1
|
Singh P, Sun J, Cavalera M, Al-Sharify D, Matthes F, Barghouth M, Tengryd C, Dunér P, Persson A, Sundius L, Nitulescu M, Bengtsson E, Rattik S, Engelbertsen D, Orho-Melander M, Nilsson J, Monaco C, Goncalves I, Edsfeldt A. Dysregulation of MMP2-dependent TGF-ß2 activation impairs fibrous cap formation in type 2 diabetes-associated atherosclerosis. Nat Commun 2024; 15:10464. [PMID: 39653743 PMCID: PMC11628557 DOI: 10.1038/s41467-024-50753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/18/2024] [Indexed: 12/12/2024] Open
Abstract
Type 2 diabetes is associated with cardiovascular disease, possibly due to impaired vascular fibrous repair. Yet, the mechanisms are elusive. Here, we investigate alterations in the fibrous repair processes in type 2 diabetes atherosclerotic plaque extracellular matrix by combining multi-omics from the human Carotid Plaque Imaging Project cohort and functional studies. Plaques from type 2 diabetes patients have less collagen. Interestingly, lower levels of transforming growth factor-ß distinguish type 2 diabetes plaques and, in these patients, lower levels of fibrous repair markers are associated with cardiovascular events. Transforming growth factor-ß2 originates mostly from contractile vascular smooth muscle cells that interact with synthetic vascular smooth muscle cells in the cap, leading to collagen formation and vascular smooth muscle cell differentiation. This is regulated by free transforming growth factor-ß2 which is affected by hyperglycemia. Our findings underscore the importance of transforming growth factor-ß2-driven fibrous repair in type 2 diabetes as an area for future therapeutic strategies.
Collapse
MESH Headings
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/pathology
- Humans
- Transforming Growth Factor beta2/metabolism
- Matrix Metalloproteinase 2/metabolism
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Male
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Female
- Animals
- Middle Aged
- Aged
- Collagen/metabolism
- Extracellular Matrix/metabolism
- Mice
- Cell Differentiation
Collapse
Affiliation(s)
- Pratibha Singh
- Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden
| | - Jiangming Sun
- Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden
| | - Michele Cavalera
- Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden
| | - Dania Al-Sharify
- Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden
| | - Frank Matthes
- Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden
| | - Mohammad Barghouth
- Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden
| | - Christoffer Tengryd
- Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden
| | - Pontus Dunér
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Ana Persson
- Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden
| | - Lena Sundius
- Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden
| | - Mihaela Nitulescu
- Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden
| | - Eva Bengtsson
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Biomedical Science, Malmö University, Malmö, Sweden
- Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Sara Rattik
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | | | | | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Isabel Goncalves
- Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden
- Department of Cardiology, University Hospital of Skåne, Lund/Malmö, Sweden
| | - Andreas Edsfeldt
- Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden.
- Department of Cardiology, University Hospital of Skåne, Lund/Malmö, Sweden.
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Fu M, Li Q, Qian H, Min X, Yang H, Liu Z, Wu W, Zhong J, Xu H, Mei A, Chen J. Exendin-4 intervention attenuates atherosclerosis severity by modulating myeloid-derived suppressor cells and inflammatory cytokines in ApoE -/- mice. Int Immunopharmacol 2024; 140:112844. [PMID: 39094363 DOI: 10.1016/j.intimp.2024.112844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE To investigate the impact of the glucagon-like peptide-1 (GLP-1) receptor agonist Exendin-4 on the proportion of myeloid-derived suppressor cells (MDSCs) in male ApoE-/- mice, and investigate alterations in the concentrations of inflammatory factors in plasma and spleen tissues and assess their correlation with MDSCs. METHODS Thirty male ApoE-/- mice were randomly divided into five groups (n = 6 per group): control group (CON), model group (MOD), Exendin-4 intervention group (MOD/Ex-4), Exendin-9-39 intervention group (MOD/Ex-9-39), and Exendin-4 + Exendin-9-39 combined intervention group (MOD/Ex-4 + Ex-9-39). After 4 weeks of drug intervention, changes in aortic plaque were observed using Oil Red O staining and H&E staining. Flow cytometry was employed to detect the content of myeloid-derived suppressor cells (MDSCs) in bone marrow and peripheral blood. ELISA was utilized to measure the concentrations of inflammatory factors in mouse peripheral blood plasma, while RT-qPCR was employed to quantify the expression levels of inflammatory factors in the spleen. Pearson correlation analysis was conducted to assess the relationship between MDSCs and inflammatory factors. RESULTS Mice in the MOD group had significantly higher body weight compared to the CON group, with a statistically significant difference (P<0.05). Following Exendin-4 intervention, body weight was reduced compared to the MOD group (P<0.05). Additionally, Exendin-4 treatment led to a significant reduction in atherosclerotic plaque compared to the MOD group (P<0.001). After Exendin-4 intervention, the proportion of MDSCs in the bone marrow was higher than in the MOD group (P<0.001), and the proportion of MDSCs in peripheral blood was significantly higher than in the MOD group (P<0.05). Further investigation revealed that Exendin-4 could regulate lipid levels in mice, decreasing concentrations of TG (P<0.01), TC (P<0.0001), and LDL-C (P<0.0001), while increasing HDL-C concentrations (P<0.01). Moreover, after Exendin-4 treatment, the level of the cytokine IL-6 in peripheral plasma was significantly lower compared to the MOD group (P<0.0001), while levels of IL-10 and TGF-β were significantly higher compared to the MOD group (P<0.0001). In the spleen, levels of the cytokines IL-10 (P<0.0001) and TGF-β (P<0.001) were significantly increased compared to the MOD group. Pearson correlation analysis showed that the proportion of MDSCs in peripheral blood was positively correlated with IL-10 and TGF-β levels in both the spleen and peripheral blood. Additionally, the proportion of MDSCs in the bone marrow was positively correlated with IL-10 and TGF-β levels in the spleen and peripheral blood. CONCLUSION Exendin-4 alleviates the severity of atherosclerosis. This process may be achieved by promoting the secretion of myeloid-derived suppressor cells (MDSCs) in the bone marrow and peripheral blood of atherosclerotic ApoE-/- mice, regulating the ratio of inflammatory factors in the body, reducing mouse body weight, and lowering blood lipids.
Collapse
Affiliation(s)
- Miaoxin Fu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Qingmei Li
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China; Sheng Li OilField Central Hospital, Dong Ying, Shandong Province, China
| | - Hang Qian
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Zhixin Liu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Wenwen Wu
- School of Public Health, Hubei University of Medicine, 442000 Shiyan, Hubei, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, 430074 Wuhan, Hubei, China
| | - Hao Xu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Aihua Mei
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China; Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China.
| |
Collapse
|
3
|
Petrovič D, Letonja J, Petrovič D. SMAD3 rs17228212 Polymorphism Is Associated with Advanced Carotid Atherosclerosis in a Slovenian Population. Biomedicines 2024; 12:1103. [PMID: 38791063 PMCID: PMC11117620 DOI: 10.3390/biomedicines12051103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Smad proteins influence the TGFβ signaling pathway, which plays an important role in the progression of atherosclerosis. The aim of our study was to investigate the association between the rs17228212 polymorphism of the SMAD3 gene and advanced carotid atherosclerosis in Slovenian subjects and to investigate the effect of the rs17228212 SMAD3 polymorphism on the expression of SMAD3 in endarterectomy sequesters. In this cross-sectional case-control study, 881 unrelated Caucasians were divided into two groups. The first group included 308 patients with advanced carotid atherosclerosis of the common or internal carotid artery with stenosis greater than 75% that underwent a revascularization procedure (cases). The control group consisted of 573 subjects without hemodynamically significant carotid atherosclerosis. We analyzed the rs17228212 polymorphism of the SMAD3 gene using the StepOne real-time polymerase chain reaction system and TaqMan SNP genotyping assay. The results in the two genetic models showed a statistically significant association, codominant (OR 4.05; CI 1.10-17.75; p = 0.037) and dominant (OR 3.60; CI 1.15-15.45; p = 0.045). An immunohistochemical analysis of SMAD3 expression was conducted for 26 endarterectomy specimens. The T allele of the rs17228212 SMAD3 gene was shown to be associated with an increased numerical area density of SMAD3-positive cells in carotid plaques.
Collapse
Affiliation(s)
- David Petrovič
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia; (D.P.); (J.L.)
| | - Jernej Letonja
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia; (D.P.); (J.L.)
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Danijel Petrovič
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia; (D.P.); (J.L.)
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Guha Ray A, Odum OP, Wiseman D, Weinstock A. The diverse roles of macrophages in metabolic inflammation and its resolution. Front Cell Dev Biol 2023; 11:1147434. [PMID: 36994095 PMCID: PMC10041730 DOI: 10.3389/fcell.2023.1147434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Macrophages are one of the most functionally diverse immune cells, indispensable to maintain tissue integrity and metabolic health. Macrophages perform a myriad of functions ranging from promoting inflammation, through inflammation resolution to restoring and maintaining tissue homeostasis. Metabolic diseases encompass a growing list of diseases which develop from a mix of genetics and environmental cues leading to metabolic dysregulation and subsequent inflammation. In this review, we summarize the contributions of macrophages to four metabolic conditions-insulin resistance and adipose tissue inflammation, atherosclerosis, non-alcoholic fatty liver disease and neurodegeneration. The role of macrophages is complex, yet they hold great promise as potential therapies to address these growing health concerns.
Collapse
Affiliation(s)
| | | | | | - Ada Weinstock
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Lorey MB, Öörni K, Kovanen PT. Modified Lipoproteins Induce Arterial Wall Inflammation During Atherogenesis. Front Cardiovasc Med 2022; 9:841545. [PMID: 35310965 PMCID: PMC8927694 DOI: 10.3389/fcvm.2022.841545] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
Circulating apolipoprotein B-containing lipoproteins, notably the low-density lipoproteins, enter the inner layer of the arterial wall, the intima, where a fraction of them is retained and modified by proteases, lipases, and oxidizing agents and enzymes. The modified lipoproteins and various modification products, such as fatty acids, ceramides, lysophospholipids, and oxidized lipids induce inflammatory reactions in the macrophages and the covering endothelial cells, initiating an increased leukocyte diapedesis. Lipolysis of the lipoproteins also induces the formation of cholesterol crystals with strong proinflammatory properties. Modified and aggregated lipoproteins, cholesterol crystals, and lipoproteins isolated from human atherosclerotic lesions, all can activate macrophages and thereby induce the secretion of proinflammatory cytokines, chemokines, and enzymes. The extent of lipoprotein retention, modification, and aggregation have been shown to depend largely on differences in the composition of the circulating lipoprotein particles. These properties can be modified by pharmacological means, and thereby provide opportunities for clinical interventions regarding the prevention and treatment of atherosclerotic vascular diseases.
