1
|
Jordan J, Tank J, Heusser K, Reuter H. Baroreflex activation therapy through electrical carotid sinus stimulation. Auton Neurosci 2024; 256:103219. [PMID: 39549378 DOI: 10.1016/j.autneu.2024.103219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
An imbalance between cardiovascular parasympathetic and sympathetic activity towards sympathetic predominance has been implicated in the pathogenesis of treatment-resistant arterial hypertension and heart failure. Arterial baroreceptors control efferent cardiovascular autonomic activity and have, therefore, been recognized as potential treatment targets. Baroreflex activation therapy through electrical carotid sinus stimulation is a device-based approach to modulate cardiovascular autonomic activity. Electrical carotid sinus stimulation lowered blood pressure in various hypertensive animal models and improved cardiac remodeling and survival in preclinical models of heart failure. In human mechanistic profiling studies, electrical carotid sinus stimulation lowered blood pressure through sympathetic inhibition with substantial inter-individual variability. The first-generation device reduced blood pressure in controlled and uncontrolled clinical trials. Controlled clinical trials proving efficacy in blood pressure reduction in patients with hypertension do not exist for the currently available second-generation carotid sinus stimulator. Investigations in heart failure patients showed improved symptoms, quality of life, and natriuretic peptide biomarkers. Electrical carotid sinus stimulation is an interesting technology to modulate cardiovascular autonomic control. However, controlled trials with hard clinical endpoints are required.
Collapse
Affiliation(s)
- Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany.
| | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Karsten Heusser
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Hannes Reuter
- Department for Cardiology, Angiology, Pneumology and Intensive Care Medicine, University of Cologne, Germany; Department of Cardiology and Intensive Care Medicine, Ev. Krankenhaus Köln-Weyertal, Cologne, Germany
| |
Collapse
|
2
|
Parvanova A, Reseghetti E, Abbate M, Ruggenenti P. Mechanisms and treatment of obesity-related hypertension-Part 1: Mechanisms. Clin Kidney J 2024; 17:sfad282. [PMID: 38186879 PMCID: PMC10768772 DOI: 10.1093/ckj/sfad282] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Indexed: 01/09/2024] Open
Abstract
The prevalence of obesity has tripled over the past five decades. Obesity, especially visceral obesity, is closely related to hypertension, increasing the risk of primary (essential) hypertension by 65%-75%. Hypertension is a major risk factor for cardiovascular disease, the leading cause of death worldwide, and its prevalence is rapidly increasing following the pandemic rise in obesity. Although the causal relationship between obesity and high blood pressure (BP) is well established, the detailed mechanisms for such association are still under research. For more than 30 years sympathetic nervous system (SNS) and kidney sodium reabsorption activation, secondary to insulin resistance and compensatory hyperinsulinemia, have been considered as primary mediators of elevated BP in obesity. However, experimental and clinical data show that severe insulin resistance and hyperinsulinemia can occur in the absence of elevated BP, challenging the causal relationship between insulin resistance and hyperinsulinemia as the key factor linking obesity to hypertension. The purpose of Part 1 of this review is to summarize the available data on recently emerging mechanisms believed to contribute to obesity-related hypertension through increased sodium reabsorption and volume expansion, such as: physical compression of the kidney by perirenal/intrarenal fat and overactivation of the systemic/renal SNS and the renin-angiotensin-aldosterone system. The role of hyperleptinemia, impaired chemoreceptor and baroreceptor reflexes, and increased perivascular fat is also discussed. Specifically targeting these mechanisms may pave the way for a new therapeutic intervention in the treatment of obesity-related hypertension in the context of 'precision medicine' principles, which will be discussed in Part 2.
Collapse
Affiliation(s)
- Aneliya Parvanova
- Department of Renal Medicine, Clinical Research Centre for Rare Diseases “Aldo e Cele Daccò”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Elia Reseghetti
- Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Manuela Abbate
- Research Group on Global Health, University of the Balearic Islands, Palma, Spain
- Research Group on Global Health and Lifestyle, Health Research Institutte of the Balearic Islands (IdISBa), Palma, Spain
| | - Piero Ruggenenti
- Department of Renal Medicine, Clinical Research Centre for Rare Diseases “Aldo e Cele Daccò”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
- Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
3
|
Carnagarin R, Tan K, Adams L, Matthews VB, Kiuchi MG, Marisol Lugo Gavidia L, Lambert GW, Lambert EA, Herat LY, Schlaich MP. Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD)-A Condition Associated with Heightened Sympathetic Activation. Int J Mol Sci 2021; 22:ijms22084241. [PMID: 33921881 PMCID: PMC8073135 DOI: 10.3390/ijms22084241] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common liver disease affecting a quarter of the global population and is often associated with adverse health outcomes. The increasing prevalence of MAFLD occurs in parallel to that of metabolic syndrome (MetS), which in fact plays a major role in driving the perturbations of cardiometabolic homeostasis. However, the mechanisms underpinning the pathogenesis of MAFLD are incompletely understood. Compelling evidence from animal and human studies suggest that heightened activation of the sympathetic nervous system is a key contributor to the development of MAFLD. Indeed, common treatment strategies for metabolic diseases such as diet and exercise to induce weight loss have been shown to exert their beneficial effects at least in part through the associated sympathetic inhibition. Furthermore, pharmacological and device-based approaches to reduce sympathetic activation have been demonstrated to improve the metabolic alterations frequently present in patients with obesity, MetSand diabetes. Currently available evidence, while still limited, suggests that sympathetic activation is of specific relevance in the pathogenesis of MAFLD and consequentially may offer an attractive therapeutic target to attenuate the adverse outcomes associated with MAFLD.
Collapse
Affiliation(s)
- Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine—Royal Perth Hospital Unit, RPH Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA 6000, Australia; (R.C.); (K.T.); (V.B.M.); (M.G.K.); (L.M.L.G.); (L.Y.H.)
| | - Kearney Tan
- Dobney Hypertension Centre, School of Medicine—Royal Perth Hospital Unit, RPH Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA 6000, Australia; (R.C.); (K.T.); (V.B.M.); (M.G.K.); (L.M.L.G.); (L.Y.H.)
| | - Leon Adams
- Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA 6009, Australia;
| | - Vance B. Matthews
- Dobney Hypertension Centre, School of Medicine—Royal Perth Hospital Unit, RPH Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA 6000, Australia; (R.C.); (K.T.); (V.B.M.); (M.G.K.); (L.M.L.G.); (L.Y.H.)
| | - Marcio G. Kiuchi
- Dobney Hypertension Centre, School of Medicine—Royal Perth Hospital Unit, RPH Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA 6000, Australia; (R.C.); (K.T.); (V.B.M.); (M.G.K.); (L.M.L.G.); (L.Y.H.)
| | - Leslie Marisol Lugo Gavidia
- Dobney Hypertension Centre, School of Medicine—Royal Perth Hospital Unit, RPH Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA 6000, Australia; (R.C.); (K.T.); (V.B.M.); (M.G.K.); (L.M.L.G.); (L.Y.H.)
| | - Gavin W. Lambert
- Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (G.W.L.); (E.A.L.)
- Human Neurotransmitter Lab, Melbourne, VIC 3004, Australia
| | - Elisabeth A. Lambert
- Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (G.W.L.); (E.A.L.)
- Human Neurotransmitter Lab, Melbourne, VIC 3004, Australia
| | - Lakshini Y. Herat
- Dobney Hypertension Centre, School of Medicine—Royal Perth Hospital Unit, RPH Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA 6000, Australia; (R.C.); (K.T.); (V.B.M.); (M.G.K.); (L.M.L.G.); (L.Y.H.)
| | - Markus P. Schlaich
- Dobney Hypertension Centre, School of Medicine—Royal Perth Hospital Unit, RPH Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA 6000, Australia; (R.C.); (K.T.); (V.B.M.); (M.G.K.); (L.M.L.G.); (L.Y.H.)
- Neurovascular Hypertension and Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, WA 6000, Australia
- Correspondence: ; Tel.: +61-8-9224-0382; Fax: +61-8-9224-0374
| |
Collapse
|
4
|
Clemmer JS, Pruett WA, Hester RL. In silico trial of baroreflex activation therapy for the treatment of obesity-induced hypertension. PLoS One 2021; 16:e0259917. [PMID: 34793497 PMCID: PMC8601446 DOI: 10.1371/journal.pone.0259917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022] Open
Abstract
Clinical trials evaluating the efficacy of chronic electrical stimulation of the carotid baroreflex for the treatment of hypertension (HTN) are ongoing. However, the mechanisms by which this device lowers blood pressure (BP) are unclear, and it is uncertain which patients are most likely to receive clinical benefit. Mathematical modeling provides the ability to analyze complicated interrelated effects across multiple physiological systems. Our current model HumMod is a large physiological simulator that has been used previously to investigate mechanisms responsible for BP lowering during baroreflex activation therapy (BAT). First, we used HumMod to create a virtual population in which model parameters (n = 335) were randomly varied, resulting in unique models (n = 6092) that we define as a virtual population. This population was calibrated using data from hypertensive obese dogs (n = 6) subjected to BAT. The resultant calibrated virtual population (n = 60) was based on tuning model parameters to match the experimental population in 3 key variables: BP, glomerular filtration rate, and plasma renin activity, both before and after BAT. In the calibrated population, responses of these 3 key variables to chronic BAT were statistically similar to experimental findings. Moreover, blocking suppression of renal sympathetic nerve activity (RSNA) and/or increased secretion of atrial natriuretic peptide (ANP) during BAT markedly blunted the antihypertensive response in the virtual population. These data suggest that in obesity-mediated HTN, RSNA and ANP responses are key factors that contribute to BP lowering during BAT. This modeling approach may be of value in predicting BAT responses in future clinical studies.
Collapse
Affiliation(s)
- John S. Clemmer
- Department of Physiology and Biophysics, Center for Computational Medicine, University of Mississippi Medical Center, Jackson, MS, United States of America
- * E-mail:
| | - W. Andrew Pruett
- Department of Physiology and Biophysics, Center for Computational Medicine, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Robert L. Hester
- Department of Physiology and Biophysics, Center for Computational Medicine, University of Mississippi Medical Center, Jackson, MS, United States of America
- Department of Data Sciences, John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, MS, United States of America
| |
Collapse
|
5
|
Biaggioni I, Shibao CA, Diedrich A, Muldowney JAS, Laffer CL, Jordan J. Blood Pressure Management in Afferent Baroreflex Failure: JACC Review Topic of the Week. J Am Coll Cardiol 2020; 74:2939-2947. [PMID: 31806138 DOI: 10.1016/j.jacc.2019.10.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Abstract
Afferent baroreflex failure is most often due to damage of the carotid sinus nerve because of neck surgery or radiation. The clinical picture is characterized by extreme blood pressure lability with severe hypertensive crises, hypotensive episodes, and orthostatic hypotension, making it the most difficult form of hypertension to manage. There is little evidence-based data to guide treatment. Recommendations rely on understanding the underlying pathophysiology, relevant clinical pharmacology, and anecdotal experience. The goal of treatment should be improving quality of life rather than normalization of blood pressure, which is rarely achievable. Long-acting central sympatholytic drugs are the mainstay of treatment, used at the lowest doses that prevent the largest hypertensive surges. Short-acting clonidine should be avoided because of rebound hypertension, but can be added to control residual hypertensive episodes, often triggered by mental stress or exertion. Hypotensive episodes can be managed with countermeasures and short-acting pressor agents if necessary.
