburg Regensburg Germany
| | - Lars Lund
- Department of Urology Odense University Hospital Odense Denmark
- Department of Clinical Research University of Southern Denmark Odense Denmark
| | - Anja Toft
- Department of Urology Odense University Hospital Odense Denmark
| | - Boye L. Jensen
- Department of Cardiovascular and Renal Research Institute of Molecular Medicine University of Southern Denmark Odense Denmark
| |
Collapse
|
8
|
Smith JF, Lemmey HA, Borysova L, Hiley CR, Dora KA, Garland CJ. Endothelial Nitric Oxide Suppresses Action-Potential-Like Transient Spikes and Vasospasm in Small Resistance Arteries. Hypertension 2020; 76:785-794. [PMID: 32713276 PMCID: PMC7418934 DOI: 10.1161/hypertensionaha.120.15491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/27/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022]
Abstract
Endothelial dysfunction in small arteries is a ubiquitous, early feature of cardiovascular disease, including hypertension. Dysfunction reflects reduced bioavailability of endothelium-derived nitric oxide (NO) and depressed endothelium-dependent hyperpolarization that enhances vasoreactivity. We measured smooth muscle membrane potential and tension, smooth muscle calcium, and used real-time quantitative polymerase chain reaction in small arteries and isolated tubes of endothelium to investigate how dysfunction enhances vasoreactivity. Rat nonmyogenic mesenteric resistance arteries developed vasomotion to micromolar phenylephrine (α1-adrenoceptor agonist); symmetrical vasoconstrictor oscillations mediated by L-type voltage-gated Ca2+ channels (VGCCs). Inhibiting NO synthesis abolished vasomotion so nanomolar phenylephrine now stimulated rapid, transient depolarizing spikes in the smooth muscle associated with chaotic vasomotion/vasospasm. Endothelium-dependent hyperpolarization block also enabled phenylephrine-vasospasm but without spikes or chaotic vasomotion. Depolarizing spikes were Ca2+-based and abolished by either T-type or L-type VGCCs blockers with depressed vasoconstriction. Removing NO also enabled transient spikes/vasoconstriction to Bay K-8644 (L-type VGCC activator). However, these were abolished by the L-type VGCC blocker nifedipine but not T-type VGCC block. Phenylephrine also initiated T-type VGCC-transient spikes and enhanced vasoconstriction after NO loss in nonmyogenic arteries from spontaneously hypertensive rats. In contrast to mesenteric arteries, myogenic coronary arteries displayed transient spikes and further vasoconstriction spontaneously on loss of NO. T-type VGCC block abolished these spikes and additional vasoconstriction but not myogenic tone. Therefore, in myogenic and nonmyogenic small arteries, reduced NO bioavailability engages T-type VGCCs, triggering transient depolarizing spikes in normally quiescent vascular smooth muscle to cause vasospasm. T-type block may offer a means to suppress vasospasm without inhibiting myogenic tone mediated by L-type VGCCs.
Collapse
Affiliation(s)
- Josh F. Smith
- Department of Pharmacology, Universityxs of Oxford (J.F.S., H.A.L.L., L.B, K.A.D., C.J.G.)
| | - Hamish A.L. Lemmey
- Department of Pharmacology, Universityxs of Oxford (J.F.S., H.A.L.L., L.B, K.A.D., C.J.G.)
| | - Lyudmyla Borysova
- Department of Pharmacology, Universityxs of Oxford (J.F.S., H.A.L.L., L.B, K.A.D., C.J.G.)
| | - C. Robin Hiley
- From the Deptartment of Pharmacology, University of Cambridge (C.R.H.)
| | - Kim A. Dora
- Department of Pharmacology, Universityxs of Oxford (J.F.S., H.A.L.L., L.B, K.A.D., C.J.G.)
| | - Christopher J. Garland
- Department of Pharmacology, Universityxs of Oxford (J.F.S., H.A.L.L., L.B, K.A.D., C.J.G.)
| |
Collapse
|
9
|
Role of Pericytes in the Initiation and Propagation of Spontaneous Activity in the Microvasculature. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:329-356. [PMID: 31183834 DOI: 10.1007/978-981-13-5895-1_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The microvasculature is composed of arterioles, capillaries and venules. Spontaneous arteriolar constrictions reduce effective vascular resistance to enhance tissue perfusion, while spontaneous venular constrictions facilitate the drainage of tissue metabolites by pumping blood. In the venules of visceral organs, mural cells, i.e. smooth muscle cells (SMCs) or pericytes, periodically generate spontaneous phasic constrictions, Ca2+ transients and transient depolarisations. These events arise from spontaneous Ca2+ release from the sarco-endoplasmic reticulum (SR/ER) and the subsequent opening of Ca2+-activated chloride channels (CaCCs). CaCC-dependent depolarisation further activates L-type voltage-dependent Ca2+ channels (LVDCCs) that play a critical role in maintaining the synchrony amongst mural cells. Mural cells in arterioles or capillaries are also capable of developing spontaneous activity. Non-contractile capillary pericytes generate spontaneous Ca2+ transients primarily relying on SR/ER Ca2+ release. Synchrony amongst capillary pericytes depends on gap junction-mediated spread of depolarisations resulting from the opening of either CaCCs or T-type VDCCs (TVDCCs) in a microvascular bed-dependent manner. The propagation of capillary Ca2+ transients into arterioles requires the opening of either L- or TVDCCs again depending on the microvascular bed. Since the blockade of gap junctions or CaCCs prevents spontaneous Ca2+ transients in arterioles and venules but not capillaries, capillary pericytes appear to play a primary role in generating spontaneous activity of the microvasculature unit. Pericytes in capillaries where the interchange of substances between tissues and the circulation takes place may provide the fundamental drive for upstream arterioles and downstream venules so that the microvasculature network functions as an integrated unit.
Collapse
|
10
|
Hansen T, Tarasova OS, Khammy MM, Ferreira A, Kennard JA, Andresen J, Staehr C, Brain KL, Nilsson H, Aalkjær C. [Ca 2+ ] changes in sympathetic varicosities and Schwann cells in rat mesenteric arteries-Relation to noradrenaline release and contraction. Acta Physiol (Oxf) 2019; 226:e13279. [PMID: 30957955 DOI: 10.1111/apha.13279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 11/29/2022]
Abstract
AIM This study aimed to assess intracellular Ca2+ dynamics in nerve cells and Schwann cells in isolated rat resistance arteries and determine how these dynamics modify noradrenaline release from the nerves and consequent force development. METHODS Ca2+ in nerves was assessed with confocal imaging, noradrenaline release with amperometry and artery tone with wire myography. Ca2+ in axons was assessed after loading with Oregon Green 488 BAPTA-1 dextran. In other experiments, arteries were incubated with Calcium Green-1-AM which loads both axons and Schwann cells. RESULTS Schwann cells but not axons responded with a Ca2+ increase to ATP. Electrical field stimulation of nerves caused a frequency-dependent increase in varicose [Ca2+ ] ([Ca2+ ]v ). ω-conotoxin-GVIA (100 nmol/L) reduced the [Ca2+ ]v transient to 2 and 16 Hz by 60% and 27%, respectively; in contrast ω-conotoxin GVIA inhibited more than 80% of the noradrenaline release and force development at 2 and 16 Hz. The KV channel blocker, 4-aminopyridine (10 µmol/L), increased [Ca2+ ]v , noradrenaline release and force development both in the absence and presence of ω-conotoxin-GVIA. Yohimbine (1 µmol/L) increased both [Ca2+ ]v and noradrenaline release but reduced force development. Acetylcholine (10 µmol/L) caused atropine-sensitive inhibition of [Ca2+ ]v , noradrenaline release and force. In the presence of ω-conotoxin-GVIA, acetylcholine caused a further inhibition of all parameters. CONCLUSION Modification of [Ca2+ ] in arterial sympathetic axons and Schwann cells was assessed separately. KV 3.1 channels may be important regulators of [Ca2+ ]v , noradrenaline release and force development. Presynaptic adrenoceptor and muscarinic receptor activation modify transmitter release through modification of [Ca2+ ]v .
Collapse
Affiliation(s)
- Thomas Hansen
- Department of Biomedicine University of Aarhus Aarhus C Denmark
| | - Olga S. Tarasova
- Faculty of Biology M.V. Lomonosov Moscow State University Moscow Russia
- State Research Center of the Russian Federation – Institute for Biomedical Problems Moscow Russia
| | | | | | - James A. Kennard
- Institute of Clinical Sciences, College of Medical and Dental Sciences University of Birmingham Birmingham UK
| | - Jørgen Andresen
- Department of Biomedicine University of Aarhus Aarhus C Denmark
| | | | - Keith L. Brain
- Institute of Clinical Sciences, College of Medical and Dental Sciences University of Birmingham Birmingham UK
| | - Holger Nilsson
- Department of Physiology, Institute of Neuroscience and Physiology Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
| | | |
Collapse
|
11
|
Rodríguez-Rodríguez R, Ackermann TN, Plaza JA, Simonsen U, Matchkov V, Llobera A, Munoz-Berbel X. Ultrasensitive Photonic Microsystem Enabling Sub-micrometric Monitoring of Arterial Oscillations for Advanced Cardiovascular Studies. Front Physiol 2019; 10:940. [PMID: 31396105 PMCID: PMC6664303 DOI: 10.3389/fphys.2019.00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/09/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Jose Antonio Plaza
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Bellaterra, Spain
| | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Andreu Llobera
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Bellaterra, Spain
| | - Xavier Munoz-Berbel
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Bellaterra, Spain
- *Correspondence: Xavier Munoz-Berbel
| |
Collapse
|
12
|
Lapi D, Di Maro M, Mastantuono T, Starita N, Ursino M, Colantuoni A. Arterial Network Geometric Characteristics and Regulation of Capillary Blood Flow in Hamster Skeletal Muscle Microcirculation. Front Physiol 2019; 9:1953. [PMID: 30713505 PMCID: PMC6345695 DOI: 10.3389/fphys.2018.01953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/22/2018] [Indexed: 11/13/2022] Open
Abstract
This study was aimed to characterize the geometric arrangement of hamster skeletal muscle arteriolar networks and to assess the in vivo rhythmic diameter changes of arterioles to clarify regulatory mechanisms of the capillary perfusion. The experimental study was carried out in male Syrian hamsters implanted with a plastic chamber in the dorsum skin under pentobarbital anesthesia. The skeletal muscle microvessels were visualized by fluorescence microscopy. The vessel diameters, lengths and the rhythmic diameter changes of arterioles were analyzed with computer-assisted techniques. The arterioles were classified according to a centripetal ordering scheme. In hamster skeletal muscle microvasculature the terminal branchings, differentiated in long and short terminal arteriolar trees (TATs), originated from anastomotic vessels, defined "arcading" arterioles. The long TATs presented different frequencies along the branching vessels; order 4 arterioles had frequencies lower than those observed in the order 3, 2, and 1 vessels. The short TAT order 3 arterioles, directly originating from "arcading" parent vessels, showed a frequency dominating all daughter arterioles. The amplitude of diameter variations in larger vessels was in the range 30-40% of mean diameter, while it was 80-100% in order 3, 2, and 1 vessels. Therefore, the complete constriction of arterioles, caused an intermittent capillary blood perfusion. L-arginine or papaverine infusion caused dilation of arterioles and transient disappearing of vasomotion waves and induced perfusion of all capillaries spreading from short and long TAT arrangements. Therefore, the capillary blood flow was modulated by changes in diameter of terminal arterioles penetrating within the skeletal muscle fibers, facilitating redistribution of blood flow according to the metabolic demands of tissues.