Collapse
Affiliation(s)
- Martina B. Lorey
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- *Correspondence: Katariina Öörni
| | - Petri T. Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| |
Collapse
|
6
|
Wang H, Zhang P, Chen X, Liu W, Fu Z, Liu M. Activin a inhibits foam cell formation and up-regulates ABCA1 and ABCG1 expression through Alk4-Smad signaling pathway in RAW 264.7 macrophages. Steroids 2021; 174:108887. [PMID: 34237315 DOI: 10.1016/j.steroids.2021.108887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Activin A has been reported to play important roles in the pathogenesis of atherosclerosis. The purpose of this study is to investigate the effects of activin A on oxidized low-density lipoprotein (ox-LDL)-induced foam cell formation and explore the underlying molecular mechanisms in murine macrophage-like cell line RAW 264.7. METHODS The effects of activin A on Dil-labeled ox-LDL uptake were examined by confocal microscopy and flow cytometry analysis. The mRNA and protein levels of cholesterol receptors were analyzed by RT-qPCR and western blot analysis, respectively. To investigate whether activin receptor-like kinase 4 (Alk4) is required for activin A-mediated cellular effects, cells were pre-treated with SB-431542. The involvement of Smad2, Smad3 and Smad4 was confirmed by transfection with specific small interfering RNAs (siRNAs). RESULTS Activin A inhibits ox-ldl-induced foam cell formation and class A scavenger receptors (SR-A) expression, while up-regulates ATP-binding cassette transporter A1 (ABCA1) and ABCG1 expression in RAW 264.7 macrophages. Pre-treatment with SB-431542 abolished activin A-mediated anti-atherogenic effect. Knockdown of Smad2 reversed activin A-induced inhibition of ox-LDL uptake and SR-A expression. However, knockdown of Smad3 or Smad4 did not have such effect. Meanwhile, knockdown of either Smad2, Smad3 or Smad4 reversed the activin A-induced up-regulation of ABCA1 and ABCG1. CONCLUSIONS Our study provides novel evidence that activin A may exert anti-atherogenic effects through Alk4-Smad signaling pathway in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Hao Wang
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Peng Zhang
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, People's Republic of China; Division of Cardiology, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen 361000, People's Republic of China
| | - Xiahuan Chen
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Wenwen Liu
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Zhifang Fu
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Meilin Liu
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, People's Republic of China.
| |
Collapse
|
7
|
Lipid metabolism, inflammation, and foam cell formation in health and metabolic disorders: targeting mTORC1. J Mol Med (Berl) 2021; 99:1497-1509. [PMID: 34312684 DOI: 10.1007/s00109-021-02117-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023]
Abstract
Metabolic homeostasis is important for maintaining a healthy lifespan. Lipid metabolism is particularly necessary for the maintenance of metabolic energy sources and their storage, and the structure and function of cell membranes, as well as for the regulation of nutrition through lipogenesis, lipolysis, and lipophagy. Dysfunctional lipid metabolism leads to the development of metabolic disorders, such as atherosclerosis, diabetes mellitus, and non-alcoholic fatty liver disease (NAFLD). Furthermore, dyslipidaemia causes inflammatory responses and foam cell formation. Mechanistic target of rapamycin (mTOR) signalling is a key regulator of diverse cellular processes, including cell metabolism and cell fate. mTOR complex 1 (mTORC1) is involved in lipid metabolism and immune responses in the body. Therefore, the mTORC1 signalling pathway has been suggested as a potential therapeutic target for the treatment of metabolic disorders. In this review, we focus on the roles of mTORC1 in lipid metabolism and inflammation, and present current evidence on its involvement in the development and progression of metabolic disorders.
Collapse
|
8
|
Tamura S, Koike Y, Takeda H, Koike T, Izumi Y, Nagasaka R, Tsunoda T, Tori M, Ogawa K, Bamba T, Shiomi M. Ameliorating effects of D-47, a newly developed compound, on lipid metabolism in an animal model of familial hypercholesterolemia (WHHLMI rabbits). Eur J Pharmacol 2018; 822:147-153. [DOI: 10.1016/j.ejphar.2018.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 12/25/2022]
|
9
|
Sanmarco LM, Eberhardt N, Ponce NE, Cano RC, Bonacci G, Aoki MP. New Insights into the Immunobiology of Mononuclear Phagocytic Cells and Their Relevance to the Pathogenesis of Cardiovascular Diseases. Front Immunol 2018; 8:1921. [PMID: 29375564 PMCID: PMC5767236 DOI: 10.3389/fimmu.2017.01921] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022] Open
Abstract
Macrophages are the primary immune cells that reside within the myocardium, suggesting that these mononuclear phagocytes are essential in the orchestration of cardiac immunity and homeostasis. Independent of the nature of the injury, the heart triggers leukocyte activation and recruitment. However, inflammation is harmful to this vital terminally differentiated organ with extremely poor regenerative capacity. As such, cardiac tissue has evolved particular strategies to increase the stress tolerance and minimize the impact of inflammation. In this sense, growing evidences show that mononuclear phagocytic cells are particularly dynamic during cardiac inflammation or infection and would actively participate in tissue repair and functional recovery. They respond to soluble mediators such as metabolites or cytokines, which play central roles in the timing of the intrinsic cardiac stress response. During myocardial infarction two distinct phases of monocyte influx have been identified. Upon infarction, the heart modulates its chemokine expression profile that sequentially and actively recruits inflammatory monocytes, first, and healing monocytes, later. In the same way, a sudden switch from inflammatory macrophages (with microbicidal effectors) toward anti-inflammatory macrophages occurs within the myocardium very shortly after infection with Trypanosoma cruzi, the causal agent of Chagas cardiomyopathy. While in sterile injury, healing response is necessary to stop tissue damage; during an intracellular infection, the anti-inflammatory milieu in infected hearts would promote microbial persistence. The balance of mononuclear phagocytic cells seems to be also dynamic in atherosclerosis influencing plaque initiation and fate. This review summarizes the participation of mononuclear phagocyte system in cardiovascular diseases, keeping in mind that the immune system evolved to promote the reestablishment of tissue homeostasis following infection/injury, and that the effects of different mediators could modulate the magnitude and quality of the immune response. The knowledge of the effects triggered by diverse mediators would serve to identify new therapeutic targets in different cardiovascular pathologies.
Collapse
Affiliation(s)
- Liliana Maria Sanmarco
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Natalia Eberhardt
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Nicolás Eric Ponce
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Laboratorio de Neuropatología Experimental, Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Roxana Carolina Cano
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Católica de Córdoba, Unidad Asociada Área Ciencias Agrarias, Ingeniería, Ciencias Biológicas y de la Salud, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Gustavo Bonacci
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Maria Pilar Aoki
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| |
Collapse
|
10
|
Massafra V, Milona A, Vos HR, Burgering BMT, van Mil SWC. Quantitative liver proteomics identifies FGF19 targets that couple metabolism and proliferation. PLoS One 2017; 12:e0171185. [PMID: 28178326 PMCID: PMC5298232 DOI: 10.1371/journal.pone.0171185] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
Fibroblast growth factor 19 (FGF19) is a gut-derived peptide hormone that is produced following activation of Farnesoid X Receptor (FXR). FGF19 is secreted and signals to the liver, where it contributes to the homeostasis of bile acid (BA), lipid and carbohydrate metabolism. FGF19 is a promising therapeutic target for the metabolic syndrome and cholestatic diseases, but enthusiasm for its use has been tempered by FGF19-mediated induction of proliferation and hepatocellular carcinoma. To inform future rational design of FGF19-variants, we have conducted temporal quantitative proteomic and gene expression analyses to identify FGF19-targets related to metabolism and proliferation. Mice were fasted for 16 hours, and injected with human FGF19 (1 mg/kg body weight) or vehicle. Liver protein extracts (containing “light” lysine) were mixed 1:1 with a spike-in protein extract from 13C6-lysine metabolically labelled mouse liver (containing “heavy” lysine) and analysed by LC-MS/MS. Our analyses provide a resource of FGF19 target proteins in the liver. 189 proteins were upregulated (≥ 1.5 folds) and 73 proteins were downregulated (≤ -1.5 folds) by FGF19. FGF19 treatment decreased the expression of proteins involved in fatty acid (FA) synthesis, i.e., Fabp5, Scd1, and Acsl3 and increased the expression of Acox1, involved in FA oxidation. As expected, FGF19 increased the expression of proteins known to drive proliferation (i.e., Tgfbi, Vcam1, Anxa2 and Hdlbp). Importantly, many of the FGF19 targets (i.e., Pdk4, Apoa4, Fas and Stat3) have a dual function in both metabolism and cell proliferation. Therefore, our findings challenge the development of FGF19-variants that fully uncouple metabolic benefit from mitogenic potential.
Collapse
Affiliation(s)
- Vittoria Massafra
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Alexandra Milona
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Harmjan R. Vos
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
11
|
Salter RC, Foka P, Davies TS, Gallagher H, Michael DR, Ashlin TG, Ramji DP. The role of mitogen-activated protein kinases and sterol receptor coactivator-1 in TGF-β-regulated expression of genes implicated in macrophage cholesterol uptake. Sci Rep 2016; 6:34368. [PMID: 27687241 PMCID: PMC5043369 DOI: 10.1038/srep34368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 09/12/2016] [Indexed: 01/25/2023] Open
Abstract
The anti-atherogenic cytokine TGF-β inhibits macrophage foam cell formation by suppressing the expression of key genes implicated in the uptake of modified lipoproteins. We have previously shown a critical role for p38 MAPK and JNK in the TGF-β-mediated regulation of apolipoprotein E expression in human monocytes. However, the roles of these two MAPK pathways in the control of expression of key genes involved in the uptake of modified lipoproteins in human macrophages is poorly understood and formed the focus of this study. TGF-β activated both p38 MAPK and JNK, and knockdown of p38 MAPK or c-Jun, a key downstream target of JNK action, demonstrated their requirement in the TGF-β-inhibited expression of several key genes implicated in macrophage lipoprotein uptake. The potential role of c-Jun and specific co-activators in the action of TGF-β was investigated further by studies on the lipoprotein lipase gene. c-Jun did not directly interact with the minimal promoter region containing the TGF-β response elements and a combination of transient transfection and knock down assays revealed an important role for SRC-1. These studies provide novel insights into the mechanisms underlying the TGF-β-mediated inhibition of macrophage gene expression associated with the control of cholesterol homeostasis.
