1
|
Callender NA, Øivind Høiseth L, Mathiesen I, Hisdal J. Intermittent negative pressure influences popliteal artery shear rate during supine and sitting postures. VASA 2025; 54:113-123. [PMID: 39780648 DOI: 10.1024/0301-1526/a001172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Background: Intermittent negative pressure is an emerging treatment for lower limb vascular disease but the specific physiological effects, particularly upon large artery haemodynamics are unclear. This study examined the influence of intermittent negative pressure upon popliteal artery shear rate during both supine and sitting postures. Participants and methods: Eleven healthy participants (5 female; age: 28.3 ± 5.8 y; weight: 69.6 ± 9.8 kg, height: 1.75 ± 0.07 m) received intermittent negative pressure (-37 mmHg; 9.5-sec on, 7.5-sec off), upon the lower leg during both supine and sitting postures. Popliteal artery blood flow and shear rate were recorded (duplex ultrasound), accompanied by heart rate (3-lead ECG) and blood pressure (volume clamp method). Results: Compared to sitting, a supine posture led to greater mean shear rate during baseline (supine: 21[9]; sitting: 17[13] sec-1; all median [IQR]) and negative pressure phases (supine: 24[15]; sitting: 17[14] sec-1; both p<0.05). While supine, negative pressure raised mean shear rate above baseline levels (p<0.05) and reduced it upon return to atmospheric pressure (p < 0.05). In sitting, mean shear rate only differed from baseline at the points of peak and minimum shear (peak:18[17]; minimum: 10[9] sec-1; both p<0.05). Shear pattern (oscillatory shear index) showed changes from baseline during both postures (p<0.05), but was not different between postures. Conclusions: Intermittent negative pressure influenced lower limb popliteal artery shear rate during both the supine and sitting postures, the effect was greater while supine. Fluctuation in shear pattern seen during both positions may account for positive clinical effects observed following intermittent negative pressure treatment. These findings are framed against previous work investigating clinical populations. Future work should investigate any differences in lower limb haemodynamics and markers of endothelial function among patients with vascular disease.
Collapse
Affiliation(s)
- Nigel A Callender
- Faculty of Medicine, University of Oslo, Norway
- Department of Vascular Surgery, Oslo University Hospital, Norway
- Otivio AS, Oslo, Norway
| | - Lars Øivind Høiseth
- Faculty of Medicine, University of Oslo, Norway
- Department of Anaesthesia and Intensive Care Medicine, Oslo University Hospital, Norway
| | | | - Jonny Hisdal
- Faculty of Medicine, University of Oslo, Norway
- Department of Vascular Surgery, Oslo University Hospital, Norway
| |
Collapse
|
2
|
Liu H, Shen B, Li Z, Xue C, Zhao H, Pan X, Xu D. Effects of accumulated exercise on the stiffness and hemodynamics of the common carotid artery. Front Physiol 2024; 15:1348811. [PMID: 38468701 PMCID: PMC10925650 DOI: 10.3389/fphys.2024.1348811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Purpose: This research aims to study and compare the effects of moderate-intensity continuous exercise and accumulated exercise with different number of bouts on common carotid arterial stiffness and hemodynamic variables. Methods: Thirty healthy male adults were recruited to complete four trials in a randomized crossover design: no-exercise (CON); continuous exercise (CE, 30-min cycling); accumulated exercise including two or three bouts with 10-min rest intervals (AE15, 2 × 15-min cycling; AE10, 3 × 10-min cycling). The intensity in all the exercise trials was set at 45%-55% heart rate reserve. Blood pressure, right common carotid artery center-line velocity, and arterial inner diameter waveforms were measured at baseline and immediately after exercise (0 min), 10 min, and 20 min. Results: 1) The arterial stiffness index and pressure-strain elastic modulus of the CE and AE15 groups increased significantly at 0 min, arterial diameters decreased in AE15 and AE10, and all indicators recovered at 10 min. 2) The mean blood flow rate and carotid artery center-line velocity increased in all trials at 0 min, and only the mean blood flow rate of AE10 did not recover at 10 min. 3) At 0 min, the blood pressure in all trials was found to be increased, and the wall shear stress and oscillatory shear index of AE10 were different from those in CE and AE15. At 20 min, the blood pressure of AE10 significantly decreased, and the dynamic resistance, pulsatility index, and peripheral resistance of CE partially recovered. Conclusion: There is no significant difference in the acute effects of continuous exercise and accumulated exercise on the arterial stiffness and diameter of the carotid artery. Compared with continuous exercise, accumulated exercise with an increased number of bouts is more effective in increasing cerebral blood supply and blood pressure regulation, and its oscillatory shear index recovers faster. However, the improvement of blood flow resistance in continuous exercise was better than that in accumulated exercise.
Collapse
Affiliation(s)
- Haibin Liu
- School of Sport and Health Sciences, Dalian University of Technology, Dalian, Liaoning, China
- Department of Neurology, Central Hospital of Dalian University of Technology, Dalian, Liaoning, China
| | - Bingyi Shen
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Zusheng Li
- School of Sport and Health Sciences, Dalian University of Technology, Dalian, Liaoning, China
| | - Chundong Xue
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, China
| | - Hongling Zhao
- Department of Neurology, Central Hospital of Dalian University of Technology, Dalian, Liaoning, China
| | - Xin Pan
- Department of Neurology, Central Hospital of Dalian University of Technology, Dalian, Liaoning, China
| | - Dong Xu
- School of Sport and Health Sciences, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
3
|
Sheng C, Zeng Q, Huang W, Liao M, Yang P. Identification of abdominal aortic aneurysm subtypes based on mechanosensitive genes. PLoS One 2024; 19:e0296729. [PMID: 38335213 PMCID: PMC10857568 DOI: 10.1371/journal.pone.0296729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/18/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Rupture of abdominal aortic aneurysm (rAAA) is a fatal event in the elderly. Elevated blood pressure and weakening of vessel wall strength are major risk factors for this devastating event. This present study examined whether the expression profile of mechanosensitive genes correlates with the phenotype and outcome, thus, serving as a biomarker for AAA development. METHODS In this study, we identified mechanosensitive genes involved in AAA development using general bioinformatics methods and machine learning with six human datasets publicly available from the GEO database. Differentially expressed mechanosensitive genes (DEMGs) in AAAs were identified by differential expression analysis. Molecular biological functions of genes were explored using functional clustering, Protein-protein interaction (PPI), and weighted gene co-expression network analysis (WGCNA). According to the datasets (GSE98278, GSE205071 and GSE165470), the changes of diameter and aortic wall strength of AAA induced by DEMGs were verified by consensus clustering analysis, machine learning models, and statistical analysis. In addition, a model for identifying AAA subtypes was built using machine learning methods. RESULTS 38 DEMGs clustered in pathways regulating 'Smooth muscle cell biology' and 'Cell or Tissue connectivity'. By analyzing the GSE205071 and GSE165470 datasets, DEMGs were found to respond to differences in aneurysm diameter and vessel wall strength. Thus, in the merged datasets, we formally created subgroups of AAAs and found differences in immune characteristics between the subgroups. Finally, a model that accurately predicts the AAA subtype that is more likely to rupture was successfully developed. CONCLUSION We identified 38 DEMGs that may be involved in AAA. This gene cluster is involved in regulating the maximum vessel diameter, degree of immunoinflammatory infiltration, and strength of the local vessel wall in AAA. The prognostic model we developed can accurately identify the AAA subtypes that tend to rupture.
Collapse
Affiliation(s)
- Chang Sheng
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Zeng
- National Health Commission Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weihua Huang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Mingmei Liao
- National Health Commission Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pu Yang
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Hanson BE, Casey DP. Intermittent versus continuous handgrip exercise and peripheral endothelial function: impact of shear rate fluctuations. J Appl Physiol (1985) 2023; 135:892-901. [PMID: 37650140 DOI: 10.1152/japplphysiol.00362.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/08/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023] Open
Abstract
Sustained exercise-induced elevations in shear rate (SR) have been well established as beneficial for improving endothelial function. However, the impact of intermittent fluctuations in SR is not understood. We investigated the effect of intermittent SR elevations compared with sustained elevations on peripheral endothelial function. Brachial artery flow-mediated dilation (FMD) was assessed in 13 adults (9 M/4 F; 22 ± 4 yr) before and after 30 min of handgrip exercise. Three different rhythmic forearm exercise interventions were performed at a rate of 20 contractions/min. Intermittent exercises (6 × 3 min exercise interspersed by 2 min of rest) were performed at 25% (INT-25%) and 15% (INT-15%) maximum voluntary contraction (MVC), and continuous exercise was completed at 15% MVC. Brachial artery diameter and velocity were measured using Doppler ultrasound. The total increase in SR above baseline throughout exercise was greater during INT-25% (4,441 ± 516 s-1) and continuous (4,070 ± 407 s-1) compared with INT-15% (2,811 ± 342 s-1, P < 0.05). The %FMD increased following all exercises (INT-25%: 5.7 ± 1.2% to 8.1 ± 1.2%; INT-15%: 5.2 ± 1.2% to 7.0 ± 1.1%; continuous: 5.5 ± 1.3% to 6.8 ± 1.3%, P < 0.05 for all). The increase following INT-25% was significantly greater than INT-15% and continuous (P < 0.05 for both). Normalized FMD to shear rate area under the curve increased with intermittent exercise (INT-25%: 2.2 ± 0.2% to 3.4 ± 0.3%; INT-15%: 2.1 ± 0.2% to 3.2 ± 0.2%, P < 0.05 for both) but did not following continuous (2.1 ± 0.2% to 2.5 ± 0.1%, P = 0.06). The increase in normalized FMD with intermittent exercises were greater than continuous (P < 0.05 for both). These findings suggest intermittent fluctuations in SR during handgrip exercise may be more beneficial than sustained elevations on improving peripheral endothelial function.NEW & NOTEWORTHY Exercise-induced increases in shear rate is a well-established stimulus for improving peripheral endothelial function. This study presents novel findings that intermittent elevations in shear rate may be more effective at acutely improving endothelial function compared with continuous elevations. Despite similar increases in total shear rate during handgrip exercise intermittent elevations produced a significantly greater increase in endothelial function when compared with continuous elevations potentially indicating intermittent elevations as a more effective stimulus for acute improvements.
Collapse
Affiliation(s)
- Brady E Hanson
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
5
|
Badhwar S, Chandran DS, Jaryal AK, Narang R, Patel C, Deepak KK. Differential role of central and peripheral arterial stiffness in determining brachial artery resting retrograde flow in patients with ischemic heart disease vs healthy subjects. J Hum Hypertens 2023; 37:803-812. [PMID: 36224323 DOI: 10.1038/s41371-022-00762-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
Retrograde flow in endothelial cell cultures has been shown to induce a pro-atherogenic phenotype. Despite its potential role as a pathophysiological link between cardiovascular risk factors and atherosclerotic disease, resting retrograde flows between patients with cardiovascular disease and healthy subjects have not been compared. Further, the vascular characteristics governing retrograde flow in human arteries have not been systematically investigated. Association of central and peripheral vascular characteristics with retrograde flow profile was investigated in 32 healthy subjects and 47 patients with ischemic heart disease. Endothelial dysfunction was assessed by brachial ultrasound-based calculation of flow-mediated dilation (FMD) and sub-clinical atherosclerosis was estimated from carotid-intima media thickness (CIMT). Retrograde blood flow velocity (RBFV) and shear rate were comparable between the two groups (RBFV 1.82(0.97-3.32) vs 1.78(1.24-2.65) cm/s p = 0.79). Augmentation index was a significant determinant of retrograde flow in both patients and healthy subjects. Carotid artery incremental elastic modulus was an independent determinant of retrograde flow patterns in healthy subjects while ejection fraction, cf/cr PWV ratio and forearm vascular conductance emerged as independent determinants in patients. Retrograde flow patterns were also associated with FMD (RBFV r = -0.43, p = 0.004) and CIMT (r = 0.30, p = 0.041) in patients. The results of the study suggest a difference in the determinants of retrograde flow in patients and healthy subjects, with central arterial stiffness being a major contributor in healthy subjects while interaction between central, peripheral, and cardio-arterial factors influence retrograde flow in patients with ischemic heart disease.
Collapse
Affiliation(s)
- Smriti Badhwar
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Dinu S Chandran
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Ashok K Jaryal
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Rajiv Narang
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Chetan Patel
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Kishore Kumar Deepak
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
6
|
Takla M, Saadeh K, Tse G, Huang CLH, Jeevaratnam K. Ageing and the Autonomic Nervous System. Subcell Biochem 2023; 103:201-252. [PMID: 37120470 DOI: 10.1007/978-3-031-26576-1_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The vertebrate nervous system is divided into central (CNS) and peripheral (PNS) components. In turn, the PNS is divided into the autonomic (ANS) and enteric (ENS) nervous systems. Ageing implicates time-related changes to anatomy and physiology in reducing organismal fitness. In the case of the CNS, there exists substantial experimental evidence of the effects of age on individual neuronal and glial function. Although many such changes have yet to be experimentally observed in the PNS, there is considerable evidence of the role of ageing in the decline of ANS function over time. As such, this chapter will argue that the ANS constitutes a paradigm for the physiological consequences of ageing, as well as for their clinical implications.