Collapse
Affiliation(s)
- Dominga Lapi
- Department of Clinical Medicine and Surgery, Medical School, Federico II University, Naples, Italy
| | - Martina Di Maro
- Department of Clinical Medicine and Surgery, Medical School, Federico II University, Naples, Italy
| | - Teresa Mastantuono
- Department of Clinical Medicine and Surgery, Medical School, Federico II University, Naples, Italy
| | - Noemy Starita
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori Fondazione G. Pascale (IRCCS), Naples, Italy
| | - Mauro Ursino
- Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy
| | - Antonio Colantuoni
- Department of Clinical Medicine and Surgery, Medical School, Federico II University, Naples, Italy
| |
Collapse
|
13
|
In-vivo correlations between skin metabolic oscillations and vasomotion in wild-type mice and in a model of oxidative stress. Sci Rep 2019; 9:186. [PMID: 30655574 PMCID: PMC6336806 DOI: 10.1038/s41598-018-36970-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/27/2018] [Indexed: 12/17/2022] Open
Abstract
Arterioles in the cutaneous microcirculation frequently display an oscillatory phenomenon defined vasomotion, consistent with periodic diameter variations in the micro-vessels associated with particular physiological or abnormal conditions. The cellular mechanisms underlying vasomotion and its physiological role have not been completely elucidated. Various mechanisms were demonstrated, based on cell Ca2+ oscillations determined by the activity of channels in the plasma membrane or sarcoplasmic reticulum of vascular cells. However, the possible engagement in vasomotion of cell metabolic oscillations of mitochondrial or glycolytic origin has been poorly explored. Metabolic oscillations associated with the production of ATP energy were previously described in cells, while limited studies have investigated these fluctuations in-vivo. Here, we characterised a low-frequency metabolic oscillator (MO-1) in skin from live wild-type and Nrf2−/− mice, by combination of fluorescence spectroscopy and wavelet transform processing technique. Furthermore, the relationships between metabolic and microvascular oscillators were examined during phenylephrine-induced vasoconstriction. We found a significant interaction between MO-1 and the endothelial EDHF vasomotor mechanism that was reduced in the presence of oxidative stress (Nrf2−/− mice). Our findings suggest indirectly that metabolic oscillations may be involved in the mechanisms underlying endothelium-mediated skin vasomotion, which might be altered in the presence of metabolic disturbance.
Collapse
|
14
|
Cellular and Ionic Mechanisms of Arterial Vasomotion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:297-312. [DOI: 10.1007/978-981-13-5895-1_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Abstract
Veins exhibit spontaneous contractile activity, a phenomenon generally termed vasomotion. This is mediated by spontaneous rhythmical contractions of mural cells (i.e. smooth muscle cells (SMCs) or pericytes) in the wall of the vessel. Vasomotion occurs through interconnected oscillators within and between mural cells, entraining their cycles. Pharmacological studies indicate that a key oscillator underlying vasomotion is the rhythmical calcium ion (Ca2+) release-refill cycle of Ca2+ stores. This occurs through opening of inositol 1,4,5-trisphosphate receptor (IP3R)- and/or ryanodine receptor (RyR)-operated Ca2+ release channels in the sarcoplasmic/endoplasmic (SR/ER) reticulum and refilling by the SR/ER reticulum Ca2+ATPase (SERCA). Released Ca2+ from stores near the plasma membrane diffuse through the cytosol to open Ca2+-activated chloride (Cl-) channels, this generating inward current through an efflux of Cl-. The resultant depolarisation leads to the opening of voltage-dependent Ca2+ channels and possibly increased production of IP3, which through Ca2+-induced Ca2+ release (CICR) of IP3Rs and/or RyRs and IP3R-mediated Ca2+ release provide a means by which store oscillators entrain their activity. Intercellular entrainment normally involves current flow through gap junctions that interconnect mural cells and in many cases this is aided by additional connectivity through the endothelium. Once entrainment has occurred the substantial Ca2+ entry that results from the near-synchronous depolarisations leads to rhythmical contractions of the mural cells, this often leading to vessel constriction. The basis for venous/venular vasomotion has yet to be fully delineated but could improve both venous drainage and capillary/venular absorption of blood plasma-associated fluids.
Collapse
|
16
|
Mirdell R, Lemstra-Idsardi AN, Farnebo S, Tesselaar E. The presence of synchronized perfusion dips in the microcirculation of the resting nail bed. Microvasc Res 2018; 121:71-81. [PMID: 30321536 DOI: 10.1016/j.mvr.2018.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Laser speckle contrast imaging (LSCI) has seen limited use in the study of perfusion dynamics such as vasomotion. The aim of this study was to investigate the effects of a prolonged seated position on perfusion dynamics in the nail bed using LSCI. METHODS Perfusion was recorded in digits II to IV bilaterally for 20 min during two separate sessions in ten healthy volunteers. The acclimatization period was 5 min for the 1st session and 20 min for the 2nd. Perfusion variability and the presence of recurring perfusion dips were analyzed. A digital nerve block was done to verify suspected nervous origin of phenomenon. RESULTS Synchronized phases of vasoconstriction were observed in all subjects with perfusion dips in all digits bilaterally and simultaneously. Application of a digital nerve block abolished perfusion dips. The frequency of this phenomenon increased by 25.0% (95% CI: 1.6 to 49.2%) in the left-hand digits after a prolonged seated position. Perfusion variability increased by 11.6% (95% CI: 2.6 to 20.3%) in the digits of the left hand. Perfusion changes in right-hand digits did not significantly increase. During the 1st session, temperature increased by 2.7 °C (1.1 to 4.2) while it decreased by 1.3 °C (0.2 to 2.4) during the 2nd session. CONCLUSION The observed perfusion dips are of a centrally mediated nervous origin but are also affected by local factors. They are affected by seating duration and differ between left and right hands, likely because of local micro perfusion dips. This phenomenon seems related to digital thermoregulation.
Collapse
Affiliation(s)
- Robin Mirdell
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden; Department of Plastic Surgery, Hand Surgery, and Burns, Linköping University, Linköping, Sweden.
