1
|
Roessler J, Zimmermann F, Heidecker B, Landmesser U, Haghikia A. Gut microbiota-related modulation of immune mechanisms in post-infarction remodelling and heart failure. ESC Heart Fail 2025; 12:942-954. [PMID: 39385474 PMCID: PMC11911630 DOI: 10.1002/ehf2.14991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 10/12/2024] Open
Abstract
The immune system has long been recognized as a key driver in the progression of heart failure (HF). However, clinical trials targeting immune effectors have consistently failed to improve patient outcome across different HF aetiologies. The activation of the immune system in HF is complex, involving a broad network of pro-inflammatory and immune-modulating components, which complicates the identification of specific immune pathways suitable for therapeutic targeting. Increasing attention has been devoted to identifying gut microbial pathways that affect cardiac remodelling and metabolism and, thereby impacting the development of HF. In particular, gut microbiota-derived metabolites, absorbed by the host and transported to the peripheral circulation, can act as signalling molecules, influencing metabolism and immune homeostasis. Recent reports suggest that the gut microbiota plays a crucial role in modulating immune processes involved in HF. Here, we summarize recent advances in understanding the contributory role of gut microbiota in (auto-)immune pathways that critically determine the progression or alleviation of HF. We also thoroughly discuss potential gut microbiota-based intervention strategies to treat or decelerate HF progression.
Collapse
Affiliation(s)
- Johann Roessler
- University Hospital St Josef‐Hospital Bochum, Cardiology and RhythmologyRuhr University BochumBochumGermany
- Department of Cardiology, Angiology and Intensive CareDeutsches Herzzentrum der Charité (DHZC), Campus Benjamin FranklinBerlinGermany
- DZHK (German Centre for Cardiovascular Research), Partner site BerlinBerlinGermany
| | - Friederike Zimmermann
- Department of Cardiology, Angiology and Intensive CareDeutsches Herzzentrum der Charité (DHZC), Campus Benjamin FranklinBerlinGermany
- DZHK (German Centre for Cardiovascular Research), Partner site BerlinBerlinGermany
| | - Bettina Heidecker
- Department of Cardiology, Angiology and Intensive CareDeutsches Herzzentrum der Charité (DHZC), Campus Benjamin FranklinBerlinGermany
- DZHK (German Centre for Cardiovascular Research), Partner site BerlinBerlinGermany
- Berlin Institute of Health at Charité – Universitätsmedizin BerlinBerlinGermany
| | - Ulf Landmesser
- Department of Cardiology, Angiology and Intensive CareDeutsches Herzzentrum der Charité (DHZC), Campus Benjamin FranklinBerlinGermany
- DZHK (German Centre for Cardiovascular Research), Partner site BerlinBerlinGermany
- Berlin Institute of Health at Charité – Universitätsmedizin BerlinBerlinGermany
- Friede Springe‐Cardiovascular Prevention Center at Charité, Charité‐Universitätsmedizin, Berlin Institute of Health (BIH)BerlinGermany
| | - Arash Haghikia
- University Hospital St Josef‐Hospital Bochum, Cardiology and RhythmologyRuhr University BochumBochumGermany
- Department of Cardiology, Angiology and Intensive CareDeutsches Herzzentrum der Charité (DHZC), Campus Benjamin FranklinBerlinGermany
- DZHK (German Centre for Cardiovascular Research), Partner site BerlinBerlinGermany
- Berlin Institute of Health at Charité – Universitätsmedizin BerlinBerlinGermany
- Friede Springe‐Cardiovascular Prevention Center at Charité, Charité‐Universitätsmedizin, Berlin Institute of Health (BIH)BerlinGermany
| |
Collapse
|
2
|
Li R, Guo L, Liang B, Sun W, Hai F. Review of mechanisms and frontier applications in IL-17A-induced hypertension. Open Med (Wars) 2025; 20:20251159. [PMID: 40028265 PMCID: PMC11868716 DOI: 10.1515/med-2025-1159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/27/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
Background The immune system is closely related to hypertension. Hypertension is an immune disorder to a certain extent, and inflammation is the basis of abnormally elevated blood pressure (BP). The accumulation of T cells and their cytokines can increase BP and end organ damage. T cells are activated by antigen-presenting cells of the innate immune system or by the influence of a high-sodium diet, the self-environment, or the gut microbiota. These cells produce inflammatory factors and cytokines, such as interleukin-17A (IL-17A) in T helper 17 cells, causing vascular inflammation, hypertension, and target organ damage. Methods In this article, we provide an insightful review of the research progress regarding the role of IL-17A in the pathogenesis of hypertension and its effects on different organs while emphasizing the role of IL-17A and its mediated functions in the kidneys, brain, intestines, and vascular system in the development and progression of hypertension. Results At the organ level, IL-17A is involved in the development and progression of hypertension in the kidneys, brain, intestines, and blood vessels, interacting with multiple signal pathway. Conclusions These findings have significant implications for developing future immunomodulatory therapies, which may lead to the development of potential treatments for hypertension.
Collapse
Affiliation(s)
- Ruiyuan Li
- Graduate School of Jinzhou Medical University,
Jinzhou, Liaoning, China
- Department of Cardiology, Dalian Third People’s Hospital of Jinzhou Medical University, Dalian, 116033, Liaoning, China
| | - Lipeng Guo
- Department of Cardiology, Dalian Third People’s Hospital of Jinzhou Medical University, No. 40 Qianshan Road, Dalian, 116033, Liaoning, China
| | - Bin Liang
- Department of Cardiology, Dalian Third People’s Hospital of Jinzhou Medical University, Dalian, 116033, Liaoning, China
| | - Wei Sun
- Department of Cardiology, Dalian Third People’s Hospital of Jinzhou Medical University, Dalian, 116033, Liaoning, China
| | - Feng Hai
- Department of Critical Care Medicine, Dalian Third People’s Hospital of Jinzhou Medical University, Liaoning, China
| |
Collapse
|
3
|
Wang S, Jiang Q, Liu Y, Zhang X, Huang Y, Zhang H. The Role of Immune Cells in Moyamoya Disease. Brain Sci 2025; 15:137. [PMID: 40002470 PMCID: PMC11852451 DOI: 10.3390/brainsci15020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Moyamoya disease (MMD) is a rare progressive cerebrovascular disorder characterized by the stenosis or occlusion of the terminal segments of the internal carotid arteries, leading to the development of abnormal collateral vascular networks. These networks are a compensatory mechanism for reduced blood flow to the brain. Despite extensive research, the exact etiology of MMD remains unknown, although recent studies suggest that immune system dysfunction plays a critical role in its pathogenesis. In particular, the involvement of immune cells such as T cells, macrophages, and dendritic cells has been increasingly recognized. These immune cells contribute to the inflammatory process and vascular remodeling observed in MMD patients, further complicating the disease's progression. Inflammation and immune-mediated damage to the vessel walls may accelerate the narrowing and occlusion of arteries, exacerbating ischemic events in the brain. Additionally, studies have revealed that certain genetic and environmental factors can influence immune system activation in MMD, linking these pathways to disease development. This review aims to provide a comprehensive overview of the immune mechanisms at play in MMD, focusing on how immune cells participate in vascular injury and remodeling. Understanding these immunological processes may offer new therapeutic targets to halt or reverse disease progression, potentially leading to more effective treatment strategies for MMD.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; (S.W.); (Q.J.); (Y.L.); (X.Z.); (Y.H.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Jiang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; (S.W.); (Q.J.); (Y.L.); (X.Z.); (Y.H.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuan Liu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; (S.W.); (Q.J.); (Y.L.); (X.Z.); (Y.H.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xincheng Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; (S.W.); (Q.J.); (Y.L.); (X.Z.); (Y.H.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yimin Huang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; (S.W.); (Q.J.); (Y.L.); (X.Z.); (Y.H.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; (S.W.); (Q.J.); (Y.L.); (X.Z.); (Y.H.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Mahmoud AUM, Caillon A, Shokoples B, Ferreira NS, Comeau K, Hatano S, Yoshikai Y, Lewis JM, Tigelaar RE, Paradis P, Schiffrin EL. Vγ6/Vδ1 + γδ T cells protect from angiotensin II effects on blood pressure and endothelial function in mice. J Hypertens 2025; 43:109-119. [PMID: 39248136 DOI: 10.1097/hjh.0000000000003871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVES γδ T cells mediate angiotensin II (AngII)-induced hypertension and vascular injury. γδ T cells expressing specific T-cell receptor (TCR) variable (V) γ chains develop in several waves in the thymus and migrate to specific or diverse tissues. We hypothesized that γδ T cells expressing specific Vγ subtypes in perivascular tissue mediate AngII hypertensive effects. METHODS C57BL/6J male mice were infused or not with AngII (490 ng/kg/min, subcutaneously) for 14 days. γδ T-cell Vγ subtypes were profiled by flow cytometry in the spleen, descending thoracic aorta with adherent perivascular adipose tissue (DTAo/PVAT) and mesenteric vessels (MV)/PVAT. Other sets of AngII-infused mice were injected with control or specific anti-Vγ6 or Vγ4 antibodies. Blood pressure (BP) was determined by telemetry, and mesenteric artery function and remodeling by pressurized myography. RESULTS Vγ6/Vδ1 + γδ T cells represented more than 50% of the γδ T-cell Vγ subtypes in DTAo/PVAT and MV/PVAT, whereas Vγ1/2 + , Vγ4 + and Vγ6/Vδ1 + γδ T cells were the most abundant Vγ subtypes in the spleen. The frequency of Vγ6/Vδ1 + γδ T cells was increased at least 1.5-fold in the spleen and DTAo/PVAT, and tended to increase in MV/PVAT by AngII. A majority of Vγ6/Vδ1 + γδ T cells were activated in perivascular tissues. Vγ6/Vδ1 + γδ T-cell neutralization caused a steeper BP elevation and greater mesenteric artery endothelial dysfunction in mice infused with AngII. This was associated with more than three-fold increase in activated Vγ6/Vδ1 - γδ T cells in perivascular tissues. Depletion of Vγ4 + γδ T cells did not alter AngII detrimental effects. CONCLUSION Vγ6/Vδ1 + γδ T cells reduce the BP elevation and endothelial dysfunction induced by AngII infusion.
Collapse
Affiliation(s)
- Ahmad U M Mahmoud
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
| | - Antoine Caillon
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
| | - Brandon Shokoples
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
| | - Nathanne S Ferreira
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
| | - Kevin Comeau
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
| | - Shinya Hatano
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Julia M Lewis
- Department of Dermatology, Yale University, New Haven, Connecticut, USA
| | - Robert E Tigelaar
- Department of Dermatology, Yale University, New Haven, Connecticut, USA
| | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec, Canada
| |
Collapse
|
5
|
Nagata D, Hishida E. Elucidating the complex interplay between chronic kidney disease and hypertension. Hypertens Res 2024; 47:3409-3422. [PMID: 39415028 DOI: 10.1038/s41440-024-01937-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/18/2024]
Abstract
Chronic kidney disease (CKD) and hypertension share a complex relationship, each exacerbating the progression of the other. CKD contributes to hypertension by decreasing renal function, leading to fluid retention and increased plasma volume, whereas hypertension exacerbates CKD by increasing glomerular pressure and causing renal damage. This review examines the intertwined nature of CKD and hypertension, exploring the factors driving hypertension in CKD and how hypertension accelerates CKD progression. It discusses the role of the renin-angiotensin system and inflammatory cytokines in this relationship, as well as the potential of blood pressure management to slow renal decline. While studies suggest that meticulous blood pressure control can help attenuate CKD progression, optimal management strategies remain unclear and require further investigation. This review also evaluates the evidence surrounding strict antihypertensive therapy in patients with CKD, considering both diabetic and non-diabetic cases. It recommends blood pressure targets based on CKD stage and presence of diabetes, emphasizing the importance of individualized treatment approaches. Renin-angiotensin system inhibitors are highlighted as a key pharmacological intervention due to their renal protective effects, particularly in patients with CKD with proteinuria. However, evidence regarding their efficacy in patients with CKD but without proteinuria is inconclusive. This review underscores the need for comprehensive approaches to effectively address the intertwined nature of CKD and hypertension and calls for further research to optimize clinical management strategies in this complex interplay.