Collapse
Affiliation(s)
- Rebecca C Salter
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, United Kingdom
| | - Pelagia Foka
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, United Kingdom
| | - Thomas S Davies
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, United Kingdom
| | - Hayley Gallagher
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, United Kingdom
| | - Daryn R Michael
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, United Kingdom
| | - Tim G Ashlin
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, United Kingdom
| | - Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, United Kingdom
| |
Collapse
|
12
|
El Asmar Z, Terrand J, Jenty M, Host L, Mlih M, Zerr A, Justiniano H, Matz RL, Boudier C, Scholler E, Garnier JM, Bertaccini D, Thiersé D, Schaeffer C, Van Dorsselaer A, Herz J, Bruban V, Boucher P. Convergent Signaling Pathways Controlled by LRP1 (Receptor-related Protein 1) Cytoplasmic and Extracellular Domains Limit Cellular Cholesterol Accumulation. J Biol Chem 2016; 291:5116-27. [PMID: 26792864 DOI: 10.1074/jbc.m116.714485] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 11/06/2022] Open
Abstract
The low density lipoprotein receptor-related protein 1 (LRP1) is a ubiquitously expressed cell surface receptor that protects from intracellular cholesterol accumulation. However, the underlying mechanisms are unknown. Here we show that the extracellular (α) chain of LRP1 mediates TGFβ-induced enhancement of Wnt5a, which limits intracellular cholesterol accumulation by inhibiting cholesterol biosynthesis and by promoting cholesterol export. Moreover, we demonstrate that the cytoplasmic (β) chain of LRP1 suffices to limit cholesterol accumulation in LRP1(-/-) cells. Through binding of Erk2 to the second of its carboxyl-terminal NPXY motifs, LRP1 β-chain positively regulates the expression of ATP binding cassette transporter A1 (ABCA1) and of neutral cholesterol ester hydrolase (NCEH1). These results highlight the unexpected functions of LRP1 and the canonical Wnt5a pathway and new therapeutic potential in cholesterol-associated disorders including cardiovascular diseases.
Collapse
Affiliation(s)
- Zeina El Asmar
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Jérome Terrand
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Marion Jenty
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Lionel Host
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Mohamed Mlih
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Aurélie Zerr
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Hélène Justiniano
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Rachel L Matz
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Christian Boudier
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Estelle Scholler
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Jean-Marie Garnier
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM 964/CNRS UMR 7104, University of Strasbourg, 67401 Illkirch, France
| | - Diego Bertaccini
- CNRS, UMR 7178, University of Strasbourg, 67087 Strasbourg, France, and
| | - Danièle Thiersé
- CNRS, UMR 7178, University of Strasbourg, 67087 Strasbourg, France, and
| | | | | | - Joachim Herz
- Department of Molecular Genetics and Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Véronique Bruban
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France,
| | - Philippe Boucher
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France,
| |
Collapse
|
13
|
von Bernhardi R, Cornejo F, Parada GE, Eugenín J. Role of TGFβ signaling in the pathogenesis of Alzheimer's disease. Front Cell Neurosci 2015; 9:426. [PMID: 26578886 PMCID: PMC4623426 DOI: 10.3389/fncel.2015.00426] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/09/2015] [Indexed: 12/19/2022] Open
Abstract
Aging is the main risk factor for Alzheimer’s disease (AD); being associated with conspicuous changes on microglia activation. Aged microglia exhibit an increased expression of cytokines, exacerbated reactivity to various stimuli, oxidative stress, and reduced phagocytosis of β-amyloid (Aβ). Whereas normal inflammation is protective, it becomes dysregulated in the presence of a persistent stimulus, or in the context of an inflammatory environment, as observed in aging. Thus, neuroinflammation can be a self-perpetuating deleterious response, becoming a source of additional injury to host cells in neurodegenerative diseases. In aged individuals, although transforming growth factor β (TGFβ) is upregulated, its canonical Smad3 signaling is greatly reduced and neuroinflammation persists. This age-related Smad3 impairment reduces protective activation while facilitating cytotoxic activation of microglia through several cellular mechanisms, potentiating microglia-mediated neurodegeneration. Here, we critically discuss the role of TGFβ-Smad signaling on the cytotoxic activation of microglia and its relevance in the pathogenesis of AD. Other protective functions, such as phagocytosis, although observed in aged animals, are not further induced by inflammatory stimuli and TGFβ1. Analysis in silico revealed that increased expression of receptor scavenger receptor (SR)-A, involved in Aβ uptake and cell activation, by microglia exposed to TGFβ, through a Smad3-dependent mechanism could be mediated by transcriptional co-factors Smad2/3 over the MSR1 gene. We discuss that changes of TGFβ-mediated regulation could at least partially mediate age-associated microglia changes, and, together with other changes on inflammatory response, could result in the reduction of protective activation and the potentiation of cytotoxicity of microglia, resulting in the promotion of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Laboratory of Neuroscience, Faculty of Medicine, Department of Neurology, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Francisca Cornejo
- Laboratory of Neuroscience, Faculty of Medicine, Department of Neurology, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Guillermo E Parada
- Laboratory of Neuroscience, Faculty of Medicine, Department of Neurology, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Jaime Eugenín
- Laboratory of Neural Systems, Faculty of Chemistry and Biology, Department of Biology, Universidad de Santiago de Chile Santiago, Chile
| |
Collapse
|
14
|
Curtis A, Smith T, Ziganshin BA, Elefteriades JA. Ascending Aortic Proaneurysmal Genetic Mutations with Antiatherogenic Effects. Int J Angiol 2015; 24:189-97. [PMID: 26417187 DOI: 10.1055/s-0035-1556075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Thoracic aortic aneurysms are common and are associated with a high morbidity and mortality. Despite this lethal diagnosis, there is an increasing body of evidence to suggest that the diagnosis of an aneurysm, specifically in the ascending thoracic aorta, may significantly reduce the risk of developing systemic atherosclerosis. Clinical observations in the operating room have shown pristine blood vessels in patients undergoing surgery for thoracic aortic aneurysms. There is now evidence that both the carotid intima-media thickness and arterial calcification, which are early and late signs of atherosclerosis respectively, are decreased in those with thoracic aortic aneurysms. These clinical studies are supported by molecular, genetic, and pharmacological evidence. Two principle mechanisms have been identified to explain the relationship of a proaneurysmal state conferring protection from atherosclerosis. These include an excess proteolytic balance of matrix metalloproteinase activity, leading to fragmentation of elastic lamellae and disordered collagen deposition. In addition, transforming growth factor β modulates vascular smooth muscle cells, extracellular matrix, and leukocytes. This confers protection from the initial plaque formation and, later provides stability to the plaque possibly through alteration of the types I and II transforming growth factor β receptor ratio. Furthermore, studies are now beginning to establish an important role for statins and estradiol in modulating these complex pathways. In the future, as our understanding of these complex mechanisms underlying aneurysmal protection against atherosclerosis increases, corresponding therapies may be developed to offer protection from atherosclerosis.
Collapse
Affiliation(s)
- Alexander Curtis
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
| | - Tanya Smith
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
| | - Bulat A Ziganshin
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut ; Department of Surgical Diseases No. 2, Kazan State Medical University, Kazan, Russia
| | - John A Elefteriades
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
15
|
Abstract
The 9p21.3 locus was the first to yield to genome-wide association studies (GWAS) seeking common genetic variants predisposing to increased risk of coronary artery atherosclerotic disease (CAD). The 59 single nucleotide polymorphisms that show highest association with CAD are clustered in a region 100,000 to 150,000 base pairs 5' to the cyclin-dependent kinase inhibitors CDKN2B (coding for p15(ink4b)) and CDKN2A (coding for p16(ink4a) and p14(ARF)). This region also covers the 3' end of a long noncoding RNA transcribed antisense to CDKN2B (CDKN2BAS, aka ANRIL for antisense noncoding RNA at the ink4 locus) whose expression has been linked to chromatin remodeling at the locus. Despite intensive investigation over the past 7 years, the functional significance of the 9p21.3 locus remains elusive. Other variants at this locus have been associated with glaucoma, glioma, and type 2 diabetes mellitus, diseases that implicate tissue-resident macrophages. Here, we review the evidence that genetic variants at 9p21.3 disrupt tissue-specific enhancers and propose new insights to guide future studies.
Collapse
|
16
|
Kardassis D, Gafencu A, Zannis VI, Davalos A. Regulation of HDL genes: transcriptional, posttranscriptional, and posttranslational. Handb Exp Pharmacol 2015; 224:113-179. [PMID: 25522987 DOI: 10.1007/978-3-319-09665-0_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
HDL regulation is exerted at multiple levels including regulation at the level of transcription initiation by transcription factors and signal transduction cascades; regulation at the posttranscriptional level by microRNAs and other noncoding RNAs which bind to the coding or noncoding regions of HDL genes regulating mRNA stability and translation; as well as regulation at the posttranslational level by protein modifications, intracellular trafficking, and degradation. The above mechanisms have drastic effects on several HDL-mediated processes including HDL biogenesis, remodeling, cholesterol efflux and uptake, as well as atheroprotective functions on the cells of the arterial wall. The emphasis is on mechanisms that operate in physiologically relevant tissues such as the liver (which accounts for 80% of the total HDL-C levels in the plasma), the macrophages, the adrenals, and the endothelium. Transcription factors that have a significant impact on HDL regulation such as hormone nuclear receptors and hepatocyte nuclear factors are extensively discussed both in terms of gene promoter recognition and regulation but also in terms of their impact on plasma HDL levels as was revealed by knockout studies. Understanding the different modes of regulation of this complex lipoprotein may provide useful insights for the development of novel HDL-raising therapies that could be used to fight against atherosclerosis which is the underlying cause of coronary heart disease.
Collapse
Affiliation(s)
- Dimitris Kardassis
- Department of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology of Hellas, Heraklion, Crete, 71110, Greece,
| | | | | | | |
Collapse
|
17
|
Serum lipid profile, cytokine production, and clinical outcome in patients with severe sepsis. J Crit Care 2014; 29:723-7. [DOI: 10.1016/j.jcrc.2014.04.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/28/2014] [Accepted: 04/21/2014] [Indexed: 02/04/2023]
|
18
|
Zhu H, Cao M, Figueroa JA, Cobos E, Uretsky BF, Chiriva-Internati M, Hermonat PL. AAV2/8-hSMAD3 gene delivery attenuates aortic atherogenesis, enhances Th2 response without fibrosis, in LDLR-KO mice on high cholesterol diet. J Transl Med 2014; 12:252. [PMID: 25236373 PMCID: PMC4189750 DOI: 10.1186/s12967-014-0252-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/02/2014] [Indexed: 12/01/2022] Open
Abstract
Background Inflammation is a key etiologic component in atherogenesis and transforming growth factor beta 1 (TGFβ1) is a well known anti-inflammatory cytokine which potentially might be used to limit it. Yet TGFβ1 is pleiomorphic, causing fibrosis, cell taxis, and under certain circumstances, can even worsen inflammation. SMAD3 is an important member of TGFβ1′s signal transduction pathway, but is a fully intracellular protein. Objectives With the hope of attenuating TGFβ1′s adverse systemic effects (eg. fibrosis) and accentuating its anti-inflammatory activity, we proposed the use of human (h)SMAD3 as an intracellular substitute for TGFβ1. Study design To test this hypothesis adeno-associated virus type 2/8 (AAV)/hSMAD3 or AAV/Neo (control) was tail vein injected into the low density lipoprotein receptor knockout (LDLR-KO) mice, then placed on a high-cholesterol diet (HCD). Results The hSMAD3 delivery was associated with significantly lower atherogenesis as measured by larger aortic cross sectional area, thinner aortic wall thickness, and lower aortic systolic blood velocity compared with Neo gene-treated controls. HSMAD3 delivery also resulted in fewer aortic macrophages by immunohistochemistry for CD68 and ITGAM, and quantitative reverse transcriptase polymerase chain reaction analysis of EMR and ITGAM. Overall, aortic cytokine expression showed an enhancement of Th2 response (higher IL-4 and IL-10); while Th1 response (IL-12) was lower with hSMAD3 delivery. While TGFβ1 is often associated with increased fibrosis, AAV/hSMAD3 delivery exhibited no increase of collagen 1A2 or significantly lower 2A1 expression in the aorta compared with Neo-delivery. Connective tissue growth factor (CTGF), a mediator of TGFβ1/SMAD3-induced fibrosis, was unchanged in hSMAD3-delivered aortas. In the liver, all three of these genes were down-regulated by hSMAD3 gene delivery. Conclusion These data strongly suggest that AAV/hSMAD3 delivery gave anti-atherosclerosis therapeutic effect without the expected undesirable effect of TGFβ1-associated fibrosis.
