1
|
Li M, Sorensen M, Johnson MA, Ingram SL, Andresen MC, Habecker BA. Hypertension increases sympathetic neuron activity by enhancing intraganglionic cholinergic collateral connections. J Physiol 2025; 603:2005-2020. [PMID: 39031543 PMCID: PMC11662085 DOI: 10.1113/jp286601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/06/2024] [Indexed: 07/22/2024] Open
Abstract
Autonomic dysregulation, including sympathetic hyperactivity, is a common feature of hypertension (HT) and other cardiovascular diseases. The CNS plays a role in driving chronic sympathetic activation in disease, but several lines of evidence suggest that neuroplasticity in the periphery may also contribute. The potential contribution of postganglionic sympathetic neurons to sustained sympathetic hyperactivity is not well understood. We recently discovered that noradrenergic sympathetic neurons in the stellate ganglion (SG) have excitatory cholinergic collateral connections to other neurons within the ganglion. We hypothesize that remodelling of these neurons and increased cholinergic collateral transmission contributes to sustained sympathetic hyperactivity in cardiovascular diseases, including HT. To test that hypothesis, we examined the activity of sympathetic neurons in isolated SG under control conditions and after 1 week of HT induced by peripheral angiotensin II infusion, using whole-cell patch clamp recordings. Despite the absence of central inputs, we observed elevated spontaneous activity and synaptic transmission in sympathetic SG neurons from hypertensive mice that required generation of action potentials. Genetically disrupting cholinergic transmission in noradrenergic neurons decreased basal neuronal activity and prevented angiotensin II-mediated enhancement of activity. Similar changes in activity, driven by increased collateral transmission, were identified in cardiac projecting neurons and neurons projecting to brown adipose tissue. These changes were not driven by altered A-type K+ currents. This suggests that HT stimulates increased activity throughout the intraganglionic network of collateral connections, contributing to the sustained sympathetic hyperactivity characteristic in cardiovascular disease. KEY POINTS: Sympathetic neurons in ganglia isolated from angiotensin II-treated hypertensive mice are more active than neurons from control mice despite the absence of central activation. The enhanced activity is the result of a ganglionic network of cholinergic collaterals, rather than altered intrinsic excitability. Increased neuronal activity was observed in both cardiac neurons and brown adipose tissue-projecting neurons, which are not involved in cardiovascular homeostasis.
Collapse
Affiliation(s)
- Minghua Li
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States of America, 97239
| | - Michelle Sorensen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States of America, 97239
| | - Morgan A. Johnson
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States of America, 97239
| | - Susan L. Ingram
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael C. Andresen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States of America, 97239
| | - Beth A. Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States of America, 97239
| |
Collapse
|
2
|
Fonseka O, Gare SR, Chen X, Zhang J, Alatawi NH, Ross C, Liu W. Molecular Mechanisms Underlying Heart Failure and Their Therapeutic Potential. Cells 2025; 14:324. [PMID: 40072053 PMCID: PMC11899429 DOI: 10.3390/cells14050324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 03/15/2025] Open
Abstract
Heart failure (HF) is a prominent fatal cardiovascular disorder afflicting 3.4% of the adult population despite the advancement of treatment options. Therefore, a better understanding of the pathogenesis of HF is essential for exploring novel therapeutic strategies. Hypertrophy and fibrosis are significant characteristics of pathological cardiac remodeling, contributing to HF. The mechanisms involved in the development of cardiac remodeling and consequent HF are multifactorial, and in this review, the key underlying mechanisms are discussed. These have been divided into the following categories thusly: (i) mitochondrial dysfunction, including defective dynamics, energy production, and oxidative stress; (ii) cardiac lipotoxicity; (iii) maladaptive endoplasmic reticulum (ER) stress; (iv) impaired autophagy; (v) cardiac inflammatory responses; (vi) programmed cell death, including apoptosis, pyroptosis, and ferroptosis; (vii) endothelial dysfunction; and (viii) defective cardiac contractility. Preclinical data suggest that there is merit in targeting the identified pathways; however, their clinical implications and outcomes regarding treating HF need further investigation in the future. Herein, we introduce the molecular mechanisms pivotal in the onset and progression of HF, as well as compounds targeting the related mechanisms and their therapeutic potential in preventing or rescuing HF. This, therefore, offers an avenue for the design and discovery of novel therapies for the treatment of HF.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Liu
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (O.F.); (S.R.G.); (X.C.); (J.Z.); (N.H.A.)
| |
Collapse
|
3
|
Lee YC, Jou YC, Chou WC, Tsai KL, Shen CH, Lee SD. Ellagic acid protects against angiotensin II-induced hypertrophic responses through ROS-mediated MAPK pathway in H9c2 cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:3253-3263. [PMID: 38356441 DOI: 10.1002/tox.24170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
The early myocardial response of hypertension is an elevation of angiotensin-II (Ang-II) concentration, leading to heart failure and cardiac hypertrophy. This hypertrophic event of the heart is mediated by the interaction of Ang type 1 receptors (AT-R1), thereby modulating NADPH oxidase activity in cardiomyocytes, which alters redox status in cardiomyocytes. Ellagic acid (EA) has anti-inflammatory and anti-oxidative capacities. Thus, EA has potential preventive effects on cardiovascular diseases and diabetes. In the last decades, because the protective effect of EA on Ang-II-induced hypertrophic responses is unclear, this study aims to investigate the protective effect of EA in cardiomyocytes. H9c2 cells were treated to Ang-II 1 μM for 24 h to induce cellular damage. We found that EA protected against Ang-II-increased cell surface area and pro-hypertrophic gene expression in H9c2. EA reduced Ang-II-caused AT-R1 upregulation, thereby inhibiting oxidative stress NADPH oxidase activation. EA mitigated Ang-II-enhanced p38 and extracellular-signal-regulated kinase (ERK) phosphorylation. Moreover, EA treatment under Ang-II stimulation also reversed NF-κB activity and iNOS expression. This study shows that EA protects against Ang-II-induced myocardial hypertrophy and attenuates oxidative stress through reactive oxygen species-mediated mitogen-activated protein kinase signaling pathways in H9c2 cells. Thus, EA may be an effective compound for preventing Ang-II-induced myocardial hypertrophy.
Collapse
Affiliation(s)
- Ya-Che Lee
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chia-Yi City, Taiwan
| | - Yeong-Chin Jou
- Department of Urology, St. Martin De Porres Hospital, Chia-Yi City, Taiwan
- Department of Health and Nutrition Biotechnology, College of Medical and Health Science, Asia University, Taichung City, Taiwan
| | - Wan-Ching Chou
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Institute of Allied Health Science, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chia-Yi City, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Min Hsiung, Chia-Yi, Taiwan
| | - Shin-Da Lee
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung City, Taiwan
- Department of Physical Therapy, PhD program in Healthcare Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Mosquera-Sulbaran JA, Pedreañez A, Carrero Y, Hernandez-Fonseca JP. Angiotensin II and post-streptococcal glomerulonephritis. Clin Exp Nephrol 2024; 28:359-374. [PMID: 38170299 DOI: 10.1007/s10157-023-02446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Post-streptococcal glomerulonephritis (PSGN) is a consequence of the infection by group A beta-hemolytic streptococcus. During this infection, various immunological processes generated by streptococcal antigens are triggered, such as the induction of antibodies and immune complexes. This activation of the immune system involves both innate and acquired immunity. The immunological events that occur at the renal level lead to kidney damage with chronic renal failure as well as resolution of the pathological process (in most cases). Angiotensin II (Ang II) is a molecule with vasopressor and pro-inflammatory capacities, being an important factor in various inflammatory processes. During PSGN some events are defined that make Ang II conceivable as a molecule involved in the inflammatory processes during the disease. CONCLUSION This review is focused on defining which reported events would be related to the presence of this hormone in PSGN.
Collapse
Affiliation(s)
- Jesus A Mosquera-Sulbaran
- Facultad de Medicina, Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Universidad del Zulia, Apartado Postal: 23, MaracaiboZulia, 4001-A, Venezuela.
| | - Adriana Pedreañez
- Facultad de Medicina, Cátedra de Inmunología, Escuela de Bioanálisis, Universidad del Zulia, Maracaibo, Venezuela
| | - Yenddy Carrero
- Facultad de Medicina, Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Universidad del Zulia, Apartado Postal: 23, MaracaiboZulia, 4001-A, Venezuela
| | - Juan Pablo Hernandez-Fonseca
- Facultad de Medicina, Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Universidad del Zulia, Apartado Postal: 23, MaracaiboZulia, 4001-A, Venezuela
- Servicio de Microscopia Electrónica del Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| |
Collapse
|
5
|
Weissman D, Dudek J, Sequeira V, Maack C. Fabry Disease: Cardiac Implications and Molecular Mechanisms. Curr Heart Fail Rep 2024; 21:81-100. [PMID: 38289538 PMCID: PMC10923975 DOI: 10.1007/s11897-024-00645-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW This review explores the interplay among metabolic dysfunction, oxidative stress, inflammation, and fibrosis in Fabry disease, focusing on their potential implications for cardiac involvement. We aim to discuss the biochemical processes that operate in parallel to sphingolipid accumulation and contribute to disease pathogenesis, emphasizing the importance of a comprehensive understanding of these processes. RECENT FINDINGS Beyond sphingolipid accumulation, emerging studies have revealed that mitochondrial dysfunction, oxidative stress, and chronic inflammation could be significant contributors to Fabry disease and cardiac involvement. These factors promote cardiac remodeling and fibrosis and may predispose Fabry patients to conduction disturbances, ventricular arrhythmias, and heart failure. While current treatments, such as enzyme replacement therapy and pharmacological chaperones, address disease progression and symptoms, their effectiveness is limited. Our review uncovers the potential relationships among metabolic disturbances, oxidative stress, inflammation, and fibrosis in Fabry disease-related cardiac complications. Current findings suggest that beyond sphingolipid accumulation, other mechanisms may significantly contribute to disease pathogenesis. This prompts the exploration of innovative therapeutic strategies and underscores the importance of a holistic approach to understanding and managing Fabry disease.
Collapse
Affiliation(s)
- David Weissman
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Vasco Sequeira
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany.
| |
Collapse
|
6
|
Xiao Y, Vazquez-Padron RI, Martinez L, Singer HA, Woltmann D, Salman LH. Role of platelet factor 4 in arteriovenous fistula maturation failure: What do we know so far? J Vasc Access 2024; 25:390-406. [PMID: 35751379 PMCID: PMC9974241 DOI: 10.1177/11297298221085458] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The rate of arteriovenous fistula (AVF) maturation failure remains unacceptably high despite continuous efforts on technique improvement and careful pre-surgery planning. In fact, half of all newly created AVFs are unable to be used for hemodialysis (HD) without a salvage procedure. While vascular stenosis in the venous limb of the access is the culprit, the underlying factors leading to vascular narrowing and AVF maturation failure are yet to be determined. We have recently demonstrated that AVF non-maturation is associated with post-operative medial fibrosis and fibrotic stenosis, and post-operative intimal hyperplasia (IH) exacerbates the situation. Multiple pathological processes and signaling pathways are underlying the stenotic remodeling of the AVF. Our group has recently indicated that a pro-inflammatory cytokine platelet factor 4 (PF4/CXCL4) is upregulated in veins that fail to mature after AVF creation. Platelet factor 4 is a fibrosis marker and can be detected in vascular stenosis tissue, suggesting that it may contribute to AVF maturation failure through stimulation of fibrosis and development of fibrotic stenosis. Here, we present an overview of the how PF4-mediated fibrosis determines AVF maturation failure.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Daniel Woltmann
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Loay H Salman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
- Division of Nephrology and Hypertension, Albany Medical College, Albany, NY, USA
| |
Collapse
|
7
|
Wang H, Liu J, Fang F, Gao L, Zhao C, Wang Z, Zhong Y, Wang X. Losartan ameliorates renal fibrosis by inhibiting tumor necrosis factor signal pathway. Nefrologia 2024; 44:139-149. [PMID: 38697694 DOI: 10.1016/j.nefroe.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/03/2023] [Indexed: 05/05/2024] Open
Abstract
Losartan is widely used in the treatment of chronic kidney disease (CKD) and has achieved good clinical efficacy, but its exact mechanism is not clear. We performed high-throughput sequencing (HTS) technology to screen the potential target of losartan in treating CKD. According to the HTS results, we found that the tumor necrosis factor (TNF) signal pathway was enriched. Therefore, we conducted in vivo and in vitro experiments to verify it. We found that TNF signal pathway was activated in both unilateral ureteral obstruction (UUO) rats and human proximal renal tubular epithelial cells (HK-2) treated with transforming growth factor-β1 (TGF-β1), while losartan can significantly inhibit TNF signal pathway as well as the expression of fibrosis related genes (such as COL-1, α-SMA and Vimentin). These data suggest that losartan may ameliorate renal fibrosis through modulating the TNF pathway.