| | | | - Simon Farnebo
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden; Department of Plastic Surgery, Hand Surgery, and Burns, Linköping University, Linköping, Sweden
| | - Erik Tesselaar
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden; Department of Radiation Physics, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
17
|
Palygin O, Miller BS, Nishijima Y, Zhang DX, Staruschenko A, Sorokin A. Endothelin receptor A and p66Shc regulate spontaneous Ca 2+ oscillations in smooth muscle cells controlling renal arterial spontaneous motion. FASEB J 2018; 33:2636-2645. [PMID: 30303741 DOI: 10.1096/fj.201800776rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adaptor protein p66Shc is overexpressed in smooth muscle cells of renal resistance vessels of hypertensive salt-sensitive rats and is involved in the regulation of renal vascular tone. We applied 2-photon laser scanning fluorescence microscopy to analyze spontaneous dynamic fluctuations in intracellular calcium concentrations ([Ca2+]i) in smooth muscle cells embedded in the walls of freshly isolated renal resistance arteries. The amplitude, number of events, and frequency of spontaneous [Ca2+]i oscillations triggered by endogenously released endothelin-1 were recorded in smooth muscle cells of the renal arteries. Endothelin receptor A antagonist BQ123 dramatically reduced the amplitude and frequency of spontaneous Ca2+ events, producing marked inhibition of renal vessels spontaneous motion. Spontaneous Ca2+ fluctuations in smooth muscle cells of p66Shc knockout (p66ShcKO) rats had significantly higher amplitude than in control rats. The frequency of spontaneous [Ca2+]i oscillations did not change in p66ShcKO rats, suggesting that p66Shc expression did not affect endothelin-1 release from resident endothelial cells. Acute application of endothelin-1 revealed significantly elevated production of the total [Ca2+]i in p66ShcKO rats. Spontaneous cytosolic Ca2+ oscillations in smooth muscle cells of renal vessels mediate their spontaneous motion via the endothelin-1/endothelin receptor A pathway. p66Shc decreases the amplitude of individual changes in [Ca2+]i, which mitigates the spontaneous motion of renal vessels.-Palygin, O., Miller, B. S., Nishijima, Y., Zhang, D. X., Staruschenko, A., Sorokin, A. Endothelin receptor A and p66Shc regulate spontaneous Ca2+ oscillations in smooth muscle cells controlling renal arterial spontaneous motion.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Bradley S Miller
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yoshinori Nishijima
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Division of Cardiology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; and.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David X Zhang
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Division of Cardiology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; and.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Andrey Sorokin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
18
|
Patejdl R, Noack T. Calcium movement in smooth muscle and evaluation of graded functional intercellular coupling. CHAOS (WOODBURY, N.Y.) 2018; 28:106311. [PMID: 30384639 DOI: 10.1063/1.5035168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Spontaneous activity of vascular smooth muscle is present in small arteries and some venous tissues like the hepatic portal vein. Whereas the ability to generate rhythmic membrane potential changes is expressed in a high number of primary oscillators, the generation of physiological tone and phasic activity requires synchronization of specialized pacemaker activity (Interstitial Cajal-like cells) by intercellular propagation and regeneration of excitation or a strong coupling mechanism of smooth muscle cells. The aim of this study was to deduce oscillator coupling by analyzing the spatiotemporal homogeneity of calcium oscillations within a native tissue preparation. Portal vein tissue was loaded with a calcium-sensitive dye (Fluo-3). By combining confocal microscopy and computation of spatial auto- and cross-correlation of the calcium signals, temporal and spatial coupling between cells was characterized. Spontaneous oscillations of calcium signals were measured at different predefined regions of interest. Cross-correlation analysis of these signals revealed that their damping was very similar in all directions of the investigated z-plane. In single experiments, improved cell-to-cell coupling was seen when noradrenaline (1-10 μM) was added to the bath-solution. With the chosen parameters of frame refresh, the velocity of signal propagation was faster than the maximum detectable velocity, but it could be estimated to exceed 0.1 mm/s. Correlative Network Analysis is a new and very useful tool to determine the functional coupling parameters of quasi-homogenous biological networks and their temporal changes. The action and significance of pharmacological modulators can be well studied on cellular and functional aspects with this newly introduced technique in biological sciences.
Collapse
Affiliation(s)
- R Patejdl
- Department of Physiology, University of Rostock, Universitätsmedizin, Oscar-Langendorff Institut für Physiologie, Gertrudenstr. 9, D-18057 Rostock, Germany
| | - T Noack
- Department of Physiology, University of Rostock, Universitätsmedizin, Oscar-Langendorff Institut für Physiologie, Gertrudenstr. 9, D-18057 Rostock, Germany
| |
Collapse
|
19
|
Hald BO, Sørensen RB, Sørensen PG, Sørensen CM, Jacobsen JCB. Stimulation history affects vasomotor responses in rat mesenteric arterioles. Pflugers Arch 2018; 471:271-283. [PMID: 30219946 DOI: 10.1007/s00424-018-2206-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/06/2018] [Indexed: 11/25/2022]
Abstract
Resistance vessels regulate blood flow by continuously adjusting activity of the wall smooth muscle cells. These cells integrate a variety of stimuli from blood, endothelium, autonomic nerves, and surrounding tissues. Each stimulus elicits an intracellular signaling cascade that eventually influences activation of the contractile machinery. The characteristic time scale of each cascade and the sharing of specific reactions between cascades provide for complex behavior when a vessel receives multiple stimuli. Here, we apply sequential stimulation with invariant concentrations of vasoconstrictor (norepinephrine/methoxamine) and vasodilator (SNAP/carbacol) to rat mesenteric vessels in the wire myograph to show that (1) time elapsed between addition of two vasoactive drugs and (2) the sequence of addition may significantly affect final force development. Furthermore, force oscillations (vasomotion) often appear upon norepinephrine administration. Using computational modeling in combination with nitric oxide (NO) inhibition/NO addition experiments, we show that (3) amplitude and number of oscillating vessels increase over time, (4) the ability of NO to induce vasomotion depends on whether it is applied before or after norepinephrine, and (5) emergence of vasomotion depends on the prior dynamical state of the system; in simulations, this phenomenon appears as "hysteresis." These findings underscore the time-dependent nature of vascular tone generation which must be considered when evaluating the vasomotor effects of multiple, simultaneous stimuli in vitro or in vivo.
Collapse
Affiliation(s)
- Bjørn Olav Hald
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
| | - Rasmus B Sørensen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Preben G Sørensen
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Sørensen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
20
|
Kovo M, Rubinchik-Stern M, Miremberg H, Luria O, Bliecher I, Mizrachi Y, Bar J. The effect of aspirin on placental vessels reactivity using the ex-vivo placental perfusion model. Thromb Res 2018; 170:84-86. [PMID: 30125842 DOI: 10.1016/j.thromres.2018.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Michal Kovo
- Department of Obstetrics & Gynecology, E. Wolfson Medical Center affiliated with Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Miriam Rubinchik-Stern
- Department of Obstetrics & Gynecology, E. Wolfson Medical Center affiliated with Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hadas Miremberg
- Department of Obstetrics & Gynecology, E. Wolfson Medical Center affiliated with Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oded Luria
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Inna Bliecher
- Department of Obstetrics & Gynecology, Bnai-Zion Medical Center, Haifa, Israel
| | - Yossi Mizrachi
- Department of Obstetrics & Gynecology, E. Wolfson Medical Center affiliated with Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Bar
- Department of Obstetrics & Gynecology, E. Wolfson Medical Center affiliated with Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
21
|
Hashitani H, Mitsui R, Miwa-Nishimura K, Lam M. Role of capillary pericytes in the integration of spontaneous Ca 2+ transients in the suburothelial microvasculature in situ of the mouse bladder. J Physiol 2018; 596:3531-3552. [PMID: 29873405 DOI: 10.1113/jp275845] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS In the bladder suburothelial microvasculature, pericytes in different microvascular segments develop spontaneous Ca2+ transients with or without associated constrictions. Spontaneous Ca2+ transients in pericytes of all microvascular segments primarily rely on the cycles of Ca2+ uptake and release by the sarco- and endoplasmic reticulum. The synchrony of spontaneous Ca2+ transients in capillary pericytes exclusively relies on the spread of depolarizations resulting from the opening of Ca2+ -activated chloride channels (CaCCs) via gap junctions. CaCC-dependent depolarizations further activate L-type voltage-dependent Ca2+ channels as required for the synchrony of Ca2+ transients in pericytes of pre-capillary arterioles, post-capillary venules and venules. Capillary pericytes may drive spontaneous Ca2+ transients in pericytes within the suburothelial microvascular network by sending CaCC-dependent depolarizations via gap junctions. ABSTRACT Mural cells in the microvasculature of visceral organs develop spontaneous Ca2+ transients. However, the mechanisms underlying the integration of these Ca2+ transients within a microvascular unit remain to be clarified. In the present study, the origin of spontaneous Ca2+ transients and their propagation in the bladder suburothelial microvasculature were explored. Cal-520 fluorescence Ca2+ imaging and immunohistochemistry were carried out on mural cells using mice expressing red fluorescent protein (DsRed) under control of the NG2 promotor. NG2(+) pericytes in both pre-capillary arterioles (PCAs) and capillaries developed synchronous spontaneous Ca2+ transients. By contrast, although NG2-DsRed also labelled arteriolar smooth muscle cells, these cells remained quiescent. Both NG2(+) pericytes in post-capillary venules (PCVs) and NG2(-) venular pericytes exhibited propagated Ca2+ transients. L-type voltage-dependent Ca2+ channel (LVDCC) blockade with nifedipine prevented Ca2+ transients or disrupted their synchrony in PCA, PCV and venular pericytes without dis-synchronizing Ca2+ transients in capillary pericytes. Blockade of gap junctions with carbenoxolone or Ca2+ -activated chloride channels (CaCCs) with 4,4'-diisothiocyanato-2,2'-stilbenedisulphonic acid disodium salt prevented Ca2+ transients in PCA and venular pericytes and disrupted the synchrony of Ca2+ transients in capillary and PCV pericytes. Spontaneous Ca2+ transients in pericytes of all microvascular segments were abolished or suppressed by cyclopiazonic acid, caffeine or tetracaine. The synchrony of Ca2+ transients in capillary pericytes arising from spontaneous Ca2+ release from the sarco- and endoplasmic reticulum appears to rely exclusively on CaCC activation, whereas subsequent LVDCC activation is required for the synchrony of Ca2+ transients in pericytes of other microvascular segments. Capillary pericytes may drive spontaneous activity in the suburothelial microvascular unit to facilitate capillary perfusion.