Collapse
|
19
|
Wang J, Si Y, Wu C, Sun L, Ma Y, Ge A, Li B. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway. Lipids Health Dis 2012; 11:139. [PMID: 23072373 PMCID: PMC3485618 DOI: 10.1186/1476-511x-11-139] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/30/2012] [Indexed: 12/23/2022] Open
Abstract
Background Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS) to imitate inflammatory conditions. Results In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP) as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4) antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB), which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1), compared with transforming growth factor-β1 (TGF-β1). Conclusions Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial infection contributes to the pathological process of atherosclerosis.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurosurgery, the General Hospital of PLA, Beijing, 100853, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Laguna JC, Alegret M. Regulation of gene expression in atherosclerosis: insights from microarray studies in monocytes/macrophages. Pharmacogenomics 2012; 13:477-95. [PMID: 22380002 DOI: 10.2217/pgs.12.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Atherosclerosis is a pathological phenomenon in which the walls of large arteries thicken and lose elasticity as a result of the growth of atheromatous lesions. It is a complex, multifactorial disease that involves several cell types and various pathobiological processes. Its genetic basis has not yet been deciphered, but it is related to complex multigene patterns influenced by environmental interactions. In this review, we focus specifically on the application of microarrays to atherosclerosis research using monocytes and monocyte-derived macrophages, as these are key cells in all phases of atherosclerosis, from the formation of foam cells to the destabilization and rupture of the atherosclerotic plaque. These studies have provided relevant information on genes involved in atherosclerosis development, contributing to our understanding of the molecular mechanisms that underlie this complex disease.
Collapse
Affiliation(s)
- Juan C Laguna
- Pharmacology Department, Faculty of Pharmacy & Institute of Biomedicine (IBUB), University of Barcelona, Spain
| | | |
Collapse
|
21
|
Michael DR, Salter RC, Ramji DP. TGF-β inhibits the uptake of modified low density lipoprotein by human macrophages through a Smad-dependent pathway: a dominant role for Smad-2. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1608-16. [PMID: 22705205 PMCID: PMC3497875 DOI: 10.1016/j.bbadis.2012.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 05/29/2012] [Accepted: 06/05/2012] [Indexed: 11/17/2022]
Abstract
The anti-atherogenic cytokine, TGF-β, plays a key role during macrophage foam cell formation by modulating the expression of key genes involved in the control of cholesterol homeostasis. Unfortunately, the molecular mechanisms underlying these actions of TGF-β remain poorly understood. In this study we examine the effect of TGF-β on macrophage cholesterol homeostasis and delineate the role of Smads-2 and ‐3 during this process. Western blot analysis showed that TGF-β induces a rapid phosphorylation-dependent activation of Smad-2 and ‐3 in THP-1 and primary human monocyte-derived macrophages. Small interfering RNA-mediated knockdown of Smad-2/3 expression showed that the TGF-β-mediated regulation of key genes implicated in the uptake of modified low density lipoproteins and the efflux of cholesterol from foam cells was Smad-dependent. Additionally, through the use of virally delivered Smad-2 and/or Smad-3 short hairpin RNA, we demonstrate that TGF-β inhibits the uptake of modified LDL by macrophages through a Smad-dependent mechanism and that the TGF-β-mediated regulation of CD36, lipoprotein lipase and scavenger receptor-A gene expression was dependent on Smad-2. These studies reveal a crucial role for Smad signaling, particularly Smad-2, in the inhibition of foam cell formation by TGF-β through the regulation of expression of key genes involved in the control of macrophage cholesterol homeostasis.
Collapse
Affiliation(s)
- Daryn R Michael
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK.
| | | | | |
Collapse
|
22
|
ZNF580, a novel C2H2 zinc-finger transcription factor, interacts with the TGF-β signal molecule Smad2. Cell Biol Int 2012; 35:1153-7. [PMID: 21599657 DOI: 10.1042/cbi20110050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ZNF580 (gene ID 51157), a novel gene encoding a C2H2 (Cys2-His2) zinc-finger transcription factor, may be involved in the maintenance of vascular endothelium homoeostasis. To investigate the physiological role of the transcription factor ZNF580, we screened human foetal brain cDNA library with a yeast two-hybrid system and identified 14 proteins that interact with ZNF580. The interaction between ZNF580 and Smad2 was confirmed by co-immunoprecipitation. Co-localization between endogenous ZNF580 and Smad2 was mainly found in the nuclei of EA.hy926 endothelial cells with immunofluorescence and confocal microscopy. Our results suggest that ZNF580 is a binding partner of Smad2 and is involved in the signal transduction of the TGF-β (transforming growth factor-β) signalling pathway, which provides a basis for additional research to investigate the role of ZNF580 in the maintenance of vascular endothelium homoeostasis and the onset of atherosclerotic diseases.
Collapse
|
23
|
McLaren JE, Michael DR, Ashlin TG, Ramji DP. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Prog Lipid Res 2011; 50:331-47. [PMID: 21601592 DOI: 10.1016/j.plipres.2011.04.002] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/14/2011] [Accepted: 04/14/2011] [Indexed: 12/23/2022]
Abstract
Cardiovascular disease is the biggest killer globally and the principal contributing factor to the pathology is atherosclerosis; a chronic, inflammatory disorder characterized by lipid and cholesterol accumulation and the development of fibrotic plaques within the walls of large and medium arteries. Macrophages are fundamental to the immune response directed to the site of inflammation and their normal, protective function is harnessed, detrimentally, in atherosclerosis. Macrophages contribute to plaque development by internalizing native and modified lipoproteins to convert them into cholesterol-rich foam cells. Foam cells not only help to bridge the innate and adaptive immune response to atherosclerosis but also accumulate to create fatty streaks, which help shape the architecture of advanced plaques. Foam cell formation involves the disruption of normal macrophage cholesterol metabolism, which is governed by a homeostatic mechanism that controls the uptake, intracellular metabolism, and efflux of cholesterol. It has emerged over the last 20 years that an array of cytokines, including interferon-γ, transforming growth factor-β1, interleukin-1β, and interleukin-10, are able to manipulate these processes. Foam cell targeting, anti-inflammatory therapies, such as agonists of nuclear receptors and statins, are known to regulate the actions of pro- and anti-atherogenic cytokines indirectly of their primary pharmacological function. A clear understanding of macrophage foam cell biology will hopefully enable novel foam cell targeting therapies to be developed for use in the clinical intervention of atherosclerosis.
Collapse
Affiliation(s)
- James E McLaren
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | | | | | | |
Collapse
|
24
|
Hirose K, Iwabuchi K, Shimada K, Kiyanagi T, Iwahara C, Nakayama H, Daida H. Different responses to oxidized low-density lipoproteins in human polarized macrophages. Lipids Health Dis 2011; 10:1. [PMID: 21199582 PMCID: PMC3022593 DOI: 10.1186/1476-511x-10-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 01/04/2011] [Indexed: 12/14/2022] Open
Abstract
Background Oxidized low-density lipoprotein (oxLDL) uptake by macrophages plays an important role in foam cell formation. It has been suggested the presence of heterogeneous subsets of macrophage, such as M1 and M2, in human atherosclerotic lesions. To evaluate which types of macrophages contribute to atherogenesis, we performed cDNA microarray analysis to determine oxLDL-induced transcriptional alterations of each subset of macrophages. Results Human monocyte-derived macrophages were polarized toward the M1 or M2 subset, followed by treatment with oxLDL. Then gene expression levels during oxLDL treatment in each subset of macrophages were evaluated by cDNA microarray analysis and quantitative real-time RT-PCR. In terms of high-ranking upregulated genes and functional ontologies, the alterations during oxLDL treatment in M2 macrophages were similar to those in nonpolarized macrophages (M0). Molecular network analysis showed that most of the molecules in the oxLDL-induced highest scoring molecular network of M1 macrophages were directly or indirectly related to transforming growth factor (TGF)-β1. Hierarchical cluster analysis revealed commonly upregulated genes in all subset of macrophages, some of which contained antioxidant response elements (ARE) in their promoter regions. A cluster of genes that were specifically upregulated in M1 macrophages included those encoding molecules related to nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) signaling pathway. Quantitative real-time RT-PCR showed that the gene expression of interleukin (IL)-8 after oxLDL treatment in M2 macrophages was markedly lower than those in M0 and M1 cells. HMOX1 gene expression levels were almost the same in all 3 subsets of macrophages even after oxLDL treatment. Conclusions The present study demonstrated transcriptional alterations in polarized macrophages during oxLDL treatment. The data suggested that oxLDL uptake may affect TGF-β1- and NF-κB-mediated functions of M1 macrophages, but not those of M0 or M2 macrophages. It is likely that M1 macrophages characteristically respond to oxLDL.
Collapse
Affiliation(s)
- Kuniaki Hirose
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Kulach A, Dabek J, Wilczok T, Gasior Z. Changes in transforming growth factor β and its receptors' mRNA expression in monocytes from patients with acute coronary syndromes. Arch Med Sci 2010; 6:526-32. [PMID: 22371795 PMCID: PMC3284066 DOI: 10.5114/aoms.2010.14463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/05/2010] [Accepted: 01/24/2010] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Transforming growth factor β (TGF-β) is thought to be a vasoprotective cytokine. Numerous reports confirm its significance in blood and plaques. There is, however, a lack of information on the molecular mechanisms involving TGF-β in circulating inflammatory cells in atherogenesis. sThe aim of the study was to assess gene expression of TGF-β and its receptors in monocytes from patients with acute coronary syndromes (ACS) and the effect of standard treatment on the studied genes. MATERIAL AND METHODS The study was carried out in 32 patients with ACS and 15 healthy subjects. Gene expression of TGF-β and receptors TGF-βRI and TGF-βRII was evaluated on day 1 and 5 in the study group and once in controls. The number of mRNA copies isolated from monocytes was assessed by QRT-PCR. RESULTS Monocytes of ACS patients showed slightly elevated transcriptional activity of TGF-β1 and its receptors RI and RII genes (0.29 ±0.043 vs. 0.08 ±0.020, p = 0.05; 0.071 ±0.022 vs. 0.036 ±0.023, p < 0.05; 0.134 ±0.020 vs. 0.048 ±0.016, p < 0.05, respectively). After 5-day standard treatment modest reduction of TGF-βRI expression was observed. The studied genes' expression was unrelated to ejection fraction, myocardial necrosis markers, GRACE score, time from the onset of pain to percutaneous coronary intervention and angiographic findings. Among risk factors family history of CAD was associated with increased TGF-βRI expression. Moreover, the presence of 4 or more classic risk factors correlated with higher TGF-βRI expression. CONCLUSIONS Monocytes of ACS patients demonstrate overexpression of TGF-β1 and its receptors' genes. Five-day standard treatment downregulated the TGF-βRI gene but did not affect TGF-β1 and TGF-βRII.
