1
|
Terashima M, Tamura Y, Takahashi H, Ochiai K, Ehara K, Takahashi M, Otani N, Sandor B, Tomoe T, Sugiyama T, Ueno A, Kitahara K, Kawabe A, Yasu T. Effects of cardiac rehabilitation on in vivo nailfold microcirculation in patients with cardiovascular disease. Heart Vessels 2025; 40:72-85. [PMID: 39133315 DOI: 10.1007/s00380-024-02435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/30/2024] [Indexed: 08/13/2024]
Abstract
This study aimed to explore the impact of cardiac rehabilitation (CR) on in vivo and ex vivo microcirculation, exercise capacity, and oxidative stress in patients with cardiovascular disease (CVD). The study included patients with acute coronary syndrome (ACS; n = 45; age, 69.0 ± 14.1 years) and heart failure (HF; n = 66; age, 77.3 ± 10.7 years) who underwent supervised CR during hospitalization. The control group comprised patients without CVD (NCVD; n = 20; age, 75.9 ± 11.2 years). In vivo microcirculatory observations using nailfold video capillary endoscopy at rest and during hyperemia, exercise capacity, and oxidative stress were assessed at baseline and 12 weeks after discharge. Baseline capillary densities were significantly lower in the ACS (5.0 ± 1.7 capillaries/mm2) and HF (4.9 ± 1.7 capillaries/mm2) groups than in the NCVD group (6.5 ± 1.1 capillaries/mm2, p < 0.01). Similarly, capillary density during reactive hyperemia was significantly lower in the ACS (5.8 ± 1.7 capillaries/mm2) and HF (5.4 ± 1.8 capillaries/mm2) groups than in the NCVD group (7.3 ± 1.4 capillaries/mm2, p < 0.01). Patients with ACS and HF had increased capillary densities at 12 weeks compared with at baseline (p < 0.05). This improvement was particularly pronounced among post-discharge outpatient CR participants (n = 20). Grip strength, exercise capacity, and oxidative stress improved at 12 weeks. Baseline capillary density changes were positively correlated with grip strength changes (r = 0.45, p < 0.001). CR significantly improved nailfold capillary density in patients with ACS and HF 12 weeks after discharge.
Collapse
Affiliation(s)
- Masato Terashima
- Department of Rehabilitation, Dokkyo Medical University Nikko Medical Center, 145-1 Moritomo, Nikko, Tochigi, 321-1298, Japan
| | - Yuma Tamura
- Department of Rehabilitation, Dokkyo Medical University Nikko Medical Center, 145-1 Moritomo, Nikko, Tochigi, 321-1298, Japan.
| | - Harunori Takahashi
- Department of Rehabilitation, Dokkyo Medical University Nikko Medical Center, 145-1 Moritomo, Nikko, Tochigi, 321-1298, Japan
| | - Kaori Ochiai
- Department of Rehabilitation, Dokkyo Medical University Nikko Medical Center, 145-1 Moritomo, Nikko, Tochigi, 321-1298, Japan
| | - Kyosuke Ehara
- Department of Rehabilitation, Dokkyo Medical University Nikko Medical Center, 145-1 Moritomo, Nikko, Tochigi, 321-1298, Japan
| | - Momo Takahashi
- Department of Rehabilitation, Dokkyo Medical University Nikko Medical Center, 145-1 Moritomo, Nikko, Tochigi, 321-1298, Japan
| | - Naoyuki Otani
- Department of Cardiology, Dokkyo Medical University Nikko Medical Center, Nikko, Tochigi, Japan
| | - Barbara Sandor
- Department of Cardiovascular Medicine and Nephrology, Dokkyo Medical University Nikko Medical Center, Nikko, Tochigi, Japan
- 1st Department of Medicine, Division of Preventive Cardiology and Rehabilitation, School of Medicine, University of Pecs, Pecs, Hungary
| | - Takashi Tomoe
- Department of Cardiovascular Medicine and Nephrology, Dokkyo Medical University Nikko Medical Center, Nikko, Tochigi, Japan
| | - Takushi Sugiyama
- Department of Cardiovascular Medicine and Nephrology, Dokkyo Medical University Nikko Medical Center, Nikko, Tochigi, Japan
| | - Asuka Ueno
- Department of Cardiovascular Medicine and Nephrology, Dokkyo Medical University Nikko Medical Center, Nikko, Tochigi, Japan
| | - Keijiro Kitahara
- Department of Cardiovascular Medicine and Nephrology, Dokkyo Medical University Nikko Medical Center, Nikko, Tochigi, Japan
| | - Atsuhiko Kawabe
- Department of Cardiovascular Medicine and Nephrology, Dokkyo Medical University Nikko Medical Center, Nikko, Tochigi, Japan
| | - Takanori Yasu
- Department of Cardiovascular Medicine and Nephrology, Dokkyo Medical University Nikko Medical Center, Nikko, Tochigi, Japan
| |
Collapse
|
2
|
Wang Y, Yang B, Wang C. The association between fatty acids and atherosclerotic diseases: A mendelian randomization study. Clin Nutr ESPEN 2024; 63:447-456. [PMID: 39003732 DOI: 10.1016/j.clnesp.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/19/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND The current observational studies have disputed the relationship between various fatty acids and atherosclerotic diseases, and the causal relationship between the two is still unclear. METHODS In this study, we utilized the available genome-wide association studies (GWAS) summary data on fatty acids and atherosclerotic diseases from the IEU OpenGWAS project. After identifying the appropriate single nucleotide polymorphisms (SNPs) as instrumental variables, we employed the MR-PRESSO outlier test to remove extreme values. Subsequently, we conducted a two-sample mendelian randomization (MR) analysis and performed sensitivity analyses to ensure the reliability of the results. RESULTS The results of MR analysis suggest that ratio of saturated fatty acids to total fatty acids is positively correlated with the incidence rate of coronary heart disease (OR = 1.341, 95% CI = 1.016-1.769, P value = 0.038), monounsaturated fatty acid levels is negatively correlated with the incidence of stroke (OR = 0.800, 95% CI = 0.642-0.996, P value = 0.046), and docosahexaenoic acid levels is negatively correlated with the incidence of peripheral artery disease (OR = 0.747, 95% CI = 0.572-0.976, P value = 0.033). All results showed no heterogeneity or pleiotropy, but leave-one-out tests showed that the analysis results of some fatty acids were driven by a single SNP. CONCLUSIONS This study highlights the existence of causal relationships between fatty acids and atherosclerotic diseases at the genetic level. These findings provide valuable insights for potential prevention measures and therapeutic targets for the three atherosclerotic diseases.
Collapse
Affiliation(s)
- Yinyu Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Bo Yang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Cuiping Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
3
|
Wu TT, Pan Y, Zheng YY, Wang ZL, Deng CJ, Wang S, Xie X. The U -shape relationship between free fatty acid level and adverse outcomes in coronary artery disease patients with hypertension: evidence from a large prospective cohort study. Lipids Health Dis 2024; 23:291. [PMID: 39256835 PMCID: PMC11386348 DOI: 10.1186/s12944-024-02273-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Evidence is scarce on the effect of free fatty acid (FFA) level in the prognosis of coronary artery disease (CAD) patients with hypertension. This study. METHODS A large prospective cohort study with a follow-up period of average 2 years was conducted at Xinjiang Medical University Affiliated First Hospital from December 2016 to October 2021. A total of 10,395 CAD participants were divided into groups based on FFA concentration and hypertension status, and then primary outcome mortality and secondary endpoint ischemic events were assessed in the different groups. RESULTS A total of 222 all-cause mortality (ACMs), 164 cardiac mortality (CMs), 718 major adverse cardiovascular events (MACEs) and 803 major adverse cardiovascular and cerebrovascular events (MACCEs) were recorded during follow-up period. A nonlinear relationship between FFA and adverse outcomes was observed only in CAD patients with hypertension. Namely, a "U -shape" relationship between FFA levels and long-term outcomes was found in CAD patients with hypertension. Lower FFA level (< 310 µmol/L), or higher FFA level (≥ 580 µmol/L) at baseline is independent risk factors for adverse outcomes. After adjustment for confounders, excess FFA increases mortality (ACM, HR = 1.957, 95%CI(1.240-3.087), P = 0.004; CM, HR = 2.704, 95%CI(1.495-4.890, P = 0.001) and MACE (HR = 1.411, 95%CI(1.077-1.848), P = 0.012), MACCE (HR = 1.299, 95%CI (1.013-1.666), P = 0.040) prevalence. Low levels of FFA at baseline can also increase the incidence of MACE (HR = 1.567,95%CI (1.187-2.069), P = 0.002) and MACCE (HR = 1.387, 95%CI (1.070-1.798), P = 0.013). CONCLUSIONS Baseline FFA concentrations significantly associated with long-term mortality and ischemic events could be a better and novel risk biomarker for prognosis prediction in CAD patients with hypertension. TRIAL REGISTRATION The details of the design were registered on https://www.chictr.org.cn/ (Identifier NCT05174143).
Collapse
Affiliation(s)
- Ting-Ting Wu
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, No. 137, Liyushan Road, Urumqi, 830054, China
- Key Laboratory of High Incidence Disease Research in Xingjiang, (Xinjiang Medical University, Ministry of Education), Urumqi, China
- Key Laboratory of Hypertension Research of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830054, China
| | - Ying Pan
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, No. 137, Liyushan Road, Urumqi, 830054, China
- Key Laboratory of High Incidence Disease Research in Xingjiang, (Xinjiang Medical University, Ministry of Education), Urumqi, China
- Key Laboratory of Hypertension Research of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830054, China
| | - Ying-Ying Zheng
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, No. 137, Liyushan Road, Urumqi, 830054, China
- Key Laboratory of High Incidence Disease Research in Xingjiang, (Xinjiang Medical University, Ministry of Education), Urumqi, China
- Key Laboratory of Hypertension Research of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830054, China
| | - Zhi-Long Wang
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, No. 137, Liyushan Road, Urumqi, 830054, China
- Key Laboratory of High Incidence Disease Research in Xingjiang, (Xinjiang Medical University, Ministry of Education), Urumqi, China
- Key Laboratory of Hypertension Research of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830054, China
| | - Chang-Jiang Deng
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, No. 137, Liyushan Road, Urumqi, 830054, China
- Key Laboratory of High Incidence Disease Research in Xingjiang, (Xinjiang Medical University, Ministry of Education), Urumqi, China
- Key Laboratory of Hypertension Research of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830054, China
| | - Shun Wang
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, No. 137, Liyushan Road, Urumqi, 830054, China
- Key Laboratory of High Incidence Disease Research in Xingjiang, (Xinjiang Medical University, Ministry of Education), Urumqi, China
- Key Laboratory of Hypertension Research of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830054, China
| | - Xiang Xie
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, No. 137, Liyushan Road, Urumqi, 830054, China.
- Key Laboratory of High Incidence Disease Research in Xingjiang, (Xinjiang Medical University, Ministry of Education), Urumqi, China.