Collapse
Affiliation(s)
| | | | - Gary Tse
- Kent and Medway Medical School, Canterbury, UK
- University of Surrey, Guildford, UK
| | | | | |
Collapse
|
7
|
Shen L, Zhou K, Liu H, Yang J, Huang S, Yu F, Huang D. Prediction of Mechanosensitive Genes in Vascular Endothelial Cells Under High Wall Shear Stress. Front Genet 2022; 12:796812. [PMID: 35087573 PMCID: PMC8787366 DOI: 10.3389/fgene.2021.796812] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/13/2021] [Indexed: 01/10/2023] Open
Abstract
Objective: The vulnerability of atherosclerotic plaques is among the leading cause of ischemic stroke. High wall shear stress (WSS) promotes the instability of atherosclerotic plaques by directly imparting mechanical stimuli, but the specific mechanisms remain unclear. We speculate that modulation of mechanosensitive genes may play a vital role in accelerating the development of plaques. The purpose of this study was to find mechanosensitive genes in vascular endothelial cells (ECs) through combining microarray data with bioinformatics technology and further explore the underlying dynamics–related mechanisms that cause the progression and destabilization of atherosclerotic plaques. Methods: Microarray data sets for human vascular ECs under high and normal WSS were retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified through the R language. The performance of enrichment analysis and protein–protein interaction (PPI) network presented the biological function and signaling pathways of the DEGs. Hub genes were identified based on the PPI network and validated by GEO data sets. Predicted transcription factor (TF) genes and miRNAs interaction with potential mechanosensitive genes were identified by NetworkAnalyst. Results: A total of 260 DEGs, 121 upregulated and 139 downregulated genes, were screened between high and normal WSS from GSE23289. A total of 10 hub genes and four cluster modules were filtered out based on the PPI network. The enrichment analysis showed that the biological functions of the hub genes were mainly involved in responses to unfolded protein and topologically incorrect protein, and t to endoplasmic reticulum stress. The significant pathways associated with the hub genes were those of protein processing in the endoplasmic reticulum, antigen processing, and presentation. Three out of the 10 hub genes, namely, activated transcription factor 3 (ATF3), heat shock protein family A (Hsp70) member 6 (HSPA6), and dual specificity phosphatase 1 (DUSP1, also known as CL100, HVH1, MKP-1, PTPN10), were verified in GSE13712. The expression of DUSP1 was higher in the senescent cell under high WSS than that of the young cell. The TF–miRNA–mechanosensitive gene coregulatory network was constructed. Conclusion: In this work, we identified three hub genes, ATF3, HSPA6, and DUSP1, as the potential mechanosensitive genes in the human blood vessels. DUSP1 was confirmed to be associated with the senescence of vascular ECs. Therefore, these three mechanosensitive genes may have emerged as potential novel targets for the prediction and prevention of ischemic stroke. Furthermore, the TF–miRNA–mechanosensitive genes coregulatory network reveals an underlying regulatory mechanism and the pathways to control disease progression.
Collapse
Affiliation(s)
- Lei Shen
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kaige Zhou
- School of Medicine, Tongji University, Shanghai, China
| | - Hong Liu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Yang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuqi Huang
- Department of Neurology, Shanghai Tianyou Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Yu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dongya Huang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Hansen AB, Moralez G, Amin SB, Simspon LL, Hofstaetter F, Anholm JD, Gasho C, Stembridge M, Dawkins TG, Tymko MM, Ainslie PN, Villafuerte F, Romero SA, Hearon CM, Lawley JS. Global REACH 2018: the adaptive phenotype to life with chronic mountain sickness and polycythaemia. J Physiol 2021; 599:4021-4044. [PMID: 34245004 DOI: 10.1113/jp281730] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/18/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Humans suffering from polycythaemia undergo multiple circulatory adaptations including changes in blood rheology and structural and functional vascular adaptations to maintain normal blood pressure and vascular shear stresses, despite high blood viscosity. During exercise, several circulatory adaptations are observed, especially involving adrenergic and non-adrenergic mechanisms within non-active and active skeletal muscle to maintain exercise capacity, which is not observed in animal models. Despite profound circulatory stress, i.e. polycythaemia, several adaptations can occur to maintain exercise capacity, therefore making early identification of the disease difficult without overt symptomology. Pharmacological treatment of the background heightened sympathetic activity may impair the adaptive sympathetic response needed to match local oxygen delivery to active skeletal muscle oxygen demand and therefore inadvertently impair exercise capacity. ABSTRACT Excessive haematocrit and blood viscosity can increase blood pressure, cardiac work and reduce aerobic capacity. However, past clinical investigations have demonstrated that certain human high-altitude populations suffering from excessive erythrocytosis, Andeans with chronic mountain sickness, appear to have phenotypically adapted to life with polycythaemia, as their exercise capacity is comparable to healthy Andeans and even with sea-level inhabitants residing at high altitude. By studying this unique population, which has adapted through natural selection, this study aimed to describe how humans can adapt to life with polycythaemia. Experimental studies included Andeans with (n = 19) and without (n = 17) chronic mountain sickness, documenting exercise capacity and characterizing the transport of oxygen through blood rheology, including haemoglobin mass, blood and plasma volume and blood viscosity, cardiac output, blood pressure and changes in total and local vascular resistances through pharmacological dissection of α-adrenergic signalling pathways within non-active and active skeletal muscle. At rest, Andeans with chronic mountain sickness had a substantial plasma volume contraction, which alongside a higher red blood cell volume, caused an increase in blood viscosity yet similar total blood volume. Moreover, both morphological and functional alterations in the periphery normalized vascular shear stress and blood pressure despite high sympathetic nerve activity. During exercise, blood pressure, cardiac work and global oxygen delivery increased similar to healthy Andeans but were sustained by modifications in both non-active and active skeletal muscle vascular function. These findings highlight widespread physiological adaptations that can occur in response to polycythaemia, which allow the maintenance of exercise capacity.
Collapse
Affiliation(s)
- Alexander B Hansen
- Department of Sport Science, Division of Performance Physiology and Prevention, University of Innsbruck, Innsbruck, Austria
| | - Gilbert Moralez
- Department of Applied Clinical Research, University of Southwestern Medical Center, Dallas, Texas, USA
| | - Sachin B Amin
- Department of Sport Science, Division of Performance Physiology and Prevention, University of Innsbruck, Innsbruck, Austria
| | - Lydia L Simspon
- Department of Sport Science, Division of Performance Physiology and Prevention, University of Innsbruck, Innsbruck, Austria
| | - Florian Hofstaetter
- Department of Sport Science, Division of Performance Physiology and Prevention, University of Innsbruck, Innsbruck, Austria
| | - James D Anholm
- Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University, Loma Linda, California, USA
| | - Christopher Gasho
- Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University, Loma Linda, California, USA
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Michael M Tymko
- Physical Activity and Diabetes Laboratory, Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada.,Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Philip N Ainslie
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Francisco Villafuerte
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Steven A Romero
- University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Christopher M Hearon
- Department of Applied Clinical Research, University of Southwestern Medical Center, Dallas, Texas, USA.,Institute of Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA
| | - Justin S Lawley
- Department of Sport Science, Division of Performance Physiology and Prevention, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Brunt VE, Minson CT. Heat therapy: mechanistic underpinnings and applications to cardiovascular health. J Appl Physiol (1985) 2021; 130:1684-1704. [PMID: 33792402 DOI: 10.1152/japplphysiol.00141.2020] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, and novel therapies are drastically needed to prevent or delay the onset of CVD to reduce the societal and healthcare burdens associated with these chronic diseases. One such therapy is "heat therapy," or chronic, repeated use of hot baths or saunas. Although using heat exposure to improve health is not a new concept, it has received renewed attention in recent years as a growing number of studies have demonstrated robust and widespread beneficial effects of heat therapy on cardiovascular health. Here, we review the existing literature, with particular focus on the molecular mechanisms that underscore the cardiovascular benefits of this practice.
Collapse
Affiliation(s)
- Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado.,Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | |
Collapse
|
10
|
Silva TOC, Sales ARK, Araujo GSM, Fonseca GWP, Braga PGS, Faria D, Rocha HNM, Rocha NG, Lima MF, Mady C, Negrão CE, Alves MJNN. Disturbed Blood Flow Acutely Increases Endothelial Microparticles and Decreases Flow Mediated Dilation in Patients With Heart Failure With Reduced Ejection Fraction. Front Physiol 2021; 12:629674. [PMID: 33776792 PMCID: PMC7991910 DOI: 10.3389/fphys.2021.629674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/11/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction Disturbed blood flow, characterized by high retrograde and oscillatory shear rate (SR), is associated with a proatherogenic phenotype. The impact of disturbed blood flow in patients with heart failure with reduced ejection fraction (HFrEF) remains unknown. We tested the hypothesis that acute elevation to retrograde and oscillatory SR provoked by local circulatory occlusion would increase endothelial microparticles (EMPs) and decrease brachial artery flow-mediated dilation (FMD) in patients with HFrEF. Methods Eighteen patients with HFrEF aged 55 ± 2 years, with left ventricular ejection fraction (LVEF) 26 ± 1%, and 14 control subjects aged 49 ± 2 years with LVEF 65 ± 1 randomly underwent experimental and control sessions. Brachial artery FMD (Doppler) was evaluated before and after 30 min of disturbed forearm blood flow provoked by pneumatic cuff (Hokanson) inflation to 75 mm Hg. Venous blood samples were collected at rest, after 15 and 30 min of disturbed blood flow to assess circulating EMP levels (CD42b−/CD31+; flow cytometry). Results At rest, FMD was lower in patients with HFrEF compared with control subjects (P < 0.001), but blood flow patterns and EMPs had no differences (P > 0.05). The cuff inflation provoked a greater retrograde SR both groups (P < 0.0001). EMPs responses to disturbed blood flow significantly increased in patients with HFrEF (P = 0.03). No changes in EMPs were found in control subjects (P > 0.05). Disturbed blood flow decreased FMD both groups. No changes occurred in control condition. Conclusion Collectively, our findings suggest that disturbed blood flow acutely decreases FMD and increases EMP levels in patients with HFrEF, which may indicate that this set of patients are vulnerable to blood flow disturbances.