Collapse
Affiliation(s)
- Hongshuang Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Jiazhi Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Fang Fang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Lanjun Gao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chenchen Zhao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Zheng Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050091, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yan Zhong
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050091, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Xiangting Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050091, China.
| |
Collapse
|
8
|
Ahiadu BK, Grunbaum A, Rozza N, Kremer RB, Rusling JF. Levels of Angiotensin and Kinin Metabolite Peptides Related to COVID-19 Severity. ACS Pharmacol Transl Sci 2024; 7:186-194. [PMID: 38230277 PMCID: PMC10789123 DOI: 10.1021/acsptsci.3c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
In addition to crucial roles in normal human biology, peptide metabolites of the renin-angiotensin (RAS) and kallikrein-kinin systems (KKS) have been reported to be altered in COVID-19 patients. Here, we evaluate new data on RAS and KKS peptides in COVID-19 patient serum obtained from a recently developed, fully validated, and optimized stable isotope labeling LC-MS peptide assay. We found that the RAS peptides angiotensin (ANG) 1, 2, 1-5, and 1-7 were downregulated compared to COVID-free surrogate controls, while the KKS peptides Brad, Brad 1-8, and Brad 1-7 were upregulated. This paper focuses on uncovering the possible diagnostic value of these peptides using receiver operating characteristic (ROC) analyses of these data. ROC plots confirmed that all of the analyte peptides in 80 serum samples from COVID-19 patients were significantly altered from "normal" values of the control samples. The best diagnostic sensitivities and selectivities for COVID vs no COVID were found in ROC plots for Brad and Brad 1-7 (both 99% sensitivity, 100% selectivity). We then analyzed levels of all the peptides grouped according to preassigned values of the World Health Organization (WHO) COVID-19 Severity Index. ROC plots differentiated patients with a high WHO severity index from those with a low WHO severity index with moderate success, with BRAD (73% sensitivity, 79% selectivity) and Ang 1-7 (75% sensitivity, 65% selectivity) giving the best diagnostic performance. Results suggest the possible diagnostic value of these peptides as biomarkers to help identify moderate and serious COVID-19 cases at relatively early stages.
Collapse
Affiliation(s)
- Ben K. Ahiadu
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ami Grunbaum
- Department
of Medicine, McGill University Health Centre, 1001 Decarie Blvd., Montreal QC H4A, Canada
| | - Nicholas Rozza
- Department
of Medicine, McGill University Health Centre, 1001 Decarie Blvd., Montreal QC H4A, Canada
| | - Richard B. Kremer
- Department
of Medicine, McGill University Health Centre, 1001 Decarie Blvd., Montreal QC H4A, Canada
| | - James F. Rusling
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Department
of Surgery and Neag Cancer Center, UConn
Health, Farmington, Connecticut 06232, United States
- School
of Chemistry, National University of Ireland
Galway, Galway H91 TK33, Ireland
- Institute
of Materials Science, University of Connecticut, 97 N. Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
9
|
Haznedaroglu IC, Malkan UY. Lipotoxicity-Related Hematological Disorders in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:575-594. [PMID: 39287865 DOI: 10.1007/978-3-031-63657-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Lipotoxicity can mediate endothelial dysfunction in obesity. Altered endothelial cell phenotype during the pathobiological course of the lipotoxicity may lead to hemostatic abnormalities, which is a hallmark of several hematological disorders. Impaired hemostasis could also be directly related to numerous metabolic diseases such as hypertension, diabetes, and atherosclerosis. On the other hand, the local hematopoietic bone marrow (BM) renin-angiotensin system (RAS) contributes to the development of atherosclerosis via acting on the lipotoxicity processes. Local BM RAS, principally an autocrine/paracrine/intracrine hematological system, is located at the crossroads of cellular regulation, molecular interactions, and lipotoxicity-mediated vascular endothelial dysfunction. The positive regulatory role of plasma LDL on AT1 receptor-mediated hematopoietic stem cell (HSC) differentiation and the production of pro-atherogenic monocytes have been described. LDL-regulated HSC function may explain in part hypercholesterolemia-induced inflammation as well as the anti-inflammatory and anti-atherosclerotic effects of AT1 receptor blockers. The role of local adipose tissue RAS is directly related to the pathogenesis of metabolic derangements in obesity. There may be a crosstalk between local BM RAS and local adipose tissue RAS at the genomics and transcriptomics levels. This chapter aims to review hematological alterations propagating the pathological influences of lipotoxicity on the vascular endothelium.
Collapse
Affiliation(s)
| | - Umit Yavuz Malkan
- Hacettepe University School of Medicine, Department of Hematology, Ankara, Turkey
| |
Collapse
|
10
|
Amioka N, Wu CH, Sawada H, Ito S, Pettey AC, Wu C, Moorleghen JJ, Howatt DA, Graf GA, Vander Kooi CW, Daugherty A, Lu HS. Functional Exploration of Conserved Sequences in the Distal Face of Angiotensinogen-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:1524-1532. [PMID: 37345525 PMCID: PMC10527926 DOI: 10.1161/atvbaha.122.318930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Angiotensinogen (AGT) is an essential component in the renin-angiotensin system. AGT has highly conserved sequences in the loop and β-sheet regions among species; however, their functions have not been studied. METHODS Adeno-associated viral vector (AAV) serotype 2/8 encoding mouse AGT with mutations of conserved sequences in the loop (AAV.loop-Mut), β-sheet (AAV.βsheet-Mut), or both regions (AAV.loop/βsheet-Mut) was injected into male hepatocyte-specific AGT-deficient (hepAGT-/-) mice in an LDL (low-density lipoprotein) receptor-deficient background. AAV containing mouse wild-type AGT (AAV.mAGT) or a null vector (AAV.null) were used as controls. Two weeks after AAV administration, all mice were fed a western diet for 12 weeks. To determine how AGT secretion is regulated in hepatocytes, AAVs containing the above mutations were transducted into HepG2 cells. RESULTS In hepAGT-/- mice infected with AAV.loop-Mut or βsheet-Mut, plasma AGT concentrations, systolic blood pressure, and atherosclerosis were comparable to those in AAV.mAGT-infected mice. Interestingly, plasma AGT concentrations, systolic blood pressure, and atherosclerotic lesion size in hepAGT-/- mice infected with AAV.loop/βsheet-Mut were not different from mice infected with AAV.null. In contrast, hepatic Agt mRNA abundance was elevated to a comparable magnitude as AAV.mAGT-infected mice. Immunostaining showed that AGT protein was accumulated in hepatocytes of mice infected with AAV.loop/βsheet-Mut or HepG2 cells transducted with AAV.loop/βsheet-Mut. Accumulated AGT was not located in the endoplasmic reticulum. CONCLUSIONS The conserved sequences in either the loop or β-sheet region individually have no effect on AGT regulation, but the conserved sequences in both regions synergistically contribute to the secretion of AGT from hepatocytes.
Collapse
Affiliation(s)
- Naofumi Amioka
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Chia-Hua Wu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Sohei Ito
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Alex C. Pettey
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Congqing Wu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Surgery, University of Kentucky, Lexington, KY
- Department of Microbiology, Immunology, and Molecular Genetics University of Kentucky, Lexington, KY
| | - Jessica J. Moorleghen
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Deborah A. Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Gregory A. Graf
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Craig W. Vander Kooi
- Department of Molecular and Cellular Biochemistry University of Kentucky, Lexington, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| |
Collapse
|
11
|
Elsayed N, Gaffey AC, Abou-Zamzam A, Malas MB. Renin-Angiotensin-Aldosterone System Inhibitors Are Associated With Favorable Outcomes Compared to Beta Blockers in Reducing Mortality Following Abdominal Aneurysm Repair. J Am Heart Assoc 2023:e029761. [PMID: 37449564 PMCID: PMC10382116 DOI: 10.1161/jaha.122.029761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023]
Abstract
Background The best medical therapy to control hypertension following abdominal aortic aneurysm repair is yet to be determined. We therefore examined whether treatment with renin-angiotensin-aldosterone system inhibitors (RAASIs) versus beta blockers influenced postoperative and 1-year clinical end points following abdominal aortic aneurysm repair in a Medicare-linked database. Methods and Results All patients with hypertension undergoing endovascular aneurysm repair and open aneurysm repair in the Vascular Quality Initiative Vascular Implant Surveillance and Interventional Outcomes Network database between 2003 and 2018 were included. Patients were divided into 2 groups based on their preoperative and discharge medications, either RAASIs or beta blockers. Our cohort included 8789 patients, of whom 3523 (40.1%) were on RAASIs, and 5266 (59.9%) were on beta blockers. After propensity score matching, there were 3053 matched pairs of patients in each group. After matching, RAASI use was associated with lower risk of postoperative mortality (odds ratio [OR], 0.3 [95% CI, 0.1-0.6]), myocardial infarction (OR, 0.1 [95% CI, 0.03-0.6]), and nonhome discharge (OR, 0.6 [95% CI, 0.5-0.7]). Before propensity score matching, RAASI use was associated with lower 1-year mortality (hazard ratio [HR], 0.4 [95% CI, 0.4-0.5]) and lower risk of aneurysmal rupture (HR, 0.7 [95% CI, 0.5-0.9]). These results persisted after propensity score matching for mortality (HR, 0.4 [95% CI, 0.4-0.5]) and aneurysmal rupture (HR, 0.7 [95% CI, 0.5-0.9]). Conclusions In this large contemporary retrospective cohort study, RAASI use was associated with favorable postoperative outcomes compared with beta blockers. It was also associated with lower mortality and aneurysmal rupture at 1 year of follow-up.
Collapse
Affiliation(s)
- Nadin Elsayed
- Division of Vascular and Endovascular Surgery, Department of Surgery University of California San Diego La Jolla CA USA
| | - Ann C Gaffey
- Division of Vascular and Endovascular Surgery, Department of Surgery University of California San Diego La Jolla CA USA
| | - Ahmed Abou-Zamzam
- Department of Surgery, Division of Vascular Surgery Loma Linda University Medical Center Loma Linda CA USA
| | - Mahmoud B Malas
- Division of Vascular and Endovascular Surgery, Department of Surgery University of California San Diego La Jolla CA USA
| |
Collapse
|
12
|
Swiderski J, Gadanec LK, Apostolopoulos V, Moore GJ, Kelaidonis K, Matsoukas JM, Zulli A. Role of Angiotensin II in Cardiovascular Diseases: Introducing Bisartans as a Novel Therapy for Coronavirus 2019. Biomolecules 2023; 13:787. [PMID: 37238657 PMCID: PMC10216788 DOI: 10.3390/biom13050787] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the main contributors to global morbidity and mortality. Major pathogenic phenotypes of CVDs include the development of endothelial dysfunction, oxidative stress, and hyper-inflammatory responses. These phenotypes have been found to overlap with the pathophysiological complications of coronavirus disease 2019 (COVID-19). CVDs have been identified as major risk factors for severe and fatal COVID-19 states. The renin-angiotensin system (RAS) is an important regulatory system in cardiovascular homeostasis. However, its dysregulation is observed in CVDs, where upregulation of angiotensin type 1 receptor (AT1R) signaling via angiotensin II (AngII) leads to the AngII-dependent pathogenic development of CVDs. Additionally, the interaction between the spike protein of severe acute respiratory syndrome coronavirus 2 with angiotensin-converting enzyme 2 leads to the downregulation of the latter, resulting in the dysregulation of the RAS. This dysregulation favors AngII/AT1R toxic signaling pathways, providing a mechanical link between cardiovascular pathology and COVID-19. Therefore, inhibiting AngII/AT1R signaling through angiotensin receptor blockers (ARBs) has been indicated as a promising therapeutic approach to the treatment of COVID-19. Herein, we review the role of AngII in CVDs and its upregulation in COVID-19. We also provide a future direction for the potential implication of a novel class of ARBs called bisartans, which are speculated to contain multifunctional targeting towards COVID-19.
Collapse
Affiliation(s)
- Jordan Swiderski
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (J.S.); (L.K.G.); (V.A.)
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (J.S.); (L.K.G.); (V.A.)
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (J.S.); (L.K.G.); (V.A.)
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Graham J. Moore
- Pepmetics Incorporated, 772 Murphy Place, Victoria, BC V8Y 3H4, Canada;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - John M. Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (J.S.); (L.K.G.); (V.A.)