Collapse
Affiliation(s)
- Italo Biaggioni
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Autonomic Dysfunction Center, Nashville, Tennessee.
| | - Cyndya A Shibao
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Autonomic Dysfunction Center, Nashville, Tennessee
| | - André Diedrich
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Autonomic Dysfunction Center, Nashville, Tennessee
| | - James A S Muldowney
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Autonomic Dysfunction Center, Nashville, Tennessee; Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cheryl L Laffer
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany; Aerospace Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Zhong B, Ma S, Wang DH. Ablation of TRPV1 Elevates Nocturnal Blood Pressure in Western Diet-fed Mice. Curr Hypertens Rev 2020; 15:144-153. [PMID: 30381083 PMCID: PMC6635649 DOI: 10.2174/1573402114666181031141840] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/24/2018] [Accepted: 10/24/2018] [Indexed: 12/28/2022]
Abstract
Background: This study tested the hypothesis that genetically ablation of transient receptor potential vanilloid type 1 (TRPV1) exacerbates impairment of baroreflex in mice fed a western diet (WD) and leads to distinct diurnal and nocturnal blood pressure patterns. Methods: TRPV1 gene knockout (TRPV1-/-) and wild-type (WT) mice were given a WD or normal diet (CON) for 4 months. Results: Capsaicin, a selective TRPV1 agonist, increased ipsilateral afferent renal nerve activity in WT but not TRPV1-/- mice. The sensitivity of renal sympathetic nerve activity and heart rate responses to baroreflex were reduced in TRPV1-/--CON and WT-WD and further decreased in TRPV1-/--WD compared to the WT-CON group. Urinary norepinephrine and serum insulin and leptin at day and night were increased in WT-WD and TRPV1-/--WD, with further elevation at night in TRPV1-/--WD. WD intake increased leptin, IL-6, and TNF-α in adipose tissue, and TNF-α antagonist III, R-7050, decreased leptin in TRPV1-/--WD. The urinary albumin level was higher in TRPV1-/--WD than WT-WD. Blood pressure was not dif-ferent during daytime among all groups, but increased at night in the TRPV1-/--WD group compared with other groups. Conclusions: TRPV1 ablation leads to elevated nocturnal but not diurnal blood pressure, which is probably attributed to fur-ther enhancement of sympathetic drives at night.
Collapse
Affiliation(s)
- Beihua Zhong
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, Michigan MI 48824, United States
| | - Shuangtao Ma
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, Michigan MI 48824, United States
| | - Donna H Wang
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, Michigan MI 48824, United States.,Neuroscience Program, Michigan State University, East Lansing, Michigan MI 48824, United States.,Cell & Molecular Biology Program, Michigan State University, East Lansing, Michigan MI 48824, United States
| |
Collapse
|
7
|
Wiener A, Goldstein P, Alkoby O, Doenyas K, Okon‐Singer H. Blood pressure reaction to negative stimuli: Insights from continuous recording and analysis. Psychophysiology 2020; 57:e13525. [PMID: 31922263 PMCID: PMC7078923 DOI: 10.1111/psyp.13525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 11/29/2022]
Abstract
Individuals with a tendency toward abnormally enhanced cardiovascular responses to stress are at greater risk of developing essential hypertension later in life. Accurate profiling of continuous blood pressure (BP) reactions in healthy populations is crucial for understanding normal and abnormal emotional reaction patterns. To this end, we examined the continuous time course of BP reactions to aversive pictures among healthy participants. In two experiments, we showed participants negative and neutral pictures while simultaneously measuring their continuous BP and heart rate (HR) reactions. In this study, BP reactions were analyzed continuously, in contrast to previous studies, in which BP responses were averaged across blocks. To compare time points along a temporal continuum, we applied a multi-level B-spline model, which is innovative in the context of BP analysis. Additionally, HR was similarly analyzed in order to examine its correlation with BP. Both experiments revealed a similar pattern of BP reactivity and association with HR. In line with previous studies, a decline in BP and HR levels was found in response to negative pictures compared to neutral pictures. In addition, in both conditions, we found an unexpected elevation of BP toward the end of the stimuli exposure period. These findings may be explained by the recruitment of attention resources in the presence of negative stimuli, which is alleviated toward the end of the stimulation. This study highlights the importance of continuous measurement and analysis for characterizing the time course of BP reactivity to emotional stimuli.
Collapse
Affiliation(s)
- Avigail Wiener
- Department of PsychologyUniversity of HaifaHaifaIsrael
- The Integrated Brain and Behavior Research Center (IBBR)University of HaifaHaifaIsrael
| | - Pavel Goldstein
- Department of Psychology and Neuroscience and the Institute for Cognitive ScienceUniversity of Colorado BoulderBoulderColorado USA
- School of Public HealthUniversity of HaifaHaifaIsrael
| | - Oren Alkoby
- Department of PsychologyUniversity of HaifaHaifaIsrael
- The Integrated Brain and Behavior Research Center (IBBR)University of HaifaHaifaIsrael
| | - Keren Doenyas
- Department of Nephrology and HypertensionAssaf Harofeh Medical Center, Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
- Sagol Center for Hyperbaric Medicine and ResearchAssaf Harofeh Medical CenterTel‐Aviv UniversityTel‐AvivIsrael
| | - Hadas Okon‐Singer
- Department of PsychologyUniversity of HaifaHaifaIsrael
- The Integrated Brain and Behavior Research Center (IBBR)University of HaifaHaifaIsrael
| |
Collapse
|
8
|
DeLalio LJ, Sved AF, Stocker SD. Sympathetic Nervous System Contributions to Hypertension: Updates and Therapeutic Relevance. Can J Cardiol 2020; 36:712-720. [PMID: 32389344 DOI: 10.1016/j.cjca.2020.03.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
The sympathetic nervous system plays a pivotal role in the long-term regulation of arterial blood pressure through the ability of the central nervous system to integrate neurohumoral signals and differentially regulate sympathetic neural input to specific end organs. Part 1 of this review will discuss neural mechanisms of salt-sensitive hypertension, obesity-induced hypertension, and the ability of prior experiences to sensitize autonomic networks. Part 2 of this review focuses on new therapeutic advances to treat resistant hypertension including renal denervation and carotid baroactivation. Both advances lower arterial blood pressure by reducing sympathetic outflow. We discuss potential mechanisms and areas of future investigation to target the sympathetic nervous system.
Collapse
Affiliation(s)
- Leon J DeLalio
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan F Sved
- Department of Neuroscience, University of Pittsburgh, Pennsylvania, USA
| | - Sean D Stocker
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
9
|
Abstract
Despite availability of effective drugs for hypertension therapy, significant numbers of hypertensive patients fail to achieve recommended blood pressure levels on ≥3 antihypertensive drugs of different classes. These individuals have a high prevalence of adverse cardiovascular events and are defined as having resistant hypertension (RHT) although nonadherence to prescribed antihypertensive medications is common in patients with apparent RHT. Furthermore, apparent and true RHT often display increased sympathetic activity. Based on these findings, technology was developed to treat RHT by suppressing sympathetic activity with electrical stimulation of the carotid baroreflex and catheter-based renal denervation (RDN). Over the last 15 years, experimental and clinical studies have provided better understanding of the physiological mechanisms that account for blood pressure lowering with baroreflex activation and RDN and, in so doing, have provided insight into which patients in this heterogeneous hypertensive population are most likely to respond favorably to these device-based therapies. Experimental studies have also played a role in modifying device technology after early clinical trials failed to meet key endpoints for safety and efficacy. At the same time, these studies have exposed potential differences between baroreflex activation and RDN and common challenges that will likely impact antihypertensive treatment and clinical outcomes in patients with RHT. In this review, we emphasize physiological studies that provide mechanistic insights into blood pressure lowering with baroreflex activation and RDN in the context of progression of clinical studies, which are now at a critical point in determining their fate in RHT management.
Collapse
Affiliation(s)
- Thomas E Lohmeier
- From the Department of Physiology and Biophysics (T.E.L., J.E.H.), University of Mississippi Medical Center, Jackson
| | - John E Hall
- From the Department of Physiology and Biophysics (T.E.L., J.E.H.), University of Mississippi Medical Center, Jackson.,Mississippi Center for Obesity Research (J.E.H.), University of Mississippi Medical Center, Jackson
| |
Collapse
|
10
|
Gatineau E, Gong MC, Yiannikouris F. Soluble Prorenin Receptor Increases Blood Pressure in High Fat-Fed Male Mice. Hypertension 2019; 74:1014-1020. [PMID: 31378099 PMCID: PMC6739191 DOI: 10.1161/hypertensionaha.119.12906] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/25/2019] [Indexed: 01/13/2023]
Abstract
Obesity-related hypertension is a major public health concern. We recently demonstrated that plasma levels of the soluble form of the prorenin receptor (sPRR) were elevated in obesity-associated hypertension. Therefore, in the present study, we investigated the contribution of sPRR to blood pressure (BP) elevation in the context of obesity. High fat-fed C57BL/6 male mice were infused with vehicle or sPRR (30 µg/kg per day) via subcutaneously implanted osmotic minipump for 4 weeks. BP parameters were recorded using radiotelemetry devices. Male mice infused with sPRR exhibited higher systolic BP and mean arterial pressure and lower spontaneous baroreflex sensitivity than mice infused with vehicle. To define mechanisms involved in systolic BP elevation, mice were injected with an AT1R (Ang II [angiotensin II] type 1 receptor) antagonist (losartan), a muscarinic receptor antagonist (atropine), a β-adrenergic antagonist (propranolol), and a ganglionic blocker (chlorisondamine). Losartan did not blunt sPRR-induced elevation in systolic BP. Chlorisondamine treatment exacerbated the decrease in mean arterial pressure in male mice infused with sPRR. These results demonstrated that sPRR induced autonomic nervous dysfunction. Interestingly, plasma leptin levels were increased in high fat-fed C57BL/6 male mice infused with sPRR. Overall, our results indicated that sPRR increased systolic BP through an impairment of the baroreflex sensitivity and an increase in the sympathetic tone potentially mediated by leptin in high fat-fed C57BL/6 male mice.
