1
|
Emerson JI, Shi W, Conlon FL. Sex-specific response to A1BG loss results in female dilated cardiomyopathy. Biol Sex Differ 2025; 16:27. [PMID: 40270023 PMCID: PMC12016195 DOI: 10.1186/s13293-025-00713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Cardiac disease often manifests with sex-specific differences in frequency, pathology, and progression. However, the molecular mechanisms underlying these differences remain incompletely understood. The glycoprotein A1BG has emerged as a female-specific regulator of cardiac structure and integrity, yet its precise role in the female heart is not well characterized. METHODS To investigate the sex-specific role of A1BG in the heart, we generated both a conditional A1bg knockout allele and an A1bg Rosa26 knockin allele. We employed histological analysis, electrocardiography, RNA sequencing (RNA-seq), transmission electron microscopy (TEM), western blotting, mass spectrometry, and immunohistochemistry to assess structural, functional, and molecular phenotypes. RESULTS Loss of A1BG in cardiomyocytes leads to persistent structural remodeling in female, but not male, hearts. Despite preserved systolic function in female A1bgCM/CM mice left ventricular dilation and wall thinning are evident and sustained over time, consistent with early-stage dilated cardiomyopathy (DCM). Transcriptomic analyses reveal that A1BG regulates key metabolic pathways in females, including glucose-6-phosphate and acetyl-CoA metabolism. TEM imaging highlights sex-specific disruption of intercalated disc architecture in female cardiomyocytes. These findings suggest that the absence of A1BG initiates chronic pathological remodeling in female hearts, potentially predisposing them to DCM under stress or aging. CONCLUSION A1BG is essential for maintaining ventricular structural integrity in female, but not male, hearts, leading to a chronic remodeling consistent with early-stage DCM.
Collapse
Affiliation(s)
- James I Emerson
- Departments of Biology and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wei Shi
- Departments of Biology and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, USA
| | - Frank L Conlon
- Departments of Biology and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Visvanathan R, Houghton MJ, Williamson G. Impact of Glucose, Inflammation and Phytochemicals on ACE2, TMPRSS2 and Glucose Transporter Gene Expression in Human Intestinal Cells. Antioxidants (Basel) 2025; 14:253. [PMID: 40227199 PMCID: PMC11939507 DOI: 10.3390/antiox14030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/05/2025] [Accepted: 02/18/2025] [Indexed: 04/15/2025] Open
Abstract
Inflammation is associated with the pathophysiology of type 2 diabetes and COVID-19. Phytochemicals have the potential to modulate inflammation, expression of SARS-CoV-2 viral entry receptors (angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2)) and glucose transport in the gut. This study assessed the impact of phytochemicals on these processes. We screened 12 phytochemicals alongside 10 pharmaceuticals and three plant extracts, selected for known or hypothesised effects on the SARS-CoV-2 receptors and COVID-19 risk, for their effects on the expression of ACE2 or TMPRSS2 in differentiated Caco-2/TC7 human intestinal epithelial cells. Genistein, apigenin, artemisinin and sulforaphane were the most promising ones, as assessed by the downregulation of TMPRSS2, and thus they were used in subsequent experiments. The cells were then co-stimulated with pro-inflammatory cytokines interleukin-1 beta (IL-1β) and tumour necrosis factor-alpha (TNF-α) for ≤168 h to induce inflammation, which are known to induce multiple pathways, including the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Target gene expression (ACE2, TMPRSS2, SGLT1 (sodium-dependent glucose transporter 1) and GLUT2 (glucose transporter 2)) was measured by droplet digital PCR, while interleukin-1 (IL-6), interleukin-1 (IL-8) and ACE2 proteins were assessed using ELISA in both normal and inflamed cells. IL-1β and TNF-α treatment upregulated ACE2, TMPRSS2 and SGLT1 gene expression. ACE2 increased with the duration of cytokine exposure, coupled with a significant decrease in IL-8, SGLT1 and TMPRSS2 over time. Pearson correlation analysis revealed that the increase in ACE2 was strongly associated with a decrease in IL-8 (r = -0.77, p < 0.01). The regulation of SGLT1 gene expression followed the same pattern as TMPRSS2, implying a common mechanism. Although none of the phytochemicals decreased inflammation-induced IL-8 secretion, genistein normalised inflammation-induced increases in SGLT1 and TMPRSS2. The association between TMPRSS2 and SGLT1 gene expression, which is particularly evident in inflammatory conditions, suggests a common regulatory pathway. Genistein downregulated the inflammation-induced increase in SGLT1 and TMPRSS2, which may help lower the postprandial glycaemic response and COVID-19 risk or severity in healthy individuals and those with metabolic disorders.
Collapse
Affiliation(s)
- Rizliya Visvanathan
- Department of Nutrition, Dietetics and Food, BASE Facility, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
- Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| | - Michael J. Houghton
- Department of Nutrition, Dietetics and Food, BASE Facility, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
- Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, BASE Facility, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
- Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| |
Collapse
|
3
|
Mallette JH, Crudup BF, Speyrer AO, Rawls AZ, Cockrell K, Willis AT, Davenport K, Cardozo LLY, Shawky NM, Alexander BT. Cross-Sex Hormone Therapy Is Associated With Loss of Circadian Rhythm in the Male Rat. Hypertension 2025; 82:241-254. [PMID: 39633591 PMCID: PMC11735301 DOI: 10.1161/hypertensionaha.124.23901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Transgender women are individuals born male but identify as female. Many transgender women undergo gender-affirming hormone therapy to alleviate the distress that can occur due to gender incongruence. For transgender women, gender-affirming hormone therapy includes 17β-estradiol (E2) combined with an antiandrogen therapy (AA) or surgical intervention. Numerous studies suggest that the risk of cardiovascular disease is elevated in transgender women; yet, the biological effects of gender-affirming hormone therapy on cardiovascular health are unknown. We hypothesize that a shift in the hormonal milieu versus natal sex in the male rat is associated with an increase in blood pressure at baseline and an enhanced responsiveness to a hypertensive challenge. METHODS We developed clinically relevant models that mimic gender-affirming hormone therapy combination therapies utilized for the endocrine treatment of gender dysphoria in transgender women. RESULTS Chronic E2 plus castration or the E2+antiandrogen spironolactone was associated with a significant reduction in lean mass and testosterone. At baseline, 24-hour mean arterial pressure did not differ in E2+castration or E2+antiandrogen therapy versus control, but circadian rhythm was disrupted. In response to chronic Ang II (angiotensin II; 200 ng/kg per minute), the Ang II-induced increase in blood pressure was attenuated in E2+castration compared with control, but the blood pressure response to Ang II was similar in E2+antiandrogen therapy versus control. CONCLUSIONS Thus, these data indicate that the type of combination therapy utilized may exert differential effects on blood pressure and that disruption of circadian rhythm may be a contributory factor to the increased risk of adverse cardiovascular outcomes in transgender women exposed to high 17β-estradiol coupled to androgen suppression.
Collapse
Affiliation(s)
- Jordan H. Mallette
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
| | - Breland F. Crudup
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
| | | | - Adam Z. Rawls
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
| | - Kathy Cockrell
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
| | - Alex T. Willis
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
| | - Kacey Davenport
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS USA
| | - Licy L. Yanes Cardozo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS USA
| | - Noha M. Shawky
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS USA
| | - Barbara T. Alexander
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
| |
Collapse
|
4
|
Wang Y, Wang H, Lu H, Ma J, Wu W, Wang Y, Ma B, Zhu H, Hu R. Renal glomerular and tubular injury in the offspring of the preeclampsia-like syndrome. Sci Rep 2025; 15:915. [PMID: 39762506 PMCID: PMC11704207 DOI: 10.1038/s41598-025-85258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
Preeclampsia (PE) is a prevalent and severe pregnancy complication that significantly impacts maternal and perinatal health. Epidemiological studies and animal experiments have demonstrated that PE adversely affects the cardiovascular and nervous systems of offspring, increasing their risk of hypertension and renal pathology. However, the mechanisms underlying this increased risk remain unclear. This study utilized an L-NAME-induced preeclampsia mouse model (PELS model) to investigate the effects of PE on offspring blood pressure and renal pathology, focusing on the expression of Angiotensin II Type 1 Receptors (AT1R) and related molecules in renal tissues. Our findings show that L-NAME-induced pre-eclampsia led to reduced birth weights and significantly elevated systolic blood pressure in 6-week-old offspring. Histopathological analysis revealed pronounced glomerular and tubular damage in the kidneys of both 1-week and 6-week-old offspring from the pre-eclampsia group. At 1 week of age, the pre-eclampsia group exhibited elevated mRNA and protein expression levels of AT1R, GRK4, AQP2, ENaC, and NCC in renal tissues compared to controls. However, these differences were no longer significant at 6 weeks of age. No significant gender differences were observed in either blood pressure or renal pathological changes. Preeclampsia induced by L-NAME results in increased blood pressure and renal damage in offspring, potentially mediated by early alterations in the renal RAS system. The observed changes in AT1R and related molecules appear to be transient, suggesting that the early impact of pre-eclampsia on renal structure may trigger, but not sustain, hypertension in offspring. Further studies are needed to elucidate the long-term mechanisms driving hypertension in this population.
Collapse
Affiliation(s)
- Yong Wang
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Hao Wang
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Huiqing Lu
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ji Ma
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Wei Wu
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yinan Wang
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Bo Ma
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Hao Zhu
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| | - Rong Hu
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Hasini NM, Gupta AK, Priyadarshi A, Alam A, Quaiser S. A Case of Primary Aldosteronism Masquerading as Bartter and Gitelman Syndromes. Cureus 2024; 16:e75644. [PMID: 39803142 PMCID: PMC11725329 DOI: 10.7759/cureus.75644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Primary aldosteronism (PA) is a common cause of secondary hypertension, with familial hyperaldosteronism (FH) contributing to a lesser number of cases. FH type IV, a rare subtype, has hardly been reported as a subtype of PA cases. We present a case of a 27-year-old female who presented to the emergency department with circumoral tingling and numbness. A diagnosis of hypocalcemia due to vitamin D deficiency was made. During hospital stay, she developed acute gastroenteritis and was treated with doxycycline, after which she experienced persistent hypokalemia. Further investigation revealed urinary potassium loss and metabolic alkalosis, although her blood pressure remained normal throughout her stay. Clinical exome sequencing identified a mutated variant in the calcium voltage-gated channel subunit alpha1 H (CACNA1H) gene associated with FH type IV. Elevated plasma aldosterone and suppressed renin confirmed PA. The administration of doxycycline for treating acute gastroenteritis likely precipitated hypokalemia by enhancing the expression of the mutated CACNA1H gene variant, thereby increasing aldosterone production.
Collapse
Affiliation(s)
- Narasingolu M Hasini
- Department of Medicine, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, IND
| | - Atul K Gupta
- Department of Medicine, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, IND
| | - Akash Priyadarshi
- Department of Medicine, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, IND
| | - Ahmad Alam
- Rajeev Gandhi Centre for Diabetes and Endocrinology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, IND
| | - Saif Quaiser
- Department of Medicine, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, IND
| |
Collapse
|
6
|
Emerson JI, Shi W, Conlon FL. Sex-Specific Response to A1BG Loss Results in Female Dilated Cardiomyopathy. RESEARCH SQUARE 2024:rs.3.rs-4631369. [PMID: 39070637 PMCID: PMC11276010 DOI: 10.21203/rs.3.rs-4631369/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Cardiac disease often manifests differently in terms of frequency and pathology between men and women. However, the mechanisms underlying these differences are not fully understood. The glycoprotein A1BG is necessary for proper cardiac function in females but not males. Despite this, the role of A1BG in the female heart remains poorly studied. Methods To determine the sex differential function of A1BG, we generated a novel conditional A1bg allele and a novel conditional A1bg Rosa26 knockin allele. Histology, electrocardiography, transcriptional profiling (RNA-seq), transmission electron microscopy, western blot analyses, mass spectrometry, and immunohistochemistry were used to assess cardiac structure and function. Results The study reveals that the absence of A1BG results in significant cardiac dysfunction in female but not male mice. Gene expression underscores that A1BG plays a critical role in metabolic processes and the integrity of intercalated discs in female cardiomyocytes. This dysfunction may be related to sex-specific A1BG cardiac interactomes and manifests as structural and functional alterations in the left ventricle indicative of dilated cardiomyopathy, thus suggesting a sex-specific requirement for A1BG in cardiac health. Conclusion The loss of A1BG in cardiomyocytes leads to dilated cardiomyopathy in females, not males.
Collapse
Affiliation(s)
| | - Wei Shi
- University of North Carolina at Chapel Hill
| | | |
Collapse
|
7
|
KAN Y, PENG YL, ZHAO ZH, DONG ST, XU YX, MA XT, LIU XL, LIU YY, ZHOU YJ. The impact of female sex hormones on cardiovascular disease: from mechanisms to hormone therapy. J Geriatr Cardiol 2024; 21:669-681. [PMID: 38973823 PMCID: PMC11224657 DOI: 10.26599/1671-5411.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Cardiovascular disease remains the leading cause of mortality in women, yet it has not raised the awareness from the public. The pathogenesis of cardiovascular disease differs significantly between females and males concerning the effect of sex hormones. Estrogen and progestogen impact cardiovascular system through genomic and non-genomic effects. Before menopause, cardiovascular protective effects of estrogens have been well described. Progestogens were often used in combination with estrogens in hormone therapy. Fluctuations in sex hormone levels, particularly estrogen deficiency, were considered the specific risk factor in women's cardiovascular disease. However, considerable heterogeneity in the impact of hormone therapy was observed in clinical trials. The heterogeneity is likely closely associated with factors such as the initial time, administration route, dosage, and formulation of hormone therapy. This review will delve into the pathogenesis and hormone therapy, summarizing the effect of female sex hormones on hypertension, pre-eclampsia, coronary heart disease, heart failure with preserved ejection fraction, and cardiovascular risk factors specific to women.
