1
|
Huang JH, Lourenço BN, Coleman AE. The renin-angiotensin-aldosterone system in kidney diseases of cats and dogs. Vet J 2025; 309:106287. [PMID: 39672318 DOI: 10.1016/j.tvjl.2024.106287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
The renin-angiotensin-aldosterone system (RAAS) has a well-established key pathophysiologic role in kidney diseases, and pharmacotherapy targeting this system is a mainstay of treatment of affected human beings, cats, and dogs. Several studies have evaluated the circulating RAAS in animals with spontaneous or experimentally induced kidney diseases. Evidence supporting the activation of this system has been demonstrated in some - but not all - studies and individuals, and the interindividual variability in circulating RAAS markers is high. Advances over the last few decades have expanded our understanding of the system, which now includes the existence of a counterbalancing "alternative" RAAS and tissular renin-angiotensin systems (RASs), the latter regulated independently of the circulating endocrine RAAS. The local RAS in the kidney, termed the intrarenal RAS, is currently recognized as an important regulator of kidney function and mediator of kidney disease. In general, information on the intrarenal RAS is lacking in cats and dogs with kidney diseases; however, existing limited data suggest its activation. Despite the inconsistent evidence for circulating RAAS activation in chronic kidney diseases, RAAS inhibitors have proven effective for the treatment of its common comorbidities, systemic arterial hypertension and renal proteinuria, in both cats and dogs. Further research of the circulating RAAS, the intrarenal RAS, and the interplay between these systems in the context of kidney diseases in companion animals might contribute to the development or refinement of future treatment strategies.
Collapse
Affiliation(s)
- Jane Hc Huang
- Department of Small Animal Medicine and Surgery, University of Georgia, College of Veterinary Medicine, Athens 30601, USA
| | - Bianca N Lourenço
- Department of Small Animal Medicine and Surgery, University of Georgia, College of Veterinary Medicine, Athens 30601, USA.
| | - Amanda E Coleman
- Department of Small Animal Medicine and Surgery, University of Georgia, College of Veterinary Medicine, Athens 30601, USA
| |
Collapse
|
2
|
Cordeiro BM, Leite Fontes CF, Meyer-Fernandes JR. Molecular Basis of Na, K-ATPase Regulation of Diseases: Hormone and FXYD2 Interactions. Int J Mol Sci 2024; 25:13398. [PMID: 39769162 PMCID: PMC11678576 DOI: 10.3390/ijms252413398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The Na, K-ATPase generates an asymmetric ion gradient that supports multiple cellular functions, including the control of cellular volume, neuronal excitability, secondary ionic transport, and the movement of molecules like amino acids and glucose. The intracellular and extracellular levels of Na+ and K+ ions are the classical local regulators of the enzyme's activity. Additionally, the regulation of Na, K-ATPase is a complex process that occurs at multiple levels, encompassing its total cellular content, subcellular distribution, and intrinsic activity. In this context, the enzyme serves as a regulatory target for hormones, either through direct actions or via signaling cascades triggered by hormone receptors. Notably, FXYDs small transmembrane proteins regulators of Na, K-ATPase serve as intermediaries linking hormonal signaling to enzymatic regulation at various levels. Specifically, members of the FXYD family, particularly FXYD1 and FXYD2, are that undergo phosphorylation by kinases activated through hormone receptor signaling, which subsequently influences their modulation of Na, K-ATPase activity. This review describes the effects of FXYD2, cardiotonic steroid signaling, and hormones such as angiotensin II, dopamine, insulin, and catecholamines on the regulation of Na, K-ATPase. Furthermore, this review highlights the implications of Na, K-ATPase in diseases such as hypertension, renal hypomagnesemia, and cancer.
Collapse
Affiliation(s)
- Bárbara Martins Cordeiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro 21941-590, RJ, Brazil
| | - Carlos Frederico Leite Fontes
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro 21941-590, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro 21941-590, RJ, Brazil
| |
Collapse
|
3
|
Pedreañez A, Carrero Y, Vargas R, Hernandez-Fonseca JP, Hernandez-Fonseca H, Mosquera JA. Role of Gut Microbiota in Dengue. Rev Med Virol 2024; 34:e2577. [PMID: 39215460 DOI: 10.1002/rmv.2577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Dengue is a disease caused by a flavivirus (DENV) and transmitted by the bite of a mosquito, primarily the Aedes aegypti and Aedes albopictus species. Previous studies have demonstrated a relationship between the host gut microbiota and the evolution of dengue. It seems to be a bidirectional relationship, in which the DENV can affect the microbiota by inducing alterations related to intestinal permeability, leading to the release of molecules from microbiota dysbiosis that can influence the evolution of dengue. The role of angiotensin II (Ang II) in the microbiota/dengue relationship is not well understood, but it is known that the renin-angiotensin system (RAS) is present in the intestinal tract and interacts with the gut microbiota. The possible effect of Ang II on the microbiota/Ang II/dengue relationship can be summarised as follows: the presence of Ang II induced hypertension, the increase in angiotensinogen, chymase, and microRNAs during the disease, the induction of vascular dysfunction, the production of trimethylamine N-oxide and the brain/microbiota relationship, all of which are elements present in dengue that could be part of the microbiota/Ang II/dengue interactions. These findings suggest the potential use of Ang II synthesis blockers and the use of AT1 receptor antagonists as therapeutic drugs in dengue.