Collapse
Affiliation(s)
- Eva Gatineau
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Ming C. Gong
- Department of Physiology, University of Kentucky, Lexington, KY
| | | |
Collapse
|
11
|
Wang J, Dai M, Cao Q, Yu Q, Luo Q, Shu L, Zhang Y, Bao M. Carotid baroreceptor stimulation suppresses ventricular fibrillation in canines with chronic heart failure. Basic Res Cardiol 2019; 114:41. [PMID: 31502080 DOI: 10.1007/s00395-019-0750-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022]
Abstract
Carotid baroreceptor stimulation (CBS) has been shown to improve cardiac dysfunction and pathological structure remodelling. This study aimed to investigate the effects of CBS on the ventricular electrophysiological properties in canines with chronic heart failure (CHF). Thirty-eight beagles were randomized into control (CON), CHF, low-level CBS (LL-CBS), and moderate-level CBS (ML-CBS) groups. The CHF model was established with 6 weeks of rapid right ventricular pacing (RVP), and concomitant LL-CBS and ML-CBS were applied in the LL-CBS and ML-CBS groups, respectively. After 6 weeks of RVP, ventricular electrophysiological parameters and left stellate ganglion (LSG) neural activity and function were measured. Autonomic neural remodelling in the LSG and left ventricle (LV) and ionic remodelling in the LV were detected. Compared with the CHF group, both LL-CBS and ML-CBS decreased spatial dispersion of action potential duration (APD), suppressed APD alternans, reduced ventricular fibrillation (VF) inducibility, and inhibited enhanced LSG neural discharge and function. Only ML-CBS significantly inhibited ventricular repolarization prolongation and increased the VF threshold. Moreover, ML-CBS inhibited the increase in growth-associated protein-43 and tyrosine hydroxylase-positive nerve fibre densities in LV, increased acetylcholinesterase protein expression in LSG, and decreased nerve growth factor protein expression in LSG and LV. Chronic RVP resulted in a remarkable reduction in protein expression encoding both potassium and L-type calcium currents; these changes were partly amended by ML-CBS and LL-CBS. In conclusion, CBS suppresses VF in CHF canines, potentially by modulating autonomic nerve and ion channels. In addition, the effects of ML-CBS on ventricular electrophysiological properties, autonomic remodelling, and ionic remodelling were superior to those of LL-CBS.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Mingyan Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Quan Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Qiao Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Qiang Luo
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Ling Shu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Yijie Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Mingwei Bao
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
12
|
Carnagarin R, Lambert GW, Kiuchi MG, Nolde JM, Matthews VB, Eikelis N, Lambert EA, Schlaich MP. Effects of sympathetic modulation in metabolic disease. Ann N Y Acad Sci 2019; 1454:80-89. [DOI: 10.1111/nyas.14217] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/07/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine – Royal Perth Hospital Unit/Medical Research FoundationUniversity of Western Australia Perth Western Australia Australia
| | - Gavin W. Lambert
- Iverson Health Innovation Research InstituteSwinburne University of Technology Hawthorn Victoria Australia
- School of Health SciencesSwinburne University of Technology Hawthorn Victoria Australia
| | - Marcio G. Kiuchi
- Dobney Hypertension Centre, School of Medicine – Royal Perth Hospital Unit/Medical Research FoundationUniversity of Western Australia Perth Western Australia Australia
| | - Janis M. Nolde
- Dobney Hypertension Centre, School of Medicine – Royal Perth Hospital Unit/Medical Research FoundationUniversity of Western Australia Perth Western Australia Australia
| | - Vance B. Matthews
- Dobney Hypertension Centre, School of Medicine – Royal Perth Hospital Unit/Medical Research FoundationUniversity of Western Australia Perth Western Australia Australia
| | - Nina Eikelis
- Iverson Health Innovation Research InstituteSwinburne University of Technology Hawthorn Victoria Australia
- School of Health SciencesSwinburne University of Technology Hawthorn Victoria Australia
| | - Elisabeth A. Lambert
- Iverson Health Innovation Research InstituteSwinburne University of Technology Hawthorn Victoria Australia
- School of Health SciencesSwinburne University of Technology Hawthorn Victoria Australia
| | - Markus P. Schlaich
- Dobney Hypertension Centre, School of Medicine – Royal Perth Hospital Unit/Medical Research FoundationUniversity of Western Australia Perth Western Australia Australia
- Departments of Cardiology and NephrologyRoyal Perth Hospital Perth Western Australia Australia
- Neurovascular Hypertension and Kidney Disease LaboratoryBaker Heart and Diabetes Institute Melbourne Victoria Australia
| |
Collapse
|
13
|
Lambert GW, Schlaich MP, Eikelis N, Lambert EA. Sympathetic activity in obesity: a brief review of methods and supportive data. Ann N Y Acad Sci 2019; 1454:56-67. [PMID: 31268175 DOI: 10.1111/nyas.14140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/11/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
The increase in the prevalence of obesity and the concomitant rise in obesity-related illness have led to substantial pressure on health care systems throughout the world. While the combination of reduced exercise, increased sedentary time, poor diet, and genetic predisposition is undoubtedly pivotal in generating obesity and increasing disease risk, a large body of work indicates that the sympathetic nervous system (SNS) contributes to obesity-related disease development and progression. In obesity, sympathetic nervous activity is regionalized, with activity in some outflows being particularly sensitive to the obese state, whereas other outflows, or responses to stimuli, may be blunted, thereby making the assessment of sympathetic nervous activation in the clinical setting difficult. Isotope dilution methods and direct nerve recording techniques have been developed and utilized in clinical research, demonstrating that in obesity there is preferential activation of the muscle vasoconstrictor and renal sympathetic outflows. With weight loss, sympathetic activity is reduced. Importantly, sympathetic nervous activity is associated with end-organ dysfunction and changes in sympathetic activation that accompany weight loss are often reflected in an improvement of end-organ function. Whether targeting the SNS directly improves obesity-related illness remains unknown, but merits further attention.
Collapse
Affiliation(s)
- Gavin W Lambert
- The Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, Victoria, Australia.,The School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Nina Eikelis
- The Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, Victoria, Australia.,The School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Elisabeth A Lambert
- The Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, Victoria, Australia.,The School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| |
Collapse
|
14
|
Wang J, Yu Q, Dai M, Zhang Y, Cao Q, Luo Q, Tan T, Zhou Y, Shu L, Bao M. Carotid baroreceptor stimulation improves cardiac performance and reverses ventricular remodelling in canines with pacing-induced heart failure. Life Sci 2019; 222:13-21. [DOI: 10.1016/j.lfs.2019.02.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 02/02/2023]
|
15
|
Katayama PL, Castania JA, Fazan R, Salgado HC. Interaction between baroreflex and chemoreflex in the cardiorespiratory responses to stimulation of the carotid sinus/nerve in conscious rats. Auton Neurosci 2018; 216:17-24. [PMID: 30598121 DOI: 10.1016/j.autneu.2018.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 11/29/2022]
Abstract
Electrical stimulation of the carotid baroreflex has been thoroughly investigated for treating drug-resistant hypertension in humans. However, a previous study from our laboratory, performed in conscious rats, has demonstrated that electrical stimulation of the carotid sinus/nerve (CS) activated both the carotid baroreflex as well as the carotid chemoreflex, resulting in hypotension. Additionally, we also demonstrated that the carotid chemoreceptor deactivation potentiated this hypotensive response. Therefore, to further investigate this carotid baroreflex/chemoreflex interaction, besides the hemodynamic responses, we evaluated the respiratory responses to the electrical stimulation of the CS in both intact (CONT) and carotid chemoreceptors deactivated (CHEMO-X) conscious rats. CONT rats showed increased ventilation in response to electrical stimulation of the CS as measured by the respiratory frequency (fR), tidal volume (VT) and minute ventilation (VE), suggesting a carotid chemoreflex activation. The carotid chemoreceptor deactivation abolished all respiratory responses to the electrical stimulation of the CS. Regarding the hemodynamic responses, the electrical stimulation of the CS caused hypotensive responses in CONT rats, which were potentiated by the carotid chemoreceptors deactivation. Heart rate (HR) responses did not differ between groups. In conclusion, the present study showed that the electrical stimulation of the CS, in conscious rats, activates both the carotid baroreflex and the carotid chemoreflex driving an increase in ventilation and a decrease in AP. These findings further contribute to our understanding of the electrical stimulation of CS.
Collapse
Affiliation(s)
- Pedro L Katayama
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jaci A Castania
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rubens Fazan
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Helio C Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
16
|
Shen Z, Weng C, Zhang Z, Wang X, Yang K. Renal sympathetic denervation lowers arterial pressure in canines with obesity-induced hypertension by regulating GAD65 and AT 1R expression in rostral ventrolateral medulla. Clin Exp Hypertens 2017; 40:49-57. [PMID: 29172730 DOI: 10.1080/10641963.2017.1306542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To explore the roles of glutamate acid decarboxylase 65 (GAD65) and angiotensin II type 1 receptor (AT1R) in the action of renal sympathetic denervation (RSD) on obesity-induced hypertension in canines. Thirty-two beagles were randomly divided into a hypertensive model (n = 22) and control (n = 10) groups. A hypertensive canine model was established by feeding a high-fat diet. Twenty hypertensive beagles were randomized equally to a sham-surgery and RSD-treated group receiving catheter-based radiofrequency RSD. Compared with the control group, the sham-surgery group exhibited significant increases in blood pressure, serum angiotensin II level, rostral ventrolateral medulla (RVLM) glutamate level, and AT1R mRNA and protein expression and decreases in γ-amino acid butyric acid (γ-GABA) level and GAD65 mRNA and protein expression in the RVLM (all P < 0.05). Treatment with RSD significantly attenuated the above abnormal alterations (all P < 0.05). Linear correlation analysis revealed that angiotensin II level was positively correlated with glutamate level (r = 0.804) and inversely correlated with γ-GABA level (r = -0.765). GAD65 protein expression was positively correlated with γ-GABA level (r = 0.782). Catheter-based radiofrequency RSD can decrease blood pressure in obesity-induced hypertensive canines. The antihypertensive mechanism might be linked to upregulation of GAD65 and downregulation of AT1R in the RVLM.