- Key Laboratory of Hypertension Research of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830054, China.
| |
Collapse
|
4
|
Fang X, Zhang Y, Wu H, Wang H, Miao R, Wei J, Zhang Y, Tian J, Tong X. Mitochondrial regulation of diabetic endothelial dysfunction: Pathophysiological links. Int J Biochem Cell Biol 2024; 170:106569. [PMID: 38556159 DOI: 10.1016/j.biocel.2024.106569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Micro- and macrovascular complications frequently occur in patients with diabetes, with endothelial dysfunction playing a key role in the development and progression of the complications. For the early diagnosis and optimal treatment of vascular complications associated with diabetes, it is imperative to comprehend the cellular and molecular mechanisms governing the function of diabetic endothelial cells. Mitochondria function as crucial sensors of environmental and cellular stress regulating endothelial cell viability, structural integrity and function. Impaired mitochondrial quality control mechanisms and mitochondrial dysfunction are the main features of endothelial damage. Hence, targeted mitochondrial therapy is considered promising novel therapeutic options in vascular complications of diabetes. In this review, we focus on the mitochondrial functions in the vascular endothelial cells and the pathophysiological role of mitochondria in diabetic endothelial dysfunction, aiming to provide a reference for related drug development and clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Haoran Wu
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Jilin 130117, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
5
|
Zhu Z, Hu X, Liu K, Li J, Fan K, Wang H, Wang L, He L, Ma Y, Guan R, Wang Z. E3 ubiquitin ligase Siah1 aggravates NAFLD through Scp2 ubiquitination. Int Immunopharmacol 2023; 124:110897. [PMID: 37696143 DOI: 10.1016/j.intimp.2023.110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver disorders and accompanied by multiple metabolic dysfunctions. Although excessive lipid accumulation in hepatocytes has been identified as a crucial mediator of NAFLD development, the underlying mechanisms are very complicated and remain largely unknown. In this study, we reported that upregulated expression of the seven in absentia homolog 1 (Siah1) in the liver exacerbated NAFLD progression. Conversely, Siah1 downregulation markedly alleviated the high fat diet-induced accumulation of hepatic fat and expression of genes related to lipid metabolism in vitro and in vivo. The mechanistic study revealed that Siah1 interacted with sterol carrier protein 2 (Scp2) and promotes its ubiquitination and degradation, suggesting that Siah1 is an important activator of Scp2 ubiquitination in the context of NAFLD. Our results demonstrated that Siah1 regulated the lipid accumulation in NAFLD by interacting with Scp2. Thus, this study presents Siah1 as a promising therapeutic target in the development of NAFLD.
Collapse
Affiliation(s)
- Zhu Zhu
- Department of Biological Sample Bank, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Xiao Hu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, PR China; Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Kehan Liu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, PR China; Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Jingpei Li
- Department of Thoracic Surgery/Oncology, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, PR China
| | - Kun Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200000, PR China
| | - Huafei Wang
- Department of Biological Sample Bank, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Li Wang
- Department of Biological Sample Bank, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Lulu He
- Department of Biological Sample Bank, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Yihui Ma
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Ruijuan Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, PR China.
| | - Zhengyang Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China.
| |
Collapse
|
6
|
Fatty acids act on vascular endothelial cells and influence the development of cardiovascular disease. Prostaglandins Other Lipid Mediat 2023; 165:106704. [PMID: 36621562 DOI: 10.1016/j.prostaglandins.2023.106704] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Endothelial cells (ECs) maintain the health of blood vessels and prevent the development of cardiovascular disease (CVD). Free saturated fatty acids (FAs) induce EC damage and increase the risk of CVD by promoting arteriosclerosis. Conversely, polyunsaturated FAs (PUFAs), such as docosahexaenoic acid, are thought to suppress EC damage induced during the early stages of CVD. This review describes the effects of multiple dietary FAs on EC disorders involved in the development of CVD. The roles of FAs in atherosclerosis and CVD were analyzed by evaluating articles published in PubMed, Science Direct, and Web of Science. Saturated FAs were found to induce EC damage by reducing the production and action of EC-derived nitric oxide. Oxidative stress, inflammation, and the renin-angiotensin system were found to be involved in EC disorder. Furthermore, n-3 PUFAs were found to reduce EC dysfunction and prevent the development of EC disorder. These results indicate that FAs may affect EC failure induced during the early stages of CVD and reduce the risk of developing the disease.
Collapse
|
7
|
Effect of Pemafibrate on Hemorheology in Patients with Hypertriglyceridemia and Aggravated Blood Fluidity Associated with Type 2 Diabetes or Metabolic Syndrome. J Clin Med 2023; 12:jcm12041481. [PMID: 36836015 PMCID: PMC9962113 DOI: 10.3390/jcm12041481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Persistent high serum triglyceride (TG) and free fatty acid (FFA) levels, which are common in metabolic syndrome and type 2 diabetes, are risk factors for cardiovascular events because of exacerbated hemorheology. To explore the effects of pemafibrate, a selective peroxisome proliferator-activated receptor alpha modulator, on hemorheology, we performed a single-center, nonrandomized, controlled study in patients with type 2 diabetes (HbA1c 6-10%) or metabolic syndrome, with fasting TG levels of ≥ 150 mg/dL and a whole blood transit time of > 45 s on a microarray channel flow analyzer (MCFAN). Patients were divided into a study group, receiving 0.2 mg/day of pemafibrate (n = 50) for 16 weeks, and a non-pemafibrate control group (n = 46). Blood samples were drawn 8 and 16 weeks after entry to the study to evaluate whole blood transit time as a hemorheological parameter, leukocyte activity by MCFAN, and serum FFA levels. No serious adverse events were observed in either of the groups. After 16 weeks, the pemafibrate group showed a 38.6% reduction in triglycerides and a 50.7% reduction in remnant lipoproteins. Pemafibrate treatment did not significantly improve whole blood rheology or leukocyte activity in patients with type 2 diabetes mellitus or metabolic syndrome complicated by hypertriglyceridemia and exacerbated hemorheology.
Collapse
|
8
|
Mechanisms contributing to adverse outcomes of COVID-19 in obesity. Mol Cell Biochem 2022; 477:1155-1193. [PMID: 35084674 PMCID: PMC8793096 DOI: 10.1007/s11010-022-04356-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/07/2022] [Indexed: 01/08/2023]
Abstract
A growing amount of epidemiological data from multiple countries indicate an increased prevalence of obesity, more importantly central obesity, among hospitalized subjects with COVID-19. This suggests that obesity is a major factor contributing to adverse outcome of the disease. As it is a metabolic disorder with dysregulated immune and endocrine function, it is logical that dysfunctional metabolism contributes to the mechanisms behind obesity being a risk factor for adverse outcome in COVID-19. Emerging data suggest that in obese subjects, (a) the molecular mechanisms of viral entry and spread mediated through ACE2 receptor, a multifunctional host cell protein which links to cellular homeostasis mechanisms, are affected. This includes perturbation of the physiological renin-angiotensin system pathway causing pro-inflammatory and pro-thrombotic challenges (b) existent metabolic overload and ER stress-induced UPR pathway make obese subjects vulnerable to severe COVID-19, (c) host cell response is altered involving reprogramming of metabolism and epigenetic mechanisms involving microRNAs in line with changes in obesity, and (d) adiposopathy with altered endocrine, adipokine, and cytokine profile contributes to altered immune cell metabolism, systemic inflammation, and vascular endothelial dysfunction, exacerbating COVID-19 pathology. In this review, we have examined the available literature on the underlying mechanisms contributing to obesity being a risk for adverse outcome in COVID-19.
Collapse
|
9
|
Kotlyarov S, Kotlyarova A. Involvement of Fatty Acids and Their Metabolites in the Development of Inflammation in Atherosclerosis. Int J Mol Sci 2022; 23:1308. [PMID: 35163232 PMCID: PMC8835729 DOI: 10.3390/ijms23031308] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Despite all the advances of modern medicine, atherosclerosis continues to be one of the most important medical and social problems. Atherosclerosis is the cause of several cardiovascular diseases, which are associated with high rates of disability and mortality. The development of atherosclerosis is associated with the accumulation of lipids in the arterial intima and the disruption of mechanisms that maintain the balance between the development and resolution of inflammation. Fatty acids are involved in many mechanisms of inflammation development and maintenance. Endothelial cells demonstrate multiple cross-linkages between lipid metabolism and innate immunity. In addition, these processes are linked to hemodynamics and the function of other cells in the vascular wall, highlighting the central role of the endothelium in vascular biology.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
10
|
Abstract
The endothelium acts as the barrier that prevents circulating lipids such as lipoproteins and fatty acids into the arterial wall; it also regulates normal functioning in the circulatory system by balancing vasodilation and vasoconstriction, modulating the several responses and signals. Plasma lipids can interact with endothelium via different mechanisms and produce different phenotypes. Increased plasma-free fatty acids (FFAs) levels are associated with the pathogenesis of atherosclerosis and cardiovascular diseases (CVD). Because of the multi-dimensional roles of plasma FFAs in mediating endothelial dysfunction, increased FFA level is now considered an essential link in the onset of endothelial dysfunction in CVD. FFA-mediated endothelial dysfunction involves several mechanisms, including dysregulated production of nitric oxide and cytokines, metaflammation, oxidative stress, inflammation, activation of the renin-angiotensin system, and apoptosis. Therefore, modulation of FFA-mediated pathways involved in endothelial dysfunction may prevent the complications associated with CVD risk. This review presents details as to how endothelium is affected by FFAs involving several metabolic pathways.
Collapse
|
11
|
Kawabe A, Yasu T, Morimoto T, Tokushige A, Momomura SI, Sakakura K, Node K, Inoue T, Ueda S. WBC count predicts heart failure in diabetes and coronary artery disease patients: a retrospective cohort study. ESC Heart Fail 2021; 8:3748-3759. [PMID: 34268904 PMCID: PMC8497382 DOI: 10.1002/ehf2.13513] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/14/2021] [Accepted: 07/04/2021] [Indexed: 01/04/2023] Open
Abstract
Aims White blood cell (WBC) count in healthy people is associated with the risk of coronary artery disease (CAD) and mortality. This study aimed to determine whether WBC count predicts heart failure (HF) requiring hospitalization as well as all‐cause death, acute myocardial infarction (AMI) and stroke in patients with Type 2 diabetes mellitus and established CAD. Methods We conducted this retrospective registry study that enrolled consecutive patients with Type 2 diabetes mellitus and CAD based on coronary arteriography records and medical charts at 70 teaching hospitals in Japan from 2005 to 2015. A total of 7608 participants (28.2% women, mean age 68 ± 10 years) were eligible. In the cohort, the median (interquartile range) and mean follow‐up durations were 39 (16.5–66.1 months) and 44.3 ± 32.7 months, respectively. The primary outcome was HF requiring hospitalization. The secondary outcomes were AMI, stroke, all‐cause death, 3‐point major adverse cardiovascular events (MACE) (AMI/stroke/death) and 4‐point MACE (AMI/stroke/death/HF requiring hospitalization). Outcomes were reported as cumulative incidences (proportion of patients experiencing an event) and incidence rates (events/100 person‐years). The primary and secondary outcomes were assessed using the Kaplan–Meier method and were compared using the log‐rank test stratified by the baseline WBC count. The association between the WBC count at baseline and each MACE was assessed using the Cox proportional hazard model and expressed as the hazard ratio (HR) and 95% confidence interval (CI) after adjusting for other well‐known risk factors for MACE. Results During the follow‐up, 880 patients were hospitalized owing to HF. The WBC Quartile 4 (≥7700 cells/μL) had significantly lower HF event‐free survival rate (log‐rank test, P < 0.001). The HRs for HF events requiring hospitalization with each WBC quartile compared with the lowest in the first WBC quartile were 1 for Quartile 1 (WBC < 5300 cells/μL), 1.20 (95% CI, 0.96–1.5; P = 0.1) for Quartile 2 (5300 ≤ WBC < 6400), 1.34 (95% CI, 1.08–1.67; P = 0.009) for Quartile 3 (6400 ≤ WBC < 7700) and 1.62 (95% CI, 1.31–2.00; P < 0.001) for Quartile 4 after adjusting for covariates. Similar findings were observed for the risk of AMI and death; however, no significant difference was found for stroke. WBC Quartile 4 patients had a significantly lower 3‐ or 4‐point MACE‐free survival rate (log‐rank test, P < 0.0001). Conclusions A higher WBC count is a predictor of hospitalization for HF, all‐cause death and AMI but not for stroke in patients with concurrent Type 2 diabetes mellitus and established CAD.