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- NewDrug PC, Patras Science Park, 26500 Patras, Greece;
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (J.S.); (L.K.G.); (V.A.)
| |
Collapse
|
13
|
Elsayed N, Unkart J, Abdelgawwad M, Naazie I, Lawrence PF, Malas MB. Role of Renin-Angiotensin-Aldosterone System Inhibition in Patients Undergoing Carotid Revascularization. J Am Heart Assoc 2022; 11:e025034. [PMID: 36000412 PMCID: PMC9496413 DOI: 10.1161/jaha.121.025034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Previous data suggest that using renin‐angiotensin‐aldosterone system inhibitors (RAASIs) improves survival in patients with cardiovascular diseases. We sought to investigate the association of different patterns of use of RAASIs on perioperative and 1‐year outcomes following carotid revascularization. Methods and Results We investigated patients undergoing carotid revascularization, either with carotid endarterectomy or transfemoral carotid artery stenting, in the VQI (Vascular Quality Initiative) VISION (Vascular Implant Surveillance and Interventional Outcomes Network) data set between 2003 and 2018. We divided our cohort into 3 groups: (1) no history of RAASI intake, (2) preoperative intake only, and (3) continuous pre‐ and postoperative intake. The final cohort included 73 174 patients; 44.4% had no intake, 50% had continuous intake, and 5.6% had only preoperative intake. Compared with continuous intake, preoperative and no intake were associated with higher odds of postoperative stroke (odds ratio [OR], 1.7 [95% CI, 1.5–1.9]; P<0.001; OR, 1.1 [95% CI, 1.03–1.2]; P=0.010); death (OR, 4.8 [95% CI, 3.8–6.1]; P<0.001; OR, 1.9 [95% CI, 1.6–2.2]; P<0.001); and stroke/death (OR, 2.05 [95% CI, 1.8–2.3]; P<0.001; OR, 1.2 [95% CI, 1.1–1.3]; P<0.001), respectively. At 1 year, preoperative and no intake were associated with higher odds of stroke (hazard ratio [HR], 1.4 [95% CI, 1.3–1.6]; P<0.001; HR, 1.15, [95% CI, 1.08–1.2]; P<0.001); death (HR, 1.7 [95% CI, 1.5–1.9]; P<0.001; HR, 1.3 [95% CI, 1.2–1.4]; P<0.001); and stroke/death (HR, 1.5 [95% CI, 1.4–1.7]; P<0.001; HR, 1.2 [95% CI, 1.17–1.3]; P<0.001), respectively. Conclusions Compared with subjects discontinuing or never starting RAASIs, use of RAASIs before and after carotid revascularization was associated with a short‐term stroke and mortality benefit. Future clinical trials examining prescribing patterns of RAASIs should aim to clarify the timing and potential to maximize the protective effects of RAASIs in high‐risk vascular patients.
Collapse
Affiliation(s)
- Nadin Elsayed
- Division of Vascular and Endovascular Surgery University of California San Diego La Jolla CA
| | - Jonathan Unkart
- Department of Surgery State University New York Downstate University Health Sciences University Brooklyn NY
| | - Mohammad Abdelgawwad
- Division of Vascular and Endovascular Surgery University of California San Diego La Jolla CA
| | - Isaac Naazie
- Division of Vascular and Endovascular Surgery University of California San Diego La Jolla CA
| | - Peter F Lawrence
- Division of Vascular and Endovascular Surgery, Department of Surgery David Geffen School of Medicine at UCLA Los Angeles CA
| | - Mahmoud B Malas
- Division of Vascular and Endovascular Surgery University of California San Diego La Jolla CA
| |
Collapse
|
14
|
Metformin Reverses the Effects of Angiotensin 2 in Human Mammary Arteries by Modulating the Expression of Nitric Oxide Synthases. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2022-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Angiotensin 2 impairs vascular function by activation of reactive oxygen species (ROS) production and development of endothelial dysfunction. Metformin, the first-line therapeutic agent for type 2 diabetes mellitus, has vascular protective properties, beyond its glucose lowering effects. The aim of the present study was to in-vestigate the interaction between metformin and angiotensin 2 in human internal mammary arteries harvested from patients with coronary heart disease undergoing revascularization procedure, by evaluation of vascular function, reactive oxygen species (ROS) production and the gene expression of nitric oxide (NO) synthases (endothelial – eNOS, neuronal – nNOS and inducible – iNOS). To this aim, vascular samples were incubated with angiotensin 2 (Ang2, 12 h) with/without metformin (Metf, 10 μM) and used for ROS measurement (FOX assay), vascular reactivity in organ bath (contractility to phenylephrine, relaxation to acetylcholine, con-tractility to NG-nitro-L-arginine methyl ester/L-NAME) and RT-PCT studies. Acute incubation of the vascular rings with Ang2 im-paired vascular reactivity (increase contractility, decrease relax-ation), increased ROS production, supressed eNOS/nNOS and in-creased iNOS mRNA expression. Ex vivo incubation with metfor-min at a clinically relevant concentration reversed all these ef-fects. These data suggest that Metformin might be useful in allevi-ating endothelial dysfunction by improving the endothelial-de-pendent relaxation and mitigating oxidative stress in clinical set-ting associated with cardiovascular disease regardless the pres-ence of impaired glucose metabolism.
Collapse
|
15
|
Single Nucleotide Polymorphisms in Amlodipine-Associated Genes and Their Correlation with Blood Pressure Control among South African Adults with Hypertension. Genes (Basel) 2022; 13:genes13081394. [PMID: 36011305 PMCID: PMC9407577 DOI: 10.3390/genes13081394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: This study describes the single nucleotide polymorphisms (SNPs) in amlodipine-associated genes and assesses their correlation with blood pressure control among South African adults with hypertension. Methods: In total, 304 hypertensive patients on amlodipine treatment belonging to the indigenous Swati, Xhosa and Zulu population groups of South Africa were recruited between June 2017 and June 2019. Participants were categorized into: controlled (blood pressure < 140/90 mmHg) and uncontrolled (blood pressure ≥ 140/90 mmHg) hypertension. Thirteen SNPs in amlodipine pharmacogenes with a high PharmGKB evidence base were selected and genotyped using MassArray (Agena BioscienceTM). Logistic regression was fitted to identify significant associations between the SNPs and blood pressure control with amlodipine. Results: The majority of the participants were females (76.6%), older than 45 years (89.1%) and had uncontrolled hypertension (52.3%). Of the 13 SNPs genotyped, five SNPs, rs1042713 (minor allele frequency = 45.9%), rs10494366 (minor allele frequency = 35.3%), rs2239050 (minor allele frequency = 28.7%), rs2246709 (minor allele frequency = 51.6%) and rs4291 (minor allele frequency = 34.4%), were detected among the Xhosa participants, while none were detected among the Swati and Zulu tribal groups. Variants rs1042713 and rs10494366 demonstrated an expression frequency of 97.5% and 79.5%, respectively. Variant TA genotype of rs4291 was significantly associated with uncontrolled hypertension. No association was established between blood pressure response to amlodipine and the remaining four SNPs. Conclusions: This study reports the discovery of five SNPs in amlodipine genes (rs2239050, rs2246709, rs4291, rs1042713 and rs10494366) among the indigenous Xhosa-speaking tribe of South Africa. In addition, the TA genotype of rs4291 was associated with blood pressure control in this cohort. These findings might open doors for more pharmacogenomic studies, which could inform innovations to personalised anti-hypertensive treatment in the ethnically diverse population of South Africa.
Collapse
|
16
|
O'Connor AT, Haspula D, Alanazi AZ, Clark MA. Roles of Angiotensin III in the brain and periphery. Peptides 2022; 153:170802. [PMID: 35489649 DOI: 10.1016/j.peptides.2022.170802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Angiotensin (Ang) III, a biologically active peptide of the renin angiotensin system (RAS) is predominantly known for its central effects on blood pressure. Our understanding of the RAS has evolved from the simplified, classical RAS, a hormonal system regulating blood pressure to a complex system affecting numerous biological processes. Ang II, the main RAS peptide has been widely studied, and its deleterious effects when overexpressed is well-documented. However, other components of the RAS such as Ang III are not well studied. This review examines the molecular and biological actions of Ang III and provides insight into Ang III's potential role in metabolic diseases.
Collapse
Affiliation(s)
- Ann Tenneil O'Connor
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD NIH-20892, USA
| | - Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
17
|
Yin L, Bai J, Yu WJ, Liu Y, Li HH, Lin QY. Blocking VCAM-1 Prevents Angiotensin II-Induced Hypertension and Vascular Remodeling in Mice. Front Pharmacol 2022; 13:825459. [PMID: 35222039 PMCID: PMC8866968 DOI: 10.3389/fphar.2022.825459] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/20/2022] [Indexed: 12/27/2022] Open
Abstract
Adhesion of monocytes to the vascular endothelium frequently leads to an inflammatory response, which contributes to hypertension and vascular remodeling. Vascular cellular adhesion molecule-1 (VCAM-1) plays an important role in leukocyte adhesion and migration during inflammatory diseases. However, its role in angiotensin (Ang) II -induced hypertension and vascular dysfunction remains largely unknown. Wild-type (WT) mice were administered a VCAM-1 neutralizing antibody (0.1 or 0.2 mg/mouse/day) or IgG control and then infused with Ang II (490 ng kg−1 min−1) or saline continuously for 14 days. Systolic blood pressure (SBP) was measured with a tail-cuff system, pathological changes in the aorta were assessed by histological staining, and vascular relaxation was analyzed an aortic ring assay. Our results indicated that compared with saline infusion, Ang II infusion significantly upregulated VCAM-1 expression in the mouse aorta and serum. Moreover, Ang II infusion markedly increased arterial hypertension, wall thickness, fibrosis, infiltration of Mac-2+ macrophages, reactive oxygen species (ROS) production and vascular relaxation dysfunction. Conversely, blockade of VCAM-1 with a neutralizing antibody substantially alleviated these effects. In vitro experiments further confirmed that the VCAM-1 neutralizing antibody inhibited Ang II-induced macrophage adhesion and migration and DNA damage and oxidative stress in endothelial cells (ECs). In conclusion, these results indicate that blockade of VCAM-1 exerts a protective effect against Ang II-induced arterial hypertension and dysfunction by regulating monocytes adhesion and infiltration into the endothelium and represents a novel therapeutic approach for hypertension.
Collapse
Affiliation(s)
- Liangqingqing Yin
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jie Bai
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei-Jia Yu
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Liu
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui-Hua Li
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Hui-Hua Li, ; Qiu-Yue Lin,
| | - Qiu-Yue Lin
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Hui-Hua Li, ; Qiu-Yue Lin,
| |
Collapse
|
18
|
Moreno JD, Verma AK, Kopecky BJ, Dehner C, Kostelecky N, Vader JM, Lin CY, Schilling JD. Angiotensin II Type 1 Receptor Antibody-mediated Rejection Following Orthotopic Heart Transplant: A Single-center Experience. Transplantation 2022; 106:373-380. [PMID: 33988339 DOI: 10.1097/tp.0000000000003712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Antibody-mediated rejection (AMR) following orthotopic heart transplant (OHT) causes significant morbidity and mortality. There are limited data on antibodies to the angiotensin II type 1 receptor antibody (AT1R-Ab) causing rejection following OHT. METHODS This is a retrospective, single-center study that presents our 2-y experience with a series of 11 patients with evidence of nonspecific graft dysfunction and pathologic levels of AT1R-Ab. The clinical outcomes and treatments were compared to a group of 10 patients, also with evidence of nonspecific graft dysfunction, but who had nonsignificant AT1R-Ab titers. RESULTS The mean age of the AT1R-Ab cohort was 52% and 73% were bridged to transplant with an left ventricular assist device. The average left ventricular ejection fraction at presentation was 45%, and most were not on an angiotensin receptor blocker (ARB). Endomyocardial biopsies in those with elevated AT1R-Ab levels frequently showed reactive endothelium/endocardium without C4d or intravascular CD68 staining. Ten patients (91%) were started on an ARB. Other therapies included plasmapheresis and IVIg (64%), with 4 patients also receiving rituximab. Most patients had symptom improvement, but minimal change in graft function at an average 6 mo of follow-up. CONCLUSIONS The role of AT1R-Ab-mediated rejection in OHT recipients remains poorly understood. More than half of patients at our center who presented with graft dysfunction in the absence of acute cellular rejection or AMR were found to have elevated AT1R-Ab titers. Empiric AMR treatment in conjunction with ARB therapy may improve patient outcomes. Future studies are needed to better define the optimal treatment modalities for ATR1-Ab-mediated AMR.
Collapse
Affiliation(s)
- Jonathan D Moreno
- Division of Cardiology, Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Amanda K Verma
- Division of Cardiology, Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Benjamin J Kopecky
- Division of Cardiology, Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Carina Dehner
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis, MO
| | - Nicolas Kostelecky
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis, MO
| | - Justin M Vader
- Division of Cardiology, Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Chieh-Yu Lin
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis, MO
| | - Joel D Schilling
- Division of Cardiology, Department of Medicine, Washington University in St. Louis, St. Louis, MO
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
19
|
de Alcantara Santos R, Guzzoni V, Silva KAS, Aragão DS, de Paula Vieira R, Bertoncello N, Schor N, Aimbire F, Casarini DE, Cunha TS. Resistance exercise shifts the balance of renin-angiotensin system toward ACE2/Ang 1-7 axis and reduces inflammation in the kidney of diabetic rats. Life Sci 2021; 287:120058. [PMID: 34673118 DOI: 10.1016/j.lfs.2021.120058] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/17/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022]
Abstract
AIMS We aimed to determine whether resistance training (RT) regulates renal renin-angiotensin system (RAS) components and inflammatory mediators in diabetic rats. MAIN METHODS Male Wistar rats (3 months old) were randomly assigned into four groups: non-trained (NT), trained (T), non-trained + diabetes (NTD) and trained +diabetes (TD). Diabetes was induced by streptozotocin (50 mg/kg, Sigma Chemical Co., St. Louis, MO, USA), before RT protocol. Trained rats performed RT protocol on a 110-cm ladder (8 ladder climbs, once/day, 5 days/week, 8 weeks), carrying a load corresponding to 50-80% of maximum carrying capacity. Blood glucose, albuminuria and urinary volume were measured. Renal levels of angiotensin peptides (angiotensin I, II and 1-7), inflammatory markers, and also the activities of angiotensin-converting enzyme (ACE) and ACE2 were determined. KEY FINDINGS Blood glucose and urinary volume were elevated in diabetic animals, and RT decreased albuminuria, renal Ang I and Ang II levels in diabetic rats. RT shifted the balance of renal RAS toward ACE2/Ang 1-7 axis in TD group, and mitigated the high levels of interleukin (IL)-10, IL-1β and cytokine-induced neutrophil chemoattractant 1 (CINC) in the context of diabetes. Strong positive correlations were found between albuminuria and Ang II, IL-10 and IL-1β. On the other hand, intrarenal Ang 1-7 levels were negatively correlated with IL-10 and IL-1β levels. SIGNIFICANCE RT improved kidney function by modulating intrarenal RAS toward ACE2/Ang 1-7 axis and inflammatory cytokines. RT represents a reasonable strategy to improve the renal complications induced by diabetes, counteracting nephropathy-associated maladaptive responses.