Collapse
Affiliation(s)
- Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Yenddy Carrero
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Renata Vargas
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Juan P Hernandez-Fonseca
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
- Servicio de Microscopia Electrónica, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, España
| | - Hugo Hernandez-Fonseca
- Facultad de Ciencias Veterinarias, Universidad del Zulia, Maracaibo, Venezuela
- Anatomy, Physiology and Pharmacology Department, School of Veterinary Medicine, Saint George's University, Saint George, Grenada
| | - Jesús A Mosquera
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| |
Collapse
|
4
|
Mosquera-Sulbaran JA, Pedreañez A, Hernandez-Fonseca JP, Hernandez-Fonseca H. Angiotensin II and dengue. Arch Virol 2023; 168:191. [PMID: 37368044 DOI: 10.1007/s00705-023-05814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/09/2023] [Indexed: 06/28/2023]
Abstract
Dengue is a disease caused by a flavivirus that is transmitted principally by the bite of an Aedes aegypti mosquito and represents a major public-health problem. Many studies have been carried out to identify soluble factors that are involved in the pathogenesis of this infection. Cytokines, soluble factors, and oxidative stress have been reported to be involved in the development of severe disease. Angiotensin II (Ang II) is a hormone with the ability to induce the production of cytokines and soluble factors related to the inflammatory processes and coagulation disorders observed in dengue. However, a direct involvement of Ang II in this disease has not been demonstrated. This review primarily summarizes the pathophysiology of dengue, the role of Ang II in various diseases, and reports that are highly suggestive of the involvement of this hormone in dengue.
Collapse
Affiliation(s)
- Jesus A Mosquera-Sulbaran
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, 4001-A, Venezuela.
| | - Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Juan Pablo Hernandez-Fonseca
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, 4001-A, Venezuela
- Servicio de Microscopia Electronica del Centro Nacional de Biotecnologia (CNB- CSIC) Madrid, Madrid, España
| | - Hugo Hernandez-Fonseca
- Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, Saint George's University, True Blue, West Indies, Grenada
| |
Collapse
|
5
|
Zając M, Rybi-Szumińska A, Storonowicz J, Protas P, Wasilewska A. Urinary excretion of renin and angiotensinogen in hypertensive children and adolescents. Arch Med Sci 2021; 17:1325-1331. [PMID: 34522262 PMCID: PMC8425233 DOI: 10.5114/aoms.2019.88482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/17/2018] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION In recent years hypertension has become an emerging condition in the young population. It has been proposed that the renin-angiotensin system plays an important role in regulation of blood pressure. We assessed whether activation of the intrarenal renin-angiotensin system occurs in hypertensive children and adolescents and what better reflects its activity: urine angiotensinogen (AGT) or urine renin (REN). MATERIAL AND METHODS The study was conducted on a sample of 58 subjects with primary hypertension (HT) and 29 normotensive children and adolescents. We measured urine REN and AGT excretion and assessed the values in relation to blood pressure (BP) and other clinical parameters. Both REN and AGT values were calculated by urine creatinine: REN/cr. and AGT/cr., respectively. RESULTS We observed higher urine REN/cr. values in hypertensive subjects in comparison to the reference group (6.99 vs. 2.93, p = 0.003). Hypertensive participants showed positive correlations between urine REN/cr. and diastolic 24-hour BP (r = 0.42, p = 0.002) as well as between urine REN/cr. and urine AGT/cr. (r = 0.266, p = 0.044, respectively). CONCLUSIONS Increased urine REN/cr. in hypertensive children and adolescents and its positive correlation with BP may indicate its important role in the pathogenesis of HT. Perhaps urine REN/cr. could be a marker of intrarenal renin-angiotensin system activity. Nevertheless, further research should be undertaken to confirm this observation.
Collapse
Affiliation(s)
- Magdalena Zając
- Department of Paediatrics and Nephrology, Medical University of Bialystok, Bialystok, Poland
| | | | - Justyna Storonowicz
- Department of Paediatrics and Nephrology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Protas
- Department of Paediatrics and Nephrology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Wasilewska
- Department of Paediatrics and Nephrology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
6
|
Woodiwiss AJ, Mmopi KN, Peterson V, Libhaber C, Bello H, Masiu M, Fernandes DDS, Tade G, Mthembu N, Peters F, Sareli P, Norton GR. Distinct Contribution of Systemic Blood Flow to Hypertension in an African Population Across the Adult Lifespan. Hypertension 2020; 76:410-419. [DOI: 10.1161/hypertensionaha.120.14925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although hypertension in groups of African ancestry is volume-dependent, the relative impact of systemic flow (stroke volume, peak aortic flow [Q]) versus vascular mechanisms (systemic vascular resistance, aortic characteristic impedance [Zc], total arterial compliance) components of arterial load has not been evaluated across the adult age range. In participants of African ancestry (n=824, age=16–99 years, 68.3% female), using central arterial pressure and aortic velocity and diameter measurements in the outflow tract, we determined the hemodynamic correlates of age-related increases in blood pressure. Strong independent positive relations between age and stroke volume or peak aortic Q were noted (
P
<0.0001), effects associated with ventricular end diastolic volume and aldosterone-to-renin ratios. Age-related increases in mean arterial pressure were associated with stroke volume and not systemic vascular resistance. Although age-Q relations began from early adulthood, initially an inverse association between age and aortic Zc (
P
<0.0001) driven by increments in aortic root diameter (
P
<0.0001) prevented an enhanced systolic blood pressure and pulse pressure. When Zc began to positively relate to age (
P
<0.0001), age-Q relations translated into increases in forward wave pressures and hence systolic blood pressure and pulse pressure. Age relations with pulse pressure were as strongly determined by Q as by Zc or total arterial compliance (0.027±0.001 versus 0.028±0.001 and 0.032±0.003 mm Hg per yearly increase in pulse pressure produced by Q, Zc, and total arterial compliance;
P
<0.0001). Uncontrolled hypertension (confirmed with 24-hour blood pressure) was determined more by Q, Zc, and total arterial compliance than by increases in systemic vascular resistance (
P
<0.0005 for comparison). In conclusion, relationships between age and systemic blood flow contribute markedly to hypertension in groups of African origins.