Collapse
Affiliation(s)
- Thiago O C Silva
- Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
| | - Allan R K Sales
- Heart Institute, University of São Paulo Medical School, São Paulo, Brazil.,D'OR Institute for Research and Education, São Paulo, Brazil
| | - Gustavo S M Araujo
- Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Pedro G S Braga
- Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
| | - Diego Faria
- D'OR Institute for Research and Education, São Paulo, Brazil
| | - Helena N M Rocha
- Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Brazil
| | - Natalia G Rocha
- Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Brazil
| | - Marta F Lima
- Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
| | - Charles Mady
- Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
| | - Carlos E Negrão
- Heart Institute, University of São Paulo Medical School, São Paulo, Brazil.,School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
11
|
Casey DP, Bock JM. Inorganic nitrate supplementation attenuates conduit artery retrograde and oscillatory shear in older adults. Am J Physiol Heart Circ Physiol 2021; 320:H991-H998. [PMID: 33449848 DOI: 10.1152/ajpheart.00843.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aging causes deleterious changes in resting conduit artery shear patterns and reduced blood flow during exercise partially attributable to reduced nitric oxide (NO). Inorganic nitrate increases circulating NO bioavailability and may, therefore, improve age-associated changes in shear rate as well as exercise hyperemia. Ten older adults (age: 67 ± 3 yr) consumed 4.03 mmol nitrate and 0.29 mmol nitrite (active) or devoid of both (placebo) daily for 4 wk in a randomized, double-blinded, crossover fashion. Brachial artery diameter (D) and blood velocity (Vmean) were measured via Doppler ultrasound at rest for the characterization of shear profile as well as during two handgrip exercise trials (4 and 8 kg) for calculation of forearm blood flow (Vmean × cross-sectional area, FBF) and conductance [FBF/mean arterial pressure, forearm vascular conductance (FVC)]. Plasma [nitrate] and [nitrite] increased following active (P < 0.05 for both) but not placebo (P = 0.68 and 0.40, respectively) supplementation. Neither mean nor antegrade shear rate changed following either supplement (beverage-by-time P = 0.14 and 0.21, respectively). Retrograde (-13.4 ± 7.0 to -9.7 ± 6.8·s-1) and oscillatory (0.20 ± 0.08 to 0.15 ± 0.09 A.U., P < 0.05 for both) shear decreased following active, but not placebo (P = 0.81 and 0.70, respectively), supplementation. The FBF response (Δ from rest) to neither 4-kg nor 8-kg trials changed following either supplement (beverage-by-time P = 0.53 and 0.11, respectively). Similarly, no changes were observed in FVC responses to 4-kg or 8-kg trials (beverage-by-time P = 0.23 and 0.07, respectively). These data indicate that inorganic nitrate supplementation improves conduit artery shear profiles, but not exercise hyperemia, in older adults.NEW & NOTEWORTHY We report for the first time, to our knowledge, that 4 wk of inorganic nitrate supplementation attenuates retrograde and oscillatory shear in the brachial artery of older adults. However, this was not associated with greater hyperemic or vasodilatory responses to exercise. In sum, these data highlight favorable changes in shear patterns with aging, which may reduce the risk of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Joshua M Bock
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
12
|
Tremblay JC, Ainslie PN, Turner R, Gatterer H, Schlittler M, Woyke S, Regli IB, Strapazzon G, Rauch S, Siebenmann C. Endothelial function and shear stress in hypobaric hypoxia: time course and impact of plasma volume expansion in men. Am J Physiol Heart Circ Physiol 2020; 319:H980-H994. [PMID: 32886005 DOI: 10.1152/ajpheart.00597.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-altitude exposure typically reduces endothelial function, and this is modulated by hemoconcentration resulting from plasma volume contraction. However, the specific impact of hypobaric hypoxia independent of external factors (e.g., cold, varying altitudes, exercise, diet, and dehydration) on endothelial function is unknown. We examined the temporal changes in blood viscosity, shear stress, and endothelial function and the impact of plasma volume expansion (PVX) during exposure to hypobaric hypoxia while controlling for external factors. Eleven healthy men (25 ± 4 yr, mean ± SD) completed two 4-day chamber visits [normoxia (NX) and hypobaric hypoxia (HH; equivalent altitude, 3,500 m)] in a crossover design. Endothelial function was assessed via flow-mediated dilation in response to transient (reactive hyperemia; RH-FMD) and sustained (progressive handgrip exercise; SS-FMD) increases in shear stress before entering and after 1, 6, 12, 48, and 96 h in the chamber. During HH, endothelial function was also measured on the last day after PVX to preexposure levels (1,140 ± 320 mL balanced crystalloid solution). Blood viscosity and arterial shear stress increased on the first day during HH compared with NX and remained elevated at 48 and 96 h (P < 0.005). RH-FMD did not differ during HH compared with NX and was unaffected by PVX despite reductions in blood viscosity (P < 0.05). The stimulus-response slope of increases in shear stress to vasodilation during SS-FMD was preserved in HH and increased by 44 ± 73% following PVX (P = 0.023). These findings suggest that endothelial function is maintained in HH when other stressors are absent and that PVX improves endothelial function in a shear-stress stimulus-specific manner.NEW & NOTEWORTHY Using a normoxic crossover study design, we examined the impact of hypobaric hypoxia (4 days; altitude equivalent, 3,500 m) and hemoconcentration on blood viscosity, shear stress, and endothelial function. Blood viscosity increased during the hypoxic exposure and was accompanied by elevated resting and exercising arterial shear stress. Flow-mediated dilation stimulated by reactive hyperemia and handgrip exercise was preserved throughout the hypoxic exposure. Plasma volume expansion reversed the hypoxia-associated hemoconcentration and selectively increased handgrip exercise flow-mediated dilation.
Collapse
Affiliation(s)
- Joshua C Tremblay
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan, Kelowna, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan, Kelowna, Canada
| | - Rachel Turner
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Maja Schlittler
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Simon Woyke
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anesthesiology and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Ivo B Regli
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anesthesia and Intensive Care Medicine, "F. Tappeiner" Hospital, Merano, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anesthesiology and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Simon Rauch
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anesthesia and Intensive Care Medicine, "F. Tappeiner" Hospital, Merano, Italy
| | | |
Collapse
|
13
|
Au JS, Beaudry KM, Pancevski K, Hughson RL, Devries MC. The impact of preconditioning exercise on the vascular response to an oral glucose challenge. Appl Physiol Nutr Metab 2020; 46:443-451. [PMID: 33113337 DOI: 10.1139/apnm-2020-0559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exercise elicits direct benefits to insulin sensitivity but may also indirectly improve glucose uptake by hemodynamic conditioning of the vasculature. The purpose of this study was to examine the modifying effect of 3 different types of exercise on the vascular response to an oral glucose challenge. Twenty healthy adults (9 women, 11 men; aged 23 ± 3 years) completed a standard oral glucose tolerance test (OGTT) at rest, as well as 1.5 hours after moderate continuous cycling exercise (30 min; 65% peak oxygen consumption), high-intensity interval cycling exercise (10 × 1 min at 90% peak heart rate), and lower-load higher-repetition resistance exercise (25-35 repetitions/set, 3 sets). Brachial and superficial femoral artery blood flow, conductance, and oscillatory shear index were measured throughout the OGTT. Regardless of rested state or exercise preconditioning, the OGTT induced reductions in brachial artery blood flow and conductance (p < 0.001), and transient increases in brachial and superficial femoral artery oscillatory shear index and retrograde blood flow (p < 0.01). Continuous cycling and resistance exercise were followed with a small degree of protection against prolonged periods of oscillatory flow. Our findings imply transient peripheral vasoconstriction and decreased limb blood flow during a standard OGTT, for which prior exercise was unable to prevent in healthy adults. Novelty: We investigated the impact of continuous, interval, and resistance exercise on the hemodynamic response to an OGTT. Our findings suggest decreased upper-limb blood flow during an OGTT is not prevented by prior exercise in healthy adults.
Collapse
Affiliation(s)
- Jason S Au
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Kayleigh M Beaudry
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Kristian Pancevski
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Richard L Hughson
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada.,Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| | - Michaela C Devries
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
14
|
Roy SJ, Tanaka H. Whole Milk and Full-Fat Dairy Products and Hypertensive Risks. Curr Hypertens Rev 2020; 17:181-195. [PMID: 32753019 DOI: 10.2174/1573402116666200804152649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 11/22/2022]
Abstract
Lifestyle modifications in the form of diet and exercise are generally a first-line approach to reduce hypertensive risk and overall cardiovascular disease (CVD) risk. Accumulating research evidence has revealed that consumption of non- and low-fat dairy products incorporated into the routine diet is an effective means to reduce elevated blood pressure and improve vascular functions. However, the idea of incorporating whole-fat or full-fat dairy products in the normal routine diet as a strategy to reduce CVD risk has been met with controversy. The aim of this review is to review both sides of the argument surrounding saturated fat intake and CVD risk from the standpoint of dairy intake. Throughout the review, we examined observational studies on relationships between CVD risk and dairy consumption, dietary intervention studies using non-fat and whole-fat dairy, and mechanistic studies investigating physiological mechanisms of saturated fat intake that may help to explain increases in cardiovascular disease risk. Currently available data have demonstrated that whole-fat dairy is unlikely to augment hypertensive risk when added to the normal routine diet but may negatively impact CVD risk. In conclusion, whole-fat dairy may not be a recommended alternative to non- or low-fat dairy products as a means to reduce hypertensive or overall CVD risk.
Collapse
Affiliation(s)
- Stephen J Roy
- Department of Kinesiology and Health Education, Cardiovascular Aging Research Laboratory, The University of Texas at Austin, TX 78712. United States
| | - Hirofumi Tanaka
- Department of Kinesiology and Health Education, Cardiovascular Aging Research Laboratory, The University of Texas at Austin, TX 78712. United States
| |
Collapse
|
15
|
Tymko MM, Tremblay JC, Bailey DM, Green DJ, Ainslie PN. The impact of hypoxaemia on vascular function in lowlanders and high altitude indigenous populations. J Physiol 2019; 597:5759-5776. [PMID: 31677355 DOI: 10.1113/jp277191] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/07/2019] [Indexed: 12/18/2022] Open
Abstract
Exposure to hypoxia elicits widespread physiological responses that are critical for successful acclimatization; however, these responses may induce apparent maladaptive consequences. For example, recent studies conducted in both the laboratory and the field (e.g. at high altitude) have demonstrated that endothelial function is reduced in hypoxia. Herein, we review the several proposed mechanism(s) pertaining to the observed reduction in endothelial function in hypoxia including: (i) changes in blood flow patterns (i.e. shear stress), (ii) increased inflammation and production of reactive oxygen species (i.e. oxidative stress), (iii) heightened sympathetic nerve activity, and (iv) increased red blood cell concentration and mass leading to elevated nitric oxide scavenging. Although some of these mechanism(s) have been examined in lowlanders, less in known about endothelial function in indigenous populations that have chronically adapted to environmental hypoxia for millennia (e.g. the Peruvian, Tibetan and Ethiopian highlanders). There is some evidence indicating that healthy Tibetan and Peruvian (i.e. Andean) highlanders have preserved endothelial function at high altitude, but less is known about the Ethiopian highlanders. However, Andean highlanders suffering from chronic mountain sickness, which is characterized by an excessive production of red blood cells, have markedly reduced endothelial function. This review will provide a framework and mechanistic model for vascular endothelial adaptation to hypoxia in lowlanders and highlanders. Elucidating the pathways responsible for vascular adaption/maladaptation to hypoxia has potential clinical implications for disease featuring low oxygen delivery (e.g. heart failure, pulmonary disease). In addition, a greater understanding of vascular function at high altitude will clinically benefit the global estimated 85 million high altitude residents.
Collapse
Affiliation(s)
- Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.,Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Joshua C Tremblay
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK
| | - Daniel J Green
- Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Australia.,Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
16
|
Effect of external compression on femoral retrograde shear and microvascular oxygenation in exercise trained and recreationally active young men. Eur J Appl Physiol 2019; 119:1809-1818. [PMID: 31190212 DOI: 10.1007/s00421-019-04170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Retrograde shear causes endothelial damage and is pro-atherogenic. The purpose of our study was to examine the impact of vascular remodeling from habitual exercise training on acute changes in retrograde shear and microvascular oxygenation (SMO2) induced via 30 min of external compression. METHODS Participants included 11 exercise trained (ET) men (Division I track athletes; age 20 ± 3 years) and 18 recreationally active (RA) men (age 23 ± 5 years). Near-infrared spectroscopy (NIRS) was used to measure vastus medialis SMO2. Doppler-ultrasound was used to assess SFA intima-media thickness, diameter and flow velocity to derive retrograde shear. Vascular measures were made at baseline (BASELINE), during a sham condition (calf compression to 5 mmHg, SHAM) and during the experimental condition (calf compression to 60 mmHg, EXP). RESULTS Compared to RA, ET had larger SFA diameters (0.66 ± 0.06 vs 0.58 ± 0.06 cm, p < 0.05) and lower SFA IMT (0.33 ± 0.03 vs 0.36 ± 0.07 mm, p < 0.05). Retrograde shear increased similarly in both groups during EXP (p < 0.05) but ET men had lower overall retrograde shear during the conditions (BASELINE 75.8 ± 26.8 vs EXP 88.2 ± 16.9 s-1) compared to RA men (BASELINE 84.4 ± 23.3 vs EXP 106.4 ± 19.6 s-1p < 0.05). There was a similar increase in SMO2 from BASELINE to SHAM (ET + 8.1 ± 4.8 vs RA + 6.4 ± 9.7%) and BASELINE to EXP (ET + 8.7 ± 6.4 vs RA + 7.1 ± 9.0%) in both groups. CONCLUSION Beneficial vascular remodeling in ET men is associated with lower retrograde shear during external compression. Acute increases in retrograde shear with external compression do not detrimentally impact microvascular oxygenation.
Collapse
|
17
|
Holder SM, Brislane Á, Dawson EA, Hopkins ND, Hopman MTE, Cable NT, Jones H, Schreuder THA, Sprung VS, Naylor L, Maiorana A, Thompson A, Thijssen DHJ, Green DJ. Relationship Between Endothelial Function and the Eliciting Shear Stress Stimulus in Women: Changes Across the Lifespan Differ to Men. J Am Heart Assoc 2019; 8:e010994. [PMID: 30764688 PMCID: PMC6405684 DOI: 10.1161/jaha.118.010994] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/18/2018] [Indexed: 01/26/2023]
Abstract
Background Premenopausal women have a lower incidence of cardiovascular disease, which may partly be due to a protective effect of estrogen on endothelial function. Animal studies suggest that estrogen may also improve the relationship between shear rate ( SR ) and endothelial function. We aimed to explore the relationship between endothelial function (ie, flow-mediated dilation [ FMD ]) and SR (ie, SR area under the curve [ SRAUC ]) in women versus men, and between pre- versus postmenopausal women. Methods and Results Brachial artery FMD and SRAUC were measured in accordance with expert-consensus guidelines in 932 healthy participants who were stratified into young adults (18-40 years, 389 men, 144 women) and older adults (>40 years, 260 men, 139 women). Second, we compared premenopausal (n=173) and postmenopausal women (n=110). There was evidence of a weak correlation between SRAUC and FMD in all groups but older men, although there was variation in strength of outcomes. Further exploration using interaction terms (age-sex× SRAUC ) in linear regression revealed differential relationships with FMD (young women versus young men [β=-5.8-4, P=0.017] and older women [β=-5.9-4, P=0.049]). The correlation between SRAUC and FMD in premenopausal women ( r2=0.097) was not statistically different from that in postmenopausal women ( r2=0.025; Fisher P=0.30). Subgroup analysis using stringent inclusion criteria for health markers (n=505) confirmed a stronger FMD - SRAUC correlation in young women compared with young men and older women. Conclusions Evidence for a stronger relationship between endothelial function and the eliciting SR stimulus is present in young women compared with men. Estrogen may contribute to this finding, but larger healthy cohorts are required for conclusive outcomes.