Collapse
Affiliation(s)
- Daisuke Nagata
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Departments of Internal Medicine, Division of Nephrology, Tochigi, Japan.
| | - Erika Hishida
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Departments of Internal Medicine, Division of Nephrology, Tochigi, Japan.
| |
Collapse
|
6
|
R Muralitharan R, Marques FZ, O'Donnell JA. Recent advancements in targeting the immune system to treat hypertension. Eur J Pharmacol 2024; 983:177008. [PMID: 39304109 DOI: 10.1016/j.ejphar.2024.177008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Hypertension is the key leading risk factor for death globally, affecting ∼1.3 billion adults, particularly in low- and middle-income countries. Most people living with hypertension have uncontrolled high blood pressure, increasing their likelihood of cardiovascular events. Significant issues preventing blood pressure control include lack of diagnosis, treatment, and response to existing therapy. For example, monotherapy and combination therapy are often unable to lower blood pressure to target levels. New therapies are urgently required to tackle this issue, particularly those that target the mechanisms behind hypertension instead of treating its symptoms. Acting via an increase in systemic and tissue-specific inflammation, the immune system is a critical contributor to blood pressure regulation and is considered an early mechanism leading to hypertension development. Here, we review the immune system's role in hypertension, evaluate clinical trials that target inflammation, and discuss knowledge gaps in pre-clinical and clinical data. We examine the effects of anti-inflammatory drugs colchicine and methotrexate on hypertension and evaluate the blockade of pro-inflammatory cytokines IL-1β and TNF-α on blood pressure in clinical trials. Lastly, we highlight how we can move forward to target specific components of the immune system to lower blood pressure. This includes targeting isolevuglandins, which accumulate in dendritic cells to promote T cell activation and cytokine production in salt-induced hypertension. We discuss the potential of the dietary fibre-derived metabolites short-chain fatty acids, which have anti-inflammatory and blood pressure-lowering effects via the gut microbiome. This would limit adverse events, leading to improved medication adherence and better blood pressure control.
Collapse
Affiliation(s)
- Rikeish R Muralitharan
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Victorian Heart Institute, Monash University, Clayton, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Victorian Heart Institute, Monash University, Clayton, Australia
| | - Joanne A O'Donnell
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
7
|
Huang L. The role of IL-17 family cytokines in cardiac fibrosis. Front Cardiovasc Med 2024; 11:1470362. [PMID: 39502194 PMCID: PMC11534612 DOI: 10.3389/fcvm.2024.1470362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/29/2024] [Indexed: 11/08/2024] Open
Abstract
Myocardial fibrosis is a common pathological feature in various cardiovascular diseases including myocardial infarction, heart failure, and myocarditis. Generally, persistent myocardial fibrosis correlates with poor prognosis and ranks among the leading causes of death globally. Currently, there is no effective treatment for myocardial fibrosis, partly due to its unclear pathogenic mechanism. Increasing studies have shown IL-17 family cytokines are strongly associated with the initiation and propagation of myocardial fibrosis. This review summarizes the expression, action, and signal transduction mechanisms of IL-17, focusing on its role in fibrosis associated with cardiovascular diseases such as myocardial infarction, heart failure, hypertension, diabetes, and myocarditis. It also discusses its potential as a therapeutic target, offering new insights for the clinical treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Liqing Huang
- Three Gorges University Hospital of Traditional Chinese Medicine & Yichang Hospital of Traditional Chinese Medicine, Yichang, China
| |
Collapse
|
8
|
Nguyen BA, Alexander MR, Harrison DG. Immune mechanisms in the pathophysiology of hypertension. Nat Rev Nephrol 2024; 20:530-540. [PMID: 38658669 DOI: 10.1038/s41581-024-00838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Hypertension is a leading risk factor for morbidity and mortality worldwide. Despite current anti-hypertensive therapies, most individuals with hypertension fail to achieve adequate blood pressure control. Moreover, even with adequate control, a residual risk of cardiovascular events and associated organ damage remains. These findings suggest that current treatment modalities are not addressing a key element of the underlying pathology. Emerging evidence implicates immune cells as key mediators in the development and progression of hypertension. In this Review, we discuss our current understanding of the diverse roles of innate and adaptive immune cells in hypertension, highlighting key findings from human and rodent studies. We explore mechanisms by which these immune cells promote hypertensive pathophysiology, shedding light on their multifaceted involvement. In addition, we highlight advances in our understanding of autoimmunity, HIV and immune checkpoints that provide valuable insight into mechanisms of chronic and dysregulated inflammation in hypertension.
Collapse
Affiliation(s)
- Bianca A Nguyen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Matthew R Alexander
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA
| | - David G Harrison
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
9
|
Dinakis E, O'Donnell JA, Marques FZ. The gut-immune axis during hypertension and cardiovascular diseases. Acta Physiol (Oxf) 2024; 240:e14193. [PMID: 38899764 DOI: 10.1111/apha.14193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/04/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
The gut-immune axis is a relatively novel phenomenon that provides mechanistic links between the gut microbiome and the immune system. A growing body of evidence supports it is key in how the gut microbiome contributes to several diseases, including hypertension and cardiovascular diseases (CVDs). Evidence over the past decade supports a causal link of the gut microbiome in hypertension and its complications, including myocardial infarction, atherosclerosis, heart failure, and stroke. Perturbations in gut homeostasis such as dysbiosis (i.e., alterations in gut microbial composition) may trigger immune responses that lead to chronic low-grade inflammation and, ultimately, the development and progression of these conditions. This is unsurprising, as the gut harbors one of the largest numbers of immune cells in the body, yet is a phenomenon not entirely understood in the context of cardiometabolic disorders. In this review, we discuss the role of the gut microbiome, the immune system, and inflammation in the context of hypertension and CVD, and consolidate current evidence of this complex interplay, whilst highlighting gaps in the literature. We focus on diet as one of the major modulators of the gut microbiota, and explain key microbial-derived metabolites (e.g., short-chain fatty acids, trimethylamine N-oxide) as potential mediators of the communication between the gut and peripheral organs such as the heart, arteries, kidneys, and the brain via the immune system. Finally, we explore the dual role of both the gut microbiome and the immune system, and how they work together to not only contribute, but also mitigate hypertension and CVD.
Collapse
Affiliation(s)
- Evany Dinakis
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Joanne A O'Donnell
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Lu S, Jolly AJ, Dubner AM, Strand KA, Mutryn MF, Hinthorn T, Noble T, Nemenoff RA, Moulton KS, Majesky MW, Weiser-Evans MC. KLF4 in smooth muscle cell-derived progenitor cells is essential for angiotensin II-induced cardiac inflammation and fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597485. [PMID: 38895472 PMCID: PMC11185732 DOI: 10.1101/2024.06.04.597485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Cardiac fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) material resulting in cardiac tissue scarring and dysfunction. While it is commonly accepted that myofibroblasts are the major contributors to ECM deposition in cardiac fibrosis, their origin remains debated. By combining lineage tracing and RNA sequencing, our group made the paradigm-shifting discovery that a subpopulation of resident vascular stem cells residing within the aortic, carotid artery, and femoral aartery adventitia (termed AdvSca1-SM cells) originate from mature vascular smooth muscle cells (SMCs) through an in situ reprogramming process. SMC-to-AdvSca1-SM reprogramming and AdvSca1-SM cell maintenance is dependent on induction and activity of the transcription factor, KLF4. However, the molecular mechanism whereby KLF4 regulates AdvSca1-SM phenotype remains unclear. In the current study, leveraging a highly specific AdvSca1-SM cell reporter system, single-cell RNA-sequencing (scRNA-seq), and spatial transcriptomic approaches, we demonstrate the profibrotic differentiation trajectory of coronary artery-associated AdvSca1-SM cells in the setting of Angiotensin II (AngII)-induced cardiac fibrosis. Differentiation was characterized by loss of stemness-related genes, including Klf4 , but gain of expression of a profibrotic phenotype. Importantly, these changes were recapitulated in human cardiac hypertrophic tissue, supporting the translational significance of profibrotic transition of AdvSca1-SM-like cells in human cardiomyopathy. Surprisingly and paradoxically, AdvSca1-SM-specific genetic knockout of Klf4 prior to AngII treatment protected against cardiac inflammation and fibrosis, indicating that Klf4 is essential for the profibrotic response of AdvSca1-SM cells. Overall, our data reveal the contribution of AdvSca1-SM cells to myofibroblasts in the setting of AngII-induced cardiac fibrosis. KLF4 not only maintains the stemness of AdvSca1-SM cells, but also orchestrates their response to profibrotic stimuli, and may serve as a therapeutic target in cardiac fibrosis.
Collapse
|
11
|
Schiffrin EL. Regarding Immune Mechanisms Driving Hypertension in REGARDS. Hypertension 2024; 81:1254-1256. [PMID: 38748768 DOI: 10.1161/hypertensionaha.124.22973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Affiliation(s)
- Ernesto L Schiffrin
- Lady Davis Institute for Medical Research and Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, QC, Canada
| |
Collapse
|
12
|
Jiang K, Jia Y, Chen L, Huang F, Chen M. Association of Interleukin-17 Inhibitors With Hypertension in Patients With Autoimmune Diseases: A Systematic Review and Meta-analysis on Randomized Controlled Trials. J Cardiovasc Pharmacol 2024; 83:557-564. [PMID: 38417026 DOI: 10.1097/fjc.0000000000001547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/21/2024] [Indexed: 03/01/2024]
Abstract
Abstract:
The influence of interleukin (IL)-17 inhibition on blood pressure in patients with autoimmune diseases remains inconclusive. Our objective is to examine the risk of hypertension in patients with autoimmune diseases undergoing IL-17 inhibition therapies through meta-analysis of randomized, placebo-controlled trials. We obtained integrated data from PubMed, Embase, and ClinicalTrials.gov. Incident hypertension rates were calculated, and hazard ratios with 95% confidence intervals were analyzed, along with
statistics to assess heterogeneity. Sequential analysis ensured conclusion reliability. In 30 randomized controlled trials involving 9909 patients with diverse autoimmune diseases treated with anti-IL-17 agents, our meta-analysis revealed a significant increase in hypertension risk (risk ratio 1.69, 95% confidence interval 1.24–2.31, P = 0.001), robustly supported by trial sequential analysis. Among the 4 agents (secukinumab, ixekizumab, bimekizumab, and brodalumab), only secukinumab exhibited a notable association with hypertension. Patients with various primary autoimmune diseases, particularly those with psoriatic arthritis, had a higher likelihood of developing hypertension; in rheumatic arthritis patient cohorts, anti-IL-17 agents did not elevate hypertension risk. Prolonged treatment duration correlated with an increased hypertension risk. Stratifying by sex, studies with a female predominance demonstrated a higher risk ratio for hypertension compared with male-predominant studies. This highlights that anti-IL-17 treatment escalates hypertension risk, emphasizing the need for extra caution when managing patients with autoimmune diseases (Registered by PROSPERO, CRD42016053112).
Collapse
Affiliation(s)
- Kexin Jiang
- Department of Cardiology
- Laboratory of Heart Valve Disease; and
| | - Yuheng Jia
- Department of Cardiology
- Laboratory of Heart Valve Disease; and
| | - Li Chen
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fangyang Huang
- Department of Cardiology
- Laboratory of Heart Valve Disease; and
| | - Mao Chen
- Department of Cardiology
- Laboratory of Heart Valve Disease; and
| |
Collapse
|
13
|
Guzik TJ, Nosalski R, Maffia P, Drummond GR. Immune and inflammatory mechanisms in hypertension. Nat Rev Cardiol 2024; 21:396-416. [PMID: 38172242 DOI: 10.1038/s41569-023-00964-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Hypertension is a global health problem, with >1.3 billion individuals with high blood pressure worldwide. In this Review, we present an inflammatory paradigm for hypertension, emphasizing the crucial roles of immune cells, cytokines and chemokines in disease initiation and progression. T cells, monocytes, macrophages, dendritic cells, B cells and natural killer cells are all implicated in hypertension. Neoantigens, the NLRP3 inflammasome and increased sympathetic outflow, as well as cytokines (including IL-6, IL-7, IL-15, IL-18 and IL-21) and a high-salt environment, can contribute to immune activation in hypertension. The activated immune cells migrate to target organs such as arteries (especially the perivascular fat and adventitia), kidneys, the heart and the brain, where they release effector cytokines that elevate blood pressure and cause vascular remodelling, renal damage, cardiac hypertrophy, cognitive impairment and dementia. IL-17 secreted by CD4+ T helper 17 cells and γδ T cells, and interferon-γ and tumour necrosis factor secreted by immunosenescent CD8+ T cells, exert crucial effector roles in hypertension, whereas IL-10 and regulatory T cells are protective. Effector mediators impair nitric oxide bioavailability, leading to endothelial dysfunction and increased vascular contractility. Inflammatory effector mediators also alter renal sodium and water balance and promote renal fibrosis. These mechanisms link hypertension with obesity, autoimmunity, periodontitis and COVID-19. A comprehensive understanding of the immune and inflammatory mechanisms of hypertension is crucial for safely and effectively translating the findings to clinical practice.