Collapse
Affiliation(s)
- Angela J. Woodiwiss
- From the Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Keneilwe N. Mmopi
- From the Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Vernice Peterson
- From the Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Carlos Libhaber
- From the Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Hamza Bello
- From the Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mohlabani Masiu
- From the Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel Da Silva Fernandes
- From the Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Grace Tade
- From the Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nonhlanhla Mthembu
- From the Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ferande Peters
- From the Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pinhas Sareli
- From the Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gavin R. Norton
- From the Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
7
|
Wu L, Yang M, Feng X, Jin L, Wu C, Cui S, Zhou Z, Zhong X, Shi M, Yang Z, Cao W. Urinary angiotensinogen: an indicator of active antineutrophil cytoplasmic antibody-associated glomerulonephritis. Nephrol Dial Transplant 2020; 34:838-847. [PMID: 29733413 DOI: 10.1093/ndt/gfy112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND One of the major challenges in improving the management of antineutrophil cytoplasmic antibody-associated glomerulonephritis (ANCA-GN) is the lack of a disease-specific indicator for histological lesions and disease activity. Here we tested the utility of urinary angiotensinogen (UAGT) as a biomarker of renal disease activity in ANCA-GN. METHODS A prospective, two-stage cohort study was performed in ANCA-GN patients. In Stage I, UAGT was measured at the time of renal biopsy in 69 patients from two centers (test set) and 25 patients from two other centers (validation set). In Stage II, UAGT was monitored in 50 subjects in the test set for 24 months. RESULTS In Stage I, UAGT significantly increased in ANCA-GN patients, correlating well with cellular crescents formation and active interstitial inflammation. Patients with crescentic ANCA-GN exhibited the highest UAGT compared with other histopathological classes of ANCA-GN. After multivariable adjustment, the highest quartile of UAGT, compared with the lowest quartile, associated with a 6-fold increased risk of crescentic ANCA-GN. For predicting crescentic ANCA-GN, UAGT [area under the receiver operating characteristics curve (AUC) = 0.88] outperformed albuminuria (AUC = 0.73) and estimated glomerular filtration rate (AUC = 0.69). UAGT improved the performance of those clinical markers in diagnosing crescentic ANCA-GN (P < 0.034), suggesting a role of UAGT in identifying active crescentic ANCA-GN. In Stage II, UAGT decreased after immunotherapy and increased at the time of renal relapse during the 2-year follow-up, suggesting the usefulness of UAGT to monitor disease activity over time. CONCLUSIONS These results suggest the potential use of UAGT for assessing disease activity and renal relapse in ANCA-GN.
Collapse
Affiliation(s)
- Liling Wu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Manqiu Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaogang Feng
- Division of Nephrology, Guangzhou Development District Hospital, Guangzhou, China
| | - Lingwei Jin
- Division of Nephrology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunyi Wu
- Division of Nephrology, Affiliated Foshan Hospital of Southern Medical University, Guangzhou, China
| | - Shuang Cui
- Division of Nephrology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhanmei Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohong Zhong
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meng Shi
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhichen Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Cao
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Reverte V, Gogulamudi VR, Rosales CB, Musial DC, Gonsalez SR, Parra-Vitela AJ, Galeas-Pena M, Sure VN, Visniauskas B, Lindsey SH, Katakam PVG, Prieto MC. Urinary angiotensinogen increases in the absence of overt renal injury in high fat diet-induced type 2 diabetic mice. J Diabetes Complications 2020; 34:107448. [PMID: 31761419 PMCID: PMC6981045 DOI: 10.1016/j.jdiacomp.2019.107448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/09/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022]
Abstract
AIM OF THE STUDY During type 2 diabetes (T2D) and hypertension there is stimulation of renal proximal tubule angiotensinogen (AGT), but whether urinary excretion of AGT (uAGT) is an indicator of glomerular damage or intrarenal RAS activation is unclear. We tested the hypothesis that elevations in uAGT can be detected in the absence of albuminuria in a mouse model of T2D. METHODS Male C57BL/6 mice (N = 10) were fed a high fat (HFD; 45% Kcal from fat) for 28 weeks, and the metabolic phenotype including body weight, blood pressures, glucose, insulin, ippGTT, HOMA-IR, and cholesterol was examined. In addition, kidney Ang II content and reactive oxygen species (ROS) was measured along with urinary albumin, creatinine, Ang II, and AGT. RESULTS All parameters consistent with T2D were present in mice after 12-14 weeks on the HFD. Systolic BP increased after 18 weeks in HFD but not NFD mice. Intrarenal ROS and Ang II concentrations were also increased in HFD mice. Remarkably, these changes paralleled the augmentation uAGT excretion (3.66 ± 0.50 vs. 0.92 ± 0.13 ng/mg by week 29; P < 0.01), which occurred in the absence of overt albuminuria. CONCLUSIONS In HFD-induced T2D mice, increases in uAGT occur in the absence of overt renal injury, indicating that this biomarker accurately detects early intrarenal RAS activation.