Collapse
Affiliation(s)
- Zhijie Shen
- a Department of Cardiology , The Third Xiangya Hospital of Central South University , Changsha , China
| | - Chunyan Weng
- a Department of Cardiology , The Third Xiangya Hospital of Central South University , Changsha , China
| | - Zhihui Zhang
- a Department of Cardiology , The Third Xiangya Hospital of Central South University , Changsha , China
| | - Xiaoyan Wang
- a Department of Cardiology , The Third Xiangya Hospital of Central South University , Changsha , China
| | - Kan Yang
- a Department of Cardiology , The Third Xiangya Hospital of Central South University , Changsha , China
| |
Collapse
|
17
|
Barorezeptorakivierungstherapie bei therapierefraktärer Hypertonie: Indikation und Patientenselektion. Internist (Berl) 2017; 58:1114-1123. [DOI: 10.1007/s00108-017-0308-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
|
19
|
Lohmeier TE, Iliescu R, Tudorancea I, Cazan R, Cates AW, Georgakopoulos D, Irwin ED. Chronic Interactions Between Carotid Baroreceptors and Chemoreceptors in Obesity Hypertension. Hypertension 2016; 68:227-35. [PMID: 27160198 DOI: 10.1161/hypertensionaha.116.07232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
Abstract
Carotid bodies play a critical role in protecting against hypoxemia, and their activation increases sympathetic activity, arterial pressure, and ventilation, responses opposed by acute stimulation of the baroreflex. Although chemoreceptor hypersensitivity is associated with sympathetically mediated hypertension, the mechanisms involved and their significance in the pathogenesis of hypertension remain unclear. We investigated the chronic interactions of these reflexes in dogs with sympathetically mediated, obesity-induced hypertension based on the hypothesis that hypoxemia and tonic activation of carotid chemoreceptors may be associated with obesity. After 5 weeks on a high-fat diet, the animals experienced a 35% to 40% weight gain and increases in arterial pressure from 106±3 to 123±3 mm Hg and respiratory rate from 8±1 to 12±1 breaths/min along with hypoxemia (arterial partial pressure of oxygen=81±3 mm Hg) but eucapnia. During 7 days of carotid baroreflex activation by electric stimulation of the carotid sinus, tachypnea was attenuated, and hypertension was abolished before these variables returned to prestimulation values during a recovery period. After subsequent denervation of the carotid sinus region, respiratory rate decreased transiently in association with further sustained reductions in arterial partial pressure of oxygen (to 65±2 mm Hg) and substantial hypercapnia. Moreover, the severity of hypertension was attenuated from 125±2 to 116±3 mm Hg (45%-50% reduction). These findings suggest that hypoxemia may account for sustained stimulation of peripheral chemoreceptors in obesity and that this activation leads to compensatory increases in ventilation and central sympathetic outflow that contributes to neurogenically mediated hypertension. Furthermore, the excitatory effects of chemoreceptor hyperactivity are abolished by chronic activation of the carotid baroreflex.
Collapse
Affiliation(s)
- Thomas E Lohmeier
- From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (T.E.L.); Department of Pharmacology (R.I.) and Department of Physiology (I.T.), University of Medicine and Pharmacy, "Gr. T. Popa," Iasi, Romania; Colonial Pipeline Company, Atlanta, GA (R.C.); CVRx, Inc., Minneapolis, MN (A.W.C., D.G.); and North Memorial Medical Center, Trauma Services, Robbinsdale, MN (E.D.I.)
| | - Radu Iliescu
- From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (T.E.L.); Department of Pharmacology (R.I.) and Department of Physiology (I.T.), University of Medicine and Pharmacy, "Gr. T. Popa," Iasi, Romania; Colonial Pipeline Company, Atlanta, GA (R.C.); CVRx, Inc., Minneapolis, MN (A.W.C., D.G.); and North Memorial Medical Center, Trauma Services, Robbinsdale, MN (E.D.I.)
| | - Ionut Tudorancea
- From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (T.E.L.); Department of Pharmacology (R.I.) and Department of Physiology (I.T.), University of Medicine and Pharmacy, "Gr. T. Popa," Iasi, Romania; Colonial Pipeline Company, Atlanta, GA (R.C.); CVRx, Inc., Minneapolis, MN (A.W.C., D.G.); and North Memorial Medical Center, Trauma Services, Robbinsdale, MN (E.D.I.)
| | - Radu Cazan
- From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (T.E.L.); Department of Pharmacology (R.I.) and Department of Physiology (I.T.), University of Medicine and Pharmacy, "Gr. T. Popa," Iasi, Romania; Colonial Pipeline Company, Atlanta, GA (R.C.); CVRx, Inc., Minneapolis, MN (A.W.C., D.G.); and North Memorial Medical Center, Trauma Services, Robbinsdale, MN (E.D.I.)
| | - Adam W Cates
- From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (T.E.L.); Department of Pharmacology (R.I.) and Department of Physiology (I.T.), University of Medicine and Pharmacy, "Gr. T. Popa," Iasi, Romania; Colonial Pipeline Company, Atlanta, GA (R.C.); CVRx, Inc., Minneapolis, MN (A.W.C., D.G.); and North Memorial Medical Center, Trauma Services, Robbinsdale, MN (E.D.I.)
| | - Dimitrios Georgakopoulos
- From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (T.E.L.); Department of Pharmacology (R.I.) and Department of Physiology (I.T.), University of Medicine and Pharmacy, "Gr. T. Popa," Iasi, Romania; Colonial Pipeline Company, Atlanta, GA (R.C.); CVRx, Inc., Minneapolis, MN (A.W.C., D.G.); and North Memorial Medical Center, Trauma Services, Robbinsdale, MN (E.D.I.)
| | - Eric D Irwin
- From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (T.E.L.); Department of Pharmacology (R.I.) and Department of Physiology (I.T.), University of Medicine and Pharmacy, "Gr. T. Popa," Iasi, Romania; Colonial Pipeline Company, Atlanta, GA (R.C.); CVRx, Inc., Minneapolis, MN (A.W.C., D.G.); and North Memorial Medical Center, Trauma Services, Robbinsdale, MN (E.D.I.)
| |
Collapse
|
20
|
Grassi G, Ram VS. Evidence for a critical role of the sympathetic nervous system in hypertension. JOURNAL OF THE AMERICAN SOCIETY OF HYPERTENSION 2016; 10:457-466. [DOI: 10.1016/j.jash.2016.02.015] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 02/07/2023]
|
21
|
Bellows J, Colitz CMH, Daristotle L, Ingram DK, Lepine A, Marks SL, Sanderson SL, Tomlinson J, Zhang J. Defining healthy aging in older dogs and differentiating healthy aging from disease. J Am Vet Med Assoc 2016; 246:77-89. [PMID: 25517329 DOI: 10.2460/javma.246.1.77] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jan Bellows
- Pets Dental, 17100 Royal Palm, Weston, FL 33326
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Salman IM. Current Approaches to Quantifying Tonic and Reflex Autonomic Outflows Controlling Cardiovascular Function in Humans and Experimental Animals. Curr Hypertens Rep 2016; 17:84. [PMID: 26363932 DOI: 10.1007/s11906-015-0597-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of the autonomic nervous system in the pathophysiology of human and experimental models of cardiovascular disease is well established. In the recent years, there have been some rapid developments in the diagnostic approaches used to assess and monitor autonomic functions. Although most of these methods are devoted for research purposes in laboratory animals, many have still found their way to routine clinical practice. To name a few, direct long-term telemetry recording of sympathetic nerve activity (SNA) in rodents, single-unit SNA recording using microneurography in human subjects and spectral analysis of blood pressure and heart rate in both humans and animals have recently received an overwhelming attention. In this article, we therefore provide an overview of the methods and techniques used to assess tonic and reflex autonomic functions in humans and experimental animals, highlighting current advances available and procedure description, limitations and usefulness for diagnostic purposes.
Collapse
Affiliation(s)
- Ibrahim M Salman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia.
| |
Collapse
|
23
|
Heusser K, Tank J, Brinkmann J, Menne J, Kaufeld J, Linnenweber-Held S, Beige J, Wilhelmi M, Diedrich A, Haller H, Jordan J. Acute Response to Unilateral Unipolar Electrical Carotid Sinus Stimulation in Patients With Resistant Arterial Hypertension. Hypertension 2016; 67:585-91. [PMID: 26831195 DOI: 10.1161/hypertensionaha.115.06486] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/06/2016] [Indexed: 01/14/2023]
Abstract
Bilateral bipolar electric carotid sinus stimulation acutely reduced muscle sympathetic nerve activity (MSNA) and blood pressure (BP) in patients with resistant arterial hypertension but is no longer available. The second-generation device uses a smaller unilateral unipolar disk electrode to reduce invasiveness while saving battery life. We hypothesized that the second-generation device acutely lowers BP and MSNA in treatment-resistant hypertensive patients. Eighteen treatment-resistant hypertensive patients (9 women/9 men; 53±11 years; 33±5 kg/m(2)) on stable medications have been included in the study. We monitored finger and brachial BP, heart rate, and MSNA. Without stimulation, BP was 165±31/91±18 mm Hg, heart rate was 75±17 bpm, and MSNA was 48±14 bursts per minute. Acute stimulation with intensities producing side effects that were tolerable in the short term elicited interindividually variable changes in systolic BP (-16.9±15.0 mm Hg; range, 0.0 to -40.8 mm Hg; P=0.002), heart rate (-3.6±3.6 bpm; P=0.004), and MSNA (-2.0±5.8 bursts per minute; P=0.375). Stimulation intensities had to be lowered in 12 patients to avoid side effects at the expense of efficacy (systolic BP, -6.3±7.0 mm Hg; range, 2.8 to -14.5 mm Hg; P=0.028 and heart rate, -1.5±2.3 bpm; P=0.078; comparison against responses with side effects). Reductions in diastolic BP and MSNA (total activity) were correlated (r(2)=0.329; P=0.025). In our patient cohort, unilateral unipolar electric baroreflex stimulation acutely lowered BP. However, side effects may limit efficacy. The approach should be tested in a controlled comparative study.