Collapse
Affiliation(s)
- Tomasz J Guzik
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK.
- Department of Medicine and Omicron Medical Genomics Laboratory, Jagiellonian University, Collegium Medicum, Kraków, Poland.
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance ARUA & The Guild, Glasgow, UK.
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Pasquale Maffia
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance ARUA & The Guild, Glasgow, UK
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Grant R Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Hao XM, Liu Y, Hailaiti D, Gong Y, Zhang XD, Yue BN, Liu JP, Wu XL, Yang KZ, Wang J, Liu QG. Mechanisms of inflammation modulation by different immune cells in hypertensive nephropathy. Front Immunol 2024; 15:1333170. [PMID: 38545112 PMCID: PMC10965702 DOI: 10.3389/fimmu.2024.1333170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/15/2024] [Indexed: 04/10/2024] Open
Abstract
Hypertensive nephropathy (HTN) is the second leading cause of end-stage renal disease (ESRD) and a chronic inflammatory disease. Persistent hypertension leads to lesions of intrarenal arterioles and arterioles, luminal stenosis, secondary ischemic renal parenchymal damage, and glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Studying the pathogenesis of hypertensive nephropathy is a prerequisite for diagnosis and treatment. The main cause of HTN is poor long-term blood pressure control, but kidney damage is often accompanied by the occurrence of immune inflammation. Some studies have found that the activation of innate immunity, inflammation and acquired immunity is closely related to the pathogenesis of HTN, which can cause damage and dysfunction of target organs. There are more articles on the mechanism of diabetic nephropathy, while there are fewer studies related to immunity in hypertensive nephropathy. This article reviews the mechanisms by which several different immune cells and inflammatory cytokines regulate blood pressure and renal damage in HTN. It mainly focuses on immune cells, cytokines, and chemokines and inhibitors. However, further comprehensive and large-scale studies are needed to determine the role of these markers and provide effective protocols for clinical intervention and treatment.
Collapse
Affiliation(s)
- Xiao-Min Hao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | | | - Yu Gong
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Dong Zhang
- Department of Chinese Medicine, Beijing Jishuitan Hospital, Beijing, China
| | - Bing-Nan Yue
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ji-Peng Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Li Wu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ke-Zhen Yang
- Department of Rehabilitation Medicine, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Guo Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
15
|
Demirci M, Hinton A, Kirabo A. Dendritic cell epithelial sodium channel induced inflammation and salt-sensitive hypertension. Curr Opin Nephrol Hypertens 2024; 33:145-153. [PMID: 38180118 PMCID: PMC10842661 DOI: 10.1097/mnh.0000000000000963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
PURPOSE OF REVIEW Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular disease. Epithelial sodium channel (ENaC) plays a critical role in renal electrolyte and volume regulation and has been implicated in the pathogenesis of SSBP. This review describes recent advances regarding the role of ENaC-dependent inflammation in the development of SSBP. RECENT FINDINGS We recently found that sodium enters dendritic cells via ENaC, a process regulated by serum/glucocorticoid-regulated kinase 1 and epoxyeicosatrienoic acid 14,15. Sodium entry activates NADPH oxidase, leading to the production of isolevuglandins (IsoLGs). IsoLGs adduct self-proteins to form neoantigens in dendritic cells that activate T cells and result in the release of cytokines promoting sodium retention, kidney damage, and endothelial dysfunction in SSBP. Additionally, we described a novel mechanistic pathway involving ENaC and IsoLG-dependent NLRP3 inflammasome activation. These findings hold promise for the development of novel diagnostic biomarkers and therapeutic options for SSBP. SUMMARY The exact mechanisms underlying SSBP remain elusive. Recent advances in understanding the extrarenal role of ENaC have opened a new perspective, and further research efforts should focus on understanding the link between ENaC, inflammation, and SSBP.
Collapse
Affiliation(s)
- Mert Demirci
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Immunology and Inflammation
- Vanderbilt Institute for Global Health, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Benson LN, Mu S. Interferon gamma in the pathogenesis of hypertension - recent insights. Curr Opin Nephrol Hypertens 2024; 33:154-160. [PMID: 38164939 PMCID: PMC10842676 DOI: 10.1097/mnh.0000000000000966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW The mounting body of evidence underscores the pivotal role of interferon gamma (IFNγ) in the pathogenesis of hypertension, prompting exploration of the mechanisms by which this cytokine fosters a pro-inflammatory immune milieu, subsequently exacerbating hypertension. In this review, we delve into recent preclinical and clinical studies from the past two years to elucidate how IFNγ participates in the progression of hypertension. RECENT FINDINGS IFNγ promotes renal CD8 + T cell accumulation by upregulating tubular PDL1 and MHC-I, intensifying cell-to-cell interaction. Intriguingly, a nucleotide polymorphism in LNK, predisposing towards hypertension, correlates with augmented T cell IFNγ production. Additionally, anti-IFNγ treatment exhibits protective effects against T cell-mediated inflammation during angiotensin II infusion or transverse aortic constriction. Moreover, knockout of the mineralocorticoid receptor in T cells protects against cardiac dysfunction induced by myocardial infarction, correlating with reduced IFNγ and IL-6, decreased macrophage recruitment, and attenuated fibrosis. Interestingly, increased IFNγ production correlates with elevated blood pressure, impacting individuals with type 2 diabetes, nondiabetics, and obese hypertensive patients. SUMMARY These revelations spotlight IFNγ as the critical mediator bridging the initial phase of blood pressure elevation with the sustained and exacerbated pathology. Consequently, blocking IFNγ signaling emerges as a promising therapeutic target to improve the management of this 'silent killer.'
Collapse
Affiliation(s)
- Lance N. Benson
- Heersink School of Medicine: Department of CardioRenal Physiology and Medicine, Division of Nephrology University of Alabama at Birmingham, Birmingham, Alabama
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
17
|
Tang R, Lin W, Shen C, Hu X, Yu L, Meng T, Zhang L, Eggenhuizen PJ, Ooi JD, Jin P, Ding X, Xiao X, Zhong Y. Single-cell transcriptomics uncover hub genes and cell-cell crosstalk in patients with hypertensive nephropathy. Int Immunopharmacol 2023; 125:111104. [PMID: 37897949 DOI: 10.1016/j.intimp.2023.111104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Hypertensive nephropathy (HTN) is one of the leading causes of end-stage renal disease, yet the molecular mechanisms are still unknown. To explore novel mechanisms and gene targets for HTN, the gene expression profiles of renal biopsy samples obtained from 2 healthy living donor controls and 5 HTN patients were determined by single-cell RNA sequencing. Key hub genes expression were validated by the Nephroseq v5 platform. The HTN endothelium upregulated cellular adhesion genes (ICAM2 and CEACAM1), inflammatory genes (ETS2 and IFI6) and apoptosis related genes (CNN3). Proximal tubules in HTN highly expressed hub genes including BBOX1, TPM1, TMSB10, SDC4, and NUP58, which might be potential novel targets for proximal tubular injury. The upregulated genes in tubules of HTN were mainly participating in inflammatory signatures including IFN-γ signature, NF-κB signaling, IL-12 signaling and Wnt signaling pathway. Receptor-ligand interaction analysis indicated potential cell-cell crosstalk between endothelial cells or mesangial cells with other renal resident cells in HTN. Together, our data identify a distinct cell-specific gene expression profile, pathogenic inflammatory signaling and potential cell-cell communications between endothelial cells or mesangial cells with other renal resident cells in HTN. These findings may provide a promising novel landscape for mechanisms and treatment of human HTN.
Collapse
Affiliation(s)
- Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Lin
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chanjuan Shen
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| | - Xueling Hu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Leilin Yu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Nephrology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
| | - Ting Meng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Linlin Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peter J Eggenhuizen
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Joshua D Ooi
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Peng Jin
- Department of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Ding
- Department of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yong Zhong
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
18
|
Barhoumi T, Todryk S. Role of monocytes/macrophages in renin-angiotensin system-induced hypertension and end organ damage. Front Physiol 2023; 14:1199934. [PMID: 37854465 PMCID: PMC10579565 DOI: 10.3389/fphys.2023.1199934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
The renin-angiotensin system (RAS) is a central modulator of cardiovascular physiology. Pathophysiology of hypertension is commonly accompanied by hyper-activation of RAS. Angiotensin II receptor blockers (ARBs) and Angiotensin-converting enzyme (ACE) inhibitors are the gold standard treatment for hypertension. Recently, several studies highlighted the crucial role of immune system in hypertension. Angiotensin-II-induced hypertension is associated with low grade inflammation characterized by innate and adaptive immune system dysfunction. Throughout the progression of hypertension, monocyte/macrophage cells appear to have a crucial role in vascular inflammation and interaction with the arterial wall. Since myelomonocytic cells potentially play a key role in angiotensin-II-induced hypertension and organ damage, pharmacological targeting of RAS components in monocyte/macrophages may possibly present an innovative strategy for treatment of hypertension and related pathology.
Collapse
Affiliation(s)
- Tlili Barhoumi
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Stephen Todryk
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
19
|
Mukohda M, Yano T, Matsui T, Nakamura S, Miyamae J, Toyama K, Mitsui R, Mizuno R, Ozaki H. Treatment with Ligilactobacillus murinus lowers blood pressure and intestinal permeability in spontaneously hypertensive rats. Sci Rep 2023; 13:15197. [PMID: 37709803 PMCID: PMC10502128 DOI: 10.1038/s41598-023-42377-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023] Open
Abstract
One feature of hypertension is a microbial imbalance with increased intestinal permeability. In this study, we examined whether an alteration in the microbiota affects blood pressure and intestinal permeability in spontaneously hypertensive rats (SHRs). We performed a 16S metagenome analysis of feces from 10- to 15-week-old SHRs using a synthetic long-read sequencing approach, and found a candidate for the microbiome treatment, Ligilactobacillus murinus (L. murinus), that was robustly decreased. Oral administration of L. murinus to SHRs for 2 weeks significantly inhibited blood pressure elevation and improved endothelium-dependent vasodilation but did not attenuate enhanced vascular contraction in SHR mesenteric arteries. The proximal colon of SHRs exhibited increased intestinal permeability with decreased levels of the tight junction protein claudin 4, morphological changes such as decreased intestinal crypts and elevated TNF-α levels, which was reversed by treatment with L. murinus. Consistent with these intestinal phenotypes, plasma lipopolysaccharides levels were elevated in SHR but decreased following L. murinus administration. We concluded that oral administration of L. murinus to SHRs exerts protective effects on intestinal permeability via restoration of claudin 4 expression and reversal of morphologic disorder, which may improve low-grade endotoxemia and thus reduce development of hypertension via recovery of endothelial vasodilating functions.
Collapse
Affiliation(s)
- Masashi Mukohda
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, 7948555, Japan.
| | - Takanori Yano
- Laboratory of Applied Microbiology, Faculty of Life Science, Okayama University of Science, Okayama, 7000005, Japan
| | - Toshiyasu Matsui
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Medicine, Okayama University of Science, Okayama, Ehime, 7948555, Japan
| | - Sho Nakamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 4648601, Japan
| | - Jiro Miyamae
- Laboratory of Immunology, Faculty of Veterinary Medicine, Okayama University of Science, Okayama, Ehime, 7948555, Japan
| | - Kensuke Toyama
- Department of Pharmacology, Ehime University Graduate School of Medicine, Toon, Ehime, 7910295, Japan
| | - Ryoji Mitsui
- Laboratory of Applied Microbiology, Faculty of Life Science, Okayama University of Science, Okayama, 7000005, Japan
| | - Risuke Mizuno
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, 7948555, Japan
| | - Hiroshi Ozaki
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, 7948555, Japan
| |
Collapse
|
20
|
Ribeiro Vitorino T, Ferraz do Prado A, Bruno de Assis Cau S, Rizzi E. MMP-2 and its implications on cardiac function and structure: Interplay with inflammation in hypertension. Biochem Pharmacol 2023; 215:115684. [PMID: 37459959 DOI: 10.1016/j.bcp.2023.115684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Hypertension is one of the leading risk factors for the development of heart failure. Despite being a multifactorial disease, in recent years, preclinical and clinical studies suggest strong evidence of the pivotal role of inflammatory cells and cytokines in the remodeling process and cardiac dysfunction. During the heart remodeling, activation of extracellular matrix metalloproteinases (MMPs) occurs, with MMP-2 being one of the main proteases secreted by cardiomyocytes, fibroblasts, endothelial and inflammatory cells in cardiac tissue. In this review, we will address the process of cardiac remodeling and injury induced by the increase in MMP-2 and the main signaling pathways involving cytokines and inflammatory cells in the process of transcriptional, secretion and activation of MMP-2. In addition, an interaction and coordinated action between MMP-2 and inflammation are explored and significant in maintaining the cardiac cycle. These observations suggest that new therapeutic opportunities targeting MMP-2 could be used to reduce inflammatory biomarkers and reduce cardiac damage in hypertension.