Collapse
Affiliation(s)
- Andrzej Kulach
- Department of Cardiology, Medical University of Silesia, Katowice, Poland
| | - Jozefa Dabek
- Department of Cardiology, Medical University of Silesia, Katowice, Poland
| | - Tadeusz Wilczok
- Department of Molecular Biology and Medical Genetics, Medical University of Silesia, Sosnowiec, Poland
| | - Zbigniew Gasior
- Department of Cardiology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
26
|
Yin K, Liao DF, Tang CK. ATP-binding membrane cassette transporter A1 (ABCA1): a possible link between inflammation and reverse cholesterol transport. Mol Med 2010; 16:438-49. [PMID: 20485864 DOI: 10.2119/molmed.2010.00004] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 05/11/2010] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is characterized by a chronic inflammatory condition that involves numerous cellular and molecular inflammatory components. A wide array of inflammatory mediators, such as cytokines and proteins produced by macrophages and other cells, play a critical role in the development and progression of the disease. ATP-binding membrane cassette transporter A1 (ABCA1) is crucial for cellular cholesterol efflux and reverse cholesterol transport (RCT) and is also identified as an important target in antiatherosclerosis treatment. Evidence from several recent studies indicates that inflammation, along with other atherogenic-related mediators, plays distinct regulating roles in ABCA1 expression. Proatherogenic cytokines such as interferon (IFN)-γ and interleukin (IL)-1β have been shown to inhibit the expression of ABCA1, while antiatherogenic cytokines, including IL-10 and transforming growth factor (TGF)-β1, have been shown to promote the expression of ABCA1. Moreover, some cytokines such as tumor necrosis factor (TNF)-α seem to regulate ABCA1 expression in species-specific and dose-dependent manners. Inflammatory proteins such as C-reactive protein (CRP) and cyclooxygenase (COX)-2 are likely to inhibit ABCA1 expression during inflammation, and inflammation induced by lipopolysaccharide (LPS) was also found to block the expression of ABCA1. Interestingly, recent experiments revealed ABCA1 can function as an antiinflammatory receptor to suppress the expression of inflammatory factors, suggesting that ABCA1 may be the molecular basis for the interaction between inflammation and RCT. This review aims to summarize recent findings on the role of inflammatory cytokines, inflammatory proteins, inflammatory lipids, and the endotoxin-mediated inflammatory process in expression of ABCA1. Also covered is the current understanding of the function of ABCA1 in modulating the immune response and inflammation through its direct and indirect antiinflammatory mechanisms including lipid transport, high-density lipoprotein (HDL) formation and apoptosis.
Collapse
Affiliation(s)
- Kai Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China, Hengyang, China
| | | | | |
Collapse
|
27
|
Hu YW, Wang Q, Ma X, Li XX, Liu XH, Xiao J, Liao DF, Xiang J, Tang CK. TGF-β1 Up-Regulates Expression of ABCA1, ABCG1 and SR-BI through Liver X Receptor α Signaling Pathway in THP-1 Macrophage-Derived Foam Cells. J Atheroscler Thromb 2010; 17:493-502. [DOI: 10.5551/jat.3152] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Yan-Wei Hu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China
- Laboratory Medicine Center, Nangfang Hospital, Southern Medical University
| | - Qian Wang
- Laboratory Medicine Center, Nangfang Hospital, Southern Medical University
| | - Xin Ma
- Department of Anesthesiology, the First Affiliated Hospital of University of South China
| | - Xiao-Xu Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China
| | - Xie-Hong Liu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China
| | - Ji Xiao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China
| | - Duan-Fang Liao
- Institute of Pharmacy and Pharmacology, Life Science Research Center, University of South China
| | - Jim Xiang
- Research Unit, Health Research Division, Saskatchewan Cancer Agency, Department of Oncology, University of Saskatchewan
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China
| |
Collapse
|
28
|
Xu S, Liu AC, Gotlieb AI. Common pathogenic features of atherosclerosis and calcific aortic stenosis: role of transforming growth factor-beta. Cardiovasc Pathol 2009; 19:236-47. [PMID: 19942455 DOI: 10.1016/j.carpath.2009.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 09/22/2009] [Accepted: 09/24/2009] [Indexed: 12/20/2022] Open
Abstract
Calcific aortic stenosis and atherosclerosis have been investigated separately in experimental in vitro and in vivo studies and in clinical studies. The similarities identified in both diseases suggest that similar pathogenic pathways are involved in both conditions. Most current therapeutic studies are focused on statins. The evidence suggests that statin effects on valves may, in large part, be independent of the lipid lowering effects of the drug. There are several molecules that play significant regulatory roles on the development and progression of valve sclerosis and calcification and on growth and complications of atherosclerotic plaques. The purpose of this review is to discuss the pathogenic features of the two conditions, highlight the important similarities, and then review the data that suggest that transforming growth factor-beta may play a key regulatory role in both diseases and that this is worthy of study as a potential therapeutic target for both conditions.
Collapse
Affiliation(s)
- Songyi Xu
- Toronto General Research Institute and Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | | | | |
Collapse
|
29
|
Lu Y, Guo J, Di Y, Zong Y, Qu S, Tian J. Proteomic analysis of the triglyceride-rich lipoprotein-laden foam cells. Mol Cells 2009; 28:175-81. [PMID: 19756395 DOI: 10.1007/s10059-009-0120-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 07/01/2009] [Accepted: 07/22/2009] [Indexed: 11/29/2022] Open
Abstract
In hypertriglyceridaemic individuals, atherosclerogenesis is associated with the increased concentrations of very low density lipoprotein (VLDL) and VLDL-associated remnant particles. In vitro studies have suggested that VLDL induces foam cells formation. To reveal the changes of the proteins expression in the process of foam cells formation induced by VLDL, we performed a proteomic analysis of the foam cells based on the stimulation of differentiated THP-1 cells with VLDL. Using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, 14 differentially expressed proteins, containing 8 up-regulated proteins and 6 down-regulated proteins were identified. The proteins are involved in energy metabolism, oxidative stress, cell growth, differentiation and apoptosis, such as adipose differentiation-related protein (ADRP), enolase, S100A11, heat shock protein 27 and so on. In addition, the expression of some selected proteins was confirmed by Western blot and RT-PCR analysis. The results suggest that VLDL not only induces lipid accumulation, but also brings about foam cells diverse characteristics by altering the expression of various proteins.
Collapse
Affiliation(s)
- Yanjun Lu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
Khanna AK. Enhanced susceptibility of cyclin kinase inhibitor p21 knockout mice to high fat diet induced atherosclerosis. J Biomed Sci 2009; 16:66. [PMID: 19604372 PMCID: PMC2720941 DOI: 10.1186/1423-0127-16-66] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 07/15/2009] [Indexed: 11/10/2022] Open
Abstract
Cyclin kinase inhibitor p21 is one of the most potent inhibitors of aortic smooth muscle cell proliferation, a key mediator of atherosclerosis. This study tests if p2l deficiency will result in severe atherosclerosis in a mouse model. p21-/- and strain matched wild type mice were fed with high fat diet for 21 weeks. Analysis for biochemical parameters (cholesterol, triglycerides) in serum and mRNA expression of CD36, HO-1, TGF-beta, IFN-gamma, TNF-alpha, PPAR-gamma and NADPH oxidase components (p22phox, NOX-1 and Rac-1) was performed in aortic tissues by Real Time PCR. p21-/- mice gained significantly (p < 0.01) more weight than wild type mice, triglycerides (p < 0.05) and cholesterol levels (p < 0.01) were more pronounced in the sera of p21-/- compared to wild type mice fed with high fat diet. High fat diet resulted in significantly decreased TGF-beta (p < 0.02), HO-l (p < 0.02) and increased CD36 (p < 0.03) mRNA expression in aortic tissues of p21-/- mice compared to animal fed with regular diet. IFN-gamma mRNA expression (235 +/- 11 folds) increased significantly in high fat diet fed p21-/- mice and a multifold modulation of PPAR-gamma(136 +/- 7), p22phox, NOX-1 and Rac-1 (15-35-folds) mRNA in aortic tissues from p21-/- mice compared to the wild type mice. Severity of atherosclerotic lesions was significantly higher in p21-/- compared to wild type mice. The results demonstrate that the deficiency of p21 leads to altered expression of pro-atherogenic genes, and severe atherosclerosis in mice fed with high fat diet. This opens the possibility of p21 protein as a therapeutic tool to control progression of atherosclerosis.
Collapse
Affiliation(s)
- Ashwani K Khanna
- Department of Medicine (Cardiology), University of Maryland, Baltimore, USA.
| |
Collapse
|
31
|
Antonson P, Jakobsson T, Almlöf T, Guldevall K, Steffensen KR, Gustafsson JÅ. RAP250 Is a Coactivator in the Transforming Growth Factor β Signaling Pathway That Interacts with Smad2 and Smad3. J Biol Chem 2008; 283:8995-9001. [DOI: 10.1074/jbc.m707203200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
32
|
Yokote K, Kobayashi K, Saito Y. The role of Smad3-dependent TGF-beta signal in vascular response to injury. Trends Cardiovasc Med 2007; 16:240-5. [PMID: 16980181 DOI: 10.1016/j.tcm.2006.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 04/04/2006] [Accepted: 04/11/2006] [Indexed: 11/29/2022]
Abstract
Transforming growth factor (TGF)-beta is a multifunctional cytokine involved in the regulation of proliferation, differentiation, migration, and survival of many different cell types. The role of TGF-beta in atherosclerosis has been intensively studied, but the precise function of the downstream signals in this disease entity remains unclear. We recently discovered that mice lacking Smad3, a major downstream mediator of TGF-beta, show enhanced neointimal hyperplasia with decreased matrix deposition in response to vascular injury. This review summarizes the current view on involvement of TGF-beta in atherosclerotic vascular disease and discusses the role of Smad3-dependent TGF-beta signal in vascular response to injury.