Collapse
Affiliation(s)
- Yi KAN
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Yu-Lu PENG
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Ze-Hao ZHAO
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Shu-Tong DONG
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Yin-Xiao XU
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Xiao-Teng MA
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Xiao-Li LIU
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Yu-Yang LIU
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Yu-Jie ZHOU
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Svigkou A, Katsi V, Kordalis VG, Tsioufis K. The Molecular Basis of the Augmented Cardiovascular Risk in Offspring of Mothers with Hypertensive Disorders of Pregnancy. Int J Mol Sci 2024; 25:5455. [PMID: 38791492 PMCID: PMC11121482 DOI: 10.3390/ijms25105455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The review examines the impact of maternal preeclampsia (PE) on the cardiometabolic and cardiovascular health of offspring. PE, a hypertensive disorder of pregnancy, is responsible for 2 to 8% of pregnancy-related complications. It significantly contributes to adverse outcomes for their infants, affecting the time of birth, the birth weight, and cardiometabolic risk factors such as blood pressure, body mass index (BMI), abdominal obesity, lipid profiles, glucose, and insulin. Exposure to PE in utero predisposes offspring to an increased risk of cardiometabolic diseases (CMD) and cardiovascular diseases (CVD) through mechanisms that are not fully understood. The incidence of CMD and CVD is constantly increasing, whereas CVD is the main cause of morbidity and mortality globally. A complex interplay of genes, environment, and developmental programming is a plausible explanation for the development of endothelial dysfunction, which leads to atherosclerosis and CVD. The underlying molecular mechanisms are angiogenic imbalance, inflammation, alterations in the renin-angiotensin-aldosterone system (RAAS), endothelium-derived components, serotonin dysregulation, oxidative stress, and activation of both the hypothalamic-pituitary-adrenal axis and hypothalamic-pituitary-gonadal axis. Moreover, the potential role of epigenetic factors, such as DNA methylation and microRNAs as mediators of these effects is emphasized, suggesting avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
| | - Vasiliki Katsi
- Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 157 72 Athens, Greece;
| | - Vasilios G. Kordalis
- School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Konstantinos Tsioufis
- Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 157 72 Athens, Greece;
| |
Collapse
|
9
|
Nemec-Bakk AS, Bel J, Niccoli S, Boreham DR, Tai TC, Lees SJ, Khaper N. Effects of prenatal dexamethasone exposure on adult C57BL/6J mouse metabolism and oxidative stress. Can J Physiol Pharmacol 2024; 102:180-195. [PMID: 38329060 DOI: 10.1139/cjpp-2023-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Prenatal glucocorticoid exposure has been shown to alter hypothalamic-pituitary-adrenal axis function resulting in altered fetal development that can persist through adulthood. Fetal exposure to excess dexamethasone, a synthetic glucocorticoid, has been shown to alter adult behaviour and metabolism. This study investigated the effects prenatal dexamethasone exposure had on adult offspring cardiac and liver metabolism and oxidative stress. Pregnant C57BL/6 mice received a dose of 0.4 mg/kg dexamethasone on gestational days 15-17. Once pups were approximately 7 months old, glucose uptake was determined using positron emission tomography and insulin resistance (IR) was determined by homeostatic model assessment (HOMA) IR calculation. Oxidative stress was assessed by measuring 4-hydroxynonenal protein adduct formation and total reactive oxygen species. Female dexamethasone group had significantly increased glucose uptake when insulin stimulated compared to vehicle-treated mice. HOMA IR revealed no evidence of IR in either male or female offspring. There was also no change in oxidative stress markers in either cardiac or liver tissues of male or female offspring. These data suggest that prenatal dexamethasone exposure in male mice does not alter oxidative stress or metabolism. However, prenatal dexamethasone exposure increased glucocorticoids, cardiac glucose uptake, and pAkt signaling in female heart tissues in adult mice, suggesting there are sex differences in prenatal dexamethasone exposure.
Collapse
Affiliation(s)
- A S Nemec-Bakk
- Department of Science and Environmental studies, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - J Bel
- Department of Science and Environmental studies, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - S Niccoli
- Medical Science Division, NOSM University, Thunder Bay, ON P7B 5E1, Canada
| | - D R Boreham
- Medical Science Division, NOSM University, Sudbury, ON P3E 2C6, Canada
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - T C Tai
- Medical Science Division, NOSM University, Sudbury, ON P3E 2C6, Canada
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - S J Lees
- Medical Science Division, NOSM University, Thunder Bay, ON P7B 5E1, Canada
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - N Khaper
- Medical Science Division, NOSM University, Thunder Bay, ON P7B 5E1, Canada
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
10
|
Campbell N, Deer E, Solise D, Cornelius DC, Turner T, Amaral LM, Herrock O, Jordan A, Shukla S, Ibrahim T, LaMarca B. AT1-AA Is Produced in Offspring in Response to Placental Ischemia and Is Lowered by B-Cell Depletion Without Compromising Overall Offspring Health. J Am Heart Assoc 2024; 13:e031417. [PMID: 38353227 PMCID: PMC11010106 DOI: 10.1161/jaha.123.031417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/01/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND Preeclampsia, new-onset hypertension during pregnancy alongside other organ dysfunction, is the leading cause of mortality for the mother and low birth weight for the baby. Low birth weight contributes to high risk of cardiovascular disorders later in life. Women with preeclampsia have activated B cells producing agonistic autoantibodies to AT1-AA (angiotensin II type I receptor). We hypothesize that rituximab, a B cell-depleting chemotherapeutic, will deplete maternal B cells in reduced uterine perfusion pressure (RUPP) rats without worsening the effect of placental ischemia on pup growth and survival. METHODS AND RESULTS To test this hypothesis, the RUPP procedure was performed, and rituximab was continuously infused via miniosmotic pump. Maternal blood and tissues were collected. A separate group of dams were allowed to deliver, pup weights were recorded, and at 4 months of age, tissues were collected from offspring. Immune cells were measured via flow cytometry, and AT1-AA was quantified using a contraction bioassay. Blood pressure increased in RUPP rats and was normalized with rituximab treatment. RUPP offspring also had increased circulating B cells, cytolytic natural killer cells, and increased circulating AT1-AA, which were normalized with maternal rituximab treatment. This is the first study to analyze the AT1-AA in RUPP offspring, which was normalized with rituximab. CONCLUSIONS Our findings indicate that perinatal rituximab lowers maternal mean arterial pressure in RUPP rats and improves birth weight, circulating AT1-AA, and circulating natural killer cells, indicating that rituximab improves adverse fetal outcomes in response to placental ischemia.
Collapse
Affiliation(s)
- Nathan Campbell
- Department of Pharmacology & ToxicologyUniversity of Mississippi Medical CenterJacksonMS
| | - Evangeline Deer
- Department of Pharmacology & ToxicologyUniversity of Mississippi Medical CenterJacksonMS
| | - Dylan Solise
- Department of Obstetrics and GynecologyUniversity of Mississippi Medical CenterJacksonMS
| | - Denise C. Cornelius
- Department of Pharmacology & ToxicologyUniversity of Mississippi Medical CenterJacksonMS
- Department of Emergency MedicineUniversity of Mississippi Medical CenterJacksonMS
| | - Ty Turner
- Department of Pharmacology & ToxicologyUniversity of Mississippi Medical CenterJacksonMS
| | - Lorena M. Amaral
- Department of Pharmacology & ToxicologyUniversity of Mississippi Medical CenterJacksonMS
| | - Owen Herrock
- Department of Pharmacology & ToxicologyUniversity of Mississippi Medical CenterJacksonMS
| | - Ariel Jordan
- Department of Pharmacology & ToxicologyUniversity of Mississippi Medical CenterJacksonMS
| | - Shivani Shukla
- Department of Pharmacology & ToxicologyUniversity of Mississippi Medical CenterJacksonMS
| | - Tarek Ibrahim
- Department of Pharmacology & ToxicologyUniversity of Mississippi Medical CenterJacksonMS
| | - Babbette LaMarca
- Department of Pharmacology & ToxicologyUniversity of Mississippi Medical CenterJacksonMS
- Department of Obstetrics and GynecologyUniversity of Mississippi Medical CenterJacksonMS
| |
Collapse
|
11
|
Christians JK, Reue K. The role of gonadal hormones and sex chromosomes in sex-dependent effects of early nutrition on metabolic health. Front Endocrinol (Lausanne) 2023; 14:1304050. [PMID: 38189044 PMCID: PMC10770830 DOI: 10.3389/fendo.2023.1304050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Early-life conditions such as prenatal nutrition can have long-term effects on metabolic health, and these effects may differ between males and females. Understanding the biological mechanisms underlying sex differences in the response to early-life environment will improve interventions, but few such mechanisms have been identified, and there is no overall framework for understanding sex differences. Biological sex differences may be due to chromosomal sex, gonadal sex, or interactions between the two. This review describes approaches to distinguish between the roles of chromosomal and gonadal sex, and summarizes findings regarding sex differences in metabolism. The Four Core Genotypes (FCG) mouse model allows dissociation of the sex chromosome genotype from gonadal type, whereas the XY* mouse model can be used to distinguish effects of X chromosome dosage vs the presence of the Y chromosome. Gonadectomy can be used to distinguish between organizational (permanent) and activational (reversible) effects of sex hormones. Baseline sex differences in a variety of metabolic traits are influenced by both activational and organizational effects of gonadal hormones, as well as sex chromosome complement. Thus far, these approaches have not been widely applied to examine sex-dependent effects of prenatal conditions, although a number of studies have found activational effects of estradiol to be protective against the development of hypertension following early-life adversity. Genes that escape X chromosome inactivation (XCI), such as Kdm5c, contribute to baseline sex-differences in metabolism, while Ogt, another XCI escapee, leads to sex-dependent responses to prenatal maternal stress. Genome-wide approaches to the study of sex differences include mapping genetic loci influencing metabolic traits in a sex-dependent manner. Seeking enrichment for binding sites of hormone receptors among genes showing sexually-dimorphic expression can elucidate the relative roles of hormones. Using the approaches described herein to identify mechanisms underlying sex-dependent effects of early nutrition on metabolic health may enable the identification of fundamental mechanisms and potential interventions.
Collapse
Affiliation(s)
- Julian K. Christians
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Women’s Health Research Institute, BC Women’s Hospital and Health Centre, Vancouver, BC, Canada
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
12
|
Malatiali SA, Kilarkaje N, Al‐Bader M. Maternal dexamethasone exposure does not affect glucose tolerance but alters renal haemodynamics in F 1 rats in a sex-dependent manner. Endocrinol Diabetes Metab 2023; 6:e450. [PMID: 37723884 PMCID: PMC10638624 DOI: 10.1002/edm2.450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/06/2023] [Accepted: 09/02/2023] [Indexed: 09/20/2023] Open
Abstract
INTRODUCTION Prenatal programming with dexamethasone increases the risk of the development of hyperglycaemia and insulin resistance, leading to diabetes in adulthood. Dexamethasone also causes a decline in renal glomerular filtration in the adult offspring. Sodium-glucose cotransporter-2 (SGLT2) plays a significant role in regulating blood glucose and renal haemodynamics in diabetic patients. However, the role of SGLT2 in dexamethasone-induced programming and the putative sex-dependent effects on the changes named earlier is unknown. Therefore, this study aimed to investigate the impact of maternal dexamethasone treatment on glucose tolerance, insulin sensitivity, renal perfusion and renal function in adult male and female offspring and the possible contribution of SGLT2 to these changes. METHODS AND RESULTS Pregnant Sprague Dawley rats (F0 ) were treated with either vehicle or dexamethasone (0.2 mg/kg ip) from gestation Day 15 to 20. F1 males and F1 females were randomly selected from each mother at 4 months of age. There was no change in serum Na+ , Na+ excretion rate, glucose tolerance or insulin sensitivity in F1 male or female rats. However, dexamethasone caused significant glomerular hypertrophy and decreases in CSinistrin and CPAH indicating decreased glomerular filtration rate and renal plasma flow, respectively, in dexamethasone-treated F1 male but not female rats. Dexamethasone did not affect SGLT2 mRNA or protein expression in F1 males or females. CONCLUSION We conclude that dexamethasone-mediated prenatal programming of glomerular volume, renal function and haemodynamics is sex-dependent, occurring only in adult male offspring.
Collapse
Affiliation(s)
- Slava A. Malatiali
- Department of Physiology, College of MedicineKuwait UniversitySafatKuwait
| | | | - Maie Al‐Bader
- Department of Physiology, College of MedicineKuwait UniversitySafatKuwait
| |
Collapse
|
13
|
Żelaźniewicz A, Nowak-Kornicka J, Pawłowski B. Birth size and the serum level of biological age markers in men. Sci Rep 2023; 13:14231. [PMID: 37648769 PMCID: PMC10469219 DOI: 10.1038/s41598-023-41065-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Previous studies showed that intrauterine growth restrictions, resulting in smaller body size at birth, are associated with altered development and the risk of age-related diseases in adult life. Thus, prenatal development may predict aging trajectories in humans. The study aimed to verify if body size at birth is related to biological age in adult men. The study sample consisted of 159 healthy, non-smoking men with a mean age of 35.24 (SD 3.44) years. Birth weight and length were taken from medical records. The ponderal index at birth was calculated. Biological age was evaluated based on serum levels of s-Klotho, hsCRP, DHEA/S, and oxidative stress markers. Pregnancy age at birth, lifestyle, weight, cortisol, and testosterone levels were controlled. The results showed no relationship between birth size and s-Klotho, DHEA/S level, inflammation, or oxidative stress. Also, men born as small-for-gestational-age (N = 49) and men born as appropriate-for-gestational-age (N = 110) did not differ in terms of biological age markers levels. The results were similar when controlled for pregnancy week at birth, chronological age, BMI, testosterone, or cortisol level. The results suggest that there is no relationship between intrauterine growth and biomarkers of aging in men aged 30-45 years from the affluent population.
Collapse
Affiliation(s)
- Agnieszka Żelaźniewicz
- Department of Human Biology, University of Wrocław, Ul. Przybyszewskiego 63, 51-148, Wrocław, Poland.
| | - Judyta Nowak-Kornicka
- Department of Human Biology, University of Wrocław, Ul. Przybyszewskiego 63, 51-148, Wrocław, Poland
| | - Bogusław Pawłowski
- Department of Human Biology, University of Wrocław, Ul. Przybyszewskiego 63, 51-148, Wrocław, Poland
| |
Collapse
|
14
|
Olivera S, Graham D. Sex differences in preclinical models of hypertension. J Hum Hypertens 2023; 37:619-625. [PMID: 36335169 PMCID: PMC10403342 DOI: 10.1038/s41371-022-00770-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/03/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Hypertension remains the primary contributor in the development of cardiovascular disease which is rapidly increasing worldwide. High blood pressure affects men and women differently and understanding these sex differences is the ultimate unmet need for researchers in this field. Due to the inherent differences in hypertension prevalence, control and outcomes between men and women, novel research needs to be carried out to tackle these disparities and improve targeted treatment. Animal models of hypertension have provided valuable insights into the sexual dimorphism of blood pressure mechanisms. The availability of genetic and non-genetic hypertensive strains allows the opportunity to study diverse environmental and genetic factors that affect blood pressure, therefore presenting a valuable tool for researchers. Sex differences are present before birth and throughout life, which presents a challenge for the study of disease development in humans, but these complexities can be resolved with the use of in vivo models that display similarities to human disease. The aim of the present review is to provide an overview of the different available animal models of hypertension that present sexual dimorphisms and to discuss their relevance to humans.