Collapse
Affiliation(s)
- Thaís Ribeiro Vitorino
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Brazil; Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, UNICAMP, Brazil
| | - Alejandro Ferraz do Prado
- Cardiovascular System Pharmacology and Toxicology, Institute of Biological Sciences, Federal University of Para, UFPA, Brazil
| | - Stefany Bruno de Assis Cau
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, UFMG, Brazil.
| | - Elen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Brazil.
| |
Collapse
|
21
|
A new face among our Associate Editors. Hypertens Res 2023; 46:1207-1209. [PMID: 36890268 DOI: 10.1038/s41440-023-01247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
|
22
|
Zhang Z, Zhao L, Zhou X, Meng X, Zhou X. Role of inflammation, immunity, and oxidative stress in hypertension: New insights and potential therapeutic targets. Front Immunol 2023; 13:1098725. [PMID: 36703963 PMCID: PMC9871625 DOI: 10.3389/fimmu.2022.1098725] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Hypertension is regarded as the most prominent risk factor for cardiovascular diseases, which have become a primary cause of death, and recent research has demonstrated that chronic inflammation is involved in the pathogenesis of hypertension. Both innate and adaptive immunity are now known to promote the elevation of blood pressure by triggering vascular inflammation and microvascular remodeling. For example, as an important part of innate immune system, classically activated macrophages (M1), neutrophils, and dendritic cells contribute to hypertension by secreting inflammatory cy3tokines. In particular, interferon-gamma (IFN-γ) and interleukin-17 (IL-17) produced by activated T lymphocytes contribute to hypertension by inducing oxidative stress injury and endothelial dysfunction. However, the regulatory T cells and alternatively activated macrophages (M2) may have a protective role in hypertension. Although inflammation is related to hypertension, the exact mechanisms are complex and unclear. The present review aims to reveal the roles of inflammation, immunity, and oxidative stress in the initiation and evolution of hypertension. We envisage that the review will strengthen public understanding of the pathophysiological mechanisms of hypertension and may provide new insights and potential therapeutic strategies for hypertension.
Collapse
Affiliation(s)
| | | | | | - Xu Meng
- *Correspondence: Xianliang Zhou, ; Xu Meng,
| | | |
Collapse
|
23
|
Angiotensin II-induced a steeper blood pressure elevation in IL-23 receptor-deficient mice: Role of interferon-γ-producing T cells. Hypertens Res 2023; 46:40-49. [PMID: 36241706 DOI: 10.1038/s41440-022-01055-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 02/03/2023]
Abstract
A subset of interleukin (IL)-17A-producing γδ T cells called γδT17 cells may contribute to progression of hypertension. γδT17 cell development is in part dependent upon IL-23 receptor (IL-23R) stimulation. We hypothesized that angiotensin (Ang) II-induced blood pressure (BP) elevation and vascular injury would be blunted in Il23r knock-in (Il23rgfp/gfp) mice deficient in functional IL-23R. To test this hypothesis, we infused wild-type (WT) and Il23rgfp/gfp mice with Ang II (490 ng/kg/min, SC) for 7 or 14 days. We recorded BP by telemetry, assessed vascular function and remodeling using pressurized myography, and profiled T cell populations and cytokine production by flow cytometry. An additional set of Il23rgfp/gfp mice was infused with Ang II for 7 days and injected with interferon (IFN)-γ-neutralizing or control antibodies. Il23rgfp/gfp mice had smaller and stiffer mesenteric arteries and were not protected against Ang II-induced BP elevation. BP was higher in Il23rgfp/gfp mice than WT mice from day 3 until day 9 of Ang II infusion. Il23rgfp/gfp mice had less γδT17 cells and more IFN-γ-producing γδ, CD4+, and CD8+ T cells than WT mice. Seven days of Ang II infusion led to increased IFN-γ-producing γδ, CD4+, and CD8+ T cells in Il23rgfp/gfp mice, whereas only IFN-γ-producing γδ T cells were increased in WT mice. Blocking IFN-γ with a neutralizing antibody reduced the pressor response to 7 days of Ang II infusion in Il23rgfp/gfp mice. Functional IL-23R deficiency was associated with increased IFN-γ-producing T cells and exaggerated initial development of Ang II-induced hypertension, which was in part mediated by IFN-γ.
Collapse
|
24
|
Abstract
Hypertension affects a significant proportion of the adult and aging population and represents an important risk factor for vascular cognitive impairment and late-life dementia. Chronic high blood pressure continuously challenges the structural and functional integrity of the cerebral vasculature, leading to microvascular rarefaction and dysfunction, and neurovascular uncoupling that typically impairs cerebral blood supply. Hypertension disrupts blood-brain barrier integrity, promotes neuroinflammation, and may contribute to amyloid deposition and Alzheimer pathology. The mechanisms underlying these harmful effects are still a focus of investigation, but studies in animal models have provided significant molecular and cellular mechanistic insights. Remaining questions relate to whether adequate treatment of hypertension may prevent deterioration of cognitive function, the threshold for blood pressure treatment, and the most effective antihypertensive drugs. Recent advances in neurovascular biology, advanced brain imaging, and detection of subtle behavioral phenotypes have begun to provide insights into these critical issues. Importantly, a parallel analysis of these parameters in animal models and humans is feasible, making it possible to foster translational advancements. In this review, we provide a critical evaluation of the evidence available in experimental models and humans to examine the progress made and identify remaining gaps in knowledge.
Collapse
Affiliation(s)
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Daniela Carnevale
- Department of Molecular Medicine, “Sapienza” University of Rome, Italy
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
25
|
Benson LN, Liu Y, Deck K, Mora C, Mu S. IFN- γ Contributes to the Immune Mechanisms of Hypertension. KIDNEY360 2022; 3:2164-2173. [PMID: 36591357 PMCID: PMC9802558 DOI: 10.34067/kid.0001292022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/19/2022] [Indexed: 12/31/2022]
Abstract
Hypertension is the leading cause of cardiovascular disease and the primary risk factor for mortality worldwide. For more than half a century, researchers have demonstrated that immunity plays an important role in the development of hypertension; however, the precise mechanisms are still under investigation. The current body of knowledge indicates that proinflammatory cytokines may play an important role in contributing to immune-related pathogenesis of hypertension. Interferon gamma (IFN-γ), in particular, as an important cytokine that modulates immune responses, has been recently identified as a critical regulator of blood pressure by several groups, including us. In this review, we focus on exploring the role of IFN-γ in contributing to the pathogenesis of hypertension, outlining the various immune producers of this cytokine and described signaling mechanisms involved. We demonstrate a key role for IFN-γ in hypertension through global knockout studies and related downstream signaling pathways that IFN-γ production from CD8+ T cell (CD8T) in the kidney promoting CD8T-stimulated salt retention via renal tubule cells, thereby exacerbating hypertension. We discuss potential activators of these T cells described by the current literature and relay a novel hypothesis for activation.
Collapse
Affiliation(s)
- Lance N. Benson
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Yunmeng Liu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Katherine Deck
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Christoph Mora
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
26
|
Alexander MR, Hank S, Dale BL, Himmel L, Zhong X, Smart CD, Fehrenbach DJ, Chen Y, Prabakaran N, Tirado B, Centrella M, Ao M, Du L, Shyr Y, Levy D, Madhur MS. A Single Nucleotide Polymorphism in SH2B3/LNK Promotes Hypertension Development and Renal Damage. Circ Res 2022; 131:731-747. [PMID: 36169218 PMCID: PMC9588739 DOI: 10.1161/circresaha.121.320625] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/15/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND SH2B3 (SH2B adaptor protein 3) is an adaptor protein that negatively regulates cytokine signaling and cell proliferation. A common missense single nucleotide polymorphism in SH2B3 (rs3184504) results in substitution of tryptophan (Trp) for arginine (Arg) at amino acid 262 and is a top association signal for hypertension in human genome-wide association studies. Whether this variant is causal for hypertension, and if so, the mechanism by which it impacts pathogenesis is unknown. METHODS We used CRISPR-Cas9 technology to create mice homozygous for the major (Arg/Arg) and minor (Trp/Trp) alleles of this SH2B3 polymorphism. Mice underwent angiotensin II (Ang II) infusion to evaluate differences in blood pressure (BP) elevation and end-organ damage including albuminuria and renal fibrosis. Cytokine production and Stat4 phosphorylation was also assessed in Arg/Arg and Trp/Trp T cells. RESULTS Trp/Trp mice exhibit 10 mmHg higher systolic BP during chronic Ang II infusion compared to Arg/Arg controls. Renal injury and perivascular fibrosis are exacerbated in Trp/Trp mice compared to Arg/Arg controls following Ang II infusion. Renal and ex vivo stimulated splenic CD8+ T cells from Ang II-infused Trp/Trp mice produce significantly more interferon gamma (IFNg) compared to Arg/Arg controls. Interleukin-12 (IL-12)-induced IFNg production is greater in Trp/Trp compared to Arg/Arg CD8+ T cells. In addition, IL-12 enhances Stat4 phosphorylation to a greater degree in Trp/Trp compared to Arg/Arg CD8+ T cells, suggesting that Trp-encoding SH2B3 exhibits less negative regulation of IL-12 signaling to promote IFNg production. Finally, we demonstrated that a multi-SNP model genetically predicting increased SH2B3 expression in lymphocytes is inversely associated with hypertension and hypertensive chronic kidney disease in humans.. CONCLUSIONS Taken together, these results suggest that the Trp encoding allele of rs3184504 is causal for BP elevation and renal dysfunction, in part through loss of SH2B3-mediated repression of T cell IL-12 signaling leading to enhanced IFNg production.
