1
|
Huang C, Wei Z, Zheng N, Yan J, Zhang J, Ye X, Zhao W. The interaction between dysfunction of vasculature and tauopathy in Alzheimer's disease and related dementias. Alzheimers Dement 2025; 21:e14618. [PMID: 39998958 PMCID: PMC11854360 DOI: 10.1002/alz.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/01/2025] [Accepted: 01/12/2025] [Indexed: 02/27/2025]
Abstract
Tauopathy is one of the pathological features of Alzheimer's disease and related dementias (ADRD). At present, there have been many studies on the formation, deposition, and intercellular transmission of tau in neurons and immune cells. The vasculature is an important component of the central nervous system. This review discusses the interaction between vasculature and tau in detail from three aspects. (1) The vascular risk factors (VRFs) discussed in this review include diabetes mellitus (DM), abnormal blood pressure (BP), and hypercholesterolemia. (2) In ADRD pathology, the hyperphosphorylation and deposition of tau interact with disrupted vasculature, such as different cells (endothelial cells, smooth muscular cells, and pericytes), the blood-brain barrier (BBB), and the cerebral lymphatic system. (3) The functions of vasculature are regulated by various signaling transductions. Endothelial nitric oxide synthase/nitric oxide, calcium signaling, Rho/Rho-associated coiled-coil containing Kinase, and receptors for advanced glycation end products are discussed in this review. Our findings indicate that the prevention and treatment of vascular health may be a potential target for ADRD combination therapy. HIGHLIGHTS: Persistent VRFs increase early disruption of vascular mechanisms and are strongly associated with tau pathology in ADRD. Cell dysfunction in the vasculature causes BBB leakage and drainage incapacity of the cerebral lymphatic system, which interacts with tau pathology. Signaling molecules in the vasculature regulate vasodilation and contraction, angiogenesis, and CBF. Abnormal signaling transduction is related to tau hyperphosphorylation and deposition.
Collapse
Affiliation(s)
- Chuyao Huang
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Zhenwen Wei
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Ningxiang Zheng
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Jingsi Yan
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Jiayu Zhang
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Xinyi Ye
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Wei Zhao
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| |
Collapse
|
2
|
Oosthuizen D, Ganief TA, Bernstein KE, Sturrock ED. Proteomic Analysis of Human Macrophages Overexpressing Angiotensin-Converting Enzyme. Int J Mol Sci 2024; 25:7055. [PMID: 39000163 PMCID: PMC11240931 DOI: 10.3390/ijms25137055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Angiotensin converting enzyme (ACE) exerts strong modulation of myeloid cell function independently of its cardiovascular arm. The success of the ACE-overexpressing murine macrophage model, ACE 10/10, in treating microbial infections and cancer opens a new avenue into whether ACE overexpression in human macrophages shares these benefits. Additionally, as ACE inhibitors are a widely used antihypertensive medication, their impact on ACE expressing immune cells is of interest and currently understudied. In the present study, we utilized mass spectrometry to characterize and assess global proteomic changes in an ACE-overexpressing human THP-1 cell line. Additionally, proteomic changes and cellular uptake following treatment with an ACE C-domain selective inhibitor, lisinopril-tryptophan, were also assessed. ACE activity was significantly reduced following inhibitor treatment, despite limited uptake within the cell, and both RNA processing and immune pathways were significantly dysregulated with treatment. Also present were upregulated energy and TCA cycle proteins and dysregulated cytokine and interleukin signaling proteins with ACE overexpression. A novel, functionally enriched immune pathway that appeared both with ACE overexpression and inhibitor treatment was neutrophil degranulation. ACE overexpression within human macrophages showed similarities with ACE 10/10 murine macrophages, paving the way for mechanistic studies aimed at understanding the altered immune function.
Collapse
Affiliation(s)
- Delia Oosthuizen
- Division of Chemical, Systems and Synthetic Biology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Tariq A. Ganief
- Division of Chemical, Systems and Synthetic Biology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Kenneth E. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Edward D. Sturrock
- Division of Chemical, Systems and Synthetic Biology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| |
Collapse
|
3
|
Clark CR, Khalil RA. Regulation of vascular angiotensin II type 1 and type 2 receptor and angiotensin-(1-7)/MasR signaling in normal and hypertensive pregnancy. Biochem Pharmacol 2024; 220:115963. [PMID: 38061417 PMCID: PMC10860599 DOI: 10.1016/j.bcp.2023.115963] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/01/2024]
Abstract
Normal pregnancy (Norm-Preg) is associated with a slight reduction in blood pressure (BP) and decreased BP response to vasoconstrictor stimuli such as angiotensin II (Ang II), although the renin-angiotensin-aldosterone system (RAAS) is upregulated. Preeclampsia (PE) is a complication of pregnancy manifested as hypertension-in-pregnancy (HTN-Preg), and dysregulation of angiotensin biosynthesis and signaling have been implicated. Ang II activates vascular Ang II type-1 receptor (AT1R) and Ang II type-2 receptor (AT2R), while angiotensin-(1-7) promotes Ang-(1-7)/MasR signaling. The role of AT1R in vasoconstriction and the activated cellular mechanisms are well-characterized. The sensitivity of vascular AT1R to Ang II and consequent activation of vasoconstrictor mechanisms decrease during Norm-Preg, but dramatically increase in HTN-Preg. Placental ischemia in late pregnancy could also initiate the release of AT1R agonistic autoantibodies (AT1AA) with significant impact on endothelial dysfunction and activation of contraction pathways in vascular smooth muscle including [Ca2+]c and protein kinase C. On the other hand, the role of AT2R and Ang-(1-7)/MasR in vascular relaxation, particularly during Norm-Preg and PE, is less clear. During Norm-Preg, increases in the expression/activity of vascular AT2R and Ang-(1-7)/MasR promote the production of endothelium-derived relaxing factors such as nitric oxide (NO), prostacyclin and endothelium-derived hyperpolarizing factor leading to generalized vasodilation. Aortic segments of Preg rats show prominent endothelial AT2R staining and increased relaxation and NO production in response to AT2R agonist CGP42112A, and treatment with AT2R antagonist PD123319 enhances phenylephrine-induced contraction. Decreased vascular AT2R and Ang-(1-7)/MasR expression and receptor-mediated mechanisms of vascular relaxation have been suggested in HTN-Preg animal models, but their role in human PE needs further testing. Changes in angiotensin-converting enzyme-2 (ACE2) have been observed in COVID-19 patients, and whether ACE2 influences the course of COVID-19 viral infection/immunity in Norm-Preg and PE is an intriguing area for research.
Collapse
Affiliation(s)
- Caroline R Clark
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Lopez-Lopez A, Valenzuela R, Rodriguez-Perez AI, Guerra MJ, Labandeira-Garcia JL, Muñoz A. Interactions between Angiotensin Type-1 Antagonists, Statins, and ROCK Inhibitors in a Rat Model of L-DOPA-Induced Dyskinesia. Antioxidants (Basel) 2023; 12:1454. [PMID: 37507992 PMCID: PMC10376833 DOI: 10.3390/antiox12071454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Statins have been proposed for L-DOPA-induced dyskinesia (LID) treatment. Statin anti-dyskinetic effects were related to the inhibition of the Ras-ERK pathway. However, the mechanisms responsible for the anti-LID effect are unclear. Changes in cholesterol homeostasis and oxidative stress- and inflammation-related mechanisms such as angiotensin II and Rho-kinase (ROCK) inhibition may be involved. The nigra and striatum of dyskinetic rats showed increased levels of cholesterol, ROCK, and the inflammatory marker IL-1β, which were reduced by the angiotensin type-1 receptor (AT1) antagonist candesartan, simvastatin, and the ROCK inhibitor fasudil. As observed for LID, angiotensin II-induced, via AT1, increased levels of cholesterol and ROCK in the rat nigra and striatum. In cultured dopaminergic neurons, angiotensin II increased cholesterol biosynthesis and cholesterol efflux without changes in cholesterol uptake. In astrocytes, angiotensin induced an increase in cholesterol uptake, decrease in biosynthesis, and no change in cholesterol efflux, suggesting a neuronal accumulation of cholesterol that is reduced via transfer to astrocytes. Our data suggest mutual interactions between angiotensin/AT1, cholesterol, and ROCK pathways in LID, which are attenuated by the corresponding inhibitors. Interestingly, these three drugs have also been suggested as neuroprotective treatments against Parkinson's disease. Therefore, they may reduce dyskinesia and the progression of the disease using common mechanisms.
Collapse
Affiliation(s)
- Andrea Lopez-Lopez
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Rita Valenzuela
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Ana Isabel Rodriguez-Perez
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - María J Guerra
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Jose Luis Labandeira-Garcia
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Ana Muñoz
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| |
Collapse
|
5
|
García-Fernández-Bravo I, Torres-Do-Rego A, López-Farré A, Galeano-Valle F, Demelo-Rodriguez P, Alvarez-Sala-Walther LA. Undertreatment or Overtreatment With Statins: Where Are We? Front Cardiovasc Med 2022; 9:808712. [PMID: 35571155 PMCID: PMC9105719 DOI: 10.3389/fcvm.2022.808712] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/29/2022] [Indexed: 12/26/2022] Open
Abstract
Statins, in addition to healthy lifestyle interventions, are the cornerstone of lipid-lowering therapy. Other low-density lipoprotein (LDL)-lowering drugs include ezetimibe, bile acid sequestrants, and PCSK9 inhibitors. As new evidence emerges from new clinical trials, therapeutic goals change, leading to renewed clinical guidelines. Nowadays, LDL goals are getting lower, leading to the "lower is better" paradigm in LDL-cholesterol (LDL-C) management. Several observational studies have shown that LDL-C control in real life is suboptimal in both primary and secondary preventions. It is critical to enhance the adherence to guideline recommendations through shared decision-making between clinicians and patients, with patient engagement in selecting interventions based on individual values, preferences, and associated conditions and comorbidities. This narrative review summarizes the evidence regarding the benefits of lipid-lowering drugs in reducing cardiovascular events, the pleiotropic effect of statins, real-world data on overtreatment and undertreatment of lipid-lowering therapies, and the changing LDL-C in targets in the clinical guidelines of dyslipidemias over the years.
Collapse
Affiliation(s)
| | - Ana Torres-Do-Rego
- Internal Medicine, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Grupo (departamento) de investigación Riesgo cardiovascular y lípidos, Instituto de investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio López-Farré
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Galeano-Valle
- Internal Medicine, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Grupo (departamento) de investigación Riesgo cardiovascular y lípidos, Instituto de investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Pablo Demelo-Rodriguez
- Internal Medicine, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Grupo (departamento) de investigación Riesgo cardiovascular y lípidos, Instituto de investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis A. Alvarez-Sala-Walther
- Internal Medicine, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Grupo (departamento) de investigación Riesgo cardiovascular y lípidos, Instituto de investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
6
|
Jang EH, Kim JH, Ryu JY, Lee J, Kim HH, Youn YN. Time-dependent pathobiological and physiological changes of implanted vein grafts in a canine model. J Cardiovasc Transl Res 2022; 15:1108-1118. [PMID: 35244875 DOI: 10.1007/s12265-022-10226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/23/2022] [Indexed: 12/01/2022]
Abstract
Although autologous vein grafting is essential, the high vein failure rate and specific clinical interventions are not clear, so a potential treatment is critically needed; thus, complex analyses of the relationship between pathobiological and physiological processes in preclinical are essential. The interposition of the femoral vein was performed in a canine model. Maximized expansion and velocity were measured at 8 weeks post-implantation, and a relative decrease was observed at 12 weeks. However, NI formation and NI/Media ratio significantly increased time dependently, and differences between the mechanical properties were observed. Additionally, RhoA-mediated TNF-α induced by rapid structural changes and high shear stress was confirmed. After adaptation to the arterial environment, vascular remodeling occurred by SMC proliferation and differentiation, apoptosis and autophagy were induced through YAP activity without vasodilation and RhoA activity. Our results show that understanding pathobiological processes in which time-dependent physiological changes contribute to vein failure can lead to a potential strategy. The implanted vein graft within the arterial environment undergoes pathobiological processes through RhoA and YAP activity, leading to pathophysiological changes.