Collapse
Affiliation(s)
- Sol Olivera
- School of Cardiovascular and Metabolic Health, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Delyth Graham
- School of Cardiovascular and Metabolic Health, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
15
|
Campbell N, Solise D, Deer E, LaMarca B. Sex Differences in Offspring of Preeclamptic Pregnancies. CURRENT OPINION IN PHYSIOLOGY 2023; 34:100688. [PMID: 37305157 PMCID: PMC10249590 DOI: 10.1016/j.cophys.2023.100688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A poor uterine environment causes changes in fetal development that affect the health of offspring long-term. Although there are multiple pathways that contribute to the development of cardiovascular and neurological disease, low birth weight or fetal growth restriction (FGR) predisposes offspring to these diseases. There is a link between fetal exposure to adverse influences and hypertension later in life. Many epidemiological studies support the link between fetal life and the risk of disease later in life. Experimental models have sought to provide mechanistic proof of this link while simultaneously investigating potential therapeutics or treatment pathways. Preeclampsia (PE), one of several hypertensive disorders in pregnancy, is a leading cause of morbidity and mortality for both the mother and fetus. Studies have shown that PE is a state of chronic inflammation and there is an imbalance between pro-inflammatory and regulatory immune cells and mediators. There is no cure for PE beyond the delivery of the fetal-placental unit, and many PE pregnancies result in FGR and preterm birth. Epidemiological data demonstrate that the sex of the offspring is correlated with the degree of cardiovascular disease that develops with the age of the offspring yet few studies examine the effect of sex on the development of neurological disorders. Even fewer studies examine the effects of therapeutics on offspring of different genders following a PE pregnancy. Moreover, there remain significant gaps in knowledge concerning the role the immune system plays in FGR offspring developing hypertension or neurovascular disorders later in life. Therefore, the purpose of this review is to highlight current research on sex differences in the developmental programming of hypertension and neurological disorders following a PE pregnancy.
Collapse
Affiliation(s)
- Nathan Campbell
- Department of Pharmacology & Toxicology, University of
Mississippi Medical Center, Jackson, MS
| | - Dylan Solise
- Department of Obstetrics and Gynecology, University of
Mississippi Medical Center, Jackson, MS
| | - Evangeline Deer
- Department of Pharmacology & Toxicology, University of
Mississippi Medical Center, Jackson, MS
| | - Babbette LaMarca
- Department of Pharmacology & Toxicology, University of
Mississippi Medical Center, Jackson, MS
- Department of Obstetrics and Gynecology, University of
Mississippi Medical Center, Jackson, MS
| |
Collapse
|
16
|
Zhang Y, Shan M, Ding X, Sun H, Qiu F, Shi L. Maternal exercise represses Nox4 via SIRT1 to prevent vascular oxidative stress and endothelial dysfunction in SHR offspring. Front Endocrinol (Lausanne) 2023; 14:1219194. [PMID: 37501791 PMCID: PMC10368947 DOI: 10.3389/fendo.2023.1219194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Maternal exercise during pregnancy has emerged as a potentially promising approach to protect offspring from cardiovascular disease, including hypertension. Although endothelial dysfunction is involved in the pathophysiology of hypertension, limited studies have characterized how maternal exercise influences endothelial function of hypertensive offspring. In this study, pregnant spontaneously hypertensive rats and Wistar-Kyoto rats were assigned either to a sedentary lifestyle or to swimming training daily, and fetal histone deacetylase-mediated epigenetic modification and offspring vascular function of mesenteric arteries were analyzed. Maternal exercise ameliorated the impairment of acetylcholine-induced vasodilation without affecting sodium nitroprusside-induced vasodilation in mesenteric arteries from the hypertensive offspring. In accordance, maternal exercise reduced NADPH oxidase-4 (Nox4) protein to prevent the loss of nitric oxide generation and increased reactive oxygen species production in mesenteric arteries of hypertensive offspring. We further found that maternal exercise during pregnancy upregulated vascular SIRT1 (sirtuin 1) expression, leading to a low level of H3K9ac (histone H3 lysine 9 acetylation), resulting in the transcriptional downregulation of Nox4 in mesenteric arteries of hypertensive fetuses. These findings show that maternal exercise alleviates oxidative stress and the impairment of endothelium-dependent vasodilatation via SIRT1-regulated deacetylation of Nox4, which might contribute to improved vascular function in hypertensive offspring.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Meiling Shan
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Xiaozhen Ding
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Hualing Sun
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Fang Qiu
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| |
Collapse
|
17
|
Solise D, Campbell N, Ashraf U, Herrock O, Crudup B, Mallette J, Willis A, Rawls AZ, Turner T, Cockrell K, Zheng B, Deer E, Amaral L, Alexander BT, Lamarca B. Inhibition of angiotensin II type 1 receptor agonistic autoantibodies by direct binding does not impact reduced uterine perfusion pressure offspring birthweight and blood pressure at adulthood. Am J Obstet Gynecol MFM 2023; 5:100945. [PMID: 36990181 PMCID: PMC10449034 DOI: 10.1016/j.ajogmf.2023.100945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Preeclampsia, a new-onset hypertension with end-organ damage in pregnancy, is associated with maternal death and morbidity, low birthweight, and B cells producing agonistic autoantibodies to the angiotensin II type 1 receptor. Angiotensin II type 1 receptor agonistic autoantibodies are produced during pregnancy and after delivery and are in the fetal circulation of women with preeclampsia. Angiotensin II type 1 receptor agonistic autoantibodies are shown to contribute to endothelial dysfunction, renal dysfunction, hypertension, fetal growth restriction, and chronic inflammation in women with preeclampsia. The reduced uterine perfusion pressure rat model of preeclampsia exhibits these features. In addition, we have shown that the administration of a 'n7AAc', which blocks the actions of the angiotensin II type 1 receptor autoantibodies, improves preeclamptic features in the rat with reduced uterine perfusion pressure. However, the effect of a 'n7AAc' on the long-term health of the offspring of rats with reduced uterine perfusion pressure is unknown. OBJECTIVE This study aimed to test the hypothesis that inhibition of angiotensin II type 1 receptor autoantibodies during pregnancy will improve offspring birthweight and prevent increased cardiovascular risk in offspring in adulthood. STUDY DESIGN To test our hypothesis, a 'n7AAc' (24 µg/d) or vehicle (saline) was given on gestation day 14 via miniosmotic pumps to sham-operated (sham) and Sprague-Dawley rat dams with reduced uterine perfusion pressure. Dams were allowed to deliver naturally, and pup weights were recorded within 12 hours after birth. Pups were aged to 16 weeks, at which time mean arterial pressure was measured and whole blood was collected to measure immune cells by flow cytometry, cytokines by enzyme-linked immunosorbent assay, and angiotensin II type 1 receptor autoantibodies by bioassay. A 2-way analysis of variance with the Bonferroni multiple comparison posthoc test was used for statistical analysis. RESULTS There was no significant change in offspring birthweight of 'n7AAc'-treated male (5.63±0.09 g) or female (5.66±0.14 g) offspring from reduced uterine perfusion pressure dams compared with vehicle male (5.51±0.17 g) or female (5.74±0.13 g) offspring from reduced uterine perfusion pressure dams. In addition, 'n7AAc' treatment did not affect the birthweight of sham male (5.83±0.11 g) or female (5.64±0.12) offspring compared with vehicle sham male (5.811±0.15 g) or female (5.40±0.24 g) offspring. At adulthood, mean arterial pressure was unchanged in 'n7AAc' treated-male (133±2 mm Hg) and female (127±3 mm Hg) offspring from reduced uterine perfusion pressure dams compared with vehicle male (142±3 mm Hg) and female (133±5 mm Hg) offspring from reduced uterine perfusion pressure dams, the 'n7AAc'-treated sham male (133±3 mm Hg) and female (135±3 mm Hg) offspring, and vehicle sham male (138±4 mm Hg) and female (130±5 mm Hg) offspring. The circulating angiotensin II type 1 receptor autoantibodies were increased in vehicle male (10±2 ΔBPM) and female (14±2 ΔBPM) offspring from reduced uterine perfusion pressure dams and 'n7AAc'-treated male (11±2 ΔBPM) and female (11±2 ΔBPM) offspring from reduced uterine perfusion pressure dams compared with vehicle sham male (1±1 ΔBPM) and female (-1±1 ΔBPM) offspring and 'n7AAc'-treated sham male (-2±2 ΔBPM) and female (-2±2 ΔBPM) offspring. CONCLUSION Our findings indicated that perinatal 7-amino acid sequence peptide treatment does not negatively impact offspring survival or weight at birth. Perinatal 'n7AAc' treatment did not prevent increased cardiovascular risk in offspring, but it also did not cause an increased cardiovascular risk in offspring with reduced uterine perfusion pressure compared with controls. Furthermore, perinatal 'n7AAc' treatment did not affect endogenous immunologic programming as observed by no change in circulating angiotensin II type 1 receptor autoantibodies in either sex of adult offspring from reduced uterine perfusion pressure dams.
Collapse
Affiliation(s)
- Dylan Solise
- Department of Obstetrics and Gynecology (Drs Solise and Lamarca), University of Mississippi Medical Center, Jackson, MS
| | - Nathan Campbell
- Department of Pharmacology and Toxicology (Messrs Campbell, Herrock, Turner, and Zheng and Drs Deer, Amaral, and Lamarca), University of Mississippi Medical Center, Jackson, MS
| | - Usman Ashraf
- Department of Physiology and Biophysics (Drs Ashraf and Crudup, Ms Mallette, Messrs Willis and Rawls, Ms Cockrell, and Dr Alexander), University of Mississippi Medical Center, Jackson, MS
| | - Owen Herrock
- Department of Pharmacology and Toxicology (Messrs Campbell, Herrock, Turner, and Zheng and Drs Deer, Amaral, and Lamarca), University of Mississippi Medical Center, Jackson, MS
| | - Breland Crudup
- Department of Physiology and Biophysics (Drs Ashraf and Crudup, Ms Mallette, Messrs Willis and Rawls, Ms Cockrell, and Dr Alexander), University of Mississippi Medical Center, Jackson, MS
| | - Jordan Mallette
- Department of Physiology and Biophysics (Drs Ashraf and Crudup, Ms Mallette, Messrs Willis and Rawls, Ms Cockrell, and Dr Alexander), University of Mississippi Medical Center, Jackson, MS
| | - Alex Willis
- Department of Physiology and Biophysics (Drs Ashraf and Crudup, Ms Mallette, Messrs Willis and Rawls, Ms Cockrell, and Dr Alexander), University of Mississippi Medical Center, Jackson, MS
| | - Adam Z Rawls
- Department of Physiology and Biophysics (Drs Ashraf and Crudup, Ms Mallette, Messrs Willis and Rawls, Ms Cockrell, and Dr Alexander), University of Mississippi Medical Center, Jackson, MS
| | - Ty Turner
- Department of Pharmacology and Toxicology (Messrs Campbell, Herrock, Turner, and Zheng and Drs Deer, Amaral, and Lamarca), University of Mississippi Medical Center, Jackson, MS
| | - Kathy Cockrell
- Department of Physiology and Biophysics (Drs Ashraf and Crudup, Ms Mallette, Messrs Willis and Rawls, Ms Cockrell, and Dr Alexander), University of Mississippi Medical Center, Jackson, MS
| | - Baoying Zheng
- Department of Pharmacology and Toxicology (Messrs Campbell, Herrock, Turner, and Zheng and Drs Deer, Amaral, and Lamarca), University of Mississippi Medical Center, Jackson, MS
| | - Evangeline Deer
- Department of Pharmacology and Toxicology (Messrs Campbell, Herrock, Turner, and Zheng and Drs Deer, Amaral, and Lamarca), University of Mississippi Medical Center, Jackson, MS
| | - Lorena Amaral
- Department of Pharmacology and Toxicology (Messrs Campbell, Herrock, Turner, and Zheng and Drs Deer, Amaral, and Lamarca), University of Mississippi Medical Center, Jackson, MS
| | - Barbara T Alexander
- Department of Physiology and Biophysics (Drs Ashraf and Crudup, Ms Mallette, Messrs Willis and Rawls, Ms Cockrell, and Dr Alexander), University of Mississippi Medical Center, Jackson, MS
| | - Babbette Lamarca
- Department of Obstetrics and Gynecology (Drs Solise and Lamarca), University of Mississippi Medical Center, Jackson, MS; Department of Pharmacology and Toxicology (Messrs Campbell, Herrock, Turner, and Zheng and Drs Deer, Amaral, and Lamarca), University of Mississippi Medical Center, Jackson, MS.
| |
Collapse
|
18
|
Luo X, Hang C, Zhang Z, Le K, Ying Y, Lv Y, Yan L, Huang Y, Ye L, Xu X, Zhong Y, Du L. PVECs-Derived Exosomal microRNAs Regulate PASMCs via FoxM1 Signaling in IUGR-induced Pulmonary Hypertension. J Am Heart Assoc 2022; 11:e027177. [PMID: 36533591 PMCID: PMC9798821 DOI: 10.1161/jaha.122.027177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Intrauterine growth restriction (IUGR) is closely related to systemic or pulmonary hypertension (PH) in adulthood. Aberrant crosstalk between pulmonary vascular endothelial cells (PVECs) and pulmonary arterial smooth muscle cells (PASMCs) that is mediated by exosomes plays an essential role in the progression of PH. FoxM1 (Forkhead box M1) is a key transcription factor that governs many important biological processes. Methods and Results IUGR-induced PH rat models were established. Transwell plates were used to coculture PVECs and PASMCs. Exosomes were isolated from PVEC-derived medium, and a microRNA (miRNA) screening was proceeded to identify effects of IUGR on small RNAs enclosed within exosomes. Dual-Luciferase assay was performed to validate the predicted binding sites of miRNAs on FoxM1 3' untranslated region. FoxM1 inhibitor thiostrepton was used in IUGR-induced PH rats. In this study, we found that FoxM1 expression was remarkably increased in IUGR-induced PH, and PASMCs were regulated by PVECs through FoxM1 signaling in a non-contact way. An miRNA screening showed that miR-214-3p, miR-326-3p, and miR-125b-2-3p were downregulated in PVEC-derived exosomes of the IUGR group, which were associated with overexpression of FoxM1 and more significant proliferation and migration of PASMCs. Dual-Luciferase assay demonstrated that the 3 miRNAs directly targeted FoxM1 3' untranslated region. FoxM1 inhibition blocked the PVECs-PASMCs crosstalk and reversed the abnormal functions of PASMCs. In vivo, treatment with thiostrepton significantly reduced the severity of PH. Conclusions Transmission of exosomal miRNAs from PVECs regulated the functions of PASMCs via FoxM1 signaling, and FoxM1 may serve as a potential therapeutic target in IUGR-induced PH.