Collapse
Affiliation(s)
- Atsuhiko Kawabe
- Department of Cardiovascular Medicine and Nephrology, Dokkyo Medical University Nikko Medical Center, Nikko, Japan
| | - Takanori Yasu
- Department of Cardiovascular Medicine and Nephrology, Dokkyo Medical University Nikko Medical Center, Nikko, Japan
| | - Takeshi Morimoto
- Department of Clinical Epidemiology, Hyogo Medical College, Nishinomiya, Japan
| | - Akihiro Tokushige
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shin-Ichi Momomura
- Division of Cardiovascular Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kenichi Sakakura
- Division of Cardiovascular Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Koichi Node
- Department of Cardiology and Renal Medicine, Saga University School of Medicine, Saga, Japan
| | - Taku Inoue
- Department of Cardiology, Yuaikai Nanbu Hospital, Itoman, Okinawa, Japan
| | - Shinichiro Ueda
- Department of Clinical Pharmacology and Therapeutics, University of the Ryukyus, Nishihara, Okinawa, Japan
| | -
- The CHD Collaborative Investigators are mentioned in the appendix
| |
Collapse
|
12
|
Bargieł W, Cierpiszewska K, Maruszczak K, Pakuła A, Szwankowska D, Wrzesińska A, Gutowski Ł, Formanowicz D. Recognized and Potentially New Biomarkers-Their Role in Diagnosis and Prognosis of Cardiovascular Disease. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57070701. [PMID: 34356982 PMCID: PMC8305174 DOI: 10.3390/medicina57070701] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 01/08/2023]
Abstract
Atherosclerosis and its consequences are the leading cause of mortality in the world. For this reason, we have reviewed atherosclerosis biomarkers and selected the most promising ones for review. We focused mainly on biomarkers related to inflammation and oxidative stress, such as the highly sensitive C-reactive protein (hs-CRP), interleukin 6 (IL-6), and lipoprotein-associated phospholipase A2 (Lp-PLA2). The microRNA (miRNA) and the usefulness of the bone mineralization, glucose, and lipid metabolism marker osteocalcin (OC) were also reviewed. The last biomarker we considered was angiogenin (ANG). Our review shows that due to the multifactorial nature of atherosclerosis, no single marker is known so far, the determination of which would unambiguously assess the severity of atherosclerosis and help without any doubt in the prognosis of cardiovascular risk.
Collapse
Affiliation(s)
- Weronika Bargieł
- Faculty of Medicine, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (W.B.); (K.C.); (K.M.); (A.P.); (D.S.); (A.W.)
| | - Katarzyna Cierpiszewska
- Faculty of Medicine, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (W.B.); (K.C.); (K.M.); (A.P.); (D.S.); (A.W.)
| | - Klara Maruszczak
- Faculty of Medicine, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (W.B.); (K.C.); (K.M.); (A.P.); (D.S.); (A.W.)
| | - Anna Pakuła
- Faculty of Medicine, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (W.B.); (K.C.); (K.M.); (A.P.); (D.S.); (A.W.)
| | - Dominika Szwankowska
- Faculty of Medicine, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (W.B.); (K.C.); (K.M.); (A.P.); (D.S.); (A.W.)
| | - Aleksandra Wrzesińska
- Faculty of Medicine, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (W.B.); (K.C.); (K.M.); (A.P.); (D.S.); (A.W.)
| | - Łukasz Gutowski
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland;
| | - Dorota Formanowicz
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland;
- Correspondence:
| |
Collapse
|
13
|
Tian X, Li Y, Liu J, Lin Q, Yang Q, Tu J, Wang J, Li J, Ning X. Epidemiology of Isolated Impaired Glucose Tolerance Among Adults Aged Above 50 Years in Rural China. Diabetes Metab Syndr Obes 2021; 14:4067-4078. [PMID: 34557009 PMCID: PMC8453426 DOI: 10.2147/dmso.s330470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/04/2021] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Isolated impaired glucose tolerance (i-IGT) is a subtype of prediabetes in which an individual demonstrates elevated 2-h post-glucose load glucose levels but normal fasting plasma glucose levels. However, few studies have explored the prevalence and risk factors of i-IGT among adults in rural China. Thus, we aimed to explore the prevalence and risk factors of i-IGT among adults ≥50 years old in a low-income, rural population in China. MATERIALS AND METHODS Individuals aged ≥50 years with normal fasting plasma glucose levels were included in the final analysis. Fasting and 2-h venous blood samples were collected to assess the selected parameter measurements. RESULTS A total of 2175 individuals were included in this study. The i-IGT prevalence was 22.9% and significantly higher among females than among males (P<0.05). Older age [odds ratio (OR), 1.606; 95% confidence interval (CI), 1.101-2.342; P=0.014), hypertension (OR, 1.554; 95% CI, 1.152-2.019; P=0.004), and central obesity (OR, 1.395; 95% CI, 1.099-1.771; P=0.006) were associated with i-IGT. Moreover, white blood cell (OR, 1.089; 95% CI, 1.009-1.175; P=0.029), high-sensitivity C-reactive protein (OR, 1.049; 95% CI, 1.020-1.078; P=0.001), serum uric acid (OR, 1.0003; 95% CI, 1.001-1.004; P=0.001), triglyceride (OR, 1.540; 95% CI, 1.105-2.147; P=0.011), and alanine aminotransferase (OR, 1.012; 95% CI, 1.004-1.021; P=0.004) levels were also linked to i-IGT in the analyzed population. CONCLUSION Health promotion education and a standardized approach to managing body weight, BP, and lipid and uric acid levels would benefit this low-income population in rural China for reducing the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Xiaobing Tian
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Yan Li
- Center of Clinical Epidemiology & Evidence-Based Medicine, The Jizhou People’s Hospital, Tianjin, People’s Republic of China
- Department of Anesthesiology, The Jizhou People’s Hospital, Tianjin, People’s Republic of China
| | - Jie Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Center of Clinical Epidemiology & Evidence-Based Medicine, The Jizhou People’s Hospital, Tianjin, People’s Republic of China
- Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, People’s Republic of China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, People’s Republic of China
| | - Qiuxing Lin
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Center of Clinical Epidemiology & Evidence-Based Medicine, The Jizhou People’s Hospital, Tianjin, People’s Republic of China
- Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, People’s Republic of China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, People’s Republic of China
| | - Qiaoxia Yang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Jun Tu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Center of Clinical Epidemiology & Evidence-Based Medicine, The Jizhou People’s Hospital, Tianjin, People’s Republic of China
- Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, People’s Republic of China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, People’s Republic of China
| | - Jinghua Wang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Center of Clinical Epidemiology & Evidence-Based Medicine, The Jizhou People’s Hospital, Tianjin, People’s Republic of China
- Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, People’s Republic of China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, People’s Republic of China
| | - Jidong Li
- Center of Clinical Epidemiology & Evidence-Based Medicine, The Jizhou People’s Hospital, Tianjin, People’s Republic of China
- Department of Neurosurgery, The Jizhou People’s Hospital, Tianjin, People’s Republic of China
| | - Xianjia Ning
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Center of Clinical Epidemiology & Evidence-Based Medicine, The Jizhou People’s Hospital, Tianjin, People’s Republic of China
- Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, People’s Republic of China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, People’s Republic of China
- Correspondence: Xianjia Ning; Jidong Li Email ;
| |
Collapse
|
14
|
Liang H, Yue R, Zhou C, Liu M, Yu X, Lu S, Zeng J, Yu Z, Zhou Z, Hu H. Cadmium exposure induces endothelial dysfunction via disturbing lipid metabolism in human microvascular endothelial cells. J Appl Toxicol 2020; 41:775-788. [PMID: 33205412 DOI: 10.1002/jat.4115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Hao Liang
- Department of Cardiovasology Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Rongchuan Yue
- Department of Cardiovasology Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Chao Zhou
- Department of Occupational Health Third Military Medical University Chongqing China
| | - Mengyu Liu
- Department of Occupational Health Third Military Medical University Chongqing China
| | - Xi Yu
- Department of Occupational and Environmental Medicine, School of Medicine Zhejiang University Hangzhou China
| | - Shengzhong Lu
- Department of Cardiovasology Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Jing Zeng
- Department of Cardiovasology Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Zhengping Yu
- Department of Occupational Health Third Military Medical University Chongqing China
| | - Zhou Zhou
- Department of Occupational and Environmental Medicine, School of Medicine Zhejiang University Hangzhou China
| | - Houxiang Hu
- Department of Cardiovasology Affiliated Hospital of North Sichuan Medical College Nanchong China
| |
Collapse
|
15
|
Li H, Wang X, Lu X, Zhu H, Li S, Duan S, Zhao X, Zhang F, Alterovitz G, Wang F, Li Q, Tian XL, Xu M. Co-expression network analysis identified hub genes critical to triglyceride and free fatty acid metabolism as key regulators of age-related vascular dysfunction in mice. Aging (Albany NY) 2019; 11:7620-7638. [PMID: 31514170 PMCID: PMC6781998 DOI: 10.18632/aging.102275] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022]
Abstract
Background: Aging has often been linked to age-related vascular disorders. The elucidation of the putative genes and pathways underlying vascular aging likely provides useful insights into vascular diseases at advanced ages. Transcriptional regulatory network analysis is the key to describing genetic interactions between molecular regulators and their target gene transcriptionally changed during vascular aging. Results: A total of 469 differentially expressed genes were parsed into 6 modules. Among the incorporated sample traits, the most significant module related to vascular aging was associated with triglyceride and enriched with biological terms like proteolysis, blood circulation, and circulatory system process. The module associated with triglyceride was preserved in an independent microarray dataset, indicating the robustness of the identified vascular aging-related subnetwork. Additionally, Enpp5, Fez1, Kif1a, F3, H2-Q7, and their interacting miRNAs mmu-miR-449a, mmu-miR-449c, mmu-miR-34c, mmu-miR-34b-5p, mmu-miR-15a, and mmu-let-7, exhibited the most connectivity with external lipid-related traits. Transcriptional alterations of the hub genes Enpp5, Fez1, Kif1a, and F3, and the interacting microRNAs mmu-miR-34c, mmu-miR-34b-5p, mmu-let-7, mmu-miR-449a, and mmu-miR-449c were confirmed. Conclusion: Our findings demonstrate that triglyceride and free fatty acid-related genes are key regulators of age-related vascular dysfunction in mice and show that the hub genes for Enpp5, Fez1, Kif1a, and F3 as well as their interacting miRNAs mmu-miR-34c, mmu-miR-34b-5p, mmu-let-7, mmu-miR-449a, and mmu-miR-449c, could serve as potential biomarkers in vascular aging. Methods: The microarray gene expression profiles of aorta samples from 6-month old mice (n=6) and 20-month old mice (n=6) were processed to identify nominal differentially expressed genes. These nominal differentially expressed genes were subjected to a weighted gene co-expression network analysis. A network-driven integrative analysis with microRNAs and transcription factors was performed to define significant modules and underlying regulatory pathways associated with vascular aging, and module preservation test was conducted to validate the age-related modules based on an independent microarray gene expression dataset in mice aorta samples including three 32-week old wild-type mice (around 6-month old) and three 78-week old wild-type mice (around 20-month old). Gene ontology and protein-protein interaction analyses were conducted to determine the hub genes as potential biomarkers in the progress of vascular aging. The hub genes were further validated with quantitative real-time polymerase chain reaction in aorta samples from 20 young (6-month old) mice and 20 old (20-month old) mice.
Collapse
Affiliation(s)
- Huimin Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.,Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Xinhui Wang
- School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xinyue Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hongxin Zhu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Sheng Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shiwei Duan
- , Medical Genetics Center, School of Medicine, Ningbo University, Ningbo 315000, China
| | - Xinzhi Zhao
- International Peace Maternity and Child Health Hospital of China Affiliated to Shanghai Jiao Tong University, Shanghai 200030, China
| | | | - Gil Alterovitz
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Fudi Wang
- School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiao-Li Tian
- Department of Human Population Genetics, Human Aging Research Institute and School of Life Science, Nanchang University, Nanchang 330031, China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.,Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
Clinically feasible method for assessing leukocyte rheology in whole blood. Heart Vessels 2019; 35:268-277. [PMID: 31444563 PMCID: PMC6981318 DOI: 10.1007/s00380-019-01486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/16/2019] [Indexed: 11/23/2022]
Abstract
This study reports a novel method for assessment of leukocyte rheological activation with a new designed microchannel array chip to mimic the human microvascular network for microchannel array flow analysis (MCFAN). Study subjects were 79 healthy volunteers and 42 patients with type 2 diabetes mellitus (DM) and 36 patients with acute coronary syndrome (ACS). Using the anticoagulants heparin and ethylene-diamine-tetraacetic acid (EDTA)-2Na which inhibits platelets and leukocytes by chelating Ca2+, we were able to quantify leukocyte rheological activation by the subtraction of passage time of blood treated with both heparin and EDTA-2Na from that of blood treated with heparin only. We confirmed that passage times of whole blood with heparin + EDTA-2Na were always shorter than those of whole blood with only heparin in healthy subjects and patients with DM or ACS under suction pressures of − 30 cmH2O. There was a significant correlation between delta whole blood passage time {(heparin tube) − (EDTA-2Na + heparin)} and serum levels of myeloperoxidase and adhesive leukocyte number, respectively, even in blood from patients with DM or ACS, who suffered from inflammation. In conclusion we have developed a clinically feasible method for assessing leukocyte rheological activation in whole blood in ex vivo.