Collapse
Affiliation(s)
- Matthew R. Alexander
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
- Department of Medicine, Division of Cardiovascular Medicine, VUMC, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Samuel Hank
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Bethany L. Dale
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Lauren Himmel
- Department of Pathology, Microbiology and Immunology, VUMC, Nashville, TN, USA
| | - Xue Zhong
- Department of Medicine, Division of Genetic Medicine, VUMC, Nashville, TN, USA
| | - Charles D. Smart
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Daniel J. Fehrenbach
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Yuhan Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | | | | | - Megan Centrella
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Mingfang Ao
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Liping Du
- Department of Biostatistics, VUMC, Nashville, TN
| | - Yu Shyr
- Department of Biostatistics, VUMC, Nashville, TN
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA and Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Meena S. Madhur
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
- Department of Medicine, Division of Cardiovascular Medicine, VUMC, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
27
|
Maaliki D, Itani MM, Itani HA. Pathophysiology and genetics of salt-sensitive hypertension. Front Physiol 2022; 13:1001434. [PMID: 36176775 PMCID: PMC9513236 DOI: 10.3389/fphys.2022.1001434] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Most hypertensive cases are primary and heavily associated with modifiable risk factors like salt intake. Evidence suggests that even small reductions in salt consumption reduce blood pressure in all age groups. In that regard, the ACC/AHA described a distinct set of individuals who exhibit salt-sensitivity, regardless of their hypertensive status. Data has shown that salt-sensitivity is an independent risk factor for cardiovascular events and mortality. However, despite extensive research, the pathogenesis of salt-sensitive hypertension is still unclear and tremendously challenged by its multifactorial etiology, complicated genetic influences, and the unavailability of a diagnostic tool. So far, the important roles of the renin-angiotensin-aldosterone system, sympathetic nervous system, and immune system in the pathogenesis of salt-sensitive hypertension have been studied. In the first part of this review, we focus on how the systems mentioned above are aberrantly regulated in salt-sensitive hypertension. We follow this with an emphasis on genetic variants in those systems that are associated with and/or increase predisposition to salt-sensitivity in humans.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maha M. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hana A. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
28
|
Avery EG, Bartolomaeus H, Rauch A, Chen CY, N'Diaye G, Löber U, Bartolomaeus TUP, Fritsche-Guenther R, Rodrigues AF, Yarritu A, Zhong C, Fei L, Tsvetkov D, Todiras M, Park JK, Markó L, Maifeld A, Patzak A, Bader M, Kempa S, Kirwan JA, Forslund SK, Müller DN, Wilck N. Quantifying the impact of gut microbiota on inflammation and hypertensive organ damage. Cardiovasc Res 2022:6651675. [PMID: 35904261 DOI: 10.1093/cvr/cvac121] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022] Open
Abstract
AIMS Hypertension (HTN) can lead to heart and kidney damage. The gut microbiota has been linked to HTN, although it is difficult to estimate its significance due to the variety of other features known to influence HTN. In the present study, we used germ-free (GF) and colonized (COL) littermate mice to quantify the impact of microbial colonization on organ damage in HTN. METHODS AND RESULTS Four-week-old male GF C57BL/6J littermates were randomized to remain GF or receive microbial colonization. HTN was induced by subcutaneous infusion with angiotensin (Ang) II (1.44 mg/kg/d) and 1% NaCl in the drinking water; sham-treated mice served as control. Renal damage was exacerbated in GF mice, whereas cardiac damage was more comparable between COL and GF, suggesting that the kidney is more sensitive to microbial influence. Multivariate analysis revealed a larger effect of HTN in GF mice. Serum metabolomics demonstrated that the colonization status influences circulating metabolites relevant to HTN. Importantly, GF mice were deficient in anti-inflammatory fecal short-chain fatty acids (SCFA). Flow cytometry showed that the microbiome has an impact on the induction of anti-hypertensive myeloid-derived suppressor cells and pro-inflammatory Th17 cells in HTN. In vitro inducibility of Th17 cells was significantly higher for cells isolated from GF than conventionally raised mice. CONCLUSIONS Microbial colonization status of mice had potent effects on their phenotypic response to a hypertensive stimulus, and the kidney is a highly microbiota-susceptible target organ in HTN. The magnitude of the pathogenic response in GF mice underscores the role of the microbiome in mediating inflammation in HTN. TRANSLATION PERSPECTIVE To assess the potential of microbiota-targeted interventions to prevent organ damage in hypertension, an accurate quantification of microbial influence is necessary. We provide evidence that the development of hypertensive organ damage is dependent on colonization status and suggest that a healthy microbiota provides anti-hypertensive immune and metabolic signals to the host. In the absence of normal symbiotic host-microbiome interactions, hypertensive damage to the kidney in particular is exacerbated. We suggest that hypertensive patients experiencing perturbations to the microbiota, which are common in CVD, may be at a greater risk for target-organ damage than those with a healthy microbiome.
Collapse
Affiliation(s)
- Ellen G Avery
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| | - Ariana Rauch
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| | - Chia-Yu Chen
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gabriele N'Diaye
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Löber
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Theda U P Bartolomaeus
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Raphaela Fritsche-Guenther
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Metabolomics Platform, Berlin, Germany
| | - André F Rodrigues
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Alex Yarritu
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| | - Cheng Zhong
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Lingyan Fei
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Dmitry Tsvetkov
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Geriatrics, University of Greifswald, University District Hospital Wolgast, Greifswald, Germany
| | - Mihail Todiras
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Nicolae Testemianu State University of Medicine and Pharmacy, Chisinau, Moldova
| | | | - Lajos Markó
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - András Maifeld
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Patzak
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Kempa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Integrative Proteomics and Metabolomics Platform, Berlin Institute for Medical Systems Biology BIMSB, Berlin, Germany
| | - Jennifer A Kirwan
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Metabolomics Platform, Berlin, Germany
| | - Sofia K Forslund
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| |
Collapse
|
29
|
Inflammation, Lymphatics, and Cardiovascular Disease: Amplification by Chronic Kidney Disease. Curr Hypertens Rep 2022; 24:455-463. [PMID: 35727522 DOI: 10.1007/s11906-022-01206-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Kidney disease is a strong modulator of the composition and metabolism of the intestinal microbiome that produces toxins and inflammatory factors. The primary pathways for these harmful factors are blood vessels and nerves. Although lymphatic vessels are responsible for clearance of interstitial fluids, macromolecules, and cells, little is known about whether and how kidney injury impacts the intestinal lymphatic network. RECENT FINDINGS Kidney injury stimulates intestinal lymphangiogenesis, activates lymphatic endothelial cells, and increases mesenteric lymph flow. The mesenteric lymph of kidney-injured animals contains increased levels of cytokines, immune cells, isolevuglandin (IsoLG), a highly reactive dicarbonyl, and of apolipoprotein AI (apoAI). IsoLG is increased in the ileum of kidney injured animals, and intestinal epithelial cells exposed to myeloperoxidase produce more IsoLG. IsoLG-modified apoAI directly increases lymphatic vessel contractions and activates lymphatic endothelial cells. Inhibition of IsoLG by carbonyl scavenger treatment reduces intestinal lymphangiogenesis in kidney-injured animals. Research from our group and others suggests a novel mediator (IsoLG-modified apoAI) and a new pathway (intestinal lymphatic network) in the cross talk between kidneys and intestines and heart. Kidney injury activates intestinal lymphangiogenesis and increases lymphatic flow via mechanisms involving intestinally generated IsoLG. The data identify a new pathway in the kidney gut-heart axis and present a new target for kidney disease-induced intestinal disruptions that may lessen the major adverse consequence of kidney impairment, namely cardiovascular disease.
Collapse
|
30
|
Interleukin 17A infusion has no acute or long-term hypertensive action in conscious unrestrained male mice. Pflugers Arch 2022; 474:709-719. [DOI: 10.1007/s00424-022-02705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/03/2022] [Accepted: 05/05/2022] [Indexed: 11/26/2022]
|
31
|
Savedchuk S, Raslan R, Nystrom S, Sparks MA. Emerging Viral Infections and the Potential Impact on Hypertension, Cardiovascular Disease, and Kidney Disease. Circ Res 2022; 130:1618-1641. [PMID: 35549373 DOI: 10.1161/circresaha.122.320873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Viruses are ubiquitous in the environment and continue to have a profound impact on human health and disease. The COVID-19 pandemic has highlighted this with impressive morbidity and mortality affecting the world's population. Importantly, the link between viruses and hypertension, cardiovascular disease, and kidney disease has resulted in a renewed focus and attention on this potential relationship. The virus responsible for COVID-19, SARS-CoV-2, has a direct link to one of the major enzymatic regulatory systems connected to blood pressure control and hypertension pathogenesis, the renin-angiotensin system. This is because the entry point for SARS-CoV-2 is the ACE2 (angiotensin-converting enzyme 2) protein. ACE2 is one of the main enzymes responsible for dampening the primary effector peptide Ang II (angiotensin II), metabolizing it to Ang-(1-7). A myriad of clinical questions has since emerged and are covered in this review. Several other viruses have been linked to hypertension, cardiovascular disease, and kidney health. Importantly, patients with high-risk apolipoprotein L1 (APOL1) alleles are at risk for developing the kidney lesion of collapsing glomerulopathy after viral infection. This review will highlight several emerging viruses and their potential unique tropisms for the kidney and cardiovascular system. We focus on SARS-CoV-2 as this body of literature in regards to cardiovascular disease has advanced significantly since the COVID-19 pandemic.
Collapse
Affiliation(s)
- Solomiia Savedchuk
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC (S.S., S.N., M.A.S.)
| | - Rasha Raslan
- Internal Medicine, Virginia Commonwealth University, Richmond (R.R.)
| | - Sarah Nystrom
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC (S.S., S.N., M.A.S.)
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC (S.S., S.N., M.A.S.)
- Renal Section, Durham VA Health Care System, NC (M.A.S.)
| |
Collapse
|
32
|
Wang T, Jiang X, Ruan Y, Zhuang J, Yin Y. Based on network pharmacology and in vitro experiments to prove the effective inhibition of myocardial fibrosis by Buyang Huanwu decoction. Bioengineered 2022; 13:13767-13783. [PMID: 35726821 PMCID: PMC9275964 DOI: 10.1080/21655979.2022.2084253] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Among cardiovascular diseases, myocardial fibrosis (MF) is a major pathological change underlying heart failure and is associated with a high mortality rate. However, the molecular mechanism underlying MF has remained elusive. Buyang Huanwu decoction (BYHWD), a traditional Chinese medicine (TCM) formula for cardiovascular diseases, exhibits good anti-inflammatory and blood-activating properties. In the present study, we studied the MF inhibitory effect of BYHWD using network pharmacology and experimental validation. We used several databases to collect information on MF and related drugs and finally obtained cross-targets for BYHWD and MF. After that we got protein-protein interaction (PPI) network and performed gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses to obtain key signaling pathways for further study. After screening, interleukin (IL)-6, IL-1β, and matrix metallopeptidase 9 (MMP9) were selected for in vitro experiments, which included cell cycle studies, cell migration rate, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and western blotting (WB). Finally, molecular docking was performed to validate the results. We found 299 common targets between BYHWD and MF. In total, 75 core targets of the PPI core network were selected for enrichment analysis, and the IL-17 signaling pathway, which is intricately linked to inflammation, was speculated to be involved. Accordingly, in vitro experiments were performed. Altogether, our findings indicated that BYHWD can affect the function of cardiac fibroblasts and reduce the expression of inflammatory factors in rats. In summary, BYHWD can inhibit MF by reducing the expression of inflammatory factors and affecting the IL-17 signaling pathway.
Collapse
Affiliation(s)
- Tianyue Wang
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyu Jiang
- The 1st Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanmin Ruan
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Zhuang
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanjun Yin
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
33
|
Abstract
The immune system is fundamental to tissue homeostasis and is the first line of defense following infection, injury or disease. In the damaged heart, large numbers of immune cells are recruited to the site of injury. These cells play an integral part in both repair by scar formation and the initiation of tissue regeneration. They initially assume inflammatory phenotypes, releasing pro-inflammatory cytokines and removing dead and dying tissue, before entering a reparative stage, replacing dead muscle tissue with a non-contractile scar. In this Review, we present an overview of the innate and adaptive immune response to heart injury. We explore the kinetics of immune cell mobilization following cardiac injury and how the different innate and adaptive immune cells interact with one another and with the damaged tissue. We draw on key findings from regenerative models, providing insight into how to support a robust immune response permissible for cardiac regeneration. Finally, we consider how the latest technological developments can offer opportunities for a deeper and unbiased functional understanding of the immune response to heart disease, highlighting the importance of such knowledge as the basis for promoting regeneration following cardiac injury in human patients.
Collapse
Affiliation(s)
- Filipa C. Simões
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford,Oxford, OxfordshireOX3 9DS, UK
- Institute of Developmental and Regenerative Medicine, Old Road Campus, Oxford, OxfordshireOX3 7DQ, UK
| | - Paul R. Riley
- Institute of Developmental and Regenerative Medicine, Old Road Campus, Oxford, OxfordshireOX3 7DQ, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OxfordshireOX1 3PT, UK
| |
Collapse
|
34
|
Oridonin Relieves Angiotensin II-Induced Cardiac Remodeling via Inhibiting GSDMD-Mediated Inflammation. Cardiovasc Ther 2022; 2022:3167959. [PMID: 35360548 PMCID: PMC8938085 DOI: 10.1155/2022/3167959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 12/14/2022] Open
Abstract
Myocardial remodeling is one of the main lesions in the late stage of chronic heart failure and seriously affects the prognosis of patients. Continuous activation of the renin-angiotensin-aldosterone system (RAAS) contributes to the development of myocardial remodeling greatly, and angiotensin II (Ang II), its main constituent, can directly lead to cardiac remodeling through an inflammatory response and oxidative stress. Since Ang II-induced myocardial remodeling is closely related to inflammation, we tried to explore whether the anti-inflammatory drug oridonin (Ori) can reverse this process and its possible mechanism. Our study investigated that hypertrophy and fibrosis can be induced after being treated with Ang II in cardiomyocytes (H9c2 cells and primary rat cardiomyocytes) and C57BL/6J mice. The anti-inflammatory drug oridonin could effectively attenuate the degree of cardiac remodeling both in vivo and vitro by inhibiting GSDMD, a key protein of intracellular inflammation which can further activate kinds of inflammation factors such as IL-1β and IL-18. We illustrated that oridonin reversed cardiac remodeling by inhibiting the process of inflammatory signaling through GSDMD. After inhibiting the expression of GSDMD in cardiomyocytes by siRNA, it was found that Ang II-induced hypertrophy was attenuated. These results suggest that oridonin is proved to be a potential protective drug against GSDMD-mediated inflammation and myocardial remodeling.