Collapse
Affiliation(s)
- Xiaofei Luo
- Department of Neonatology, The Children’s HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang ProvincePeople’s Republic of China
| | - Chengcheng Hang
- Department of Neonatology, The Children’s HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang ProvincePeople’s Republic of China
| | - Ziming Zhang
- Department of Neonatology, The Children’s HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang ProvincePeople’s Republic of China
| | - Kaixing Le
- Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang ProvincePeople’s Republic of China
| | - Yuhan Ying
- Department of Neonatology, The Children’s HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang ProvincePeople’s Republic of China
| | - Ying Lv
- Department of Pediatric Health Care, The Children’s HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang ProvincePeople’s Republic of China
| | - Lingling Yan
- Department of Pediatrics, The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvincePeople’s Republic of China
| | - Yajie Huang
- Department of Neonatology, The Children’s HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang ProvincePeople’s Republic of China
| | - Lixia Ye
- Department of Neonatology, The Children’s HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang ProvincePeople’s Republic of China
| | - Xuefeng Xu
- Department of Rheumatology Immunology & Allergy, The Children’s HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang ProvincePeople’s Republic of China
| | - Ying Zhong
- Department of Neonatology, The Children’s HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang ProvincePeople’s Republic of China
| | - Lizhong Du
- Department of Neonatology, The Children’s HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang ProvincePeople’s Republic of China
| |
Collapse
|
19
|
Amruta N, Kandikattu HK, Intapad S. Cardiovascular Dysfunction in Intrauterine Growth Restriction. Curr Hypertens Rep 2022; 24:693-708. [PMID: 36322299 DOI: 10.1007/s11906-022-01228-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW We highlight important new findings on cardiovascular dysfunction in intrauterine growth restriction. RECENT FINDINGS Intrauterine growth restriction (IUGR) is a multifactorial condition which negatively impacts neonatal growth during pregnancy and is associated with health problems during the lifespan. It affects 5-15% of all pregnancies in the USA and Europe with varying percentages in developing countries. Epidemiological studies have reported that IUGR is associated with the pathogenesis of hypertension, activation of the renin-angiotensin system (RAS), disruption in placental-mTORC and TGFβ signaling cascades, and endothelial dysfunction in IUGR fetuses, children, adolescents, and adults resulting in the development of cardiovascular diseases (CVD). Experimental studies are needed to investigate therapeutic measures to treat increased blood pressure (BP) and long-term CVD problems in people affected by IUGR. We outline the mechanisms mediating fetal programming of hypertension in developing CVD. We have reviewed findings from different experimental models focusing on recent studies that demonstrate CVD in IUGR.
Collapse
Affiliation(s)
- Narayanappa Amruta
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, #8683, New Orleans, LA, 70112-2699, USA
| | - Hemanth Kumar Kandikattu
- Department of Medicine, Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Suttira Intapad
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, #8683, New Orleans, LA, 70112-2699, USA.
| |
Collapse
|
20
|
Widatalla N, Khandoker A, Alkhodari M, Koide K, Yoshida C, Kasahara Y, Kimura Y, Saito M. Similarities between maternal and fetal RR interval tachograms and their association with fetal development. Front Physiol 2022; 13:964755. [PMID: 36479345 PMCID: PMC9721082 DOI: 10.3389/fphys.2022.964755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/02/2022] [Indexed: 12/26/2023] Open
Abstract
An association between maternal and fetal heart rate (HR) has been reported but, so far, little is known about its physiological implication and importance relative to fetal development. Associations between both HRs were investigated previously by performing beat-by-beat coupling analysis and correlation analysis between average maternal and fetal HRs. However, studies reporting on the presence of similarities between maternal and fetal HRs or RR intervals (RRIs) over the short term (e.g., 5-min) at different gestational ages (GAs) are scarce. Here, we demonstrate the presence of similarities in the variations exhibited by maternal and fetal RRl tachograms (RRITs). To quantify the same similarities, a cross-correlation (CC) analysis between resampled maternal and fetal RRITs was conducted; RRITs were obtained from non-invasive electrocardiogram (ECG). The degree of similarity between maternal and fetal RRITs (bmfRRITs) was quantified by calculating four CC coefficients. CC analysis was performed for a total of 330 segments (two 5-min segments from 158 subjects and one 5-min from 14 subjects). To investigate the association of the similarity bmfRRITs with fetal development, the linear correlation between the calculated CC coefficients and GA was calculated. The results from the latter analysis showed that similarities bmfRRITs are common occurrences, they can be negative or positive, and they increase with GA suggesting the presence of a regulation that is associated with proper fetal development. To get an insight into the physiological mechanisms involved in the similarity bmfRRITs, the association of the same similarity with maternal and fetal HR variability (HRV) was investigated by comparing the means of two groups in which one of them had higher CC values compared to the other. The two groups were created by using the data from the 158 subjects where fetal RRI (fRRI) calculation from two 5-min ECG segments was feasible. The results of the comparison showed that the maternal very low frequency (VLF) HRV parameter is potentially associated with the similarity bmfRRITs implying that maternal hormones could be linked to the regulations involved in the similarity bmfRRITs. Our findings in this study reinforce the role of the maternal intrauterine environment on fetal development.
Collapse
Affiliation(s)
- Namareq Widatalla
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Ahsan Khandoker
- Healthcare Engineering Innovation Center, Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Mohanad Alkhodari
- Healthcare Engineering Innovation Center, Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Kunihiro Koide
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chihiro Yoshida
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiyuki Kasahara
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshitaka Kimura
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masatoshi Saito
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
21
|
Estrogen normalizes maternal HFD-induced vascular dysfunction in offspring by regulating ATR. Hypertens Res 2022; 45:1743-1753. [PMID: 35999282 DOI: 10.1038/s41440-022-01002-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/23/2022] [Accepted: 07/15/2022] [Indexed: 12/26/2022]
Abstract
Previous studies have shown that female offspring are resistant to fetal high-fat diet (HFD)-induced programming of heightened vascular contraction; however, the underlying mechanisms remain unclear. The present study tested the hypothesis that estrogen plays a key role in protecting females from fetal programming of increased vascular contraction induced by maternal HFD exposure. Pregnant rats were fed a normal diet (ND) or HFD (60% kcal from fat). Ovariectomy (OVX) and 17β-estradiol (E2) replacement were performed on 8-week-old female offspring. Aortas were isolated from adult female offspring. Maternal HFD exposure increased angiotensin II (Ang II)-induced contractions of the aorta in adult OVX offspring, which was abrogated by E2 replacement. The AT1 receptor (AT1R) antagonist losartan (10 μM), but not the AT2 receptor (AT2R) antagonist PD123319 (10 μM), completely blocked Ang II-induced contractions in both ND and HFD offspring. In addition, HFD exposure caused a decrease in endothelium-dependent relaxations induced by acetylcholine (ACh) in adult OVX but not OVX-E2 offspring. However, it had no effect on sodium nitroprusside (SNP)-induced endothelium-independent aorta relaxation in any of the six groups. Maternal HFD feeding increased AT1R, but not AT2R, leading to an increased AT1R/AT2R ratio in HFD-exposed OVX offspring, associated with selective decreases in DNA methylation at the AT1aR promoter, which was ameliorated by E2 replacement. Our results indicated that estrogen play a key role in sex differences of maternal HFD-induced vascular dysfunction and development of hypertensive phenotype in adulthood by differently regulating vascular AT1R and AT2R gene expression through a DNA methylation mechanism.
Collapse
|
22
|
Song R, Mishra JS, Dangudubiyyam SV, Baker TL, Watters JJ, Kumar S. Gestational Intermittent Hypoxia Programs Hypertensive Response in Female Rat Offspring: Impact of Ovaries. JOURNAL OF WOMEN'S HEALTH AND DEVELOPMENT 2022; 5:185-196. [PMID: 36337144 PMCID: PMC9632646 DOI: 10.26502/fjwhd.2644-28840088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Obstructive sleep apnea (OSA) is a chronic condition frequently observed in pregnant women. We have shown that gestational intermittent hypoxia (GIH), a hallmark of OSA, leads to sex-specific impairment in the endothelium-dependent relaxation response and an increase in blood pressure in adult male but not female rat offspring. The present study tested the hypothesis that functional ovaries normalize GIH-induced hypertensive response in female offspring. Experiments were done in female offspring of pregnant rats exposed to normoxia or GIH (FIO2 21-10.5% from gestational days 10 to 21). Ovariectomy and sham surgery were performed at 5 weeks of age. Pups born to GIH dams were significantly smaller than the controls, but they exhibited catch-up growth and were similar to controls by 5 weeks of age. Ovariectomy significantly exacerbated bodyweight gain to a similar extent in both control and GIH offspring. Marked increases in blood pressure were observed in pre-pubertal GIH offspring compared to controls; however, after puberty, blood pressure in GIH offspring progressively decreased and became normotensive at adulthood. Ovariectomy led to the maintenance of higher blood pressure in post-pubertal GIH offspring with no significant effect in controls. Vascular contractile and relaxation responses were not affected in the GIH and control offspring; however, ovariectomy selectively decreased endothelium-dependent relaxation response along with a decrease in endothelial nitric oxide synthase expression in the GIH offspring. These findings suggest that functional ovaries are crucial in protecting females against GIH-mediated endothelial dysfunction and hypertension in adulthood.
Collapse
Affiliation(s)
- Ruolin Song
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Jay S. Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Sri Vidya Dangudubiyyam
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Tracy L. Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Jyoti J. Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
| |
Collapse
|
23
|
Shawky NM, Dalmasso C, Ojeda NB, Zuchowski Y, Stachenfeld N, Alexander BT, Reckelhoff JF. Consequences of hyperandrogenemia during pregnancy in female offspring: attenuated response to angiotensin II. J Hypertens 2022; 40:712-722. [PMID: 34980865 PMCID: PMC8897268 DOI: 10.1097/hjh.0000000000003067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is characterized by reproductive and metabolic dysfunction, and elevated blood pressure (BP). The cardiometabolic consequences of maternal hyperandrogenemia on offspring, either as adults or with aging, have not been well studied. We previously found that male offspring of hyperandrogenemic female (HAF) rats, a model of PCOS, are normotensive but have an exaggerated pressor response to angiotensin (Ang) II. METHOD In this study, the hypothesis was tested that adult and aging female offspring of HAF rats develop a metabolic and hypertensive phenotype. Control and HAF rats were implanted prepubertally with placebo or dihydrotestosterone pellets, which continued throughout pregnancy and lactation. RESULTS Female offspring of HAF dams had lower birth weight than female control offspring. Although female HAF offspring (aged 16-24 weeks) had no differences in intrarenal Ang II, plasma lipids or proteinuria, they did have lower intrarenal Ang (1-7) and lower nitrate/nitrite excretion than controls. Adult HAF offspring had similar baseline BP as controls, but had an attenuated pressor response to Ang II. With aging (16-20 months), female HAF offspring remained normotensive with an attenuated pressor response to Ang II and high salt diet but more proteinuria and higher intrarenal Ang(1-7) than controls. CONCLUSION Taken together, these data suggest that female HAF offspring are protected from developing hypertension, but may be at risk for renal injury with aging. Future studies are necessary to determine whether adult and postmenopausal offspring of PCOS women are at increased risk for cardiovascular dysfunction.Graphical abstract:http://links.lww.com/HJH/B820.
Collapse
Affiliation(s)
- Noha M. Shawky
- Departments of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Carolina Dalmasso
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington
| | - Norma B. Ojeda
- Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yvonne Zuchowski
- Departments of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Nina Stachenfeld
- The John Pierce Laboratory, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT
| | - Barbara T. Alexander
- Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jane F. Reckelhoff
- Departments of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
24
|
Singh R, Nasci VL, Guthrie G, Ertuglu LA, Butt MK, Kirabo A, Gohar EY. Emerging Roles for G Protein-Coupled Estrogen Receptor 1 in Cardio-Renal Health: Implications for Aging. Biomolecules 2022; 12:412. [PMID: 35327604 PMCID: PMC8946600 DOI: 10.3390/biom12030412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular (CV) and renal diseases are increasingly prevalent in the United States and globally. CV-related mortality is the leading cause of death in the United States, while renal-related mortality is the 8th. Despite advanced therapeutics, both diseases persist, warranting continued exploration of disease mechanisms to develop novel therapeutics and advance clinical outcomes for cardio-renal health. CV and renal diseases increase with age, and there are sex differences evident in both the prevalence and progression of CV and renal disease. These age and sex differences seen in cardio-renal health implicate sex hormones as potentially important regulators to be studied. One such regulator is G protein-coupled estrogen receptor 1 (GPER1). GPER1 has been implicated in estrogen signaling and is expressed in a variety of tissues including the heart, vasculature, and kidney. GPER1 has been shown to be protective against CV and renal diseases in different experimental animal models. GPER1 actions involve multiple signaling pathways: interaction with aldosterone and endothelin-1 signaling, stimulation of the release of nitric oxide, and reduction in oxidative stress, inflammation, and immune infiltration. This review will discuss the current literature regarding GPER1 and cardio-renal health, particularly in the context of aging. Improving our understanding of GPER1-evoked mechanisms may reveal novel therapeutics aimed at improving cardio-renal health and clinical outcomes in the elderly.
Collapse
Affiliation(s)
- Ravneet Singh
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| | - Victoria L. Nasci
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| | - Ginger Guthrie
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (G.G.); (M.K.B.)
| | - Lale A. Ertuglu
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (L.A.E.); (A.K.)
| | - Maryam K. Butt
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (G.G.); (M.K.B.)