Collapse
Affiliation(s)
- Karsten Heusser
- From the Institute of Clinical Pharmacology (K.H., J.T., J.B., J.J.), Clinic for Nephrology (J.M., J.K., S.L.-H., H.H.), Division for Cardiothoracic, Transplantation- and Vascular Surgery (M.W.), Hannover Medical School, Hannover, Germany; Department of Nephrology and KfH Renal Unit, Hospital St. Georg, Leipzig, Germany (J.B.); and Division of Clinical Pharmacology, Department of Medicine, Autonomic Dysfunction Service, Vanderbilt University, Nashville, TN (A.D.)
| | - Jens Tank
- From the Institute of Clinical Pharmacology (K.H., J.T., J.B., J.J.), Clinic for Nephrology (J.M., J.K., S.L.-H., H.H.), Division for Cardiothoracic, Transplantation- and Vascular Surgery (M.W.), Hannover Medical School, Hannover, Germany; Department of Nephrology and KfH Renal Unit, Hospital St. Georg, Leipzig, Germany (J.B.); and Division of Clinical Pharmacology, Department of Medicine, Autonomic Dysfunction Service, Vanderbilt University, Nashville, TN (A.D.)
| | - Julia Brinkmann
- From the Institute of Clinical Pharmacology (K.H., J.T., J.B., J.J.), Clinic for Nephrology (J.M., J.K., S.L.-H., H.H.), Division for Cardiothoracic, Transplantation- and Vascular Surgery (M.W.), Hannover Medical School, Hannover, Germany; Department of Nephrology and KfH Renal Unit, Hospital St. Georg, Leipzig, Germany (J.B.); and Division of Clinical Pharmacology, Department of Medicine, Autonomic Dysfunction Service, Vanderbilt University, Nashville, TN (A.D.)
| | - Jan Menne
- From the Institute of Clinical Pharmacology (K.H., J.T., J.B., J.J.), Clinic for Nephrology (J.M., J.K., S.L.-H., H.H.), Division for Cardiothoracic, Transplantation- and Vascular Surgery (M.W.), Hannover Medical School, Hannover, Germany; Department of Nephrology and KfH Renal Unit, Hospital St. Georg, Leipzig, Germany (J.B.); and Division of Clinical Pharmacology, Department of Medicine, Autonomic Dysfunction Service, Vanderbilt University, Nashville, TN (A.D.)
| | - Jessica Kaufeld
- From the Institute of Clinical Pharmacology (K.H., J.T., J.B., J.J.), Clinic for Nephrology (J.M., J.K., S.L.-H., H.H.), Division for Cardiothoracic, Transplantation- and Vascular Surgery (M.W.), Hannover Medical School, Hannover, Germany; Department of Nephrology and KfH Renal Unit, Hospital St. Georg, Leipzig, Germany (J.B.); and Division of Clinical Pharmacology, Department of Medicine, Autonomic Dysfunction Service, Vanderbilt University, Nashville, TN (A.D.)
| | - Silvia Linnenweber-Held
- From the Institute of Clinical Pharmacology (K.H., J.T., J.B., J.J.), Clinic for Nephrology (J.M., J.K., S.L.-H., H.H.), Division for Cardiothoracic, Transplantation- and Vascular Surgery (M.W.), Hannover Medical School, Hannover, Germany; Department of Nephrology and KfH Renal Unit, Hospital St. Georg, Leipzig, Germany (J.B.); and Division of Clinical Pharmacology, Department of Medicine, Autonomic Dysfunction Service, Vanderbilt University, Nashville, TN (A.D.)
| | - Joachim Beige
- From the Institute of Clinical Pharmacology (K.H., J.T., J.B., J.J.), Clinic for Nephrology (J.M., J.K., S.L.-H., H.H.), Division for Cardiothoracic, Transplantation- and Vascular Surgery (M.W.), Hannover Medical School, Hannover, Germany; Department of Nephrology and KfH Renal Unit, Hospital St. Georg, Leipzig, Germany (J.B.); and Division of Clinical Pharmacology, Department of Medicine, Autonomic Dysfunction Service, Vanderbilt University, Nashville, TN (A.D.)
| | - Mathias Wilhelmi
- From the Institute of Clinical Pharmacology (K.H., J.T., J.B., J.J.), Clinic for Nephrology (J.M., J.K., S.L.-H., H.H.), Division for Cardiothoracic, Transplantation- and Vascular Surgery (M.W.), Hannover Medical School, Hannover, Germany; Department of Nephrology and KfH Renal Unit, Hospital St. Georg, Leipzig, Germany (J.B.); and Division of Clinical Pharmacology, Department of Medicine, Autonomic Dysfunction Service, Vanderbilt University, Nashville, TN (A.D.)
| | - André Diedrich
- From the Institute of Clinical Pharmacology (K.H., J.T., J.B., J.J.), Clinic for Nephrology (J.M., J.K., S.L.-H., H.H.), Division for Cardiothoracic, Transplantation- and Vascular Surgery (M.W.), Hannover Medical School, Hannover, Germany; Department of Nephrology and KfH Renal Unit, Hospital St. Georg, Leipzig, Germany (J.B.); and Division of Clinical Pharmacology, Department of Medicine, Autonomic Dysfunction Service, Vanderbilt University, Nashville, TN (A.D.)
| | - Hermann Haller
- From the Institute of Clinical Pharmacology (K.H., J.T., J.B., J.J.), Clinic for Nephrology (J.M., J.K., S.L.-H., H.H.), Division for Cardiothoracic, Transplantation- and Vascular Surgery (M.W.), Hannover Medical School, Hannover, Germany; Department of Nephrology and KfH Renal Unit, Hospital St. Georg, Leipzig, Germany (J.B.); and Division of Clinical Pharmacology, Department of Medicine, Autonomic Dysfunction Service, Vanderbilt University, Nashville, TN (A.D.)
| | - Jens Jordan
- From the Institute of Clinical Pharmacology (K.H., J.T., J.B., J.J.), Clinic for Nephrology (J.M., J.K., S.L.-H., H.H.), Division for Cardiothoracic, Transplantation- and Vascular Surgery (M.W.), Hannover Medical School, Hannover, Germany; Department of Nephrology and KfH Renal Unit, Hospital St. Georg, Leipzig, Germany (J.B.); and Division of Clinical Pharmacology, Department of Medicine, Autonomic Dysfunction Service, Vanderbilt University, Nashville, TN (A.D.).
| |
Collapse
|
24
|
Broussard JL, Nelson MD, Kolka CM, Bediako IA, Paszkiewicz RL, Smith L, Szczepaniak EW, Stefanovski D, Szczepaniak LS, Bergman RN. Rapid development of cardiac dysfunction in a canine model of insulin resistance and moderate obesity. Diabetologia 2016; 59:197-207. [PMID: 26376797 PMCID: PMC5310691 DOI: 10.1007/s00125-015-3767-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/26/2015] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS The worldwide incidence of obesity and diabetes continues to rise at an alarming rate. A major cause of the morbidity and mortality associated with obesity and diabetes is heart disease, yet the mechanisms that lead to cardiovascular complications remain unclear. METHODS We performed cardiac MRI to assess left ventricular morphology and function during the development of moderate obesity and insulin resistance in a well-established canine model (n = 26). To assess the influence of dietary fat composition, we randomised animals to a traditional lard diet (rich in saturated and monounsaturated fat; n = 12), a salmon oil diet (rich in polyunsaturated fat; n = 8) or a control diet (n = 6). RESULTS High-fat feeding with lard increased body weight and fasting insulin and markedly reduced insulin sensitivity. Lard feeding also significantly reduced left ventricular function, evidenced by a worsening of circumferential strain and impairment in left ventricular torsion. High-fat feeding with salmon oil increased body weight; however, salmon oil feeding did not impair insulin sensitivity or cardiac function. CONCLUSIONS/INTERPRETATION These data emphasise the importance of dietary fat composition on both metabolic and cardiac function, and have important implications for the relationship between diet and health.
Collapse
Affiliation(s)
- Josiane L Broussard
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Michael D Nelson
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cathryn M Kolka
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Isaac Asare Bediako
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Rebecca L Paszkiewicz
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Laura Smith
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edward W Szczepaniak
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Darko Stefanovski
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Lidia S Szczepaniak
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Richard N Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| |
Collapse
|
25
|
Turner MJ, Kawada T, Shimizu S, Fukumitsu M, Sugimachi M. Differences in the dynamic baroreflex characteristics of unmyelinated and myelinated central pathways are less evident in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1397-405. [DOI: 10.1152/ajpregu.00315.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/09/2015] [Indexed: 11/22/2022]
Abstract
The aim of the study was to identify the contribution of myelinated (A-fiber) and unmyelinated (C-fiber) baroreceptor central pathways to the baroreflex control of sympathetic nerve activity (SNA) and arterial pressure (AP) in anesthetized Wistar-Kyoto (WKY; n = 8) and spontaneously hypertensive rats (SHR; n = 8). The left aortic depressor nerve (ADN) was electrically stimulated with two types of binary white noise signals designed to preferentially activate A-fibers (A-BRx protocol) or C-fibers (C-BRx protocol). In WKY, the central arc transfer function from ADN stimulation to SNA estimated by A-BRx showed strong derivative characteristics with the slope of dynamic gain between 0.1 and 1 Hz ( Gslope) of 14.63 ± 0.89 dB/decade. In contrast, the central arc transfer function estimated by C-BRx exhibited nonderivative characteristics with Gslope of 0.64 ± 1.13 dB/decade. This indicates that A-fibers are important for rapid baroreflex regulation, whereas C-fibers are likely important for more sustained regulation of SNA and AP. In SHR, the central arc transfer function estimated by A-BRx showed higher Gslope (18.46 ± 0.75 dB/decade, P < 0.01) and that estimated by C-BRx showed higher Gslope (8.62 ± 0.64 dB/decade, P < 0.001) with significantly lower dynamic gain at 0.01 Hz (6.29 ± 0.48 vs. 2.80 ± 0.36%/Hz, P < 0.001) compared with WKY. In conclusion, the dynamic characteristics of the A-fiber central pathway are enhanced in the high-modulation frequency range (0.1–1 Hz) and those of the C-fiber central pathway are attenuated in the low-modulation frequency range (0.01–0.1 Hz) in SHR.
Collapse
Affiliation(s)
- Michael J. Turner
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan; and
| | - Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan; and
| | - Shuji Shimizu
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan; and
| | - Masafumi Fukumitsu
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan; and
- Department of Artificial Organ Medicine, Faculty of Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan; and
- Department of Artificial Organ Medicine, Faculty of Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
26
|
Chobanyan-Jürgens K, Jordan J. Electrical carotid sinus stimulation: chances and challenges in the management of treatment resistant arterial hypertension. Curr Hypertens Rep 2015. [PMID: 26208917 DOI: 10.1007/s11906-015-0587-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Treatment resistant arterial hypertension is associated with excess cardiovascular morbidity and mortality. Electrical carotid sinus stimulators engaging baroreflex afferent activity have been developed for such patients. Indeed, baroreflex mechanisms contribute to long-term blood pressure control by governing efferent sympathetic and parasympathetic activity. The first-generation carotid sinus stimulator applying bilateral bipolar stimulation reduced blood pressure in a controlled clinical trial but nevertheless failed to meet the primary efficacy endpoint. The second-generation device utilizes smaller unilateral unipolar electrodes, thus decreasing invasiveness of the implantation while saving battery. An uncontrolled clinical study suggested improvement in blood pressure with the second-generation device. We hope that these findings as well as preliminary observations suggesting cardiovascular and renal organ protection with electrical carotid sinus stimulation will be confirmed in properly controlled clinical trials. Meanwhile, we should find ways to better identify patients who are most likely to benefit from electrical carotid sinus stimulation.