Collapse
Affiliation(s)
- Hikaru Hashitani
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Retsu Mitsui
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kyoko Miwa-Nishimura
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Michelle Lam
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
22
|
Fonseca DA, Antunes PE, Antunes MJ, Cotrim MD. Vasomotion as an oscillatory sign of functional impairment in the human internal thoracic artery: A study based on risk factors and vessel reactivity. Exp Physiol 2018; 103:1030-1038. [PMID: 29714043 DOI: 10.1113/ep087002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/24/2018] [Indexed: 01/14/2023]
Abstract
NEW FINDINGS What is the central question of this study? Vasomotion has been viewed as a rhythmic oscillation of the vascular tone that is physiologically important for optimal tissue perfusion. Also, it has been studied primarily in the microcirculation. However, the precise underlying mechanisms and the physiological significance remain unknown. What is the main finding and its importance? Vasomotion is not specific to the microcirculation, as shown by our findings. In human arteries from patients undergoing cardiac surgery, an increased incidence was associated with endothelial dysfunction settings. Therefore, this oscillatory behaviour might be a signal of functional impairment and not of integrity. ABSTRACT Vasomotion has been defined as the rhythmic oscillation of the vascular tone, involved in the control of the blood flow and subsequent tissue perfusion. Our aims were to study the incidence of vasomotion in the human internal thoracic artery and the correlation of this phenomenon with the clinical profile and parameters of vascular reactivity. In our study, vasomotion was elicited with a single-dose contractile stimulation of noradrenaline (10 μm) in internal thoracic artery segments, from patients undergoing coronary artery bypass grafting, mounted in tissue organ bath chambers. The incidence was 29.1%. Vessel samples with vasomotion presented significantly higher contractility in response to both potassium chloride (maximal response or Emax of 7.65 ± 5.81 mN versus 4.52 ± 3.73 mN in control vessels, P = 0.024) and noradrenaline (Emax of 7.60 ± 5.93 mN versus 2.96 ± 4.41 mN in control vessels, P < 0.001). Predictive modelling through multivariable logistic regression analysis showed that female sex (odds ratio = 9.82) and increasing maximal response to noradrenaline (odds ratio = 1.19, per 1 mN increase) were associated with a higher probability of the occurrence of vasomotion, whereas increasing kidney function (expressed as estimated glomerular filtration rate) was associated with a lower probability (odds ratio = 0.97, per 1 ml min-1 (1.73 m)-2 ]. Our results provide a characterization of the phenomenon of vasomotion in the internal thoracic artery and suggest that vasomotion might be associated with endothelial dysfunction settings, as determined by a multivariable analysis approach. Considering the associations observed in our results, vasomotion might be a signal of functional impairment and not of integrity.
Collapse
Affiliation(s)
- Diogo A Fonseca
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.iCBR, University of Coimbra, Coimbra, Portugal
| | - Pedro E Antunes
- Centre of Cardiothoracic Surgery, University Hospital and Faculty of Medicine of Coimbra, Coimbra, Portugal
| | - Manuel J Antunes
- Centre of Cardiothoracic Surgery, University Hospital and Faculty of Medicine of Coimbra, Coimbra, Portugal
| | - Maria Dulce Cotrim
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.iCBR, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
23
|
Nyvad J, Mazur A, Postnov DD, Straarup MS, Soendergaard AM, Staehr C, Brøndum E, Aalkjaer C, Matchkov VV. Intravital investigation of rat mesenteric small artery tone and blood flow. J Physiol 2017; 595:5037-5053. [PMID: 28568894 DOI: 10.1113/jp274604] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/24/2017] [Indexed: 01/07/2023] Open
Abstract
KEY POINTS Substantial information on rat mesenteric small artery physiology and pharmacology based on in vitro experiments is available. Little is known about the relevance of this for artery function in vivo. We here present an intravital model where rat mesenteric small artery diameters are studied under isolated and controlled conditions in situ with simultaneous measurement of blood flow. The responses of the isolated arteries vary with the anaesthetic used, and they are quantitatively but not qualitatively different from the responses seen in vitro. ABSTRACT Functional characteristics of rat mesenteric small arteries (internal diameter ∼150-200 μm) have been extensively studied in vitro using isometric and isobaric myographs. In vivo, precapillary arterioles (internal diameter < 50 μm) have been studied, but only a few studies have investigated the function of mesenteric small arteries. We here present a novel approach for intravital studies of rat mesenteric small artery segments (∼5 mm long) isolated in a chamber. The agonist-induced changes in arterial diameter and blood flow were studied using video imaging and laser speckle analysis in rats anaesthetized by isoflurane, pentobarbital, ketamine-xylazine, or by a combination of fentanyl, fluanison and midazolam (rodent mixture). The arteries had spontaneous tone. Noradrenaline added to the chamber constricted the artery in the chamber but not the downstream arteries in the intestinal wall. The constriction was smaller when rats were anaesthetized by rodent mixture in comparison with other anaesthetics, where responses were qualitatively similar to those reported in vitro. The contraction was associated with reduction of blood flow, but no flow reduction was seen in the downstream arteries in the intestinal wall. The magnitude of different endothelium-dependent relaxation pathways was dependent on the anaesthesia. Vasomotion was present under all forms of anaesthesia with characteristics similar to in vitro. We have established an intravital method for studying the tone and flow in rat mesenteric arteries. The reactivity of the arteries was qualitatively similar to the responses previously obtained under in vitro conditions, but the choice of anaesthetic affects the magnitude of responses.
Collapse
Affiliation(s)
- Jakob Nyvad
- Department of Biomedicine, Membranes, Aarhus University, Aarhus, Denmark
| | - Aleksandra Mazur
- Department of Biomedicine, Membranes, Aarhus University, Aarhus, Denmark
| | - Dmitry D Postnov
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | | | | | - Christian Staehr
- Department of Biomedicine, Membranes, Aarhus University, Aarhus, Denmark
| | - Emil Brøndum
- Department of Oto-Rhino-Laryngology, Aarhus University Hospital, Denmark
| | - Christian Aalkjaer
- Department of Biomedicine, Membranes, Aarhus University, Aarhus, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Denmark
| | | |
Collapse
|
24
|
Hangaard L, Bouzinova EV, Staehr C, Dam VS, Kim S, Xie Z, Aalkjaer C, Matchkov VV. Na-K-ATPase regulates intercellular communication in the vascular wall via cSrc kinase-dependent connexin43 phosphorylation. Am J Physiol Cell Physiol 2017; 312:C385-C397. [DOI: 10.1152/ajpcell.00347.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/10/2017] [Accepted: 01/14/2017] [Indexed: 12/23/2022]
Abstract
Communication between vascular smooth muscle cells (VSMCs) is dependent on gap junctions and is regulated by the Na-K-ATPase. The Na-K-ATPase is therefore important for synchronized VSMC oscillatory activity, i.e., vasomotion. The signaling between the Na-K-ATPase and gap junctions is unknown. We tested here the hypothesis that this signaling involves cSrc kinase. Intercellular communication was assessed by membrane capacitance measurements of electrically coupled VSMCs. Vasomotion in isometric myograph, input resistance, and synchronized [Ca2+]i transients were used as readout for intercellular coupling in rat mesenteric small arteries in vitro. Phosphorylation of cSrc kinase and connexin43 (Cx43) were semiquantified by Western blotting. Micromole concentration of ouabain reduced the amplitude of norepinephrine-induced vasomotion and desynchronized Ca2+ transients in VSMC in the arterial wall. Ouabain also increased input resistance in the arterial wall. These effects of ouabain were antagonized by inhibition of tyrosine phosphorylation with genistein, PP2, and by an inhibitor of the Na-K-ATPase-dependent cSrc activation, pNaKtide. Moreover, inhibition of cSrc phosphorylation increased vasomotion amplitude and decreased the resistance between cells in the vascular wall. Ouabain inhibited the electrical coupling between A7r5 cells, but pNaKtide restored the electrical coupling. Ouabain increased cSrc autophosphorylation of tyrosine 418 (Y418) required for full catalytic activity whereas pNaKtide antagonized it. This cSrc activation was associated with Cx43 phosphorylation of tyrosine 265 (Y265). Our findings demonstrate that Na-K-ATPase regulates intercellular communication in the vascular wall via cSrc-dependent Cx43 tyrosine phosphorylation.
Collapse
Affiliation(s)
- Lise Hangaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Vibeke S. Dam
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sukhan Kim
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Christian Aalkjaer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, University of Copenhagen, Copenhagen, Denmark; and
| | | |
Collapse
|
25
|
Rat retinal vasomotion assessed by laser speckle imaging. PLoS One 2017; 12:e0173805. [PMID: 28339503 PMCID: PMC5365106 DOI: 10.1371/journal.pone.0173805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/27/2017] [Indexed: 11/19/2022] Open
Abstract
Vasomotion is spontaneous or induced rhythmic changes in vascular tone or vessel diameter that lead to rhythmic changes in flow. While the vascular research community debates the physiological and pathophysiological consequence of vasomotion, there is a great need for experimental techniques that can address the role and dynamical properties of vasomotion in vivo. We apply laser speckle imaging to study spontaneous and drug induced vasomotion in retinal network of anesthetized rats. The results reveal a wide variety of dynamical patterns. Wavelet-based analysis shows that (i) spontaneous vasomotion occurs in anesthetized animals and (ii) vasomotion can be initiated by systemic administration of the thromboxane analogue U-46619 and the nitric-oxide donor S-nitroso-acetylDL-penicillamine (SNAP). Although these drugs activate different cellular pathways responsible for vasomotion, our approach can track the dynamical changes they cause.
Collapse
|
26
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
27
|
Herting S, DiBartolomeo A, Pipes T, Kunz S, Temnyk K, Truty J, Ur S, Cardinal KO. Human Umbilical Versus Coronary Cell Sources for Tissue-Engineered Blood Vessel Mimics. ACTA ACUST UNITED AC 2016. [DOI: 10.1089/aivt.2016.0012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Scott Herting
- Department of Biomedical Engineering, Cal Poly, San Luis Obispo, San Luis Obispo, California
| | - Alex DiBartolomeo
- Department of Biomedical Engineering, Cal Poly, San Luis Obispo, San Luis Obispo, California
| | - Toni Pipes
- Department of Biomedical Engineering, Cal Poly, San Luis Obispo, San Luis Obispo, California
| | - Shelby Kunz
- Department of Biomedical Engineering, Cal Poly, San Luis Obispo, San Luis Obispo, California
| | - Kristen Temnyk
- Department of Biomedical Engineering, Cal Poly, San Luis Obispo, San Luis Obispo, California
| | - Jakub Truty
- Department of Biomedical Engineering, Cal Poly, San Luis Obispo, San Luis Obispo, California
| | - Sarah Ur
- Department of Biomedical Engineering, Cal Poly, San Luis Obispo, San Luis Obispo, California
| | | |
Collapse
|
28
|
Quijano JC, Raynaud F, Nguyen D, Piacentini N, Meister JJ. Intercellular ultrafast Ca(2+) wave in vascular smooth muscle cells: numerical and experimental study. Sci Rep 2016; 6:31271. [PMID: 27507785 PMCID: PMC4978975 DOI: 10.1038/srep31271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/06/2016] [Indexed: 01/08/2023] Open
Abstract
Vascular smooth muscle cells exhibit intercellular Ca2+ waves in response to local mechanical or KCl stimulation. Recently, a new type of intercellular Ca2+ wave was observed in vitro in a linear arrangement of smooth muscle cells. The intercellular wave was denominated ultrafast Ca2+ wave and it was suggested to be the result of the interplay between membrane potential and Ca2+ dynamics which depended on influx of extracellular Ca2+, cell membrane depolarization and its intercel- lular propagation. In the present study we measured experimentally the conduction velocity of the membrane depolarization and performed simulations of the ultrafast Ca2+ wave along coupled smooth muscle cells. Numerical results reproduced a wide spectrum of experimental observations, including Ca2+ wave velocity, electrotonic membrane depolarization along the network, effects of inhibitors and independence of the Ca2+ wave speed on the intracellular stores. The numerical data also provided new physiological insights suggesting ranges of crucial model parameters that may be altered experimentally and that could significantly affect wave kinetics allowing the modulation of the wave characteristics experimentally. Numerical and experimental results supported the hypothesis that the propagation of membrane depolarization acts as an intercellular messenger mediating intercellular ultrafast Ca2+ waves in smooth muscle cells.