Collapse
Affiliation(s)
- Eui Hwa Jang
- Division of Cardiovascular Surgery, Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 250 Seongsanro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jung-Hwan Kim
- Division of Cardiovascular Surgery, Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 250 Seongsanro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ji-Yeon Ryu
- Division of Cardiovascular Surgery, Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 250 Seongsanro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jiyong Lee
- Department of Mechanical Engineering, YONSEI University, Seoul, 03722, South Korea
| | - Hyo-Hyun Kim
- Division of Cardiovascular Surgery, Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 250 Seongsanro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Young-Nam Youn
- Division of Cardiovascular Surgery, Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 250 Seongsanro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
7
|
Li Y, Tai HC, Sladojevic N, Kim HH, Liao JK. Vascular Stiffening Mediated by Rho-Associated Coiled-Coil Containing Kinase Isoforms. J Am Heart Assoc 2021; 10:e022568. [PMID: 34612053 PMCID: PMC8751888 DOI: 10.1161/jaha.121.022568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The pathogenesis of vascular stiffening and hypertension is marked by non‐compliance of vessel wall because of deposition of collagen fibers, loss of elastin fibers, and increased vascular thickening. Rho/Rho‐associated coiled‐coil containing kinases 1 and 2 (ROCK1 and ROCK2) have been shown to regulate cellular contraction and vascular remodeling. However, the role of ROCK isoforms in mediating pathogenesis of vascular stiffening and hypertension is not known. Methods and Results Hemizygous Rock mice (Rock1+/− and Rock2+/−) were used to determine the role of ROCK1 and ROCK2 in age‐related vascular dysfunction. Both ROCK activity and aortic stiffness increased to a greater extent with age in wild‐type mice compared with that of Rock1+/− and Rock2+/− mice. As a model for age‐related vascular stiffening, we administered angiotensin II (500 ng/kg per minute) combined with nitric oxide synthase inhibitor, L‐Nω‐nitroarginine methyl ester (0.5 g/L) for 4 weeks to 12‐week‐old male Rock1+/− and Rock2+/− mice. Similar to advancing age, angiotensin II/L‐Nω‐nitroarginine methyl ester caused increased blood pressure, aortic stiffening, and vascular remodeling, which were attenuated in Rock2+/−, and to a lesser extent, Rock1+/− mice. The reduction of aortic stiffening in Rock2+/− mice was accompanied by decreased collagen deposition, relatively preserved elastin content, and less aortic wall hypertrophy. Indeed, the upregulation of collagen I by transforming growth factor‐β1 or angiotensin II was greatly attenuated in Rock2−/− mouse embryonic fibroblasts. Conclusions These findings indicate that ROCK1 and ROCK2 mediate both age‐related and pharmacologically induced aortic stiffening, and suggest that inhibition of ROCK2, and to a lesser extent ROCK1, may have therapeutic benefits in preventing age‐related vascular stiffening.
Collapse
Affiliation(s)
- Yuxin Li
- Division of Cell Regeneration and Transplantation Department of Functional Morphology Nihon University School of Medicine Tokyo Japan
| | - Haw-Chih Tai
- Section of Cardiology Department of Medicine University of Chicago IL
| | - Nikola Sladojevic
- Section of Cardiology Department of Medicine University of Chicago IL
| | - Hyung-Hwan Kim
- Neurovascular Laboratory Massachusetts General Hospital and Harvard Medical School Boston MA
| | - James K Liao
- Section of Cardiology Department of Medicine University of Chicago IL
| |
Collapse
|
8
|
Vitiello A, Ferrara F. Plausible Positive Effects of Statins in COVID-19 Patient. Cardiovasc Toxicol 2021; 21:781-789. [PMID: 34255300 PMCID: PMC8275916 DOI: 10.1007/s12012-021-09674-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023]
Abstract
Since the onset of the global COVID-19 pandemic, there has been much discussion about the advantages and disadvantages of ongoing chronic drug therapies in SARS-CoV-2-positive patients. These discussions include also statins treatment. The statins are among the most widely used drugs in the global population. Statins aim to lower cholesterol, which is essential for many biological processes but can lead to heart disease if levels are too high; however, also the pleiotropic effects of statins are well known. So could the anti-inflammatory or the potential antiviral effects of statins be helpful in avoiding extreme inflammation and severity in COVID-19? To date, there are conflicting opinions on the effects of statins in the course of COVID-19 infection. The aim of this article is to describe the molecular and pharmacological basis of the pleiotropic effects of statins that could be more involved in the fight against COVID-19 infection and to investigate the current epidemiological evidence in the literature on the current and important topic.
Collapse
Affiliation(s)
- Antonio Vitiello
- Clinical Pharmacologist, Pharmaceutical Department, Usl Umbria 1, A.Migliorati street, 06132, Perugia, Italy
| | - Francesco Ferrara
- Hospital Pharmacist Manager, Pharmaceutical Department, Usl Umbria 1, A.Migliorati street, 06132, Perugia, Italy.
| |
Collapse
|
9
|
Ferrara F, Vitiello A. The advantages of drug treatment with statins in patients with SARS-CoV-2 infection. Wien Klin Wochenschr 2021; 133:958-965. [PMID: 33779831 PMCID: PMC8006129 DOI: 10.1007/s00508-021-01845-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/27/2021] [Indexed: 01/08/2023]
Abstract
On 11 March 2020 the World Health Organization (WHO) declared a status of global pandemic caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (coronavirus disease 2019, COVID-19). The pandemic is currently underway, and to date has caused approximately 2.42 million deaths worldwide. The first vaccines have recently been licensed; however, research continues to identify therapeutic agents to prevent serious complications, such as anti-inflammatory, immunomodulatory, anticoagulant or antiviral agents authorized for other therapeutic indications. Epidemiological evidence shows that advanced age and comorbidities, such as diabetes, heart disease, and dyslipidemia may represent COVID-19 risk factors. In particular, in patients with hypercholesterolemia treated with statins, it is recommended that treatment should not be discontinued if COVID-19 infection occurs. The pleiotropic effects of statins are well known. In this brief review, we propose that the use of statins can potentially protect against SARS-CoV-2-induced tissue damage and improve lung function in COVID-19 patients through several pleiotropic effects. Pleiotropic effects of statins that may be a significant benefit in patients with hypercholesterolemia treated with statins and COVID-19 positive. Recent evidence shows promising results.
Collapse
Affiliation(s)
- Francesco Ferrara
- Pharmaceutical department, Hospital Pharmacist Manager, Usl Umbria 1, A. Migliorati street, 06132, Perugia, Italy.
| | - Antonio Vitiello
- Pharmaceutical department, Clinical Pharmacologist, Usl Umbria 1, A. Migliorati street, 06132, Perugia, Italy
| |
Collapse
|
10
|
Alghanem AF, Abello J, Maurer JM, Kumar A, Ta CM, Gunasekar SK, Fatima U, Kang C, Xie L, Adeola O, Riker M, Elliot-Hudson M, Minerath RA, Grueter CE, Mullins RF, Stratman AN, Sah R. The SWELL1-LRRC8 complex regulates endothelial AKT-eNOS signaling and vascular function. eLife 2021; 10:61313. [PMID: 33629656 PMCID: PMC7997661 DOI: 10.7554/elife.61313] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
The endothelium responds to numerous chemical and mechanical factors in regulating vascular tone, blood pressure, and blood flow. The endothelial volume-regulated anion channel (VRAC) has been proposed to be mechanosensitive and thereby sense fluid flow and hydrostatic pressure to regulate vascular function. Here, we show that the leucine-rich repeat-containing protein 8a, LRRC8A (SWELL1), is required for VRAC in human umbilical vein endothelial cells (HUVECs). Endothelial LRRC8A regulates AKT-endothelial nitric oxide synthase (eNOS) signaling under basal, stretch, and shear-flow stimulation, forms a GRB2-Cav1-eNOS signaling complex, and is required for endothelial cell alignment to laminar shear flow. Endothelium-restricted Lrrc8a KO mice develop hypertension in response to chronic angiotensin-II infusion and exhibit impaired retinal blood flow with both diffuse and focal blood vessel narrowing in the setting of type 2 diabetes (T2D). These data demonstrate that LRRC8A regulates AKT-eNOS in endothelium and is required for maintaining vascular function, particularly in the setting of T2D.
Collapse
Affiliation(s)
- Ahmad F Alghanem
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, United States.,Eastern Region, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Al Hasa, Saudi Arabia
| | - Javier Abello
- Department of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, United States
| | - Joshua M Maurer
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, United States
| | - Ashutosh Kumar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, United States
| | - Chau My Ta
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, United States
| | - Susheel K Gunasekar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, United States
| | - Urooj Fatima
- Department of Internal Medicine, Cardiovascular Division, University of Iowa, Iowa City, United States
| | - Chen Kang
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, United States
| | - Litao Xie
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, United States
| | - Oluwaseun Adeola
- Department of Internal Medicine, Cardiovascular Division, University of Iowa, Iowa City, United States
| | - Megan Riker
- Department of Ophthalmology, University of Iowa, Carver College of Medicine, Iowa City, United States
| | - Macaulay Elliot-Hudson
- Department of Internal Medicine, Cardiovascular Division, University of Iowa, Iowa City, United States
| | - Rachel A Minerath
- Department of Internal Medicine, Cardiovascular Division, University of Iowa, Iowa City, United States
| | - Chad E Grueter
- Department of Internal Medicine, Cardiovascular Division, University of Iowa, Iowa City, United States
| | - Robert F Mullins
- Department of Ophthalmology, University of Iowa, Carver College of Medicine, Iowa City, United States
| | - Amber N Stratman
- Department of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, United States
| | - Rajan Sah
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, United States.,Center for Cardiovascular Research, Washington University, St Louis, United States
| |
Collapse
|
11
|
Qu H, Khalil RA. Vascular mechanisms and molecular targets in hypertensive pregnancy and preeclampsia. Am J Physiol Heart Circ Physiol 2020; 319:H661-H681. [PMID: 32762557 DOI: 10.1152/ajpheart.00202.2020] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Preeclampsia is a major complication of pregnancy manifested as hypertension and often intrauterine growth restriction, but the underlying pathophysiological mechanisms are unclear. Predisposing genetic and environmental factors cause placental maladaptations leading to defective placentation, apoptosis of invasive cytotrophoblasts, inadequate expansive remodeling of the spiral arteries, reduced uteroplacental perfusion pressure, and placental ischemia. Placental ischemia promotes the release of bioactive factors into the maternal circulation, causing an imbalance between antiangiogenic soluble fms-like tyrosine kinase-1 and soluble endoglin and proangiogenic vascular endothelial growth factor, placental growth factor, and transforming growth factor-β. Placental ischemia also stimulates the release of proinflammatory cytokines, hypoxia-inducible factor, reactive oxygen species, and angiotensin type 1 receptor agonistic autoantibodies. These circulating factors target the vascular endothelium, causing generalized endotheliosis in systemic, renal, cerebral, and hepatic vessels, leading to decreases in endothelium-derived vasodilators such as nitric oxide, prostacyclin, and hyperpolarization factor and increases in vasoconstrictors such as endothelin-1 and thromboxane A2. The bioactive factors also target vascular smooth muscle and enhance the mechanisms of vascular contraction, including cytosolic Ca2+, protein kinase C, and Rho-kinase. The bioactive factors could also target matrix metalloproteinases and the extracellular matrix, causing inadequate vascular remodeling, increased arterial stiffening, and further increases in vascular resistance and hypertension. As therapeutic options are limited, understanding the underlying vascular mechanisms and molecular targets should help design new tools for the detection and management of hypertension in pregnancy and preeclampsia.
Collapse
Affiliation(s)
- Hongmei Qu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Ma L, Dai W, Lin Y, Zhang Z, Pan Y, Han H, Jia H, Peng J, Zhao J, Xu L. Leukocyte Rho kinase activity and serum cystatin C affect cardiovascular events in acute coronary syndrome. Medicine (Baltimore) 2020; 99:e20060. [PMID: 32664054 PMCID: PMC7360209 DOI: 10.1097/md.0000000000020060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE This study was designed to investigate the effects of leukocyte Rho kinase activity and serum Cystatin C (Cys C) on cardiovascular events in patients with acute coronary syndrome (ACS). METHODS A total of 48 patients with ST-segment elevation myocardial infarction (STEMI), 23 patients with non-ST-segment elevation myocardial infarction (NSTEMI), 25 patients with unstable angina (UA) and 20 patients with no-acute coronary syndrome as control from January 2017 to June 2018 in Tianyou Hospital affiliated to Wuhan University of Science and Technology were selected in this study. Western blot was used to detect the leukocyte Rho kinase activity and Elisa kit was used to measure serum Cys C. Univariate and multivariate analysis were used to analyze the influencing factors of cardiovascular events in ACS patients. RESULTS The activity of leukocyte Rho kinase and serum Cys C were gradually reduced in the STEMI, NSTEMI and UA patients, but all significantly higher than that in No-ASC patients, and there was a positive correlation between leukocyte Rho kinase activity and serum Cys C in ACS patients (r = 0.516, P < .001). The activity of leukocyte Rho kinase was positively correlated with the levels of serum TNF-α (r = 0.634, P < .001), IL-6 (r = 0.578, P < .001), IL-8 (r = 0.582, P < .001) in ACS patients, and the level of Cys C was positively correlated with the levels of serum TNF-α (r = 0.634, P < .001), IL-6 (r = 0.578, P < .001), IL-8 (r = 0.582, P < .001) in ACS patients. Univariate and multivariate analysis showed that the leukocyte Rho kinase activity (HR = 2.994, 95%CI = 1.328-6.054, P < .0001) and the levels of serum Cys C (HR = 1.692, 95%CI = 1.028-2.124, P < .0001) were independent influencing factors of cardiovascular events in ACS patients. CONCLUSION The leukocyte Rho kinase activity and serum Cystatin C are high in acute coronary syndrome patients, and are the independent influencing factors of cardiovascular events in ACS patients.