Collapse
Affiliation(s)
- Virginia Reverte
- Department of Physiology, Tulane University School of Medicine, New Orleans, USA
| | | | - Carla B Rosales
- Department of Physiology, Tulane University School of Medicine, New Orleans, USA
| | - Diego C Musial
- Department of Physiology, Tulane University School of Medicine, New Orleans, USA; Department of Pharmacology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Sabrina R Gonsalez
- Department of Physiology, Tulane University School of Medicine, New Orleans, USA; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Michelle Galeas-Pena
- Department of Physiology, Tulane University School of Medicine, New Orleans, USA
| | - Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, USA
| | - Bruna Visniauskas
- Department of Physiology, Tulane University School of Medicine, New Orleans, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, USA
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, USA
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, USA; Hypertension and Renal Center of Excellence, New Orleans, USA.
| |
Collapse
|
9
|
Shi M, Luo W, Feng X, Jin L, Yang M, Wu L, Yang Z, Su C, Li Y, Su H, Wang G, Cao W. Urinary Angiotensinogen Predicts Renal Disease Activity in Lupus Nephritis. Antioxid Redox Signal 2019; 31:1289-1301. [PMID: 31264479 DOI: 10.1089/ars.2019.7782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Aims: A noninvasive indicator of renal histological lesions and disease activity in lupus nephritis (LN) is needed for timely and targeted treatment before overt renal injury. Here, we tested the utility of urinary angiotensinogen (UAGT) to predict renal disease activity in LN. Results: A prospective, three-stage study was performed in patients with LN. In stage I, UAGT was measured in 140 newly diagnosed LN patients. UAGT significantly increased in LN patients, correlating well with kidney angiotensinogen expression and histological activity. Patients with LN class IV exhibited the highest UAGT compared with other histopathological classes of LN. For identifying LN class IV, a particularly aggressive type of LN, UAGT outperformed the conventional clinical measures and improved their performance. In stage II, UAGT was monitored in 61 subjects from stage I for up to 12 months. UAGT decreased after induction therapy and remained low in patients with LN remission during follow-up. For predicting therapy success at month 12, the area under the receiver operating characteristics curve of UAGT reduction at month 4 was 0.83, outperforming that of 24-h proteinuria. In stage III, UAGT was monitored in 12 LN patients before, during, and after the onset of renal flares. An elevation in UAGT predicted recurrence of LN, and a decline in UAGT after a renal flare heralded the remission of disease before conventional clinical measures. Innovation and Conclusion: UAGT in LN is a promising indicator for dynamic surveillance of renal disease activity and prediction of renal flares. Antioxid. Redox Signal. 31, 1289-1301.
Collapse
Affiliation(s)
- Meng Shi
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangzhou, People's Republic of China
| | - Weihong Luo
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangzhou, People's Republic of China
| | - Xiaodan Feng
- Division of Nephrology, Guangzhou Development District Hospital, Guangzhou, People's Republic of China
| | - Lingwei Jin
- Division of Nephrology, The 2nd Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Manqiu Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangzhou, People's Republic of China
| | - Liling Wu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangzhou, People's Republic of China
| | - Zhichen Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangzhou, People's Republic of China
| | - Cailing Su
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangzhou, People's Republic of China
| | - Yajing Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangzhou, People's Republic of China
| | - Huanjuan Su
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangzhou, People's Republic of China
| | - Guobao Wang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangzhou, People's Republic of China
| | - Wei Cao
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangzhou, People's Republic of China
| |
Collapse
|
10
|
Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR, McKenna MJ, Meydan C, Mishra T, Nasrini J, Piening BD, Rizzardi LF, Sharma K, Siamwala JH, Taylor L, Vitaterna MH, Afkarian M, Afshinnekoo E, Ahadi S, Ambati A, Arya M, Bezdan D, Callahan CM, Chen S, Choi AMK, Chlipala GE, Contrepois K, Covington M, Crucian BE, De Vivo I, Dinges DF, Ebert DJ, Feinberg JI, Gandara JA, George KA, Goutsias J, Grills GS, Hargens AR, Heer M, Hillary RP, Hoofnagle AN, Hook VYH, Jenkinson G, Jiang P, Keshavarzian A, Laurie SS, Lee-McMullen B, Lumpkins SB, MacKay M, Maienschein-Cline MG, Melnick AM, Moore TM, Nakahira K, Patel HH, Pietrzyk R, Rao V, Saito R, Salins DN, Schilling JM, Sears DD, Sheridan CK, Stenger MB, Tryggvadottir R, Urban AE, Vaisar T, Van Espen B, Zhang J, Ziegler MG, Zwart SR, Charles JB, Kundrot CE, Scott GBI, Bailey SM, Basner M, Feinberg AP, Lee SMC, Mason CE, Mignot E, Rana BK, Smith SM, Snyder MP, Turek FW. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science 2019; 364:364/6436/eaau8650. [PMID: 30975860 DOI: 10.1126/science.aau8650] [Citation(s) in RCA: 517] [Impact Index Per Article: 86.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
To understand the health impact of long-duration spaceflight, one identical twin astronaut was monitored before, during, and after a 1-year mission onboard the International Space Station; his twin served as a genetically matched ground control. Longitudinal assessments identified spaceflight-specific changes, including decreased body mass, telomere elongation, genome instability, carotid artery distension and increased intima-media thickness, altered ocular structure, transcriptional and metabolic changes, DNA methylation changes in immune and oxidative stress-related pathways, gastrointestinal microbiota alterations, and some cognitive decline postflight. Although average telomere length, global gene expression, and microbiome changes returned to near preflight levels within 6 months after return to Earth, increased numbers of short telomeres were observed and expression of some genes was still disrupted. These multiomic, molecular, physiological, and behavioral datasets provide a valuable roadmap of the putative health risks for future human spaceflight.