Collapse
Affiliation(s)
- J C Quijano
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Facultad de Ciencias Básicas, Politécnico Colombiano JIC, Medellín, Colombia
| | - F Raynaud
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Computational Systems Oncology, Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - D Nguyen
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - N Piacentini
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - J J Meister
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
29
|
Di Marco LY, Farkas E, Martin C, Venneri A, Frangi AF. Is Vasomotion in Cerebral Arteries Impaired in Alzheimer's Disease? J Alzheimers Dis 2016; 46:35-53. [PMID: 25720414 PMCID: PMC4878307 DOI: 10.3233/jad-142976] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A substantial body of evidence supports the hypothesis of a vascular component in the pathogenesis of Alzheimer’s disease (AD). Cerebral hypoperfusion and blood-brain barrier dysfunction have been indicated as key elements of this pathway. Cerebral amyloid angiopathy (CAA) is a cerebrovascular disorder, frequent in AD, characterized by the accumulation of amyloid-β (Aβ) peptide in cerebral blood vessel walls. CAA is associated with loss of vascular integrity, resulting in impaired regulation of cerebral circulation, and increased susceptibility to cerebral ischemia, microhemorrhages, and white matter damage. Vasomotion— the spontaneous rhythmic modulation of arterial diameter, typically observed in arteries/arterioles in various vascular beds including the brain— is thought to participate in tissue perfusion and oxygen delivery regulation. Vasomotion is impaired in adverse conditions such as hypoperfusion and hypoxia. The perivascular and glymphatic pathways of Aβ clearance are thought to be driven by the systolic pulse. Vasomotion produces diameter changes of comparable amplitude, however at lower rates, and could contribute to these mechanisms of Aβ clearance. In spite of potential clinical interest, studies addressing cerebral vasomotion in the context of AD/CAA are limited. This study reviews the current literature on vasomotion, and hypothesizes potential paths implicating impaired cerebral vasomotion in AD/CAA. Aβ and oxidative stress cause vascular tone dysregulation through direct effects on vascular cells, and indirect effects mediated by impaired neurovascular coupling. Vascular tone dysregulation is further aggravated by cholinergic deficit and results in depressed cerebrovascular reactivity and (possibly) impaired vasomotion, aggravating regional hypoperfusion and promoting further Aβ and oxidative stress accumulation.
Collapse
Affiliation(s)
- Luigi Yuri Di Marco
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, UK
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Chris Martin
- Department of Psychology, University of Sheffield, Sheffield, UK
| | - Annalena Venneri
- Department of Neuroscience, University of Sheffield, Sheffield, UK.,IRCCS, Fondazione Ospedale S. Camillo, Venice, Italy
| | - Alejandro F Frangi
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
30
|
Stefanou C. Electrical muscle stimulation in thomboprophylaxis: review and a derived hypothesis about thrombogenesis-the 4th factor. SPRINGERPLUS 2016; 5:884. [PMID: 27386332 PMCID: PMC4920783 DOI: 10.1186/s40064-016-2521-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/06/2016] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Electrical muscle stimulation (EMS) is an FDA-approved thromboprophylactic method. Thrombus pathogenesis is considered to depend on factors related to components of the vessel wall, the velocity of blood, and blood consistency-collectively known as, the Virchow's triad. OBJECTIVE The testimony supporting the thromboprophylactic effects of the EMS is reviewed. An emphasis is placed on the fact that, EMS has demonstrated, in certain circumstances, an efficacy rate that cannot be fully explained by the Virchow's triad; also that, in reviewing relevant evidence and the theorized pathophysiological mechanisms, several findings collectively point to a potentially missed point. Remarkably, venous thromboembolic disease (VTE) is extremely more common in the lower versus the upper extremities even when the blood velocities equalize; EMS had synergistic effects with intermittent compressive devices, despite their presumed identical mechanism of action; sleep is not thrombogenic; non-peroperative EMS is meaningful only if applied ≥5 times daily; neural insult increases VTEs more than the degree expected by the hypomobility-related blood stasis; etc. These phenomena infer the presence of a 4th thrombogenetic factor: neural supply to the veins provides direct antithrombic effects, by inducing periodic vessel diameter changes and/or by neuro-humoral, chemically acting factors. EMS may stimulate or substitute the 4th factor. This evidence-based hypothesis is analyzed. CONCLUSION A novel pathophysiologic mechanism of thrombogenesis is supported; and, based on this, the role of EMS in thromboprophylaxis is expanded. Exploration of this mechanism may provide new targets for intervention.
Collapse
Affiliation(s)
- Christos Stefanou
- ICU, Limassol General Hospital, Eptanisou 2, Agios Nicolaos, 3100 Limassol, Cyprus
| |
Collapse
|
31
|
Ho IL, Moshkforoush A, Hong K, Meininger GA, Hill MA, Tsoukias NM, Kuo W. Inherent rhythm of smooth muscle cells in rat mesenteric arterioles: An eigensystem formulation. Phys Rev E 2016; 93:042415. [PMID: 27176337 DOI: 10.1103/physreve.93.042415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Indexed: 11/07/2022]
Abstract
On the basis of experimental data and mathematical equations in the literature, we remodel the ionic dynamics of smooth muscle cells (SMCs) as an eigensystem formulation, which is valid for investigating finite variations of variables from the equilibrium such as in common experimental operations. This algorithm provides an alternate viewpoint from frequency-domain analysis and enables one to probe functionalities of SMCs' rhythm by means of a resonance-related mechanism. Numerical results show three types of calcium oscillations of SMCs in mesenteric arterioles: spontaneous calcium oscillation, agonist-dependent calcium oscillation, and agonist-dependent calcium spike. For simple single and double SMCs, we demonstrate properties of synchronization among complex signals related to calcium oscillations, and show different correlation relations between calcium and voltage signals for various synchronization and resonance conditions. For practical cell clusters, our analyses indicate that the rhythm of SMCs could (1) benefit enhancements of signal communications among remote cells, (2) respond to a significant calcium peaking against transient stimulations for triggering globally oscillating modes, and (3) characterize the globally oscillating modes via frog-leap (non-molecular-diffusion) calcium waves across inhomogeneous SMCs.
Collapse
Affiliation(s)
- I Lin Ho
- Department of Physics, National Chung Hsing University, Taichung 402, Taiwan, Republic of China.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Arash Moshkforoush
- Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, EC 2674, Miami, Florida 33174, USA
| | - Kwangseok Hong
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65211, USA
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65211, USA
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65211, USA
| | - Nikolaos M Tsoukias
- Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, EC 2674, Miami, Florida 33174, USA
| | - Watson Kuo
- Department of Physics, National Chung Hsing University, Taichung 402, Taiwan, Republic of China
| |
Collapse
|
32
|
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev 2016; 68:476-532. [PMID: 27037223 PMCID: PMC4819215 DOI: 10.1124/pr.115.010652] [Citation(s) in RCA: 337] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.
Collapse
Affiliation(s)
- F V Brozovich
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C J Nicholson
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C V Degen
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - Yuan Z Gao
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - M Aggarwal
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - K G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| |
Collapse
|
33
|
Hashitani H, Lang RJ. Spontaneous activity in the microvasculature of visceral organs: role of pericytes and voltage-dependent Ca(2+) channels. J Physiol 2016; 594:555-65. [PMID: 26607499 DOI: 10.1113/jp271438] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/31/2015] [Indexed: 12/21/2022] Open
Abstract
The microvasculature plays a primary role in the interchange of substances between tissues and the circulation. In visceral organs that undergo considerable distension upon filling, the microvasculature appears to display intrinsic contractile properties to maintain their flow. Submucosal venules in the bladder or gastrointestinal tract generate rhythmic spontaneous phasic constrictions and associated Ca(2+) transients. These events are initiated within either venular pericytes or smooth muscle cells (SMCs) arising from spontaneous Ca(2+) release from the sarcoplasmic reticulum (SR) and the opening of Ca(2+) -activated chloride channels (CaCCs) that trigger Ca(2+) influx through L-type voltage-dependent Ca(2+) channels (VDCCs). L-type VDCCs also play a critical role in maintaining synchrony within the contractile mural cells. In the stomach myenteric layer, spontaneous Ca(2+) transients originating in capillary pericytes appear to spread to their neighbouring arteriolar SMCs. Capillary Ca(2+) transients primarily rely on SR Ca(2+) release, but also require Ca(2+) influx through T-type VDCCs for their synchrony. The opening of T-type VDCCs also contribute to the propagation of Ca(2+) transients into SMCs. In visceral microvasculature, pericytes act as either spontaneously active contractile machinery of the venules or as pacemaker cells generating synchronous Ca(2+) transients that drive spontaneous contractions in upstream arterioles. Thus pericytes play different roles in different vascular beds in a manner that may well depend on the selective expression of T-type and L-type Ca(2+) channels.