Collapse
Affiliation(s)
- Li Ma
- Department of Cardiology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology
| | - Wenqin Dai
- Department of Cardiology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology
- Department of Cardiology, Wuchang Hospital of Wuhan
| | - Yongbo Lin
- Department of Cardiology, People's Hospital of Dongxihu
| | - Zhongyuan Zhang
- Department of Pharmacy, Tianyou Hospital Affiliated to Wuhan University of Science and Technology
| | - Yunhong Pan
- Department of Cardiology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology
| | - Hongyan Han
- Department of Cardiology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology
| | - Haizhen Jia
- Department of Cardiology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology
| | - Jun Peng
- Department of Cardiology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology
| | - Jinhe Zhao
- Department of Cardiology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology
| | - Liang Xu
- Department of Intensive Care Unit, WuHan, China
| |
Collapse
|
13
|
Yu B, Sladojevic N, Blair JE, Liao JK. Targeting Rho-associated coiled-coil forming protein kinase (ROCK) in cardiovascular fibrosis and stiffening. Expert Opin Ther Targets 2020; 24:47-62. [PMID: 31906742 PMCID: PMC7662835 DOI: 10.1080/14728222.2020.1712593] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023]
Abstract
Introduction: Pathological cardiac fibrosis, through excessive extracellular matrix protein deposition from fibroblasts and pro-fibrotic immune responses and vascular stiffening is associated with most forms of cardiovascular disease. Pathological cardiac fibrosis and stiffening can lead to heart failure and arrythmias and vascular stiffening may lead to hypertension. ROCK, a serine/threonine kinase downstream of the Rho-family of GTPases, may regulate many pro-fibrotic and pro-stiffening signaling pathways in numerous cell types.Areas covered: This article outlines the molecular mechanisms by which ROCK in fibroblasts, T helper cells, endothelial cells, vascular smooth muscle cells, and macrophages mediate fibrosis and stiffening. We speculate on how ROCK could be targeted to inhibit cardiovascular fibrosis and stiffening.Expert opinion: Critical gaps in knowledge must be addressed if ROCK inhibitors are to be used in the clinic. Numerous studies indicate that each ROCK isoform may play differential roles in regulating fibrosis and may have opposing roles in specific tissues. Future work needs to highlight the isoform- and tissue-specific contributions of ROCK in fibrosis, and how isoform-specific ROCK inhibitors in murine models and in clinical trials affect the pathophysiology of cardiac fibrosis and stiffening. This could progress knowledge regarding new treatments for heart failure, arrythmias and hypertension and the repair processes after myocardial infarction.
Collapse
Affiliation(s)
- Brian Yu
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Nikola Sladojevic
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - John E Blair
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - James K Liao
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Pan C, Zhang YS, Han JY, Li CY, Yi Y, Zhao Y, Wang LM, Tian JZ, Liu SY, Li GQ, Li XL, Xian Z, Liang AH. The Involvement of the RhoA/ROCK Signaling Pathway in Hypersensitivity Reactions Induced by Paclitaxel Injection. Int J Mol Sci 2019; 20:ijms20204988. [PMID: 31600977 PMCID: PMC6834182 DOI: 10.3390/ijms20204988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023] Open
Abstract
A high incidence of hypersensitivity reactions (HSRs) largely limits the use of paclitaxel injection. Currently, these reactions are considered to be mediated by histamine release and complement activation. However, the evidence is insufficient and the molecular mechanism involved in paclitaxel injection-induced HSRs is still incompletely understood. In this study, a mice model mimicking vascular hyperpermeability was applied. The vascular leakage induced merely by excipients (polyoxyl 35 castor oil) was equivalent to the reactions evoked by paclitaxel injection under the same conditions. Treatment with paclitaxel injection could cause rapid histamine release. The vascular exudation was dramatically inhibited by pretreatment with a histamine antagonist. No significant change in paclitaxel injection-induced HSRs was observed in complement-deficient and complement-depleted mice. The RhoA/ROCK signaling pathway was activated by paclitaxel injection. Moreover, the ROCK inhibitor showed a protective effect on vascular leakage in the ears and on inflammation in the lungs. In conclusion, this study provided a suitable mice model for investigating the HSRs characterized by vascular hyperpermeability and confirmed the main sensitization of excipients in paclitaxel injection. Histamine release and RhoA/ROCK pathway activation, rather than complement activation, played an important role in paclitaxel injection-induced HSRs. Furthermore, the ROCK inhibitor may provide a potential preventive approach for paclitaxel injection side effects.
Collapse
Affiliation(s)
- Chen Pan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yu-Shi Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jia-Yin Han
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Chun-Ying Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yan Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yong Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Lian-Mei Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jing-Zhuo Tian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Su-Yan Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Gui-Qin Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xiao-Long Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zhong Xian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Ai-Hua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
15
|
Amin F, Ahmed A, Feroz A, Khaki PSS, Khan MS, Tabrez S, Zaidi SK, Abdulaal WH, Shamsi A, Khan W, Bano B. An Update on the Association of Protein Kinases with Cardiovascular Diseases. Curr Pharm Des 2019; 25:174-183. [DOI: 10.2174/1381612825666190312115140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
Background:
Protein kinases are the enzymes involved in phosphorylation of different proteins which
leads to functional changes in those proteins. They belong to serine-threonine kinases family and are classified
into the AGC (Protein kinase A/ Protein kinase G/ Protein kinase C) families of protein and Rho-associated
kinase protein (ROCK). The AGC family of kinases are involved in G-protein stimuli, muscle contraction, platelet
biology and lipid signaling. On the other hand, ROCK regulates actin cytoskeleton which is involved in the
development of stress fibres. Inflammation is the main signal in all ROCK-mediated disease. It triggers the cascade
of a reaction involving various proinflammatory cytokine molecules.
Methods:
Two ROCK isoforms are found in mammals and invertebrates. The first isoforms are present mainly in
the kidney, lung, spleen, liver, and testis. The second one is mainly distributed in the brain and heart.
Results:
ROCK proteins are ubiquitously present in all tissues and are involved in many ailments that include
hypertension, stroke, atherosclerosis, pulmonary hypertension, vasospasm, ischemia-reperfusion injury and heart
failure. Several ROCK inhibitors have shown positive results in the treatment of various disease including cardiovascular
diseases.
Conclusion:
ROCK inhibitors, fasudil and Y27632, have been reported for significant efficiency in dropping
vascular smooth muscle cell hyper-contraction, vascular inflammatory cell recruitment, cardiac remodelling and
endothelial dysfunction which highlight ROCK role in cardiovascular diseases.
Collapse
Affiliation(s)
- Fakhra Amin
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Azaj Ahmed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Anna Feroz
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | | | - Mohd Shahnwaz Khan
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shams Tabrez
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Kashif Zaidi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wesam H. Abdulaal
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anas Shamsi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Wajihullah Khan
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Bilqees Bano
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| |
Collapse
|
16
|
Maaliki D, Issa K, Al Shehabi T, El-Yazbi A, Eid AH. The role of α2-adrenergic receptors in hypertensive preeclampsia: A hypothesis. Microcirculation 2018; 26:e12511. [PMID: 30383326 DOI: 10.1111/micc.12511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/18/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
Abstract
Preeclampsia, a major disorder of human pregnancy, manifests as persistent hypertension and proteinuria presenting after 20 weeks of pregnancy. Multiple systemic symptoms might be associated with preeclampsia including thrombocytopenia, liver impairment, pulmonary edema, and cerebral disturbances. However, vascular dysfunction remains the core pathological driver of preeclampsia. Defective placental implantation followed by dysfunctional placental spiral artery development promotes a hypoxic environment. Massive endothelial dysfunction characterized by reduced vasodilation, augmented vasoconstriction, and increased vascular permeability and inflammation ensues. Interestingly, the same signaling and inflammatory pathways implicated in preeclampsia appear to be shared with other vascular disorders involving alteration of α2 -AR function. The role of α2 -ARs in the regulation of microcirculatory function has long been recognized, thus raising the question of whether they are involved in the pathogenesis of vascular dysfunction in preeclampsia. Here, we review possible interplay between signaling and inflammatory pathways common to preeclampsia and α2 -AR function/regulation. We speculate on the potential contribution of these receptors to the observed phenotype and the potential role for their pharmacological modulators as therapeutic interventions with preeclampsia.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Khodr Issa
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Tuqa Al Shehabi
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ali H Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon.,Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar.,Department of Biomedical Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
17
|
Li Z, Sun B, Gu M, Wang M, Cheng X, Lv J, Cen S, Zhang S, Dai Z, Bai Y, Li S, Wang G, Weng Z, Shi Y, Zhang Z, Liu X. A GWAS-supported variant interacting with diabetes predicts risk of atherothrombotic stroke in Han Chinese population. Int J Neurosci 2018; 129:165-170. [PMID: 30149742 DOI: 10.1080/00207454.2018.1508134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND A recent genome-wide association study has identified that rs4376531 variant conferred risk of atherothrombotic stroke (AS) in a Japanese population. This study was to explore the association in Han Chinese population. METHODS A total of 1036 cases and 643 healthy controls were enrolled. We genotyped rs4376531 variant with SNPscan. Multivariate logistic regression analysis was used to determine the association of genetic variation with risk of AS. Interaction analysis was examined by SNPStats web tool. RESULTS After adjusting for gender, age, body mass index (BMI), hypertension, diabetes and smoking, compared with CC genotype, we observed that GC and GG/GC genotypes were associated with a significantly decreased risk of AS (OR = 0.76, 95% CI = 0.58-0.99 and OR = 0.76, 95% CI = 0.58-0.98, respectively). The decreased risk was more obvious among subgroups with high BMI (OR = 0.63, 95% CI = 0.45-0.88), no hypertension (OR = 0.66, 95% CI = 0.46-0.94), diabetes (OR = 0.33, 95% CI = 0.17-0.64), and smoking (OR = 0.65, 95% CI = 0.44-0.95) in the dominant model (GG/GC vs CC). Interaction analysis also revealed that compared with non-diabetic patients with CC genotype, diabetic patients with CC genotype had a 4.48-fold (OR = 4.48; 95% CI = 2.98-6.72) increased risk of AS. CONCLUSION Our data suggested that GC and GG/GC of rs4376531 contributed to a decreased risk of AS while CC genotype, interacting with diabetes, increased the stroke risk in Han Chinese population.
Collapse
Affiliation(s)
- Zibao Li
- a Department of Neurology , Jinling Clinical College of Nanjing Medical University , Nanjing , China.,b Department of Neurology , Yijishan Hospital of Wannan Medical College , Wuhu , China
| | - Bo Sun
- c Department of Neurology , Huai'an First People's Hospital, Nanjing Medical University , Huai'an , China
| | - Mengmeng Gu
- a Department of Neurology , Jinling Clinical College of Nanjing Medical University , Nanjing , China
| | - Mengmeng Wang
- d Department of Neurology, Jinling Hospital , Medical School of Nanjing University , Nanjing , China
| | - Xi Cheng
- a Department of Neurology , Jinling Clinical College of Nanjing Medical University , Nanjing , China
| | - Jia Lv
- b Department of Neurology , Yijishan Hospital of Wannan Medical College , Wuhu , China
| | - Si Cen
- b Department of Neurology , Yijishan Hospital of Wannan Medical College , Wuhu , China
| | - Shuai Zhang
- a Department of Neurology , Jinling Clinical College of Nanjing Medical University , Nanjing , China
| | - Zhengze Dai
- a Department of Neurology , Jinling Clinical College of Nanjing Medical University , Nanjing , China
| | - Yongjie Bai
- a Department of Neurology , Jinling Clinical College of Nanjing Medical University , Nanjing , China
| | - Shun Li
- d Department of Neurology, Jinling Hospital , Medical School of Nanjing University , Nanjing , China
| | - Guiling Wang
- e The Outpatient Department , Jinling Hospital, Medical School of Nanjing University , Nanjing , China
| | - Zhiqiang Weng
- e The Outpatient Department , Jinling Hospital, Medical School of Nanjing University , Nanjing , China
| | - Yonghui Shi
- f Department of Clinical Laboratory , Jinling Hospital, Medical School of Nanjing University , Nanjing , China
| | - Zhizhong Zhang
- a Department of Neurology , Jinling Clinical College of Nanjing Medical University , Nanjing , China.,d Department of Neurology, Jinling Hospital , Medical School of Nanjing University , Nanjing , China
| | - Xinfeng Liu
- a Department of Neurology , Jinling Clinical College of Nanjing Medical University , Nanjing , China.,d Department of Neurology, Jinling Hospital , Medical School of Nanjing University , Nanjing , China
| |
Collapse
|
18
|
Yu W, Gao W, Rong D, Wu Z, Khalil RA. Molecular determinants of microvascular dysfunction in hypertensive pregnancy and preeclampsia. Microcirculation 2018; 26:e12508. [PMID: 30338879 PMCID: PMC6474836 DOI: 10.1111/micc.12508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022]
Abstract
Preeclampsia is a pregnancy-related disorder characterized by hypertension and often fetal intrauterine growth restriction, but the underlying mechanisms are unclear. Defective placentation and apoptosis of invasive cytotrophoblasts cause inadequate remodeling of spiral arteries, placental ischemia, and reduced uterine perfusion pressure (RUPP). RUPP causes imbalance between the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the pro-angiogenic vascular endothelial growth factor and placental growth factor, and stimulates the release of proinflammatory cytokines, hypoxia-inducible factor, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors target the vascular endothelium, smooth muscle and various components of the extracellular matrix. Generalized endotheliosis in systemic, renal, cerebral, and hepatic vessels causes decreases in endothelium-derived vasodilators such as nitric oxide, prostacyclin and hyperpolarization factor, and increases in vasoconstrictors such as endothelin-1 and thromboxane A2. Enhanced mechanisms of vascular smooth muscle contraction, such as intracellular Ca2+ , protein kinase C, and Rho-kinase cause further increases in vasoconstriction. Changes in matrix metalloproteinases and extracellular matrix cause inadequate vascular remodeling and increased arterial stiffening, leading to further increases in vascular resistance and hypertension. Therapeutic options are currently limited, but understanding the molecular determinants of microvascular dysfunction could help in the design of new approaches for the prediction and management of preeclampsia.