Collapse
Affiliation(s)
- Sophie M. Holder
- Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUnited Kingdom
| | - Áine Brislane
- Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUnited Kingdom
| | - Ellen A. Dawson
- Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUnited Kingdom
| | - Nicola D. Hopkins
- Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUnited Kingdom
| | - Maria T. E. Hopman
- Department of PhysiologyRadboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - N. Timothy Cable
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamUnited Kingdom
| | - Helen Jones
- Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUnited Kingdom
| | - Tim H. A. Schreuder
- Department of PhysiologyRadboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Victoria S. Sprung
- Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUnited Kingdom
- Department of Musculoskeletal Biology IIInstitute of Ageing and Chronic DiseaseUniversity of LiverpoolUnited Kingdom
| | - Louise Naylor
- School of Human Sciences (Exercise and Sport Science)The University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Andrew Maiorana
- School of Physiotherapy and Exercise ScienceCurtin UniversityPerthAustralia
- Allied Health Department & Advanced Heart Failure and Cardiac Transplant ServiceFiona Stanley HospitalPerthAustralia
| | - Andrew Thompson
- Wolfson Centre for Personalised MedicineUniversity of LiverpoolUnited Kingdom
| | - Dick H. J. Thijssen
- Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUnited Kingdom
- Department of PhysiologyRadboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Daniel J. Green
- School of Human Sciences (Exercise and Sport Science)The University of Western AustraliaCrawleyWestern AustraliaAustralia
| |
Collapse
|
18
|
Somani YB, Moore DJ, Kim DJ, Gonzales JU, Barlow MA, Elavsky S, Proctor DN. Retrograde and oscillatory shear increase across the menopause transition. Physiol Rep 2019; 7:e13965. [PMID: 30604931 PMCID: PMC6317059 DOI: 10.14814/phy2.13965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022] Open
Abstract
Declines in endothelial function can take place rapidly across the menopause transition, placing women at heightened risk for atherosclerosis. Disturbed patterns of conduit artery shear, characterized by greater oscillatory and retrograde shear, are associated with endothelial dysfunction but have yet to be described across menopause. Healthy women, who were not on hormone therapy or contraceptives, were classified into early perimenopausal, late perimenopausal, and early postmenopausal stage. Resting antegrade, retrograde, and oscillatory shear were calculated from blood velocity and diameter measured in the brachial and common femoral artery using Doppler ultrasound. Serum was collected for measurements of estradiol, follicle-stimulating hormone (FSH), and luteinizing hormone. After adjusting for age, brachial artery oscillatory shear was significantly higher in early postmenopausal women (n = 15, 0.17 ± 0.08 a.u.) than both early (n = 12, 0.08 ± 0.05 a.u., P < 0.05) and late (n = 8, 0.08 ± 0.04 a.u) perimenopausal women, and retrograde shear was significantly greater in early postmenopausal versus early perimenopausal women (-19.47 ± 12.97 vs. -9.62 ± 6.11 sec-1 , both P < 0.05). Femoral artery oscillatory and retrograde shear were greater, respectively, in early postmenopausal women (n = 15, 0.19 ± 0.08 a.u.; -13.57 ± 5.82 sec-1 ) than early perimenopausal women (n = 14, 0.11 ± 0.08 a.u.; -8.13 ± 4.43 sec-1 , P < 0.05). Further, Pearson correlation analyses revealed significant associations between FSH and both retrograde and oscillatory shear, respectively, in the brachial (r = -0.40, P = 0.03; r = 0.43, P = 0.02) and common femoral artery (r = -0.45, P = 0.01; r = 0.56, P = 0.001). These results suggest menopause, and its associated changes in reproductive hormones, adversely influences conduit arterial shear rate patterns to greater oscillatory and retrograde shear rates.
Collapse
Affiliation(s)
- Yasina B. Somani
- Department of KinesiologyPenn State UniversityUniversity ParkPennsylvania
| | | | | | | | | | | | - David N. Proctor
- Department of KinesiologyPenn State UniversityUniversity ParkPennsylvania
- Penn State College of MedicineHersheyPennsylvania
| |
Collapse
|
19
|
de Souza FR, Sales ARK, Dos Santos MR, Porello RA, Fonseca GWPD, Sayegh ALC, Filho ACB, Pereira RMR, Takayama L, Oliveira TFD, Yonamine M, Negrão CE, Alves MJDNN. Retrograde and oscillatory shear rate in young anabolic androgenic steroid users. Scand J Med Sci Sports 2018; 29:422-429. [PMID: 30387184 DOI: 10.1111/sms.13332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 10/01/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022]
Abstract
Disturbed shear rate (SR), characterized by increased retrograde and oscillatory SR in the brachial artery, is associated with inflammation, atherosclerosis, endothelial dysfunction, and sympathetic hyperactivity. Young subjects do not have disturbed SR; however, elderly subjects do, which seems to be associated with sympathetic hyperactivity. Anabolic androgenic steroids (AAS) abuse in young is associated with increased muscle sympathetic nerve activity (MSNA). We hypothesized that AAS users might have disturbed SR. We tested the association between retrograde and oscillatory SR with MSNA. In addition, we measured the high-sensitivity C-reactive protein (hs-CRP). We evaluated 10 male AAS users, age 27 ± 4 years, and 10 age-matched AAS nonusers, age 29 ± 5 years. At rest, retrograde and oscillatory SR were evaluated by Doppler ultrasound, MSNA was measured with microneurography, and hs-CRP was measured in blood sample. Flow-mediated dilation (FMD) was also assessed. AAS users had higher retrograde SR (24.42 ± 17.25 vs 9.15 ± 6.62 s- 1 , P = 0.01), oscillatory SR (0.22 ± 0.13 vs 0.09 ± 0.07 au P = 0.01), and MSNA (42 ± 9 vs 32 ± 4 bursts/100 heart beats, P = 0.018) than nonusers. MSNA (bursts/100 heart beats) was correlated with retrograde SR (r = 0.50, P = 0.050) and oscillatory SR (r = 0.51, P = 0.042). AAS users had higher hs-CRP [1.17 (0.44-3.63) vs 0.29 (0.17-0.70) mg/L, P = 0.015] and decreased FMD (6.42 ± 2.07 vs 8.28% ± 1.53%, P = 0.035) than nonusers. In conclusion, AAS abuse is associated with retrograde and oscillatory SR which were associated with augmented sympathetic outflow. In addition, AAS seems to lead to inflammation characterized by increased hs-CRP. These alterations may have the potential of increasing the early risk of atherosclerotic disease in young AAS users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Liliam Takayama
- Bone Laboratory Metabolism, Rheumatology, University of São Paulo Medical School, São Paulo, Brazil
| | - Tiago Franco de Oliveira
- Pharmacoscience Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Mauricio Yonamine
- Faculty of Pharmaceutical Sciences, Toxicology, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
20
|
Garten RS, Hogwood AC, Weggen JB, Fralin RC, LaRosa K, Lee D, Michael A, Scott M. Aerobic training status does not attenuate prolonged sitting-induced lower limb vascular dysfunction. Appl Physiol Nutr Metab 2018; 44:425-433. [PMID: 30257099 DOI: 10.1139/apnm-2018-0420] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study examined if the degree of aerobic training protects against the lower limb vascular dysfunction associated with a prolonged sitting bout. Ten young, aerobically trained (AT) and 10 young, untrained (UT) individuals completed a prolonged (3 h) sitting bout. Leg vascular function was measured prior to and at 1.5 and 3 h into the prolonged sitting bout using the passive leg movement (PLM) technique. PLM-induced hyperemia was significantly reduced from baseline at 1.5 and 3 h into the prolonged sitting bout in both groups when evaluated as peak change in leg blood flow from baseline (Δ LBF) (UT: 956 ± 140, 586 ± 80, and 599 ± 96 mL·min-1 at baseline, 1.5 h, and 3 h, respectively; AT: 955 ± 183, 789 ± 193, and 712 ± 131 mL·min-1 at baseline, 1.5 h, and 3 h, respectively) and LBF area under the curve (UT: 283 ± 73, 134 ± 31, and 164 ± 42 mL·min-1 at baseline, 1.5 h, and 3 h, respectively; AT: 336 ± 86, 242 ± 86, and 245 ± 73 mL·min-1 at baseline, 1.5 h, and 3 h, respectively), but no significant differences between groups were revealed. No significant correlations were observed when examining the relationship between maximal oxygen uptake (relative and absolute) and reductions in leg vascular function at 1.5 and 3 h into the prolonged sitting bout. This study revealed that aerobic training did not provide a protective effect against prolonged sitting-induced lower limb vascular dysfunction and further highlights the importance of reducing excessive sitting in all populations.
Collapse
Affiliation(s)
- Ryan S Garten
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA
| | - Austin C Hogwood
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA
| | - Jennifer B Weggen
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA
| | - R Carson Fralin
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA
| | - Kathryn LaRosa
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA
| | - David Lee
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA
| | - Austin Michael
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA
| | - Matthew Scott
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA
| |
Collapse
|
21
|
Tremblay JC, Hoiland RL, Carter HH, Howe CA, Stembridge M, Willie CK, Gasho C, MacLeod DB, Pyke KE, Ainslie PN. UBC-Nepal expedition: upper and lower limb conduit artery shear stress and flow-mediated dilation on ascent to 5,050 m in lowlanders and Sherpa. Am J Physiol Heart Circ Physiol 2018; 315:H1532-H1543. [PMID: 30168724 DOI: 10.1152/ajpheart.00345.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study of conduit artery endothelial adaptation to hypoxia has been restricted to the brachial artery, and comparisons with highlanders have been confounded by differences in altitude exposure, exercise, and unknown levels of blood viscosity. To address these gaps, we tested the hypothesis that lowlanders, but not Sherpa, would demonstrate decreased mean shear stress and increased retrograde shear stress and subsequently reduced flow-mediated dilation (FMD) in the upper and lower limb conduit arteries on ascent to 5,050 m. Healthy lowlanders (means ± SD, n = 22, 28 ± 6 yr) and Sherpa ( n = 12, 34 ± 11 yr) ascended over 10 days, with measurements taken on nontrekking days at 1,400 m (baseline), 3,440 m ( day 4), 4,371 m ( day 7), and 5,050 m ( day 10). Arterial blood gases, blood viscosity, shear stress, and FMD [duplex ultrasound of the brachial and superficial femoral arteries (BA and SFA, respectively)] were acquired at each time point. Ascent decreased mean and increased retrograde shear stress in the upper and lower limb of lowlanders and Sherpa. Although BA FMD decreased in lowlanders from 7.1 ± 3.9% to 3.8 ± 2.8% at 5,050 versus 1,400 m ( P < 0.001), SFA FMD was preserved. In Sherpa, neither BA nor SFA FMD were changed upon ascent to 5,050 m. In lowlanders, the ascent-related exercise may favorably influence endothelial function in the active limb (SFA); selective impairment in FMD in the BA in lowlanders is likely mediated via the low mean or high oscillatory baseline shear stress. In contrast, Sherpa presented protected endothelial function, suggesting a potential vascular aspect of high-altitude acclimatization/adaptation. NEW & NOTEWORTHY Upper and lower limb arterial shear stress and flow-mediated dilation (FMD) were assessed on matched ascent from 1,400 to 5,050 m in lowlanders and Sherpa. A shear stress pattern associated with vascular dysfunction/risk manifested in both limbs of lowlanders and Sherpa. FMD was impaired only in the upper limb of lowlanders. The findings indicate a limb-specific impact of high-altitude trekking on FMD and a vascular basis to acclimatization wherein endothelial function is protected in Sherpa on ascent.
Collapse
Affiliation(s)
- Joshua C Tremblay
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung, and Vascular Health, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Howard H Carter
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Connor A Howe
- Centre for Heart, Lung, and Vascular Health, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Mike Stembridge
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University , Cardiff , United Kingdom
| | - Christopher K Willie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Christopher Gasho
- Division of Pulmonary, Critical Care, Hyperbaric and Sleep Medicine, Loma Linda University School of Medicine , Loma Linda, California
| | - David B MacLeod
- Human Pharmacology and Physiology Laboratory, Department of Anesthesiology, Duke University Medical Center , Durham, North Carolina
| | - Kyra E Pyke
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
22
|
Sugawara J, Tomoto T, Lin HF, Chen CH, Tanaka H. Aortic reservoir function of Japanese female pearl divers. J Appl Physiol (1985) 2018; 125:1901-1905. [PMID: 30070611 DOI: 10.1152/japplphysiol.00466.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Female pearl divers in Japan, called " Ama," engage in repeated breath-hold free-diving maneuvers for collecting pearls, seaweeds, and shellfish in the cold sea. We previously reported that they have lower systemic arterial stiffness than age-matched sedentary peers. As a follow-up study, we evaluated their segmental arterial stiffness and aortic reservoir function. A total of 120 non-medicated women living in the same fishing villages (mean age: 65 ± 11 yr), including 88 Ama and 32 age-matched sedentary peers, were studied. Pulse wave velocity from the heart to the brachial artery (hbPWV; partly reflecting proximal aortic stiffness) and between the brachial artery and the ankle (baPWV; reflecting stiffness of abdominal aorta and leg arteries) were measured. Aortic hemodynamic variables were estimated from applanation tonometry carotid arterial pressure waveforms via general transfer function. Carotid artery impedance was calculated from blood flow velocity and blood pressure of contralateral common carotid arteries. baPWV was not different between the groups ( P = 0.117), whereas hbPWV was significantly lower in pearl divers than sedentary peers ( P = 0.004). Additionally, Ama had significantly lower aortic reservoir pressure integral ( P = 0.029) and carotid artery impedance modulus in frequency ranges from 0.78 to 4.0 Hz ( P = 0.011~0.019) than in sedentary peers. Collectively, these findings indicate that lifelong female pearl divers have superior reservoir function in central elastic arteries (e.g., the proximal aorta and carotid artery) in comparison with age-matched sedentary women living in the same fishing village. NEW & NOTEWORTHY We previously reported that lifelong female pearl divers in Japan, called " Ama," have lower systemic arterial stiffness than age-matched sedentary peers. As a follow-up study, we evaluated their segmental arterial stiffness and aortic reservoir function. In comparison with age-matched sedentary women living in the same fishing village, Ama demonstrated significantly lower arterial stiffness in more proximal and elastic arterial segments and superior reservoir function in central elastic arteries.