Collapse
|
17
|
Widlansky ME, Hill RB. Mitochondrial regulation of diabetic vascular disease: an emerging opportunity. Transl Res 2018; 202:83-98. [PMID: 30144425 PMCID: PMC6218302 DOI: 10.1016/j.trsl.2018.07.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/09/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
Diabetes-related vascular complication rates remain unacceptably high despite guideline-based medical therapies that are significantly more effective in individuals without diabetes. This critical gap represents an opportunity for researchers and clinicians to collaborate on targeting mechanisms and pathways that specifically contribute to vascular pathology in patients with diabetes mellitus. Dysfunctional mitochondria producing excessive mitochondrial reactive oxygen species (mtROS) play a proximal cell-signaling role in the development of vascular endothelial dysfunction in the setting of diabetes. Targeting the mechanisms of production of mtROS or mtROS themselves represents an attractive method to reduce the prevalence and severity of diabetic vascular disease. This review focuses on the role of mitochondria in the development of diabetic vascular disease and current developments in methods to improve mitochondrial health to improve vascular outcomes in patients with DM.
Collapse
Affiliation(s)
- Michael E Widlansky
- Department of Medicine, Division of Cardiovascular Medicine and Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - R Blake Hill
- Department of Biochemisty, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
18
|
Deng H, Lu H, Dai Y, Li L, Cao J, Zhu D. Relationship between Serum Osteocalcin and Carotid Atherosclerosis in Middle-Aged Men in China: A Cross-Sectional Study. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1751905. [PMID: 30186852 PMCID: PMC6112087 DOI: 10.1155/2018/1751905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE Numerous investigations found that there exists a close relationship between serum osteocalcin and incurrence of atherosclerosis, but studies investigating the effect of serum osteocalcin on carotid atherosclerosis are very limited. Our study is aimed at investigating the role of osteocalcin in carotid atherosclerosis in middle-aged men in China. METHODS A total of 335 male middle-aged participants (40-60, 52.4 ± 3.87 years averagely) were enrolled from the institute. The carotid intima-media thicknesses (CIMT) of each subject were measured. All subjects were included either in the carotid atherosclerosis (AS) group or the control group according to the CAS diagnosis criteria. Serum osteocalcin and other markers of each patient were assessed following standard laboratory tests protocol. RESULTS 135 subjects were included in AS group, and 199 subjects were included in control group. The average osteocalcin level in AS group was 18.71 ± 6.20 ng/ml and was significantly different from that in control group, which was 20.38 ± 7.19 ng/ml (p=0.039). Logistic regression analysis revealed that OCN (standardized β=-0.024, p=0.013) and FINS (standardized β=-0.065, p=0.010) were independently and inversely associated with the carotid atherosclerosis, while FPG (standardized β=0.538, p=0.006) was independently and positively associated with the carotid atherosclerosis. CONCLUSION Our study suggests that OCN is independently related to carotid atherosclerosis in middle-aged male individuals.
Collapse
Affiliation(s)
- Hui Deng
- Department of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, China
| | - Hao Lu
- Department of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, China
| | - Yang Dai
- Department of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, China
| | - Lingling Li
- Department of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, China
| | - Juan Cao
- Department of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, China
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Clinical Medical College of Nanjing Medical University, China
| |
Collapse
|
19
|
Shao J, Wu X, Liu X, Qi J, Qi Z. THE CORRELATION BETWEEN NECK CIRCUMFERENCE AND UMBILICAL ARTERY BLOOD FLOW IN PHYSIOLOGIC PREGNANCIES. ACTA ENDOCRINOLOGICA-BUCHAREST 2018; 14:268-271. [PMID: 31149269 DOI: 10.4183/aeb.2018.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Objective To study the correlation between neck circumference(NC) and umbilical artery blood flow in physiologic pregnancies. Methods One hundred and one healthy pregnant woman in the third trimester were enrolled. Anthropometric measurements and ultrasonic testing were done. Results The women with NC ≥34.7cm had a more elevated umbilical artery pulsatility index(PI) and systolic/diastolic ratio (S/D) than the women with NC <34.7cm (P<0.01). NC were positively correlated with PI(r=0.224,P=0.024) and S/D ratio(r=0.415,P=0.0001). In multivariate analysis, NC was independently associated with PI (β=0.026, P=0.016) and S/D ratio (β=0.132, P=0.0001). Conclusions Obesity has an adverse impact on feto-placetal vessels, and NC was superior to body mass index.
Collapse
Affiliation(s)
- J Shao
- The First Hospital of Qinhuangdao, Dept. of Ultrasound, Qinhuangdao, China
| | - X Wu
- The First Hospital of Qinhuangdao, Dept. of General Surgery, Qinhuangdao, China
| | - X Liu
- The First Hospital of Qinhuangdao, Dept. of Ultrasound, Qinhuangdao, China
| | - J Qi
- The First Hospital of Qinhuangdao, Dept. of Gynaecology and Obstetrics, Qinhuangdao, China
| | - Z Qi
- The First Hospital of Qinhuangdao, Dept. of Ultrasound, Qinhuangdao, China
| |
Collapse
|
20
|
Yasu T, Mutoh A, Wada H, Kobayashi M, Kikuchi Y, Momomura S, Ueda S. Renin-Angiotensin System Inhibitors Can Prevent Intravenous Lipid Infusion-Induced Myocardial Microvascular Dysfunction and Leukocyte Activation. Circ J 2018; 82:494-501. [PMID: 28954968 DOI: 10.1253/circj.cj-17-0809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
BACKGROUND Levels of triglycerides and free fatty acids (FFAs) are elevated in patients with diabetes and may contribute to endothelial dysfunction through renin-angiotensin system (RAS) activation and oxidative stress. The present study investigated how systemic FFA loading affected myocardial microcirculation during hyperemia via RAS. METHODS AND RESULTS Eight healthy men received candesartan, perindopril, or a placebo for 2 days in a double-blind crossover design, and then myocardial microcirculation during hyperemia induced by a 2-h infusion of lipid/heparin was assessed using dipyridamole stress-myocardial contrast echocardiography (MCE). Leukocyte activity and hemorheology were also assessed ex vivo using a microchannel flow analyzer, serum levels of oxidative stress markers, and IκB-α expression in mononuclear cells. Serum FFA elevation by the infusion of lipid/heparin significantly decreased myocardial capillary blood velocity and myocardial blood flow during hyperemia. Both candesartan and perindopril significantly prevented the FFA-induced decrease in capillary blood velocity and myocardial blood flow during hyperemia. Systemic FFA loading also caused an increase in the number of adherent leukocytes and prolonged the whole blood passage time. These effects were blocked completely by candesartan and partially by perindopril. Both agents prevented the FFA-induced enhancement of oxidative stress and IκB-α degradation in mononuclear cells. CONCLUSIONS Both candesartan and perindopril can prevent FFA-induced myocardial microcirculatory dysfunction during hyperemia via modulation of leukocyte activation and microvascular endothelial function.
Collapse
Affiliation(s)
- Takanori Yasu
- Department of Cardiovascular Medicine & Nephrology, Dokkyo Medical University Nikko Medical Center
| | - Akiko Mutoh
- Department of Clinical Pharmacology & Therapeutics, University of the Ryukyus Graduate School of Medicine
| | - Hiroshi Wada
- Department of First Integrated Medicine, Saitama Medical Center, Jichi Medical University
| | - Mayumi Kobayashi
- Department of Clinical Pharmacology & Therapeutics, University of the Ryukyus Graduate School of Medicine
| | | | - Shinichi Momomura
- Department of First Integrated Medicine, Saitama Medical Center, Jichi Medical University
| | - Shinichiro Ueda
- Department of Clinical Pharmacology & Therapeutics, University of the Ryukyus Graduate School of Medicine
| |
Collapse
|
21
|
Anikisetty M, Gopala Krishna A, Panneerselvam V, Kamatham AN. Diacylglycerol (DAG) rich rice bran and sunflower oils modulate lipid profile and cardiovascular risk factors in Wistar rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.10.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
22
|
Ghosh A, Gao L, Thakur A, Siu PM, Lai CWK. Role of free fatty acids in endothelial dysfunction. J Biomed Sci 2017; 24:50. [PMID: 28750629 PMCID: PMC5530532 DOI: 10.1186/s12929-017-0357-5] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
Plasma free fatty acids levels are increased in subjects with obesity and type 2 diabetes, playing detrimental roles in the pathogenesis of atherosclerosis and cardiovascular diseases. Increasing evidence showing that dysfunction of the vascular endothelium, the inner lining of the blood vessels, is the key player in the pathogenesis of atherosclerosis. In this review, we aimed to summarize the roles and the underlying mechanisms using the evidence collected from clinical and experimental studies about free fatty acid-mediated endothelial dysfunction. Because of the multifaceted roles of plasma free fatty acids in mediating endothelial dysfunction, elevated free fatty acid level is now considered as an important link in the onset of endothelial dysfunction due to metabolic syndromes such as diabetes and obesity. Free fatty acid-mediated endothelial dysfunction involves several mechanisms including impaired insulin signaling and nitric oxide production, oxidative stress, inflammation and the activation of the renin-angiotensin system and apoptosis in the endothelial cells. Therefore, targeting the signaling pathways involved in free fatty acid-induced endothelial dysfunction could serve as a preventive approach to protect against the occurrence of endothelial dysfunction and the subsequent complications such as atherosclerosis.
Collapse
Affiliation(s)
- Arijit Ghosh
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, HKSAR, China
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, China
| | - Lei Gao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, HKSAR, China
| | - Abhimanyu Thakur
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, China
| | - Parco M. Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, HKSAR, China
| | - Christopher W. K. Lai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, HKSAR, China
| |
Collapse
|
23
|
The Association Between Endocan Levels and Subclinical Atherosclerosis in Patients With Type 2 Diabetes Mellitus. Am J Med Sci 2017; 353:433-438. [DOI: 10.1016/j.amjms.2017.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/14/2017] [Accepted: 02/17/2017] [Indexed: 11/24/2022]
|
24
|
Qiu Y, Sui X, Zhan Y, Xu C, Li X, Ning Y, Zhi X, Yin L. Steroidogenic acute regulatory protein (StAR) overexpression attenuates HFD-induced hepatic steatosis and insulin resistance. Biochim Biophys Acta Mol Basis Dis 2017; 1863:978-990. [PMID: 28153708 DOI: 10.1016/j.bbadis.2017.01.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/18/2016] [Accepted: 01/28/2017] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) covers a wide spectrum of liver pathology. Intracellular lipid accumulation is the first step in the development and progression of NAFLD. Steroidogenic acute regulatory protein (StAR) plays an important role in the synthesis of bile acid and intracellular lipid homeostasis and cholesterol metabolism. We hypothesize that StAR is involved in non-alcoholic fatty liver disease (NAFLD) pathogenesis. The hypothesis was identified using free fatty acid (FFA)-overloaded NAFLD in vitro model and high-fat diet (HFD)-induced NAFLD mouse model transfected by recombinant adenovirus encoding StAR (StAR). StAR expression was also examined in pathology samples of patients with fatty liver by immunohistochemical staining. We found that the expression level of StAR was reduced in the livers obtained from fatty liver patients and NAFLD mice. Additionally, StAR overexpression decreased the levels of hepatic lipids and maintained the hepatic glucose homeostasis due to the activation of farnesoid x receptor (FXR). StAR overexpression attenuated the impairment of insulin signaling in fatty liver. This protective role of StAR was owing to a reduction of intracellular diacylglycerol levels and the phosphorylation of PKCε. Furthermore, FXR inactivation reversed the observed beneficial effects of StAR. The present study revealed that StAR overexpression can reduce hepatic lipid accumulation, regulate glucose metabolism and attenuate insulin resistance through a mechanism involving the activation of FXR. Our study suggests that StAR may be a potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Yanyan Qiu
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xianxian Sui
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yongkun Zhan
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaobo Li
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanxia Ning
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiuling Zhi
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Laboratory of Medical Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Lianhua Yin
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Sun J, Luo J, Ruan Y, Xiu L, Fang B, Zhang H, Wang M, Chen H. Free Fatty Acids Activate Renin-Angiotensin System in 3T3-L1 Adipocytes through Nuclear Factor-kappa B Pathway. J Diabetes Res 2016; 2016:1587594. [PMID: 26881238 PMCID: PMC4736205 DOI: 10.1155/2016/1587594] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/20/2015] [Indexed: 01/22/2023] Open
Abstract
The activity of a local renin-angiotensin system (RAS) in the adipose tissue is closely associated with obesity-related diseases. However, the mechanism of RAS activation in adipose tissue is still unknown. In the current study, we found that palmitic acid (PA), one kind of free fatty acid, induced the activity of RAS in 3T3-L1 adipocytes. In the presence of fetuin A (Fet A), PA upregulated the expression of angiotensinogen (AGT) and angiotensin type 1 receptor (AT1R) and stimulated the secretion of angiotensin II (ANG II) in 3T3-L1 adipocytes. Moreover, the activation of RAS in 3T3-L1 adipocytes was blocked when we blocked Toll-like receptor 4 (TLR4) signaling pathway using TAK242 or NF-κB signaling pathway using BAY117082. Together, our results have identified critical molecular mechanisms linking PA/TLR4/NF-κB signaling pathway to the activity of the local renin-angiotensin system in adipose tissue.