Collapse
Affiliation(s)
- Koutaro Yokote
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Chiba University Hospital, Chiba, Japan.
| | | | | |
Collapse
|
33
|
Ramji DP, Singh NN, Foka P, Irvine SA, Arnaoutakis K. Transforming growth factor-beta-regulated expression of genes in macrophages implicated in the control of cholesterol homoeostasis. Biochem Soc Trans 2007; 34:1141-4. [PMID: 17073770 DOI: 10.1042/bst0341141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The regulation of macrophage cholesterol homoeostasis is of crucial importance in the pathogenesis of atherosclerosis, an underlying cause of heart attack and stroke. Several recent studies have revealed a critical role for the cytokine TGF-beta (transforming growth factor-beta), a key regulator of the immune and inflammatory responses, in atherogenesis. We discuss here the TGF-beta signalling pathway and its role in this disease along with the outcome of our recent studies on the action of the cytokine on the expression of key genes implicated in the uptake or efflux of cholesterol by macrophages and the molecular mechanisms underlying such regulation.
Collapse
Affiliation(s)
- D P Ramji
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK.
| | | | | | | | | |
Collapse
|
34
|
Crivello A, Giacalone A, Scola L, Forte GI, Nuzzo D, Giacconi R, Cipriano C, Candore G, Mocchegiani E, Colonna-Romano G, Lio D, Caruso C. Frequency of polymorphisms of signal peptide of TGF-beta1 and -1082G/A SNP at the promoter region of Il-10 gene in patients with carotid stenosis. Ann N Y Acad Sci 2006; 1067:288-93. [PMID: 16804000 DOI: 10.1196/annals.1354.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The role of inflammation in atherosclerosis is well recognized. We have evaluated the allele frequencies of the +869T/C and +915G/C polymorphisms (SNPs) at the TGF-beta1 gene and -1082G/A SNP at IL-10 promoter sequence, two well-known immunosuppressive and anti-inflammatory cytokines, in patients with carotid stenosis. Our data suggest a lack of association between these SNPs and the susceptibility to atherosclerosis although other reports have demonstrated this association. These results may be due to the pleiotropic effects of the cytokines and/or differences in haplotype combination that should be investigated to elucidate the role of TGF-beta1 and IL-10 polymorphisms in atherosclerosis.
Collapse
Affiliation(s)
- Antonio Crivello
- Gruppo di Studio sull'Immunosenescenza, Sezione di Patologia Generale, Dipartimento di Biopatologia e Metadologie Biomediche, Università degli studi di Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Li MO, Wan YY, Sanjabi S, Robertson AKL, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 2006; 24:99-146. [PMID: 16551245 DOI: 10.1146/annurev.immunol.24.021605.090737] [Citation(s) in RCA: 1706] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is a potent regulatory cytokine with diverse effects on hemopoietic cells. The pivotal function of TGF-beta in the immune system is to maintain tolerance via the regulation of lymphocyte proliferation, differentiation, and survival. In addition, TGF-beta controls the initiation and resolution of inflammatory responses through the regulation of chemotaxis, activation, and survival of lymphocytes, natural killer cells, dendritic cells, macrophages, mast cells, and granulocytes. The regulatory activity of TGF-beta is modulated by the cell differentiation state and by the presence of inflammatory cytokines and costimulatory molecules. Collectively, TGF-beta inhibits the development of immunopathology to self or nonharmful antigens without compromising immune responses to pathogens. This review highlights the findings that have advanced our understanding of TGF-beta in the immune system and in disease.
Collapse
Affiliation(s)
- Ming O Li
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | |
Collapse
|
36
|
Jessup W, Gelissen IC, Gaus K, Kritharides L. Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages. Curr Opin Lipidol 2006; 17:247-57. [PMID: 16680029 DOI: 10.1097/01.mol.0000226116.35555.eb] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The initial steps of reverse cholesterol transport involve export of cholesterol from peripheral cells to plasma lipoproteins for subsequent delivery to the liver. The review discusses recent developments in our understanding of how these steps occur, with particular emphasis on the macrophage, the major site of cellular cholesterol accumulation in atherosclerosis. RECENT FINDINGS ATP binding cassette transporter (ABC) A1 exports cholesterol and phospholipid to lipid-free apolipoproteins, while ATP binding cassette transporter G1 and scavenger receptor BI export cholesterol to phospholipid-containing acceptors. ABCA1-dependent cholesterol export involves an initial interaction of apolipoprotein AI with lipid raft membrane domains, although ABCA1 and most exported cholesterol are not raft associated. ABCG1 exports cholesterol to HDL and other phospholipid-containing acceptors. These include particles generated during lipidation of apoAI by ABCA1, suggesting that the two transporters cooperate in cholesterol export. Scavenger receptor BI is atheroprotective, mediating clearance of HDL cholesterol by the liver. The relative contributions of scavenger receptor BI and ABCG to cholesterol export to HDL from macrophages is unclear and may depend on cellular cholesterol status and the cholesterol gradient between cell and acceptor. SUMMARY The presence of distinct pathways for cholesterol efflux to lipid-free apolipoprotein AI and phospholipid-containing HDL species clarifies our understanding of reverse cholesterol transport, and provides new opportunities for its therapeutic manipulation.
Collapse
Affiliation(s)
- Wendy Jessup
- Centre for Vascular Research, at the School of Medical Sciences, University of New South Wales, Sydney, Australia.
| | | | | | | |
Collapse
|
37
|
Li D, Liu Y, Chen J, Velchala N, Amani F, Nemarkommula A, Chen K, Rayaz H, Zhang D, Liu H, Sinha AK, Romeo F, Hermonat PL, Mehta JL. Suppression of atherogenesis by delivery of TGFbeta1ACT using adeno-associated virus type 2 in LDLR knockout mice. Biochem Biophys Res Commun 2006; 344:701-7. [PMID: 16631603 DOI: 10.1016/j.bbrc.2006.04.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2006] [Accepted: 04/01/2006] [Indexed: 11/21/2022]
Abstract
TGFbeta(1) deficiency has been attributed to the development of atherosclerosis. There is, however, little direct evidence for this concept. To examine this hypothesis, low-density lipoprotein receptor knockout (LDLR(-/-)) mice were injected via tail vein with recombinant adeno-associated virus type 2 (rAAV) carrying a bioactive TGFbeta(1) mutant (AAV/TGFbeta1ACT, n=10) or granulocyte-macrophage-colony stimulating factor (AAV/GM-CSF, n=10, a negative control) or saline (n=9, control), and then put on a high cholesterol diet. At 18 weeks, blood lipids were found to be similarly elevated in all LDLR(-/-) mice. TGFbeta1ACT and GM-CSF (DNA, mRNA, and protein) were highly expressed in the tissues of mice given TGFbeta1ACT or AAV/GM-CSF, respectively, showing sustained transfection following gene delivery by the systemic route. Saline-treated and AAV/GM-CSF-treated LDLR(-/-) mice showed extensive areas of atherosclerotic lesion formation. There was evidence of intense oxidative stress (nitrotyrosine staining), inflammation (CD68 staining), and expression of adhesion molecules and the ox-LDL receptor LOX-1 (gene array analysis) in the atherosclerotic tissues. Importantly, atherosclerotic lesion formation was markedly inhibited in the LDLR(-/-) mice given AAV/TGFbeta1ACT. Expression of adhesion molecules and LOX-1, oxidative stress, and inflammatory response all were inhibited in the mice given AAV/TGFbeta1ACT (P<0.05 vs. saline-treated or GM-CSF-treated LDLR(-/-) mice). These data for the first time demonstrate that systemic delivery of TGFbeta1ACT gene via AAV can inhibit formation of atherosclerotic lesions, possibly via anti-inflammatory and anti-oxidant mechanisms. These findings suggest a novel view of TGFbeta(1) in atherogenesis and a potential new gene therapy for treatment of atherosclerosis.
Collapse
Affiliation(s)
- Dayuan Li
- Gene Therapy Program, Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences, VA Medical Center, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Atherosclerosis is a chronic disease of the arterial wall where both innate and adaptive immunoinflammatory mechanisms are involved. Inflammation is central at all stages of atherosclerosis. It is implicated in the formation of early fatty streaks, when the endothelium is activated and expresses chemokines and adhesion molecules leading to monocyte/lymphocyte recruitment and infiltration into the subendothelium. It also acts at the onset of adverse clinical vascular events, when activated cells within the plaque secrete matrix proteases that degrade extracellular matrix proteins and weaken the fibrous cap, leading to rupture and thrombus formation. Cells involved in the atherosclerotic process secrete and are activated by soluble factors, known as cytokines. Important recent advances in the comprehension of the mechanisms of atherosclerosis provided evidence that the immunoinflammatory response in atherosclerosis is modulated by regulatory pathways, in which the two anti-inflammatory cytokines interleukin-10 and transforming growth factor-β play a critical role. The purpose of this review is to bring together the current information concerning the role of cytokines in the development, progression, and complications of atherosclerosis. Specific emphasis is placed on the contribution of pro- and anti-inflammatory cytokines to pathogenic (innate and adaptive) and regulatory immunity in the context of atherosclerosis. Based on our current knowledge of the role of cytokines in atherosclerosis, we propose some novel therapeutic strategies to combat this disease. In addition, we discuss the potential of circulating cytokine levels as biomarkers of coronary artery disease.
Collapse
Affiliation(s)
- Alain Tedgui
- Institut National de la Santé et de la Recherche Médicale U. 689, Cardiovascular Research Center Lariboisiere, and University Paris 7, Paris, France.
| | | |
Collapse
|
39
|
Kaynar K, Ulusoy S, Ovali E, Vanizor B, Dikmen T, Gul S. TGF-beta and TNF-alpha producing effects of losartan and amlodipine on human mononuclear cell culture. Nephrology (Carlton) 2005; 10:478-82. [PMID: 16221098 DOI: 10.1111/j.1440-1797.2005.00462.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIM The modulation of cytokine release, which affects adhesion of leucocytes to endothelial cells, and proliferation of peripheral blood mononuclear cells with antihypertensive drugs was explored. METHOD In the present study, mononuclear cells were incubated with losartan and amlodipine at concentrations of 10(-6), 10(-5) and 10(-4) mol/L for 6 h. Transforming growth factor (TGF)-beta and tumour necrosis factor (TNF)-alpha levels were measured. Proliferation of mononuclear cells were assessed at the same concentrations of amlodipine and losartan with the methylthiazoletetrazolium (MTT) test. RESULTS Amlodipine was found to induce TGF-beta synthesis from mononuclear cells with increasing concentrations, while it was found to inhibit TNF-alpha secretion with increasing concentrations. In contrast, losartan was found to induce TGF-beta and TNF-alpha secretion with increasing concentrations. CONCLUSION Anti-atherosclerotic effects of amlodipine and losartan might be through increased secretion of TGF-beta from mononuclear cells. Different results at different concentrations might be due to the pharmocokinetic differences of these drugs.