Collapse
Affiliation(s)
- Wentao Yu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wei Gao
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dan Rong
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Zhixian Wu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
Olivon F, Nothias LF, Dumontet V, Retailleau P, Berger S, Ferry G, Cohen W, Pfeiffer B, Boutin JA, Scalbert E, Roussi F, Litaudon M. Natural Inhibitors of the RhoA-p115 Complex from the Bark of Meiogyne baillonii. JOURNAL OF NATURAL PRODUCTS 2018; 81:1610-1618. [PMID: 29969260 DOI: 10.1021/acs.jnatprod.8b00209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In an effort to find potent natural inhibitors of RhoA and p115 signaling G-proteins, a systematic in vitro evaluation using enzymatic and plasmonic resonance assays was undertaken on 11 317 plant extracts. The screening procedure led to the selection of the New Caledonian endemic species Meiogyne baillonii for a chemical investigation. Using a bioguided isolation procedure, three enediyne-γ-butyrolactones (1-3) and two enediyne-γ-butenolides (4 and 5), named sapranthins H-L, respectively, two enediyne carboxylic acid (6 and 7), two depsidones, stictic acid (8) and baillonic acid (9), aristolactams AIa and AIIa (10 and 11), and two aporphines, dehydroroemerine (12) and noraristolodione (13), were isolated from the ethyl acetate extract of the bark. The structures of the new compounds (1-6, 9, and 11) and their relative configurations were established by NMR spectroscopic analysis and by X-ray diffraction analysis for compound 9. Only stictic acid (8) exhibited a significant inhibiting activity of the RhoA-p115 complex, with an EC50 value of 0.19 ± 0.05 mM. This is the first time that a natural inhibitor of the complex RhoA-p115's activity was discovered from an HTS performed over a collection of higher plant extracts. Thus, stictic acid (8) could be used as the first reference compound inhibiting the interaction between RhoA and p115.
Collapse
Affiliation(s)
- Florent Olivon
- Institut de Chimie des Substances Naturelles, CNRS-ICSN, UPR 2301, Université Paris-Saclay , 91198 , Gif-sur-Yvette , France
| | - Louis-Félix Nothias
- Institut de Chimie des Substances Naturelles, CNRS-ICSN, UPR 2301, Université Paris-Saclay , 91198 , Gif-sur-Yvette , France
| | - Vincent Dumontet
- Institut de Chimie des Substances Naturelles, CNRS-ICSN, UPR 2301, Université Paris-Saclay , 91198 , Gif-sur-Yvette , France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS-ICSN, UPR 2301, Université Paris-Saclay , 91198 , Gif-sur-Yvette , France
| | - Sylvie Berger
- Institut de Recherches Servier , 78290 Croissy-sur-Seine , France
| | - Gilles Ferry
- Institut de Recherches Servier , 78290 Croissy-sur-Seine , France
| | - William Cohen
- Institut de Recherches Servier , 78290 Croissy-sur-Seine , France
| | - Bruno Pfeiffer
- Institut de Recherches Servier , 78290 Croissy-sur-Seine , France
| | - Jean A Boutin
- Institut de Recherches Servier , 78290 Croissy-sur-Seine , France
| | | | - Fanny Roussi
- Institut de Chimie des Substances Naturelles, CNRS-ICSN, UPR 2301, Université Paris-Saclay , 91198 , Gif-sur-Yvette , France
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS-ICSN, UPR 2301, Université Paris-Saclay , 91198 , Gif-sur-Yvette , France
| |
Collapse
|
20
|
Martino F, Perestrelo AR, Vinarský V, Pagliari S, Forte G. Cellular Mechanotransduction: From Tension to Function. Front Physiol 2018; 9:824. [PMID: 30026699 PMCID: PMC6041413 DOI: 10.3389/fphys.2018.00824] [Citation(s) in RCA: 598] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/12/2018] [Indexed: 12/15/2022] Open
Abstract
Living cells are constantly exposed to mechanical stimuli arising from the surrounding extracellular matrix (ECM) or from neighboring cells. The intracellular molecular processes through which such physical cues are transformed into a biological response are collectively dubbed as mechanotransduction and are of fundamental importance to help the cell timely adapt to the continuous dynamic modifications of the microenvironment. Local changes in ECM composition and mechanics are driven by a feed forward interplay between the cell and the matrix itself, with the first depositing ECM proteins that in turn will impact on the surrounding cells. As such, these changes occur regularly during tissue development and are a hallmark of the pathologies of aging. Only lately, though, the importance of mechanical cues in controlling cell function (e.g., proliferation, differentiation, migration) has been acknowledged. Here we provide a critical review of the recent insights into the molecular basis of cellular mechanotransduction, by analyzing how mechanical stimuli get transformed into a given biological response through the activation of a peculiar genetic program. Specifically, by recapitulating the processes involved in the interpretation of ECM remodeling by Focal Adhesions at cell-matrix interphase, we revise the role of cytoskeleton tension as the second messenger of the mechanotransduction process and the action of mechano-responsive shuttling proteins converging on stage and cell-specific transcription factors. Finally, we give few paradigmatic examples highlighting the emerging role of malfunctions in cell mechanosensing apparatus in the onset and progression of pathologies.
Collapse
Affiliation(s)
- Fabiana Martino
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czechia
| | - Ana R. Perestrelo
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Vladimír Vinarský
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czechia
| | - Stefania Pagliari
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Giancarlo Forte
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czechia
- Department of Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
21
|
Liu Z, Khalil RA. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem Pharmacol 2018; 153:91-122. [PMID: 29452094 PMCID: PMC5959760 DOI: 10.1016/j.bcp.2018.02.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle (VSM) plays an important role in the regulation of vascular function. Identifying the mechanisms of VSM contraction has been a major research goal in order to determine the causes of vascular dysfunction and exaggerated vasoconstriction in vascular disease. Major discoveries over several decades have helped to better understand the mechanisms of VSM contraction. Ca2+ has been established as a major regulator of VSM contraction, and its sources, cytosolic levels, homeostatic mechanisms and subcellular distribution have been defined. Biochemical studies have also suggested that stimulation of Gq protein-coupled membrane receptors activates phospholipase C and promotes the hydrolysis of membrane phospholipids into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 stimulates initial Ca2+ release from the sarcoplasmic reticulum, and is buttressed by Ca2+ influx through voltage-dependent, receptor-operated, transient receptor potential and store-operated channels. In order to prevent large increases in cytosolic Ca2+ concentration ([Ca2+]c), Ca2+ removal mechanisms promote Ca2+ extrusion via the plasmalemmal Ca2+ pump and Na+/Ca2+ exchanger, and Ca2+ uptake by the sarcoplasmic reticulum and mitochondria, and the coordinated activities of these Ca2+ handling mechanisms help to create subplasmalemmal Ca2+ domains. Threshold increases in [Ca2+]c form a Ca2+-calmodulin complex, which activates myosin light chain (MLC) kinase, and causes MLC phosphorylation, actin-myosin interaction, and VSM contraction. Dissociations in the relationships between [Ca2+]c, MLC phosphorylation, and force have suggested additional Ca2+ sensitization mechanisms. DAG activates protein kinase C (PKC) isoforms, which directly or indirectly via mitogen-activated protein kinase phosphorylate the actin-binding proteins calponin and caldesmon and thereby enhance the myofilaments force sensitivity to Ca2+. PKC-mediated phosphorylation of PKC-potentiated phosphatase inhibitor protein-17 (CPI-17), and RhoA-mediated activation of Rho-kinase (ROCK) inhibit MLC phosphatase and in turn increase MLC phosphorylation and VSM contraction. Abnormalities in the Ca2+ handling mechanisms and PKC and ROCK activity have been associated with vascular dysfunction in multiple vascular disorders. Modulators of [Ca2+]c, PKC and ROCK activity could be useful in mitigating the increased vasoconstriction associated with vascular disease.
Collapse
Affiliation(s)
- Zhongwei Liu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Sladojevic N, Oh GT, Kim HH, Beaulieu LM, Falet H, Kaminski K, Freedman JE, Liao JK. Decreased thromboembolic stroke but not atherosclerosis or vascular remodelling in mice with ROCK2-deficient platelets. Cardiovasc Res 2018; 113:1307-1317. [PMID: 28430966 DOI: 10.1093/cvr/cvx071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/11/2017] [Indexed: 01/24/2023] Open
Abstract
Aims Rho-associated coiled-coil containing kinase (ROCK)-2 is an important mediator of the actin cytoskeleton. Because changes in the actin cytoskeleton are critical for platelet function, we hypothesized that ROCK2 in platelets will play important role in thrombosis and can be potentially a target for therapeutic intervention in thromboembolic stroke. Methods and results We generated platelet-specific ROCK2-deficient mice (ROCK2Plt-/-) from conditional ROCK2fl°x/fl°x and platelet factor (PF)-4-Cre transgenic mice. Platelets from ROCK2Plt-/- mice were less responsive to thrombin stimulation in terms of pseudopodia formation, collagen adhesion, and in the formation of homotypic and heterotypic aggregates. This corresponded to prolonged bleeding time and delayed vascular occlusion following vessel injury. To determine whether these changes in platelet function could affect thrombotic disease, we utilized a clot-embolic model of ischaemic stroke. When pre-formed clots from ROCK2Plt-/- mice were injected into the middle cerebral artery of control mice, cerebral blood flow recovery occurred more rapidly, leading to decreased cerebral injury and neurological deficits, compared to pre-formed clots from control mice. Interestingly, pre-formed clots from control mice produced similar degree of cerebral injury when injected into control or ROCK2Plt-/- mice, suggesting that platelet ROCK2 deficiency affects clot formation but not propagation. Indeed, in a non-thrombotic intra-filament MCA occlusion model of stroke, platelet ROCK2 deletion was not protective. Furthermore, ROCK2Plt-/- mice exhibit similar atherosclerosis severity and vascular remodeling as control mice. Conclusion These findings indicate that platelet ROCK2 plays important role in platelet function and thrombosis, but does not contribute to the pathogenesis of atherosclerosis and vascular remodeling.