Collapse
Affiliation(s)
- Jun Sugawara
- National Institute of Advanced Industrial Science and Technology , Tsukuba , Japan
| | - Tsubasa Tomoto
- National Institute of Advanced Industrial Science and Technology , Tsukuba , Japan
| | - Hsin-Fu Lin
- Department of Athletics, National Taiwan University , Taipei , Taiwan
| | - Chen-Huan Chen
- Department of Medicine, National Yang-Ming University School of Medicine , Taipei , Taiwan
| | - Hirofumi Tanaka
- Department of Kinesiology and Health Education, The University of Texas at Austin , Austin, Texas
| |
Collapse
|
23
|
Ghardashi Afousi A, Izadi MR, Rakhshan K, Mafi F, Biglari S, Gandomkar Bagheri H. Improved brachial artery shear patterns and increased flow-mediated dilatation after low-volume high-intensity interval training in type 2 diabetes. Exp Physiol 2018; 103:1264-1276. [DOI: 10.1113/ep087005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Alireza Ghardashi Afousi
- Department of Exercise Physiology, Faculty of Physical Education and Exercise Sciences; University of Tehran; Tehran IR Iran
| | - Mohammad Reza Izadi
- Department of Exercise Physiology, Faculty of Physical Education and Exercise Sciences; University of Shahid Chamran; Ahvaz IR Iran
| | - Kamran Rakhshan
- Department of Medical Physiology, Faculty of Medicine; Iran University of Medical Sciences; Tehran IR Iran
| | - Farnoosh Mafi
- Department of Exercise Physiology, Faculty of Physical Education and Exercise Sciences; University of Tehran; Tehran IR Iran
| | - Soheil Biglari
- Department of Exercise Physiology, Faculty of Physical Education and Exercise Sciences; University of Tehran; Tehran IR Iran
| | | |
Collapse
|
24
|
Walsh LK, Restaino RM, Martinez-Lemus LA, Padilla J. Prolonged leg bending impairs endothelial function in the popliteal artery. Physiol Rep 2018; 5:5/20/e13478. [PMID: 29061865 PMCID: PMC5661238 DOI: 10.14814/phy2.13478] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 01/26/2023] Open
Abstract
Uninterrupted sitting blunts vascular endothelial function in the lower extremities; however, the factors contributing to this impairment remain largely unknown. Herein, we tested the hypothesis that prolonged flexion of the hip and knee joints, as it occurs during sitting, and associated low shear stress and disturbed (i.e., turbulent) blood flow caused by arterial bending, impairs endothelial function at the popliteal artery. Bilateral measurements of popliteal artery flow‐mediated dilation (FMD) were performed in 12 healthy subjects before and after a 3‐h lying‐down period during which one leg was bent (i.e., 90‐degree angles at the hip and knee) and the contralateral leg remained straight, serving as internal control. During the 3‐h lying down period, the bent leg displayed a profound and sustained reduction in popliteal artery blood flow and mean shear rate; whereas a slight but steady decline that only became significant at 3 h was noted in the straight leg. Notably, 3 h of lying down markedly impaired popliteal artery FMD in the bent leg (pre: 6.3 ± 1.2% vs. post: 2.8 ± 0.91%; P < 0.01) but not in the straight leg (pre: 5.6 ± 1.1% vs. post: 7.1 ± 1.2%; P = 0.24). Collectively, this study provides evidence that prolonged bending of the leg causes endothelial dysfunction in the popliteal artery. This effect is likely secondary to vascular exposure to low and disturbed blood flow resulting from arterial angulation. We conclude that spending excessive time with legs bent and immobile, irrespective of whether this is in the setting of sitting or lying‐down, may be disadvantageous for leg vascular health.
Collapse
Affiliation(s)
- Lauren K Walsh
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Robert M Restaino
- Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Luis A Martinez-Lemus
- Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri .,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Child Health University of Missouri, Columbia, Missouri
| |
Collapse
|
25
|
Tremblay JC, Howe CA, Ainslie PN, Pyke KE. UBC-Nepal Expedition: imposed oscillatory shear stress does not further attenuate flow-mediated dilation during acute and sustained hypoxia. Am J Physiol Heart Circ Physiol 2018. [PMID: 29522371 DOI: 10.1152/ajpheart.00717.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Experimentally induced oscillatory shear stress (OSS) and hypoxia reduce endothelial function in humans. Acute and sustained hypoxia may cause increases in resting OSS; however, whether this influences endothelial susceptibility to further increases in OSS is unknown. Healthy lowlanders ( n = 15, 30 ± 6 yr; means ± SD) participated in three OSS interventions: two interventions at sea level [normoxia and after 20 min of normobaric hypoxia (acute hypoxia, 11% O2)] and one intervention 5-7 days after a 9-day ascent to 5,050 m (sustained hypoxia). OSS was provoked in the brachial artery using a 30-min distal cuff inflation (75 mmHg). Endothelial function was assessed before and after each intervention by reactive hyperemia flow-mediated dilation (FMD). Shear stress magnitude and patterns were obtained via Duplex ultrasound. Baseline retrograde shear stress and OSS were greater in acute hypoxia versus normoxia ( P < 0.001), and OSS was elevated in sustained hypoxia versus normoxia ( P = 0.011). The intervention further augmented OSS during each condition. Preintervention FMD was decreased by 29 ± 48% in acute hypoxia and by 25 ± 31% in sustained hypoxia compared with normoxia ( P = 0.001 and 0.026); these changes correlated with changes in baseline mean and antegrade shear stress. After the intervention, FMD decreased during normoxia (-41 ± 26%, P < 0.001) and was unaltered during acute or sustained hypoxia. Therefore, a 30-min exposure to OSS reduced FMD during normoxia, a condition with an unchallenged, healthy endothelium; however, imposed OSS did not appear to worsen endothelial function during acute or sustained hypoxia. Exposure to an altered magnitude and pattern of shear stress at baseline in hypoxia may contribute to the insensitivity to further acute augmentation of OSS. NEW & NOTEWORTHY We investigated whether the endothelium remains sensitive to experimental increases in oscillatory shear stress in acute (11% O2) and sustained (2 wk at 5,050 m) hypoxia. Hypoxia altered baseline shear stress and decreased endothelial function (flow-mediated dilation); however, exposure to experimentally induced oscillatory shear stress only impaired flow-mediated dilation in normoxia.
Collapse
Affiliation(s)
- Joshua C Tremblay
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Connor A Howe
- Centre for Heart, Lung, and Vascular Health, University of British Columbia , Kelowna, British Columbia , Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia , Kelowna, British Columbia , Canada
| | - Kyra E Pyke
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|
26
|
Jiménez-Altayó F, Siegert AM, Bonorino F, Meirelles T, Barberà L, Dantas AP, Vila E, Egea G. Differences in the Thoracic Aorta by Region and Sex in a Murine Model of Marfan Syndrome. Front Physiol 2017; 8:933. [PMID: 29187826 PMCID: PMC5694786 DOI: 10.3389/fphys.2017.00933] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/03/2017] [Indexed: 12/27/2022] Open
Abstract
Marfan syndrome (MFS) is a hereditary disorder of the connective tissue that causes life-threatening aortic aneurysm, which initiates at the aortic root and can progress into the ascending portion. However, analysis of ascending aorta reactivity in animal models of MFS has remained elusive. Epidemiologic evidence suggests that although MFS is equally prevalent in men and women, men are at a higher risk of aortic complications than non-pregnant women. Nevertheless, there is no experimental evidence to support this hypothesis. The aim of this study was to explore whether there are regional and sex differences in the thoracic aorta function of mice heterozygous for the fibrillin 1 (Fbn1) allele encoding a missense mutation (Fbn1C1039G/+), the most common class of mutation in MFS. Ascending and descending thoracic aorta reactivity was evaluated by wire myography. Ascending aorta mRNA and protein levels, and elastic fiber integrity were assessed by qRT-PCR, Western blotting, and Verhoeff-Van Gieson histological staining, respectively. MFS differently altered reactivity in the ascending and descending thoracic aorta by either increasing or decreasing phenylephrine contractions, respectively. When mice were separated by sex, contractions to phenylephrine increased progressively from 3 to 6 months of age in MFS ascending aortas of males, whereas contractions in females were unchanged. Endothelium-dependent relaxation was unaltered in the MFS ascending aorta of either sex; an effect related to augmented endothelium-dependent hyperpolarization-type dilations. In MFS males, the non-selective cyclooxygenase (COX) inhibitor indomethacin prevented the MFS-induced enhancement of phenylephrine contractions linked to increased COX-2 expression. In MFS mice of both sexes, the non-selective nitric oxide synthase inhibitor L-NAME revealed negative feedback of nitric oxide on phenylephrine contractions, which was associated with upregulation of eNOS in females. Finally, MFS ascending aortas showed a greater number of elastic fiber breaks than the wild-types, and males exhibited more breaks than females. These results show regional and sex differences in Fbn1C1039G/+ mice thoracic aorta contractility and aortic media injuries. The presence of more pronounced aortic alterations in male mice provides experimental evidence to support that male MFS patients are at increased risk of suffering aortic complications.
Collapse
Affiliation(s)
- Francesc Jiménez-Altayó
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Anna-Maria Siegert
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Fabio Bonorino
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thayna Meirelles
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Laura Barberà
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Ana P Dantas
- Institut Clínic del Tòrax, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Elisabet Vila
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Gustavo Egea
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
Lewis NCS, Bain AR, Wildfong KW, Green DJ, Ainslie PN. Acute hypoxaemia and vascular function in healthy humans. Exp Physiol 2017; 102:1635-1646. [PMID: 28901662 DOI: 10.1113/ep086532] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/11/2017] [Indexed: 02/03/2023]
Abstract
NEW FINDINGS What is the central question of this study? Endothelium-dependent flow-mediated dilatation (FMD) is impaired during acute (60 min) exposure to moderate hypoxia. We examined whether FMD is impaired to the same degree during exposure to milder hypoxia. Additionally, we assessed whether smooth muscle vasodilatory capacity [glyceryl trinitrate (GTN)-induced dilatation] is impaired during acute hypoxic exposure. What is the main finding and its importance? A graded impairment in FMD and GTN-induced dilatation was evident during acute (≤60 min) exposure to mild and moderate hypoxia. This study is the first to document these graded impairments, and provides rationale to examine the relationship between graded increases in sympathetic nerve activity with hypoxia on FMD and GTN-induced dilatation. Endothelium-dependent flow-mediated dilatation (FMD) and endothelium-independent dilatation [induced with glyceryl trinitrate (GTN)] are impaired at high altitude (5050 m), and FMD is impaired after acute exposure (<60 min) to normobaric hypoxia equivalent to ∼5050 m (inspired oxygen fraction ∼0.11). Whether GTN-induced dilatation is impaired acutely and whether FMD is impaired during milder hypoxia are unknown. Therefore, we assessed brachial FMD at baseline and after 30 min of mild (end-tidal PO2 74 ± 2 mmHg) and moderate (end-tidal PO2 50 ± 3 mmHg) normobaric hypoxia (n = 12) or normoxia (time-control trial; n = 10). We also assessed GTN-induced dilatation after the hypoxic FMD tests and in normoxia on a separate control day (n = 8). Compared with the normoxic baseline, reductions during mild and moderate hypoxic exposure were evident in FMD (mild versus moderate, -1.2 ± 1.1 versus -3.1 ± 1.7%; P = 0.01) and GTN-induced dilatation (-2.1 ± 1.0 versus -4.2 ± 2.0%; P = 0.01); the declines in FMD and GTN-induced dilatation were greater during moderate hypoxia (P < 0.01). When allometrically corrected for baseline diameter and FMD shear rate under the curve, FMD was attenuated in both conditions (mild versus moderate, 0.6 ± 0.9 versus 0.8 ± 0.7%; P ≤ 0.01). After 30 min of normoxic time control, FMD was reduced (-0.6 ± 0.3%; P = 0.02). In summary, there was a graded impairment in FMD during mild and moderate hypoxic exposure, which appears to be influenced by shear patterns and incremental decline in smooth muscle vasodilator capacity (impaired GTN-induced dilatation). Our findings from the normoxic control study suggest the decline in FMD in acute hypoxia also appears to be influenced by 30 min of supine rest/inactivity.