Collapse
Affiliation(s)
- Kubra Kaynar
- Department of Nephrology, School of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | | | | | | | | | | |
Collapse
|
40
|
Dabek J, Mazurek U, Gasior Z, Wilczok T, Kulach A, Kucia-Kuzma S. Transcriptional activity of genes encoding Transforming Growth Factor beta and its receptors in peripheral blood mononuclear cells from patients with acute coronary syndromes. Int J Cardiol 2005; 111:275-9. [PMID: 16307809 DOI: 10.1016/j.ijcard.2005.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 09/23/2005] [Accepted: 10/02/2005] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recent data report altered gene expression of numerous pro- and anti-inflammatory factors involved in pathology of acute coronary syndromes (ACS). Transforming growth factor beta (TGFbeta) signaling is engaged in a wide range of processes. Its effect on vessels seems to be protective due to its anti-inflammatory and anti-atherogenic action. However, it also seems to be engaged in such negative effects as neointima formation and fibrosis. The aim of the study was to assess the expression of the genes encoding TGFbeta and its receptors (type I, II, and III) in patients with ACS. METHODS The study was carried out on 24 patients with acute coronary syndrome (7 with unstable angina [UA] and 17 with myocardial infarction [MI]) and 10 age-matched healthy subjects (control). To evaluate gene expression of TGFbeta and its receptors total mRNA was extracted from peripheral blood mononuclear cells (PBMC) and the number of mRNA copies were assessed by quantitative reverse transcriptase polymerase chain reaction (QRT-PCR). RESULTS MI and UA patients demonstrated significantly lower TGFbeta gene expression compared to control (2789+/-418 c/microg vs. 20262+/-2548 c/microg; p<0.001, and 3390+/-518 c/microg vs. 20262+/-2548 c/microg; p<0.001, respectively), as well as noticeably lower transcriptional activity of genes encoding its type I (3295+/-447 c/microg vs. 12859+/-1929 c/microg; p<0.001, and 3258+/-721 c/microg vs. 12859+/-1929 c/microg; p<0.01, respectively) and type II receptors (2364+/-346 c/microg vs. 19003+/-2357 c/microg; p<0.001, and 2680+/-522 c/microg vs. 19003+/-2357 c/microg; p<0.01, respectively). Also, gene expression of the type III receptor was inferior in the studied group compared to the control, although the difference was significant only for the UA group vs. control. Expressions of the studied genes did not differ between patients with MI and those with UA. CONCLUSION Our report shows that the decreased activity of TGFbeta in patients with ACS is at least partly due altered transcriptional activity of genes encoding both TGFbeta and its receptors, what may be responsible for the evolution of atherosclerotic lesions.
Collapse
Affiliation(s)
- Jozefa Dabek
- Department of Cardiology, Medical University of Silesia, Ziolowa 47, 40-635 Katowice, Poland
| | | | | | | | | | | |
Collapse
|
41
|
Oram JF, Heinecke JW. ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease. Physiol Rev 2005; 85:1343-72. [PMID: 16183915 DOI: 10.1152/physrev.00005.2005] [Citation(s) in RCA: 394] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Blood high-density lipoprotein (HDL) levels are inversely related to risk for cardiovascular disease, implying that factors associated with HDL metabolism are atheroprotective. One of these factors is ATP-binding cassette transporter A1 (ABCA1), a cell membrane protein that mediates the transport of cholesterol, phospholipids, and other metabolites from cells to lipid-depleted HDL apolipoproteins. ABCA1 transcription is highly induced by sterols, a major substrate for cellular export, and its expression and activity are regulated posttranscriptionally by diverse processes. Liver ABCA1 initiates formation of HDL particles, and macrophage ABCA1 protects arteries from developing atherosclerotic lesions. ABCA1 mutations can cause a severe HDL deficiency syndrome characterized by cholesterol deposition in tissue macrophages and prevalent atherosclerosis. Genetic manipulations of ABCA1 expression in mice also affect plasma HDL levels and atherogenesis. Metabolites elevated in individuals with the metabolic syndrome and diabetes destabilize ABCA1 protein and decrease cholesterol export from macrophages. Moreover, oxidative modifications of HDL found in patients with cardiovascular disease reduce the ability of apolipoproteins to remove cellular cholesterol by the ABCA1 pathway. These observations raise the possibility that an impaired ABCA1 pathway contributes to the enhanced atherogenesis associated with common inflammatory and metabolic disorders. The ABCA1 pathway has therefore become an important new therapeutic target for treating cardiovascular disease.
Collapse
Affiliation(s)
- John F Oram
- Department of Medicine, University of Washington, Seattle, WA 98195-6426, USA.
| | | |
Collapse
|
42
|
Daugherty A, Webb NR, Rateri DL, King VL. Thematic review series: The Immune System and Atherogenesis. Cytokine regulation of macrophage functions in atherogenesis. J Lipid Res 2005; 46:1812-22. [PMID: 15995168 DOI: 10.1194/jlr.r500009-jlr200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This review will focus on the role of cytokines in the behavior of macrophages, a prominent cell type of atherosclerotic lesions. Once these macrophages have immigrated into the vessel wall, they propagate the development of atherosclerosis by modifying lipoproteins, accumulating intracellular lipids, remodeling the extracellular environment, and promoting local coagulation. The numerous cytokines that have been detected in atherosclerosis, combined with the expression of large numbers of cytokine receptors on macrophages, are consistent with this axis being an important contributor to lesion development. Given the vast literature on cytokine-macrophage interactions, this review will be selective, with an emphasis on the major cytokines that have been detected in atherosclerotic lesions and their effects on properties that are relevant to lesion formation and maturation. There will be an emphasis on the role of cytokines in regulating lipid metabolism by macrophages. We will provide an overview of the major findings in cell culture and then put these in the context of in vivo studies.
Collapse
Affiliation(s)
- Alan Daugherty
- Cardiovascular Research Center, Gill Heart Institute, University of Kentucky, Lexington, KY, USA.
| | | | | | | |
Collapse
|
43
|
Argmann CA, Edwards JY, Sawyez CG, O'Neil CH, Hegele RA, Pickering JG, Huff MW. Regulation of Macrophage Cholesterol Efflux through Hydroxymethylglutaryl-CoA Reductase Inhibition. J Biol Chem 2005; 280:22212-21. [PMID: 15817453 DOI: 10.1074/jbc.m502761200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cholesterol biosynthetic pathway produces numerous signaling molecules. Oxysterols through liver X receptor (LXR) activation regulate cholesterol efflux, whereas the non-sterol mevalonate metabolite, geranylgeranyl pyrophosphate (GGPP), was recently demonstrated to inhibit ABCA1 expression directly, through antagonism of LXR and indirectly through enhanced RhoA geranylgeranylation. We used HMG-CoA reductase inhibitors (statins) to test the hypothesis that reduced synthesis of mevalonate metabolites would enhance cholesterol efflux and attenuate foam cell formation. Preincubation of THP-1 macrophages with atorvastatin, dose dependently (1-10 microm) stimulated cholesterol efflux to apolipoprotein AI (apoAI, 10-60%, p < 0.05) and high density lipoprotein (HDL(3)) (2-50%, p < 0.05), despite a significant decrease in cholesterol synthesis (2-90%). Atorvastatin also increased ABCA1 and ABCG1 mRNA abundance (30 and 35%, p < 0.05). Addition of mevalonate, GGPP or farnesyl pyrophosphate completely blocked the statin-induced increase in ABCA1 expression and apoAI-mediated cholesterol efflux. A role for RhoA was established, because two inhibitors of Rho protein activity, a geranylgeranyl transferase inhibitor and C3 exoenzyme, increased cholesterol efflux to apoAI (20-35%, p < 0.05), and macrophage expression of dominant-negative RhoA enhanced cholesterol efflux to apoAI (20%, p < 0.05). In addition, atorvastatin increased the RhoA levels in the cytosol fraction and decreased the membrane localization of RhoA. Atorvastatin treatment activated peroxisome proliferator activated receptor gamma and increased LXR-mediated gene expression suggesting that atorvastatin induces cholesterol efflux through a molecular cascade involving inhibition of RhoA signaling, leading to increased peroxisome proliferator activated receptor gamma activity, enhanced LXR activation, increased ABCA1 expression, and cholesterol efflux. Finally, statin treatment inhibited cholesteryl ester accumulation in macrophages challenged with atherogenic hypertriglyceridemic very low density lipoproteins indicating that statins can regulate foam cell formation.
Collapse
Affiliation(s)
- Carmen A Argmann
- Robarts Research Institute, Vascular Biology Group, and the Departments of Medicine and Biochemistry, the University of Western Ontario, London, Ontario N6A 5K8, Canada
| | | | | | | | | | | | | |
Collapse
|
44
|
Cunningham C, Wilcockson DC, Boche D, Perry VH. Comparison of inflammatory and acute-phase responses in the brain and peripheral organs of the ME7 model of prion disease. J Virol 2005; 79:5174-84. [PMID: 15795301 PMCID: PMC1069550 DOI: 10.1128/jvi.79.8.5174-5184.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic neurodegenerative diseases such as prion disease and Alzheimer's disease (AD) are reported to be associated with microglial activation and increased brain and serum cytokines and acute-phase proteins (APPs). Unlike AD, prion disease is also associated with a peripheral component in that the presumed causative agent, PrPSc, also accumulates in the spleen and other lymphoreticular organs. It is unclear whether the reported systemic acute-phase response represents a systemic inflammatory response to prion disease or merely reflects central nervous system (CNS) inflammation. For this study, we investigated whether intracerebrally initiated prion disease (ME7 model) provokes splenic, hepatic, or brain inflammatory and acute-phase responses. We detected no significant elevation of proinflammatory cytokines or activation of macrophages in the spleens of these animals, despite clear PrPSc deposition. Similarly, at 19 weeks we detected no significant elevation of transcripts for the APPs serum amyloid A, complement C3, pentraxin 3, and alpha2-antiplasmin in the liver, despite CNS neurodegeneration and splenic PrPSc deposition at this time. However, despite the low CNS expression levels of proinflammatory cytokines, there was robust expression of these APPs in degenerating brains. These findings suggest that PrPSc is not a stimulus for splenic macrophages and that neither peripheral PrPSc deposition nor CNS neurodegeneration is sufficient to produce a systemic acute-phase response. We also propose that serum cytokine and APP measurements are not useful during preclinical disease. Possible consequences of the clear chronic elevation of APPs in the CNS are discussed.