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (L.A.E.); (A.K.)
| | - Eman Y. Gohar
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| |
Collapse
|
25
|
Pham LT, Yamanaka K, Miyamoto Y, Waki H, Gouraud SSS. Estradiol-dependent gene expression profile in the amygdala of young ovariectomized spontaneously hypertensive rats. Physiol Genomics 2022; 54:99-114. [DOI: 10.1152/physiolgenomics.00082.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Estrogen plays a role in cardiovascular functions, emotional health, and energy homeostasis via estrogen receptors expressed in the brain. The comorbid relationship between rising blood pressure, a decline in mood and motivation, and body weight gain after menopause, when estrogen levels drop, suggests that the same brain area(s) contributes to protection from all of these postmenopausal disorders. The amygdala, a major limbic system nucleus known to express high estrogen receptor levels, is involved in the regulation of such physiological and psychological responses. We hypothesized that elevated estrogen levels contribute to premenopausal characteristics by activating specific genes and pathways in the amygdala. We examined the effect of 1-month estradiol treatment on the gene expression profile in the amygdala of ovariectomized young adult female spontaneously hypertensive rats. Estradiol substitution significantly decreased blood pressure, prevented body weight gain, and enhanced the voluntary physical activity of ovariectomized rats. In the amygdala of ovariectomized rats, estradiol treatment downregulated the expression of genes associated with estrogen signaling, cholinergic synapse, dopaminergic synapse, and long-term depression pathways. These findings indicate that the transcriptomic characteristics of the amygdala may be involved in estrogen-dependent regulation of blood pressure, physical activity motivation, and body weight control in young adult female spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Linh T Pham
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Ko Yamanaka
- Department of Physiology, Graduate School of Health and Sports Sciences, Juntendo University, Inzai, Chiba, Japan
| | | | - Hidefumi Waki
- Department of Physiolgy, Graduate School of Health and Sports Sciences, Juntendo University, Inzai, Chiba, Japan
| | - Sabine S. S. Gouraud
- College of Liberal Arts, Department of Natural Sciences, International Christian University, Tokyo, 東京都, Japan
| |
Collapse
|
26
|
Xue B, Yu Y, Beltz TG, Guo F, Wei SG, Johnson AK. Loss of the Protective Effect of Estrogen Contributes to Maternal Gestational Hypertension-Induced Hypertensive Response Sensitization Elicited by Postweaning High-Fat Diet in Female Offspring. J Am Heart Assoc 2022; 11:e023685. [PMID: 35014859 PMCID: PMC9238517 DOI: 10.1161/jaha.121.023685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background A recent study conducted in male offspring demonstrated that maternal gestational hypertension (MHT) induces hypertensive response sensitization (HTRS) elicited by postweaning high‐fat diet (HFD). In this study, we investigated the sensitizing effect of MHT on postweaning HFD‐induced hypertensive response in female rat offspring and assessed the protective role of estrogen in HTRS. Methods and Results The results showed that MHT also induced a sensitized HFD‐elicited hypertensive response in intact female offspring. However, compared with male offspring, this MHT‐induced HTRS was sex specific in that intact female offspring exhibited an attenuated increase in blood pressure. Ovariectomy significantly enhanced the HFD‐induced increase in blood pressure and the pressor response to centrally administered angiotensin II or tumor necrosis factor‐α in offspring of normotensive dams, which was accompanied by elevated centrally driven sympathetic activity, upregulated mRNA expression of prohypertensive components, and downregulated expression of antihypertensive components in the hypothalamic paraventricular nucleus. However, when compared with HFD‐fed ovariectomized offspring of normotensive dams, the MHT‐induced HTRS and pressor responses to centrally administered angiotensin II or tumor necrosis factor‐α in HFD‐fed intact offspring of MHT dams were not potentiated by ovariectomy, but the blood pressure and elicited pressor responses as well as central sympathetic tone remained higher. Conclusions The results indicate that in adult female offspring MHT induced HTRS elicited by HFD. Estrogen normally plays a protective role in antagonizing HFD prohypertensive effects, and MHT compromises this normal protective action of estrogen by augmenting brain reactivity and centrally driven sympathetic activity.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychological and Brain Sciences University of Iowa Iowa City IA
| | - Yang Yu
- Department of Internal Medicine University of Iowa Iowa City IA
| | - Terry G Beltz
- Department of Psychological and Brain Sciences University of Iowa Iowa City IA
| | - Fang Guo
- Department of Psychological and Brain Sciences University of Iowa Iowa City IA
| | - Shun-Guang Wei
- Department of Internal Medicine University of Iowa Iowa City IA.,François M. Abboud Cardiovascular Research Center University of Iowa Iowa City IA
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences University of Iowa Iowa City IA.,Department of Neuroscience and Pharmacology University of Iowa Iowa City IA.,Department of Health and Human Physiology University of Iowa Iowa City IA.,François M. Abboud Cardiovascular Research Center University of Iowa Iowa City IA
| |
Collapse
|
27
|
Viveiros A, Gheblawi M, Aujla PK, Sosnowski DK, Seubert JM, Kassiri Z, Oudit GY. Sex- and age-specific regulation of ACE2: Insights into severe COVID-19 susceptibility. J Mol Cell Cardiol 2021; 164:13-16. [PMID: 34774871 PMCID: PMC8582230 DOI: 10.1016/j.yjmcc.2021.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/10/2021] [Accepted: 11/07/2021] [Indexed: 12/24/2022]
Abstract
Aged males disproportionately succumb to increased COVID-19 severity, hospitalization, and mortality compared to females. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2) facilitate SARS-CoV-2 viral entry and may have sexually dimorphic regulation. As viral load dictates disease severity, we investigated the expression, protein levels, and activity of ACE2 and TMPRSS2. Our data reveal that aged males have elevated ACE2 in both mice and humans across organs. We report the first comparative study comprehensively investigating the impact of sex and age in murine and human levels of ACE2 and TMPRSS2, to begin to elucidate the sex bias in COVID-19 severity.
Collapse
Affiliation(s)
- Anissa Viveiros
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mahmoud Gheblawi
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Preetinder K Aujla
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Deanna K Sosnowski
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
28
|
Immuno-regenerative biomaterials for in situ cardiovascular tissue engineering - Do patient characteristics warrant precision engineering? Adv Drug Deliv Rev 2021; 178:113960. [PMID: 34481036 DOI: 10.1016/j.addr.2021.113960] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
In situ tissue engineering using bioresorbable material implants - or scaffolds - that harness the patient's immune response while guiding neotissue formation at the site of implantation is emerging as a novel therapy to regenerate human tissues. For the cardiovascular system, the use of such implants, like blood vessels and heart valves, is gradually entering the stage of clinical translation. This opens up the question if and to what extent patient characteristics influence tissue outcomes, necessitating the precision engineering of scaffolds to guide patient-specific neo-tissue formation. Because of the current scarcity of human in vivo data, herein we review and evaluate in vitro and preclinical investigations to predict the potential role of patient-specific parameters like sex, age, ethnicity, hemodynamics, and a multifactorial disease profile, with special emphasis on their contribution to the inflammation-driven processes of in situ tissue engineering. We conclude that patient-specific conditions have a strong impact on key aspects of in situ cardiovascular tissue engineering, including inflammation, hemodynamic conditions, scaffold resorption, and tissue remodeling capacity, suggesting that a tailored approach may be required to engineer immuno-regenerative biomaterials for safe and predictive clinical applicability.
Collapse
|
29
|
Bhunu B, Riccio I, Intapad S. Insights into the Mechanisms of Fetal Growth Restriction-Induced Programming of Hypertension. Integr Blood Press Control 2021; 14:141-152. [PMID: 34675650 PMCID: PMC8517636 DOI: 10.2147/ibpc.s312868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/30/2021] [Indexed: 12/21/2022] Open
Abstract
In recent decades, both clinical and animal studies have shown that fetal growth restriction (FGR), caused by exposure to adverse uterine environments, is a risk factor for hypertension as well as for a variety of adult diseases. This observation has shaped and informed the now widely accepted theory of developmental origins of health and disease (DOHaD). There is a plethora of evidence supporting the association of FGR with increased risk of adult hypertension; however, the underlying mechanisms responsible for this correlation remain unclear. This review aims to explain the current advances in the field of fetal programming of hypertension and a brief narration of the underlying mechanisms that may link FGR to increased risk of adult hypertension. We explain the theory of DOHaD and then provide evidence from both clinical and basic science research which support the theory of fetal programming of adult hypertension. In addition, we have explored the underlying mechanisms that may link FGR to an increased risk of adult hypertension. These mechanisms include epigenetic changes, metabolic disorders, vascular dysfunction, neurohormonal impairment, and alterations in renal physiology and function. We further describe sex differences seen in the developmental origins of hypertension and provide insights into the opportunities and challenges present in this field.
Collapse
Affiliation(s)
- Benjamin Bhunu
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Isabel Riccio
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Suttira Intapad
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| |
Collapse
|
30
|
Simoncini S, Coppola H, Rocca A, Bachmann I, Guillot E, Zippo L, Dignat-George F, Sabatier F, Bedel R, Wilson A, Rosenblatt-Velin N, Armengaud JB, Menétrey S, Peyter AC, Simeoni U, Yzydorczyk C. Endothelial Colony-Forming Cells Dysfunctions Are Associated with Arterial Hypertension in a Rat Model of Intrauterine Growth Restriction. Int J Mol Sci 2021; 22:10159. [PMID: 34576323 PMCID: PMC8465555 DOI: 10.3390/ijms221810159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022] Open
Abstract
Infants born after intrauterine growth restriction (IUGR) are at risk of developing arterial hypertension at adulthood. The endothelium plays a major role in the pathogenesis of hypertension. Endothelial colony-forming cells (ECFCs), critical circulating components of the endothelium, are involved in vasculo-and angiogenesis and in endothelium repair. We previously described impaired functionality of ECFCs in cord blood of low-birth-weight newborns. However, whether early ECFC alterations persist thereafter and could be associated with hypertension in individuals born after IUGR remains unknown. A rat model of IUGR was induced by a maternal low-protein diet during gestation versus a control (CTRL) diet. In six-month-old offspring, only IUGR males have increased systolic blood pressure (tail-cuff plethysmography) and microvascular rarefaction (immunofluorescence). ECFCs isolated from bone marrow of IUGR versus CTRL males displayed a decreased proportion of CD31+ versus CD146+ staining on CD45- cells, CD34 expression (flow cytometry, immunofluorescence), reduced proliferation (BrdU incorporation), and an impaired capacity to form capillary-like structures (Matrigel test), associated with an impaired angiogenic profile (immunofluorescence). These dysfunctions were associated with oxidative stress (increased superoxide anion levels (fluorescent dye), decreased superoxide dismutase protein expression, increased DNA damage (immunofluorescence), and stress-induced premature senescence (SIPS; increased beta-galactosidase activity, increased p16INK4a, and decreased sirtuin-1 protein expression). This study demonstrated an impaired functionality of ECFCs at adulthood associated with arterial hypertension in individuals born after IUGR.
Collapse
Affiliation(s)
- Stephanie Simoncini
- Aix Marseille Univ, Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAe), Center from Cardiovascular and Nutrition research (C2VN), UMR-S 1263, UFR de Pharmacie, Campus Santé, 13385 Marseille, France; (S.S.); (F.D.-G.); (F.S.)
| | - Hanna Coppola
- Department Woman-Mother-Child, Division of pediatrics, DOHaD Laboratory, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (A.R.); (I.B.); (E.G.); (L.Z.); (J.-B.A.); (U.S.)
| | - Angela Rocca
- Department Woman-Mother-Child, Division of pediatrics, DOHaD Laboratory, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (A.R.); (I.B.); (E.G.); (L.Z.); (J.-B.A.); (U.S.)
| | - Isaline Bachmann
- Department Woman-Mother-Child, Division of pediatrics, DOHaD Laboratory, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (A.R.); (I.B.); (E.G.); (L.Z.); (J.-B.A.); (U.S.)
| | - Estelle Guillot
- Department Woman-Mother-Child, Division of pediatrics, DOHaD Laboratory, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (A.R.); (I.B.); (E.G.); (L.Z.); (J.-B.A.); (U.S.)
| | - Leila Zippo
- Department Woman-Mother-Child, Division of pediatrics, DOHaD Laboratory, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (A.R.); (I.B.); (E.G.); (L.Z.); (J.-B.A.); (U.S.)
| | - Françoise Dignat-George
- Aix Marseille Univ, Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAe), Center from Cardiovascular and Nutrition research (C2VN), UMR-S 1263, UFR de Pharmacie, Campus Santé, 13385 Marseille, France; (S.S.); (F.D.-G.); (F.S.)
| | - Florence Sabatier
- Aix Marseille Univ, Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAe), Center from Cardiovascular and Nutrition research (C2VN), UMR-S 1263, UFR de Pharmacie, Campus Santé, 13385 Marseille, France; (S.S.); (F.D.-G.); (F.S.)
| | - Romain Bedel
- Flow Cytometry Facility, Department of Formation and Research, University of Lausanne, 1011 Lausanne, Switzerland; (R.B.); (A.W.)
| | - Anne Wilson
- Flow Cytometry Facility, Department of Formation and Research, University of Lausanne, 1011 Lausanne, Switzerland; (R.B.); (A.W.)