Collapse
Affiliation(s)
- Jia Sun
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jinhua Luo
- Department of Geratology, The Affiliated Hospital of Guangdong Medical College, Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Yuting Ruan
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Liangchang Xiu
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical College, Dongguan, Guangdong, China
| | - Bimei Fang
- Second Clinical School of Medicine, Southern Medical University, Guangzhou, China
| | - Hua Zhang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ming Wang
- Nephrology Center of Integrated Traditional Chinese and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Ming Wang: and
| | - Hong Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Hong Chen:
| |
Collapse
|
26
|
Shi S, Gao Y, Wang L, Liu J, Yuan Z, Yu M. Elevated free fatty acid level is a risk factor for early postoperative hypoxemia after on-pump coronary artery bypass grafting: association with endothelial activation. J Cardiothorac Surg 2015; 10:122. [PMID: 26381483 PMCID: PMC4574443 DOI: 10.1186/s13019-015-0323-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/04/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND We aimed to investigate the relationship between increased free fatty acid (FFA) level and early postoperative hypoxemia after coronary artery bypass grafting (CABG) with cardiopulmonary bypass (CPB). METHODS Ninety-eight consecutive patients undergoing CABG were enrolled. Early postoperative hypoxemia was defined as the lowest of the ratio of arterial oxygen tension (PaO2) to inspired oxygen fraction (FiO2) ≤ 200 mm Hg within 24 h without pleural effusion and pneumothorax. The 26 perioperative factors, serum levels of FFA and inflammatory cytokines between the hypoxemia and non-hypoxemia groups were recorded or detected using autoanalyzer and enzyme-linked immunosorbent assay, respectively. Additionally, the risk factors for early postoperative hypoxemia were evaluated using multiple logistic regression analysis. RESULTS The incidence rate of early postoperative hypoxemia was 37.8 %. Serum FFA levels were significantly higher in the hypoxemia group than in the non-hypoxemia group (P<0.001). Further, postoperative serum FFA levels were inversely related to the lowest of the ratio of PaO2/FiO2 at 24 h after CABG (r= - 0.367, P<0.001). Multiple logistic regression analysis confirmed that age, body mass index and postoperative serum FFA concentrations were independently associated with early postoperative hypoxemia. Notably, patients with hypoxemia had markedly higher serum intercellular adhesion molecule-1 (ICAM-1) levels than those without (P<0.001). Moreover, serum FFA levels at 2 h after CABG correlated positively with ICAM-1 concentrations (r=0.492, P<0.001). CONCLUSIONS Elevated FFA concentration is a risk factor for early postoperative hypoxemia after on-pump CABG, which may be closely associated with endothelial activation.
Collapse
Affiliation(s)
- Sheng Shi
- Department of Cardiovascular Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, P.R. China
| | - Yuan Gao
- Department of Cardiovascular Surgery, Taian City Central Hospital, 29 Longtan Road, Taian, Shandong Province, 271000, P.R. China
| | - Limin Wang
- Department of Cardiovascular Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, P.R. China
| | - Jian Liu
- Department of Cardiovascular Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, P.R. China
| | - Zhongxiang Yuan
- Department of Cardiovascular Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, P.R. China.
| | - Min Yu
- Department of Cardiovascular Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, P.R. China.
| |
Collapse
|
27
|
Barry DR, Utzschneider KM, Tong J, Gaba K, Leotta DF, Brunzell JD, Easterling TR. Intraabdominal fat, insulin sensitivity, and cardiovascular risk factors in postpartum women with a history of preeclampsia. Am J Obstet Gynecol 2015; 213:104.e1-104.e11. [PMID: 26003058 PMCID: PMC5181653 DOI: 10.1016/j.ajog.2015.05.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/03/2015] [Accepted: 05/18/2015] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Women who develop preeclampsia have a higher risk of future cardiovascular disease and diabetes compared to women who have uncomplicated pregnancies. We hypothesized that women with prior preeclampsia would have increased visceral adiposity that would be a major determinant of their metabolic and cardiovascular risk factors. STUDY DESIGN We compared intraabdominal fat (IAF) area, insulin sensitivity index (SI), fasting lipids, low-density lipoprotein relative flotation rate, and brachial artery flow-mediated dilatation in 49 women with prior preeclampsia and 22 controls who were at least 8 months postpartum and matched for age, parity, body mass index, and months postpartum. Women were eligible if they did not smoke tobacco, use hormonal contraception, have chronic hypertension, or have a history of gestational diabetes. RESULTS The groups were similar for age (mean ± SD: prior preeclampsia 33.4 ± 6.6 vs control 34.6 ± 4.3 years), parity (median: 1 for both), body mass index (26.7 ± 5.9 vs 24.0 ± 7.3 kg/m(2)), and months postpartum (median [25th-75th percentile]: 16 [13-38] vs 16.5 [13-25]). There were no significant differences in IAF area and SI. Despite this, women with preeclampsia had lower high-density lipoprotein (46.0 ± 10.7 vs 51.3 ± 9.3 mg/dL; P < .05), smaller/denser low-density lipoprotein relative flotation rate (0.276 ± 0.022 vs 0.289 ± 0.016; P = .02), higher systolic (114.6 ± 10.9 vs 102.3 ± 7.5 mm Hg) and diastolic (67.6 ± 7.5 vs 60.9 ± 3.6 mm Hg; P < .001) blood pressures, and impaired flow-mediated dilatation (4.5 [2-6.7] vs 8.8 [4.5-9.1] percent change, P < .05) compared to controls. In a subgroup analysis, women with nonsevere preeclampsia (n = 17) had increased IAF (98.3 [60.1-122.2]) vs 63.1 [40.1-70.7] cm(2); P = .02) and decreased SI (4.18 [2.43-5.25] vs 5.5 [3.9-8.3] × 10(-5) min(-1)/pmol/L; P = .035) compared to the controls, whereas women with severe preeclampsia (n = 32) were not different for IAF and SI. IAF was negatively associated with SI and positively associated with cardiovascular risk factors even after adjusting for the matching variables and total body fat. CONCLUSION Women with prior preeclampsia have an atherogenic lipid profile and endothelial dysfunction compared to matched control subjects despite having similar adiposity and insulin sensitivity, suggesting that there are mechanisms separate from obesity and insulin resistance that lead to their cardiovascular risk factors. Visceral adiposity may have a role in contributing to these risk factors in the subgroup of women who have preeclampsia without severe features.
Collapse
Affiliation(s)
- Darcy R Barry
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA.
| | - Kristina M Utzschneider
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, Department of Veterans Affairs Puget Sound Health Care System, and University of Washington, University of Washington, Seattle, WA
| | - Jenny Tong
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University, Durham, NC
| | - Kersten Gaba
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| | - Daniel F Leotta
- Applied Physics Laboratory, University of Washington, Seattle, WA
| | - John D Brunzell
- Division of Metabolism, Endocrinology, and Nutrition, Seattle, WA
| | - Thomas R Easterling
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| |
Collapse
|
28
|
Oxidative status imbalance in patients with metabolic syndrome: role of the myeloperoxidase/hydrogen peroxide axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:898501. [PMID: 25386227 PMCID: PMC4216703 DOI: 10.1155/2014/898501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/17/2014] [Accepted: 09/11/2014] [Indexed: 02/07/2023]
Abstract
The present study evaluated the cardiometabolic and redox balance profiles in patients with Metabolic Syndrome compared to apparently healthy individuals, and the participation of the myeloperoxidase/hydrogen peroxide axis in systemic lipid peroxidation. Twenty-four patients with Metabolic Syndrome and eighteen controls underwent a full clinical assessment. Venous blood samples were collected for general biochemical dosages, as well as for the oxidative stress analyses (superoxide dismutase, catalase, and arginase activities; and lipid peroxidation, myeloperoxidase activity, nitrite, and hydrogen peroxide concentrations in plasma). Arterial stiffness was assessed by radial artery applanation tonometry. Plasma lipid peroxidation, erythrocyte superoxide dismutase activity, myeloperoxidase activity, and hydrogen peroxide concentrations were shown to be increased in Metabolic Syndrome patients, without significant differences for the other enzymes, plasma nitrite concentrations, and arterial stiffness. Linear regression analysis revealed a positive and significant correlation between lipid peroxidation and myeloperoxidase and also between this enzyme and hydrogen peroxide. In contrast, such correlation was not observed between lipid peroxidation and hydrogen peroxide. In summary, Metabolic Syndrome patients exhibited evident systemic redox imbalance compared to controls, with the possible participation of the myeloperoxidase/hydrogen peroxide axis as a contributor in lipid peroxidation.
Collapse
|
29
|
Effect of high-fat diet upon inflammatory markers and aortic stiffening in mice. BIOMED RESEARCH INTERNATIONAL 2014; 2014:914102. [PMID: 25013811 PMCID: PMC4071860 DOI: 10.1155/2014/914102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 11/21/2022]
Abstract
Changes in lifestyle such as increase in high-fat food consumption are an important cause for vascular diseases. The present study aimed to investigate the involvement of ACE and TGF-β in the aorta stiffness induced by high-fat diet. C57BL/6 male mice were divided in two groups according to their diet for 8 weeks: standard diet (ST) and high-fat diet (HF). At the end of the protocol, body weight gain, adipose tissue content, serum lipids and glucose levels, and aorta morphometric and biochemical measurements were performed. Analysis of collagen fibers by picrosirius staining of aorta slices showed that HF diet promoted increase of thin (55%) and thick (100%) collagen fibers deposition and concomitant disorganization of these fibers orientations in the aorta vascular wall (50%). To unravel the mechanism involved, myeloperoxidase (MPO) and angiotensin I converting enzyme (ACE) were evaluated by protein expression and enzyme activity. HF diet increased MPO (90%) and ACE (28%) activities, as well as protein expression of ACE. TGF-β was also increased in aorta tissue of HF diet mice after 8 weeks. Altogether, we have observed that the HF diet-induced aortic stiffening may be associated with increased oxidative stress damage and activation of the RAS in vascular tissue.