Collapse
Affiliation(s)
- Francine E Garrett-Bakelman
- Weill Cornell Medicine, New York, NY, USA.,University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Manjula Darshi
- Center for Renal Precision Medicine, University of Texas Health, San Antonio, TX, USA
| | | | - Ruben C Gur
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ling Lin
- Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | - Cem Meydan
- Weill Cornell Medicine, New York, NY, USA.,The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, USA
| | | | - Jad Nasrini
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | - Kumar Sharma
- Center for Renal Precision Medicine, University of Texas Health, San Antonio, TX, USA
| | | | - Lynn Taylor
- Colorado State University, Fort Collins, CO, USA
| | | | | | - Ebrahim Afshinnekoo
- Weill Cornell Medicine, New York, NY, USA.,The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, USA
| | - Sara Ahadi
- Stanford University School of Medicine, Palo Alto, CA, USA
| | - Aditya Ambati
- Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Daniela Bezdan
- Weill Cornell Medicine, New York, NY, USA.,The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, USA
| | | | - Songjie Chen
- Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | | | - Marisa Covington
- National Aeronautics and Space Administration (NASA), Houston, TX, USA
| | - Brian E Crucian
- National Aeronautics and Space Administration (NASA), Houston, TX, USA
| | | | - David F Dinges
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | - Ryan P Hillary
- Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | | | - Peng Jiang
- Northwestern University, Evanston, IL, USA
| | | | | | | | | | | | | | | | - Tyler M Moore
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Hemal H Patel
- University of California, San Diego, La Jolla, CA, USA
| | | | - Varsha Rao
- Stanford University School of Medicine, Palo Alto, CA, USA
| | - Rintaro Saito
- University of California, San Diego, La Jolla, CA, USA
| | - Denis N Salins
- Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | | | - Michael B Stenger
- National Aeronautics and Space Administration (NASA), Houston, TX, USA
| | | | | | | | | | - Jing Zhang
- Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Sara R Zwart
- University of Texas Medical Branch, Galveston, TX, USA
| | - John B Charles
- National Aeronautics and Space Administration (NASA), Houston, TX, USA.
| | - Craig E Kundrot
- Space Life and Physical Sciences Division, NASA Headquarters, Washington, DC, USA.
| | - Graham B I Scott
- National Space Biomedical Research Institute, Baylor College of Medicine, Houston, TX, USA.
| | | | - Mathias Basner
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | | | | | - Christopher E Mason
- Weill Cornell Medicine, New York, NY, USA. .,The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, USA.,The Feil Family Brain and Mind Research Institute, New York, NY, USA.,The WorldQuant Initiative for Quantitative Prediction, New York, NY, USA
| | | | - Brinda K Rana
- University of California, San Diego, La Jolla, CA, USA.
| | - Scott M Smith
- National Aeronautics and Space Administration (NASA), Houston, TX, USA.
| | | | | |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW African Americans are over-burdened with hypertension resulting in excess morbidity and mortality. We highlight the health impact of hypertension in this population, review important observations regarding disease pathogenesis, and outline evidence-based treatment, current treatment guidelines, and management approaches. RECENT FINDINGS Hypertension accounts for 50% of the racial differences in mortality between Blacks and Whites in the USA. Genome-wide association studies have not clearly identified distinct genetic causes for the excess burden in this population as yet. Pathophysiology is complex likely involving interaction of genetic, biological, and social factors prevalent among African Americans. Non-pharmacologic and pharmacologic therapy is required and specific treatment guidelines for this population are varied. Combination therapy is most often necessary and single-pill formulations are most successful in achieving BP targets. Racial health disparities related to hypertension in African Americans are a serious public health concern that warrants greater attention. Multi-disciplinary research to understand the inter-relationship between biological and social factors is needed to guide successful treatments. Comprehensive care strategies are required to successfully address and eliminate the hypertension burden.