Collapse
Affiliation(s)
- Hikaru Hashitani
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Richard J Lang
- Department of Physiology, School of Biomedical Sciences, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
34
|
Hedegaard ER, Gouliaev A, Winther AK, Arcanjo DDR, Aalling M, Renaltan NS, Wood ME, Whiteman M, Skovgaard N, Simonsen U. Involvement of Potassium Channels and Calcium-Independent Mechanisms in Hydrogen Sulfide-Induced Relaxation of Rat Mesenteric Small Arteries. J Pharmacol Exp Ther 2016; 356:53-63. [PMID: 26493746 DOI: 10.1124/jpet.115.227017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/21/2015] [Indexed: 11/22/2022] Open
Abstract
Endogenous hydrogen sulfide (H2S) is involved in the regulation of vascular tone. We hypothesized that the lowering of calcium and opening of potassium (K) channels as well as calcium-independent mechanisms are involved in H2S-induced relaxation in rat mesenteric small arteries. Amperometric recordings revealed that free [H2S] after addition to closed tubes of sodium hydrosulfide (NaHS), Na2S, and GYY4137 [P-(4-methoxyphenyl)-P-4-morpholinyl-phosphinodithioic acid] were, respectively, 14%, 17%, and 1% of added amount. The compounds caused equipotent relaxations in isometric myographs, but based on the measured free [H2S], GYY4137 caused more relaxation in relation to released free H2S than NaHS and Na2S in rat mesenteric small arteries. Simultaneous measurements of [H2S] and tension showed that 15 µM of free H2S caused 61% relaxation in superior mesenteric arteries. Simultaneous measurements of smooth muscle calcium and tension revealed that NaHS lowered calcium and caused relaxation of NE-contracted arteries, while high extracellular potassium reduced NaHS relaxation without corresponding calcium changes. In NE-contracted arteries, NaHS (1 mM) lowered the phosphorylation of myosin light chain, while phosphorylation of myosin phosphatase target subunit 1 remained unchanged. Protein kinase A and G, inhibitors of guanylate cyclase, failed to reduce NaHS relaxation, whereas blockers of voltage-gated KV7 channels inhibited NaHS relaxation, and blockers of mitochondrial complex I and III abolished NaHS relaxation. Our findings suggest that low micromolar concentrations of free H2S open K channels followed by lowering of smooth muscle calcium, and by another mechanism involving mitochondrial complex I and III leads to uncoupling of force, and hence vasodilation.
Collapse
Affiliation(s)
- Elise R Hedegaard
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark (E.R.H., A.G., A.K.W., D.D.R.A., M.A., N.S.R., N.S., U.S.); Biosciences, College of Life and Environmental Sciences (M.E.W.), and Medical School, St. Luke's Campus (M.W.), University of Exeter, Exeter, United Kingdom
| | - Anja Gouliaev
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark (E.R.H., A.G., A.K.W., D.D.R.A., M.A., N.S.R., N.S., U.S.); Biosciences, College of Life and Environmental Sciences (M.E.W.), and Medical School, St. Luke's Campus (M.W.), University of Exeter, Exeter, United Kingdom
| | - Anna K Winther
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark (E.R.H., A.G., A.K.W., D.D.R.A., M.A., N.S.R., N.S., U.S.); Biosciences, College of Life and Environmental Sciences (M.E.W.), and Medical School, St. Luke's Campus (M.W.), University of Exeter, Exeter, United Kingdom
| | - Daniel D R Arcanjo
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark (E.R.H., A.G., A.K.W., D.D.R.A., M.A., N.S.R., N.S., U.S.); Biosciences, College of Life and Environmental Sciences (M.E.W.), and Medical School, St. Luke's Campus (M.W.), University of Exeter, Exeter, United Kingdom
| | - Mathilde Aalling
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark (E.R.H., A.G., A.K.W., D.D.R.A., M.A., N.S.R., N.S., U.S.); Biosciences, College of Life and Environmental Sciences (M.E.W.), and Medical School, St. Luke's Campus (M.W.), University of Exeter, Exeter, United Kingdom
| | - Nirthika S Renaltan
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark (E.R.H., A.G., A.K.W., D.D.R.A., M.A., N.S.R., N.S., U.S.); Biosciences, College of Life and Environmental Sciences (M.E.W.), and Medical School, St. Luke's Campus (M.W.), University of Exeter, Exeter, United Kingdom
| | - Mark E Wood
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark (E.R.H., A.G., A.K.W., D.D.R.A., M.A., N.S.R., N.S., U.S.); Biosciences, College of Life and Environmental Sciences (M.E.W.), and Medical School, St. Luke's Campus (M.W.), University of Exeter, Exeter, United Kingdom
| | - Matthew Whiteman
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark (E.R.H., A.G., A.K.W., D.D.R.A., M.A., N.S.R., N.S., U.S.); Biosciences, College of Life and Environmental Sciences (M.E.W.), and Medical School, St. Luke's Campus (M.W.), University of Exeter, Exeter, United Kingdom
| | - Nini Skovgaard
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark (E.R.H., A.G., A.K.W., D.D.R.A., M.A., N.S.R., N.S., U.S.); Biosciences, College of Life and Environmental Sciences (M.E.W.), and Medical School, St. Luke's Campus (M.W.), University of Exeter, Exeter, United Kingdom
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark (E.R.H., A.G., A.K.W., D.D.R.A., M.A., N.S.R., N.S., U.S.); Biosciences, College of Life and Environmental Sciences (M.E.W.), and Medical School, St. Luke's Campus (M.W.), University of Exeter, Exeter, United Kingdom
| |
Collapse
|
35
|
Mechanisms underlying spontaneous constrictions of postcapillary venules in the rat stomach. Pflugers Arch 2015; 468:279-91. [PMID: 26530829 DOI: 10.1007/s00424-015-1752-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 10/22/2022]
Abstract
Postcapillary venules (PCVs) play a critical role in regulating capillary hydrostatic pressure, but their contractile mechanisms are not well understood. We examined the properties of spontaneous vasomotion and corresponding Ca(2+) transients in gastric PCV. In the rat gastric submucosa, changes in PCV diameter and intracellular Ca(2+) dynamics were visualised by video tracking system and fluorescent Ca(2+) imaging, respectively, while PCV morphology was examined by immunohistochemistry. Stellate-shaped PCV mural cells expressing α-smooth muscle actin exhibited synchronised spontaneous Ca(2+) transients to develop vasomotion which was abolished by nifedipine (1 μM), cyclopiazonic acid (10 μM), or Ca(2+)-activated Cl(-) channel inhibitors (100 μM niflumic acid, 1 μM T16Ainh-A01). A gap junction blocker (3 μM carbenoxolone) disrupted the synchrony of spontaneous Ca(2+) transients amongst PCV mural cells and attenuated spontaneous vasomotion. Low chloride solution ([Cl(-)]0 = 12.4 mM) also disrupted the synchrony of spontaneous Ca(2+) transients and abolished vasomotion. Na(+)-K(+)-Cl(-) co-transporter inhibitors (10 μM bumetanide, 30 μM furosemide) suppressed spontaneous Ca(2+) transients and vasoconstrictions. A phosphodiesterase type 5 (PDE5) inhibitor (1 μM tadalafil) disrupted the spontaneous Ca(2+) transient synchrony and abolished vasomotion in a nitric oxide (NO)-dependent manner. Thus, gastric PCVs exhibit spontaneous vasomotion, resulting from synchronised spontaneous Ca(2+) transients within a network of stellate-shaped PCV mural cells. An active Cl(-) accumulation partly via Na(+)-K(+)-Cl(-) co-transport appears to be fundamental in maintaining depolarisation upon the opening of Ca(2+)-activated Cl(-) channels that triggers Ca(2+) influx via voltage-dependent L-type Ca(2+) channels. Basal PDE5 activity may continuously counteract vaso-relaxing effects of endothelial NO to maintain spontaneous vasomotion.
Collapse
|
36
|
Abed AB, Kavvadas P, Chadjichristos CE. Functional roles of connexins and pannexins in the kidney. Cell Mol Life Sci 2015; 72:2869-77. [PMID: 26082183 PMCID: PMC11113829 DOI: 10.1007/s00018-015-1964-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 12/22/2022]
Abstract
Kidneys are highly complex organs, playing a crucial role in human physiopathology, as they are implicated in vital processes, such as fluid filtration and vasomotor tone regulation. There is growing evidence that gap junctions are major determinants of renal physiopathology. It has been demonstrated that their expression or channel activity may vary depending on physiological and pathological situations within distinct renal compartments. While some studies have focused on the role of connexins in renal physiology, our knowledge regarding the functional relevance of pannexins is still very limited. In this paper, we provide an overview of the involvement of connexins, pannexins and their channels in various physiological processes related to different renal compartments.