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland
| | - Nathalie Rosenblatt-Velin
- Department Heart-Vessels, Division of Angiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland;
| | - Jean-Baptiste Armengaud
- Department Woman-Mother-Child, Division of pediatrics, DOHaD Laboratory, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (A.R.); (I.B.); (E.G.); (L.Z.); (J.-B.A.); (U.S.)
| | - Steeve Menétrey
- Department Woman-Mother-Child, Neonatal Research Laboratory, Clinic of Neonatology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (S.M.); (A.-C.P.)
| | - Anne-Christine Peyter
- Department Woman-Mother-Child, Neonatal Research Laboratory, Clinic of Neonatology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (S.M.); (A.-C.P.)
| | - Umberto Simeoni
- Department Woman-Mother-Child, Division of pediatrics, DOHaD Laboratory, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (A.R.); (I.B.); (E.G.); (L.Z.); (J.-B.A.); (U.S.)
| | - Catherine Yzydorczyk
- Department Woman-Mother-Child, Division of pediatrics, DOHaD Laboratory, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (A.R.); (I.B.); (E.G.); (L.Z.); (J.-B.A.); (U.S.)
| |
Collapse
|
31
|
Zhang Q, Zeng G, Wang X, Wu KH. Associations of exposure to secondhand smoke with hypertension risk and blood pressure values in adults. Environ Health Prev Med 2021; 26:86. [PMID: 34488622 PMCID: PMC8422707 DOI: 10.1186/s12199-021-01009-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/21/2021] [Indexed: 12/19/2022] Open
Abstract
Background The effects of environmental chemical exposure on blood pressure (BP) have been confirmed, but the association between exposure to secondhand smoke (SHS) and hypertension risk and BP in the general population remains unknown. Methods Cross-sectional associations between SHS exposure and hypertension risk and BP values were evaluated using data for subjects who participated in the National Health and Nutrition Examination Survey (NHANES), 1999–2016. Logistic regression and linear regression were performed after adjusting for age, sex, race, alcohol consumption, poverty-to-income ratio (PIR), body mass index (BMI), estimated glomerular filtration rate, physical activity, diabetes, cardiovascular disease, and NHANES cycle. Restricted cubic spline models were created to display the potential nonlinear association between SHS and BP levels. Results Higher risk of hypertension was found at the highest SHS concentrations (OR = 1.13, 95% CI 1.04, 1.24, P for trend = 0.007). Additionally, SHS exposure had a strong positive association with systolic blood pressure (SBP) but was negatively associated with diastolic blood pressure (DBP). Furthermore, the nonlinear model result showed a significant association between SHS and SBP (P = 0.017); however, the nonlinear model result was not significant for SHS or DBP. Conclusions Our results suggest a potential association between high SHS exposure and the risk of hypertension. Further research is needed to elucidate the underlying mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12199-021-01009-0.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Guowei Zeng
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Kai-Hong Wu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| |
Collapse
|
32
|
Kawarazaki W, Fujita T. Kidney and epigenetic mechanisms of salt-sensitive hypertension. Nat Rev Nephrol 2021; 17:350-363. [PMID: 33627838 DOI: 10.1038/s41581-021-00399-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
Dietary salt intake increases blood pressure (BP) but the salt sensitivity of BP differs between individuals. The interplay of ageing, genetics and environmental factors, including malnutrition and stress, contributes to BP salt sensitivity. In adults, obesity is often associated with salt-sensitive hypertension. The children of women who experience malnutrition during pregnancy are at increased risk of developing obesity, diabetes and salt-sensitive hypertension as adults. Similarly, the offspring of mice that are fed a low-protein diet during pregnancy develop salt-sensitive hypertension in association with aberrant DNA methylation of the gene encoding type 1A angiotensin II receptor (AT1AR) in the hypothalamus, leading to upregulation of hypothalamic AT1AR and renal sympathetic overactivity. Ageing is also associated with salt-sensitive hypertension. In aged mice, promoter methylation leads to reduced kidney production of the anti-ageing factor Klotho and a decrease in circulating soluble Klotho. In the setting of Klotho deficiency, salt-induced activation of the vascular Wnt5a-RhoA pathway leads to ageing-associated salt-sensitive hypertension, potentially as a result of reduced renal blood flow and increased peripheral resistance. Thus, kidney mechanisms and aberrant DNA methylation of certain genes are involved in the development of salt-sensitive hypertension during fetal development and old age. Three distinct paradigms of epigenetic memory operate on different timescales in prenatal malnutrition, obesity and ageing.
Collapse
Affiliation(s)
- Wakako Kawarazaki
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Toshiro Fujita
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan. .,School of Medicine, Shinshu University, Matsumoto, Japan. .,Research Center for Social Systems, Shinshu University, Matsumoto, Japan.
| |
Collapse
|
33
|
Chen Z, Wang L, Ke J, Xiao D. Effects of Estrogen in Gender-dependent Fetal Programming of Adult Cardiovascular Dysfunction. Curr Vasc Pharmacol 2020; 17:147-152. [PMID: 29493455 DOI: 10.2174/1570161116666180301142453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/15/2018] [Accepted: 02/21/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Epidemiological studies and experimental studies have demonstrated that intrauterine adverse environment increases the risk of Cardiovascular Disease (CVD) in adulthood. However, whether an individual develops a cardiovascular dysfunctional phenotype may depend on genetic background, age, and sex. METHODS In this review, we summarize some of the recent experimental animal studies in the developmental programming of adult CVD with an emphasis on sex differences and the potential role of estrogen in mediating sexual dimorphism. RESULTS Few epidemiological studies report the effect of sex on the developmental programming of CVD. However, numerous experimental animal studies have shown a sex difference in fetal programming of adult cardiovascular dysfunction. Most of the animal studies indicate that male offspring develop cardiovascular dysfunction and CVD in adulthood, whereas adult females appear to be protected. Estrogen is one of the key factors that contributes to the sex difference of adult CVD. Estrogen/its Receptor (ER) may interact with the RAS system by changes of DNA methylation patterns at the target gene promoter, serve as an antioxidant to counteract the prenatal insults-induced heightened ROS, and function as an eNOS activator to increase vasodilation, resulting in the protection of female offspring from the development of hypertension and other CVDs. CONCLUSION These studies suggest that estrogen/ER may contribute to sex differences in cardiovascular response to an adverse intrauterine environment and play a significant role in modulating the cardiovascular response in adulthood.
Collapse
Affiliation(s)
- Zewen Chen
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, United States.,Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong, China
| | - Lei Wang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, United States
| | - Jun Ke
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, United States.,Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong, China
| | - Daliao Xiao
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, United States
| |
Collapse
|
34
|
Gobetto MN, Mendes Garrido Abregú F, Caniffi C, Veiras L, Elesgaray R, Gironacci M, Tomat AL, Arranz C. Fetal and postnatal zinc restriction: sex differences in the renal renin-angiotensin system of newborn and adult Wistar rats. J Nutr Biochem 2020; 81:108385. [PMID: 32388253 DOI: 10.1016/j.jnutbio.2020.108385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/05/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
This study aimed to evaluate renal morphology and the renal renin-angiotensin system in 6- and 81-day-old male and female offspring exposed to zinc deficiency during fetal life, lactation and/or postnatal growth. Female Wistar rats were fed low- or control zinc diets from pregnancy to offspring weaning. Afterwards, offspring were fed a low- or a control zinc diet until 81 days of life. In 6- and/or 81-day-old offspring, we evaluated systolic blood pressure, renal morphology, renal angiotensin II and angiotensin 1-7 concentration, and AT1 and AT2 receptors and angiotensin-converting enzymes protein and/or mRNA expression. At 6 days, zinc-deficient male offspring showed decreased glomerular filtration areas, remodelling of renal arteries, greater number of renal apoptotic cells, increased levels of Angiotensin II, higher Angiotensin II/Angiotensin 1-7 ratio and increased angiotensin-converting enzyme 1, AT1 and AT2 receptors mRNA and/or protein expression. Exacerbation of the renal Ang II/AT1 receptor axis and remodelling of renal arteries were also observed in adult zinc-deficient male offspring. An adequate zinc diet during post-weaning life did not improve all the alterations induced by zinc deficiency in early stages of development. Female offspring would appear to be less sensitive to zinc deficiency with no increase in blood pressure or significant alterations in renal morphology and the renin-angiotensin system. Moderate zinc deficiency during critical periods of prenatal and postnatal development leads to early morphological renal alterations and to permanent and long-term changes in the renal renin-angiotensin system that could predispose to renal and cardiovascular diseases in adult life.
Collapse
Affiliation(s)
- María Natalia Gobetto
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Junín 956, Piso 7, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Junín 956, Piso 2, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina
| | - Facundo Mendes Garrido Abregú
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Junín 956, Piso 7, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Junín 956, Piso 2, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carolina Caniffi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Junín 956, Piso 7, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Junín 956, Piso 2, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina
| | - Luciana Veiras
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Junín 956, Piso 7, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Junín 956, Piso 2, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Davis Research Bldg., Rm. 2007.110N, George Burns Rd., Los Angeles, CA 90048
| | - Rosana Elesgaray
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Junín 956, Piso 7, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Junín 956, Piso 2, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariela Gironacci
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Junín 956, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Junín 956, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina
| | - Analía Lorena Tomat
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Junín 956, Piso 7, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Junín 956, Piso 2, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Cristina Arranz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Junín 956, Piso 7, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Junín 956, Piso 2, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
35
|
Satué K, Montesinos P, Muñoz A. Modulation of the renin-angiotensin-aldosterone system by steroid hormones during the oestrous cycle in mares. Acta Vet Hung 2020; 68:79-84. [PMID: 32384065 DOI: 10.1556/004.2020.00011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/13/2019] [Indexed: 11/19/2022]
Abstract
In women and females of different species of laboratory animals, oestrogens stimulate the renin-angiotensin-aldosterone system (RAAS) by increasing tissue and circulating levels of angiotensinogen and renin during the preovulatory period. Progesterone and cortisol compete with aldosterone for mineralocorticoid receptors, which results in increased Na+ reabsorption during the postovulatory period. The purpose of the current research was to analyse the relationship of oestradiol-17β, progesterone and cortisol with RAAS in 23 mares during an oestrous cycle. During the preovulatory period, significant positive correlations of oestradiol-17β with renin and aldosterone concentrations and negative correlations of progesterone with renin and aldosterone concentrations were found. In contrast, during the postovulatory period, oestradiol-17β concentrations were positively correlated with angiotensin concentrations and progesterone was negatively correlated with this component of the RAAS. Cortisol concentrations were not correlated with the hormones of the RAAS, neither before nor after ovulation. This research demonstrates that, as occurs in other species, changes in the RAAS during the periovulatory period in mares may be modulated by variations in the concentrations of steroid hormones.
Collapse
Affiliation(s)
- Katy Satué
- 1Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Cardenal Herrera University, Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Valencia, Spain
| | - Paloma Montesinos
- 1Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Cardenal Herrera University, Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Valencia, Spain
| | - Ana Muñoz
- 2Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| |
Collapse
|
36
|
Kooiman J, Terstappen F, van Wagensveld L, Franx A, Wever KE, Roseboom TJ, Joles JA, Gremmels H, Lely AT. Conflicting Effects of Fetal Growth Restriction on Blood Pressure Between Human and Rat Offspring: A Meta-Analysis. Hypertension 2020; 75:806-818. [PMID: 31983304 DOI: 10.1161/hypertensionaha.119.14111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Low birth weight is associated with hypertension. Low birth weight can result from fetal growth restriction (FGR) or prematurity. FGR is postulated to impact blood pressure (BP) by developmental programming. This systematic review and meta-analysis studies BP in human and animal offspring following FGR. Pubmed and Web of Science were searched for studies reporting on BP after placental insufficiency induced FGR compared with normal growth controls. Primary outcome was mean absolute BP difference (ΔBP mm Hg [95% CI]). Meta-analysis was performed using random-effects models. Subgroup analyses were executed on species, sex, age, pregnancy duration, and stress during BP readings. Due to large interspecies heterogeneity, analyses were performed separately for human (n=41) and animal (n=31) studies, the latter restricted to rats (n=27). Human studies showed a ΔBP between FGR and controls of -0.6 mm Hg ([95% CI, -1.7 to 0.6]; I2=91%). Mean ΔBP was -2.6 mm Hg (95% CI, -5.7 to 0.4) in women versus -0.5 mm Hg (95% CI, -3.7 to 2.7) in men. Subgroup analyses did not indicate age, gestational age, and stress during measurements as sources of heterogeneity. In rats, mean BP was 12.0 mm Hg ([95% CI, 8.8-15.2]; I2=81%) higher in FGR offspring. This difference was more pronounced in FGR males (13.6 mm Hg [95% CI, 10.3-17.0] versus 9.1 mm Hg [95% CI, 5.3-12.8]). Subgroup analyses on age showed no statistical interaction. BP readings under restrained conditions resulted in larger BP differences between FGR and control rats (15.3 mm Hg [95% CI, 11.6-18.9] versus 5.7 mm Hg [95% CI, 1.1-10.3]). Rat studies confirm the relation between FGR and offspring BP, while observational studies in humans do not show such differences. This may be due to the observational nature of human studies, methodological limitations, or an absence of this phenomenon in humans. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: CRD42018091819.
Collapse
Affiliation(s)
- Judith Kooiman
- From the Department of Obstetrics (J.K., F.T., L.v.W., A.F., A.T.L.), University Medical Center Utrecht, the Netherlands
| | - Fieke Terstappen
- From the Department of Obstetrics (J.K., F.T., L.v.W., A.F., A.T.L.), University Medical Center Utrecht, the Netherlands.,Department of Developmental Origin of Disease (F.T.), University Medical Center Utrecht, the Netherlands
| | - Lilian van Wagensveld
- From the Department of Obstetrics (J.K., F.T., L.v.W., A.F., A.T.L.), University Medical Center Utrecht, the Netherlands
| | - Arie Franx
- From the Department of Obstetrics (J.K., F.T., L.v.W., A.F., A.T.L.), University Medical Center Utrecht, the Netherlands
| | - Kimberley E Wever
- Systematic Review Center for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands (K.E.W.)
| | - Tessa J Roseboom
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Obstetrics and Gynecology, Amsterdam Public Health Research Institute, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, the Netherlands (T.J.R.)
| | - Jaap A Joles
- Wilhelmina Children's Hospital and Department of Nephrology and Hypertension (J.A.J., H.G.), University Medical Center Utrecht, the Netherlands
| | - Hendrik Gremmels
- Wilhelmina Children's Hospital and Department of Nephrology and Hypertension (J.A.J., H.G.), University Medical Center Utrecht, the Netherlands
| | - A Titia Lely
- From the Department of Obstetrics (J.K., F.T., L.v.W., A.F., A.T.L.), University Medical Center Utrecht, the Netherlands
| |
Collapse
|
37
|
Coelho JC, Ferretti-Rebustini REDL, Suemoto CK, Leite REP, Jacob-Filho W, Pierin AMG. Hypertension is the underlying cause of death assessed at the autopsy of individuals. Rev Esc Enferm USP 2019; 53:e03457. [PMID: 31166537 DOI: 10.1590/s1980-220x2018006103457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To analyze hypertension and its relationship with the causes of death identified by the autopsy. METHOD Cross-sectional study analyzed 356 participants belonging to the Brazilian Aging Brain Study Group, over 50 years of age, autopsied at the Sao Paulo Autopsy Service between 2004 to 2014. A clinical interview was conducted with the informant of the deceased. Hypertension was defined by reporting the disease and/or use of antihypertensive medication, by the informant of the deceased. Descriptive analyzes and bivariate and multivariable associations were performed. RESULTS The prevalence of hypertension was 66.2% and it was the second leading cause of death (25.6%) identified by autopsy, preceded by atherosclerosis (37.8%). The variables associated with hypertension were: female gender (OR=2.30 (1.34-3.90)); living with partner [OR=0.55 (0.32-0.92)]; Body Mass Index [OR=1.14 (1.08-1.22)] and history of diabetes [OR=2.39 (1.34-4.27)]. CONCLUSION The prevalence of hypertension was high, and it was the second most common underlying cause of death. The gold standard for the definition of cause of death, the autopsy, shows important results, which confirmed the relevance of hypertension as a public health problem.