Collapse
Affiliation(s)
- N C S Lewis
- Centre for Heart Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - A R Bain
- Centre for Heart Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada.,Department of Integrative Physiology, Integrative Vascular Biology Laboratory, The University of Colorado Boulder, Boulder, CO, USA
| | - K W Wildfong
- Centre for Heart Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - D J Green
- School of Sport Science, Exercise and Health, University of Western Australia, Crawley, Perth, Western Australia, Australia
| | - P N Ainslie
- Centre for Heart Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
28
|
Casey DP, Ueda K, Wegman-Points L, Pierce GL. Muscle contraction induced arterial shear stress increases endothelial nitric oxide synthase phosphorylation in humans. Am J Physiol Heart Circ Physiol 2017; 313:H854-H859. [PMID: 28801524 PMCID: PMC5668602 DOI: 10.1152/ajpheart.00282.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/19/2017] [Accepted: 08/08/2017] [Indexed: 11/22/2022]
Abstract
We determined if local increases in brachial artery shear during repetitive muscle contractions induce changes in protein expression of endothelial nitric oxide synthase (eNOS) and/or phosphorylated (p-)eNOS at Ser1177, the primary activation site on eNOS, in endothelial cells (ECs) of humans. Seven young male subjects (25 ± 1 yr) performed 20 separate bouts (3 min each) of rhythmic forearm exercise at 20% of maximum over a 2-h period. Each bout of exercise was separated by 3 min of rest. An additional six male subjects (24 ± 1 yr) served as time controls (no exercise). ECs were freshly isolated from the brachial artery using sterile J-wires through an arterial catheter at baseline and again after the 2-h exercise or time control period. Expression of eNOS or p-eNOS Ser1177 in ECs was determined via immunofluorescence. Brachial artery mean shear rate was elevated compared with baseline and the time control group throughout the 2-h exercise protocol (P < 0.001). p-eNOS Ser1177 expression was increased 57% in ECs in the exercise group [0.06 ± 0.01 vs. 0.10 ± 0.02 arbitrary units (au), P = 0.02] but not in the time control group (0.08 ± 0.01 vs. 0.07 ± 0.01 au, P = 0.72). In contrast, total eNOS expression did not change in either the exercise (0.13 ± 0.04 vs. 0.12 ± 0.03 au) or time control (0.12 ± 0.03 vs. 0.11 ± 0.03 au) group (P > 0.05 for both). Our novel results suggest that elevations in brachial artery shear increase eNOS Ser1177 phosphorylation in the absence of changes in total eNOS in ECs of young healthy male subjects, suggesting that this model is sufficient to alter posttranslational modification of eNOS activity in vivo in humans.NEW & NOTEWORTHY Elevations in brachial artery shear in response to forearm exercise increased endothelial nitric oxide synthase Ser1177 phosphorylation in brachial artery endothelial cells of healthy humans. Our present study provides the first evidence in humans that muscle contraction-induced increases in conduit arterial shear lead to in vivo posttranslational modification of endothelial nitric oxide synthase activity in endothelial cells.
Collapse
Affiliation(s)
- Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa;
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research, University of Iowa, Iowa City, Iowa; and
| | - Kenichi Ueda
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | | | - Gary L Pierce
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research, University of Iowa, Iowa City, Iowa; and
| |
Collapse
|
29
|
Groot HJ, Rossman MJ, Garten RS, Wang E, Hoff J, Helgerud J, Richardson RS. The Effect of Physical Activity on Passive Leg Movement-Induced Vasodilation with Age. Med Sci Sports Exerc 2017; 48:1548-57. [PMID: 27031748 DOI: 10.1249/mss.0000000000000936] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Because of reduced nitric oxide (NO) bioavailability with age, passive leg movement (PLM)-induced vasodilation is attenuated in older sedentary subjects and, unlike the young subjects, cannot be augmented by posture-induced elevations in femoral perfusion pressure. However, whether vasodilator function assessed with PLM, and therefore NO bioavailability, is preserved in older individuals with greater physical activity and fitness is unknown. METHODS PLM was performed on four subject groups: young sedentary (Y, 23 ± 1 yr, n = 12), old sedentary (OS, 73 ± 2 yr, n = 12), old active (OA, 71 ± 2 yr, n = 10), and old endurance trained (OT, 72 ± 1 yr, n = 10) in the supine and upright-seated posture. Hemodynamics were measured using ultrasound Doppler and finger photoplethysmography. RESULTS In the supine posture, PLM-induced peak change in leg vascular conductance was significantly attenuated in the OS compared with the young subjects (OS = 4.9 ± 0.5, Y = 6.9 ± 0.7 mL·min·mm Hg) but was not different from the young in the OA and OT (OA = 5.9 ± 1.0, OT = 5.4 ± 0.4 mL·min·mm Hg). The upright-seated posture significantly augmented peak change in leg vascular conductance in all but the OS (OS = 4.9 ± 0.5, Y = 11.8 ± 1.3, OA = 7.3 ± 0.8, OT = 8.1 ± 0.8 mL·min·mm Hg), revealing a significant vasodilatory reserve capacity in the other groups (Y = 4.92 ± 1.18, OA = 1.37 ± 0.55, OT = 2.76 ± 0.95 mL·min·mm Hg). CONCLUSIONS As PLM predominantly reflects NO-mediated vasodilation, these findings support the idea that augmenting physical activity and fitness can protect NO bioavailability, attenuating the deleterious effects of advancing age on vascular function.
Collapse
Affiliation(s)
- H Jonathan Groot
- 1Geriatric Research, Education, and Clinical Center Salt Lake City VAMC, UT; 2Department of Exercise and Sport Science University of Utah, Salt Lake City, UT; 3Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA; 4Department of Internal Medicine, University of Utah, Salt Lake City, UT; 5Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, NORWAY; 6Department of Physical Medicine and Rehabilitation, St. Olavs University Hospital, Trondheim, NORWAY; 7Hokksund Medical Rehabilitation Center, Hokksund, NORWAY; and 8Department of Sports and Outdoor Life Studies, Telemark University College, Bø, NORWAY
| | | | | | | | | | | | | |
Collapse
|
30
|
Tanahashi K, Kosaki K, Sawano Y, Yoshikawa T, Tagawa K, Kumagai H, Akazawa N, Maeda S. Impact of Age and Aerobic Exercise Training on Conduit Artery Wall Thickness: Role of the Shear Pattern. J Vasc Res 2017; 54:272-279. [PMID: 28910811 DOI: 10.1159/000479871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 07/28/2017] [Indexed: 11/19/2022] Open
Abstract
Hemodynamic shear stress is the frictional force of blood on the arterial wall. The shear pattern in the conduit artery affects the endothelium and may participate in the development and progression of atherosclerosis. We investigated the role of the shear pattern in age- and aerobic exercise-induced changes in conduit artery wall thickness via cross-sectional and interventional studies. In a cross-sectional study, we found that brachial shear rate patterns and brachial artery intima-media thickness (IMT) correlated with age. Additionally, brachial artery shear rate patterns were associated with brachial artery IMT in 102 middle-aged and older individuals. In an interventional study, 39 middle-aged and older subjects were divided into 2 groups: control and exercise. The exercise group completed 12 weeks of aerobic exercise training. Aerobic exercise training significantly increased the antegrade shear rate and decreased the retrograde shear rate and brachial artery IMT. Moreover, changes in the brachial artery antegrade shear rate and the retrograde shear rate correlated with the change in brachial artery IMT. The results of the present study indicate that changes in brachial artery shear rate patterns may contribute to age- and aerobic exercise training-induced changes in brachial artery wall thickness.
Collapse
Affiliation(s)
- Koichiro Tanahashi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Arce C, Vicente D, Segura V, Flacco N, Montó F, Almenar L, Agüero J, Rueda J, Jiménez-Altayó F, Vila E, Noguera MA, D'Ocon P, Ivorra MD. Activation of α 1A -adrenoceptors desensitizes the rat aorta response to phenylephrine through a neuronal NOS pathway, a mechanism lost with ageing. Br J Pharmacol 2017; 174:2015-2030. [PMID: 28369791 DOI: 10.1111/bph.13800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE A NO-mediated desensitization of vasoconstrictor responses evoked by stimulation of α1 -adrenoceptors has been reported in different vessels. We investigated the involvement of each α1 -adrenoceptor subtype and constitutive NOS isoforms and the influence of ageing and hypertension on this process. EXPERIMENTAL APPROACH Wistar and spontaneously hypertensive rats (SHR), 16, 32, 52 and 72 weeks-old, were used to evaluate the desensitization process. Expression of α1 -adrenoceptor subtypes, endothelial NOS (eNOS) and neuronal NOS (nNOS) were determined in rat aorta and left ventricle (LV). Expression levels were also evaluated in LV of a group of heart failure patients with a wide age range. KEY RESULTS Repeated application of phenylephrine decreased subsequent α1 -adrenoceptor-mediated vasoconstriction by increasing nNOS protein expression in aorta, but not in tail or mesenteric resistance arteries, where mRNA levels of nNOS were undetectable. This desensitization process disappeared in the absence of endothelium or in the presence of L-NAME (100 μM), nNOS inhibitors, SMTC (1 μM) and TRIM (100 μM), and 5-methylurapidil (100 nM, α1A -antagonist), but not BMY7378 (10 nM, α1D -antagonist). The α1A /nNOS-mediated desensitization was absent in aged SHR and Wistar animals, where the expression of α1A -adrenoceptors was reduced in aorta and LV. In human LV, a negative correlation was found between age and α1A -adrenoceptor expression. CONCLUSIONS AND IMPLICATIONS The α1A -adrenoceptor subtype, through endothelial nNOS-derived NO, may act as a physiological 'brake' against the detrimental effects of excessive α1 -adrenoceptor-mediated vasoconstriction. Reduced α1A -adrenoceptor- and nNOS-mediated desensitization in aged patients could be involved in the age-dependent elevation of adrenergic activity.
Collapse
Affiliation(s)
- Cristina Arce
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Burjassot, Spain.,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Spain
| | - Diana Vicente
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Burjassot, Spain
| | - Vanessa Segura
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Burjassot, Spain
| | - Nicla Flacco
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Burjassot, Spain
| | - Fermi Montó
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Burjassot, Spain.,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Spain
| | - Luis Almenar
- Unidad de Insuficiencia Cardiaca y Trasplantes, Servicio de Cardiología, Hospital Universitario La Fe, Valencia, Spain
| | - Jaime Agüero
- Unidad de Insuficiencia Cardiaca y Trasplantes, Servicio de Cardiología, Hospital Universitario La Fe, Valencia, Spain
| | - Joaquín Rueda
- Unidad de Insuficiencia Cardiaca y Trasplantes, Servicio de Cardiología, Hospital Universitario La Fe, Valencia, Spain
| | - Francesc Jiménez-Altayó
- Facultat de Medicina, Departament de Farmacologia, Terapèutica i Toxicologia, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Elisabet Vila
- Facultat de Medicina, Departament de Farmacologia, Terapèutica i Toxicologia, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Maria Antonia Noguera
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Burjassot, Spain.,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Spain
| | - Pilar D'Ocon
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Burjassot, Spain.,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Spain
| | - Maria Dolores Ivorra
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Burjassot, Spain.,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Spain
| |
Collapse
|
32
|
Sepúlveda C, Palomo I, Fuentes E. Mechanisms of endothelial dysfunction during aging: Predisposition to thrombosis. Mech Ageing Dev 2017; 164:91-99. [PMID: 28477984 DOI: 10.1016/j.mad.2017.04.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/13/2017] [Accepted: 04/29/2017] [Indexed: 12/15/2022]
Abstract
One of the risk factors for developing cardiovascular disease (CVD) is aging. In the elderly endothelial dysfunction occurs as altered endothelial ability to regulate hemostasis, vascular tone and cell permeability. In addition, there are changes in the expression and plasma levels of important endothelial components related to endothelial-mediated modulation in hemostasis. These include alterations in the metabolism of nitric oxide and prostanoides, endothelin-1, thrombomodulin and Von Willebrand factor. These alterations potentiate the pro-coagulant status developed with aging, highlighting the endothelial role in the development of thrombosis in aging.