Collapse
Affiliation(s)
- Colm Cunningham
- CNS Inflammation Group, School of Biological Sciences, Bassett Crescent East, Southampton, Hampshire SO16 7PX, United Kingdom.
| | | | | | | |
Collapse
|
45
|
Irvine SA, Foka P, Rogers SA, Mead JR, Ramji DP. A critical role for the Sp1-binding sites in the transforming growth factor-beta-mediated inhibition of lipoprotein lipase gene expression in macrophages. Nucleic Acids Res 2005; 33:1423-34. [PMID: 15755745 PMCID: PMC1062872 DOI: 10.1093/nar/gki280] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Increasing evidence suggests that the cytokine transforming growth factor-β (TGF-β) inhibits the development of atherosclerosis. The lipoprotein lipase (LPL) enzyme expressed by macrophages has been implicated in the pathogenesis of atherosclerosis by stimulating the uptake of lipoprotein particles. Unfortunately, the action of TGF-β on the expression of LPL in macrophages remains largely unclear. We show that TGF-β inhibits LPL gene expression at the transcriptional level. Transient transfection assays reveal that the −31/+187 sequence contains the minimal TGF-β-responsive elements. Electrophoretic mobility shift assays show that Sp1 and Sp3 interact with two regions in the −31/+187 sequence. Mutations of these Sp1/Sp3 sites abolish the TGF-β-mediated suppression whereas multimers of the sequence impart the response to a heterologous promoter. TGF-β has no effect on the binding or steady-state polypeptide levels of Sp1 and Sp3. These results, therefore, suggest a novel mechanism for the TGF-β-mediated repression of LPL gene transcription that involves regulation of the action of Sp1 and Sp3.
Collapse
Affiliation(s)
| | | | | | | | - Dipak P. Ramji
- To whom correspondence should be addressed: Tel/Fax: +44 029 20876753;
| |
Collapse
|
46
|
Stein O, Stein Y. Lipid transfer proteins (LTP) and atherosclerosis. Atherosclerosis 2005; 178:217-30. [PMID: 15694928 DOI: 10.1016/j.atherosclerosis.2004.10.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 09/07/2004] [Accepted: 10/05/2004] [Indexed: 10/26/2022]
Abstract
This review deals with four lipid transfer proteins (LTP): three are involved in cholesteryl ester (CE) synthesis or transport, the fourth deals with plasma phospholipid (PL) transfer. Experimental models of atherosclerosis, clinical and epidemiological studies provided information as to the relationship of these LTP(s) to atherosclerosis, which is the main focus of this review. Thus, inhibition of acyl-CoA:cholesterol acyltransferase (ACAT) 1 and 2 decreases cholesterol absorption, plasma cholesterol and aortic cholesterol esterification in the aorta. The discovery that tamoxifen is a potent ACAT inhibitor explained the plasma cholesterol lowering of the drug. The use of ACAT inhibition in humans is under current investigation. As low cholesteryl ester transfer protein (CETP) activity is connected with high HDL-C, several CETP inhibitors were tried in rabbits, with variable results. A new CETP inhibitor, Torcetrapib, was tested in humans and there was a 50-100% increase in HDL-C. Lecithin cholesterol acyl-transferase (LCAT) influences oxidative stress, which can be lowered by transient LCAT gene transfer in LCAT-/- mice. Phospholipid transfer protein (PLTP) deficiency reduced apo B production in apo E-/- mice, as well as oxidative stress in four models of mouse atherosclerosis. In conclusion, the ability to increase HDL-C so markedly by inhibitors of CETP introduces us into a new era in prevention and treatment of coronary heart disease (CHD).
Collapse
Affiliation(s)
- O Stein
- Department of Experimental Medicine and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
47
|
Hansson M, Wikvall K, Babiker A. Regulation of sterol 27-hydroxylase in human monocyte-derived macrophages: up-regulation by transforming growth factor β1. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1687:44-51. [PMID: 15708352 DOI: 10.1016/j.bbalip.2004.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 10/04/2004] [Accepted: 11/03/2004] [Indexed: 01/22/2023]
Abstract
Regulatory mechanisms for human CYP27A1 enzyme have not yet been fully investigated. Our approach was to add different hormones and cytokines to cultured human monocyte-derived macrophages, and assess the effects on the CYP27A1 by measuring the production of 27-hydroxylated cholesterol in the media. Of the different hormones and cytokines tested, only transforming growth factor beta1 (TGF-beta1) had a clear effect on CYP27A1. Further experiments showed a significant increase in 27-hydroxylated cholesterol products (27-hydroxycholesterol and 3beta-hydroxy-5-cholestenoic acid). A concomitant increase in CYP27A1 mRNA levels was also seen and this positive effect was confirmed using a human CYP27A1 luciferase reporter gene expressed in HepG2 cells. Experiments with progressive deletion/luciferase reporter gene constructs indicated that a TGF-beta1 responsive sequence might be localized in a region about 400 bp upstream of the CYP27A1 translation start. The possibility is discussed that induction of CYP27A1 by TGF-beta1 may be responsible for some of the anti-atherogenic properties of this cytokine.
Collapse
Affiliation(s)
- Magnus Hansson
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska University Hospital at Huddinge, SE-141 86 Stockholm, Sweden
| | | | | |
Collapse
|
48
|
Rao M, Guo D, Jaber BL, Tighiouart H, Pereira BJG, Balakrishnan VS. Transforming growth factor-beta 1 gene polymorphisms and cardiovascular disease in hemodialysis patients. Kidney Int 2004; 66:419-27. [PMID: 15200451 DOI: 10.1111/j.1523-1755.2004.00748.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Atherosclerotic vascular disease is a leading cause of morbidity and mortality in patients with end-stage renal disease (ESRD) on maintenance hemodialysis (HD). Transforming growth factor-beta1 (TGF-beta1) is a multifunctional cytokine that inhibits the atheromatous process. We studied coding region polymorphisms of the TGF-beta1 gene (+869 T --> C at codon 10 and +915 G --> C at codon 25) as genetic susceptibility factors for prevalent vascular disease and cardiac outcomes in a cohort of HD patients enrolled in the HEMO Study. METHODS Genotyping was carried out using polymerase chain reaction-sequence specific primer (PCR-SSP) methods with a cytokine genotyping tray. Prevalent vascular disease was coded from the Index of Disease Severity (IDS) scores for ischemic heart disease (IHD), peripheral vascular disease (PVD), cerebrovascular disease (CVD), and congestive heart failure (CHF), 0 indicating absence, and 1 to 3 increasing grades of severity. The presence of any vascular disease (VD) (i.e., any degree of IHD/PVD/CVD), and the number of coexistent vascular system diseases per patient were derived. Cardiac outcomes, one of the secondary outcomes of the HEMO Study, were expressed as a composite of the first hospitalization for, or death from, cardiac causes. RESULTS The cohort consisted of 183 patients at enrollment, 56% male, 44% African American (AA), and 40% diabetic. The mean age was 62.4 +/- 12.2 years, and median dialysis vintage 2.02 years. The most frequent genotype at codon 10 was T/C (67%), and at codon 25 was G/G (72%). IHD was present in 52% of patients; 65% had at least one vascular system involvement, and 31% had 2 or more. On both univariate and multivariate analysis, the G/C genotype at codon 25 was significantly associated with the presence and extent of vascular disease at enrollment. The median time to cardiac outcome, defined as a composite of the first hospitalization for, or death from, cardiac causes, was 411 days in patients with the G/C genotype compared with 851 days in those with the G/G genotype (P= 0.03). Patients with the G/C genotype had a 1.6-fold increased hazard for cardiac outcomes after adjustment for baseline covariates (P= 0.04). CONCLUSION The G/C substitution at codon 25 was associated with an increased risk for prevalent vascular disease, new onset cardiac morbidity, and cardiac mortality in HD patients, and may be a genetic susceptibility factor for the development of atherosclerosis. Further studies are required to evaluate the role of TGF-beta1 as a candidate gene.
Collapse
Affiliation(s)
- Madhumathi Rao
- Division of Nephrology; and Division of Biostatistics and Clinical Care Research, Tufts-New England Medical Center, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
49
|
Hori M, Miyazaki A, Tamagawa H, Satoh M, Furukawa K, Hakamata H, Sasaki Y, Horiuchi S. Up-regulation of acyl-coenzyme A:cholesterol acyltransferase-1 by transforming growth factor-β1 during differentiation of human monocytes into macrophages. Biochem Biophys Res Commun 2004; 320:501-5. [PMID: 15219857 DOI: 10.1016/j.bbrc.2004.05.190] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Indexed: 11/25/2022]
Abstract
Expression of acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT-1) increases during differentiation of human monocytes into macrophages. To further elucidate the mechanism for ACAT-1 regulation in macrophages, we examined the effects of five cytokines including transforming growth factor-beta1 (TGF- beta1) on ACAT-1 expression in cultured human monocyte-macrophages. Immunoblot analyses showed that TGF-beta1 increased ACAT-1 protein expression by two- to threefold when added during differentiation of human monocytes into macrophages. ACAT activity increased in parallel by 1.8-fold. Northern blot analyses revealed that among the three ACAT-1 mRNA transcripts detected (2.8-, 3.6-, and 4.3-kb), the 2.8- and 3.6-kb transcripts were selectively increased by TGF-beta1. When TGF-beta1 was added after differentiation, ACAT-1 expression was not altered. Since TGF-beta1 is expressed in human atherosclerotic lesions, the current results suggest that ACAT-1 expression in monocytes infiltrating from the circulation to vascular walls may be enhanced by pre-existing TGF-beta1.
Collapse
Affiliation(s)
- Masaharu Hori
- Department of Medical Biochemistry, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
de Medina P, Payré BL, Bernad J, Bosser I, Pipy B, Silvente-Poirot S, Favre G, Faye JC, Poirot M. Tamoxifen is a potent inhibitor of cholesterol esterification and prevents the formation of foam cells. J Pharmacol Exp Ther 2004; 308:1165-73. [PMID: 14617686 DOI: 10.1124/jpet.103.060426] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Tamoxifen is a selective estrogen receptor modulator (SERM) used for the treatment and prevention of breast cancer. Tamoxifen has been reported to protect against the progression of coronary artery diseases in human and different atherosclerosis animal models by blocking the appearance of the atheromatous plaque. However, the molecular mechanism of this effect remains unknown. Acyl-CoA:cholesterol acyl transferase (ACAT) catalyzes the biosynthesis of cholesteryl esters, which are the major lipids found in the atheromatous plaque. In this paper we have tested whether ACAT might be inhibited by tamoxifen. We show, using molecular modeling, that tamoxifen displays three-dimensional structural homology with Sah 58-035 (3-[decyldimethylsilyl]-N-[2-(4-methylphenyl)-1-phenylethyl]-propanamide), a prototypical inhibitor of ACAT. We report that tamoxifen inhibits ACAT in a concentration-dependent manner on rat liver microsomal extract. We show that the presence on estrogen receptor ligands of a backbone isosteric to the diphenyl ethane backbone of Sah 58-035 constitutes a pharmacophore for ACAT inhibition. More importantly, tamoxifen was able to inhibit ACAT on intact macrophages stimulated with acetylated low-density lipoproteins and blocked the formation of foam cells, a step that precedes the formation of the atheromatous plaque. This work constitutes the first evidence that tamoxifen is an inhibitor of ACAT and foam cell formation at therapeutic doses and that this may account for its atheroprotective action.
Collapse
Affiliation(s)
- Philippe de Medina
- Département Innovation Thérapeutique et Oncologie Moléculaire, Institut Claudius Regaud, Institut National de la Santé et de la Recherche Médicale, Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|