Collapse
Affiliation(s)
- Ahmed B. Abed
- INSERM UMR-S1155, Batiment Recherche, Tenon Hospital, 4 rue de la Chine, 75020 Paris, France
- Sorbonne Universite´s, UPMC Univ Paris 6, Paris, France
| | - Panagiotis Kavvadas
- INSERM UMR-S1155, Batiment Recherche, Tenon Hospital, 4 rue de la Chine, 75020 Paris, France
| | | |
Collapse
|
37
|
Hashitani H, Mitsui R, Masaki S, Van Helden DF. Pacemaker role of pericytes in generating synchronized spontaneous Ca2+ transients in the myenteric microvasculature of the guinea-pig gastric antrum. Cell Calcium 2015; 58:442-56. [PMID: 26153078 DOI: 10.1016/j.ceca.2015.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/08/2015] [Accepted: 06/28/2015] [Indexed: 11/25/2022]
Abstract
Properties of spontaneous Ca(2+) transients in the myenteric microvasculature of the guinea-pig stomach were investigated. Specifically, we explored the spatio-temporal origin of Ca(2+) transients and the role of voltage-dependent Ca(2+) channels (VDCCs) in their intercellular synchrony using fluorescence Ca(2+) imaging and immunohistochemistry. The microvasculature generated spontaneous Ca(2+) transients that were independent of both Ca(2+) transients in interstitial cells of Cajal (ICC) and neural activity. Spontaneous Ca(2+) transients were highly synchronous along the length of microvasculature, and appeared to be initiated in pericytes and spread to arteriolar smooth muscle cells (SMCs). In most cases, the generation or synchrony of Ca(2+) transients was not affected by blockers of L-type VDCCs. In nifedipine-treated preparations, synchronous spontaneous Ca(2+) transients were readily blocked by Ni(2+), mibefradil or ML216, blockers for T-type VDCCs. These blockers also suppressed the known T-type VDCC dependent component of ICC Ca(2+) transients or slow waves. Spontaneous Ca(2+) transients were also suppressed by caffeine, tetracaine or cyclopiazonic acid (CPA). After the blockade of both L- and T-type VDCCs, asynchronous Ca(2+) transients were generated in pericytes on precapillary arterioles and/or capillaries but not in arteriolar SMCs, and were abolished by CPA or nominally Ca(2+) free solution. Together these data indicate that pericytes in the myenteric microvasculature may act as the origin of synchronous spontaneous Ca(2+) transients. Pericyte Ca(2+) transients arise from Ca(2+) release from the sarco-endoplasmic reticulum and the opening of T-type Ca(2+) VDCCs is required for their synchrony and propagation to arteriolar SMCs.
Collapse
Affiliation(s)
- Hikaru Hashitani
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.
| | - Retsu Mitsui
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Shota Masaki
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Dirk F Van Helden
- School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia
| |
Collapse
|
38
|
Dam VS, Boedtkjer DMB, Aalkjaer C, Matchkov V. The bestrophin- and TMEM16A-associated Ca(2+)- activated Cl(–) channels in vascular smooth muscles. Channels (Austin) 2015; 8:361-9. [PMID: 25478625 PMCID: PMC4203738 DOI: 10.4161/chan.29531] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The presence of Ca2+-activated Cl– currents (ICl(Ca)) in vascular smooth muscle cells (VSMCs) is well established. ICl(Ca) are supposedly important for arterial contraction by linking changes in [Ca2+]i and membrane depolarization. Bestrophins and some members of the TMEM16 protein family were recently associated with ICl(Ca). Two distinct ICl(Ca) are characterized in VSMCs; the cGMP-dependent ICl(Ca) dependent upon bestrophin expression and the ‘classical’ Ca2+-activated Cl– current, which is bestrophin-independent. Interestingly, TMEM16A is essential for both the cGMP-dependent and the classical ICl(Ca). Furthermore, TMEM16A has a role in arterial contraction while bestrophins do not. TMEM16A’s role in the contractile response cannot be explained however only by a simple suppression of the depolarization by Cl– channels. It is suggested that TMEM16A expression modulates voltage-gated Ca2+ influx in a voltage-independent manner and recent studies also demonstrate a complex role of TMEM16A in modulating other membrane proteins.
Collapse
|
39
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
40
|
Synchronization in the Heart Rate and the Vasomotion in Rat Aorta: Effect of Arsenic Trioxide. Cardiovasc Toxicol 2015; 16:79-88. [DOI: 10.1007/s12012-015-9312-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Hübner CA, Schroeder BC, Ehmke H. Regulation of vascular tone and arterial blood pressure: role of chloride transport in vascular smooth muscle. Pflugers Arch 2015; 467:605-14. [DOI: 10.1007/s00424-014-1684-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 01/01/2023]
|
42
|
Bulley S, Jaggar JH. Cl⁻ channels in smooth muscle cells. Pflugers Arch 2014; 466:861-72. [PMID: 24077695 DOI: 10.1007/s00424-013-1357-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
In smooth muscle cells (SMCs), the intracellular chloride ion (Cl−) concentration is high due to accumulation by Cl−/HCO3− exchange and Na+–K+–Cl− cotransportation. The equilibrium potential for Cl− (ECl) is more positive than physiological membrane potentials (Em), with Cl− efflux inducing membrane depolarization. Early studies used electrophysiology and nonspecific antagonists to study the physiological relevance of Cl− channels in SMCs. More recent reports have incorporated molecular biological approaches to identify and determine the functional significance of several different Cl− channels. Both "classic" and cGMP-dependent calcium (Ca2+)-activated (ClCa) channels and volume-sensitive Cl− channels are present, with TMEM16A/ANO1, bestrophins, and ClC-3, respectively, proposed as molecular candidates for these channels. The cystic fibrosis transmembrane conductance regulator (CFTR) has also been described in SMCs. This review will focus on discussing recent progress made in identifying each of these Cl− channels in SMCs, their physiological functions, and contribution to diseases that modify contraction, apoptosis, and cell proliferation.
Collapse
|
43
|
Elevated C-reactive protein levels and enhanced high frequency vasomotion in patients with ischemic heart disease during brachial flow-mediated dilation. PLoS One 2014; 9:e110013. [PMID: 25299643 PMCID: PMC4192359 DOI: 10.1371/journal.pone.0110013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/04/2014] [Indexed: 01/22/2023] Open
Abstract
PURPOSE The physiological role of vasomotion, rhythmic oscillations in vascular tone or diameter, and its underlying mechanisms are unknown. We investigated the characteristics of brachial artery vasomotion in patients with ischemic heart disease (IHD). METHODS We performed a retrospective study of 37 patients with IHD. Endothelial function was assessed using flow-mediated dilation (FMD), and power spectral analysis of brachial artery diameter oscillations during FMD was performed. Frequency-domain components were calculated by integrating the power spectrums in three frequency bands (in ms2) using the MemCalc (GMS, Tokyo, Japan): very-low frequency (VLF), 0.003-0.04 Hz; low frequency (LF), 0.04-0.15 Hz; and high frequency (HF), 0.15-0.4 Hz. Total spectral power (TP) was calculated as the sum of all frequency bands, and each spectral component was normalized against TP. RESULTS Data revealed that HF/TP closely correlated with FMD (r = -0.33, p = 0.04), whereas VLF/TP and LF/TP did not. We also explored the relationship between elevated C-reactive protein (CRP) levels and vasomotion. HF/TP was significantly increased in subjects with high CRP levels (CRP;>0.08 mg/dL) compared with subjects with low CRP levels (0.052±0.026 versus 0.035±0.022, p<0.05). The HF/TP value closely correlated with CRP (r = 0.24, p = 0.04), whereas the value of FMD did not (r = 0.023, p = 0.84). In addition, elevated CRP levels significantly increased the value of HF/TP after adjustment for FMD and blood pressure (β = 0.33, p<0.05). CONCLUSION The HF component of brachial artery diameter oscillation during FMD measurement correlated well with FMD and increased in the presence of elevated CRP levels in subjects with IHD.
Collapse
|
44
|
Telinius N, Mohanakumar S, Majgaard J, Kim S, Pilegaard H, Pahle E, Nielsen J, de Leval M, Aalkjaer C, Hjortdal V, Boedtkjer DB. Human lymphatic vessel contractile activity is inhibited in vitro but not in vivo by the calcium channel blocker nifedipine. J Physiol 2014; 592:4697-714. [PMID: 25172950 DOI: 10.1113/jphysiol.2014.276683] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Calcium channel blockers (CCB) are widely prescribed anti-hypertensive agents. The commonest side-effect, peripheral oedema, is attributed to a larger arterial than venous dilatation causing increased fluid filtration. Whether CCB treatment is detrimental to human lymphatic vessel function and thereby exacerbates oedema formation is unknown. We observed that spontaneous lymphatic contractions in isolated human vessels (thoracic duct and mesenteric lymphatics) maintained under isometric conditions were inhibited by therapeutic concentrations (nanomolar) of the CCB nifedipine while higher than therapeutic concentrations of verapamil (micromolar) were necessary to inhibit activity. Nifedipine also inhibited spontaneous action potentials measured by sharp microelectrodes. Furthermore, noradrenaline did not elicit normal increases in lymphatic vessel tone when maximal constriction was reduced to 29.4 ± 4.9% of control in the presence of 20 nmol l(-1) nifedipine. Transcripts for the L-type calcium channel gene CACNA1C were consistently detected from human thoracic duct samples examined and the CaV1.2 protein was localized by immunoreactivity to lymphatic smooth muscle cells. While human lymphatics ex vivo were highly sensitive to nifedipine, this was not apparent in vivo when nifedipine was compared to placebo in a randomized, double-blinded clinical trial: conversely, lymphatic vessel contraction frequency was increased and refill time was faster despite all subjects achieving target nifedipine plasma concentrations. We conclude that human lymphatic vessels are highly sensitive to nifedipine in vitro but that care must be taken when extrapolating in vitro observations of lymphatic vessel function to the clinical situation, as similar changes in lymphatic function were not evident in our clinical trial comparing nifedipine treatment to placebo.