Collapse
|
35
|
Vemuri R, Ruggiero A, Whitfield JM, Dugan GO, Cline JM, Block MR, Guo H, Kavanagh K. Hypertension promotes microbial translocation and dysbiotic shifts in the fecal microbiome of nonhuman primates. Am J Physiol Heart Circ Physiol 2022; 322:H474-H485. [PMID: 35148233 PMCID: PMC8897002 DOI: 10.1152/ajpheart.00530.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Accumulating evidence indicates a link between gut barrier dysfunction and hypertension. However, it is unclear whether hypertension causes gut barrier dysfunction or vice versa and whether the gut microbiome plays a role. To understand this relationship, we first cross-sectionally examined 153 nonhuman primates [NHPs; Chlorocebus aethiops sabaeus; mean age, 16 ± 0.4 yr; 129 (84.3%) females] for cardiometabolic risk factors and gut barrier function biomarkers. This analysis identified blood pressure and age as specific factors that independently associated with microbial translocation. We then longitudinally tracked male, age-matched spontaneously hypertensive NHPs (Macaca mulatta) to normotensives (n = 16), mean age of 5.8 ± 0.5 yr, to confirm hypertension-related gut barrier dysfunction and to explore the role of microbiome by comparing groups at baseline, 12, and 27 mo. Collectively, hypertensive animals in both studies showed evidence of gut barrier dysfunction (i.e., microbial translocation), as indicated by higher plasma levels of lipopolysaccharide-binding protein (LBP)-1, when compared with normotensive animals. Furthermore, plasma LBP-1 levels were correlated with diastolic blood pressure, independent of age and other health markers, suggesting specificity of the effect of hypertension on microbial translocation. In over 2 yr of longitudinal assessment, hypertensive animals had escalating plasma levels of LBP-1 and greater bacterial gene expression in mesenteric lymph nodes compared with normotensive animals, confirming microbes translocated across the intestinal barrier. Concomitantly, we identified distinct shifts in the gut microbial signature of hypertensive versus normotensive animals at 12 and 27 mo. These results suggest that hypertension contributes to microbial translocation in the gut and eventually unhealthy shifts in the gut microbiome, possibly contributing to poor health outcomes, providing further impetus for the management of hypertension.NEW & NOTEWORTHY Hypertension specifically had detrimental effects on microbial translocation when age and metabolic syndrome criteria were evaluated as drivers of cardiovascular disease in a relevant nonhuman primate model. Intestinal barrier function exponentially decayed over time with chronic hypertension, and microbial translocation was confirmed by detection of more microbial genes in regional draining lymph nodes. Chronic hypertension resulted in fecal microbial dysbiosis and elevations of the biomarker NT-proBNP. This study provides insights on the barrier dysfunction, dysbiosis, and hypertension in controlled studies of nonhuman primates. Our study includes a longitudinal component comparing naturally occurring hypertensive to normotensive primates to confirm microbial translocation and dysbiotic microbiome development. Hypertension is an underappreciated driver of subclinical endotoxemia that can drive chronic inflammatory diseases.
Collapse
Affiliation(s)
- Ravichandra Vemuri
- 1Section on Comparative Medicine, Department of Pathology, Wake Forest School of Medicine, Winston‐Salem, North Carolina
| | - Alistaire Ruggiero
- 1Section on Comparative Medicine, Department of Pathology, Wake Forest School of Medicine, Winston‐Salem, North Carolina
| | - Jordyn M. Whitfield
- 1Section on Comparative Medicine, Department of Pathology, Wake Forest School of Medicine, Winston‐Salem, North Carolina
| | - Greg O. Dugan
- 1Section on Comparative Medicine, Department of Pathology, Wake Forest School of Medicine, Winston‐Salem, North Carolina
| | - J. Mark Cline
- 1Section on Comparative Medicine, Department of Pathology, Wake Forest School of Medicine, Winston‐Salem, North Carolina
| | - Masha R. Block
- 1Section on Comparative Medicine, Department of Pathology, Wake Forest School of Medicine, Winston‐Salem, North Carolina
| | - Hao Guo
- 2Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina,3Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kylie Kavanagh
- 1Section on Comparative Medicine, Department of Pathology, Wake Forest School of Medicine, Winston‐Salem, North Carolina,4Department of Biomedicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
36
|
Rami AZA, Hamid AA, Anuar NNM, Aminuddin A, Ugusman A. Exploring the Relationship of Perivascular Adipose Tissue Inflammation and the Development of Vascular Pathologies. Mediators Inflamm 2022; 2022:2734321. [PMID: 35177953 PMCID: PMC8846975 DOI: 10.1155/2022/2734321] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 12/18/2022] Open
Abstract
Initially thought to only provide mechanical support for the underlying blood vessels, perivascular adipose tissue (PVAT) has now emerged as a regulator of vascular function. A healthy PVAT exerts anticontractile and anti-inflammatory actions on the underlying vasculature via the release of adipocytokines such as adiponectin, nitric oxide, and omentin. However, dysfunctional PVAT produces more proinflammatory adipocytokines such as leptin, resistin, interleukin- (IL-) 6, IL-1β, and tumor necrosis factor-alpha, thus inducing an inflammatory response that contributes to the pathogenesis of vascular diseases. In this review, current knowledge on the role of PVAT inflammation in the development of vascular pathologies such as atherosclerosis and hypertension was discussed.
Collapse
Affiliation(s)
- Afifah Zahirah Abd Rami
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Nur Najmi Mohamad Anuar
- Center for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, 50300 Kuala Lumpur, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Mukohda M, Mizuno R, Ozaki H. [Gut microflora and metabolic syndrome: new insight into the pathogenesis of hypertension]. Nihon Yakurigaku Zasshi 2022; 157:311-315. [PMID: 36047142 DOI: 10.1254/fpj.22035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Emerging evidences indicate that a microbial imbalance (dysbiosis) is linked to several diseases including metabolic cardiovascular diseases. A fecal microbiota transplantation from hypertensive human donor to germ-free mice caused blood pressure elevation. In addition, there is a report demonstrating that angiotensin II-induced hypertension and vascular dysfunction were attenuated in germ-free mice, suggesting that gut microbiome may mediate development of hypertension. Although detailed mechanism by which the dysbiosis induces an increased blood pressure remains unknown, changes in microbiome may modify host immune systems and induce inflammatory dysfunction in cardiovascular system, resulting in dysregulation of blood pressure. Some cohort studies demonstrated an association between a higher abundance of Streptococcaceae spp. and blood pressure. One recent report demonstrated that an increasing number of gram-positive Streptococcus was found in the feces of adult spontaneously hypertensive rats with an increased intestinal permeability. We hypothesized that increased bacterial toxin levels derived from gut Streptococcus may be a factor inducing blood pressure dysregulation. In this review, we discuss the possible role of microbiome in cardiovascular disease, especially hypertension.
Collapse
Affiliation(s)
- Masashi Mukohda
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science
| | - Risuke Mizuno
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science
| | - Hiroshi Ozaki
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science
| |
Collapse
|
38
|
Thangaraj SS, Oxlund CS, Fonseca MPD, Svenningsen P, Stubbe J, Palarasah Y, Ketelhuth DFJ, Jacobsen IA, Jensen BL. The mineralocorticoid receptor blocker spironolactone lowers plasma interferon-γ and interleukin-6 in patients with type 2 diabetes and treatment-resistant hypertension. J Hypertens 2022; 40:153-162. [PMID: 34843183 DOI: 10.1097/hjh.0000000000002990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND The mineralocorticoid receptor antagonist spironolactone lowers blood pressure in patients with resistant hypertension despite antihypertensive treatment with angiotensin-converting inhibitors (ACEi) and angiotensin-II receptor blockers (ARB). In preclinical studies, spironolactone suppresses pro-hypertensive interleukin 17A (IL-17A). OBJECTIVES Plasma samples were analysed from a randomized, double-blind placebo-controlled trial with spironolactone given to patients with type 2 diabetes mellitus (T2DM) and resistant hypertension on three antihypertensive drugs. We tested the hypothesis that spironolactone-induced antihypertensive effects are associated with suppression of IL-17A and related cytokines. METHODS Interferon-γ (IFN-γ), IL-17A, tumor necrosis factor-α (TNF-α), IL-6, IL-1β and IL-10 were assessed in plasma with immunoassay in samples before and after 16 weeks of treatment with placebo or spironolactone (12.5-25-50 mg/day). RESULTS Spironolactone significantly reduced plasma IFN-γ and IL-6 while IL-17A, TNF-α, IL-1β and IL-10 were unchanged. IL-6 was more sensitive to higher doses of spironolactone. At baseline, serum aldosterone correlated positively with diastolic night blood pressure. Urine albumin/creatinine-ratios correlated positively with plasma IL-6 at baseline. There were no relations between aldosterone and cytokine concentrations at baseline; between cytokine concentration and blood pressure at baseline; and between cytokine concentration decrease and blood pressure decrease, except for IFN-γ, after treatment. The spironolactone-induced elevation in plasma potassium related inversely to blood pressure but not to changes in cytokines. In macrophages in vitro, spironolactone suppressed lipopolysaccharide (LPS)-induced TNF-α, IL-6, IL-1β and IL-10 levels. CONCLUSION The antihypertensive action of spironolactone in resistant hypertensive patients is associated with suppressed IFN-γ and IL-6 and not IL-17A. Spironolactone exerts anti-inflammatory actions in vivo on macrophages and T-cells.
Collapse
Affiliation(s)
- Sai Sindhu Thangaraj
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense
| | | | - Micaella Pereira Da Fonseca
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense
| | - Per Svenningsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense
| | - Jane Stubbe
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense
| | - Yaseelan Palarasah
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark
| | - Daniel F J Ketelhuth
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense
| | - Ib Abildgaard Jacobsen
- Research Unit for Cardiovascular and Metabolic Prevention, Department of Endocrinology, Odense University Hospital, Odense C, Denmark
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense
| |
Collapse
|
39
|
Abachi S, Pilon G, Marette A, Bazinet L, Beaulieu L. Immunomodulatory effects of fish peptides on cardiometabolic syndrome associated risk factors: A review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2014861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Soheila Abachi
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Lucie Beaulieu
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
40
|
González-Amor M, García-Redondo AB, Jorge I, Zalba G, Becares M, Ruiz-Rodríguez MJ, Rodríguez C, Bermeo H, Rodrigues-Díez R, Rios FJ, Montezano AC, Martínez-González J, Vázquez J, Redondo JM, Touyz RM, Guerra S, Salaices M, Briones AM. Interferon-stimulated gene 15 pathway is a novel mediator of endothelial dysfunction and aneurysms development in angiotensin II infused mice through increased oxidative stress. Cardiovasc Res 2021; 118:3250-3268. [PMID: 34672341 PMCID: PMC9799052 DOI: 10.1093/cvr/cvab321] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 01/25/2023] Open
Abstract
AIMS Interferon-stimulated gene 15 (ISG15) encodes a ubiquitin-like protein that induces a reversible post-translational modification (ISGylation) and can also be secreted as a free form. ISG15 plays an essential role as host-defence response to microbial infection; however, its contribution to vascular damage associated with hypertension is unknown. METHODS AND RESULTS Bioinformatics identified ISG15 as a mediator of hypertension-associated vascular damage. ISG15 expression positively correlated with systolic and diastolic blood pressure and carotid intima-media thickness in human peripheral blood mononuclear cells. Consistently, Isg15 expression was enhanced in aorta from hypertension models and in angiotensin II (AngII)-treated vascular cells and macrophages. Proteomics revealed differential expression of proteins implicated in cardiovascular function, extracellular matrix and remodelling, and vascular redox state in aorta from AngII-infused ISG15-/- mice. Moreover, ISG15-/- mice were protected against AngII-induced hypertension, vascular stiffness, elastin remodelling, endothelial dysfunction, and expression of inflammatory and oxidative stress markers. Conversely, mice with excessive ISGylation (USP18C61A) show enhanced AngII-induced hypertension, vascular fibrosis, inflammation and reactive oxygen species (ROS) generation along with elastin breaks, aortic dilation, and rupture. Accordingly, human and murine abdominal aortic aneurysms showed augmented ISG15 expression. Mechanistically, ISG15 induces vascular ROS production, while antioxidant treatment prevented ISG15-induced endothelial dysfunction and vascular remodelling. CONCLUSION ISG15 is a novel mediator of vascular damage in hypertension through oxidative stress and inflammation.