Collapse
Affiliation(s)
- Nomsa Musemwa
- Department of Medicine, Division of Nephrology, Hypertension and Kidney Transplantation, Temple University School of Medicine, Kresge West, Suite 100, 3440 North Broad Street, Philadelphia, PA, 19140, USA
| | - Crystal A Gadegbeku
- Department of Medicine, Division of Nephrology, Hypertension and Kidney Transplantation, Temple University School of Medicine, Kresge West, Suite 100, 3440 North Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
12
|
Affiliation(s)
- Katrina M Mirabito Colafella
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands (K.M.M.C., A.H.J.D.); and Cardiovascular Program, Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, Australia (K.M.M.C.)
| | - A H Jan Danser
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands (K.M.M.C., A.H.J.D.); and Cardiovascular Program, Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, Australia (K.M.M.C.).
| |
Collapse
|
13
|
Ramkumar N, Stuart D, Calquin M, Wang S, Niimura F, Matsusaka T, Kohan DE. Possible role for nephron-derived angiotensinogen in angiotensin-II dependent hypertension. Physiol Rep 2016; 4:4/1/e12675. [PMID: 26755736 PMCID: PMC4760401 DOI: 10.14814/phy2.12675] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The role of intranephron angiotensinogen (AGT) in blood pressure (BP) regulation is not fully understood. Previous studies showed that proximal tubule‐specific overexpression of AGT increases BP, whereas proximal tubule‐specific deletion of AGT did not alter BP. The latter study may not have completely eliminated nephron AGT production; in addition, BP was only assessed on a normal salt diet. To evaluate this issue in greater detail, we developed mice with inducible nephron‐wide AGT deletion. Mice were generated which were hemizygous for the Pax8‐rtTA and LC‐1 transgenes and homozygous for loxP‐flanked AGT alleles to achieve nephron‐wide AGT disruption after doxycycline induction. Compared to controls, AGT knockout (KO) mice demonstrated markedly reduced renal AGT immunostaining, mRNA, and protein levels; unexpectedly AGT KO mice had reduced AGT mRNA levels in the liver along with 50% reduction in plasma AGT levels. BP was significantly lower in the AGT KO mice compared to controls fed a normal, low, or high Na+ intake, with the highest BP reduction on a low Na+ diet. Regardless of Na+ intake, AGT KO mice had higher plasma renin concentration (PRC) and markedly reduced urinary AGT levels compared to controls. Following angiotensin‐II (Ang‐II) infusion, AGT KO mice demonstrated an attenuated hypertensive response despite similar suppression of PRC in the two groups. Taken together, these data suggest that nephron‐derived AGT may be involved in Ang‐II‐dependent hypertension, however, a clear role for nephron‐derived AGT in physiological BP regulation remains to be determined.
Collapse
Affiliation(s)
- Nirupama Ramkumar
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Deborah Stuart
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Matias Calquin
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Shuping Wang
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Fumio Niimura
- Institute of Medical Science, Tokai University, Isehara, Japan
| | - Taiji Matsusaka
- Institute of Medical Science, Tokai University, Isehara, Japan
| | - Donald E Kohan
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
14
|
Nhi DM, Huy NT, Ohyama K, Kimura D, Lan NTP, Uchida L, Thuong NV, Nhon CTM, Phuc LH, Mai NT, Mizukami S, Bao LQ, Doan NN, Binh NVT, Quang LC, Karbwang J, Yui K, Morita K, Huong VTQ, Hirayama K. A Proteomic Approach Identifies Candidate Early Biomarkers to Predict Severe Dengue in Children. PLoS Negl Trop Dis 2016; 10:e0004435. [PMID: 26895439 PMCID: PMC4764501 DOI: 10.1371/journal.pntd.0004435] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 01/14/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Severe dengue with severe plasma leakage (SD-SPL) is the most frequent of dengue severe form. Plasma biomarkers for early predictive diagnosis of SD-SPL are required in the primary clinics for the prevention of dengue death. METHODOLOGY Among 63 confirmed dengue pediatric patients recruited, hospital based longitudinal study detected six SD-SPL and ten dengue with warning sign (DWS). To identify the specific proteins increased or decreased in the SD-SPL plasma obtained 6-48 hours before the shock compared with the DWS, the isobaric tags for relative and absolute quantification (iTRAQ) technology was performed using four patients each group. Validation was undertaken in 6 SD-SPL and 10 DWS patients. PRINCIPAL FINDINGS Nineteen plasma proteins exhibited significantly different relative concentrations (p<0.05), with five over-expressed and fourteen under-expressed in SD-SPL compared with DWS. The individual protein was classified to either blood coagulation, vascular regulation, cellular transport-related processes or immune response. The immunoblot quantification showed angiotensinogen and antithrombin III significantly increased in SD-SPL whole plasma of early stage compared with DWS subjects. Even using this small number of samples, antithrombin III predicted SD-SPL before shock occurrence with accuracy. CONCLUSION Proteins identified here may serve as candidate predictive markers to diagnose SD-SPL for timely clinical management. Since the number of subjects are small, so further studies are needed to confirm all these biomarkers.