Collapse
Affiliation(s)
- Cesar Sepúlveda
- Platelet Research Laboratory, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
| | - Iván Palomo
- Platelet Research Laboratory, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001, Chile
| | - Eduardo Fuentes
- Platelet Research Laboratory, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001, Chile; Núcleo Científico Multidisciplinario, Universidad de Talca, Talca, Chile.
| |
Collapse
|
33
|
Green DJ, Hopman MTE, Padilla J, Laughlin MH, Thijssen DHJ. Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli. Physiol Rev 2017; 97:495-528. [PMID: 28151424 DOI: 10.1152/physrev.00014.2016] [Citation(s) in RCA: 477] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
On the 400th anniversary of Harvey's Lumleian lectures, this review focuses on "hemodynamic" forces associated with the movement of blood through arteries in humans and the functional and structural adaptations that result from repeated episodic exposure to such stimuli. The late 20th century discovery that endothelial cells modify arterial tone via paracrine transduction provoked studies exploring the direct mechanical effects of blood flow and pressure on vascular function and adaptation in vivo. In this review, we address the impact of distinct hemodynamic signals that occur in response to exercise, the interrelationships between these signals, the nature of the adaptive responses that manifest under different physiological conditions, and the implications for human health. Exercise modifies blood flow, luminal shear stress, arterial pressure, and tangential wall stress, all of which can transduce changes in arterial function, diameter, and wall thickness. There are important clinical implications of the adaptation that occurs as a consequence of repeated hemodynamic stimulation associated with exercise training in humans, including impacts on atherosclerotic risk in conduit arteries, the control of blood pressure in resistance vessels, oxygen delivery and diffusion, and microvascular health. Exercise training studies have demonstrated that direct hemodynamic impacts on the health of the artery wall contribute to the well-established decrease in cardiovascular risk attributed to physical activity.
Collapse
Affiliation(s)
- Daniel J Green
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Maria T E Hopman
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - M Harold Laughlin
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Dick H J Thijssen
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| |
Collapse
|
34
|
Endogenous endothelin-1 and femoral artery shear rate: impact of age and implications for atherosclerosis. J Hypertens 2016; 34:266-73. [PMID: 26599223 DOI: 10.1097/hjh.0000000000000777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Both altered shear rate and endothelin-1 (ET-1) are associated with the age-related development of atherosclerosis. However, the role of ET-1, a potent endogenous vasoconstrictor, in altering shear rate in humans, especially in the atherosclerotic-prone vasculature of the leg, is unknown. Therefore, this study examined the contribution of ET-1 to the age-related alterations in common femoral artery (CFA) shear rate. METHOD BQ-123, a specific endothelin type A (ET(A)) receptor antagonist, was infused into the CFA, and diameter and blood velocity were measured by Doppler ultrasound in young (n = 8, 24 ± 2 years) and old (n = 9, 70 ± 2 years) study participants. RESULTS AND CONCLUSION The old had greater intima-media thickening in the CFA, indicative of a preatherogenic phenotype. Prior to infusion, the old study participants exhibited reduced mean shear rate (27 ± 3/s) compared with the young study participants (62 ± 9/s). This difference was likely driven by attenuated antegrade shear rate in the old as retrograde shear rate was similar in the young and old. Inhibition of ETA receptors, by BQ-123, increased leg blood flow in the old, but not in the young, abolishing age-related differences. Older study participants had a larger CFA (young: 0.82 ± 0.03 cm, old: 0.99 ± 0.03 cm) in which BQ-123 induced significant vasodilation (5.1 ± 1.0%), but had no such effect in the young (-0.8 ± 0.8%). Interestingly, despite the age-specific, BQ-123-induced increase in leg blood flow and CFA diameter, shear rate patterns remained largely unchanged. Therefore, ET-1, acting through the ETA receptors, exerts a powerful age-specific vasoconstriction. However, removal of this vasoconstrictor stimulus does not augment mean shear rate in the old.
Collapse
|
35
|
Casey DP, Schneider AC, Ueda K. Influence of chronic endurance exercise training on conduit artery retrograde and oscillatory shear in older adults. Eur J Appl Physiol 2016; 116:1931-40. [PMID: 27497720 DOI: 10.1007/s00421-016-3445-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/26/2016] [Indexed: 01/12/2023]
Abstract
PURPOSE With aging, there tends to be an increase in retrograde and oscillatory shear in peripheral conduit arteries of humans. Whether the increase in shear rate is due to the aging process or an effect of a less active lifestyle that often accompanies aging is unknown. Therefore, we examined whether chronic endurance exercise training attenuates conduit artery retrograde and oscillatory shear in older adults. METHODS Brachial and common femoral artery mean blood velocities and diameter were determined via Doppler ultrasound under resting conditions, and shear rate was calculated in 13 young (24 ± 2 years), 17 older untrained (66 ± 3 years), and 16 older endurance exercise-trained adults (66 ± 7 years). RESULTS Brachial artery retrograde (-9.1 ± 6.4 vs. -12.6 ± 9.4 s(-1); P = 0.35) and oscillatory (0.14 ± 0.08 vs. 0.14 ± 0.08 arbitrary units; P = 0.99) shear were similar between the older trained and untrained groups, whereas brachial artery retrograde and oscillatory shear were greater in older untrained compared to young adults (-5.0 ± 3.4, 0.08 ± 0.05 s(-1) arbitrary units, P = 0.017 and 0.048, respectively). There was no difference between the young and older trained brachial retrograde (P = 0.29) and oscillatory (P = 0.07) shear. Common femoral artery retrograde (-6.3 ± 2.9 s(-1)) and oscillatory (0.21 ± 0.08 arbitrary units) shear were reduced in older trained compared to the older untrained group (-10.4 ± 4.1 and 0.30 ± 0.09 s(-1) arbitrary units, both P = 0.005 and 0.006, respectively), yet similar to young adults (-7.1 ± 3.5 and 0.19 ± 0.06 s(-1) arbitrary units, P = 0.81 and 0.87, respectively). CONCLUSION Our results suggest that chronic endurance exercise training in older adults ameliorates retrograde and oscillatory shear rate patterns, particularly in the common femoral artery.
Collapse
Affiliation(s)
- Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa, IA, 52242, USA. .,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa, IA, 52242, USA. .,Fraternal Order of Eagles Diabetes Research, Carver College of Medicine, University of Iowa, Iowa, IA, 52242, USA.
| | - Aaron C Schneider
- Department of Health and Human Physiology, University of Iowa, Iowa, IA, 52242, USA
| | - Kenichi Ueda
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa, IA, 52242, USA
| |
Collapse
|
36
|
Thijssen DHJ, Schreuder THA, Newcomer SW, Laughlin MH, Hopman MTE, Green DJ. Impact of 2-Weeks Continuous Increase in Retrograde Shear Stress on Brachial Artery Vasomotor Function in Young and Older Men. J Am Heart Assoc 2015; 4:e001968. [PMID: 26416875 PMCID: PMC4845130 DOI: 10.1161/jaha.115.001968] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/24/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although acute elevation in retrograde shear rate (SR) impairs endothelial function, no previous study has explored the effect of prolonged elevation of retrograde SR on conduit artery vascular function. We examined the effect of 2-weeks elevation of retrograde SR on brachial artery endothelial function in young and in older men. METHODS AND RESULTS Thirteen healthy young (23±2 years) and 13 older men (61±5 years) were instructed to continuously wear a compression sleeve around the right forearm to chronically (2 weeks) elevate brachial artery retrograde SR in 1 arm. We assessed SR, diameter, and flow-mediated dilation in both the sleeve and contralateral control arms at baseline and after 30 minutes and 2 weeks of continuous sleeve application. The sleeve intervention increased retrograde SR after 30 minutes and 2 weeks in both young and older men (P=0.03 and 0.001, respectively). In young men, brachial artery flow-mediated dilation % was lower after 30 minutes and 2 weeks (P=0.004), while resting artery diameter was reduced after 2 weeks (P=0.005). The contralateral arm showed no change in retrograde SR or flow-mediated dilation % (P=0.32 and 0.26, respectively), but a decrease in diameter (P=0.035). In older men, flow-mediated dilation % and diameter did not change in either arm (all P>0.05). CONCLUSIONS Thirty-minute elevation in retrograde SR in young men caused impaired endothelial function, while 2-week exposure to elevated levels of retrograde SR was associated with a comparable decrease in endothelial function. Interestingly, these vascular changes were not present in older men, suggesting age-related vascular changes to elevation in retrograde SR.
Collapse
Affiliation(s)
- Dick H. J. Thijssen
- Department of PhysiologyRadboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Research Institute for Sport and Exercise ScienceLiverpool John Moores UniversityLiverpoolUnited Kingdom
| | - Tim H. A. Schreuder
- Department of PhysiologyRadboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | | | | | - Maria T. E. Hopman
- Department of PhysiologyRadboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Daniel J. Green
- Research Institute for Sport and Exercise ScienceLiverpool John Moores UniversityLiverpoolUnited Kingdom
- School of Sport Science, Exercise and HealthThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| |
Collapse
|
37
|
Iwamoto E, Katayama K, Ishida K. Exercise intensity modulates brachial artery retrograde blood flow and shear rate during leg cycling in hypoxia. Physiol Rep 2015; 3:3/6/e12423. [PMID: 26038470 PMCID: PMC4510625 DOI: 10.14814/phy2.12423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The purpose of this study was to elucidate the effect of exercise intensity on retrograde blood flow and shear rate (SR) in an inactive limb during exercise under normoxic and hypoxic conditions. The subjects performed two maximal exercise tests on a semi-recumbent cycle ergometer to estimate peak oxygen uptake (O2peak) while breathing normoxic (inspired oxygen fraction [FIO2 = 0.21]) and hypoxic (FIO2 = 0.12 or 0.13) gas mixtures. Subjects then performed four exercise bouts at the same relative intensities (30 and 60% O2peak) for 30 min under normoxic or hypoxic conditions. Brachial artery diameter and blood velocity were simultaneously recorded, using Doppler ultrasonography. Retrograde SR was enhanced with increasing exercise intensity under both conditions at 10 min of exercise. Thereafter, retrograde blood flow and SR in normoxia returned to pre-exercise levels, with no significant differences between the two exercise intensities. In contrast, retrograde blood flow and SR in hypoxia remained significantly elevated above baseline and was significantly greater at 60% than at 30% O2peak. We conclude that differences in exercise intensity affect brachial artery retrograde blood flow and SR during prolonged exercise under hypoxic conditions.
Collapse
Affiliation(s)
- Erika Iwamoto
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Koji Ishida
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
38
|
Schreuder THA, Green DJ, Hopman MTE, Thijssen DHJ. Impact of retrograde shear rate on brachial and superficial femoral artery flow-mediated dilation in older subjects. Atherosclerosis 2015; 241:199-204. [PMID: 25917080 DOI: 10.1016/j.atherosclerosis.2015.04.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/03/2015] [Accepted: 04/13/2015] [Indexed: 11/18/2022]
Abstract
UNLABELLED An inverse, dose-dependent relationship between retrograde shear rate and brachial artery endothelial function exists in young subjects. This relationship has not been investigated in older adults, who have been related to lower endothelial function, higher resting retrograde shear rate and higher risk of cardiovascular disease. AIM To investigate the impact of a step-wise increase in retrograde shear stress on flow-mediated dilation in older males in the upper and lower limbs. METHODS Fifteen older (68 ± 9 years) men reported to the laboratory 3 times. We examined brachial artery flow-mediated dilation before and after 30-min exposure to cuff inflation around the forearm at 0, 30 and 60 mmHg, to manipulate retrograde shear rate. Subsequently, the 30-min intervention was repeated in the superficial femoral artery. Order of testing (vessel and intervention) was randomised. RESULTS Increases in cuff pressure resulted in dose-dependent increases in retrograde shear in both the brachial and superficial femoral artery in older subjects. In both the brachial and the superficial femoral artery, no change in endothelial function in response to increased retrograde shear was observed in older males ('time' P = 0.274, 'cuff*time P = 0.791', 'cuff*artery*time P = 0.774'). CONCLUSION In contrast with young subjects, we found that acute elevation in retrograde shear rate does not impair endothelial function in older humans. This may suggest that subjects with a priori endothelial dysfunction are less responsive or requires a larger shear rate stimulus to alter endothelial function.
Collapse
Affiliation(s)
- Tim H A Schreuder
- Radboud Institute for Health Sciences, Radboud University Medical Center, The Netherlands
| | - Daniel J Green
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Maria T E Hopman
- Radboud Institute for Health Sciences, Radboud University Medical Center, The Netherlands
| | - Dick H J Thijssen
- Radboud Institute for Health Sciences, Radboud University Medical Center, The Netherlands; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.
| |
Collapse
|
39
|
Scholten RR, Spaanderman MEA, Green DJ, Hopman MTE, Thijssen DHJ. Retrograde shear rate in formerly preeclamptic and healthy women before and after exercise training: relationship with endothelial function. Am J Physiol Heart Circ Physiol 2014; 307:H418-25. [PMID: 24906915 DOI: 10.1152/ajpheart.00128.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Blood flow patterns in conduit arteries characterized by high levels of retrograde shear stress can be detrimental for vascular health. In this study we examined whether retrograde shear rate and endothelial function are related in healthy and formerly preeclamptic (PE) women and whether this relationship is altered by exercise training. Formerly PE women (32 ± 4 yr, n = 20) and controls (32 ± 4 yr, n = 20), all 6-12 mo postpartum, performed 12-wk aerobic exercise training. We measured brachial artery shear rate (SR) and endothelial function by flow-mediated dilation (FMD, echo-Doppler). We additionally performed power spectral analysis of heart rate variability and calculated low-frequency/high-frequency (LF/HF) ratio. Antegrade SR was not different between groups, while retrograde SR was significantly higher and FMD% lower in PE women compared with controls (both P < 0.05). Retrograde shear correlated strongly with FMD% in PE women and controls (P < 0.05). LF/HF ratio inversely correlated with brachial artery retrograde SR and FMD% (both P < 0.05) in PE women and controls. Exercise training reduced retrograde shear, improved FMD%, and reduced LF/HF ratios similarly in both groups (all P < 0.05). Training-induced changes in retrograde SR correlated with changes in FMD% and LF/HF ratio. A higher brachial artery retrograde SR relates to lower brachial artery endothelial function, in both controls and formerly PE women. Exercise training improves retrograde SR, while the magnitude of this change correlated strongly with improvements in FMD and reductions in LF/HF ratio. Therefore, the impact of PE and exercise training on endothelial health may, at least partly, be related to retrograde shear rate.