Collapse
Affiliation(s)
- Kristine Chobanyan-Jürgens
- Institute of Clinical Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany,
| | | |
Collapse
|
27
|
Iliescu R, Lohmeier TE, Tudorancea I, Laffin L, Bakris GL. Renal denervation for the treatment of resistant hypertension: review and clinical perspective. Am J Physiol Renal Physiol 2015. [PMID: 26224718 DOI: 10.1152/ajprenal.00246.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
When introduced clinically 6 years ago, renal denervation was thought to be the solution for all patients whose blood pressure could not be controlled by medication. The initial two studies, SYMPLICITY HTN-1 and HTN-2, demonstrated great magnitudes of blood pressure reduction within 6 mo of the procedure and were based on a number of assumptions that may not have been true, including strict adherence to medication and absence of white-coat hypertension. The SYMPLICITY HTN-3 trial controlled for all possible factors believed to influence the outcome, including the addition of a sham arm, and ultimately proved the demise of the initial overly optimistic expectations. This trial yielded a much lower blood pressure reduction compared with the previous SYMPLICITY trials. Since its publication in 2014, there have been many analyses to try and understand what accounted for the differences. Of all the variables examined that could influence blood pressure outcomes, the extent of the denervation procedure was determined to be inadequate. Beyond this, the physiological mechanisms that account for the heterogeneous fall in arterial pressure following renal denervation remain unclear, and experimental studies indicate dependence on more than simply reduced renal sympathetic activity. These and other related issues are discussed in this paper. Our perspective is that renal denervation works if done properly and used in the appropriate patient population. New studies with new approaches and catheters and appropriate controls will be starting later this year to reassess the efficacy and safety of renal denervation in humans.
Collapse
Affiliation(s)
- Radu Iliescu
- Department of Physiology, University of Medicine and Pharmacy, "Gr. T. Popa," Iasi, Romania
| | - Thomas E Lohmeier
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Ionut Tudorancea
- Department of Physiology, University of Medicine and Pharmacy, "Gr. T. Popa," Iasi, Romania
| | - Luke Laffin
- Department of Medicine, ASH Comprehensive Hypertension Center, The University of Chicago Medicine, Chicago, Illinois
| | - George L Bakris
- Department of Medicine, ASH Comprehensive Hypertension Center, The University of Chicago Medicine, Chicago, Illinois
| |
Collapse
|
28
|
Jordan J. CrossTalk opposing view: Which technique for controlling resistant hypertension? Carotid sinus stimulation. J Physiol 2015; 592:3933-5. [PMID: 25225251 DOI: 10.1113/jphysiol.2013.268078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jens Jordan
- Institute of Clinical Pharmacology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
29
|
Zhao LY, Li J, Yuan F, Li M, Zhang Q, Huang YY, Pang JY, Zhang B, Sun FY, Sun HS, Li Q, Cao L, Xie Y, Lin YC, Liu J, Tan HM, Wang GL. Xyloketal B attenuates atherosclerotic plaque formation and endothelial dysfunction in apolipoprotein e deficient mice. Mar Drugs 2015; 13:2306-26. [PMID: 25874925 PMCID: PMC4413213 DOI: 10.3390/md13042306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/30/2015] [Accepted: 04/03/2015] [Indexed: 12/31/2022] Open
Abstract
Our previous studies demonstrated that xyloketal B, a novel marine compound with a unique chemical structure, has strong antioxidant actions and can protect against endothelial injury in different cell types cultured in vitro and model organisms in vivo. The oxidative endothelial dysfunction and decrease in nitric oxide (NO) bioavailability are critical for the development of atherosclerotic lesion. We thus examined whether xyloketal B had an influence on the atherosclerotic plaque area in apolipoprotein E-deficient (apoE-/-) mice fed a high-fat diet and investigated the underlying mechanisms. We found in our present study that the administration of xyloketal B dose-dependently decreased the atherosclerotic plaque area both in the aortic sinus and throughout the aorta in apoE-/- mice fed a high-fat diet. In addition, xyloketal B markedly reduced the levels of vascular oxidative stress, as well as improving the impaired endothelium integrity and NO-dependent aortic vasorelaxation in atherosclerotic mice. Moreover, xyloketal B significantly changed the phosphorylation levels of endothelial nitric oxide synthase (eNOS) and Akt without altering the expression of total eNOS and Akt in cultured human umbilical vein endothelial cells (HUVECs). Here, it increased eNOS phosphorylation at the positive regulatory site of Ser-1177, while inhibiting phosphorylation at the negative regulatory site of Thr-495. Taken together, these findings indicate that xyloketal B has dramatic anti-atherosclerotic effects in vivo, which is partly due to its antioxidant features and/or improvement of endothelial function.
Collapse
MESH Headings
- Animals
- Antioxidants/adverse effects
- Antioxidants/pharmacology
- Antioxidants/therapeutic use
- Aorta/drug effects
- Aorta/metabolism
- Aorta/physiopathology
- Aorta/ultrastructure
- Apolipoproteins E/deficiency
- Apolipoproteins E/metabolism
- Cardiovascular Agents/adverse effects
- Cardiovascular Agents/pharmacology
- Cardiovascular Agents/therapeutic use
- Cells, Cultured
- Diet, High-Fat/adverse effects
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Endothelium, Vascular/ultrastructure
- Human Umbilical Vein Endothelial Cells/cytology
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Lipid Metabolism, Inborn Errors/drug therapy
- Lipid Metabolism, Inborn Errors/metabolism
- Lipid Metabolism, Inborn Errors/pathology
- Lipid Metabolism, Inborn Errors/physiopathology
- Male
- Mice, Knockout
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Oxidative Stress/drug effects
- Phosphorylation/drug effects
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/prevention & control
- Protein Processing, Post-Translational/drug effects
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Pyrans/adverse effects
- Pyrans/pharmacology
- Pyrans/therapeutic use
- Specific Pathogen-Free Organisms
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Li-Yan Zhao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; E-Mails: (L.-Y.Z.); (F.Y.); (Y.X.); (J.L.)
| | - Jie Li
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510080, China; E-Mail:
| | - Feng Yuan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; E-Mails: (L.-Y.Z.); (F.Y.); (Y.X.); (J.L.)
| | - Mei Li
- VIP Healthcare Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; E-Mail:
| | - Quan Zhang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; E-Mails: (Q.Z.); (Q.L.); (L.C.)
| | - Yun-Ying Huang
- Department of Pharmacy, The fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; E-Mail:
| | - Ji-Yan Pang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510080, China; E-Mails: (J.-Y.P.); (Y.-C.L.)
- Department of Education of Guangdong Province, Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism, Sun Yat-sen University, Guangzhou 510080, China
| | - Bin Zhang
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangzhou 510080, China; E-Mail:
| | - Fang-Yun Sun
- Lab for Basic Research of Life Science, School of Medicine, Tibet Institute for Nationalities, Xianyang 712082, China; E-Mails:
| | - Hong-Shuo Sun
- Departments of Surgery and Physiology, Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1G6, Canada; E-Mail:
| | - Qian Li
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; E-Mails: (Q.Z.); (Q.L.); (L.C.)
| | - Lu Cao
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; E-Mails: (Q.Z.); (Q.L.); (L.C.)
| | - Yu Xie
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; E-Mails: (L.-Y.Z.); (F.Y.); (Y.X.); (J.L.)
| | - Yong-Cheng Lin
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510080, China; E-Mails: (J.-Y.P.); (Y.-C.L.)
- Department of Education of Guangdong Province, Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; E-Mails: (L.-Y.Z.); (F.Y.); (Y.X.); (J.L.)
| | - Hong-Mei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; E-Mails: (Q.Z.); (Q.L.); (L.C.)
- Department of Education of Guangdong Province, Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism, Sun Yat-sen University, Guangzhou 510080, China
- Authors to whom correspondence should be addressed; E-Mails: (H.-M.T.); (G.-L.W.); Tel./Fax: +86-020-8733-4055 (H.-M.T.); Tel.: +86-020-8733-0300 (G.-L.W.); Fax: +86-020-8733-1155 (G.-L.W.)
| | - Guan-Lei Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; E-Mails: (L.-Y.Z.); (F.Y.); (Y.X.); (J.L.)
- Department of Education of Guangdong Province, Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism, Sun Yat-sen University, Guangzhou 510080, China
- Authors to whom correspondence should be addressed; E-Mails: (H.-M.T.); (G.-L.W.); Tel./Fax: +86-020-8733-4055 (H.-M.T.); Tel.: +86-020-8733-0300 (G.-L.W.); Fax: +86-020-8733-1155 (G.-L.W.)
| |
Collapse
|
30
|
Carotid Baroreceptor Stimulation in Resistant Hypertension and Heart Failure. High Blood Press Cardiovasc Prev 2015; 22:233-9. [PMID: 25813853 DOI: 10.1007/s40292-015-0083-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/14/2015] [Indexed: 10/23/2022] Open
Abstract
A significant number of hypertensive subjects fail to achieve adequate blood pressure control despite adherence to maximal doses of several antihypertensive drugs. In the same way although medical and device therapies continue to improve the clinical course of heart failure patients, morbidity, mortality and healthcare costs remain high. Electrical stimulation of the carotid sinus is a new interesting approach for the treatment of resistant hypertension and heart failure. The purpose of this paper is to overview the argument starting from physiological background and evaluating the clinical results obtained with this approach in these pathophysiological conditions.