Collapse
Affiliation(s)
| | - Vinicius Guzzoni
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Kleiton Augusto Santos Silva
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil; Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Danielle Sanches Aragão
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Rodolfo de Paula Vieira
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Nádia Bertoncello
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Nestor Schor
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Flávio Aimbire
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Dulce Elena Casarini
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Tatiana Sousa Cunha
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil.
| |
Collapse
|
20
|
Wenzl FA, Ambrosini S, Mohammed SA, Kraler S, Lüscher TF, Costantino S, Paneni F. Inflammation in Metabolic Cardiomyopathy. Front Cardiovasc Med 2021; 8:742178. [PMID: 34671656 PMCID: PMC8520939 DOI: 10.3389/fcvm.2021.742178] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
Overlapping pandemics of lifestyle-related diseases pose a substantial threat to cardiovascular health. Apart from coronary artery disease, metabolic disturbances linked to obesity, insulin resistance and diabetes directly compromise myocardial structure and function through independent and shared mechanisms heavily involving inflammatory signals. Accumulating evidence indicates that metabolic dysregulation causes systemic inflammation, which in turn aggravates cardiovascular disease. Indeed, elevated systemic levels of pro-inflammatory cytokines and metabolic substrates induce an inflammatory state in different cardiac cells and lead to subcellular alterations thereby promoting maladaptive myocardial remodeling. At the cellular level, inflammation-induced oxidative stress, mitochondrial dysfunction, impaired calcium handling, and lipotoxicity contribute to cardiomyocyte hypertrophy and dysfunction, extracellular matrix accumulation and microvascular disease. In cardiometabolic patients, myocardial inflammation is maintained by innate immune cell activation mediated by pattern recognition receptors such as Toll-like receptor 4 (TLR4) and downstream activation of the NLRP3 inflammasome and NF-κB-dependent pathways. Chronic low-grade inflammation progressively alters metabolic processes in the heart, leading to a metabolic cardiomyopathy (MC) phenotype and eventually to heart failure with preserved ejection fraction (HFpEF). In accordance with preclinical data, observational studies consistently showed increased inflammatory markers and cardiometabolic features in patients with HFpEF. Future treatment approaches of MC may target inflammatory mediators as they are closely intertwined with cardiac nutrient metabolism. Here, we review current evidence on inflammatory processes involved in the development of MC and provide an overview of nutrient and cytokine-driven pro-inflammatory effects stratified by cell type.
Collapse
Affiliation(s)
- Florian A Wenzl
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Samuele Ambrosini
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Shafeeq A Mohammed
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland.,Royal Brompton and Harefield Hospitals and Imperial College, London, United Kingdom
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Piazza M, Hanssen NMJ, Persson F, Scheijen JL, van de Waarenburg MPH, van Greevenbroek MMJ, Rossing P, Hovind P, Stehouwer CDA, Parving H, Schalkwijk CG. Irbesartan treatment does not influence plasma levels of the dicarbonyls methylglyoxal, glyoxal and 3-deoxyglucosone in participants with type 2 diabetes and microalbuminuria: An IRMA2 sub-study. Diabet Med 2021; 38:e14405. [PMID: 32961617 PMCID: PMC8451908 DOI: 10.1111/dme.14405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/18/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022]
Abstract
AIM Angiotensin receptor blockers (ARBs) reduce vascular complications in diabetes independently of blood pressure. Experimental studies suggested that ARBs may restore the detoxifying enzyme glyoxalase 1, thereby lowering dicarbonyls such as methylglyoxal. Human data on the effects of ARBs on plasma dicarbonyl levels are lacking. We investigated, in individuals with type 2 diabetes, whether irbesartan lowered plasma levels of the dicarbonyls methylglyoxal, glyoxal, 3-deoxyglucosone and their derived advanced glycation end products (AGEs), and increased d-lactate, reflecting greater methylglyoxal flux. METHODS We analysed a subset of the Irbesartan in Patients with T2D and Microalbuminuria (IRMA2) study. We measured plasma dicarbonyls methylglyoxal, glyoxal and 3-deoxyglucosone, free AGEs and d-lactate using ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS) in the treatment arm receiving 300 mg irbesartan (n = 121) and a placebo group (n = 101) at baseline and after 1 and 2 years. Effect of treatment was analysed with repeated measurements ANOVA. RESULTS There was a slight, but significant difference in baseline median methylglyoxal levels [placebo 1119 (907-1509) nmol/l vs. irbesartan 300 mg 1053 (820-1427) nmol/l], but no significant changes were observed in any of the plasma dicarbonyls over time in either group and there was no effect of irbesartan treatment on plasma free AGEs or d-lactate levels at either 1 or 2 years. CONCLUSION Irbesartan treatment does not change plasma levels of the dicarbonyls methylglyoxal, glyoxal and 3-deoxyglucosone, free AGEs or d-lactate in type 2 diabetes. This indicates that increased dicarbonyls in type 2 diabetes are not targetable by ARBs, and other approaches to lower systemic dicarbonyls are needed in type 2 diabetes. (Clinical Trial Registry No: #NCT00317915).
Collapse
Affiliation(s)
- M. Piazza
- Internal MedicineMaastricht University Medical CentreMaastrichtthe Netherlands
- Cardiovascular Research Institute Maastricht (CARIM)Maastrichtthe Netherlands
- Department of Medicine‐DIMED University of PaduaItaly
| | - N. M. J. Hanssen
- Internal MedicineMaastricht University Medical CentreMaastrichtthe Netherlands
- Cardiovascular Research Institute Maastricht (CARIM)Maastrichtthe Netherlands
| | - F. Persson
- Steno Diabetes Center CopenhagenCopenhagenDenmark
| | - J. L. Scheijen
- Internal MedicineMaastricht University Medical CentreMaastrichtthe Netherlands
- Cardiovascular Research Institute Maastricht (CARIM)Maastrichtthe Netherlands
| | - M. P. H. van de Waarenburg
- Internal MedicineMaastricht University Medical CentreMaastrichtthe Netherlands
- Cardiovascular Research Institute Maastricht (CARIM)Maastrichtthe Netherlands
| | - M. M. J. van Greevenbroek
- Internal MedicineMaastricht University Medical CentreMaastrichtthe Netherlands
- Cardiovascular Research Institute Maastricht (CARIM)Maastrichtthe Netherlands
| | - P. Rossing
- Steno Diabetes Center CopenhagenCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - P. Hovind
- Steno Diabetes Center CopenhagenCopenhagenDenmark
- Clinical Physiology and Nuclear MedicineBispebjerg HospitalCopenhagenDenmark
| | - C. D. A. Stehouwer
- Internal MedicineMaastricht University Medical CentreMaastrichtthe Netherlands
- Cardiovascular Research Institute Maastricht (CARIM)Maastrichtthe Netherlands
| | - H‐H. Parving
- Medical EndocrinologyUniversity Hospital of CopenhagenCopenhagenDenmark
| | - C. G. Schalkwijk
- Internal MedicineMaastricht University Medical CentreMaastrichtthe Netherlands
- Cardiovascular Research Institute Maastricht (CARIM)Maastrichtthe Netherlands
| |
Collapse
|
22
|
Kim JH, Yee J, Chang BC, Gwak HS. Gene Polymorphisms of the Renin-Angiotensin System and Bleeding Complications of Warfarin: Genetic-Based Machine Learning Models. Pharmaceuticals (Basel) 2021; 14:ph14080824. [PMID: 34451921 PMCID: PMC8400908 DOI: 10.3390/ph14080824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
This study aimed to investigate the effects of genetic variants and haplotypes in the renin–angiotensin system (RAS) on the risk of warfarin-induced bleeding complications at therapeutic international normalized ratios (INRs). Four single nucleotide polymorphisms (SNPs) of AGT, two SNPs of REN, three SNPs of ACE, four SNPs of AGTR1, and one SNP of AGTR2, in addition to VKORC1 and CYP2C9 variants, were investigated. We utilized logistic regression and several machine learning methods for bleeding prediction. The study included 142 patients, among whom 21 experienced bleeding complications. We identified a haplotype, H2 (TCG), carrying three single nucleotide polymorphisms (SNPs) of ACE (rs1800764, rs4341, and rs4353), which showed a significant relation with bleeding complications. After adjusting covariates, patients with H2/H2 experienced a 0.12-fold (95% CI 0.02–0.99) higher risk of bleeding complications than the others. In addition, G allele carriers of AGT rs5050 and A allele carriers of AGTR1 rs2640543 had 5.0- (95% CI 1.8–14.1) and 3.2-fold (95% CI 1.1–8.9) increased risk of bleeding complications compared with the TT genotype and GG genotype carriers, respectively. The AUROC values (mean, 95% CI) across 10 random iterations using five-fold cross-validated multivariate logistic regression, elastic net, random forest, support vector machine (SVM)–linear kernel, and SVM–radial kernel models were 0.732 (0.694–0.771), 0.741 (0.612–0.870), 0.723 (0.589–0.857), 0.673 (0.517–0.828), and 0.680 (0.528–0.832), respectively. The highest quartile group (≥75th percentile) of weighted risk score had approximately 12.0 times (95% CI 3.1–46.7) increased risk of bleeding, compared to the 25–75th percentile group, respectively. This study demonstrated that RAS-related polymorphisms, including the H2 haplotype of the ACE gene, could affect bleeding complications during warfarin treatment for patients with mechanical heart valves. Our results could be used to develop individually tailored intervention strategies to prevent warfarin-induced bleeding.
Collapse
Affiliation(s)
- Joo-Hee Kim
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea;
| | - Jeong Yee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea;
| | - Byung-Chul Chang
- Bundang CHA Medical Center, Department of Thoracic and Cardiovascular Surgery, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam 13496, Korea;
- Yonsei University Medical Center, Department of Thoracic & Cardiovascular Surgery, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Hye-Sun Gwak
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea;
- Correspondence: ; Tel.: +82-2-3277-4376; Fax: +82-2-3277-2851
| |
Collapse
|
23
|
Peripheral Vascular Disease and Kidney Transplant Outcomes: Rethinking an Important Ongoing Complication. Transplantation 2021; 105:1188-1202. [PMID: 33148978 DOI: 10.1097/tp.0000000000003518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Peripheral vascular disease (PVD) is highly prevalent in patients on the waiting list for kidney transplantation (KT) and after transplantation and is associated with impaired transplant outcomes. Multiple traditional and nontraditional risk factors, as well as uremia- and transplant-related factors, affect 2 processes that can coexist, atherosclerosis and arteriosclerosis, leading to PVD. Some pathogenic mechanisms, such as inflammation-related endothelial dysfunction, mineral metabolism disorders, lipid alterations, or diabetic status, may contribute to the development and progression of PVD. Early detection of PVD before and after KT, better understanding of the mechanisms of vascular damage, and application of suitable therapeutic approaches could all minimize the impact of PVD on transplant outcomes. This review focuses on the following issues: (1) definition, epidemiological data, diagnosis, risk factors, and pathogenic mechanisms in KT candidates and recipients; (2) adverse clinical consequences and outcomes; and (3) classical and new therapeutic approaches.
Collapse
|
24
|
Endothelial BBSome is essential for vascular, metabolic, and retinal functions. Mol Metab 2021; 53:101308. [PMID: 34303879 PMCID: PMC8379702 DOI: 10.1016/j.molmet.2021.101308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022] Open
Abstract
Objectives Endothelial cells that line the entire vascular system play a pivotal role in the control of various physiological processes, including metabolism. Additionally, endothelial dysfunction is associated with many pathological conditions, including obesity. Here, we assessed the role of the BBSome, a protein complex composed of eight Bardet-Biedl syndrome (BBS) proteins in endothelial cells. Methods We studied the effects of BBSome disruption in endothelial cells on vascular function, body weight, glucose homeostasis, and the liver and retina. For this, we generated mice with selective BBSome disruption in endothelial cells through Bbs1 gene deletion. Results We found that endothelial cell–specific BBSome disruption causes endothelial dysfunction, as indicated by the impaired acetylcholine-induced vasorelaxation in both the aorta and mesenteric artery. This was associated with an increase in the contractile response to thromboxane A2 receptor agonist (U46619) in the mesenteric artery. Mechanistically, we demonstrated that mice lacking the Bbs1 gene in endothelial cells show elevated vascular angiotensinogen gene expression, implicating renin-angiotensin system activation in the vascular changes evoked by endothelial BBSome deficiency. Strikingly, our data indicate that endothelial BBSome deficiency increases body weight and fat mass and causes hepatosteatosis along with alterations in hepatic expression of lipid metabolism–related genes and metabolomics profile. In addition, electroretinogram and optical coherence tomography analyses revealed functional and structural abnormalities in the retina, evoked by absence of the endothelial BBSome. Conclusions Our findings demonstrate that the BBSome in endothelial cells is required for the regulation of vascular function, adiposity, hepatic lipid metabolism, and retinal function. Disruption of the BBSome in endothelial cells alters vascular reactivity. Loss of the BBSome in endothelial cells increases vascular angiotensinogen gene expression. Endothelial BBSome deficiency increases body weight and fat mass and causes hepatosteatosis. Absence of the endothelial BBSome induces functional and structural abnormalities in the retina.