Collapse
|
30
|
The production of nitric oxide, IL-6, and TNF-alpha in palmitate-stimulated PBMNCs is enhanced through hyperglycemia in diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:479587. [PMID: 24803982 PMCID: PMC3997868 DOI: 10.1155/2014/479587] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/01/2014] [Indexed: 01/22/2023]
Abstract
We examined nitric oxide (NO), IL-6, and TNF-α secretion from cultured palmitate-stimulated PBMNCs or in the plasma from type 2 diabetes mellitus (T2MD) patients or nondiabetic (ND) controls. Free fatty acids (FFA) have been suggested to induce chronic low-grade inflammation, activate the innate immune system, and cause deleterious effects on vascular cells and other tissues through inflammatory processes. The levels of NO, IL-6, TNF-α, and MDA were higher in supernatant of palmitate stimulated blood cells (PBMNC) or from plasma from patients. The results obtained in the present study demonstrated that hyperglycemia in diabetes exacerbates in vitro inflammatory responses in PBMNCs stimulated with high levels of SFA (palmitate). These results suggest that hyperglycemia primes PBMNCs for NO, IL-6, and TNF-alpha secretion under in vitro FFA stimulation are associated with the secretion of inflammatory biomarkers in diabetes. A combined therapy targeting signaling pathways activated by hyperglycemia in conjunction with simultaneous control of hyperglycemia and hypertriglyceridemia would be suggested for controlling the progress of diabetic complications.
Collapse
|
31
|
Marcus Y, Shefer G, Stern N. Adipose tissue renin-angiotensin-aldosterone system (RAAS) and progression of insulin resistance. Mol Cell Endocrinol 2013; 378:1-14. [PMID: 22750719 DOI: 10.1016/j.mce.2012.06.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/24/2012] [Indexed: 12/31/2022]
Abstract
This review focuses on the expression of the key components of the renin-angiotensin-aldosterone axis in fat tissue. At the center of this report is the role of RAAS in normal and excessive fat mass enlargement, the leading etiology of insulin resistance. Understanding the expression and regulation of RAAS components in various fat depots allows insight not only into the processes by which these complex patterns are modified by the enlargement of adipose tissue, but also into their impact on local and systemic response to insulin.
Collapse
Affiliation(s)
- Yonit Marcus
- Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | | | | |
Collapse
|
32
|
Jung CH, Lee WJ, Hwang JY, Lee MJ, Seol SM, Kim YM, Lee YL, Park JY. The preventive effect of uncarboxylated osteocalcin against free fatty acid-induced endothelial apoptosis through the activation of phosphatidylinositol 3-kinase/Akt signaling pathway. Metabolism 2013; 62:1250-7. [PMID: 23639572 DOI: 10.1016/j.metabol.2013.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Increasing evidence suggests that osteocalcin (OC), one of the osteoblast-specific proteins, has been associated with atherosclerosis, but results are conflicting. The aim of this study was to elucidate the independent effect of uncarboxylated osteocalcin (ucOC), an active form of osteocalcin which has been suggested to have an insulin sensitizing effect, on vascular endothelial cells. MATERIALS AND METHODS We used human aortic endothelial cells and treated them with ucOC. Linoleic acid (LA) was used as a representative free fatty acid. Apoptosis was evaluated using various methods including a terminal deoxyribonucleotide transferase-mediated deoxyuridine triphosphate nick-end labeling analysis kit and Western blotting for cleaved caspase 3, cleaved poly (ADP-ribose) polymerase and Bcl-xL. The phosphorylations of Akt and endothelial nitric oxide synthase (eNOS) as well as the level of NO were measured to confirm the effect of ucOC on insulin signaling pathway. RESULTS Pretreatment of ucOC (30 ng/ml) prevented LA-induced apoptosis in insulin-stimulated endothelial cells; effects were abolished by pretreatment with the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, wortmannin. Treatment of ucOC (ranged from 0.3 to 30 ng/ml) significantly increased the phosphorylation of Akt and eNOS and nitric oxide secretion from endothelial cells in a PI3-kinase dependent manner. CONCLUSIONS Our study is the first to demonstrate the independent effect of ucOC on vascular endothelial cells. Our results further suggest that ucOC could have beneficial effects on atherosclerosis.
Collapse
Affiliation(s)
- Chang Hee Jung
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Dihydropyridine calcium channel blockers inhibit non-esterified-fatty-acid-induced endothelial and rheological dysfunction. Clin Sci (Lond) 2013; 125:247-55. [PMID: 23535137 DOI: 10.1042/cs20120311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Circulating NEFAs (non-esterified fatty acids) from adipose tissue lipolysis lead to endothelial dysfunction and insulin resistance in patients with the metabolic syndrome or Type 2 diabetes mellitus. The aim of the present study was to test the hypothesis that DHP (dihydropyridine) CCBs (calcium channel blockers) prevent NEFA-induced endothelial and haemorheological dysfunction independently of their antihypertensive properties. Using a double-blind cross-over study design, nifedipine, amlodipine, diltiazem or placebo were administered to eight healthy subjects for 2 days before each study day. On the study days, the following were assessed before and after the infusion of lipid and heparin to raise serum NEFAs: endothelial function, by measuring FBF (forearm blood flow) responses to ACh (acetylcholine); leucocyte activation, by ex vivo measurement of plasma MPO (myeloperoxidase) levels, adherent leucocyte numbers and whole blood transit time through microchannels; and oxidative stress, by determining plasma levels of d-ROMs (derivatives of reactive oxygen metabolites). Effects of the CCBs on NF-κB (nuclear factor κB) p65 phospholylation stimulated by NEFAs were assessed in cultured monocytic cells in vitro. Elevated NEFAs reduced the responses to ACh and significantly increased whole blood transit time, adherent leucocyte numbers and d-ROMs. Nifedipine and amlodipine, but not diltiazem, prevented NEFA-induced endothelial dysfunction, leucocyte activation and enhancement of oxidative stress without affecting BP (blood pressure), whereas all these drugs prevented NEFA-induced p65 activation in vitro. These results suggest that DHP CCBs, independent of their antihypertensive properties in humans, prevent NEFA-induced endothelial and haemorheological dysfunction through inhibition of NEFA-induced leucocyte activation, although the sensitivity to drugs of leucocyte Ca2+ channels may differ among cells.
Collapse
|
34
|
Santillán LD, Moyano M, Frau M, Flores O, Siewert S, Zirulnick F, Ramirez DC, Giménez MS. Reduced blood nrf-2 mRNA in local overweight boys at risk of metabolic complications: a study in San Luis City, San Luis, Argentina. Metab Syndr Relat Disord 2013; 11:359-65. [PMID: 23809001 DOI: 10.1089/met.2012.0155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Childhood overweight (OW) is a matter of public health concern because of its long-term impact on adulthood health. NF-E2-related factor 2 (Nrf-2) regulates the antioxidant/lipogenic response to a sustained positive energy balance that prevails during weight gain. Here we aimed at studying a possible link between OW and Nrf-2-dependent antioxidant/lipogenic response in a local population of boys at risk of metabolic complications. METHODS We measured clinical and biochemical parameters related to lipid metabolism, oxidative stress, and metabolic syndrome in a population of OW boys [body mass index (BMI) percentile ≥85(th) and <95(th), n=22] and normal weight boys (NW; BMI percentile<85(th), n=27) from San Luis City, San Luis, Argentina. RESULTS Compared to NW, OW boys had lower insulin sensitivity, an altered plasma lipid profile, and increased markers of oxidative stress and inflammatory fatty acids. OW boys also had a higher atherogenic index and peripheral insulin resistance than NW boys. We also found that glutathione peroxidase activity and the reduced glutathione to oxidized glutathione ratio were lower in OW boys than NW boys, suggesting that OW boys may have an altered antioxidant response to oxidative stress. Finally, Nrf-2 expression negatively correlated with metabolic syndrome parameters in OW boys. CONCLUSIONS Our data suggest that OW boys have a reduced antioxidant and lipogenic response to a positive energy balance, resulting in oxidative stress, insulin resistance, and risk of developing metabolic complications. Our data also provide a rationale for nutritional interventions aimed at restoring Nrf-2 expression to reduce the risk of metabolic complications in OW boys.
Collapse
Affiliation(s)
- Lucas D Santillán
- 1 Laboratory of Pathological & Biological Chemistry, Department of Biochemistry and Biological Sciences, National University of San Luis & IMIBIO-SL-CONICET , San Luis, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Tian D, Qiu Y, Zhan Y, Li X, Zhi X, Wang X, Yin L, Ning Y. Overexpression of steroidogenic acute regulatory protein in rat aortic endothelial cells attenuates palmitic acid-induced inflammation and reduction in nitric oxide bioavailability. Cardiovasc Diabetol 2012; 11:144. [PMID: 23170972 PMCID: PMC3537593 DOI: 10.1186/1475-2840-11-144] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 11/16/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Endothelial dysfunction is a well documented evidence for the onset of atherosclerosis and other cardiovascular diseases. Lipids disorder is among the main risk factors for endothelial dysfunction in these diseases. Steroidogenic acute regulatory protein (StAR), one of the cholesterol transporters, plays an important role in the maintenance of intracellular lipid homeostasis. However, the effect of StAR on endothelial dysfunction is not well understood. Palmitic acid (PA) has been shown to decrease eNOS activity and induce inflammation, both are the causes of endothelial dysfunction, in an endothelial cell culture model. METHODS StAR gene was introduced into primary rat aortic endothelial cells by adenovirus infection. Real-time PCR and Western blotting were performed to determine the relative genes and proteins expression level to elucidate the underlying mechanism. The free fatty acid and cholesterol quantification kits were used to detect total cellular free fatty acid and cholesterol. The levels of inflammatory factors and nitric oxide were determined by ELISA and classic Griess reagent methods respectively. RESULTS We successfully overexpressed StAR in primary rat aortic endothelial cells. Following StAR overexpression, mRNA levels of IL-1β, TNFα, IL6 and VCAM-1 and protein levels of IL-1β, , TNFα and IL-6 in culture supernatant were significantly decreased, which duing to blocke NFκB nuclear translocation and activation. Moreover, StAR overexpression attenuated the PA-induced reduction of nitric oxide bioavailability by protecting the bioactivity of pAkt/peNOS/NO pathway. Furthermore, the key genes involved in lipid metabolism were greatly reduced following StAR overexpression. In order to investigate the underlying mechanism, cerulenin and lovastatin, the inhibitor of fatty acid and cholesterol synthase, were added prior to PA treatment. The results showed that both cerulenin and lovastatin had a similar effect as StAR overexpression. On the other hand, the role of StAR was inhibited when siRNA was introduced to reduce StAR expression. CONCLUSIONS Our results showed that StAR attenuated lipid synthesis and uptake as well as PA-induced inflammation and reduction in NO bioavailability in aortic endothelial cells. StAR can ameliorate endothelial dysfunction induced by PA via reducing the intracellular lipid levels.
Collapse
Affiliation(s)
- Dai Tian
- Department of Physiology & Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Sharman JE, Holland DJ, Leano R, Kostner KM. Acute elevation of lipids does not alter exercise hemodynamics in healthy men: A randomized controlled study. Atherosclerosis 2012; 226:234-7. [PMID: 23137823 DOI: 10.1016/j.atherosclerosis.2012.10.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Exaggerated exercise blood pressure (BP) predicts mortality. Some studies suggest this could be explained by chronic hyperlipidemia, but whether acute-hyperlipidemia effects exercise BP has never been tested, and was the aim of this study. METHODS Intravenous infusion of saline (control) and Intralipid were administered over 60 min in 15 healthy men by double-blind, randomized, cross-over design. Brachial and central BP (including, pulse pressure, augmentation pressure and augmentation index), cardiac output and systemic vascular resistance were recorded at rest and during exercise. RESULTS Compared with control, Intralipid caused significant increases in serum triglycerides, very low density lipoproteins and free fatty acids (p < 0.001 for all). However, there was no significant difference for any exercise hemodynamic variable (p > 0.05 for all). CONCLUSION Acute-hyperlipidemia does not significantly change exercise hemodynamics in healthy males. Therefore, the association between raised lipids and increased exercise BP is likely due to the chronic effects of hyperlipidemia.