Collapse
|
31
|
Abstract
Hypertension is the most common modifiable risk factor for cardiovascular disease and death, and lowering blood pressure with antihypertensive drugs reduces target organ damage and prevents cardiovascular disease outcomes. Despite a plethora of available treatment options, a substantial portion of the hypertensive population has uncontrolled blood pressure. The unmet need of controlling blood pressure in this population may be addressed, in part, by developing new drugs and devices/procedures to treat hypertension and its comorbidities. In this Compendium Review, we discuss new drugs and interventional treatments that are undergoing preclinical or clinical testing for hypertension treatment. New drug classes, eg, inhibitors of vasopeptidases, aldosterone synthase and soluble epoxide hydrolase, agonists of natriuretic peptide A and vasoactive intestinal peptide receptor 2, and a novel mineralocorticoid receptor antagonist are in phase II/III of development, while inhibitors of aminopeptidase A, dopamine β-hydroxylase, and the intestinal Na
+
/H
+
exchanger 3, agonists of components of the angiotensin-converting enzyme 2/angiotensin(1–7)/Mas receptor axis and vaccines directed toward angiotensin II and its type 1 receptor are in phase I or preclinical development. The two main interventional approaches, transcatheter renal denervation and baroreflex activation therapy, are used in clinical practice for severe treatment resistant hypertension in some countries. Renal denervation is also being evaluated for treatment of various comorbidities, eg, chronic heart failure, cardiac arrhythmias and chronic renal failure. Novel interventional approaches in early development include carotid body ablation and arteriovenous fistula placement. Importantly, none of these novel drug or device treatments has been shown to prevent cardiovascular disease outcomes or death in hypertensive patients.
Collapse
Affiliation(s)
- Suzanne Oparil
- From the Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama (S.O.); and Department of Nephrology and Hypertension, University Hospital of the University Erlangen-Nürnberg, Germany (R.E.S.)
| | - Roland E. Schmieder
- From the Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama (S.O.); and Department of Nephrology and Hypertension, University Hospital of the University Erlangen-Nürnberg, Germany (R.E.S.)
| |
Collapse
|
32
|
Kishi T. [Dynamic system for maintenance of homeostasis of blood pressure via interaction between brain, kidney, heart, and blood vessel]. Nihon Yakurigaku Zasshi 2015; 145:54-58. [PMID: 25747014 DOI: 10.1254/fpj.145.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
33
|
Sata Y, Kawada T, Shimizu S, Kamiya A, Akiyama T, Sugimachi M. Predominant role of neural arc in sympathetic baroreflex resetting of spontaneously hypertensive rats. Circ J 2014; 79:592-9. [PMID: 25746544 DOI: 10.1253/circj.cj-14-1013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND There is ongoing controversy over whether neural or peripheral factors are the predominant cause of hypertension. The closed-loop negative feedback operation of the arterial baroreflex hampers understanding of how arterial pressure (AP) is determined through the interaction between neural and peripheral factors. METHODS AND RESULTS: A novel analysis of an isolated open-loop baroreceptor preparation to examine sympathetic nervous activity (SNA) and AP responses to changes in carotid sinus pressure (CSP) in adult spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) was conducted. In the neural arc (CSP-SNA relationship), the midpoint pressure (128.9±3.8 vs. 157.9±8.1 mmHg, P<0.001) and the response range of SNA to CSP (90.5±3.7 vs. 115.4±7.6%/mmHg, P=0.011) were higher in SHR. In the peripheral arc (SNA-AP relationship), slope and intercept did not differ. A baroreflex equilibrium diagram was obtained by depicting neural and peripheral arcs in a pressure-SNA plane with rescaled SNA (% in WKY). The operating-point AP (111.3±4.4 vs. 145.9±5.2 mmHg, P<0.001) and SNA (90.8±3.2 vs. 125.1±6.9% in WKY, P<0.001) were shifted towards a higher level in SHR. CONCLUSIONS The shift of the neural arc towards a higher SNA range indicated a predominant contribution to baroreflex resetting in SHR. Notwithstanding the resetting, the carotid sinus baroreflex in SHR preserved an ability to reduce AP if activated with a high enough pressure.
Collapse
Affiliation(s)
- Yusuke Sata
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center; Department of Artificial Organ Medicine, Faculty of Medicine, Osaka University Graduate School of Medicine, Suita, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Charkoudian N, Wallin BG. Sympathetic neural activity to the cardiovascular system: integrator of systemic physiology and interindividual characteristics. Compr Physiol 2014; 4:825-50. [PMID: 24715570 DOI: 10.1002/cphy.c130038] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The sympathetic nervous system is a ubiquitous, integrating controller of myriad physiological functions. In the present article, we review the physiology of sympathetic neural control of cardiovascular function with a focus on integrative mechanisms in humans. Direct measurement of sympathetic neural activity (SNA) in humans can be accomplished using microneurography, most commonly performed in the peroneal (fibular) nerve. In humans, muscle SNA (MSNA) is composed of vasoconstrictor fibers; its best-recognized characteristic is its participation in transient, moment-to-moment control of arterial blood pressure via the arterial baroreflex. This property of MSNA contributes to its typical "bursting" pattern which is strongly linked to the cardiac cycle. Recent evidence suggests that sympathetic neural mechanisms and the baroreflex have important roles in the long term control of blood pressure as well. One of the striking characteristics of MSNA is its large interindividual variability. However, in young, normotensive humans, higher MSNA is not linked to higher blood pressure due to balancing influences of other cardiovascular variables. In men, an inverse relationship between MSNA and cardiac output is a major factor in this balance, whereas in women, beta-adrenergic vasodilation offsets the vasoconstrictor/pressor effects of higher MSNA. As people get older (and in people with hypertension) higher MSNA is more likely to be linked to higher blood pressure. Skin SNA (SSNA) can also be measured in humans, although interpretation of SSNA signals is complicated by multiple types of neurons involved (vasoconstrictor, vasodilator, sudomotor and pilomotor). In addition to blood pressure regulation, the sympathetic nervous system contributes to cardiovascular regulation during numerous other reflexes, including those involved in exercise, thermoregulation, chemoreflex regulation, and responses to mental stress.
Collapse
Affiliation(s)
- N Charkoudian
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | | |
Collapse
|
35
|
Baroreceptor stimulation for resistant hypertension: first implantation in France and literature review. Arch Cardiovasc Dis 2014; 107:690-6. [PMID: 25445751 DOI: 10.1016/j.acvd.2014.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 11/21/2022]
Abstract
Despite a wide choice of effective antihypertensive treatments, blood pressure (BP) in roughly half of hypertensive subjects is not controlled. Resistant hypertension is defined as an uncontrolled BP despite optimal doses of three antihypertensive treatments, including a diuretic. After confirmation of resistant BP using home BP measurement or 24-hour ambulatory BP monitoring (ABPM), patients usually go through a work-up to rule out secondary hypertension. If secondary hypertension is ruled out, the recent European guidelines on hypertension consider baroreceptor stimulation or renal denervation to be possible options. The prevalence of resistant primary hypertension may reach up to 10% in specialized centres. The two proposed non-pharmacological therapeutic strategies have been developed recently to inhibit sympathetic overactivity in resistant hypertension. Among them, baroreceptor activation therapy (BAT) is an innovative approach that interferes with baroreflex function. The first-generation BAT device (Rheos(®); CVRx, Inc., Minneapolis, MN, USA) demonstrated good efficacy in lowering office BP and ABPM, but had an insufficient safety profile due to complex surgery. The second-generation BAT device (Barostim neo™ system; CVRx, Inc.) seems to share the same BP-lowering efficacy but has a better safety profile. We report the first French case of baroreceptor stimulation for hypertension using the Barostim neo™ system. We also discuss the pathophysiological features of and current levels of evidence for this technique.
Collapse
|
36
|
Iliescu R, Tudorancea I, Lohmeier TE. Baroreflex activation: from mechanisms to therapy for cardiovascular disease. Curr Hypertens Rep 2014; 16:453. [PMID: 24899538 PMCID: PMC4364442 DOI: 10.1007/s11906-014-0453-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent technical advances have led to the development of a medical device that can reliably activate the carotid baroreflex with an acceptable degree of safety. Because activation of the sympathetic nervous system plays an important role in the pathogenesis of hypertension and heart failure, the unique ability of this device to chronically suppress central sympathetic outflow in a controlled manner suggests potential value in the treatment of these conditions. This notion is supported by both clinical and experimental animal studies, and the major aim of this article is to elucidate the physiological mechanisms that account for the favorable effects of baroreflex activation therapy in patients with resistant hypertension and heart failure. Illumination of the neurohormonal, renal, and cardiac actions of baroreflex activation is likely to provide the means for better identification of those patients that are most likely to respond favorably to this device-based therapy.
Collapse
Affiliation(s)
- Radu Iliescu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216-4505, USA,
| | | | | |
Collapse
|
37
|
Alnima T, Kroon AA, de Leeuw PW. Baroreflex activation therapy for patients with drug-resistant hypertension. Expert Rev Cardiovasc Ther 2014; 12:955-62. [PMID: 25017430 DOI: 10.1586/14779072.2014.931226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Uncontrolled or resistant hypertension is still a major problem facing many physicians daily in the clinic. Several new therapies are being developed to help those patients whose blood pressure does not respond sufficiently to regular antihypertensive medication. One of these promising therapies is electrical activation of the carotid sinus baroreflex. In this overview, the authors predominantly summarize the background, efficacy and safety of this promising treatment with its latest achievements in patients with resistant hypertension. The authors also discuss certain issues that need further clarification before this therapy can be added to the common treatment guidelines of hypertension.
Collapse
Affiliation(s)
- Teba Alnima
- Maastricht University Medical Center, Department of Internal Medicine, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | | | | |
Collapse
|
38
|
Seravalle G, Mancia G, Grassi G. Role of the sympathetic nervous system in hypertension and hypertension-related cardiovascular disease. High Blood Press Cardiovasc Prev 2014; 21:89-105. [PMID: 24789091 DOI: 10.1007/s40292-014-0056-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/18/2014] [Indexed: 02/07/2023] Open
Abstract
A number of cardiovascular disease have been shown to be characterized by a marked increase in sympathetic drive to the heart and the peripheral circulation. This is the case for essential hypertension, congestive heart failure, cardiac arrhythmias, obesity, metabolic syndrome, obstructive sleep apnea, and chronic renal disease. This review focuses on the most recent findings documenting the role of sympathetic neural factors in the development and progression of the hypertensive state as well as in the pathogenesis of hypertension-related target organ damage. It also reviews the role of sympathetic neural factors in the development of cardiovascular diseases not necessarily strictly related to the hypertensive state, such as congestive heart failure, cardiac arrhythmias, obesity, metabolic syndrome and renal failure. The paper will finally review the pharmacological and non-pharmacological interventions acting on the sympathetic drive. Emphasis will be given to the new approaches, such as renal nerves ablation and carotid baroreceptor stimulation, which have been shown to exert sympathoinhibitory effects.