Collapse
|
25
|
Feng Y, Peng K, Luo R, Wang F, Yang T. Site-1 Protease-Derived Soluble (Pro)Renin Receptor Contributes to Angiotensin II-Induced Hypertension in Mice. Hypertension 2021; 77:405-416. [PMID: 33280408 PMCID: PMC7803453 DOI: 10.1161/hypertensionaha.120.15100] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activation of PRR ([pro]renin receptor) contributes to enhancement of intrarenal RAS and renal medullary α-ENaC and thus elevated blood pressure during Ang II (angiotensin II) infusion. The goal of the present study was to test whether such action of PRR was mediated by sPRR (soluble PRR), generated by S1P (site-1 protease), a newly identified PRR cleavage protease. F1 B6129SF1/J mice were infused for 6 days with control or Ang II at 300 ng/kg per day alone or in combination with S1P inhibitor PF-429242 (PF), and blood pressure was monitored by radiotelemetry. S1P inhibition significantly attenuated Ang II-induced hypertension accompanied with suppressed urinary and renal medullary renin levels and expression of renal medullary but not renal cortical α-ENaC expression. The effects of S1P inhibition were all reversed by supplement with histidine-tagged sPRR termed as sPRR-His. Ussing chamber technique was performed to determine amiloride-sensitive short-circuit current, an index of ENaC activity in confluent mouse cortical collecting duct cell line cells exposed for 24 hours to Ang II, Ang II + PF, or Ang II + PF + sPRR-His. Ang II-induced ENaC activity was blocked by PF, which was reversed by sPRR-His. Together, these results support that S1P-derived sPRR mediates Ang II-induced hypertension through enhancement of intrarenal renin level and activation of ENaC.
Collapse
Affiliation(s)
- Ye Feng
- From the Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Kexin Peng
- From the Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Renfei Luo
- From the Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Fei Wang
- From the Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Tianxin Yang
- From the Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| |
Collapse
|
26
|
Müller M, Beiglböck H, Fellinger P, Winhofer Y, Luger A, Gschwandtner M, Willfort-Ehringer A, Koppensteiner R, Kautzky-Willer A, Krebs M, Schlager O, Wolf P. Micro- and macrovascular function in patients suffering from primary adrenal insufficiency: a cross-sectional case-control study. J Endocrinol Invest 2021; 44:339-345. [PMID: 32488723 PMCID: PMC7817592 DOI: 10.1007/s40618-020-01309-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/26/2020] [Indexed: 12/02/2022]
Abstract
BACKGROUND Despite adequate glucocorticoid (GC) and mineralocorticoid (MC) replacement therapy, patients suffering from primary adrenal insufficiency (AI) have an increased mortality, mainly due to cardiovascular diseases. Only little knowledge exists on the contribution of MC substitution to the cardiovascular risk. Therefore, this study investigates the impact of plasma renin concentration on parameters of micro- and macrovascular function. METHODS 26 patients with primary AI [female = 18, age: 51 (28; 78) years; BMI: 24 (18; 40) kg/m2; disease duration: 18 (5; 36) years] were included in this cross-sectional analysis. Intima media thickness (IMT) and pulse wave velocity (PWV) were investigated to assess macrovascular remodeling and arterial stiffness. Microvascular function was estimated by post-occlusive reactive hyperemia using laser Doppler fluxmetry. Baseline perfusion, biological zero, peak perfusion, time to peak and recovery time were recorded. Patients were grouped according to their median plasma renin concentration of previous visits (Reninhigh vs Reninlow) and were compared to a group of healthy women [age: 44 (43; 46) years; BMI: 24.2 (21.8; 27.5)]. RESULTS PWV was significantly higher in AI patients compared to controls [9.9 (5; 18.5) vs 7.3 (6.8; 7.7) m/s; p < .01], whereas no differences in microvascular function could be found. In Reninlow time to peak perfusion was significantly longer [6.0 (3; 15) vs 3.5 (1.5; 11) s; p < .05], whereas no differences in IMT and PWV were observed between Reninhigh and Reninlow. No impact of GC dose was observed. CONCLUSIONS Microvascular function is not impaired in patients with primary AI under adequate replacement therapy, although higher renin concentrations are associated with subclinical improvements. No relation between RAAS activity and macrovascular function is observed, while arterial stiffness might be increased in primary AI.
Collapse
Affiliation(s)
- M Müller
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - H Beiglböck
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - P Fellinger
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Y Winhofer
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - A Luger
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - M Gschwandtner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - A Willfort-Ehringer
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - R Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - A Kautzky-Willer
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - M Krebs
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - O Schlager
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - P Wolf
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
27
|
Yao M, Liu H, Li B, Liu Y, Mu Y. The Relationship Between Earlier Onset of Natural Menopause and Elevated Urinary Albumin-Creatinine Ratio in Postmenopausal Chinese Women. Diabetes Metab Syndr Obes 2021; 14:847-856. [PMID: 33658819 PMCID: PMC7920510 DOI: 10.2147/dmso.s292041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/05/2021] [Indexed: 12/29/2022] Open
Abstract
PURPOSE There is a close correlation between menopausal age and cardiovascular disease (CVD) risk. Some research suggests that this risk is attributable to an elevated urinary albumin-creatinine ratio (UACR), but further work is needed to explore the link between UACR and age at time of menopause. PATIENTS AND METHODS Data analyzed in the present study were derived from seven regional centers participating in the REACTION study. A total of 21,672 postmenopausal women met with our study inclusion and exclusion criteria, and were split into three groups based upon their age at onset of natural menopause. A UACR ≥ 30 mg/g was the primary outcome measure for this study. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated with a logistic regression approach. RESULTS Relative to women who were 46-50 years old at time of natural menopause, those with an earlier onset of menopause (≤45 years) exhibited an increased risk of UACR elevation following adjustment for confounding variables (OR: 1.18, 95% CI: 1.04-1.33), whereas the opposite was true for women with a later age of menopause onset (>50 years) (OR: 0.86, 95% CI: 0.78-0.94). For every 1-year delay in the onset of menopause, UACR risk fell by 3% (OR: 0.97, 95% CI: 0.96-0.98). CONCLUSION In summary, early menopause (≤45 years old) was linked to a higher risk of UACR elevation in postmenopausal women. However, further work will be needed to understand the mechanistic basis for these findings.
Collapse
Affiliation(s)
- Mingyan Yao
- Department of Endocrinology, Chinese People’s Liberation Army General Hospital, Beijing, 100853, People’s Republic of China
- Department of Endocrinology, Baoding NO.1 Central Hospital, Baoding, 071000, People’s Republic of China
| | - Hongzhou Liu
- Department of Endocrinology, Chinese People’s Liberation Army General Hospital, Beijing, 100853, People’s Republic of China
| | - Bing Li
- Department of Endocrinology, Chinese People’s Liberation Army General Hospital, Beijing, 100853, People’s Republic of China
| | - Yang Liu
- Department of Endocrinology, Chinese People’s Liberation Army General Hospital, Beijing, 100853, People’s Republic of China
| | - Yiming Mu
- Department of Endocrinology, Chinese People’s Liberation Army General Hospital, Beijing, 100853, People’s Republic of China
- Correspondence: Yiming Mu Department of Endocrinology, Chinese People’s Liberation Army General Hospital, No. 28 Fuxing Road, Beijing, 100853, People’s Republic of China Email
| |
Collapse
|
28
|
Wang W, Zheng Y, Li M, Lin S, Lin H. Recent Advances in Studies on the Role of Neuroendocrine Disorders in Obstructive Sleep Apnea-Hypopnea Syndrome-Related Atherosclerosis. Nat Sci Sleep 2021; 13:1331-1345. [PMID: 34349578 PMCID: PMC8326525 DOI: 10.2147/nss.s315375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is a common cause of death worldwide, and atherosclerosis (AS) and obstructive sleep apnea-hypopnea syndrome (OSAHS) critically contribute to the initiation and progression of cardiovascular diseases. OSAHS promotes endothelial injury, vascular smooth muscle cell (VSMC) proliferation, abnormal lipid metabolism, and elevated arterial blood pressure. However, the exact OSAHS mechanism that causes AS remains unclear. The nervous system is widely distributed in the central and peripheral regions. It regulates appetite, energy metabolism, inflammation, oxidative stress, insulin resistance, and vasoconstriction by releasing regulatory factors and participates in the occurrence and development of AS. Studies showed that OSAHS can cause changes in neurophysiological plasticity and affect modulator release, suggesting that neuroendocrine dysfunction may be related to the OSAHS mechanism causing AS. In this article, we review the possible mechanisms of neuroendocrine disorders in the pathogenesis of OSAHS-induced AS and provide a new basis for further research on the development of corresponding effective intervention strategies.
Collapse
Affiliation(s)
- Wanda Wang
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Yanli Zheng
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Meimei Li
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Shu Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Huili Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| |
Collapse
|
29
|
Marquez A, Wysocki J, Pandit J, Batlle D. An update on ACE2 amplification and its therapeutic potential. Acta Physiol (Oxf) 2021; 231:e13513. [PMID: 32469114 PMCID: PMC7267104 DOI: 10.1111/apha.13513] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022]
Abstract
The renin angiotensin system (RAS) plays an important role in the pathogenesis of variety of diseases. Targeting the formation and action of angiotensin II (Ang II), the main RAS peptide, has been the key therapeutic target for last three decades. ACE‐related carboxypeptidase (ACE2), a monocarboxypeptidase that had been discovered 20 years ago, is one of the catalytically most potent enzymes known to degrade Ang II to Ang‐(1‐7), a peptide that is increasingly accepted to have organ‐protective properties that oppose and counterbalance those of Ang II. In addition to its role as a RAS enzyme ACE2 is the main receptor for SARS‐CoV‐2. In this review, we discuss various strategies that have been used to achieve amplification of ACE2 activity including the potential therapeutic potential of soluble recombinant ACE2 protein and novel shorter ACE2 variants.
Collapse
Affiliation(s)
- Alonso Marquez
- Feinberg Medical SchoolNorthwestern University Chicago IL USA
- Department of Medicine Division of Nephrology and Hypertension Chicago IL USA
| | - Jan Wysocki
- Feinberg Medical SchoolNorthwestern University Chicago IL USA
- Department of Medicine Division of Nephrology and Hypertension Chicago IL USA
| | - Jay Pandit
- Feinberg Medical SchoolNorthwestern University Chicago IL USA
- Department of Medicine Division of Nephrology and Hypertension Chicago IL USA
| | - Daniel Batlle
- Feinberg Medical SchoolNorthwestern University Chicago IL USA
- Department of Medicine Division of Nephrology and Hypertension Chicago IL USA
| |
Collapse
|
30
|
Wen J, Shuai W, Ding T, Feng Y, Zhang J, Wang S. Reproductive risk factors for angiographic obstructive coronary artery disease among postmenopausal women. Menopause 2020; 27:1403-1410. [PMID: 32769758 DOI: 10.1097/gme.0000000000001616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Reproductive factors are female-specific coronary artery disease (CAD) risk factors. However, the importance of reproductive factors in angiographic obstructive CAD in postmenopausal women remains uncertain. This study aimed to compare reproductive factors between postmenopausal women with no apparent CAD, nonobstructive CAD, and obstructive CAD and identify reproductive risk factors for obstructive CAD. METHODS In this hospital-based cross-sectional study, 1,474 postmenopausal women, admitted with chest pain and referred for invasive coronary angiography were enrolled between April 2013 and October 2018. RESULTS Adjusted odds ratio (95% CI) for obstructive CAD were 1.81 (1.03-3.17) for multigravidity (three or more pregnancies), 1.77 (1.14-2.76) for early menopause (≤40 y old), and 1.72 (1.26-2.35) for short reproductive life span (≤30 y). Each additional year in age at menopause or reproductive life span was associated with a 4% reduction in obstructive CAD risk in postmenopausal women (odds ratio, 0.96; 95% CI, 0.94-0.99; P = 0.011). The other reproductive factors, including parity, age at first birth, spontaneous abortion, induced abortion, stillbirth, hypertensive disorders of pregnancy, gestational diabetes mellitus, and age at menarche, were not correlated with obstructive CAD risk in postmenopausal women. CONCLUSIONS Multigravidity (three or more pregnancies), early menopause, and a shorter reproductive life span were independent risk factors of angiographic obstructive CAD among postmenopausal women, which suggested that pregnancy and ovarian function may be important for the early identification and prevention of increased risk of female angiographic obstructive CAD.