Collapse
Affiliation(s)
- Nikola Sladojevic
- Department of Medicine, Section of Cardiology, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Goo Taeg Oh
- Department of Medicine, Vascular Medicine Research Unit, Brigham and Women's Hospital and Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA.,Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Daehyeon-dong, Seodaemun-gu, Seoul, Korea
| | - Hyung-Hwan Kim
- Department of Medicine, Vascular Medicine Research Unit, Brigham and Women's Hospital and Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Lea M Beaulieu
- Department of Medicine, University of Massachusetts Medical School, 55 N. Lake Avenue, Worcester, MA 01655, USA
| | - Hervé Falet
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Karol Kaminski
- Department of Medicine, Vascular Medicine Research Unit, Brigham and Women's Hospital and Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA.,Department of Population Medicine, Medical University of Bialystok, Jana Kilinskiego 1, 15-089, Bialystok, Poland
| | - Jane E Freedman
- Department of Medicine, University of Massachusetts Medical School, 55 N. Lake Avenue, Worcester, MA 01655, USA
| | - James K Liao
- Department of Medicine, Section of Cardiology, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA.,Department of Medicine, Vascular Medicine Research Unit, Brigham and Women's Hospital and Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| |
Collapse
|
23
|
Lin L, Xu C, Carraway MS, Piantadosi CA, Whorton AR, Li S. RhoA inactivation by S-nitrosylation regulates vascular smooth muscle contractive signaling. Nitric Oxide 2018; 74:56-64. [DOI: 10.1016/j.niox.2018.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 01/19/2023]
|
24
|
Martín‐Sánchez P, Luengo A, Griera M, Orea MJ, López‐Olañeta M, Chiloeches A, Lara‐Pezzi E, Frutos S, Rodríguez–Puyol M, Calleros L, Rodríguez–Puyol D. H‐
ras
deletion protects against angiotensin II–induced arterial hypertension and cardiac remodeling through protein kinase G‐Iβ pathway activation. FASEB J 2018; 32:920-934. [DOI: 10.1096/fj.201700134rrrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Paloma Martín‐Sánchez
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
| | - Alicia Luengo
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
| | - Mercedes Griera
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
| | | | - Marina López‐Olañeta
- Myocardial Pathophysiology AreaCentro Nacional de Investigaciones CardiovascularesMadridSpain
| | | | - Enrique Lara‐Pezzi
- Myocardial Pathophysiology AreaCentro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Sergio Frutos
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
| | - Manuel Rodríguez–Puyol
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
| | - Laura Calleros
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
| | - Diego Rodríguez–Puyol
- Department of MedicineUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
- Nephrology SectionResearch Unit FoundationHospital Universitario Príncipe de AsturiasAlcalá de HenaresMadridSpain
| |
Collapse
|
25
|
Filep JG. Context-dependent signalling in platelets in vascular diseases: ROCK2 around thrombosis. Cardiovasc Res 2017; 113:1267-1269. [PMID: 28859303 DOI: 10.1093/cvr/cvx141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- János G Filep
- Department of Pathology and Cell Biology, University of Montreal, and Research Center, Maisonneuve-Rosemont Hospital, 5415 boulevard de l'Assomption, Montreal, QC H1T 2M4, Canada
| |
Collapse
|
26
|
Xu Q, Huff LP, Fujii M, Griendling KK. Redox regulation of the actin cytoskeleton and its role in the vascular system. Free Radic Biol Med 2017; 109:84-107. [PMID: 28285002 PMCID: PMC5497502 DOI: 10.1016/j.freeradbiomed.2017.03.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/17/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022]
Abstract
The actin cytoskeleton is critical for form and function of vascular cells, serving mechanical, organizational and signaling roles. Because many cytoskeletal proteins are sensitive to reactive oxygen species, redox regulation has emerged as a pivotal modulator of the actin cytoskeleton and its associated proteins. Here, we summarize work implicating oxidants in altering actin cytoskeletal proteins and focus on how these alterations affect cell migration, proliferation and contraction of vascular cells. Finally, we discuss the role of oxidative modification of the actin cytoskeleton in vivo and highlight its importance for vascular diseases.
Collapse
Affiliation(s)
- Qian Xu
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States; Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lauren P Huff
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States
| | - Masakazu Fujii
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States.
| |
Collapse
|
27
|
He Z, Yang Y, Wen Z, Chen C, Xu X, Zhu Y, Wang Y, Wang DW. CYP2J2 metabolites, epoxyeicosatrienoic acids, attenuate Ang II-induced cardiac fibrotic response by targeting Gα 12/13. J Lipid Res 2017; 58:1338-1353. [PMID: 28554983 DOI: 10.1194/jlr.m074229] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/23/2017] [Indexed: 12/23/2022] Open
Abstract
The arachidonic acid-cytochrome P450 2J2-epoxyeicosatrienoic acid (AA-CYP2J2-EET) metabolic pathway has been identified to be protective in the cardiovascular system. This study explored the effects of the AA-CYP2J2-EET metabolic pathway on cardiac fibrosis from the perspective of cardiac fibroblasts and underlying mechanisms. In in vivo studies, 8-week-old male CYP2J2 transgenic mice (aMHC-CYP2J2-Tr) and littermates were infused with angiotensin II (Ang II) or saline for 2 weeks. Results showed that CYP2J2 overexpression increased EET production. Meanwhile, impairment of cardiac function and fibrotic response were attenuated by CYP2J2 overexpression. The effects of CYP2J2 were associated with reduced activation of the α subunits of G12 family G proteins (Gα12/13)/RhoA/Rho kinase (ROCK) cascade and elevation of the NO/cyclic guanosine monophosphate (cGMP) level in cardiac tissue. In in vitro studies, cardiac fibroblast activation, proliferation, migration, and collagen production induced by Ang II were associated with activation of the Gα12/13/RhoA/ROCK pathway, which was inhibited by exogenous 11,12-EET. Moreover, silencing of Gα12/13 or RhoA exerted similar effects as 11,12-EET. Furthermore, inhibitory effects of 11,12-EET on Gα12/13 were blocked by NO/cGMP pathway inhibitors. Our findings indicate that enhancement of the AA-CYP2J2-EET metabolic pathway by CYP2J2 overexpression attenuates Ang II-induced cardiac dysfunction and fibrosis by reducing the fibrotic response of cardiac fibroblasts by targeting the Gα12/13/RhoA/ROCK pathway via NO/cGMP signaling.
Collapse
Affiliation(s)
- Zuowen He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yong Yang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xizhen Xu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yanfang Zhu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| |
Collapse
|
28
|
Chen J, Khalil RA. Matrix Metalloproteinases in Normal Pregnancy and Preeclampsia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:87-165. [PMID: 28662830 PMCID: PMC5548443 DOI: 10.1016/bs.pmbts.2017.04.001] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Normal pregnancy is associated with marked hemodynamic and uterine changes that allow adequate uteroplacental blood flow and uterine expansion for the growing fetus. These pregnancy-associated changes involve significant uteroplacental and vascular remodeling. Matrix metalloproteinases (MMPs) are important regulators of vascular and uterine remodeling. Increases in MMP-2 and MMP-9 have been implicated in vasodilation, placentation, and uterine expansion during normal pregnancy. The increases in MMPs could be induced by the increased production of estrogen and progesterone during pregnancy. MMP expression/activity may be altered during complications of pregnancy. Decreased vascular MMP-2 and MMP-9 may lead to decreased vasodilation, increased vasoconstriction, hypertensive pregnancy, and preeclampsia. Abnormal expression of uteroplacental integrins, cytokines, and MMPs may lead to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate remodeling of spiral arteries, and reduced uterine perfusion pressure (RUPP). RUPP may cause imbalance between the antiangiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the proangiogenic vascular endothelial growth factor and placental growth factor, or stimulate the release of inflammatory cytokines, hypoxia-inducible factor, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could target MMPs in the extracellular matrix as well as endothelial and vascular smooth muscle cells, causing generalized vascular dysfunction, increased vasoconstriction and hypertension in pregnancy. MMP activity can also be altered by endogenous tissue inhibitors of metalloproteinases (TIMPs) and changes in the MMP/TIMP ratio. In addition to their vascular effects, decreases in expression/activity of MMP-2 and MMP-9 in the uterus could impede uterine growth and expansion and lead to premature labor. Understanding the role of MMPs in uteroplacental and vascular remodeling and function could help design new approaches for prediction and management of preeclampsia and premature labor.
Collapse
Affiliation(s)
- Juanjuan Chen
- Vascular Surgery Research Laboratories, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.
| |
Collapse
|
29
|
Oesterle A, Laufs U, Liao JK. Pleiotropic Effects of Statins on the Cardiovascular System. Circ Res 2017; 120:229-243. [PMID: 28057795 DOI: 10.1161/circresaha.116.308537] [Citation(s) in RCA: 841] [Impact Index Per Article: 105.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/13/2016] [Accepted: 10/25/2016] [Indexed: 12/13/2022]
Abstract
The statins have been used for 30 years to prevent coronary artery disease and stroke. Their primary mechanism of action is the lowering of serum cholesterol through inhibiting hepatic cholesterol biosynthesis thereby upregulating the hepatic low-density lipoprotein (LDL) receptors and increasing the clearance of LDL-cholesterol. Statins may exert cardiovascular protective effects that are independent of LDL-cholesterol lowering called pleiotropic effects. Because statins inhibit the production of isoprenoid intermediates in the cholesterol biosynthetic pathway, the post-translational prenylation of small GTP-binding proteins such as Rho and Rac, and their downstream effectors such as Rho kinase and nicotinamide adenine dinucleotide phosphate oxidases are also inhibited. In cell culture and animal studies, these effects alter the expression of endothelial nitric oxide synthase, the stability of atherosclerotic plaques, the production of proinflammatory cytokines and reactive oxygen species, the reactivity of platelets, and the development of cardiac hypertrophy and fibrosis. The relative contributions of statin pleiotropy to clinical outcomes, however, remain a matter of debate and are hard to quantify because the degree of isoprenoid inhibition by statins correlates to some extent with the amount of LDL-cholesterol reduction. This review examines some of the currently proposed molecular mechanisms for statin pleiotropy and discusses whether they could have any clinical relevance in cardiovascular disease.
Collapse
Affiliation(s)
- Adam Oesterle
- From the Section of Cardiology, Department of Medicine, The University of Chicago, IL (A.O., J.K.L.); and Division of Cardiology, Department of Medicine, The University of Saarland, Homburg, Germany (U.L.)
| | - Ulrich Laufs
- From the Section of Cardiology, Department of Medicine, The University of Chicago, IL (A.O., J.K.L.); and Division of Cardiology, Department of Medicine, The University of Saarland, Homburg, Germany (U.L.)
| | - James K Liao
- From the Section of Cardiology, Department of Medicine, The University of Chicago, IL (A.O., J.K.L.); and Division of Cardiology, Department of Medicine, The University of Saarland, Homburg, Germany (U.L.).
| |
Collapse
|
30
|
Deng B, Li L, Gou X, Xu H, Zhao Z, Wang Q, Xu L. TAT-PEP Enhanced Neurobehavioral Functional Recovery by Facilitating Axonal Regeneration and Corticospinal Tract Projection After Stroke. Mol Neurobiol 2016; 55:652-667. [PMID: 27987133 DOI: 10.1007/s12035-016-0301-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022]
Abstract
Paired immunoglobulin-like receptor B (PirB) has been identified as a new receptor for myelin-associated inhibitory (MAI) proteins, which may play important role in axonal regeneration and corticospinal tract (CST) projection associated with neurobehavioral function recovery after stroke. Here, we found that the expression of PirB was increased in the cortical penumbra from 1 to 28 days after transient focal cerebral ischemic reperfusion of rats. Then, transactivator of transcription-PirB extracellular peptide (TAT-PEP) was generated that might block the interactions between MAIs and PirB. The results showed that TAT-PEP displayed high affinity for MAIs and ameliorated their inhibitory effect on neurite growth. Furthermore, TAT-PEP can widely distribute in the penumbra after intraperitoneal injection. Then, we found that TAT-PEP enhanced neurite growth and alleviated growth cone collapse after oxygen glucose deprivation (OGD) injury. In addition, TAT-PEP promoted long-term neurobehavioral functional recovery through enhancing axonal regeneration and CST projection. Finally, the observations demonstrated that POSH/RhoA/growth-associated protein 43 (GAP43) as PirB-associated downstream signaling molecules played important role in neurobehavioral functional recovery after stroke. Moreover, the underlying mechanism associated with TAT-PEP-mediated promoting axonal regeneration and CST projection was by intervening in the expression of POSH, RhoA, and GAP43. These studies suggest that TAT-PEP may represent an attractive therapeutic strategy against stroke.
Collapse
Affiliation(s)
- Bin Deng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China.,Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Liya Li
- Department of Emergency, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Xingchun Gou
- The Laboratory of Cell Biology and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Hao Xu
- The Laboratory of Cell Biology and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Zhaohua Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Qiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China.
| | - Lixian Xu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China.
| |
Collapse
|
31
|
Yang Y, Bu P. Progress on the cardiotoxicity of sunitinib: Prognostic significance, mechanism and protective therapies. Chem Biol Interact 2016; 257:125-31. [PMID: 27531228 DOI: 10.1016/j.cbi.2016.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/23/2016] [Accepted: 08/05/2016] [Indexed: 12/15/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) are multi-targeted anti-cancer agents effective in the treatment of renal cell carcinoma (RCC), imatinib-resistant gastrointestinal stromal tumor (GIST) and pancreatic cancer (PC). Targeting and inhibiting a wide range of oncogenically relevant receptor tyrosine kinases (RTKs), TKIs have been the golden standard treatment of several types of cancer. The cardiotoxicity of TKIs, however, has also emerged alongside their anti-cancer potencies and has attracted research attention. Over the past few years significant progress has been made in developing a deeper understanding of aspects such as extent of cardiotoxicity, prognostic implications and survival predictions, toxicological mechanisms, and potential cardioprotective therapies. In this review we focus on a typical TKI sunitinib and summarize the up-to-date knowledge of sunitinib-induced cardiac abnormalities reported in clinical studies, weighing their implications of prognostic values. We also examine recent findings in underlying mechanisms, and development of potential cardioprotective agents.