Collapse
Affiliation(s)
- Niklas Telinius
- Department of Biomedicine, Aarhus University, Aarhus, Denmark Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Sheyanth Mohanakumar
- Department of Biomedicine, Aarhus University, Aarhus, Denmark Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Majgaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sukhan Kim
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Hans Pilegaard
- Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Einar Pahle
- Department of Surgery, Viborg Hospital, Viborg, Denmark
| | - Jørn Nielsen
- Department of Surgery, Viborg Hospital, Viborg, Denmark
| | - Marc de Leval
- International Congenital Cardiac Centre, Harley Street Clinic, London, UK
| | | | - Vibeke Hjortdal
- Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Donna Briggs Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
45
|
Telinius N, Kim S, Pilegaard H, Pahle E, Nielsen J, Hjortdal V, Aalkjaer C, Boedtkjer DB. The contribution of K(+) channels to human thoracic duct contractility. Am J Physiol Heart Circ Physiol 2014; 307:H33-43. [PMID: 24778167 DOI: 10.1152/ajpheart.00921.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In smooth muscle cells, K(+) permeability is high, and this highly influences the resting membrane potential. Lymph propulsion is dependent on phasic contractions generated by smooth muscle cells of lymphatic vessels, and it is likely that K(+) channels play a critical role in regulating contractility in this tissue. The aim of this study was to investigate the contribution of distinct K(+) channels to human lymphatic vessel contractility. Thoracic ducts were harvested from 43 patients and mounted in a wire myograph for isometric force measurements or membrane potential recordings with an intracellular microelectrode. Using K(+) channel blockers and activators, we demonstrate a functional contribution to human lymphatic vessel contractility from all the major classes of K(+) channels [ATP-sensitive K(+) (KATP), Ca(2+)-activated K(+), inward rectifier K(+), and voltage-dependent K(+) channels], and this was confirmed at the mRNA level. Contraction amplitude, frequency, and baseline tension were altered depending on which channel was blocked or activated. Microelectrode impalements of lymphatic vessels determined an average resting membrane potential of -43.1 ± 3.7 mV. We observed that membrane potential changes of <5 mV could have large functional effects with contraction frequencies increasing threefold. In general, KATP channels appeared to be constitutively open since incubation with glibenclamide increased contraction frequency in spontaneously active vessels and depolarized and initiated contractions in previously quiescent vessels. The largest change in membrane voltage was observed with the KATP opener pinacidil, which caused 24 ± 3 mV hyperpolarization. We conclude that K(+) channels are important modulators of human lymphatic contractility.
Collapse
|
46
|
Zhang Z, Khatami R. Predominant endothelial vasomotor activity during human sleep: a near-infrared spectroscopy study. Eur J Neurosci 2014; 40:3396-404. [DOI: 10.1111/ejn.12702] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/24/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Zhongxing Zhang
- Center for Sleep Medicine and Sleep Research; Clinic Barmelweid; 5017 Barmelweid Switzerland
- Department of Neurology; University Hospital Zurich; Zurich Switzerland
| | - Ramin Khatami
- Center for Sleep Medicine and Sleep Research; Clinic Barmelweid; 5017 Barmelweid Switzerland
- Department of Neurology; University Hospital Zurich; Zurich Switzerland
| |
Collapse
|
47
|
Li L, Wang R, Ma KT, Li XZ, Zhang CL, Liu WD, Zhao L, Si JQ. Differential effect of calcium-activated potassium and chloride channels on rat basilar artery vasomotion. ACTA ACUST UNITED AC 2014; 34:482-490. [PMID: 25135715 DOI: 10.1007/s11596-014-1303-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/08/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Li Li
- Department of Physiology, Medical College of Shihezi University, Shihezi, 832002, China
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, 832002, China
| | - Rui Wang
- Department of Physiology, Medical College of Shihezi University, Shihezi, 832002, China
| | - Ke-Tao Ma
- Department of Physiology, Medical College of Shihezi University, Shihezi, 832002, China
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, 832002, China
| | - Xin-Zhi Li
- Department of Physiology, Medical College of Shihezi University, Shihezi, 832002, China
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, 832002, China
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chuan-Lin Zhang
- Department of Physiology, Medical College of Shihezi University, Shihezi, 832002, China
| | - Wei-Dong Liu
- Department of Physiology, Medical College of Shihezi University, Shihezi, 832002, China
| | - Lei Zhao
- Department of Physiology, Medical College of Shihezi University, Shihezi, 832002, China
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, 832002, China
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, 832002, China.
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, 832002, China.
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430070, China.
| |
Collapse
|
48
|
Mitsui R, Miyamoto S, Takano H, Hashitani H. Properties of submucosal venules in the rat distal colon. Br J Pharmacol 2014; 170:968-77. [PMID: 23992146 DOI: 10.1111/bph.12347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/06/2013] [Accepted: 06/21/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Venules within the gut wall may have intrinsic mechanisms for maintaining the circulation even upon the intestinal wall distension. We aimed to explore spontaneous and nerve-mediated contractile activity of colonic venules. EXPERIMENTAL APPROACH Changes in the diameter of submucosal venules of the rat distal colon were measured using video microscopy. The innervation of the microvasculature was investigated using fluorescence immunohistochemistry. KEY RESULTS Submucosal venules exhibited spontaneous constrictions that were abolished by blockers of L-type Ca(2+) channels (1 μM nicardipine), Ca(2+)-ATPase (10 μM cyclopiazonic acid), IP3 receptor (100 μM 2-APB), Ca(2+)-activated Cl(-) channels (100 μM DIDS) or store-operated Ca(2+) entry channels (10 μM SKF96365). Transmural nerve stimulation (TNS at 10 Hz) induced a phasic venular constriction that was blocked by phentolamine (1 μM, α-adrenoceptor antagonist) or sympathetic nerve depletion using guanethidine (10 μM). Stimulation of primary afferent nerves with TNS (at 20 Hz) or capsaicin (100 nM) evoked a sustained venular dilatation that was attenuated by calcitonin gene-related peptide (CGRP) 8-37 (2 μM), a CGRP receptor antagonist. Immunohistochemistry revealed sympathetic and primary afferent nerves running along submucosal venules. CONCLUSIONS AND IMPLICATIONS Submucosal venules of the rat distal colon exhibit spontaneous constrictions that appear to primarily rely on Ca(2+) release from sarcoplasmic reticulum and subsequent opening of Ca(2+)-activated Cl(-) channels that trigger Ca(2+) influx through L-type Ca(2+) channels. Venular contractility is modulated by sympathetic as well as CGRP-containing primary afferent nerves, suggesting that submucosal venules may play an active role in regulating the microcirculation of the digestive tract.
Collapse
Affiliation(s)
- Retsu Mitsui
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | |
Collapse
|
49
|
Functional properties of submucosal venules in the rat stomach. Pflugers Arch 2014; 467:1327-42. [PMID: 25066613 DOI: 10.1007/s00424-014-1576-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/12/2014] [Accepted: 07/04/2014] [Indexed: 10/25/2022]
Abstract
Venules in the stomach may have intrinsic properties for maintaining active microcirculation drainage even during gastric filling. Properties of spontaneous and nerve-mediated activity of submucosal venules in the rat stomach were investigated. Changes in vasodiameter and intracellular Ca(2+) in venular smooth muscle cells (SMCs) were monitored by video tracking and Fluo-8 Ca(2+) imaging, respectively. Venular SMCs developed synchronous spontaneous Ca(2+) transients and corresponding rhythmic constrictions of the venules. Nominally Ca(2+)-free solution or an L-type Ca(2+) channel blocker (1 μM nifedipine) disrupted the Ca(2+) transient synchrony and abolished spontaneous constrictions. Spontaneous constrictions were also prevented by inhibitors of sarcoplasmic reticulum Ca(2+)-ATPase (10 μM cyclopiazonic acid (CPA)), IP3 receptors (100 μM 2-APB) or Ca(2+)-activated Cl(-) channels (100 μM niflumic acid). Transmural nerve stimulation (TNS) induced a long-lasting venular constriction that was abolished by α-adrenoceptor antagonist (1 μM phentolamine), while TNS evoked a sympathetic transient constriction of arterioles that was abolished by a combination of phentolamine and a P2 purinoceptor antagonist (10 μM pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS)). Consistently, P2X1 purinoceptor immunoreactivity was detected in arteriolar but not venular SMCs. Primary afferent nerve stimulation (300 nM capsaicin) caused a venular dilatation by releasing calcitonin gene-related peptide. Thus, Ca(2+) release from the sarcoplasmic reticulum may play a fundamental role in the generation of spontaneous Ca(2+) transients, while electrical coupling amongst venular SMCs via L-type Ca(2+) channel activation appears to be critical for Ca(2+) transient synchrony as well as spontaneous contractions. Sympathetic venular constrictions appear to be exclusively mediated by noradrenaline due to the lack of P2X1 receptor in venular SMCs.
Collapse
|
50
|
Palacios J, Nwokocha CR, Cifuentes F. Arsenic exposure decreases rhythmic contractions of vascular tone through sodium transporters and K + channels. World J Pharmacol 2014; 3:18-23. [DOI: 10.5497/wjp.v3.i2.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/24/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023] Open
Abstract
Arsenic-contaminated drinking water is a public health problem in countries such as Taiwan, Bangladesh, United States, Mexico, Argentina, and Chile. The chronic ingestion of arsenic-contaminated drinking water increases the risk for ischemic heart disease, cerebrovascular disease, and prevalence of hypertension. Although toxic arsenic effects are controversial, there is evidence that a high concentration of arsenic may induce hypertension through increase in vascular tone and resistance. Vascular tone is regulated by the rhythmic contractions of the blood vessels, generated by calcium oscillations in the cytosol of vascular smooth muscle cells. To regulate the cytosolic calcium oscillations, the membrane oscillator model involves the participation of Ca2+ channels, calcium-activated K+ channels, Na+/Ca2+ exchange, plasma membrane Ca2+-ATPase, and the Na+/K+-ATPase. However, little is known about the role of K+ uptake by sodium transporters [Na+/K+-ATPase or Na+-K+-2Cl- (NKCC1)] on the rhythmic contractions. Vascular rhythmic contractions, or vasomotion are a local mechanism to regulate vascular resistance and blood flow. Since vascular rhythmic contractions of blood vessels are involved in modulating the vascular resistance, the blood flow, and the systemic pressure, we suggest a model explaining the participation of the sodium pump and NKCC1 co-transporter in low dose arsenic exposure effects on vasomotion and vascular dysfunction.
Collapse
|