Collapse
|
38
|
Nair AR, Silva SD, Agbor LN, Wu J, Nakagawa P, Mukohda M, Lu KT, Sandgren JA, Pierce GL, Santillan MK, Grobe JL, Sigmund CD. Endothelial PPARγ (Peroxisome Proliferator-Activated Receptor-γ) Protects From Angiotensin II-Induced Endothelial Dysfunction in Adult Offspring Born From Pregnancies Complicated by Hypertension. Hypertension 2019; 74:173-183. [PMID: 31104564 DOI: 10.1161/hypertensionaha.119.13101] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preeclampsia is a hypertensive disorder of pregnancy associated with vascular dysfunction and cardiovascular risk to offspring. We hypothesize that endothelial PPARγ (peroxisome proliferator-activated receptor-γ) provides cardiovascular protection in offspring from pregnancies complicated by hypertension. C57BL/6J dams were bred with E-V290M sires, which express a dominant-negative allele of PPARγ selectively in the endothelium. Arginine vasopressin was infused throughout gestation. Vasopressin elevated maternal blood pressure at gestational day 14 to 15 and urinary protein at day 17 consistent. Systolic blood pressure and vasodilation responses to acetylcholine were similar in vasopressin-exposed offspring compared to offspring from control pregnancies. We treated offspring with a subpressor dose of angiotensin II to test if hypertension during pregnancy predisposes offspring to hypertension. Male and female angiotensin II-treated E-V290M offspring from vasopressin-exposed but not control pregnancy exhibited significant impairment in acetylcholine-induced relaxation in carotid artery. Endothelial dysfunction in angiotensin II-treated E-V290M vasopressin-exposed offspring was attenuated by tempol, an effect which was more prominent in male offspring. Nrf2 (nuclear factor-E2-related factor) protein levels were significantly elevated in aorta from male E-V290M offspring, but not female offspring compared to controls. Blockade of ROCK (Rho-kinase) signaling and incubation with a ROCK2-specific inhibitor improved endothelial function in both male and female E-V290M offspring from vasopressin-exposed pregnancy. Our data suggest that interference with endothelial PPARγ in offspring from vasopressin-exposed pregnancies increases the risk for endothelial dysfunction on exposure to a cardiovascular stressor in adulthood. This implies that endothelial PPARγ provides protection to cardiovascular stressors in offspring of a pregnancy complicated by hypertension and perhaps in preeclampsia.
Collapse
Affiliation(s)
- Anand R Nair
- From the Department of Pharmacology (A.R.N., S.D.S., L.N.A., J.W., P.N., M.M., K.-T.L., J.A.S., J.L.G., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Sebastiao D Silva
- From the Department of Pharmacology (A.R.N., S.D.S., L.N.A., J.W., P.N., M.M., K.-T.L., J.A.S., J.L.G., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa.,Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (S.D.S., J.W., P.N., K.-T.L., J.L.G., C.D.S.)
| | - Larry N Agbor
- From the Department of Pharmacology (A.R.N., S.D.S., L.N.A., J.W., P.N., M.M., K.-T.L., J.A.S., J.L.G., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Jing Wu
- From the Department of Pharmacology (A.R.N., S.D.S., L.N.A., J.W., P.N., M.M., K.-T.L., J.A.S., J.L.G., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa.,Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (S.D.S., J.W., P.N., K.-T.L., J.L.G., C.D.S.)
| | - Pablo Nakagawa
- From the Department of Pharmacology (A.R.N., S.D.S., L.N.A., J.W., P.N., M.M., K.-T.L., J.A.S., J.L.G., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Masashi Mukohda
- From the Department of Pharmacology (A.R.N., S.D.S., L.N.A., J.W., P.N., M.M., K.-T.L., J.A.S., J.L.G., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Ko-Ting Lu
- From the Department of Pharmacology (A.R.N., S.D.S., L.N.A., J.W., P.N., M.M., K.-T.L., J.A.S., J.L.G., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa.,Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (S.D.S., J.W., P.N., K.-T.L., J.L.G., C.D.S.)
| | - Jeremy A Sandgren
- From the Department of Pharmacology (A.R.N., S.D.S., L.N.A., J.W., P.N., M.M., K.-T.L., J.A.S., J.L.G., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Gary L Pierce
- Department of Health and Human Physiology (G.L.P.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Mark K Santillan
- Department of Obstetrics and Gynecology (M.K.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Justin L Grobe
- From the Department of Pharmacology (A.R.N., S.D.S., L.N.A., J.W., P.N., M.M., K.-T.L., J.A.S., J.L.G., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa.,Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (S.D.S., J.W., P.N., K.-T.L., J.L.G., C.D.S.)
| | - Curt D Sigmund
- From the Department of Pharmacology (A.R.N., S.D.S., L.N.A., J.W., P.N., M.M., K.-T.L., J.A.S., J.L.G., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa.,Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (S.D.S., J.W., P.N., K.-T.L., J.L.G., C.D.S.)
| |
Collapse
|
39
|
Gyamfi D, Obirikorang C, Acheampong E, Danquah KO, Asamoah EA, Liman FZ, Batu EN. Prevalence of pre-hypertension and hypertension and its related risk factors among undergraduate students in a Tertiary institution, Ghana. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2018.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Daniel Gyamfi
- Department of Medical Laboratory Technology, Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Christian Obirikorang
- Department of Molecular Medicine, School of Medical Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Emmanuel Acheampong
- Department of Molecular Medicine, School of Medical Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- School of Medical and Health Sciences, Edith Cowan University, Western Australia, Australia
| | - Kwabena Owusu Danquah
- Department of Medical Laboratory Technology, Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Evans Adu Asamoah
- Department of Medical Laboratory Technology, Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Fatima Zarah Liman
- Department of Medical Laboratory Technology, Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Emmanuella Nsenbah Batu
- Department of Molecular Medicine, School of Medical Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| |
Collapse
|
40
|
Davis GK, Newsome AD, Cole AB, Ojeda NB, Alexander BT. Chronic Estrogen Supplementation Prevents the Increase in Blood Pressure in Female Intrauterine Growth-Restricted Offspring at 12 Months of Age. Hypertension 2019; 73:1128-1136. [PMID: 30929518 PMCID: PMC6458065 DOI: 10.1161/hypertensionaha.118.12379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/04/2019] [Indexed: 01/14/2023]
Abstract
Low birth weight is associated with a greater prevalence of hypertension and an earlier age at menopause in women in later life. Yet, the association between birth weight and blood pressure (BP) in women as they age is not well defined. In a rodent model of low birth weight induced by placental insufficiency, intrauterine growth restriction programs a significant increase in BP by 12 months of age in female growth-restricted offspring that is associated with early reproductive senescence, increased testosterone, and a shift in the hormonal milieu. Thus, this study tested the hypothesis that increased BP in female growth-restricted offspring is abolished by chronic estradiol supplementation. Placebo or 17β-estradiol valerate mini pellets (1.5 mg for 60-day release) were administered at 12 months of age for 6 weeks. BP, measured in conscious catheterized rats, was significantly increased in placebo-treated growth-restricted relative to placebo-treated control. However, BP was not elevated in estradiol-treated growth-restricted relative to placebo-treated growth-restricted. Estradiol mediates its effects on BP via its receptors and the renin-angiotensin system. BP was decreased in growth-restricted offspring treated with a G-protein coupled receptor agonist, G1 (400 mg/kg for 2 weeks). Renal AT1aR (angiotensin type 1a receptor) and AT1bR (angiotensin type 1b receptor) and renal AR (androgen receptor) mRNA expression were elevated in vehicle-treated growth-restricted offspring, but not in G1-treated growth-restricted. Therefore, these data suggest that chronic estradiol supplementation prevents the increase in BP that develops in female growth-restricted offspring via actions that may involve its G-protein coupled receptor and the renin-angiotensin system.
Collapse
Affiliation(s)
- Gwendolyn K. Davis
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson MS, 39216
| | - Ashley D. Newsome
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson MS, 39216
| | - Alyssa B. Cole
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson MS, 39216
| | - Norma B. Ojeda
- Department of Physiology and Pediatrics, University of Mississippi Medical Center, Jackson MS, 39216
| | - Barbara T. Alexander
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson MS, 39216
| |
Collapse
|
41
|
Narang R, Carter K, Muncie C, Pang Y, Fan LWW, Feng Y, Ojeda NB, Bhatt AJ. Intrauterine growth restriction and neonatal hypoxic ischemic brain injury causes sex-specific long-term neurobehavioral abnormalities in rats. J Neurosci Res 2019; 97:661-672. [PMID: 30843634 DOI: 10.1002/jnr.24389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022]
Abstract
There is a lack of knowledge of factors preventing an adequate response to moderate hypothermia after hypoxic ischemic (HI) brain injury. We hypothesized that growth restriction from reduced intrauterine perfusion would predispose neonatal rats to have a worse outcome with HI brain injury. IUGR was induced by placental insufficiency in dams at 14 days of gestation. HI was induced at postnatal day (P) 10 by permanent right carotid artery ligation followed by 90 min of hypoxia (8% oxygen). Tests for early brain injury and neurobehavioral outcomes were subsequently done. All statistical analysis was done using Two-way ANOVA; post hoc Holm-Sidak test. HI in control and IUGR groups decreased the success rate of the contralateral vibrissa-elicited forelimb test, increased response latency in movement initiation test and increased the time to finish elevated beam walk test at P40 and P60. IUGR augmented HI-induced abnormality in vibrissa-elicited forelimb test at P40 but showed higher success rate when compared to HI only group at P60. IUGR's negative effect on HI-induced changes on the elevated beam walk test was sex-specific and exaggerated in P60 males. Increased TUNEL positive cells in the cortex were noted at 72 h after in HI in control but not in IUGR groups. In conclusion, the consequences of IUGR on subsequent neonatal HI varied based on age, sex and outcomes examined, and overall, male sex and IUGR had worse effects on the long-term neurobehavioral outcomes following HI.
Collapse
Affiliation(s)
- Radhika Narang
- Division of Newborn Medicine, Valley Children's Healthcare, Madera, California
| | - Kathleen Carter
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Colin Muncie
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yi Pang
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lir-Wan W Fan
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yangzheng Feng
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Norma B Ojeda
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Abhay J Bhatt
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
42
|
Sutherland MR, Ng KW, Drenckhahn JD, Wlodek ME, Black MJ. Impact of Intrauterine Growth Restriction on the Capillarization of the Early Postnatal Rat Heart. Anat Rec (Hoboken) 2019; 302:1580-1586. [PMID: 30471197 DOI: 10.1002/ar.24037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 01/15/2023]
Abstract
Capillarization plays a key role in the growth of the developing heart. We therefore hypothesized that impaired heart development following intrauterine growth restriction (IUGR) may arise from inadequate myocardial capillary growth. The aims of the study were to examine the effect of IUGR on the growth and diffusion radius of intramyocardial capillaries in rats at postnatal day 1. Uteroplacental insufficiency was induced in rats in late gestation (E18, term = E22) by bilateral uterine artery and vein ligation (restricted offspring N = 12; six males and six females); offspring from sham-operated dams were used as controls (N = 10; five males and five females). At postnatal day 1, the hearts were immersion-fixed and heart volume, capillary length density, capillary diffusion radius, and total capillary length were stereologically determined. Restricted offspring were significantly smaller at birth, with a concomitant reduction in heart volume and total myocardial capillary length compared to controls. Capillary growth was not impaired relative to heart size, with no significant differences in capillary length density or diffusion radius in the myocardium of restricted and control offspring. There were no sex differences in any of the parameters examined. In conclusion, there was no evidence to indicate that microvascular development is compromised in the heart of IUGR offspring at 1 day after birth. Total myocardial capillary length, however, was significantly reduced in the growth restricted offspring and further longitudinal studies are required to elucidate the long-term impact, particularly following hypertrophic cardiac growth. Anat Rec, 302:1580-1586, 2019. © 2018 American Association for Anatomy.
Collapse
Affiliation(s)
- Megan R Sutherland
- Department of Anatomy and Developmental Biology and the Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ka Wing Ng
- Department of Anatomy and Developmental Biology and the Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jörg D Drenckhahn
- Department of Pediatric Cardiology, Justus Liebig University Giessen, Giessen, Germany
| | - Mary E Wlodek
- Department of Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Mary Jane Black
- Department of Anatomy and Developmental Biology and the Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
43
|
Larsen SD, Dalgård C, Christensen ME, Lykkedegn S, Andersen LB, Andersen M, Glintborg D, Christesen HT. Blood pressure in 3-year-old girls associates inversely with umbilical cord serum 25-hydroxyvitamin D: an Odense Child Cohort study. Endocr Connect 2018; 7:1236-1244. [PMID: 30533001 PMCID: PMC6240151 DOI: 10.1530/ec-18-0308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 11/08/2022]
Abstract
Background Low foetal vitamin D status may be associated with higher blood pressure (BP) in later life. Objective To examine whether serum 25-hydroxyvitamin D2+3 (s-25OHD) in cord and pregnancy associates with systolic and diastolic BP (SBP; DBP) in children up to 3 years of age. Design Prospective, population-based cohort study. Methods We included 1594 singletons from the Odense Child Cohort with available cord s-25OHD and BP data at median age 3.7 months (48% girls), 18.9 months (44% girls) or 3 years (48% girls). Maternal s-25OHD was also assessed at gestational ages 12 and 29 weeks. Multiple regression models were stratified by sex a priori and adjusted for maternal educational level, season of birth and child height, weight and age. Results In 3-year-old girls, SBP decreased with -0.7 mmHg (95% CI -1.1; -0.3, P = 0.001) and DBP with -0.4 mmHg (95% CI -0.7; -0.1, P = 0.016) for every 10 nmol/L increase in cord s-25OHD in adjusted analyses. Moreover, the adjusted odds of having SBP >90th percentile were reduced by 30% for every 10 nmol/L increase in cord s-25OHD (P = 0.004) and by 64% for cord s-25OHD above the median 45.1 nmol/L (P = 0.02). Similar findings were observed between pregnancy s-25OHD and 3-year SBP, cord s-25OHD and SBP at 18.9 months, and cord s-25OHD and DBP at 3 years. No consistent associations were observed between s-25OHD and BP in boys. Conclusion Cord s-25OHD was inversely associated with SBP and DBP in young girls, but not in boys. Higher vitamin D status in foetal life may modulate BP in young girls. The sex difference remains unexplained.