Collapse
Affiliation(s)
- Jingyi Wen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, and Hubei Key Laboratory of Cardiology, Wuhan, Hubei, P.R. China
| | - Ting Ding
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yanzhi Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
31
|
Gencer S, Lacy M, Atzler D, van der Vorst EPC, Döring Y, Weber C. Immunoinflammatory, Thrombohaemostatic, and Cardiovascular Mechanisms in COVID-19. Thromb Haemost 2020; 120:1629-1641. [PMID: 33124029 PMCID: PMC7869061 DOI: 10.1055/s-0040-1718735] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic has deranged the recent history of humankind, afflicting more than 27 million individuals to date. While the majority of COVID-19 patients recuperate, a considerable number of patients develop severe complications. Bilateral pneumonia constitutes the hallmark of severe COVID-19 disease but an involvement of other organ systems, namely the cardiovascular system, kidneys, liver, and central nervous system, occurs in at least half of the fatal COVID-19 cases. Besides respiratory failure requiring ventilation, patients with severe COVID-19 often display manifestations of systemic inflammation and thrombosis as well as diffuse microvascular injury observed postmortem. In this review, we survey the mechanisms that may explain how viral entry and activation of endothelial cells by severe acute respiratory syndrome coronavirus 2 can give rise to a series of events including systemic inflammation, thrombosis, and microvascular dysfunction. This pathophysiological scenario may be particularly harmful in patients with overt cardiovascular disease and may drive the fatal aspects of COVID-19. We further shed light on the role of the renin-angiotensin aldosterone system and its inhibitors in the context of COVID-19 and discuss the potential impact of antiviral and anti-inflammatory treatment options. Acknowledging the comorbidities and potential organ injuries throughout the course of severe COVID-19 is crucial in the clinical management of patients affecting treatment approaches and recovery rate.
Collapse
Affiliation(s)
- Selin Gencer
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany
| | - Michael Lacy
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Emiel P. C. van der Vorst
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Interdisciplinary Center for Clinical Research (IZKF), Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Yvonne Döring
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Divison of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
32
|
Pucci F, Bogaerts P, Rooman M. Modeling the Molecular Impact of SARS-CoV-2 Infection on the Renin-Angiotensin System. Viruses 2020; 12:E1367. [PMID: 33265982 PMCID: PMC7760740 DOI: 10.3390/v12121367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 infection is mediated by the binding of its spike protein to the angiotensin-converting enzyme 2 (ACE2), which plays a pivotal role in the renin-angiotensin system (RAS). The study of RAS dysregulation due to SARS-CoV-2 infection is fundamentally important for a better understanding of the pathogenic mechanisms and risk factors associated with COVID-19 coronavirus disease and to design effective therapeutic strategies. In this context, we developed a mathematical model of RAS based on data regarding protein and peptide concentrations; the model was tested on clinical data from healthy normotensive and hypertensive individuals. We used our model to analyze the impact of SARS-CoV-2 infection on RAS, which we modeled through a downregulation of ACE2 as a function of viral load. We also used it to predict the effect of RAS-targeting drugs, such as RAS-blockers, human recombinant ACE2, and angiotensin 1-7 peptide, on COVID-19 patients; the model predicted an improvement of the clinical outcome for some drugs and a worsening for others. Our model and its predictions constitute a valuable framework for in silico testing of hypotheses about the COVID-19 pathogenic mechanisms and the effect of drugs aiming to restore RAS functionality.
Collapse
Affiliation(s)
- Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, CP 165/61, Roosevelt Ave. 50, 1050 Brussels, Belgium;
| | - Philippe Bogaerts
- Biosystems Modeling and Control, Université Libre de Bruxelles, CP 165/61, Roosevelt Ave. 50, 1050 Brussels, Belgium;
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, CP 165/61, Roosevelt Ave. 50, 1050 Brussels, Belgium;
| |
Collapse
|
33
|
Maldonado V, Loza-Mejía MA, Chávez-Alderete J. Repositioning of pentoxifylline as an immunomodulator and regulator of the renin-angiotensin system in the treatment of COVID-19. Med Hypotheses 2020; 144:109988. [PMID: 32540603 PMCID: PMC7282759 DOI: 10.1016/j.mehy.2020.109988] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
Abstract
Pentoxifylline (PTX) is a phosphodiesterase inhibitor that increases cyclic adenosine monophosphate levels, which in turn activate protein kinase, leading to a reduction in the synthesis of proinflammatory cytokines to ultimately influence the renin-angiotensin system (RAS) in vitro by inhibiting angiotensin 1 receptor (AT1R) expression. The rheological, anti-inflammatory, and renin-angiotensin axis properties of PTX highlight this drug as a therapeutic treatment alternative for patients with COVID-19 by helping reduce the production of the inflammatory cytokines without deleterious effects on the immune system to delay viral clearance. Moreover, PTX can restore the balance of the immune response, reduce damage to the endothelium and alveolar epithelial cells, improve circulation, and prevent microvascular thrombosis. There is further evidence that PTX can improve ventilatory parameters. Therefore, we propose repositioning PTX in the treatment of COVID-19. The main advantage of repositioning PTX is that it is an affordable drug that is already available worldwide with an established safety profile, further offering the possibility of immediately analysing the result of its use and associated success rates. Another advantage is that PTX selectively reduces the concentration of TNF-α mRNA in cells, which, in the case of an acute infectious state such as COVID-19, would seem to offer a more strategic approach.
Collapse
Affiliation(s)
- Valente Maldonado
- Faculty of Chemical Sciences, Universidad La Salle-México, Cuauhtémoc, Mexico City 06140, Mexico; Department of Allergy and Clinical Immunology Internal Medicine, General Hospital of Zone 27 Mexican Institute of Social Security, Col. Nonoalco Tlatelolco Cuauhtémoc, Mexico City 6390, Mexico.
| | - Marco A Loza-Mejía
- Faculty of Chemical Sciences, Universidad La Salle-México, Cuauhtémoc, Mexico City 06140, Mexico
| | - Jaime Chávez-Alderete
- Laboratory of Bronchial Hyperreactivity, National Institute of Respiratory Diseases Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico
| |
Collapse
|
34
|
Rodrigues‐Diez RR, Tejera‐Muñoz A, Marquez‐Exposito L, Rayego‐Mateos S, Santos Sanchez L, Marchant V, Tejedor Santamaria L, Ramos AM, Ortiz A, Egido J, Ruiz‐Ortega M. Statins: Could an old friend help in the fight against COVID-19? Br J Pharmacol 2020; 177:4873-4886. [PMID: 32562276 PMCID: PMC7323198 DOI: 10.1111/bph.15166] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 12/21/2022] Open
Abstract
The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has overwhelmed healthcare systems requiring the rapid development of treatments, at least, to reduce COVID-19 severity. Drug repurposing offers a fast track. Here, we discuss the potential beneficial effects of statins in COVID-19 patients based on evidence that they may target virus receptors, replication, degradation, and downstream responses in infected cells, addressing both basic research and epidemiological information. Briefly, statins could modulate virus entry, acting on the SARS-CoV-2 receptors, ACE2 and CD147, and/or lipid rafts engagement. Statins, by inducing autophagy activation, could regulate virus replication or degradation, exerting protective effects. The well-known anti-inflammatory properties of statins, by blocking several molecular mechanisms, including NF-κB and NLRP3 inflammasomes, could limit the "cytokine storm" in severe COVID-19 patients which is linked to fatal outcome. Finally, statin moderation of coagulation response activation may also contribute to improving COVID-19 outcomes. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Raul R. Rodrigues‐Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| | - Antonio Tejera‐Muñoz
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| | - Laura Marquez‐Exposito
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| | - Sandra Rayego‐Mateos
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
- GE‐06 Pathophysiology of Renal and Vascular Damage Laboratory, Maimonides Biomedical Research Institute of Cordoba (IMIBIC)University of CórdobaCórdobaSpain
| | - Laura Santos Sanchez
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| | - Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| | - Lucía Tejedor Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| | - Adrian M. Ramos
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
- Laboratory of Nephrology and HypertensionFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
- Laboratory of Nephrology and HypertensionFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
| | - Jesus Egido
- Renal, Vascular and Diabetes Research LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz Universidad AutónomaMadridSpain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)MadridSpain
| | - Marta Ruiz‐Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
35
|
Del Pinto R, Ferri C. The role of Immunity in Fabry Disease and Hypertension: A Review of a Novel Common Pathway. High Blood Press Cardiovasc Prev 2020; 27:539-546. [PMID: 33047250 PMCID: PMC7661400 DOI: 10.1007/s40292-020-00414-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023] Open
Abstract
Fabry disease is a progressive, X-linked inherited lysosomal storage disorder where accumulation of glycosphingolipids increases the risk for early cardiovascular complications, including heart failure, stroke, and end stage renal disease. Besides disease-specific therapy, blood pressure (BP) control is of central importance in Fabry disease to reduce disease progression and improve prognosis. Both Fabry disease and hypertension are characterized by the activation of the innate component of the immune system, with Toll-like receptor 4 (TLR4) as a common trigger to the inflammatory cascade. The renin-angiotensin system (RAS) participates in the establishment of low-grade chronic inflammation and redox unbalance that contribute to organ damage in the long term. Besides exploiting the anti-inflammatory effects of RAS blockade and enzyme replacement therapy, targeted therapies acting on the immune system represent an appealing field of research in these conditions. The aim of this narrative review is to examine the issue of hypertension in the setting of Fabry disease, focusing on the possible determinants of their reciprocal relationship, as well as on the related clinical and therapeutic implications.
Collapse
Affiliation(s)
- Rita Del Pinto
- Division of Internal Medicine and Nephrology, Department of Life, Health and Environmental Sciences, San Salvatore Hospital, University of L'Aquila, San Salvatore Hospital, Building Delta 6, L'Aquila, Italy.
| | - Claudio Ferri
- Division of Internal Medicine and Nephrology, Department of Life, Health and Environmental Sciences, San Salvatore Hospital, University of L'Aquila, San Salvatore Hospital, Building Delta 6, L'Aquila, Italy
| |
Collapse
|
36
|
Suwannasual U, Lucero J, Davis G, McDonald JD, Lund AK. Mixed Vehicle Emissions Induces Angiotensin II and Cerebral Microvascular Angiotensin Receptor Expression in C57Bl/6 Mice and Promotes Alterations in Integrity in a Blood-Brain Barrier Coculture Model. Toxicol Sci 2020; 170:525-535. [PMID: 31132127 DOI: 10.1093/toxsci/kfz121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Exposure to traffic-generated pollution is associated with alterations in blood-brain barrier (BBB) integrity and exacerbation of cerebrovascular disorders. Angiotensin (Ang) II signaling through the Ang II type 1 (AT1) receptor is known to promote BBB disruption. We have previously reported that exposure to a mixture of gasoline and diesel vehicle engine emissions (MVE) mediates alterations in cerebral microvasculature of C57Bl/6 mice, which is exacerbated through consumption of a high-fat (HF) diet. Thus, we investigated the hypothesis that inhalation exposure to MVE results in altered central nervous system microvascular integrity mediated by Ang II-AT1 signaling. Three-month-old male C57Bl/6 mice were placed on an HF or low-fat diet and exposed via inhalation to either filtered air (FA) or MVE (100 μg/m3 PM) 6 h/d for 30 days. Exposure to HF+MVE resulted in a significant increase in plasma Ang II and expression of AT1 in the cerebral microvasculature. Results from a BBB coculture study showed that transendothelial electrical resistance was decreased, associated with reduced expression of claudin-5 and occludin when treated with plasma from MVE+HF animals. These effects were attenuated through pretreatment with the AT1 antagonist, Losartan. Our BBB coculture showed increased levels of astrocyte AT1 and decreased expression of aryl hydrocarbon receptor and glutathione peroxidase-1, associated with increased interleukin-6 and transforming growth factor-β in the astrocyte media, when treated with plasma from MVE-exposed groups. Our results indicate that inhalation exposure to traffic-generated pollutants results in altered BBB integrity, mediated through Ang II-AT1 signaling and inflammation, which is exacerbated by an HF diet.
Collapse
Affiliation(s)
- Usa Suwannasual
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76201
| | - JoAnn Lucero
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76201
| | - Griffith Davis
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76201
| | - Jacob D McDonald
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico 87108
| | - Amie K Lund
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76201
| |
Collapse
|
37
|
St. Paul A, Corbett CB, Okune R, Autieri MV. Angiotensin II, Hypercholesterolemia, and Vascular Smooth Muscle Cells: A Perfect Trio for Vascular Pathology. Int J Mol Sci 2020; 21:E4525. [PMID: 32630530 PMCID: PMC7350267 DOI: 10.3390/ijms21124525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in the Western and developing world, and the incidence of cardiovascular disease is increasing with the longer lifespan afforded by our modern lifestyle. Vascular diseases including coronary heart disease, high blood pressure, and stroke comprise the majority of cardiovascular diseases, and therefore represent a significant medical and socioeconomic burden on our society. It may not be surprising that these conditions overlap and potentiate each other when we consider the many cellular and molecular similarities between them. These intersecting points are manifested in clinical studies in which lipid lowering therapies reduce blood pressure, and anti-hypertensive medications reduce atherosclerotic plaque. At the molecular level, the vascular smooth muscle cell (VSMC) is the target, integrator, and effector cell of both atherogenic and the major effector protein of the hypertensive signal Angiotensin II (Ang II). Together, these signals can potentiate each other and prime the artery and exacerbate hypertension and atherosclerosis. Therefore, VSMCs are the fulcrum in progression of these diseases and, therefore, understanding the effects of atherogenic stimuli and Ang II on the VSMC is key to understanding and treating atherosclerosis and hypertension. In this review, we will examine studies in which hypertension and atherosclerosis intersect on the VSMC, and illustrate common pathways between these two diseases and vascular aging.