Collapse
Affiliation(s)
- Ralph R Scholten
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands;
| | - Marc E A Spaanderman
- Research School GROW, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Daniel J Green
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Australia; and Research Institute for Sports and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Maria T E Hopman
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Research Institute for Sports and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
40
|
Trinity JD, Groot HJ, Layec G, Rossman MJ, Ives SJ, Richardson RS. Impact of age and body position on the contribution of nitric oxide to femoral artery shear rate: implications for atherosclerosis. Hypertension 2014; 63:1019-25. [PMID: 24535011 DOI: 10.1161/hypertensionaha.113.02854] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reduced shear stress and augmented oscillatory shear rate are associated with the proatherogenic phenotype observed with aging. To date, mechanisms contributing to the age-related alterations in shear rate in humans have only been examined in the conduit vessels of the arm. Therefore, this study sought to examine the contribution of nitric oxide (NO) bioavailability to age-related alterations in shear rate and the impact of common body positions (supine and seated) in the atherosclerotic-prone conduit artery of the leg. Inhibition of NO synthase (NOS) was accomplished by intra-arterial infusion of N(G)-monomethyl-l-arginine (L-NMMA), and common femoral artery diameter and blood velocity were measured by Doppler ultrasound in healthy young (n=8, 24±1 years) and old (n=8, 75±3 years) men. Old subjects exhibited reduced mean shear rate in the supine (18±3 s(-1)) and seated positions (17±3 s(-1)) compared with young subjects (supine: 42±6 s(-1); seated: 32±4 s(-1)). This reduced mean shear in the old was driven by attenuated antegrade shear as there were no differences in retrograde shear. Inhibition of NOS reduced antegrade shear in the young such that age-related differences were abolished. In contrast, NOS-induced reductions in retrograde shear rate were similar between groups. The seated position reduced mean shear rate in the young to that normally observed in old. Overall, this study reveals that age-related reductions in mean shear rate, assessed in the atherosclerotic-prone vasculature of the leg, are largely explained by reductions in antegrade shear as a result of reduced NO bioavailability in the elderly.
Collapse
Affiliation(s)
- Joel D Trinity
- VA Medical Center, Bldg 2, RM 1D29A, 500 Foothill Dr, Salt Lake City, Utah 84148.
| | | | | | | | | | | |
Collapse
|
41
|
Schreuder THA, Green DJ, Hopman MTE, Thijssen DHJ. Acute impact of retrograde shear rate on brachial and superficial femoral artery flow-mediated dilation in humans. Physiol Rep 2014; 2:e00193. [PMID: 24744872 PMCID: PMC3967676 DOI: 10.1002/phy2.193] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 01/22/2023] Open
Abstract
Retrograde shear rate (SR) in the brachial artery (BA) is associated with endothelial dysfunction; a precursor to atherosclerosis. The BA does not typically manifest clinical atherosclerosis, whereas the superficial femoral artery (SFA) is more prone to developing plaque. Examine whether the impact of incremental levels of retrograde SR differs between atherosclerosis-prone (i.e., SFA) and -resistant vessels (i.e., BA) in healthy men. Thirteen healthy young men reported three times to the laboratory. We examined BA flow-mediated dilation (FMD) before and after 30-min exposure to cuff inflation around the forearm at 0, 30, and 60 mmHg, to manipulate retrograde SR. Subsequently, the 30-min intervention was repeated in the SFA, using the same cuff pressure as in the forearm. Order of testing (vessel and intervention) was randomized among subjects. We found a dose-dependent increase in retrograde SR with 30 and 60 mmHg cuff inflation, which was present in both the BA and SFA (all P < 0.05). BA and SFA FMD decreased after the 30-min intervention ("time": P = 0.012), and this was dependent on cuff pressure ("cuff × time": P = 0.024). A significant decrease in FMD was observed after 60 mmHg only and this change was similarly present in both arteries ("time × artery": P = 0.227). Moreover, the BA and SFA demonstrate a similar relationship between changes in retrograde SR and FMD (r = 0.498 and 0.475, respectively). Our study demonstrates that acute exposure to an increase in retrograde shear leads to comparable decreases in FMD in atherosclerotic-prone and -resistant conduit arteries in humans.
Collapse
Affiliation(s)
- Tim H A Schreuder
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Daniel J Green
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom ; School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Maria T E Hopman
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands ; Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
42
|
Blood pressure regulation VIII: resistance vessel tone and implications for a pro-atherogenic conduit artery endothelial cell phenotype. Eur J Appl Physiol 2013; 114:531-44. [PMID: 23860841 DOI: 10.1007/s00421-013-2684-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
Abstract
Dysfunction of the endothelium is proposed as the primary initiator of atherosclerotic peripheral artery disease, which occurs mainly in medium- to large-sized conduit arteries of the lower extremities (e.g., iliac, femoral, popliteal arteries). In this review article, we propose the novel concept that conduit artery endothelial cell phenotype is determined, in part, by microvascular tone in skeletal muscle resistance arteries through both changes in arterial blood pressure as well as upstream conduit artery shear stress patterns. First, we summarize the literature supporting the involvement of sympathetic nerve activity (SNA) and nitric oxide (NO) in the modulation of microvascular tone and arterial blood pressure. We then focus on the role of elevated blood pressure and shear stress profiles in modulating conduit artery endothelial cell phenotype. Last, we discuss findings from classic and emerging studies indicating that increased vascular resistance, as it occurs in the context of increased SNA and/or reduced NO bioavailability, is associated with greater oscillatory shear stress (e.g., increased retrograde shear) in upstream conduit arteries. The ideas put forth in this review set the stage for a new paradigm concerning the mechanistic link between increased microvascular tone and development of conduit artery endothelial dysfunction and thus increased risk for peripheral artery disease. Indeed, a vast amount of evidence supports the notion that excessive blood pressure and oscillatory shear stress are potent pro-atherogenic signals to the endothelium.
Collapse
|
43
|
Heffernan KS, Lefferts WK, Kasprowicz AG, Tarzia BJ, Thijssen DH, Brutsaert TD. Manipulation of arterial stiffness, wave reflections, and retrograde shear rate in the femoral artery using lower limb external compression. Physiol Rep 2013; 1:e00022. [PMID: 24303111 PMCID: PMC3831918 DOI: 10.1002/phy2.22] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/23/2013] [Accepted: 05/29/2013] [Indexed: 11/09/2022] Open
Abstract
Exposure of the arterial wall to retrograde shear acutely leads to endothelial dysfunction and chronically contributes to a proatherogenic vascular phenotype. Arterial stiffness and increased pressure from wave reflections are known arbiters of blood flow in the systemic circulation and each related to atherosclerosis. Using distal external compression of the calf to increase upstream retrograde shear in the superficial femoral artery (SFA), we examined the hypothesis that changes in retrograde shear are correlated with changes in SFA stiffness and pressure from wave reflections. For this purpose, a pneumatic cuff was applied to the calf and inflated to 0, 35, and 70 mmHg (5 min compression, randomized order, separated by 5 min) in 16 healthy young men (23 ± 1 years of age). Doppler ultrasound and wave intensity analysis was used to measure SFA retrograde shear rate, reflected pressure wave intensity (negative area [NA]), elastic modulus (Ep), and a single-point pulse wave velocity (PWV) during acute cuff inflation. Cuff inflation resulted in stepwise increases in retrograde shear rate (P < 0.05 for main effect). There were also significant cuff pressure-dependent increases in NA, Ep, and PWV across conditions (P < 0.05 for main effects). Change in NA, but not Ep or PWV, was associated with change in retrograde shear rate across conditions (P < 0.05). In conclusion, external compression of the calf increases retrograde shear, arterial stiffness, and pressure from wave reflection in the upstream SFA in a dose-dependent manner. Wave reflection intensity, but not arterial stiffness, is correlated with changes in peripheral retrograde shear with this hemodynamic manipulation.
Collapse
Affiliation(s)
- Kevin S Heffernan
- Department of Exercise Science, Syracuse University Syracuse, New York
| | | | | | | | | | | |
Collapse
|
44
|
Fairfax ST, Holwerda SW, Credeur DP, Zuidema MY, Medley JH, Dyke PC, Wray DW, Davis MJ, Fadel PJ. The role of α-adrenergic receptors in mediating beat-by-beat sympathetic vascular transduction in the forearm of resting man. J Physiol 2013; 591:3637-49. [PMID: 23652594 DOI: 10.1113/jphysiol.2013.250894] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sympathetic vascular transduction is commonly understood to act as a basic relay mechanism, but under basal conditions, competing dilatory signals may interact with and alter the ability of sympathetic activity to decrease vascular conductance. Thus, we determined the extent to which spontaneous bursts of muscle sympathetic nerve activity (MSNA) mediate decreases in forearm vascular conductance (FVC) and the contribution of local α-adrenergic receptor-mediated pathways to the observed FVC responses. In 19 young men, MSNA (microneurography), arterial blood pressure and brachial artery blood flow (duplex Doppler ultrasound) were continuously measured during supine rest. These measures were also recorded in seven men during intra-arterial infusions of normal saline, phentolamine (PHEN) and PHEN with angiotensin II (PHEN+ANG). The latter was used to control for increases in resting blood flow with α-adrenergic blockade. Spike-triggered averaging was used to characterize beat-by-beat changes in FVC for 15 cardiac cycles following each MSNA burst and a peak response was calculated. Following MSNA bursts, FVC initially increased by +3.3 ± 0.3% (P = 0.016) and then robustly decreased to a nadir of -5.8 ± 1.6% (P < 0.001). The magnitude of vasoconstriction appeared graded with the number of consecutive MSNA bursts; while individual burst size only had a mild influence. Neither PHEN nor PHEN+ANG infusions affected the initial rise in FVC, but both infusions significantly attenuated the subsequent decrease in FVC (-2.1 ± 0.7% and -0.7 ± 0.8%, respectively; P < 0.001 vs. normal saline). These findings indicate that spontaneous MSNA bursts evoke robust beat-by-beat decreases in FVC that are exclusively mediated via α-adrenergic receptors.
Collapse
Affiliation(s)
- Seth T Fairfax
- Biomedical Sciences, University of Missouri, Columbia, MO 65212, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jenkins NT, Padilla J, Boyle LJ, Credeur DP, Laughlin MH, Fadel PJ. Disturbed blood flow acutely induces activation and apoptosis of the human vascular endothelium. Hypertension 2013; 61:615-21. [PMID: 23319545 DOI: 10.1161/hypertensionaha.111.00561] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
There is strong and consistent evidence from in vitro studies that disturbed blood flow produces a proatherogenic vascular endothelial phenotype. However, data from human studies are lacking. To address this, a 220 mm Hg occlusion cuff was placed on the distal forearm of 10 young, healthy men to induce a localized region of disturbed blood flow in the proximal vasculature for 20 minutes. We hypothesized that disturbed blood flow would induce endothelial activation and apoptosis as indicated by increases in local concentrations of CD62E(+) and CD31(+)/CD42b(-) endothelial microparticles, respectively. Distal cuff occlusion induced reductions in mean blood flow, mean shear, and antegrade shear, and increases in retrograde flow, retrograde shear, and oscillatory shear stress, confirming that our protocol produced a disturbed blood flow stimulus in the experimental arm. Relative to baseline (0 minutes), CD62E(+) endothelial microparticles increased by ≈3-fold at 10 minutes and ≈4-fold at 20 minutes in the experimental arm (P<0.05). CD31(+)/CD42b(-) endothelial microparticles were elevated by ≈9-fold at the 20 minutes time point (P<0.05). There were no changes in the concentrations of either endothelial microparticle population throughout the experiment in the contralateral arm, exposed to normal resting blood flow (no cuffs). These findings indicate that disturbed blood flow acutely induces endothelial activation and apoptosis in humans, as reflected by release of microparticles from activated (CD62E(+)) and apoptotic (CD31(+)/CD42b(-)) endothelial cells. These data provide the first in vivo experimental evidence of disturbed blood flow-induced endothelial injury in humans.
Collapse
Affiliation(s)
- Nathan T Jenkins
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA.
| | | | | | | | | | | |
Collapse
|