Collapse
Affiliation(s)
- James E Sharman
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia.
| | | | | | | |
Collapse
|
37
|
Contreras GA, Kirkwood RN, Sordillo LM. Mononuclear leukocyte fatty acid composition and inflammatory phenotype in periparturient and lactating sows. J Anim Sci 2012; 91:174-87. [PMID: 23100601 DOI: 10.2527/jas.2012-5442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Increased plasma NEFA concentrations and compromised immune responses are associated with increased disease susceptibility during farrowing and lactation. Increased plasma NEFA concentrations cause changes in the fatty acid (FA) content of plasma lipid fractions and peripheral blood mononuclear cells (PBMC) that could modify inflammatory responses. The goals of this study were to describe changes in plasma lipid composition and to characterize the FA content and proinflammatory phenotype of PBMC in periparturient and lactating sows. Blood samples from 10 sows were collected at 2 wk prefarrow, at 2 d after farrowing (hereafter referred to as farrowing), and at 18 d of lactation (hereafter referred to as lactation). Total lipids and lipid fractions were extracted from plasma and PBMC. Isolated PBMC also were assessed for gene expression of proinflammatory cytokines and enzymes involved in lipid mediator biosynthesis using quantitative PCR. The FA profile of plasma NEFA, phospholipids, neutral lipids, and PBMC phospholipids differed from the composition of total lipids in plasma. At farrowing and lactation, the proportion of palmitic and stearic acids increased (P<0.05) in the plasma NEFA and phospholipid fractions in comparison with prefarrowing concentrations. At the same time, the concentration of palmitic and linoleic acids increased (P<0.05) in the PBMC phospholipid fraction. Omega-3 FA, including docosapentaenoic and docosahexaenoic, increased (P<0.05) at farrowing in plasma and PBMC phospholipids compared with prefarrowing and lactation. Gene expression of IL-1β, IL-6, IL-8, and tumor necrosis factor-α (TNFα) decreased (P<0.05) after farrowing and in lactation. Similarly, cyclooxygenase expression was reduced during lactation when compared with farrowing (P<0.05). This study demonstrated changes in FA composition of serum lipid fractions and PBMC cellular membranes. Furthermore, it provided an initial assessment of inflammatory responses in mononuclear cells as a function of plasma and PBMC content of saturated and omega-3 FA. Future studies need to address the effect of increased NEFA concentrations, the main hallmark of lipid mobilization, and changes in plasma and cellular lipid profiles on immune function.
Collapse
Affiliation(s)
- G A Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
38
|
Abstract
Obesity is a significant health problem worldwide and is associated with a number of co-morbidities including type 2 diabetes mellitus, hypertension, dyslipidemia, obstructive sleep apnea, and cardiovascular disease. A number of different pathophysiologic mechanisms including increased inflammation, oxidative stress, and insulin resistance have been associated with initiation and progression of atherosclerotic disease in obese individuals. Lifestyle modifications have provided modest results in weight reduction and the focus of interest has now shifted towards drug development to treat severely obese individuals with a body mass index (BMI) >30 kg/m(2) or those with a BMI >27 kg/m(2) who have additional co-morbidities. Different regimens focusing on dietary absorption or acting centrally to control hunger and food intake have been developed. However, their weight loss effect is, in most cases, modest and this effect is lost once the medication is discontinued. In addition, long-term use of these drugs is limited by significant side effects and lack of long-term safety and efficacy data. Orlistat is the only US FDA-approved medication for long-term use. A number of new medications are currently under investigation in phase III trials with promising preliminary results. This review comments on available anti-obesity pharmacologic regimens, their weight-loss benefit, and their impact on cardiovascular risk factors.
Collapse
|
39
|
Ishida K, Matsumoto T, Taguchi K, Kamata K, Kobayashi T. Pravastatin normalizes endothelium-derived contracting factor-mediated response via suppression of Rho-kinase signalling in mesenteric artery from aged type 2 diabetic rat. Acta Physiol (Oxf) 2012; 205:255-65. [PMID: 22212448 DOI: 10.1111/j.1748-1716.2011.02403.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/02/2011] [Accepted: 12/15/2011] [Indexed: 12/14/2022]
Abstract
AIM Although pravastatin has known pleiotropic effects against adverse cardiovascular conditions, little is known about its effects on endothelium-derived contracting factor (EDCF)-mediated signalling. We aimed to determine the effects of pravastatin on the production of and responses to EDCF in superior mesenteric arteries isolated from rats at the chronic stage of type 2 diabetes. METHODS Contractions to acetylcholine (ACh) were examined in superior mesenteric artery rings from aged type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats (56-60 weeks old), from control age-matched non-diabetic Long-Evans Tokushima Otsuka (LETO) rats and from pravastatin-treated (10 mg kg(-1) , p.o., daily for 4 weeks) OLETF rats. Mesenteric artery expressions of cyclo-oxygenases (COXs), microsomal-PGE synthases (mPGESs), RhoA and Rho-kinase proteins, and also the level of phosphorylated ezrin, radixin and moesin (PERM), a substrate for Rho-kinase, were detected by Western blotting. RESULTS Arteries from OLETF rats exhibited (vs. LETO rats) (1) enhanced ACh-induced EDCF-mediated contractions, which were inhibited by the Rho-kinase inhibitor Y27632, (2) reductions in the ACh-stimulated release of both PGE(2) and superoxide and (3) increased COX-1 and PERM protein expressions. Mesenteric arteries from OLETF rats treated with pravastatin exhibited (vs. untreated OLETF) (1) reduced ACh-induced contraction, (2) suppressed ACh-induced PGE(2) production and superoxide generation and (3) reduced ACh-induced PERM protein expression. CONCLUSIONS These results suggest that pravastatin exerts beneficial effects against abnormal EDCF signalling by suppressing Rho-kinase and promoting antioxidant activity in the mesenteric arteries of rats at the chronic stage of type 2 diabetes.
Collapse
Affiliation(s)
- K. Ishida
- Department of Physiology and Morphology; Institute of Medicinal Chemistry; Hoshi University; Tokyo; Japan
| | - T. Matsumoto
- Department of Physiology and Morphology; Institute of Medicinal Chemistry; Hoshi University; Tokyo; Japan
| | - K. Taguchi
- Department of Physiology and Morphology; Institute of Medicinal Chemistry; Hoshi University; Tokyo; Japan
| | - K. Kamata
- Department of Physiology and Morphology; Institute of Medicinal Chemistry; Hoshi University; Tokyo; Japan
| | - T. Kobayashi
- Department of Physiology and Morphology; Institute of Medicinal Chemistry; Hoshi University; Tokyo; Japan
| |
Collapse
|
40
|
High-intensity exercise attenuates postprandial lipaemia and markers of oxidative stress. Clin Sci (Lond) 2012; 123:313-21. [DOI: 10.1042/cs20110600] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Regular exercise can reduce the risk of CVD (cardiovascular disease). Although moderate-intensity exercise can attenuate postprandial TAG (triacylglycerol), high-intensity intermittent exercise might be a more effective method to improve health. We compared the effects of high-intensity intermittent exercise and 30 min of brisk walking on postprandial TAG, soluble adhesion molecules and markers of oxidative stress. Nine men each completed three 2-day trials. On day 1, subjects rested (control), walked briskly for 30 min (walking) or performed 5×30 s maximal sprints (high-intensity). On day 2, subjects consumed a high-fat meal for breakfast and 3 h later for lunch. Blood samples were taken at various times and analysed for TAG, glucose, insulin, ICAM-1 (intracellular adhesion molecule-1), VCAM-1 (vascular adhesion molecule-1), TBARS (thiobarbituric acid- reactive substances), protein carbonyls and β-hydroxybutyrate. On day 2 of the high-intensity trial, there was a lower (P<0.05) incremental TAG AUC (area under the curve; 6.42±2.24 mmol/l per 7 h) compared with the control trial (9.68±4.77 mmol/l per 7 h) with no differences during day 2 of the walking trial (8.98±2.84 mmol/l per 7 h). A trend (P=0.056) for a reduced total TAG AUC was also seen during the high-intensity trial (14.13±2.83 mmol/l per 7 h) compared with control (17.18±3.92 mmol/l per 7 h), walking showed no difference (16.33±3.51 mmol/l per 7 h). On day 2 of the high-intensity trial plasma TBARS and protein carbonyls were also reduced (P<0.05) when compared with the control and walking trials. In conclusion, high-intensity intermittent exercise attenuates postprandial TAG and markers of oxidative stress after the consumption of a high-fat meal.
Collapse
|
41
|
Wang Y. Small lipid-binding proteins in regulating endothelial and vascular functions: focusing on adipocyte fatty acid binding protein and lipocalin-2. Br J Pharmacol 2012; 165:603-21. [PMID: 21658023 PMCID: PMC3315034 DOI: 10.1111/j.1476-5381.2011.01528.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 05/26/2011] [Accepted: 05/31/2011] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Dysregulated production of adipokines from adipose tissue plays a critical role in the development of obesity-associated cardiovascular abnormalities. A group of adipokines, including adipocyte fatty acid binding protein (A-FABP) and lipocalin-2, possess specific lipid-binding activity and are up-regulated in obese human subjects and animal models. They act as lipid chaperones to promote lipotoxicity in endothelial cells and cause endothelial dysfunction under obese conditions. However, different small lipid-binding proteins modulate the development of vascular complications in distinctive manners, which are partly attributed to their specialized structural features and functionalities. By focusing on A-FABP and lipocalin-2, this review summarizes recent advances demonstrating the causative roles of these newly identified adipose tissue-derived lipid chaperones in obesity-related endothelial dysfunction and cardiovascular complications. The specific lipid-signalling mechanisms mediated by these two proteins are highlighted to support their specialized functions. In summary, A-FABP and lipocalin-2 represent potential therapeutic targets to design drugs for preventing vascular diseases associated with obesity. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong.
| |
Collapse
|
42
|
Trellakis S, Rydleuskaya A, Fischer C, Canbay A, Tagay S, Scherag A, Bruderek K, Schuler PJ, Brandau S. Low adiponectin, high levels of apoptosis and increased peripheral blood neutrophil activity in healthy obese subjects. Obes Facts 2012; 5:305-18. [PMID: 22722748 DOI: 10.1159/000339452] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 11/15/2011] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Growing evidence supports a link between obesity and inflammation. Current research is focused on the role of adipokines such as adiponectin and immune cells, especially macrophages, in adipose tissue. Our aim was to examine the role of inflammation not in tissue but in the peripheral blood of healthy overweight and obese subjects. We especially investigated the role of neutrophils and their possible regulation by adiponectin. METHODS In healthy normal-weight, overweight, and obese human subjects (n = 32) the peripheral blood concentrations of adipokines, satiety hormones, apoptosis markers, and cytokines as well as the blood count were related to inflammation and neutrophils, at 3 independent days of examination. The response of neutrophils to stimulation by adiponectin was also investigated in vitro. RESULTS In obese and by tendency already in overweight subjects, inflammation was increased showing a higher neutrophil-to-lymphocyte ratio, elevated high-sensitivity C-reactive protein, increased chemokines (CXCL8, CCL3, CCL5), increased apoptosis markers (M30 and M65), and changes in hormone levels in the peripheral blood. LPS- and fMLP-induced production of CXCL8 by neutrophils was elevated in overweight and obese subjects. High plasma levels of adiponectin were associated with reduced CXCL8 production in peripheral blood neutrophils. In vitro, production of CXCL8 by neutrophils was inhibited by adiponectin. CONCLUSION Reduced adiponectin and enhanced apoptosis may occur already in the peripheral blood of healthy overweight subjects. This process seems to further enhance neutrophil activity in overweight and obese.