Collapse
Affiliation(s)
| | | | | | - Michael V. Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; (A.S.P.); (C.B.C.); (R.O.)
| |
Collapse
|
38
|
Receptor-interacting serine/threonine kinase 1- and 3-dependent inflammation induced in lungs of chicken infected with Pasteurella multocida. Sci Rep 2020; 10:6340. [PMID: 32286320 PMCID: PMC7156477 DOI: 10.1038/s41598-020-62042-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/05/2020] [Indexed: 01/19/2023] Open
Abstract
Fowl cholera is a serious, highly contagious disease caused by the bacterium Pasteurella multocida (P. multocida) in a range of avian species and is characterized by an acute form of septicaemia. The pathogenic mechanism of chicken lung injury caused by the bacterium is unclear. Therefore, P. multocida Q (a reference standard strain isolated from chicken) and 1G1 (a clinic isolated strain from duck) were selected to infect chickens, establishing fowl cholera-induced laying hen models. Several important proteins involved in the process of lung injury were identified and quantified using immunohistochemistry and WB. The results showed that chicken lungs infected with bacteria for 24 h showed congestion and edema. The inflammatory factors HMGB1 and IL-6, intercellular matrix MMP, the cell apoptosis-associated caspase-3 and necrotic apoptosis signal molecules RIPK1 and RIPK3 were widely expressed in the lungs of group Q and were significantly different compared with those of 1G1 group and uninfected group (P < 0.05). The results indicated that RIPK1 and RIPK3 are involved in the injury process of chicken lungs after infection with P. multocida, and the mechanisms of lung injury induced by different strains are different.
Collapse
|
39
|
Hernández D, Alonso-Titos J, Armas-Padrón AM, Lopez V, Cabello M, Sola E, Fuentes L, Gutierrez E, Vazquez T, Jimenez T, Ruiz-Esteban P, Gonzalez-Molina M. Waiting List and Kidney Transplant Vascular Risk: An Ongoing Unmet Concern. Kidney Blood Press Res 2019; 45:1-27. [PMID: 31801144 DOI: 10.1159/000504546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/01/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is an important independent risk factor for adverse cardiovascular events in patients waitlisted for kidney transplantation (KT). Although KT reduces cardiovascular risk, these patients still have a higher all-cause and cardiovascular mortality than the general population. This concerning situation is due to a high burden of traditional and nontraditional risk factors as well as uremia-related factors and transplant-specific factors, leading to 2 differentiated processes under the framework of CKD, atherosclerosis and arteriosclerosis. These can be initiated by insults to the vascular endothelial endothelium, leading to vascular calcification (VC) of the tunica media or the tunica intima, which may coexist. Several pathogenic mechanisms such as inflammation-related endothelial dysfunction, mineral metabolism disorders, activation of the renin-angiotensin system, reduction of nitric oxide, lipid disorders, and the fibroblast growth factor 23-klotho axis are involved in the pathogenesis of atherosclerosis and arteriosclerosis, including VC. SUMMARY This review focuses on the current understanding of atherosclerosis and arteriosclerosis, both in patients on the waiting list as well as in kidney transplant recipients, emphasizing the cardiovascular risk factors in both populations and the inflammation-related pathogenic mechanisms. Key Message: The importance of cardiovascular risk factors and the pathogenic mechanisms related to inflammation in patients waitlisted for KT and kidney transplant recipients.
Collapse
Affiliation(s)
- Domingo Hernández
- Department of Nephrology, Carlos Haya Regional University Hospital and University of Malaga, IBIMA, REDinREN (RD16/0009/0006), Malaga, Spain,
| | - Juana Alonso-Titos
- Department of Nephrology, Carlos Haya Regional University Hospital and University of Malaga, IBIMA, REDinREN (RD16/0009/0006), Malaga, Spain
| | | | - Veronica Lopez
- Department of Nephrology, Carlos Haya Regional University Hospital and University of Malaga, IBIMA, REDinREN (RD16/0009/0006), Malaga, Spain
| | - Mercedes Cabello
- Department of Nephrology, Carlos Haya Regional University Hospital and University of Malaga, IBIMA, REDinREN (RD16/0009/0006), Malaga, Spain
| | - Eugenia Sola
- Department of Nephrology, Carlos Haya Regional University Hospital and University of Malaga, IBIMA, REDinREN (RD16/0009/0006), Malaga, Spain
| | - Laura Fuentes
- Department of Nephrology, Carlos Haya Regional University Hospital and University of Malaga, IBIMA, REDinREN (RD16/0009/0006), Malaga, Spain
| | - Elena Gutierrez
- Department of Nephrology, Carlos Haya Regional University Hospital and University of Malaga, IBIMA, REDinREN (RD16/0009/0006), Malaga, Spain
| | - Teresa Vazquez
- Department of Nephrology, Carlos Haya Regional University Hospital and University of Malaga, IBIMA, REDinREN (RD16/0009/0006), Malaga, Spain
| | - Tamara Jimenez
- Department of Nephrology, Carlos Haya Regional University Hospital and University of Malaga, IBIMA, REDinREN (RD16/0009/0006), Malaga, Spain
| | - Pedro Ruiz-Esteban
- Department of Nephrology, Carlos Haya Regional University Hospital and University of Malaga, IBIMA, REDinREN (RD16/0009/0006), Malaga, Spain
| | - Miguel Gonzalez-Molina
- Department of Nephrology, Carlos Haya Regional University Hospital and University of Malaga, IBIMA, REDinREN (RD16/0009/0006), Malaga, Spain
| |
Collapse
|
40
|
Baig MH, Baker A, Ashraf GM, Dong JJ. ASK1 and its role in cardiovascular and other disorders: available treatments and future prospects. Expert Rev Proteomics 2019; 16:857-870. [DOI: 10.1080/14789450.2019.1676735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mohammad Hassan Baig
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul, Republic of Korea
| | - Abu Baker
- Nanobiotechnology and nanomedicine lab, Department of Biosciences, Integral University, Lucknow, India
| | - Ghulam M Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jae-June Dong
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul, Republic of Korea
| |
Collapse
|
41
|
Benitez SG, Seltzer AM, Messina DN, Foscolo MR, Patterson SI, Acosta CG. Cutaneous inflammation differentially regulates the expression and function of Angiotensin-II types 1 and 2 receptors in rat primary sensory neurons. J Neurochem 2019; 152:675-696. [PMID: 31386177 DOI: 10.1111/jnc.14848] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/25/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022]
Abstract
Neuropathic and inflammatory pain results from cellular and molecular changes in dorsal root ganglion (DRG) neurons. The type-2 receptor for Angiotensin-II (AT2R) has been involved in this type of pain. However, the underlying mechanisms are poorly understood, including the role of the type-1 receptor for Angiotensin-II (AT1R). Here, we used a combination of immunohistochemistry and immunocytochemistry, RT-PCR and in vitro and in vivo pharmacological manipulation to examine how cutaneous inflammation affected the expression of AT1R and AT2R in subpopulations of rat DRG neurons and studied their impact on inflammation-induced neuritogenesis. We demonstrated that AT2R-neurons express C- or A-neuron markers, primarily IB4, trkA, and substance-P. AT1R expression was highest in small neurons and co-localized significantly with AT2R. In vitro, an inflammatory soup caused significant elevation of AT2R mRNA, whereas AT1R mRNA levels remained unchanged. In vivo, we found a unique pattern of change in the expression of AT1R and AT2R after cutaneous inflammation. AT2R increased in small neurons at 1 day and in medium size neurons at 4 days. Interestingly, cutaneous inflammation increased AT1R levels only in large neurons at 4 days. We found that in vitro and in vivo AT1R and AT2R acted co-operatively to regulate DRG neurite outgrowth. In vivo, AT2R inhibition impacted more on non-peptidergic C-neurons neuritogenesis, whereas AT1R blockade affected primarily peptidergic nerve terminals. Thus, cutaneous-induced inflammation regulated AT1R and AT2R expression and function in different DRG neuronal subpopulations at different times. These findings must be considered when targeting AT1R and AT2R to treat chronic inflammatory pain. Cover Image for this issue: doi: 10.1111/jnc.14737.
Collapse
Affiliation(s)
- Sergio G Benitez
- Laboratorio de Neurobiología del Dolor, Instituto de Histología y Embriología de Mendoza (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Alicia M Seltzer
- Laboratorio de Neurobiología, Instituto de Embriología e Histología (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Diego N Messina
- Laboratorio de Neurobiología del Dolor, Instituto de Histología y Embriología de Mendoza (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Mabel R Foscolo
- Laboratorio de Neurobiología del Dolor, Instituto de Histología y Embriología de Mendoza (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Sean I Patterson
- Departamento de Morfofisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Histología y Embriología - CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Cristian G Acosta
- Laboratorio de Neurobiología del Dolor, Instituto de Histología y Embriología de Mendoza (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
42
|
Wolf P, Beiglböck H, Fellinger P, Pfleger L, Aschauer S, Gessl A, Marculescu R, Trattnig S, Kautzky-Willer A, Luger A, Winhofer Y, Krššák M, Krebs M. Plasma renin levels are associated with cardiac function in primary adrenal insufficiency. Endocrine 2019; 65:399-407. [PMID: 31177424 PMCID: PMC6656897 DOI: 10.1007/s12020-019-01974-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Despite adequate glucocorticoid (GC) and mineralocorticoid (MC) replacement therapy, primary adrenal insufficiency (AI) is associated with an increased mortality, mainly due to cardiovascular disease. The role of MC replacement is not known. Therefore, we assessed whether renin concentrations during routine GC and MC substitution therapy are associated with heart function and morphology. METHODS Thirty two patients with primary AI were included in a cross-sectional case-control study. In total, 17 patients and 34 healthy controls (age: 48 ± 12 vs. 46 ± 18 years; BMI: 23 ± 3 vs. 24 ± 3 kg/m2) underwent magnetic resonance spectroscopy and imaging measurements to assess cardiac function, morphology, ectopic lipids, and visceral/subcutaneous fat mass. Patients were divided according to their actual plasma renin concentration at the study visit (Actual-Reninlow vs. Actual-Reninhigh) and their median plasma renin concentration of previous visits (Median-Reninlow vs. Median-Reninhigh). RESULTS Ejection fraction was higher (67 ± 5 vs. 55 ± 3%; p = 0.001) and left ventricular mass was lower (60 ± 9 vs. 73 ± 10 g/m2; p = 0.025) in Actual-Reninhigh. Median-Reninhigh was associated with lower cardiac mass (64 ± 9 vs. 76 ± 11 g/m2; p = 0.029). Blood pressure, glucose, and lipid metabolism, as well as ectopic lipid content, pericardial fat mass, and visceral/subcutaneous fat were not different between the groups. Compared with controls, ejection fraction was significantly lower in patients with AI (56 ± 4 vs. 63 ± 8%; p = 0.019). No differences were found in patients with ≤20 mg compared with >20 mg of hydrocortisone per day. CONCLUSIONS Higher renin concentrations are associated with more favorable cardiac function and morphology in patients with primary AI.
Collapse
Affiliation(s)
- Peter Wolf
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Hannes Beiglböck
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Paul Fellinger
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lorenz Pfleger
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Centre of Excellence - High Field MR, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Stefan Aschauer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Alois Gessl
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- Centre of Excellence - High Field MR, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Anton Luger
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Yvonne Winhofer
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Centre of Excellence - High Field MR, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Krebs
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
43
|
Xin H, Wang Z, Wu S, Wang P, Tao X, Xu C, You L. Calcified decellularized arterial scaffolds impact vascular smooth muscle cell transformation via downregulating α-SMA expression and upregulating OPN expression. Exp Ther Med 2019; 18:705-710. [PMID: 31281450 DOI: 10.3892/etm.2019.7626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
The underlying mechanisms of arterial remodeling (AR) remain unclear. Studies have indicated that decellularized scaffolds stimulate the differentiation of fibroblasts into myofibroblasts and promote the accumulation of the extracellular matrix (ECM). In the present study, the impact of ECM changes following AR on vascular smooth muscle cell (VSMC) phenotypes was investigated. VSMCs were co-cultured with normal or calcified decellularized arterial scaffolds. The expression levels of α-smooth muscle actin (α-SMA) and osteopontin (OPN) were measured at 2, 5, 10, 15 and 21 days following the establishment of the co-culture systems. The expression of α-SMA in the normal co-culture group was significantly increased compared with that in the calcified arterial decellularized scaffold co-culture group (P<0.05 and P<0.001). In addition, the expression of OPN in the AR co-culture group was significantly increased compared with the normal co-culture group (P<0.05 and P<0.001). To conclude, the calcified decellularized arterial scaffolds impact VSMC transformation by downregulating α-SMA expression and upregulating OPN expression (P<0.001). To the best of our knowledge, the present study is the first study that co-cultured VSMCs with normal or calcified decellularized arterial scaffolds.