Collapse
Affiliation(s)
- Dang My Nhi
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Nguyen Tien Huy
- Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- * E-mail: (NTH); (KH)
| | - Kaname Ohyama
- Department of Environmental and Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (NRGIC), Nagasaki, Japan
| | - Daisuke Kimura
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Nguyen Thi Phuong Lan
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Leo Uchida
- Department of Virology, Institute of Tropical Medicine (NEKKEN), and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Nguyen Van Thuong
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | | | - Le Hong Phuc
- Nguyen Dinh Chieu Hospital, Ben Tre Province, Vietnam
| | - Nguyen Thi Mai
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Shusaku Mizukami
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Lam Quoc Bao
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | - Luong Chan Quang
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Juntra Karbwang
- Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Katsuyuki Yui
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine (NEKKEN), and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Vu Thi Que Huong
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- * E-mail: (NTH); (KH)
| |
Collapse
|
15
|
Feng W, Cai Q, Yuan W, Liu Y, Bardeesi ASA, Wang J, Chen J, Huang H. Low Response of Renin-Angiotensin System to Sodium Intake Intervention in Chinese Hypertensive Patients. Medicine (Baltimore) 2016; 95:e2602. [PMID: 26871780 PMCID: PMC4753875 DOI: 10.1097/md.0000000000002602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The interactions of sodium balance and response of renin-angiotensin-aldosterone system are important for maintaining the hemodynamic stability in physiological conditions. However, the influence of short-term sodium intake intervention in the response of renin-angiotensin system (RAS) on hypertensive patients is still unclear. Thus, we conducted a clinical trial to investigate the effects of short-term sodium intake intervention on the response of RAS in hypertensive patients.One hundred twenty-five primary Chinese hypertensive patients were divided into high, moderate, and low sodium groups by 24-hour urinary sodium excretion (UNa). All the patients received a 10-day dietary sodium intake intervention with standardized sodium (173.91mmol/day) and potassium (61.53mmol/day). Blood pressure, urinary sodium, urinary potassium, plasma sodium, potassium, creatinine, the levels of plasma renin activity, plasma angiotensin II concentrations (AT-II), and plasma aldosterone concentrations were detected before and after the intervention.Before the intervention, no differences were found in blood pressure and RAS among 3 groups. After standardized dietary sodium intake intervention, both UNa excretion and systolic pressure decreased in high-sodium group, while they increased in moderate and low-sodium groups. Intriguingly, there were no changes in the levels of plasma renin activity, AT-II, and plasma aldosterone concentrations among 3 groups during the intervention.The present study demonstrated that the influenced sodium excretion and blood pressure by short-term sodium intake intervention were independent of RAS quick response in Chinese hypertensive patients.
Collapse
Affiliation(s)
- Weijing Feng
- From the Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology (WF, WY, ASAB, JW, JC, HH); Department of Cardiology (WF, WY, JW, HH), Sun Yat-sen Memorial Hospital of Sun Yat-sen University; Department of Medical Oncology (QC), Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou; Department of Cardiology (YL), The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning; and Department of Radiation Oncology (JC), Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ferdinand KC, Nasser SA. Understanding the Importance of Race/Ethnicity in the Care of the Hypertensive Patient. Curr Hypertens Rep 2016; 17:15. [PMID: 25754318 DOI: 10.1007/s11906-014-0526-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although several risk factors contribute to cardiovascular disease (CVD) overall, hypertension (HTN) is the major controllable risk factor. Hypertension is disproportionately more prevalent among Blacks or African-Americans compared with other race/ethnic populations, and the control rates among this disparate population are alarming. Several pathophysiologic mechanisms have been demonstrated and evaluated among hypertensives and the conglomeration of genetics, environmental, and personal lifestyle activities concurrently impact the progression of hypertension-related comorbidities (i.e., chronic renal disease, CVD, stroke, etc.). Specific pharmacotherapeutic choices are discussed and the most up-to-date data is presented to optimize the care of hypertensives. National and international guidelines for the treatment of HTN are reviewed and analyzed, presenting the most appropriate approach to the care of hypertensive patients overall. Additionally, national efforts supporting the goal of early HTN screening and treatment, as well as the variety of evidence-based pharmacotherapy, are summarized, applying to the public health impact overall.
Collapse
Affiliation(s)
- Keith C Ferdinand
- Division of Cardiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA,
| | | |
Collapse
|
17
|
Plasma renin and cardiovascular responses to the cold pressor test differ in black and white populations: The SABPA study. J Hum Hypertens 2015; 30:346-51. [DOI: 10.1038/jhh.2015.88] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/08/2015] [Accepted: 07/14/2015] [Indexed: 11/08/2022]
|
18
|
Relationship between blood pressure variability and renal activity of the renin-angiotensin system. J Hum Hypertens 2015. [PMID: 26223347 DOI: 10.1038/jhh.2015.71] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Local renin-angiotensin system (RAS) activity in the kidneys is a pathogenetic factor in patients with primary hypertension. This study aimed to determine the relationship between local kidney RAS activity and blood pressure variability, as the literature currently lacks any such study. The study included 73 consecutive primary hypertensive patients. All patients underwent 24-h ambulatory blood pressure monitoring to determine the average real variability (ARV) index, as an indicator of blood pressure variability. Local RAS activity was determined using the urine angiotensinogen/creatinine (UAGT/UCre) ratio. The high UAGT/UCre ratio group had significantly higher mean 24-h systolic ARV than the low UAGT/UCre ratio group (13.2±3.4 vs 11.0±2.6, P=0.003). Similarly, the high UAGT/UCre ratio group had significantly higher mean 24-h diastolic ARV than the low UAGT/UCre ratio group (10.8±3.2 vs 8.7±2.2, P=0.001). Multivariate regression analysis showed that Log(UAGT/UCre) was an independent predictor of both 24-h diastolic ARV and 24-h systolic ARV. Local RAS activity in the kidneys might have a role in blood pressure variability. On the basis of these findings, we think that additional prospective studies are needed to more fully discern the effect of local RAS activity on blood pressure variability.