Collapse
Affiliation(s)
- Sokratis Trellakis
- Department of Otorhinolaryngology, Biometry and Epidemiology, University Hospital Essen, Essen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhang H, Dellsperger KC, Zhang C. The link between metabolic abnormalities and endothelial dysfunction in type 2 diabetes: an update. Basic Res Cardiol 2011; 107:237. [PMID: 22189563 DOI: 10.1007/s00395-011-0237-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 11/30/2011] [Accepted: 12/05/2011] [Indexed: 01/06/2023]
Abstract
Despite abundant clinical evidence linking metabolic abnormalities to diabetic vasculopathy, the molecular basis of individual susceptibility to diabetic vascular complications is still largely undetermined. Endothelial dysfunction in diabetes-associated vascular complications is considered an early stage of vasculopathy and has attracted considerable research interests. Type 2 diabetes is characterized by metabolic abnormalities, such as hyperglycemia, excess liberation of free fatty acids (FFA), insulin resistance and hyperinsulinemia. These abnormalities exert pathological impact on endothelial function by attenuating endothelium-mediated vasomotor function, enhancing endothelial apoptosis, stimulating endothelium activation/endothelium-monocyte adhesion, promoting an atherogenic response and suppressing barrier function. There are multiple signaling pathways contributing to the adverse effects of glucotoxicity on endothelial function. Insulin maintains the normal balance for release of several factors with vasoactive properties. Abnormal insulin signaling in the endothelium does not affect the whole-body glucose metabolism, but impairs endothelial response to insulin and accelerates atherosclerosis. Excessive level of FFA is implicated in the pathogenesis of insulin resistance. FFA induces endothelial oxidative stress, apoptosis and inflammatory response, and inhibits insulin signaling. Although hyperglycemia, insulin resistance, hyperinsulinemia and dyslipidemia independently contribute to endothelial dysfunction via various distinct mechanisms, the mutual interactions may synergistically accelerate their adverse effects. Oxidative stress and inflammation are predicted to be among the first alterations which may trigger other downstream mediators in diabetes associated with endothelial dysfunction. These mechanisms may provide insights into potential therapeutic targets that can delay or reverse diabetic vasculopathy.
Collapse
Affiliation(s)
- Hanrui Zhang
- Departments of Internal Medicine, Medical Pharmacology & Physiology and Nutritional Sciences, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
44
|
Kiec-Wilk B, Czech U, Janczarska K, Knapp A, Goralska J, Cialowicz U, Malecki MT, Dembinska-Kiec A. Connexin 43 and metabolic effect of fatty acids in stressed endothelial cells. GENES AND NUTRITION 2011; 7:257-63. [PMID: 21948354 PMCID: PMC3316752 DOI: 10.1007/s12263-011-0247-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/05/2011] [Indexed: 01/11/2023]
Abstract
Changes in the inner mitochondrial membrane potential (∆ψ) may lead either to apoptosis or to protective autophagy. Connexin 43 (Cx43), a gap junction protein, is suggested to affect mitochondrial membrane permeability. The aim of our study was to analyze Cx43 gene expression, Cx43 protein localization and mitochondrial function in the human endothelial cells stressed by dietary-free fatty acids (FFA) and TNFα. Human endothelial cells (HUVECs) were incubated with (10–30 uM) palmitic (PA), oleic (OA), eicosapentaenoic (EPA) or arachidonic (AA) acids for 24 h. TNFα (5 ng/ml) was added at the last 4 h of incubation. The Cx43 gene expression was analyzed by the quantitative real-time PCR. The Cx43 protein concentrations in whole cells and in the isolated mitochondria were measured. Changes in ∆ψ and Cx43 localization were analyzed by flow cytometry or fluorescence microscopy. Generated ATP was measured by a luminescence assay. TNFα, PA and OA significantly decreased ∆ψ, while AA (P = 0.047) and EPA (P = 0.004) increased ∆ψ value. Preincubation with EPA or AA partially prevented the TNFα-induced decrease of ∆ψ. Incubation with AA resulted in up-regulation of the Cx43 gene expression. AA or PA significantly increased Cx43 protein content; however, presence of TNFα in general aggravated the negative effect of FFA. Only EPA was found to increase ATP generation in HUVECs. The fatty acid-specific induction of changes in Cx43 expression and protein concentration as well as the normalization of ∆ψ and increase of ATP generation seem to be the separate, independent mechanisms of FFA-mediated modulatory effect in the human endothelial cells pathology.
Collapse
Affiliation(s)
- Beata Kiec-Wilk
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland,
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Booz GW. Cannabidiol as an emergent therapeutic strategy for lessening the impact of inflammation on oxidative stress. Free Radic Biol Med 2011; 51:1054-61. [PMID: 21238581 PMCID: PMC3085542 DOI: 10.1016/j.freeradbiomed.2011.01.007] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 12/24/2022]
Abstract
Oxidative stress with reactive oxygen species generation is a key weapon in the arsenal of the immune system for fighting invading pathogens and initiating tissue repair. If excessive or unresolved, however, immune-related oxidative stress can initiate further increasing levels of oxidative stress that cause organ damage and dysfunction. Targeting oxidative stress in various diseases therapeutically has proven more problematic than first anticipated given the complexities and perversity of both the underlying disease and the immune response. However, growing evidence suggests that the endocannabinoid system, which includes the CB₁ and CB₂ G-protein-coupled receptors and their endogenous lipid ligands, may be an area that is ripe for therapeutic exploitation. In this context, the related nonpsychotropic cannabinoid cannabidiol, which may interact with the endocannabinoid system but has actions that are distinct, offers promise as a prototype for anti-inflammatory drug development. This review discusses recent studies suggesting that cannabidiol may have utility in treating a number of human diseases and disorders now known to involve activation of the immune system and associated oxidative stress, as a contributor to their etiology and progression. These include rheumatoid arthritis, types 1 and 2 diabetes, atherosclerosis, Alzheimer disease, hypertension, the metabolic syndrome, ischemia-reperfusion injury, depression, and neuropathic pain.
Collapse
Affiliation(s)
- George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, and Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
46
|
Jung CH, Lee WJ, Hwang JY, Seol SM, Kim YM, Lee YL, Park JY. Vaspin protects vascular endothelial cells against free fatty acid-induced apoptosis through a phosphatidylinositol 3-kinase/Akt pathway. Biochem Biophys Res Commun 2011; 413:264-9. [PMID: 21893030 DOI: 10.1016/j.bbrc.2011.08.083] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 08/17/2011] [Indexed: 10/17/2022]
Abstract
Vaspin, an adipocytokine recently identified in a rat model of type 2 diabetes, has been suggested to have an insulin-sensitizing effect. However, the exact mechanism underlying this action has not been fully elucidated. Furthermore, the specific function of vaspin is largely unknown, especially in vascular cells. We examined whether vaspin affects the insulin-signaling pathway in cultured endothelial cells and is capable of preventing free fatty acid (FFA)-induced apoptosis in endothelial cells through its insulin sensitizing effect, specifically, through its stimulatory effect on PI3-kinase/Akt signaling pathways. Vaspin significantly increased Akt phosphorylation and prevented the impairment of Akt phosphorylation by linoleic acid (LA) in insulin-stimulated endothelial cells, which effects were abolished by pretreatment with the PI3-kinase inhibitor, Wortmannin. Moreover, pretreatment with vaspin prevented LA-induced apoptosis in insulin-stimulated endothelial cells; this anti-apoptotic effect of vaspin was also eliminated by pretreatment with Wortmannin. The present study indicates that vaspin protects vascular endothelial cells from FFA-induced apoptosis through upregulation of the PI3-kinase/Akt signaling pathway. Our study is the first to demonstrate that vascular cells can be targets of vaspin. Our results further suggest that vaspin could have beneficial effects on the atherosclerosis.
Collapse
Affiliation(s)
- Chang Hee Jung
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
47
|
Masi LN, Portioli-Sanches EP, Lima-Salgado TM, Curi R. Toxicity of fatty acids on ECV-304 endothelial cells. Toxicol In Vitro 2011; 25:2140-6. [PMID: 21723937 DOI: 10.1016/j.tiv.2011.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/13/2011] [Accepted: 06/16/2011] [Indexed: 01/26/2023]
Abstract
The effects of stearic (saturated) or oleic (monounsaturated) acids and their combination with ω-3 and ω-6 polyunsaturated fatty acids (PUFA) on death of endothelial cells (ECV-304 cell line) were investigated. We examined: loss of plasma membrane integrity, DNA fragmentation, accumulation of neutral lipids (NL) and release of reactive oxygen species (ROS). The fatty acids studied were: stearic (SA), oleic (OA), docosahexaenoic (DHA), eicosapentaenoic (EPA), linoleic (LA) and gamma-linolenic (γA) acids. SA at 150 μM induced cell death, did not lead to accumulation of NL and raised the release of ROS. ω-3 PUFA decreased ROS production, increased NL content but did not protect against ECV-304 cell death induced by SA. ω-6 PUFA inhibited SA-induced cell death, increased NL content and decreased ROS production. OA caused cell death but did not increase NL content and ROS production even at 300 μM. ω-3 and ω-6 FA associated with OA further increased cell death with no change in ROS production and NL content. Concluding, ω-6 PUFA had a greater protective effect than ω-3 PUFA on the deleterious effects caused by SA whereas OA had low cytotoxicity but, when associated with PUFA, presented marked toxic effects on ECV-304 endothelial cells.
Collapse
Affiliation(s)
- Laureane Nunes Masi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, 05508-900 São Paulo, Brazil.
| | | | | | | |
Collapse
|
48
|
Bibliography. Current world literature. Adrenal cortex. Curr Opin Endocrinol Diabetes Obes 2011; 18:231-3. [PMID: 21522003 DOI: 10.1097/med.0b013e3283457c7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Montecucco F, Bertolotto M, Vuilleumier N, Franciosi U, Puddu A, Minetti S, Delrio A, Quercioli A, Bergamini E, Ottonello L, Pende A, Lenglet S, Pelli G, Mach F, Dallegri F, Viviani GL. Acipimox reduces circulating levels of insulin and associated neutrophilic inflammation in metabolic syndrome. Am J Physiol Endocrinol Metab 2011; 300:E681-E690. [PMID: 21266669 DOI: 10.1152/ajpendo.00527.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Metabolic syndrome is a proatherosclerotic condition clustering cardiovascular risk factors, including glucose and lipid profile alterations. The pathophysiological mechanisms favoring atherosclerotic inflammation in the metabolic syndrome remain elusive. Here, we investigated the potential role of the antilipolytic drug acipimox on neutrophil- and monocyte-mediated inflammation in the metabolic syndrome. Acipimox (500 mg) was orally administered to metabolic syndrome patients (n = 11) or healthy controls (n = 8). Serum and plasma was collected before acipimox administration (time 0) as well as 2-5 h afterward to assess metabolic and hematologic parameters. In vitro, the effects of the incubation with metabolic syndrome serum were assessed on human neutrophil and monocyte migration toward the proatherosclerotic chemokine CCL3. Two to five hours after acipimox administration, a significant reduction in circulating levels of insulin and nonesterified fatty acid (NEFA) was shown in metabolic syndrome patients. At time 0 and 2 h after acipimox administration, metabolic syndrome serum increased neutrophil migration to CCL3 compared with healthy controls. No effect was shown in human monocytes. At these time points, serum-induced neutrophil migration positively correlated with serum levels of insulin and NEFA. Metabolic syndrome serum or recombinant insulin did not upregulate CCR5 expression on neutrophil surface membrane, but it increased intracellular JNK1/2 phosphorylation. Insulin immunodepletion blocked serum-induced neutrophil migration and associated JNK1/2 phosphorylation. Although mRNA expression of acipimox receptor (GPR109) was shown in human neutrophils, 5-500 μM acipimox did not affect insulin-induced neutrophil migration. In conclusion, results suggest that acipimox inhibited neutrophil proatherosclerotic functions in the metabolic syndrome through the reduction in circulating levels of insulin.
Collapse
Affiliation(s)
- Fabrizio Montecucco
- Div. of Cardiology, Faculty of Medicine, Foundation for Medical Researches, Geneva University Hospital, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ueda S, Yasu T, Urata H. Response to Role of Renin-Angiotensin System Blockades in Reciprocal Relationship Between Insulin Resistance and Endothelial Dysfunction. Hypertension 2010. [DOI: 10.1161/hypertensionaha.110.161976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Shinichiro Ueda
- Department of Clinical Pharmacology and Therapeutics, University of the Ryukyus School of Medicine, Okinawa, Japan
| | - Takanori Yasu
- Department of Clinical Pharmacology and Therapeutics, University of the Ryukyus School of Medicine, Okinawa, Japan
| | - Hidenori Urata
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| |
Collapse
|