Collapse
Affiliation(s)
- Huaping Xin
- Department of Geriatrics, The People's Hospital of Yichun City, Yichun, Jiangxi 336000, P.R. China
| | - Zhimin Wang
- Department of Neurology, Taizhou First People's Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Shuwu Wu
- Department of Geriatrics, The People's Hospital of Yichun City, Yichun, Jiangxi 336000, P.R. China
| | - Peng Wang
- Department of Neurology, Taizhou First People's Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Xiaoxiao Tao
- Department of Neurology, Taizhou First People's Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Chenhua Xu
- Department of Neurology, Taizhou First People's Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Liling You
- Department of Neurology, Taizhou First People's Hospital, Taizhou, Zhejiang 318000, P.R. China
| |
Collapse
|
44
|
Amin F, Ahmed A, Feroz A, Khaki PSS, Khan MS, Tabrez S, Zaidi SK, Abdulaal WH, Shamsi A, Khan W, Bano B. An Update on the Association of Protein Kinases with Cardiovascular Diseases. Curr Pharm Des 2019; 25:174-183. [DOI: 10.2174/1381612825666190312115140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
Background:
Protein kinases are the enzymes involved in phosphorylation of different proteins which
leads to functional changes in those proteins. They belong to serine-threonine kinases family and are classified
into the AGC (Protein kinase A/ Protein kinase G/ Protein kinase C) families of protein and Rho-associated
kinase protein (ROCK). The AGC family of kinases are involved in G-protein stimuli, muscle contraction, platelet
biology and lipid signaling. On the other hand, ROCK regulates actin cytoskeleton which is involved in the
development of stress fibres. Inflammation is the main signal in all ROCK-mediated disease. It triggers the cascade
of a reaction involving various proinflammatory cytokine molecules.
Methods:
Two ROCK isoforms are found in mammals and invertebrates. The first isoforms are present mainly in
the kidney, lung, spleen, liver, and testis. The second one is mainly distributed in the brain and heart.
Results:
ROCK proteins are ubiquitously present in all tissues and are involved in many ailments that include
hypertension, stroke, atherosclerosis, pulmonary hypertension, vasospasm, ischemia-reperfusion injury and heart
failure. Several ROCK inhibitors have shown positive results in the treatment of various disease including cardiovascular
diseases.
Conclusion:
ROCK inhibitors, fasudil and Y27632, have been reported for significant efficiency in dropping
vascular smooth muscle cell hyper-contraction, vascular inflammatory cell recruitment, cardiac remodelling and
endothelial dysfunction which highlight ROCK role in cardiovascular diseases.
Collapse
Affiliation(s)
- Fakhra Amin
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Azaj Ahmed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Anna Feroz
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | | | - Mohd Shahnwaz Khan
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shams Tabrez
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Kashif Zaidi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wesam H. Abdulaal
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anas Shamsi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Wajihullah Khan
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Bilqees Bano
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| |
Collapse
|
45
|
Wang L, Liu C, Chen X, Li P. Alamandine attenuates long‑term hypertension‑induced cardiac fibrosis independent of blood pressure. Mol Med Rep 2019; 19:4553-4560. [PMID: 31059021 PMCID: PMC6522836 DOI: 10.3892/mmr.2019.10167] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 12/20/2018] [Indexed: 11/06/2022] Open
Abstract
Cardiac fibrosis secondary to long‑term hypertension is known to promote cardiac dysfunction; however, few therapeutic agents are available for the treatment of this condition in clinical practice. The heptapeptide alamandine (Ala) has recently been identified as a component of the renin‑angiotensin system (RAS), which exerts a protective effect against cardiac hypertrophy; however, it is unknown whether Ala may also be useful for the treatment of cardiac fibrosis. In the present study, the potential therapeutic effects of Ala on long‑term hypertension‑induced cardiac fibrosis were investigated in an aged, spontaneous hypertensive rat model. Weekly blood pressure (BP) measurements revealed that daily Ala treatment significantly decreased the systolic, diastolic and mean arterial BP compared with the control. Of note, the observed reduction in BP in Ala‑treated animals markedly differed to that observed in rats treated with hydralazine (Hyd). Echocardiography further demonstrated that Ala treatment decreased the ratio of left ventricle mass to body weight, and alleviated structural and functional parameters associated with cardiac fibrosis, including left ventricular volume, ejection fraction and fractional shortening compared with the control and Hyd‑treated groups. Furthermore, Ala deceased the density of cardiac fibrosis, as assessed by Masson and Sirius red staining; reduced expression of fibrotic proteins, including connective tissue growth factor, collagen I (COL1A1) and matrix metalloproteinase 9, was also observed. In addition, Ala treatment further decreased the expression of angiotensin II‑induced fibrotic markers at the mRNA and protein levels in cultured cardiac fibroblasts; Ala‑mediated inhibition of COL1A1 expression and Akt phosphorylation was inhibited via the Mas‑related G protein receptor antagonist, PD123319. Collectively, the findings of the present study suggest that Ala is an effective anti‑hypertensive peptide that can attenuate cardiac dysfunction and fibrosis induced by chronic hypertension, independent of BP.
Collapse
Affiliation(s)
- Lan Wang
- Department of Cardiology, Jiangsu Province Geriatric Hospital, Nanjing Medical University, Nanjing, Jiangsu 210024, P.R. China
| | - Chi Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiru Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
46
|
Liao W, Fan H, Davidge ST, Wu J. Egg White-Derived Antihypertensive Peptide IRW (Ile-Arg-Trp) Reduces Blood Pressure in Spontaneously Hypertensive Rats via the ACE2/Ang (1-7)/Mas Receptor Axis. Mol Nutr Food Res 2019; 63:e1900063. [PMID: 30913349 PMCID: PMC6594022 DOI: 10.1002/mnfr.201900063] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/04/2019] [Indexed: 01/19/2023]
Abstract
Scope It is found in the previous study that egg‐white‐derived antihypertensive peptide Ile‐Arg‐Trp (IRW) upregulated angiotensin converting enzyme 2 (ACE2) in spontaneously hypertensive rats (SHRs). The objective of this study is to evaluate the contribution of ACE2 activation by IRW to blood‐pressure‐lowering activity in vivo. Methods and results Adult male SHRs (13–15 week old) are assigned into four groups: 1) untreated with saline infusion; 2) IRW administration (15 mg per kg body weight) with saline infusion; 3) Mas receptor (MasR) antagonist A779 (48 µg per kg body weight per h) infusion; 4) A779 infusion and IRW. Animals are implanted with telemetry transmitter first, and then an osmotic pump filled with saline or A779 is implanted. A779/saline is infused for 7 days, continued with an additional 7 days of treatments. Results indicate that blocking MasR abolished the blood‐pressure‐lowering effect of IRW. Akt/eNOS signaling in aorta is upregulated by IRW treatment but deactivated by A779 infusion. Circulating levels of interleukin 6 and monocyte chemoattractant protein 1, along with cyclooxygenase 2 in aorta are reduced by IRW but restored by A779 infusion. Conclusion IRW reduces blood pressure of SHR via the ACE2/Ang (1‐7)/MasR axis. Mechanisms pertaining to IRW as an ACE2 activator in vivo include enhanced endothelium‐dependent vasorelaxation and reduced vascular inflammation.
Collapse
Affiliation(s)
- Wang Liao
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5.,Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada, T6G 2R7
| | - Hongbing Fan
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5.,Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada, T6G 2R7
| | - Sandra T Davidge
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada, T6G 2R7.,Department of Obstetrics & Gynecology, University of Alberta, Edmonton, AB, Canada, T6G 2R7.,Department of Physiology, University of Alberta, Edmonton, AB, Canada, T6G 2R7.,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada, T6G 2R7
| | - Jianping Wu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5.,Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada, T6G 2R7
| |
Collapse
|
47
|
Ma Y, Hu Y, Wu J, Wen J, Li S, Zhang L, Zhang J, Li Y, Li J. Epigallocatechin-3-gallate inhibits angiotensin II-induced cardiomyocyte hypertrophy via regulating Hippo signaling pathway in H9c2 rat cardiomyocytes. Acta Biochim Biophys Sin (Shanghai) 2019; 51:422-430. [PMID: 30877756 DOI: 10.1093/abbs/gmz018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/20/2022] Open
Abstract
Angiotensin II (AII) has been well known to induce cardiomyocyte hypertrophy. Epigallocatechin-3-gallate (EGCG) is the main active component of green tea and it has been shown to exhibit strong cardioprotective potential, although the underlying molecular mechanisms remain unclear. In this study, we investigated the role and mechanism of EGCG in preventing AII-induced cardiomyocyte hypertrophy using rat H9c2 cardiomyocytes cells. Reactive oxygen species assay, cell size, and mRNA expression of cardiac hypertrophy markers ANP and BNP were assessed in response to AII treatment. In addition, expression of proteins involved in Hippo signaling pathway were determined by western blot analysis. We found that AII treatment resulted in significant upregulation of ANP and BNP expression levels and increase in H9c2 cell size, which were markedly attenuated by EGCG treatment. Furthermore, our results suggested that EGCG inhibited AII-induced cardiac hypertrophy via regulating the Hippo signaling pathway. Therefore, EGCG may be an effective agent for preventing cardiac hypertrophy.
Collapse
Affiliation(s)
- Yuan Ma
- Institute of Clinical Epidemiology and Evidence-Based Medicine, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai, China
| | - Yongjia Hu
- Institute of Clinical Epidemiology and Evidence-Based Medicine, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai, China
| | - Jiawen Wu
- Institute of Clinical Epidemiology and Evidence-Based Medicine, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai, China
| | - Junru Wen
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sen Li
- Institute of Clinical Epidemiology and Evidence-Based Medicine, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai, China
| | - Lijuan Zhang
- Institute of Clinical Epidemiology and Evidence-Based Medicine, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai, China
| | - Jie Zhang
- Institute of Clinical Epidemiology and Evidence-Based Medicine, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai, China
| | - Yanfei Li
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jue Li
- Institute of Clinical Epidemiology and Evidence-Based Medicine, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
48
|
Hoffmann S, Mullins L, Buckley C, Rider S, Mullins J. Investigating the RAS can be a fishy business: interdisciplinary opportunities using Zebrafish. Clin Sci (Lond) 2018; 132:2469-2481. [PMID: 30518571 PMCID: PMC6279434 DOI: 10.1042/cs20180721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
Abstract
The renin-angiotensin system (RAS) is highly conserved, and components of the RAS are present in all vertebrates to some degree. Although the RAS has been studied since the discovery of renin, its biological role continues to broaden with the identification and characterization of new peptides. The evolutionarily distant zebrafish is a remarkable model for studying the kidney due to its genetic tractability and accessibility for in vivo imaging. The zebrafish pronephros is an especially useful kidney model due to its structural simplicity yet complex functionality, including capacity for glomerular and tubular filtration. Both the pronephros and mesonephros contain renin-expressing perivascular cells, which respond to RAS inhibition, making the zebrafish an excellent model for studying the RAS. This review summarizes the physiological and genetic tools currently available for studying the zebrafish kidney with regards to functionality of the RAS, using novel imaging techniques such as SPIM microscopy coupled with targeted single cell ablation and synthesis of vasoactive RAS peptides.
Collapse
Affiliation(s)
- Scott Hoffmann
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Linda Mullins
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Charlotte Buckley
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Sebastien Rider
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - John Mullins
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K.
| |
Collapse
|
49
|
ALUminating the Path of Atherosclerosis Progression: Chaos Theory Suggests a Role for Alu Repeats in the Development of Atherosclerotic Vascular Disease. Int J Mol Sci 2018; 19:ijms19061734. [PMID: 29895733 PMCID: PMC6032270 DOI: 10.3390/ijms19061734] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/04/2018] [Accepted: 06/09/2018] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis (ATH) and coronary artery disease (CAD) are chronic inflammatory diseases with an important genetic background; they derive from the cumulative effect of multiple common risk alleles, most of which are located in genomic noncoding regions. These complex diseases behave as nonlinear dynamical systems that show a high dependence on their initial conditions; thus, long-term predictions of disease progression are unreliable. One likely possibility is that the nonlinear nature of ATH could be dependent on nonlinear correlations in the structure of the human genome. In this review, we show how chaos theory analysis has highlighted genomic regions that have shared specific structural constraints, which could have a role in ATH progression. These regions were shown to be enriched with repetitive sequences of the Alu family, genomic parasites that have colonized the human genome, which show a particular secondary structure and are involved in the regulation of gene expression. Here, we show the impact of Alu elements on the mechanisms that regulate gene expression, especially highlighting the molecular mechanisms via which the Alu elements alter the inflammatory response. We devote special attention to their relationship with the long noncoding RNA (lncRNA); antisense noncoding RNA in the INK4 locus (ANRIL), a risk factor for ATH; their role as microRNA (miRNA) sponges; and their ability to interfere with the regulatory circuitry of the (nuclear factor kappa B) NF-κB response. We aim to characterize ATH as a nonlinear dynamic system, in which small initial alterations in the expression of a number of repetitive elements are somehow amplified to reach phenotypic significance.
Collapse
|
50
|
O’Connor AT, Clark MA. Astrocytes and the Renin Angiotensin System: Relevance in Disease Pathogenesis. Neurochem Res 2018; 43:1297-1307. [DOI: 10.1007/s11064-018-2557-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/21/2018] [Accepted: 05/23/2018] [Indexed: 12/29/2022]
|