Collapse
Affiliation(s)
- Yi Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peili Bu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
32
|
Shen J, Stevenson J, Geng X, Yang J, Yin C, Li F, Wang S, Du H, Ji X, Ding Y. A new clinically relevant model for intracranial atherosclerosis in rats. Neurol Res 2016; 38:817-22. [PMID: 27477859 DOI: 10.1080/01616412.2016.1211232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Intracranial atherosclerotic stenosis (ICAS) is one of the most common causes of stroke worldwide and, in particular, has been implicated as a leading cause of recurrent ischemic stroke. We developed a new rat model to study intracranial atherosclerosis. METHODS Twelve-week-old male Sprague-Dawley rats were divided into a control (on a maintain diet) and a high-cholesterol group (on a daily 1% cholesterol diet) for up to 6 weeks. During the first two weeks, NG-nitro-L-arginine methylester (L-NAME, 3 mg/mL) was added to the drinking water in the high-cholesterol group to induce intimal changes making the rats susceptible to atherosclerosis. Blood lipids, including low-density lipoprotein (LDL), cholesterol (CHO), triglycerides (TG), and high-density lipoprotein (HDL), were measured after 3 and 6 weeks. Histological sections of the brains, including internal carotid artery (ICA), middle cerebral artery (MCA), and basilar artery (BA), were prepared to study intracranial artery morphometry and intimal thickening. The levels of CD68, an inflammatory marker, within the vessel walls as determined by immunohistochemistry were also measured. RESULTS The high-cholesterol diet increased the levels of classic blood markers of atherosclerosis, LDL, CHO, and TG as well as decreased HDL, which became progressively more intensive with time. Rats showed increased intimal thickening in the ICA, MCA, and BA. This protocol also increased the levels of CD68 immunoreactivity within the vessel walls. CONCLUSIONS A rat model of intracranial atherosclerosis was effectively developed by high-cholesterol diet and L-NAME administration. This clinically relevant model would be beneficial for studying ICAS.
Collapse
Affiliation(s)
- Jiamei Shen
- a China-America Institute of Neuroscience , Beijing Luhe Hospital, Capital Medical University , Beijing , China
| | - James Stevenson
- b Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA
| | - Xiaokun Geng
- a China-America Institute of Neuroscience , Beijing Luhe Hospital, Capital Medical University , Beijing , China.,b Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA.,c Department of Neurology , Beijing Luhe Hospital, Capital Medical University , Beijing , China
| | - Jianjie Yang
- d Department of Pathology , Beijing Luhe Hospital, Capital Medical University , Beijing , China
| | - Changbin Yin
- e Department of Clinical Laboratory , Beijing Luhe Hospital, Capital Medical University , Beijing , China
| | - Fengwu Li
- a China-America Institute of Neuroscience , Beijing Luhe Hospital, Capital Medical University , Beijing , China
| | - Sainan Wang
- a China-America Institute of Neuroscience , Beijing Luhe Hospital, Capital Medical University , Beijing , China
| | - Huishan Du
- a China-America Institute of Neuroscience , Beijing Luhe Hospital, Capital Medical University , Beijing , China.,c Department of Neurology , Beijing Luhe Hospital, Capital Medical University , Beijing , China
| | - Xunming Ji
- a China-America Institute of Neuroscience , Beijing Luhe Hospital, Capital Medical University , Beijing , China
| | - Yuchuan Ding
- a China-America Institute of Neuroscience , Beijing Luhe Hospital, Capital Medical University , Beijing , China.,b Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA
| |
Collapse
|
33
|
Abstract
In past decades, growing evidence from basic and clinical researches reveal that small guanosine triphosphate binding protein ras homolog gene family, member A (RhoA) and its main effector Rho-associated kinase (ROCK) play central and complex roles in cardiovascular systems, and increasing RhoA and ROCK activity is associated with a broad range of cardiovascular diseases such as congestive heart failure, atherosclerosis, and hypertension. Favorable outcomes have been observed with ROCK inhibitors treatment. In this review, we briefly summarize the pathophysiological roles of RhoA/ROCK signaling pathway on cardiovascular system, displaying the potential benefits in the cardiovascular system with controlling RhoA/ROCK signaling pathway.
Collapse
|
34
|
Ma Z, Chu L, Liu H, Li J, Zhang Y, Liu W, Dai J, Yi J, Gao Y. Paeoniflorin alleviates non-alcoholic steatohepatitis in rats: Involvement with the ROCK/NF-κB pathway. Int Immunopharmacol 2016; 38:377-84. [PMID: 27351828 DOI: 10.1016/j.intimp.2016.06.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 06/05/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023]
Abstract
Paeoniflorin (PF) is one of the major active ingredients of Paeonia lactiflora and has been suggested as a dietary therapy for non-alcoholic steatohepatitis (NASH); however, the involved mechanism remains obscure. The present work investigates the anti-inflammatory effects of PF and explores the possible mechanisms in a rat model of NASH. Male Sprague-Dawley rats were fed a high-cholesterol and high-fat (HCF) diet for 12weeks to induce the NASH model, and PF (20mg/kg/d) was orally administered to the NASH rats during the last four weeks of the study. Our results showed that PF significantly decreased serum alanine transferase (ALT) and aspartate transferase (AST) activities and also significantly decreased total levels of cholesterol (TC), low-density lipoprotein (LDL), and tumor necrosis factor alpha (TNF-α) (all P<0.05). Moreover, PF ameliorated the hepatic steatosis and inflammation and inhibited CD68 and transforming growth factor beta (TGF-β)-1 expression (both P<0.05). PF also down-regulated the activity of Rho kinase (ROCK) and suppressed the activation of the nuclear factor (NF)-κB signaling pathway in liver tissue. PF has liver protective and anti-inflammatory effects in HCF diet-induced NASH rats. The possible mechanisms may be associated with inhibition of the ROCK/NF-κB signaling pathway in the NASH liver.
Collapse
Affiliation(s)
- Zhihong Ma
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun 336000, China; Department of Immunology and Pathobiology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Li Chu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Hongying Liu
- Department of Infectious Diseases, Hebei General Hospital, Shijiazhuang 050051, China
| | - Jieru Li
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yuanyuan Zhang
- Department of Pharmaceutics, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Wentai Liu
- Department of Immunology and Pathobiology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jun Dai
- Department of Immunology and Pathobiology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jianfeng Yi
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun 336000, China.
| | - Yue Gao
- Pharmacology and Toxicology Department, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
35
|
Abstract
Hypertensive cardiac remodeling is characterized by left ventricular hypertrophy and interstitial fibrosis, which can lead to heart failure with preserved ejection fraction. The Rho-associated coiled-coil containing kinases (ROCKs) are members of the serine/threonine protein kinase family, which mediates the downstream effects of the small GTP-binding protein RhoA. There are 2 isoforms: ROCK1 and ROCK2. They have different functions in different types of cells and tissues. There is growing evidence that ROCKs contribute to the development of cardiovascular diseases, including cardiac fibrosis, hypertrophy, and subsequent heart failure. Recent experimental studies using ROCK inhibitors, such as fasudil, have shown the benefits of ROCK inhibition in cardiac remodeling. Mice lacking each ROCK isoform also exhibit reduced myocardial fibrosis in a variety of pathological models of cardiac remodeling. Indeed, clinical studies with fasudil have suggested that ROCKs could be potential novel therapeutic targets for cardiovascular diseases. In this review, we summarize the current understanding of the roles of ROCKs in the development of cardiac fibrosis and hypertrophy and discuss their therapeutic potential for deleterious cardiac remodeling. (Circ J 2016; 80: 1491-1498).
Collapse
Affiliation(s)
- Toru Shimizu
- Section of Cardiology, Department of Medicine, University of Chicago
| | | |
Collapse
|
36
|
Brunová A, Bencze M, Behuliak M, Zicha J. Acute and chronic role of nitric oxide, renin-angiotensin system and sympathetic nervous system in the modulation of calcium sensitization in Wistar rats. Physiol Res 2016; 64:447-57. [PMID: 26291725 DOI: 10.33549/physiolres.933094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Principal vasoactive systems - renin-angiotensin system (RAS), sympathetic nervous system (SNS), nitric oxide (NO) and prostanoids - exert their vascular effects through the changes in calcium levels and/or calcium sensitization. To estimate a possible modulation of calcium sensitization by the above vasoactive systems, we studied the influence of acute and chronic blockade of particular vasoactive systems on blood pressure (BP) changes elicited in conscious normotensive rats by acute dose-dependent administration of Rho-kinase inhibitor fasudil. Adult male chronically cannulated Wistar rats were used throughout this study. The acute inhibition of NO synthase (NOS) by L-NAME enhanced BP response to fasudil, the effect being considerably augmented in rats deprived of endogenous SNS. The acute inhibition of prostanoid synthesis by indomethacin modified BP response to fasudil less than the acute NOS inhibition. The chronic NOS inhibition caused moderate BP elevation and a more pronounced augmentation of fasudil-induced BP changes compared to the effect of acute NOS inhibition. This indicates both short-term and long-term NO-dependent attenuation of calcium sensitization. Long-term inhibition of RAS by captopril caused a significant attenuation of BP changes elicited by fasudil. In contrast, a long-term attenuation of SNS by chronic guanethidine treatment (in youth or adulthood) had no effect on BP response to fasudil, suggesting the absence of SNS does not affect calcium sensitization in vascular smooth muscle of normotensive rats. In conclusion, renin-angiotensin system contributes to the long-term increase of calcium sensitization and its effect is counterbalanced by nitric oxide which decreases calcium sensitization in Wistar rats.
Collapse
Affiliation(s)
- A Brunová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | |
Collapse
|
37
|
Xu R, Cai A, Zheng D, Qiu R, Li L, Zhou Y, Feng Y, Mai W. Amlodipine suppresses Ang-II-induced endothelium dysfunction by diminishing ROCK1 expression. Clin Exp Hypertens 2015; 38:166-72. [PMID: 26452457 DOI: 10.3109/10641963.2015.1081212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the effects and mechanisms of amlodipine therapy on endothelium dysfunction induced by angiotensin-II (Ang-II) stimulation. METHODS Human umbilical vein endothelial cells (HUVECs) were used and divided into five groups: Blank control, Ang-II (10(-6 )mol/L), levorotatory amlodipine (5 × 10(-6 )mol/L) + Ang-II (10(-6 )mol/L), dextrorotatory amlodipine (5 × 10(-6 )mol/L) + Ang-II (10(-6 )mol/L) and racemic amlodipine (5 × 10(-6 )mol/L) + Ang-II (10(-6 )mol/L) groups. Twenty-four hours later, HUVECs were collected for evaluating endothelial nitric oxide synthase (eNOS), p-eNOS, rho-associated kinase 1 (ROCK1), Bcl-2 and Bax expressions. Nitric oxide (NO) concentration within endothelium was also detected. Flow cytometry was conducted to assess HUVECs apoptosis. RESULTS With 24 hours of Ang-II stimulation, compared to blank control group, expressions of eNOS and p-eNOS and NO production were significantly reduced in Ang-II group (p < 0.05), while adding amlodipine-protected HUVECs from dysfunction induced by Ang-II. In contrast, ROCK1 expression was promoted in Ang-II group (p < 0.05). However, the expression of ROCK1 in each enantiomer of amlodipine group was significantly decreased (p < 0.05). Compared to levorotatory amlodipine group, the magnitude of ROCK1 diminishment in dextrorotatory amlodipine group was more profound (p < 0.05). The pro-survival protein (Bcl-2) was significantly upregulated, while the pro-apoptotic protein (Bax) was significantly downregulated in three amlodipine groups compared to Ang-II group. Flow cytometry revealed that amlodipine therapy could protect HUVECs from apoptosis, and no significant difference between three amlodipine groups was observed. CONCLUSION Amlodipine could suppress Ang-II-induced endothelial dysfunction and apoptosis through diminishing ROCK1 expression.