Collapse
Affiliation(s)
- Søs Dragsbæk Larsen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Christine Dalgård
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Public Health, Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Sine Lykkedegn
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
| | - Louise Bjørkholt Andersen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Obstetrics and Gynecology, Herlev Hospital, Copenhagen, Denmark
| | - Marianne Andersen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Medical Endocrinology, Odense University Hospital, Odense, Denmark
- Correspondence should be addressed to M Andersen:
| | - Dorte Glintborg
- Department of Medical Endocrinology, Odense University Hospital, Odense, Denmark
| | - Henrik Thybo Christesen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
| |
Collapse
|
44
|
Christie MJ, Romano T, Murphy RM, Posterino GS. The effect of intrauterine growth restriction on Ca 2+ -activated force and contractile protein expression in the mesenteric artery of adult (6-month-old) male and female Wistar-Kyoto rats. Physiol Rep 2018; 6:e13954. [PMID: 30592188 PMCID: PMC6308111 DOI: 10.14814/phy2.13954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 12/29/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is known to alter vascular smooth muscle reactivity, but it is currently unknown whether these changes are driven by downstream events that lead to force development, specifically, Ca2+ -regulated activation of the contractile apparatus or a shift in contractile protein content. This study investigated the effects of IUGR on Ca2+ -activated force production, contractile protein expression, and a potential phenotypic switch in the resistance mesenteric artery of both male and female Wistar-Kyoto (WKY) rats following two different growth restriction models. Pregnant female WKY rats were randomly assigned to either a control (C; N = 9) or food restriction diet (FR; 40% of control; N = 11) at gestational day-15 or underwent a bilateral uterine vessel ligation surgery restriction (SR; N = 10) or a sham surgery control model (SC; N = 12) on day-18 of gestation. At 6-months of age, vascular responsiveness of intact mesenteric arteries was studied, before chemically permeabilization using 50 μmol/L β-escin to investigate Ca2+ -activated force. Peak responsiveness to a K+ -induced depolarization was decreased (P ≤ 0.05) due to a reduction in maximum Ca2+ -activated force (P ≤ 0.05) in both male growth restricted experimental groups. Vascular responsiveness was unchanged between female experimental groups. Segments of mesenteric artery were analyzed using Western blotting revealed IUGR reduced the relative abundance of important receptor and contractile proteins in male growth restricted rats (P ≤ 0.05), suggesting a potential phenotypic switch, whilst no changes were observed in females. Results from this study suggest that IUGR alters the mesenteric artery reactivity due to a decrease in maximum Ca2+ -activated force, and likely contributed to by a reduction in contractile protein and receptor/channel content in 6-month-old male rats, while female WKY rats appear to be protected.
Collapse
Affiliation(s)
- Michael J. Christie
- Department of Physiology, Anatomy and MicrobiologyLa Trobe UniversityMelbourneVictoriaAustralia
| | - Tania Romano
- Department of Physiology, Anatomy and MicrobiologyLa Trobe UniversityMelbourneVictoriaAustralia
| | - Robyn M. Murphy
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular SciencesLa Trobe UniversityMelbourneVictoriaAustralia
| | - Giuseppe S. Posterino
- Department of Physiology, Anatomy and MicrobiologyLa Trobe UniversityMelbourneVictoriaAustralia
| |
Collapse
|
45
|
Cunningham MW, LaMarca B. Risk of cardiovascular disease, end-stage renal disease, and stroke in postpartum women and their fetuses after a hypertensive pregnancy. Am J Physiol Regul Integr Comp Physiol 2018; 315:R521-R528. [PMID: 29897824 DOI: 10.1152/ajpregu.00218.2017] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Women with hypertensive pregnancy complications are at greater risk of developing cardiovascular disease (CVD), metabolic diseases, stroke, and end-stage renal disease (ESRD) later in life. Pregnancy complications affect not only the mother's long-term health but also the health of the fetus immediately after delivery and into adulthood. The health of the fetus until adulthood can be influenced by developmental programming, in which the fetus is exposed to insults that will ultimately affect the growth of the offspring and increase the offspring's risk of developing hypertension, coronary heart disease, metabolic disease, and chronic kidney disease in adulthood. Preeclampsia, the onset of hypertension during pregnancy, is one of the major risk factors for the development of renal disease, cerebral disease, and CVD in the mother. Women with preeclampsia are at a 5-12-fold increased risk of developing ESRD, 2-fold increased risk of stroke, and 2-fold increased risk of developing CVD later in life. In this review article, we discuss 1) preeclampsia, 2) the risk of developing CVD, renal disease, or stroke later in life for women with hypertensive pregnancies, and 3) the effects of a hypertensive pregnancy on the offspring.
Collapse
Affiliation(s)
- Mark W Cunningham
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center , Jackson, Mississippi
| | - Babbette LaMarca
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center , Jackson, Mississippi.,Department of Obstetrics and Gynecology, University of Mississippi Medical Center , Jackson, Mississippi
| |
Collapse
|
46
|
Gutiérrez-Arzapalo PY, Rodríguez-Rodríguez P, Ramiro-Cortijo D, López de Pablo ÁL, López-Giménez MR, Condezo-Hoyos L, Greenwald SE, González MDC, Arribas SM. Role of fetal nutrient restriction and postnatal catch-up growth on structural and mechanical alterations of rat aorta. J Physiol 2018; 596:5791-5806. [PMID: 29277911 DOI: 10.1113/jp275030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS Intrauterine growth restriction (IUGR), induced by maternal undernutrition, leads to impaired aortic development. This is followed by hypertrophic remodelling associated with accelerated growth during lactation. Fetal nutrient restriction is associated with increased aortic compliance at birth and at weaning, but not in adult animals. This mechanical alteration may be related to a decreased perinatal collagen deposition. Aortic elastin scaffolds purified from young male and female IUGR animals also exhibit increased compliance, only maintained in adult IUGR females. These mechanical alterations may be related to differences in elastin deposition and remodelling. Fetal undernutrition induces similar aortic structural and mechanical alterations in young male and female rats. Our data argue against an early mechanical cause for the sex differences in hypertension development induced by maternal undernutrition. However, the larger compliance of elastin in adult IUGR females may contribute to the maintenance of a normal blood pressure level. ABSTRACT Fetal undernutrition programmes hypertension development, males being more susceptible. Deficient fetal elastogenesis and vascular growth is a possible mechanism. We investigated the role of aortic mechanical alterations in a rat model of hypertension programming, evaluating changes at birth, weaning and adulthood. Dams were fed ad libitum (Control) or 50% of control intake during the second half of gestation (maternal undernutrition, MUN). Offspring aged 3 days, 21 days and 6 months were studied. Blood pressure was evaluated in vivo. In the thoracic aorta we assessed gross structure, mechanical properties (intact and purified elastin), collagen and elastin content and internal elastic lamina (IEL) organization. Only adult MUN males developed hypertension (systolic blood pressure: MUNmales = 176.6 ± 5.6 mmHg; Controlmales = 136.1 ± 4.9 mmHg). At birth MUN rats were lighter, with smaller aortic cross-sectional area (MUNmales = (1.51 ± 0.08) × 105 μm2 , Controlmales = (2.8 ± 0.04) × 105 μm2 ); during lactation MUN males and females exhibited catch-up growth and aortic hypertrophy (MUNmales = (14.5 ± 0.5) × 105 μm2 , Controlmales = (10.4 ± 0.9) × 105 μm2 ), maintained until adulthood. MUN aortas were more compliant until weaning (functional stiffness: MUNmales = 1.0 ± 0.04; Controlmales = 1.3 ± 0.03), containing less collagen with larger IEL fenestrae, returning to normal in adulthood. Purified elastin from young MUN offspring was more compliant in both sexes; only MUN adult females maintained larger elastin compliance (slope: MUNfemales = 24.1 ± 1.9; Controlfemales = 33.3 ± 2.8). Fetal undernutrition induces deficient aortic development followed by hypertrophic remodelling and larger aortic compliance in the perinatal period, with similar alterations in collagen and elastin in both sexes. The observed alterations argue against an initial mechanical cause for sex differences in hypertension development. However, the maintenance of high elastin compliance in adult females might protect them against blood pressure rise.
Collapse
Affiliation(s)
| | | | | | | | - María Rosario López-Giménez
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Stephen E Greenwald
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Silvia M Arribas
- Department of Physiology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
47
|
Colafella KMM, Denton KM. Sex-specific differences in hypertension and associated cardiovascular disease. Nat Rev Nephrol 2018; 14:185-201. [PMID: 29380817 DOI: 10.1038/nrneph.2017.189] [Citation(s) in RCA: 316] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although intrinsic mechanisms that regulate arterial blood pressure (BP) are similar in men and women, marked variations exist at the molecular, cellular and tissue levels. These physiological disparities between the sexes likely contribute to differences in disease onset, susceptibility, prevalence and treatment responses. Key systems that are important in the development of hypertension and cardiovascular disease (CVD), including the sympathetic nervous system, the renin-angiotensin-aldosterone system and the immune system, are differentially activated in males and females. Biological age also contributes to sexual dimorphism, as premenopausal women experience a higher degree of cardioprotection than men of similar age. Furthermore, sex hormones such as oestrogen and testosterone as well as sex chromosome complement likely contribute to sex differences in BP and CVD. At the cellular level, differences in cell senescence pathways may contribute to increased longevity in women and may also limit organ damage caused by hypertension. In addition, many lifestyle and environmental factors - such as smoking, alcohol consumption and diet - may influence BP and CVD in a sex-specific manner. Evidence suggests that cardioprotection in women is lost under conditions of obesity and type 2 diabetes mellitus. Treatment strategies for hypertension and CVD that are tailored according to sex could lead to improved outcomes for affected patients.
Collapse
Affiliation(s)
- Katrina M Mirabito Colafella
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University Wellington Road, Clayton, Victoria 3800, Australia.,Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Victoria 3800, Australia.,Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, Netherlands
| | - Kate M Denton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University Wellington Road, Clayton, Victoria 3800, Australia.,Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Victoria 3800, Australia
| |
Collapse
|
48
|
Foetal growth restriction in mice modifies postnatal airway responsiveness in an age and sex-dependent manner. Clin Sci (Lond) 2018; 132:273-284. [PMID: 29263136 DOI: 10.1042/cs20171554] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/22/2023]
Abstract
Epidemiological studies demonstrate an association between intrauterine growth restriction (IUGR) and asthma; however the underlying mechanism is unknown. We investigated the impact of maternal hypoxia-induced IUGR on airway responsiveness in male and female mice during juvenility and adulthood. Pregnant BALB/c mice were housed under hypoxic conditions for gestational days 11-17.5 and then returned to normoxic conditions for the remainder of pregnancy. A control group was housed under normoxic conditions throughout pregnancy. Offspring were studied at 2 weeks (juveniles) and 8 weeks (adults), where lung volume was assessed by plethysmography, airway responsiveness to methacholine determined by the forced oscillation technique and lungs fixed for morphometry. IUGR offspring were lighter at birth, exhibited "catch-up growth" by 2 weeks, but were again lighter in adulthood. IUGR males were "hyper-responsive" at 2 weeks and "hypo-responsive" as adults, in contrast with IUGR females who were hyper-responsive in adulthood. IUGR males had increased inner and total wall thickness at 2 weeks which resolved by adulthood, while airways in IUGR females were structurally normal throughout life. There were no differences in lung volume between Control and IUGR offspring at any age. Our data demonstrate changes in airway responsiveness as a result of IUGR that could influence susceptibility to asthma development and contribute to sexual dimorphism in asthma prevalence which switches from a male dominated disease in early life to a female dominated disease in adulthood.
Collapse
|
49
|
Xue B, Beltz TG, Guo F, Johnson AK. Sex differences in maternal gestational hypertension-induced sensitization of angiotensin II hypertension in rat offspring: the protective effect of estrogen. Am J Physiol Regul Integr Comp Physiol 2017; 314:R274-R281. [PMID: 29046315 DOI: 10.1152/ajpregu.00216.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies demonstrate that maternal hypertension during pregnancy sensitizes an angiotensin (ANG) II-induced increase in blood pressure (BP) in adult male offspring that was associated with upregulation of mRNA expression of several renin-angiotensin-aldosterone system (RAAS) components and NADPH oxidase in the lamina terminalis (LT) and paraventricular nucleus (PVN). The purpose of the present study was to test whether there are sex differences in the maternal hypertension-induced sensitization of ANG II hypertension, and whether sex hormones are involved in the sensitization process. Male offspring of hypertensive dams showed an enhanced hypertensive response to systemic ANG II when compared with male offspring of normotensive dams and to female offspring of either normotensive or hypertensive dams. Castration did not alter the hypertensive response to ANG II in male offspring. Intact female offspring had no upregulation of RAAS components and NADPH oxidase in the LT and PVN, whereas ovariectomy (OVX) upregulated mRNA expression of several RAAS components and NADPH oxidase in these nuclei and induced a greater increase in the pressor response to ANG II in female offspring of hypertensive dams compared with female offspring of normotensive dams. This enhanced increase in BP was partially attenuated by 17β-estradiol replacement in the OVX offspring of hypertensive dams. The results suggest that maternal hypertension induces a sex-specific sensitization of ANG II-induced hypertension and mRNA expression of brain RAAS and NADPH oxidase in offspring. Female offspring are protected from maternal hypertension-induced sensitization of ANG II hypertension, and female sex hormones are partially responsible for this protective effect.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychological and Brain Sciences, University of Iowa , Iowa City, Iowa.,François M. Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| | - Terry G Beltz
- Department of Psychological and Brain Sciences, University of Iowa , Iowa City, Iowa
| | - Fang Guo
- Department of Psychological and Brain Sciences, University of Iowa , Iowa City, Iowa
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, University of Iowa , Iowa City, Iowa.,Department of Pharmacology, University of Iowa , Iowa City, Iowa.,Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa.,François M. Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| |
Collapse
|
50
|
Prenatal hypoxia leads to hypertension, renal renin-angiotensin system activation and exacerbates salt-induced pathology in a sex-specific manner. Sci Rep 2017; 7:8241. [PMID: 28811528 PMCID: PMC5557956 DOI: 10.1038/s41598-017-08365-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/10/2017] [Indexed: 01/05/2023] Open
Abstract
Prenatal hypoxia is associated with growth restriction and adverse cardiovascular outcomes. Here, we describe renal and cardiovascular outcomes in ageing mouse offspring prenatally exposed to hypoxia (12% O2) from embryonic day 14.5 until birth. At 12 months of age, both male and female offspring exposed to prenatal hypoxia had elevated mean arterial pressure. Glomerular number was reduced by 25% in hypoxia-exposed male, but not female, offspring and this was associated with increased urinary albumin excretion, glomerular hypertrophy and renal fibrosis. Hypoxia-exposed offspring of both sexes were more susceptible to salt-induced cardiac fibrosis, however, renal fibrosis was exacerbated by high salt in males only. In male but not female hypoxia-exposed offspring, renal renin mRNA was increased at weaning. By 12 months, renal renin mRNA expression and concentrations were elevated in both sexes. mRNA expression of At1aR was also elevated in male hypoxia-exposed offspring at 12 months. These results demonstrate that prenatal hypoxia programs elevated blood pressure and exacerbates salt-induced cardiovascular and renal pathology in a sex specific manner. Given sex differences observed in RAS expression and nephron number, future studies may consider RAS blockade as a therapeutic target in this model.
Collapse
|