Collapse
Affiliation(s)
| | - Ana B García-Redondo
- Present address. Departamento de Fisiología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, Madrid, Spain. This manuscript was handled by Deputy Editor Dr David G. Harrison
| | - Inmaculada Jorge
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain,Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares, C. Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Guillermo Zalba
- Departamento de Bioquímica y Genética, Instituto de Investigación Sanitaria de Navarra, Facultad de Ciencias, Universidad de Navarra, C/ Irunlarrea, 1, Pamplona 31008 Navarra, Spain
| | - Martina Becares
- Departamento de Medicina Preventiva y Microbiología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - María J Ruiz-Rodríguez
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain,Grupo de Regulación Génica en Remodelado Cardiovascular e Inflamación, Centro Nacional de Investigaciones Cardiovasculares, C. Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain,Institut de Recerca Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí, 77, 08041 Barcelona, Spain,Instituto de Investigación Biomédica Sant Pau, Barcelona, Spain
| | - Hugo Bermeo
- Departamento de Farmacología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Raquel Rodrigues-Díez
- Departamento de Farmacología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain,CIBER de Enfermedades Cardiovasculares, ISCIII, Spain
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place Glasgow G12 8TA, Glasgow, UK
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place Glasgow G12 8TA, Glasgow, UK
| | - Jose Martínez-González
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain,Instituto de Investigación Biomédica Sant Pau, Barcelona, Spain,Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), C/ Rosselló, 161, 08036, Barcelona, Spain,Instituto de Investigación Biomédica Sant Pau, Barcelona, Spain
| | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain,Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares, C. Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Juan Miguel Redondo
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain,Grupo de Regulación Génica en Remodelado Cardiovascular e Inflamación, Centro Nacional de Investigaciones Cardiovasculares, C. Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place Glasgow G12 8TA, Glasgow, UK
| | - Susana Guerra
- Departamento de Medicina Preventiva y Microbiología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain,CIBER de Enfermedades Cardiovasculares, ISCIII, Spain
| | | |
Collapse
|
41
|
García-Torre A, Bueno-García E, López-Martínez R, Rioseras B, Díaz-Molina B, Lambert JL, Quirós C, Alonso-Álvarez S, Alonso-Arias R, Moro-García MA. CMV Infection Is Directly Related to the Inflammatory Status in Chronic Heart Failure Patients. Front Immunol 2021; 12:687582. [PMID: 34456907 PMCID: PMC8387659 DOI: 10.3389/fimmu.2021.687582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
High levels of inflammation play an important role in chronic heart failure (CHF). Patients with CHF have elevated levels of pro-inflammatory cytokines circulating systemically, mainly TNF and IL-6. However, there are almost no studies that relate these levels to the functional status of patients in CHF, much less to their CMV serostatus. In this study, patients with CHF (n=40; age=54.9 ± 6.3; New York Heart Association functional classification (NYHA, I-III) and healthy controls (n=40; age=53.5 ± 7.1) were analyzed. The serum concentrations of nine pro- and anti-inflammatory cytokines were measured by Luminex® xMap Technology and the basal level of mRNA expression of some immune molecules was quantified by TaqMan™ Array in CD4+ T-lymphocytes. The concentration of these cytokines in culture supernatants in response to anti-CD3 and LPS was also measured. The percentage of CD28null T-cells was determined, as well as the antibody titer against CMV. We found a higher concentration of all cytokines studied in CHF serum compared to healthy controls, as well as a direct correlation between functional status in CHF patients and levels of inflammatory cytokines. Moreover, the highest cytokine concentrations were found in patients with higher concentrations of lymphocytes lacking CD28 molecule. The cytokine production was much higher in CMV+ patients, and the production of these cytokines was found mainly in the T-lymphocytes of CMV+ patients in response to anti-CD3. Anti-CMV antibody levels were positively correlated with cytokine levels. The baseline expression of specific mRNA of the main molecules involved in the Th1 response, as well as molecules related to the CD4+CD28 null subset was higher in CMV+ patients. The cytokine concentrations are higher in CHF CMV+ patients and these concentrations are related to the production of antibodies against CMV. These high levels of cytokines are also associated with the more differentiated CD28null lymphocyte populations. All this, together with the dynamics of the pathology itself, makes CMV+ patients present a worse functional status and possibly a worse evolution of the pathology.
Collapse
Affiliation(s)
- Alejandra García-Torre
- Immunology Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias - ISPA, Oviedo, Spain
| | - Eva Bueno-García
- Immunology Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias - ISPA, Oviedo, Spain
| | - Rocío López-Martínez
- Immunology Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias - ISPA, Oviedo, Spain.,Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Beatriz Rioseras
- Immunology Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias - ISPA, Oviedo, Spain.,Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Beatriz Díaz-Molina
- Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias - ISPA, Oviedo, Spain.,Section of Hemodynamics and Interventional Cardiology, Department of Cardiology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - José Luis Lambert
- Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias - ISPA, Oviedo, Spain.,Section of Hemodynamics and Interventional Cardiology, Department of Cardiology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Covadonga Quirós
- Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Clinical Biochemistry Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Sara Alonso-Álvarez
- Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias - ISPA, Oviedo, Spain.,Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Hematology and Haemotherapy Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Rebeca Alonso-Arias
- Immunology Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias - ISPA, Oviedo, Spain.,Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Marco A Moro-García
- Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias - ISPA, Oviedo, Spain.,Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
42
|
Madhur MS, Elijovich F, Alexander MR, Pitzer A, Ishimwe J, Van Beusecum JP, Patrick DM, Smart CD, Kleyman TR, Kingery J, Peck RN, Laffer CL, Kirabo A. Hypertension: Do Inflammation and Immunity Hold the Key to Solving this Epidemic? Circ Res 2021; 128:908-933. [PMID: 33793336 PMCID: PMC8023750 DOI: 10.1161/circresaha.121.318052] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elevated cardiovascular risk including stroke, heart failure, and heart attack is present even after normalization of blood pressure in patients with hypertension. Underlying immune cell activation is a likely culprit. Although immune cells are important for protection against invading pathogens, their chronic overactivation may lead to tissue damage and high blood pressure. Triggers that may initiate immune activation include viral infections, autoimmunity, and lifestyle factors such as excess dietary salt. These conditions activate the immune system either directly or through their impact on the gut microbiome, which ultimately produces chronic inflammation and hypertension. T cells are central to the immune responses contributing to hypertension. They are activated in part by binding specific antigens that are presented in major histocompatibility complex molecules on professional antigen-presenting cells, and they generate repertoires of rearranged T-cell receptors. Activated T cells infiltrate tissues and produce cytokines including interleukin 17A, which promote renal and vascular dysfunction and end-organ damage leading to hypertension. In this comprehensive review, we highlight environmental, genetic, and microbial associated mechanisms contributing to both innate and adaptive immune cell activation leading to hypertension. Targeting the underlying chronic immune cell activation in hypertension has the potential to mitigate the excess cardiovascular risk associated with this common and deadly disease.
Collapse
Affiliation(s)
- Meena S. Madhur
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew R. Alexander
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
| | - Ashley Pitzer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeanne Ishimwe
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin P. Van Beusecum
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David M. Patrick
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
| | - Charles D. Smart
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| | - Thomas R. Kleyman
- Departments of Medicine, Cell Biology, Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Justin Kingery
- Center for Global Health, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania
| | - Robert N. Peck
- Center for Global Health, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania
- Mwanza Intervention Trials Unit (MITU), Mwanza, Tanzania
| | - Cheryl L. Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| |
Collapse
|
43
|
Avery EG, Bartolomaeus H, Maifeld A, Marko L, Wiig H, Wilck N, Rosshart SP, Forslund SK, Müller DN. The Gut Microbiome in Hypertension: Recent Advances and Future Perspectives. Circ Res 2021; 128:934-950. [PMID: 33793332 DOI: 10.1161/circresaha.121.318065] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pathogenesis of hypertension is known to involve a diverse range of contributing factors including genetic, environmental, hormonal, hemodynamic and inflammatory forces, to name a few. There is mounting evidence to suggest that the gut microbiome plays an important role in the development and pathogenesis of hypertension. The gastrointestinal tract, which houses the largest compartment of immune cells in the body, represents the intersection of the environment and the host. Accordingly, lifestyle factors shape and are modulated by the microbiome, modifying the risk for hypertensive disease. One well-studied example is the consumption of dietary fibers, which leads to the production of short-chain fatty acids and can contribute to the expansion of anti-inflammatory immune cells, consequently protecting against the progression of hypertension. Dietary interventions such as fasting have also been shown to impact hypertension via the microbiome. Studying the microbiome in hypertensive disease presents a variety of unique challenges to the use of traditional model systems. Integrating microbiome considerations into preclinical research is crucial, and novel strategies to account for reciprocal host-microbiome interactions, such as the wildling mouse model, may provide new opportunities for translation. The intricacies of the role of the microbiome in hypertensive disease is a matter of ongoing research, and there are several technical considerations which should be accounted for moving forward. In this review we provide insights into the host-microbiome interaction and summarize the evidence of its importance in the regulation of blood pressure. Additionally, we provide recommendations for ongoing and future research, such that important insights from the microbiome field at large can be readily integrated in the context of hypertension.
Collapse
Affiliation(s)
- Ellen G Avery
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany (E.G.A.,H.B.,A.M.,L.M.,N.W.,S.K.F.,D.N.M.).,For Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (E.G.A.,H.B., N.W., S.K.F., D.N.M.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (E.G.A., H.B., A.M., L.M., N.W., S.K.F., D.N.M.).,Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Berlin, Germany (E.G.A.)
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany (E.G.A.,H.B.,A.M.,L.M.,N.W.,S.K.F.,D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (H.B., A.M., L.M., N.W., S.K.F., D.N.M.).,For Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (E.G.A.,H.B., N.W., S.K.F., D.N.M.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (E.G.A., H.B., A.M., L.M., N.W., S.K.F., D.N.M.)
| | - Andras Maifeld
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany (E.G.A.,H.B.,A.M.,L.M.,N.W.,S.K.F.,D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (H.B., A.M., L.M., N.W., S.K.F., D.N.M.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (E.G.A., H.B., A.M., L.M., N.W., S.K.F., D.N.M.)
| | - Lajos Marko
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany (E.G.A.,H.B.,A.M.,L.M.,N.W.,S.K.F.,D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (H.B., A.M., L.M., N.W., S.K.F., D.N.M.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (E.G.A., H.B., A.M., L.M., N.W., S.K.F., D.N.M.)
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Norway (H.W.)
| | - Nicola Wilck
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany (E.G.A.,H.B.,A.M.,L.M.,N.W.,S.K.F.,D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (H.B., A.M., L.M., N.W., S.K.F., D.N.M.).,For Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (E.G.A.,H.B., N.W., S.K.F., D.N.M.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (E.G.A., H.B., A.M., L.M., N.W., S.K.F., D.N.M.).,For Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany (N.W.)
| | - Stephan P Rosshart
- Medical Center-University of Freiburg, Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Freiburg, Germany (S.P.R.)
| | - Sofia K Forslund
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany (E.G.A.,H.B.,A.M.,L.M.,N.W.,S.K.F.,D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (H.B., A.M., L.M., N.W., S.K.F., D.N.M.).,For Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (E.G.A.,H.B., N.W., S.K.F., D.N.M.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (E.G.A., H.B., A.M., L.M., N.W., S.K.F., D.N.M.)
| | - Dominik N Müller
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany (E.G.A.,H.B.,A.M.,L.M.,N.W.,S.K.F.,D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (H.B., A.M., L.M., N.W., S.K.F., D.N.M.).,For Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (E.G.A.,H.B., N.W., S.K.F., D.N.M.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (E.G.A., H.B., A.M., L.M., N.W., S.K.F., D.N.M.)
| |
Collapse
|
44
|
Interleukin 17A: Key Player in the Pathogenesis of Hypertension and a Potential Therapeutic Target. Curr Hypertens Rep 2021; 23:13. [PMID: 33666761 DOI: 10.1007/s11906-021-01128-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To summarize key advances in our understanding of the role of interleukin 17A (IL-17A) in the pathogenesis of hypertension and highlight important areas for future research and clinical translation. RECENT FINDINGS While T helper 17 (Th17) cells are major producers of IL-17A, there are several additional innate and adaptive immune cell sources including gamma-delta T cells, innate lymphoid cells, and natural killer cells. IL-17A promotes an increase in blood pressure through multiple mechanisms including inhibiting endothelial nitric oxide production, increasing reactive oxygen species formation, promoting vascular fibrosis, and enhancing renal sodium retention and glomerular injury. IL-17A production from Th17 cells is increased by high salt conditions in vitro and in vivo. There is also emerging data linking salt, the gut microbiome, and intestinal T cell IL-17A production. Novel therapeutics targeting IL-17A signaling are approved for the treatment of autoimmune diseases and show promise in both animal models of hypertension and human studies. Hypertensive stimuli enhance IL-17A production. IL-17A is a key mediator of renal and vascular dysfunction in hypertensive mouse models and correlates with hypertension in humans. Large randomized clinical trials are needed to determine whether targeting IL-17A might be an effective adjunct treatment for hypertension and its associated end-organ dysfunction.