Collapse
Affiliation(s)
- Rulin Xu
- a Department of Cardiology , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China and
| | - Anping Cai
- b Department of Cardiology , Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Dongdan Zheng
- a Department of Cardiology , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China and
| | - Ruofeng Qiu
- a Department of Cardiology , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China and
| | - Liwen Li
- b Department of Cardiology , Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Yingling Zhou
- b Department of Cardiology , Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Yingqing Feng
- b Department of Cardiology , Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Weiyi Mai
- a Department of Cardiology , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China and
| |
Collapse
|
38
|
Ali SMJ, Khalil RA. Genetic, immune and vasoactive factors in the vascular dysfunction associated with hypertension in pregnancy. Expert Opin Ther Targets 2015; 19:1495-515. [PMID: 26294111 DOI: 10.1517/14728222.2015.1067684] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Preeclampsia (PE) is a major complication of pregnancy that could lead to maternal and fetal morbidity and mortality. The pathophysiological mechanisms of PE are not completely understood, but recent research has begun to unravel some of the potential mechanisms. AREAS COVERED Genetic polymorphisms and altered maternal immune response may cause impaired remodeling of the spiral arteries; a potential early defect in PE. Inadequate invasion of cytotrophoblasts into the decidua leads to reduced uteroplacental perfusion pressure (RUPP) and placental ischemia/hypoxia. Placental ischemia causes the release of biologically active factors such as anti-angiogenic factors, inflammatory cytokines, reactive oxygen species, hypoxia-inducible factors, and angiotensin II receptor autoantibodies. These vasoactive factors could cause systemic vascular endotheliosis and consequent increase in vascular resistance and blood pressure, glomerular endotheliosis causing proteinuria, cerebrovascular endotheliosis causing cerebral edema, seizures and visual disturbances, and hepatic endotheliosis, which may contribute to the manifestations of HELLP syndrome. PE-associated vascular endotheliosis causes a decrease in vasodilator mediators such as nitric oxide, prostacyclin and endothelium-derived hyperpolarizing factor, an increase in vasoconstrictors such as endothelin-1, angiotensin II and thromboxane A2, and enhanced mechanisms of vascular smooth muscle contraction such as intracellular Ca(2+), protein kinase C and Rho-kinase. Changes in matrix metalloproteinase activity and extracellular matrix cause vascular remodeling and further vasoconstriction. EXPERT OPINION Some of the genetic, immune and vasoactive factors involved in vascular endotheliosis could be used as biomarkers for early detection, and as potential targets for prevention and treatment of PE.
Collapse
Affiliation(s)
- Sajjadh M J Ali
- a Brigham and Women's Hospital, Vascular Surgery Research Laboratory, Harvard Medical School, Division of Vascular and Endovascular Surgery , Boston, MA, USA +1 617 525 8530 ; +1 617 264 5124 ;
| | - Raouf A Khalil
- a Brigham and Women's Hospital, Vascular Surgery Research Laboratory, Harvard Medical School, Division of Vascular and Endovascular Surgery , Boston, MA, USA +1 617 525 8530 ; +1 617 264 5124 ;
| |
Collapse
|
39
|
Kajikawa M, Noma K, Nakashima A, Maruhashi T, Iwamoto Y, Matsumoto T, Iwamoto A, Oda N, Hidaka T, Kihara Y, Aibara Y, Chayama K, Sasaki S, Kato M, Dote K, Goto C, Liao JK, Higashi Y. Rho-associated kinase activity is an independent predictor of cardiovascular events in acute coronary syndrome. Hypertension 2015; 66:892-9. [PMID: 26283039 PMCID: PMC4989242 DOI: 10.1161/hypertensionaha.115.05587] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/25/2015] [Indexed: 11/16/2022]
Abstract
Rho-associated kinases play an important role in a variety of cellular functions. Although Rho-associated kinase activity has been shown to be an independent predictor for future cardiovascular events in a general population, there is no information on Rho-associated kinase activity in patients with acute coronary syndrome. We evaluated leukocyte Rho-associated kinase activity by Western blot analysis in 73 patients with acute coronary syndrome and 73 age- and gender-matched control subjects. Rho-associated kinase activity within 2 hours of acute coronary syndrome onset was higher in patients with acute coronary syndrome than in the control subjects (0.95±0.55 versus 0.69±0.31; P<0.001). Rho-associated kinase activity promptly increased from 0.95±0.55 to 1.11±0.81 after 3 hours and reached a peak of 1.21±0.76 after 1 day (P=0.03 and P=0.03, respectively) and then gradually decreased to 0.83±0.52 after 7 days, 0.78±0.42 after 14 days, and 0.72±0.30 after 6 months (P=0.22, P=0.29, and P=0.12, respectively). During a median follow-up period of 50.8 months, 31 first major cardiovascular events (death from cardiovascular causes, myocardial infarction, ischemic stroke, and coronary revascularization) occurred. After adjustment for age, sex, cardiovascular risk factors, and concomitant treatment with statins, increased Rho-associated kinase activity was associated with increasing risk of first major cardiovascular events (hazard ratio, 4.56; 95% confidence interval, 1.98–11.34; P<0.001). These findings suggest that Rho-associated kinase activity is dramatically changed after acute coronary syndrome and that Rho-associated kinase activity could be a useful biomarker to predict cardiovascular events in Japanese patients with acute coronary syndrome.
Collapse
Affiliation(s)
- Masato Kajikawa
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Kensuke Noma
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Ayumu Nakashima
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Tatsuya Maruhashi
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Yumiko Iwamoto
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Takeshi Matsumoto
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Akimichi Iwamoto
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Nozomu Oda
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Takayuki Hidaka
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Yasuki Kihara
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Yoshiki Aibara
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Kazuaki Chayama
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Shota Sasaki
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Masaya Kato
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Keigo Dote
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Chikara Goto
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - James K Liao
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Yukihito Higashi
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.).
| |
Collapse
|
40
|
Calò LA, Maiolino G. Mechanistic approach to the pathophysiology of target organ damage in hypertension from studies in a human model with characteristics opposite to hypertension: Bartter's and Gitelman's syndromes. J Endocrinol Invest 2015; 38:711-6. [PMID: 25740064 DOI: 10.1007/s40618-015-0249-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 01/26/2015] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Extensive studies using Bartter's/Gitelman's syndrome patients have provided insights into the angiotensin II (Ang II) signaling pathways involved in the regulation of vascular tone and cardiovascular-renal remodeling. The renin-angiotensin-aldosterone system is activated in these syndromes, however, patients do not develop hypertension and cardiovascular remodeling and clinically manifest conditions opposite to hypertension. The short- and the long-term signaling of Ang II remains an important matter of investigation to shed light on mechanisms responsible for the pathophysiology of hypertension and its long-term complications. The long-term signaling of Ang II is involved in the pathophysiology of cardiovascular-renal remodeling and inflammatory responses in which the balance between RhoA/Rho kinase pathway and NO system plays a crucial role. METHODS AND RESULTS In this brief review, the results of our studies in Bartter's and Gitelman's syndromes are reported on these processes. CONCLUSIONS The information obtained from these studies can clarify, confirm or be used to extend the biochemical mechanisms responsible for the pathophysiology of hypertension and its long-term complications and could offer further chances to identify additional potential significant targets of therapy.
Collapse
Affiliation(s)
- L A Calò
- Department of Medicine, Nephrology and Hypertension, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy.
| | - G Maiolino
- Department of Medicine, Nephrology and Hypertension, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| |
Collapse
|
41
|
Shah DA, Khalil RA. Bioactive factors in uteroplacental and systemic circulation link placental ischemia to generalized vascular dysfunction in hypertensive pregnancy and preeclampsia. Biochem Pharmacol 2015; 95:211-26. [PMID: 25916268 DOI: 10.1016/j.bcp.2015.04.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/17/2015] [Indexed: 12/29/2022]
Abstract
Preeclampsia is a pregnancy-associated disorder characterized by hypertension, and could lead to maternal and fetal morbidity and mortality; however, the pathophysiological mechanisms involved are unclear. Predisposing demographic, genetic and environmental risk factors could cause localized abnormalities in uteroplacental cytoactive factors such as integrins, matrix metalloproteinases, cytokines and major histocompatibility complex molecules leading to decreased vascular remodeling, uteroplacental vasoconstriction, trophoblast cells apoptosis, and abnormal development of the placenta. Defective placentation and decreased trophoblast invasion of the myometrium cause reduction in uteroplacental perfusion pressure (RUPP) and placental ischemia/hypoxia, an important event in preeclampsia. RUPP could stimulate the release of circulating bioactive factors such as the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin that cause imbalance with the pro-angiogenic factors vascular endothelial growth factor and placental growth factor, or cause the release of inflammatory cytokines, reactive oxygen species, hypoxia-induced factor-1 and AT1 angiotensin receptor agonistic autoantibodies. The circulating bioactive factors target endothelial cells causing generalized endotheliosis, endothelial dysfunction, decreased vasodilators such as nitric oxide and prostacyclin and increased vasoconstrictors such as endothelin-1 and thromboxane A2, leading to increased vasoconstriction. The bioactive factors also stimulate the mechanisms of VSM contraction including Ca(2+), protein kinase C, and Rho-kinase and induce extracellular matrix remodeling leading to further vasoconstriction and hypertension. While therapeutic options are currently limited, understanding the underlying mechanisms could help design new interventions for management of preeclampsia.
Collapse
Affiliation(s)
- Dania A Shah
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Calmasini FB, Leiria LOS, Alves Junior MJ, Báu FR, Alexandre EC, Silva FH, Mónica FZ, Antunes E. Increased Rho-kinase-mediated prostate contractions associated with impairment of β-adrenergic-cAMP-signaling pathway by chronic nitric oxide deficiency. Eur J Pharmacol 2015; 758:24-30. [PMID: 25835610 DOI: 10.1016/j.ejphar.2015.03.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/11/2015] [Accepted: 03/17/2015] [Indexed: 01/23/2023]
Abstract
Impairment of nitric oxide (NO) - cyclic GMP signaling pathway is likely to contribute to human begnin prostate hyperplasia (BPH). In the present study we have used a model of chronic NO synthesis inhibition to evaluate the functional alterations of prostate smooth muscle (PSM) machinery, and involvement of Rho-kinase pathway. Wistar rats were treated with the NO inhibitor N(ω)-nitro-l-arginine methyl ester (L-NAME, 20mg/kg/day; 4 weeks), after which contractile responses to phenylephrine (α1-adrenoceptor agonist; 1nM to 100µM), carbachol (muscarinic agonist; 1nM to 1mM) and α,β-methylene ATP (P2X receptor agonist; 1-10µM), as well as to electrical-field stimulation (EFS; 1-32Hz) were evaluated. PSM relaxations to isoproterenol (non-selective β-adrenoceptor agonist, 0.1nM to 10µM) and sodium nitroprusside (NO donor, 1nM to 10mM) were also evaluated. The ratio prostate weight/body weight was 22% greater (P<0.05) in L-NAME compared with control group. The PSM contractions to phenylephrine, carbachol and α,β-methylene ATP were higher in L-NAME (Emax: 3.85±0.25, 3.52±0.35 and 2.03±0.2mN, respectively) compared with control group (Emax: 3.08±0.17, 2.37±0.18 and 1.57±0.18mN, respectively). The PSM contractions induced by EFS were also significantly greater in L-NAME group. Prior incubation with the Rho-kinase inhibitor Y27632 (1µM) fully reversed the enhanced contractions to phenylephrine and carbachol. Isoproterenol-induced PSM relaxations were 34% lower in L-NAME group, which was associated with reduced levels of cAMP in prostate tissue. The relaxations to sodium nitroprusside remained unaltered in L-NAME group. In summary, chronic NO deficiency leads to increased Rho-kinase-mediated PSM contractile responses accompanied by impairment of β-adrenergic-cAMP-signaling pathway.
Collapse
Affiliation(s)
- Fabiano Beraldi Calmasini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), 13084-971 Campinas, SP, Brazil
| | - Luiz Osório Silveira Leiria
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), 13084-971 Campinas, SP, Brazil
| | - Marcos José Alves Junior
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), 13084-971 Campinas, SP, Brazil
| | - Fernando Ricardo Báu
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), 13084-971 Campinas, SP, Brazil
| | - Eduardo Costa Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), 13084-971 Campinas, SP, Brazil
| | - Fábio Henrique Silva
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), 13084-971 Campinas, SP, Brazil
| | - Fabíola Zakia Mónica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), 13084-971 Campinas, SP, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), 13084-971 Campinas, SP, Brazil.
| |
Collapse
|
43
|
Angiotensin II and Cardiovascular-Renal Remodelling in Hypertension: Insights from a Human Model Opposite to Hypertension. High Blood Press Cardiovasc Prev 2015; 22:215-23. [PMID: 25759028 DOI: 10.1007/s40292-015-0082-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/04/2015] [Indexed: 01/20/2023] Open
Abstract
Insights into the Angiotensin II (Ang II) signalling pathways have been provided by extensive studies using Bartter's/Gitelman's syndromes patients. These syndromes are characterized by activation of the renin-angiotensin-aldosterone system but do not develop hypertension and cardiovascular remodelling, therefore represent a mirror image of hypertension and clinically manifest themselves as the opposite of hypertension. The short and the long-term signalling of Ang II remain an important matter of investigation to shed light on mechanisms responsible for the pathophysiology of hypertension and its long-term complications, such as cardiovascular remodelling and atherogenesis. In particular the long-term signalling of Ang II is involved in the pathophysiology of cardiovascular-renal remodelling, inflammatory and hypertrophic responses in which the relationship between RhoA/Rho kinase pathway and NO system plays a crucial role. This review reports the results of our studies in Bartter's and Gitelman's syndromes to get better insight these processes and the role of Ang II signaling. The information obtained from the studies in Bartter's/Gitelman's patients can, in fact, clarify, confirm or be used to gather more general data on the biochemical mechanisms responsible for the pathophysiology of hypertension and its long-term complications and could contribute to identify additional potential significant targets of therapy.