Collapse
|
19
|
Majid DSA, Prieto MC, Navar LG. Salt-Sensitive Hypertension: Perspectives on Intrarenal Mechanisms. Curr Hypertens Rev 2015; 11:38-48. [PMID: 26028244 DOI: 10.2174/1573402111666150530203858] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 12/12/2022]
Abstract
Salt sensitive hypertension is characterized by increases in blood pressure in response to increases in dietary salt intake and is associated with an enhanced risk of cardiovascular and renal morbidity. Although researchers have sought for decades to understand how salt sensitivity develops in humans, the mechanisms responsible for the increases in blood pressure in response to high salt intake are complex and only partially understood. Until now, scientists have been unable to explain why some individuals are salt sensitive and others are salt resistant. Although a central role for the kidneys in the development of salt sensitivity and hypertension has been generally accepted, it is also recognized that hypertension is of multifactorial origin and a variety of factors can induce, or prevent, blood pressure responsiveness to the manipulation of salt intake. Excess salt intake in susceptible persons may also induce inappropriate central and sympathetic nervous system responses and increase the production of intrarenal angiotensin II, catecholamines and other factors such as oxidative stress and inflammatory cytokines. One key factor is the concomitant inappropriate or paradoxical activation of the intrarenal renin-angiotensin system, by high salt intake. This is reflected by the increases in urinary angiotensinogen during high salt intake in salt sensitive models. A complex interaction between neuroendocrine factors and the kidney may underlie the propensity for some individuals to retain salt and develop salt-dependent hypertension. In this review, we focus mainly on the renal contributions that provide the mechanistic links between chronic salt intake and the development of hypertension.
Collapse
Affiliation(s)
- Dewan S A Majid
- Department of Physiology, SL39, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
20
|
Abstract
Experimental models of hypertension and patients with inappropriately increased renin formation due to a stenotic kidney, arteriosclerotic narrowing of the renal arterioles or a rare juxtaglomerular cell tumor have shown a progressive augmentation of the intrarenal/intratubular renin-angiotensin system (RAS). The increased intrarenal angiotensin II (Ang II) elicits renal vasoconstriction and enhanced tubular sodium reabsorption in proximal and distal nephron segments. The enhanced intrarenal Ang II levels are due to both increased Ang II type 1 (AT1) receptor mediated Ang II uptake and AT1 receptor dependent stimulation of renal angiotensinogen (AGT) mRNA and augmented AGT production. The increased AGT formation and secretion into the proximal tubular lumen leads to local formation of Ang II, which stimulates proximal transporters such as the sodium/hydrogen exchanger. Enhanced AGT production also leads to spillover of AGT into the distal nephron segments as reflected by AGT in the urine, which provides an index of intrarenal RAS activity. There is also increased Ang II concentration in distal nephron with stimulation of distal sodium transport. Increased urinary excretion of AGT has been demonstrated in patients with hypertension, type 1 and type 2 diabetes mellitus, and several types of chronic kidney diseases indicating an upregulation of intrarenal RAS activity.
Collapse
Affiliation(s)
- Ryousuke Satou
- Department of Physiology and the Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Weijian Shao
- Department of Physiology and the Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - L Gabriel Navar
- Department of Physiology, Tulane University Health Sciences Center, SL39, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| |
Collapse
|
21
|
Deo SH, Holwerda SW, Keller DM, Fadel PJ. Elevated peripheral blood mononuclear cell-derived superoxide production in healthy young black men. Am J Physiol Heart Circ Physiol 2014; 308:H548-52. [PMID: 25527783 DOI: 10.1152/ajpheart.00784.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several studies have demonstrated that blacks exhibit elevations in systemic oxidative stress. However, the source(s) and mechanism(s) contributing to the elevation in oxidative stress remain unclear. Given that peripheral blood mononuclear cells (PBMCs) can be a major source of NADPH oxidase-derived superoxide production, we tested the hypothesis that young black men demonstrate greater superoxide production and NADPH oxidase expression in PBMCs compared with whites. PBMCs were freshly isolated from whole blood in young normotensive black (n = 18) and white (n = 16) men. Intracellular superoxide production in PBMCs was measured using dihydroethidium fluorescence, protein expression of NADPH oxidase subunits, gp91(phox) (membranous) and p47(phox) (cytosolic) in PBMCs were assessed using Western blot analysis, and plasma protein carbonyls were measured as a marker of systemic oxidative stress. Black men showed elevated intracellular superoxide production (4.3 ± 0.5 vs. 2.0 ± 0.6 relative fluorescence units; black men vs. white men, P < 0.05), increased protein expression for gp91(phox) and p47(phox) (e.g., p47(phox): 1.1 ± 0.2, black men vs. 0.4 ± 0.1, white men, P < 0.05) in PBMCs and higher circulating protein carbonyl levels (22 ± 4 vs. 14 ± 2 nmol/ml; black men vs. white men, P < 0.05). Interestingly, a positive family history of hypertension in black men did not further enhance PBMC-derived intracellular superoxide production or NADPH oxidase subunit protein expression. These findings indicate that black men exhibit greater resting PBMC-derived superoxide production and an upregulation of the NADPH oxidase pathway with a possible contribution to increases in systemic oxidative stress.
Collapse
Affiliation(s)
- Shekhar H Deo
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Seth W Holwerda
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - David M Keller
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Paul J Fadel
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and
| |
Collapse
|