Collapse
|
45
|
Natural killer cells, gamma delta T cells and classical monocytes are associated with systolic blood pressure in the multi-ethnic study of atherosclerosis (MESA). BMC Cardiovasc Disord 2021; 21:45. [PMID: 33482725 PMCID: PMC7821496 DOI: 10.1186/s12872-021-01857-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Background Hypertension is a major source of cardiovascular morbidity and mortality. Recent evidence from mouse models, genetic, and cross-sectional human studies suggest increased proportions of selected immune cell subsets may be associated with levels of systolic blood pressure (SBP).
Methods We assayed immune cells from cryopreserved samples collected at the baseline examination (2000–2002) from 1195 participants from the multi-ethnic study of atherosclerosis (MESA). We used linear mixed models, with adjustment for age, sex, race/ethnicity, smoking, exercise, body mass index, education, diabetes, and cytomegalovirus titers, to estimate the associations between 30 immune cell subsets (4 of which were a priori hypotheses) and repeated measures of SBP (baseline and up to four follow-up measures) over 10 years. The analysis provides estimates of the association with blood pressure level. Results The mean age of the MESA participants at baseline was 64 ± 10 years and 53% were male. A one standard deviation (1-SD) increment in the proportion of γδ T cells was associated with 2.40 mmHg [95% confidence interval (CI) 1.34–3.42] higher average systolic blood pressure; and for natural killer cells, a 1-SD increment was associated with 1.88 mmHg (95% CI 0.82–2.94) higher average level of systolic blood pressure. A 1-SD increment in classical monocytes (CD14++CD16−) was associated with 2.01 mmHG (95% CI 0.79–3.24) lower average systolic blood pressure. There were no associations of CD4+ T helper cell subsets with average systolic blood pressure. Conclusion These findings suggest that the innate immune system plays a role in levels of SBP whereas there were no associations with adaptive immune cells.
Collapse
|
46
|
De Miguel C, Pelegrín P, Baroja-Mazo A, Cuevas S. Emerging Role of the Inflammasome and Pyroptosis in Hypertension. Int J Mol Sci 2021; 22:ijms22031064. [PMID: 33494430 PMCID: PMC7865380 DOI: 10.3390/ijms22031064] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammasomes are components of the innate immune response that have recently emerged as crucial controllers of tissue homeostasis. In particular, the nucleotide-binding domain, leucine-rich-containing (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is a complex platform involved in the activation of caspase-1 and the maturation of interleukin (IL)-1β and IL-18, which are mainly released via pyroptosis. Pyroptosis is a caspase-1-dependent type of cell death that is mediated by the cleavage of gasdermin D and the subsequent formation of structurally stable pores in the cell membrane. Through these pores formed by gasdermin proteins cytosolic contents are released into the extracellular space and act as damage-associated molecular patterns, which are pro-inflammatory signals. Inflammation is a main contributor to the development of hypertension and it also is known to stimulate fibrosis and end-organ damage. Patients with essential hypertension and animal models of hypertension exhibit elevated levels of circulating IL-1β. Downregulation of the expression of key components of the NLRP3 inflammasome delays the development of hypertension and pharmacological inhibition of this inflammasome leads to reduced blood pressure in animal models and humans. Although the relationship between pyroptosis and hypertension is not well established yet, pyroptosis has been associated with renal and cardiovascular diseases, instances where high blood pressure is a critical risk factor. In this review, we summarize the recent literature addressing the role of pyroptosis and the inflammasome in the development of hypertension and discuss the potential use of approaches targeting this pathway as future anti-hypertensive strategies.
Collapse
Affiliation(s)
- Carmen De Miguel
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Correspondence: (C.D.M.); (S.C.); Tel.: +34-868-885031 (S.C.)
| | - Pablo Pelegrín
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (P.P.); (A.B.-M.)
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (P.P.); (A.B.-M.)
| | - Santiago Cuevas
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (P.P.); (A.B.-M.)
- Correspondence: (C.D.M.); (S.C.); Tel.: +34-868-885031 (S.C.)
| |
Collapse
|
47
|
Pan XX, Wu F, Chen XH, Chen DR, Chen HJ, Kong LR, Ruan CC, Gao PJ. T-cell senescence accelerates angiotensin II-induced target organ damage. Cardiovasc Res 2021; 117:271-283. [PMID: 32049355 DOI: 10.1093/cvr/cvaa032] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/04/2020] [Accepted: 02/05/2020] [Indexed: 01/08/2023] Open
Abstract
AIMS Aging is a risk factor for cardiovascular diseases and adaptive immunity has been implicated in angiotensin (Ang) II-induced target organ dysfunction. Herein, we sought to determine the role of T-cell senescence in Ang II-induced target organ impairment and to explore the underlying mechanisms. METHODS AND RESULTS Flow cytometric analysis revealed that T cell derived from aged mice exhibited immunosenescence. Adoptive transfer of aged T cells to immunodeficient RAG1 KO mice accelerates Ang II-induced cardiovascular and renal fibrosis compared with young T-cell transfer. Aged T cells also promote inflammatory factor expression and superoxide production in these target organs. In vivo and in vitro studies revealed that Ang II promotes interferon-gamma (IFN-γ) production in the aged T cells comparing to young T cells. Importantly, transfer of senescent T cell that IFN-γ KO mitigates the impairment. Aged T-cell-conditioned medium stimulates inflammatory factor expression and oxidative stress in Ang II-treated renal epithelial cells compared with young T cells, and these effects of aged T-cell-conditioned medium are blunted after IFN-γ-neutralizing antibody pre-treatment. CONCLUSION These results provide a significant insight into the contribution of senescent T cells to Ang II-induced cardiovascular dysfunction and provide an attractive possibility that targeting T cell specifically might be a potential strategy to treat elderly hypertensive patients with end-organ dysfunction.
Collapse
Affiliation(s)
- Xiao-Xi Pan
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fang Wu
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Hui Chen
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Dong-Rui Chen
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Hong-Jin Chen
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Ling-Ran Kong
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Cheng-Chao Ruan
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Ping-Jin Gao
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| |
Collapse
|
48
|
Riley LA, Merryman WD. Cadherin-11 and cardiac fibrosis: A common target for a common pathology. Cell Signal 2020; 78:109876. [PMID: 33285242 DOI: 10.1016/j.cellsig.2020.109876] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Cardiac fibrosis represents an enormous health concern as it is prevalent in nearly every form of cardiovascular disease, the leading cause of death worldwide. Fibrosis is characterized by the activation of fibroblasts into myofibroblasts, a contractile cell type that secretes significant amounts of extracellular matrix components; however, the onset of this condition is also due to persistent inflammation and the cellular responses to a changing mechanical environment. In this review, we provide an overview of the pro-fibrotic, pro-inflammatory, and biomechanical mechanisms that lead to cardiac fibrosis in cardiovascular diseases. We then discuss cadherin-11, an intercellular adhesion protein present on both myofibroblasts and inflammatory cells, as a potential link for all three of the fibrotic mechanisms. Since experimentally blocking cadherin-11 dimerization prevents fibrotic diseases including cardiac fibrosis, understanding how this protein can be targeted for therapeutic use could lead to better treatments for patients with heart disease.
Collapse
Affiliation(s)
- Lance A Riley
- Department of Biomedical Engineering, Vanderbilt University, USA
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, USA.
| |
Collapse
|
49
|
Smolgovsky S, Ibeh U, Tamayo TP, Alcaide P. Adding insult to injury - Inflammation at the heart of cardiac fibrosis. Cell Signal 2020; 77:109828. [PMID: 33166625 DOI: 10.1016/j.cellsig.2020.109828] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023]
Abstract
The fibrotic response has evolutionary worked in tandem with the inflammatory response to facilitate healing following injury or tissue destruction as a result of pathogen clearance. However, excessive inflammation and fibrosis are key pathological drivers of organ tissue damage. Moreover, fibrosis can occur in several conditions associated with chronic inflammation that are not directly caused by overt tissue injury or infection. In the heart, in particular, fibrotic adverse cardiac remodeling is a key pathological driver of cardiac dysfunction in heart failure. Cardiac fibroblast activation and immune cell activation are two mechanistic domains necessary for fibrotic remodeling in the heart, and, independently, their contributions to cardiac fibrosis and cardiac inflammation have been studied and reviewed thoroughly. The interdependence of these two processes, and how their cellular components modulate each other's actions in response to different cardiac insults, is only recently emerging. Here, we review recent literature in cardiac fibrosis and inflammation and discuss the mechanisms involved in the fibrosis-inflammation axis in the context of specific cardiac stresses, such as myocardial ischemia, and in nonischemic heart conditions. We discuss how the search for anti-inflammatory and anti-fibrotic therapies, so far unsuccessful to date, needs to be based on our understanding of the interdependence of immune cell and fibroblast activities. We highlight that in addition to the extensively reviewed role of immune cells modulating fibroblast function, cardiac fibroblasts are central participants in inflammation that may acquire immune like cell functions. Lastly, we review the gut-heart axis as an example of a novel perspective that may contribute to our understanding of how immune and fibrotic modulation may be indirectly modulated as a potential area for therapeutic research.
Collapse
Affiliation(s)
- Sasha Smolgovsky
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States of America; Immunology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America
| | - Udoka Ibeh
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States of America; Cell, Molecular, and Developmental Biology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America
| | - Tatiana Peña Tamayo
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States of America; Immunology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America; Cell, Molecular, and Developmental Biology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America.
| |
Collapse
|
50
|
Rai A, Narisawa M, Li P, Piao L, Li Y, Yang G, Cheng XW. Adaptive immune disorders in hypertension and heart failure: focusing on T-cell subset activation and clinical implications. J Hypertens 2020; 38:1878-1889. [PMID: 32890260 DOI: 10.1097/hjh.0000000000002456] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
: Hypertension is a growing health concern worldwide. Established hypertension is a causative factor of heart failure, which is characterized by increased vascular resistance and intractable uncontrolled blood pressure. Hypertension and heart failure have multiple causes and complex pathophysiology but cellular immunity is thought to contribute to the development of both. Recent studies showed that T cells play critical roles in hypertension and heart failure in humans and animals, with various stimuli leading to the formation of effector T cells that infiltrate the cardiovascular wall. Monocytes/macrophages also accumulate in the cardiovascular wall. Various cytokines (e.g. interleukin-6, interleukin-17, interleukin-10, tumor necrosis factor-α, and interferon-γ) released from immune cells of various subtypes promote vascular senescence and elastic laminal degradation as well as cardiac fibrosis and/or hypertrophy, leading to cardiovascular structural alterations and dysfunction. Recent laboratory evidence has defined a link between inflammation and the immune system in initiation and progression of hypertension and heart failure. Moreover, cross-talk among natural killer cells, adaptive immune cells (T cells and B cells), and innate immune cells (i.e. monocytes, macrophages, neutrophils, and dendritic cells) contributes to end-cardiovasculature damage and dysfunction in hypertension and heart failure. Clinical and experimental studies on the diagnostic potential of T-cell subsets revealed that blood regulatory T cells, CD4 cells, CD8 T cells, and the ratio of CD4 to CD8 T cells show promise as biomarkers of hypertension and heart failure. Therapeutic interventions to suppress activation of these cells may prove beneficial in reducing end-organ damage and preventing consequences of cardiovascular failure, including hypertension of heart failure.
Collapse
Affiliation(s)
- Avinas Rai
- Department of Cardiology, Yanbian University Hospital, Juzijie, Yanji, Jilin Province, China
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ping Li
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Limei Piao
- Department of Cardiology, Yanbian University Hospital, Juzijie, Yanji, Jilin Province, China
| | - Yanglong Li
- Department of Cardiology, Yanbian University Hospital, Juzijie, Yanji, Jilin Province, China
| | - Guang Yang
- Department of Cardiology, Yanbian University Hospital, Juzijie, Yanji, Jilin Province, China
| | - Xian Wu Cheng
- Department of Cardiology, Yanbian University Hospital, Juzijie, Yanji, Jilin Province, China
| |
Collapse
|