Collapse
|
44
|
Guseva D, Khudoklinova Y, Medvedeva N, Baranova V, Zakharova T, Artyushkova E, Torkhovskaya T, Ipatova O. Influence of resveratrol and dihydroquercetin inclusion into phospholipid nanopatricles on their bioavailability and specific activity. ACTA ACUST UNITED AC 2015; 61:598-605. [DOI: 10.18097/pbmc20156105598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effects of natural polyphenols, resveratrol (RES) and dihydroquercetin (DHQ), included in phospholipid nanoparticles, have been compared with free substances of RES and DHQ in in vitro and in vivo experiments. Preincubation of healthy donor plasma low density lipoproteins (LDL) with RES or DHQ included in phospholipid nanoparticles caused a more pronounced decrease in Cu2+ induced lipid oxidation compared with the free substances, and reduced the formation of lipid peroxides products. Bioavailabilities of RES and DHQ in phospholipid formulations after oral administration in rats were increased by 1.5-2 times. In an acute hypoxia model in mice prophylactic two-week administration of RES or DHQ phospholipid formulations resulted in 25% increase in survival and 1.5-fold increase in catalase activity in brain homogenates compared to free substances. Using the model of endothelial dysfunction in rats induced by L-NAME it was shown, that RES markedly attenuated the inhibition effect of L-NAME on NO synthesis. RES in phospholipid nanoparticles had the same action at a dose 10 times lower compared to free RES. Load test with resistance (clamping of the ascending aorta for 30 sec) showed that phospholipid formulation of RES possessed more pronounced protective effect due to the stimulation of endothelial NO-synthase.
Collapse
Affiliation(s)
- D.A. Guseva
- Moscow State University of Technologies and Management, Moscow, Russia
| | | | | | | | | | | | | | - O.M. Ipatova
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
45
|
Loirand G, Pacaud P. Involvement of Rho GTPases and their regulators in the pathogenesis of hypertension. Small GTPases 2014; 5:1-10. [PMID: 25496262 DOI: 10.4161/sgtp.28846] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Proper regulation of arterial blood pressure is essential to allow permanent adjustment of nutrient and oxygen supply to organs and tissues according to their need. This is achieved through highly coordinated regulation processes controlling vascular resistance through modulation of arterial smooth muscle contraction, cardiac output, and kidney function. Members of the Rho family of small GTPases, in particular RhoA and Rac1, have been identified as key signaling molecules playing important roles in several different steps of these regulatory processes. Here, we review the current state of knowledge regarding the involvement of Rho GTPase signaling in the control of blood pressure and the pathogenesis of hypertension. We describe how knockout models in mouse, genetic, and pharmacological studies in human have been useful to address this question.
Collapse
Key Words
- AT1 receptor, type 1 Ang II receptor
- Ang II, angiotensine II
- ENaCs, epithelial Na+ channels
- Et-1, endothelin-1
- GAPs, GTPase-activating proteins
- GEFs, exchange factors
- GTPase activating proteins
- GTPases
- MLC, 20 kDa-myosin light chain
- MLCK, MLC kinase
- MLCP, MLC phosphatase
- NA, noradrenaline
- NHE3, sodium-hydrogen exchanger isoform 3.
- NO, nitric oxide
- NTS, nucleus tractus solitaries
- PDE5, type 5 phosphodiesterase
- PKG, cGMP-dependent protein kinase
- Rock, Rho-kinase
- SHR, spontaneously hypertensive rats
- SHRSP, stroke-prone SHR
- TxA2, thromboxane A2
- artery
- blood pressure
- cardiovascular
- eNOS, endothelial NO synthase
- exchange factors
- signal transduction
- small G proteins
- smooth muscle
- vasoconstriction
Collapse
|
46
|
Hung CN, Huang HP, Wang CJ, Liu KL, Lii CK. Sulforaphane inhibits TNF-α-induced adhesion molecule expression through the Rho A/ROCK/NF-κB signaling pathway. J Med Food 2014; 17:1095-102. [PMID: 25238321 DOI: 10.1089/jmf.2013.2901] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Endothelial dysfunction is an early indicator of cardiovascular diseases. Increased stimulation of tumor necrosis factor-α (TNF-α) triggers the inflammatory mediator secretion of endothelial cells, leading to atherosclerotic risk. In this study, we investigated whether sulforaphane (SFN) affected the expression of intracellular adhesion molecule-1 (ICAM-1) in TNF-α-induced ECV 304 endothelial cells. Our data showed that SFN attenuated TNF-α-induced expression of ICAM-1 in ECV 304 cells. Pretreatment of ECV 304 cells with SFN inhibited dose-dependently the secretion of proinflammatory cytokines, such as interleukin (IL)-1β, IL-6, and IL-8. SFN inhibited TNF-α-induced nuclear factor-κB (NF-κB) DNA binding activity. Furthermore, SFN decreased TNF-α-mediated phosphorylation of IκB kinase (IKK) and IκBα, Rho A, ROCK, ERK1/2, and plasminogen activator inhibitor-1 (PAI-1) levels. Collectively, SFN inhibited the NF-κB DNA binding activity and downregulated the TNF-α-mediated induction of ICAM-1 in endothelial cells by inhibiting the Rho A/ROCK/NF-κB signaling pathway, suggesting the beneficial effects of SFN on suppression of inflammation within the atherosclerotic lesion.
Collapse
Affiliation(s)
- Chi-Nan Hung
- 1 Department of Holistic Wellness, Ming Dao University , ChangHua, Taiwan
| | | | | | | | | |
Collapse
|
47
|
Liu Y, Huang C, Ceng C, Zhan H, Zheng D, Han W. Metformin enhances nitric oxide production and diminishes Rho kinase activity in rats with hyperlipidemia. Lipids Health Dis 2014; 13:115. [PMID: 25028180 PMCID: PMC4109376 DOI: 10.1186/1476-511x-13-115] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/18/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Rho kinase over-activation is associated with nitric oxide (NO) reduction and atherosclerosis. Metformin is favorable for endothelial function improvement and cardiovascular outcomes. Whether cardio-protective effect of metformin is associated with Rho kinase activity is unknown. METHODS Hyperlipidemia model of rats were established accordingly. Thereafter, medical interventions in terms of atorvastatin, metformin or combined therapy were administered for 4 weeks. Laboratory parameters were compared among each groups at initial, 6 weeks of high-fat and high-cholesterol diet administration, and 4 weeks of medical intervention. Lineal regression analyses were performed. RESULTS No significant difference of laboratory parameters was observed initially. Six weeks of high-fat and high-cholesterol diet administration, serum levels of cholesterol, C-reactive protein (CRP) level, and Rho kinase activity were significantly increased while NO production was concomitantly reduced in comparison to the sham group. After 4 weeks of medical intervention, CRP level and Rho kinase activity were profoundly diminished while NO production was significantly enhanced in the atorvastatin and metformin groups, and these benefits were further enhanced with combined therapy. Lineal regression analyses showed that Rho kinase activity was negatively correlated with NO production but positively correlated with CRP level. CONCLUSION In rats with hyperlipidemia, metformin and atorvastatin therapy is favorable for NO production and CRP reduction, which might be associated with Rho kinase activity decrease.
Collapse
Affiliation(s)
- Yan Liu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- The Third people's hospital of Huizhou, Huizhou, Guangdong Province, China
| | - Congwu Huang
- The Department of Internal Medicine, the Second Affiliated Hospital of Shantou University, Shantou, Guangdong Province, China
| | - Chuan Ceng
- The Department of Internal Medicine, the Second Affiliated Hospital of Shantou University, Shantou, Guangdong Province, China
| | - Haiyong Zhan
- The Department of Internal Medicine, the Second Affiliated Hospital of Shantou University, Shantou, Guangdong Province, China
| | - Dongdan Zheng
- The Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Weixing Han
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
48
|
Gene variations of ROCKs and risk of ischaemic stroke: the Women's Genome Health Study. Clin Sci (Lond) 2014; 126:829-835. [PMID: 24351102 DOI: 10.1042/cs20130652] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent animal and human studies have demonstrated the importance of the ROCK (RhoA/Rho-associated kinase) pathway in IsST (ischaemic stroke). Whether the genetic variation within ROCK-associated genes modulates the risk of IsST remains elusive. The association between 66 tSNPs [tagging SNPs (single nucleotide polymorphisms)] of three ROCK-associated genes [ROCK1, ROCK2 and ARHGEF10 (Rho guanine-nucleotide-exchange factor 10)] and the incidence of IsST was investigated in 23294 Caucasian female participants of the prospective WGHS (Women's Genome Health Study). All were free of known cancer and cardiovascular disease at baseline. During a 15-year follow-up period, 323 participants developed their first ever IsST. Multivariable Cox regression analysis was performed to investigate the relationship between genotypes and risk of IsST assuming an additive genetic model. Haplotype-block analysis was also performed. A total of ten tSNPs were associated with the risk of IsST (three in ARHGEF10 and seven in ROCK1; P<0.050). Further investigation using the haplotype-block analysis revealed a similar significant association of pre-specified haplotypes of ROCK1 with the risk of IsST (P=0.005). If corroborated in other large prospective studies, the findings of the present study suggest that genetic variation within the ROCK-associated pathway gene loci examined, and in particular ROCK1 gene variation, may influence the risk of IsST.
Collapse
|
49
|
Sawada N, Liao JK. Rho/Rho-associated coiled-coil forming kinase pathway as therapeutic targets for statins in atherosclerosis. Antioxid Redox Signal 2014; 20:1251-67. [PMID: 23919640 PMCID: PMC3934442 DOI: 10.1089/ars.2013.5524] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The 3-hydroxy-methylglutaryl coenzyme A reductase inhibitors or statins are important therapeutic agents for lowering serum cholesterol levels. However, recent studies suggest that statins may exert atheroprotective effects beyond cholesterol lowering. These so-called "pleiotropic effects" include effects of statins on vascular and inflammatory cells. Thus, it is important to understand whether other signaling pathways that are involved in atherosclerosis could be targets of statins, and if so, whether individuals with "overactivity" of these pathways could benefit from statin therapy, regardless of serum cholesterol level. RECENT ADVANCES Statins inhibit the synthesis of isoprenoids, which are important for the function of the Rho/Rho-associated coiled-coil containing kinase (ROCK) pathway. Indeed, recent studies suggest that inhibition of the Rho/ROCK pathway by statins could lead to improved endothelial function and decreased vascular inflammation and atherosclerosis. Thus, the Rho/ROCK pathway has emerged as an important target of statin therapy for reducing atherosclerosis and possibly cardiovascular disease. CRITICAL ISSUES Because atherosclerosis is both a lipid and an inflammatory disease, it is important to understand how inhibition of Rho/ROCK pathway could contribute to statins' antiatherosclerotic effects. FUTURE DIRECTIONS The role of ROCKs (ROCK1 and ROCK2) in endothelial, smooth muscle, and inflammatory cells needs to be determined in the context of atherogenesis. This could lead to the development of specific ROCK1 or ROCK2 inhibitors, which could have greater therapeutic benefits with less toxicity. Also, clinical trials will need to be performed to determine whether inhibition of ROCKs, with and without statins, could lead to further reduction in atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Naoki Sawada
- 1 GCOE Program and Department of Molecular Endocrinology and Metabolism, Tokyo Medical and Dental University , Tokyo, Japan
| | | |
Collapse
|
50
|
Abstract
BACKGROUND AND OBJECTIVE Behçet's disease (BD) is a chronic inflammatory vasculitis presenting with flares and silent periods usually between 15 and 40 years of age. The aim of this study was to evaluate the possible association between Rho-kinase 1 (ROCK1) gene polymorphisms and patients with BD in a Turkish population. METHODS A total of 192 BD patients and 255 healthy controls of similar age and sex were enrolled in this study. Polymorphisms were analyzed in genomic DNA using a BioMark HD dynamic array system. RESULTS In the presence of CC genotype for rs73963110, CT genotype for rs111874856 (Val355Ile), and TC genotype for rs112130712 (Lys1054Arg) polymorphisms, the risk of BD increased 12.13-, 15.05-, and 16.28-fold, respectively (p < 0.0001). There was a lower frequency of the GA genotype of the rs112108028 (Pro1164Leu) polymorphisms in BD (10.3 %) compared with controls (39.7 %; p < 0.0001). Marked associations between these polymorphisms and the manifestations of BD were recorded. CONCLUSION This is the first study to show that ROCK1 gene polymorphisms may have a significant impact on susceptibility to BD.
Collapse
|