Collapse
Affiliation(s)
- Gino Seravalle
- Cardiology Department, St. Luca Hospital, IRCCS Istituto Auxologico Italiano, Piazza Brescia 20, 20149, Milan, Italy,
| | | | | |
Collapse
|
39
|
Frishman WH, Glicklich D. The Role of Nonpharmacologic Device Interventions in the Management of Drug-Resistant Hypertension. Curr Atheroscler Rep 2014; 16:405. [DOI: 10.1007/s11883-014-0405-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Hall JE, Granger JP, do Carmo JM, da Silva AA, Dubinion J, George E, Hamza S, Speed J, Hall ME. Hypertension: physiology and pathophysiology. Compr Physiol 2013; 2:2393-442. [PMID: 23720252 DOI: 10.1002/cphy.c110058] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite major advances in understanding the pathophysiology of hypertension and availability of effective and safe antihypertensive drugs, suboptimal blood pressure (BP) control is still the most important risk factor for cardiovascular mortality and is globally responsible for more than 7 million deaths annually. Short-term and long-term BP regulation involve the integrated actions of multiple cardiovascular, renal, neural, endocrine, and local tissue control systems. Clinical and experimental observations strongly support a central role for the kidneys in the long-term regulation of BP, and abnormal renal-pressure natriuresis is present in all forms of chronic hypertension. Impaired renal-pressure natriuresis and chronic hypertension can be caused by intrarenal or extrarenal factors that reduce glomerular filtration rate or increase renal tubular reabsorption of salt and water; these factors include excessive activation of the renin-angiotensin-aldosterone and sympathetic nervous systems, increased formation of reactive oxygen species, endothelin, and inflammatory cytokines, or decreased synthesis of nitric oxide and various natriuretic factors. In human primary (essential) hypertension, the precise causes of impaired renal function are not completely understood, although excessive weight gain and dietary factors appear to play a major role since hypertension is rare in nonobese hunter-gathers living in nonindustrialized societies. Recent advances in genetics offer opportunities to discover gene-environment interactions that may also contribute to hypertension, although success thus far has been limited mainly to identification of rare monogenic forms of hypertension.
Collapse
Affiliation(s)
- John E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Research needs in the area of device-related treatments for hypertension. Kidney Int 2013; 84:250-5. [DOI: 10.1038/ki.2013.56] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/24/2012] [Accepted: 10/11/2012] [Indexed: 02/07/2023]
|
42
|
Tenório NM, Tufik S, Bergamaschi CT, Campos RR, Cintra F, Alvarenga TA, Andersen ML. Influence of acute sleep deprivation on cardiovascular parameters in female Zucker obese and lean rats. Obesity (Silver Spring) 2013; 21:510-5. [PMID: 23404731 DOI: 10.1002/oby.20063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 08/10/2012] [Indexed: 11/05/2022]
Abstract
OBJECTIVE There is a reciprocal relationship between sleep duration and weight gain. However, the consequences of this relationship on the cardiovascular system over an entire life span are still not fully elucidated. We examined the effect of acute sleep deprivation (SD) on baroreflex sensitivity and blood pressure in Zucker rats of different ages. DESIGN AND METHODS Female lean and obese Zucker rats at 3, 6 and 15 months of age were assigned to SD or control (CTRL) groups. After a 6 h period of the SD procedure (6 h of gentle handling) or CTRL procedure (an equivalent period without handling), the animals were anesthetized for surgical catheterization of the femoral artery and vein. To evaluate the baroreflex sensitivity index, bolus infusions of phenylephrine (bradycardia response) and sodium nitroprusside (tachycardia response) were administered. RESULTS Obesity resulted in dysfunctional tachycardia responses at 3 months of age. At 6 and 15 months of age, both bradycardia and tachycardia responses were significantly lower in obese animals than those in lean animals. At 15 months of age, interactions among obesity, SD and aging produced the most marked effects on the cardiovascular system (increased mean arterial pressure and heart rate and decreased baroreflex sensitivity). CONCLUSIONS Therefore, these results suggest that there is no direct relationship between baroreflex imbalance and an increase in arterial pressure.
Collapse
Affiliation(s)
- Neuli M Tenório
- Departamento de Psicobiologia, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
43
|
Pelosi A, Rosenstein D, Abood SK, Olivier BN. Cardiac effect of short-term experimental weight gain and loss in dogs. Vet Rec 2013; 172:153. [DOI: 10.1136/vr.100178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- A. Pelosi
- College of Veterinary Medicine; Michigan State University; East Lansing MI 48824 USA
| | - D. Rosenstein
- VCA South Shore Animal Hospital; 595 Columbian Street Weymouth MA 02190 USA
| | - S. K. Abood
- College of Veterinary Medicine; Michigan State University; East Lansing MI 48824 USA
| | - B. N. Olivier
- College of Veterinary Medicine; Michigan State University; East Lansing MI 48824 USA
| |
Collapse
|
44
|
Achieving renal denervation: catheter-based and surgical management for neural ablation in the management of hypertension. INNOVATIONS-TECHNOLOGY AND TECHNIQUES IN CARDIOTHORACIC AND VASCULAR SURGERY 2013; 7:314-22. [PMID: 23274863 DOI: 10.1097/imi.0b013e31827ccd90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypertension refractory to conventional management with medication remains a significant cause of cardiovascular morbidity and mortality. Alternative strategies are warranted in this subgroup of patients. The target of these strategies centers around sympathetic neural activity, which is thought to play a key role in hypertension. We will review the historic and current approaches toward altering sympathetic neural activity, specifically discussing surgical sympathectomy, catheter-based renal denervation strategies, and baroreflex activation therapy.
Collapse
|
45
|
Adams ST, Salhab M, Hussain ZI, Miller GV, Leveson SH. Obesity-related hypertension and its remission following gastric bypass surgery - a review of the mechanisms and predictive factors. Blood Press 2012; 22:131-7. [PMID: 23244451 DOI: 10.3109/08037051.2012.749570] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
It is well established that hypertension and obesity appear to be associated. The exact mechanism by which they are linked is unclear and remains a topic of a great deal of research. Current NICE guidelines recommend that patients with a BMI in excess of 35 kg/m(2) should be considered for bariatric surgery if they have a concomitant obesity-associated condition, of which hypertension is one. The commonest bariatric procedure in the UK is the Roux-en-Y gastric bypass, which has been shown to result in long-standing remission of hypertension in up to 93% of patients. This paper summarizes the existing literature on the main theories as to how obesity leads to hypertension as well as the literature concerning the effects of gastric bypass surgery on hypertension.
Collapse
Affiliation(s)
- Simon Timothy Adams
- Department of General Surgery, York Hospital, Wigginton Road, York YO318HE, UK.
| | | | | | | | | |
Collapse
|
46
|
Jordan J, Heusser K, Brinkmann J, Tank J. Electrical carotid sinus stimulation in treatment resistant arterial hypertension. Auton Neurosci 2012; 172:31-6. [PMID: 23146623 DOI: 10.1016/j.autneu.2012.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Treatment resistant arterial hypertension is commonly defined as blood pressure that remains above goal in spite of the concurrent use of three antihypertensive agents of different classes. The sympathetic nervous system promotes arterial hypertension and cardiovascular as well as renal damage, thus, providing a logical treatment target in these patients. Recent physiological studies suggest that baroreflex mechanisms contribute to long-term control of sympathetic activity and blood pressure providing an impetus for the development of electrical carotid sinus stimulators. The concept behind electrical stimulation of baroreceptors or baroreflex afferent nerves is that the stimulus is sensed by the brain as blood pressure increase. Then, baroreflex efferent structures are adjusted to counteract the perceived blood pressure increase. Electrical stimulators directly activating afferent baroreflex nerves were developed years earlier but failed for technical reasons. Recently, a novel implantable device was developed that produces an electrical field stimulation of the carotid sinus wall. Carefully conducted experiments in dogs provided important insight in mechanisms mediating the depressor response to electrical carotid sinus stimulation. Moreover, these studies showed that the treatment success may depend on the underlying pathophysiology of the hypertension. Clinical studies suggest that electrical carotid sinus stimulation attenuates sympathetic activation of vasculature, heart, and kidney while augmenting cardiac vagal regulation, thus lowering blood pressure. Yet, not all patients respond to treatment. Additional clinical trials are required. Patients equipped with an electrical carotid sinus stimulator provide a unique opportunity gaining insight in human baroreflex physiology.
Collapse
Affiliation(s)
- Jens Jordan
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany.
| | | | | | | |
Collapse
|
47
|
Achieving Renal Denervation: Catheter-Based and Surgical Management for Neural Ablation in the Management of Hypertension. INNOVATIONS-TECHNOLOGY AND TECHNIQUES IN CARDIOTHORACIC AND VASCULAR SURGERY 2012. [DOI: 10.1177/155698451200700502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Go for the cardiovascular ‘physionom’. J Hypertens 2012; 30:1699-701. [DOI: 10.1097/hjh.0b013e328357ea1f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
|
50
|
Armitage JA, Burke SL, Prior LJ, Barzel B, Eikelis N, Lim K, Head GA. Rapid onset of renal sympathetic nerve activation in rabbits fed a high-fat diet. Hypertension 2012; 60:163-71. [PMID: 22647890 DOI: 10.1161/hypertensionaha.111.190413] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hypertension and elevated sympathetic drive result from consumption of a high-calorie diet and deposition of abdominal fat, but the etiology and temporal characteristics are unknown. Rabbits instrumented for telemetric recording of arterial pressure and renal sympathetic nerve activity (RSNA) were fed a high-fat diet for 3 weeks then control diet for 1 week or control diet for 4 weeks. Baroreflexes and responses to air-jet stress and hypoxia were determined weekly. After 1 week of high-fat diet, caloric intake increased by 62%, accompanied by elevated body weight, blood glucose, plasma insulin, and leptin (8%, 14%, 134%, and 252%, respectively). Mean arterial pressure, heart rate, and RSNA also increased after 1 week (6%, 11%, and 57%, respectively). Whereas mean arterial pressure and body weight continued to rise over 3 weeks of high-fat diet, heart rate and RSNA did not change further. The RSNA baroreflex was attenuated from the first week of the diet. Excitatory responses to air-jet stress diminished over 3 weeks of high-fat diet, but responses to hypoxia were invariant. Resumption of a normal diet returned glucose, insulin, leptin, and heart rate to control levels, but body weight, mean arterial pressure, and RSNA remained elevated. In conclusion, elevated sympathetic drive and impaired baroreflex function, which occur within 1 week of consumption of a high-fat, high-calorie diet, appear integral to the rapid development of obesity-related hypertension. Increased plasma leptin and insulin may contribute to the initiation of hypertension but are not required for maintenance of mean arterial pressure, which likely lies in alterations in the response of neurons in the hypothalamus.
Collapse
Affiliation(s)
- James A Armitage
- Departments of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|