1
|
Chen W, Perrotta S, Xiao L, Carnevale L, Abd-ElDayem MA, Hennen EM, Rivera-Medina LM, Patrick DM, Ao M, Pallante F, Zonfrilli A, Zhao S, Migliaccio A, Lan L, Fardella S, Sciumè G, Mastroiacovo F, Lembo G, Carnevale D, Harrison DG. Beta 2 adrenergic receptor gene methylation activates innate lymphoid cells to drive hypertension in lymphocyte deficient hosts. Cardiovasc Res 2025; 121:817-831. [PMID: 40205453 PMCID: PMC12101357 DOI: 10.1093/cvr/cvaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/20/2024] [Accepted: 01/21/2025] [Indexed: 04/11/2025] Open
Abstract
AIMS T cells contribute to hypertension; however, hypertension occurs in settings of T cell deficiency. METHODS AND RESULTS We studied two colonies of T/B cell-deficient RAG-1-/- mice with disparate responses to angiotensin II, being one protected from blood pressure increase and the other one responsive. This difference depends on the capability of hypertensive RAG-1-/- mice to expand natural killer and innate lymphoid cells (NK/ILCs) that produce pro-hypertensive cytokines. This process is regulated by the DNA methylation status of the β2 adrenergic receptor (β2-AdR). Angiotensin II caused blood pressure elevation in T and NK/ILCs-deficient mice only when either T or NK/ILCs cells were adoptively reconstituted. Additional studies showed NK cell expansion in humans that underwent B cell depletion, and this was augmented in those with hypertension. CONCLUSIONS These findings illustrate that the modulation of NK/ILCs activation by adrenergic signalling governs an escape mechanism in lymphocyte-deficient host, enabling the development of hypertension.
Collapse
MESH Headings
- Animals
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/deficiency
- Hypertension/genetics
- Hypertension/physiopathology
- Hypertension/immunology
- Hypertension/metabolism
- Hypertension/chemically induced
- Mice, Knockout
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/transplantation
- Immunity, Innate
- DNA Methylation
- Disease Models, Animal
- Mice, Inbred C57BL
- Angiotensin II
- Humans
- Blood Pressure
- Homeodomain Proteins/genetics
- Signal Transduction
- Male
- T-Lymphocytes/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Cytokines/metabolism
- B-Lymphocytes/metabolism
- B-Lymphocytes/immunology
- Cells, Cultured
- Mice
Collapse
Affiliation(s)
- Wei Chen
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara Perrotta
- Department of Angiocardioneurology and Translational Medicine, Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Via dell'Elettronica, Pozzilli 86077, Italy
| | - Liang Xiao
- Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Lorenzo Carnevale
- Department of Angiocardioneurology and Translational Medicine, Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Via dell'Elettronica, Pozzilli 86077, Italy
| | - Marwa A Abd-ElDayem
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Elizabeth M Hennen
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Luis Miguel Rivera-Medina
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David M Patrick
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mingfang Ao
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fabio Pallante
- Department of Angiocardioneurology and Translational Medicine, Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Via dell'Elettronica, Pozzilli 86077, Italy
| | - Azzurra Zonfrilli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291, Rome 00161, Italy
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Agnese Migliaccio
- Department of Angiocardioneurology and Translational Medicine, Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Via dell'Elettronica, Pozzilli 86077, Italy
| | - Lan Lan
- Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Stefania Fardella
- Department of Angiocardioneurology and Translational Medicine, Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Via dell'Elettronica, Pozzilli 86077, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291, Rome 00161, Italy
| | - Francesco Mastroiacovo
- Department of Angiocardioneurology and Translational Medicine, Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Via dell'Elettronica, Pozzilli 86077, Italy
| | - Giuseppe Lembo
- Department of Angiocardioneurology and Translational Medicine, Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Via dell'Elettronica, Pozzilli 86077, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291, Rome 00161, Italy
| | - Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Via dell'Elettronica, Pozzilli 86077, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, ‘Sapienza’ University of Rome, Corso della Repubblica, 79, Latina 40100, Italy
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
Molina PA, Edell CJ, Dunaway LS, Kellum CE, Muir RQ, Jennings MS, Colson JC, De Miguel C, Rhoads MK, Buzzelli AA, Harrington LE, Meza-Perez S, Randall TD, Botta D, Müller DN, Pollock DM, Maynard CL, Pollock JS. Aryl Hydrocarbon Receptor Activation Promotes Effector CD4+ T Cell Homeostasis and Restrains Salt-Sensitive Hypertension. FUNCTION 2025; 6:zqaf001. [PMID: 39779302 PMCID: PMC11931625 DOI: 10.1093/function/zqaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
Excess dietary salt and salt-sensitivity contribute to cardiovascular disease. Distinct T cell phenotypic responses to high salt and hypertension, as well as influences from environmental cues, are not well understood. The aryl hydrocarbon receptor (AhR) is activated by dietary ligands, promoting T cell and systemic homeostasis. We hypothesized that activating AhR supports CD4+ homeostatic functions, such as cytokine production and mobilization, in response to high salt intake while mitigating salt-sensitive hypertension. In the intestinal mucosa, we demonstrate that a high-salt diet (HSD) is a key driving factor, independent of hypertension, in diminishing interleukin 17A (IL-17A) production by CD4+ T (Th17) cells without disrupting circulating cytokines associated with Th17 function. Previous studies suggest that hypertensive patients and individuals on a HSD are deficient in AhR ligands or agonistic metabolites. We found that activating AhR augments Th17 cells during experimental salt-sensitive hypertension. Further, we demonstrate that activating AhR in vitro contributes to sustaining Th17 cells in the setting of excess salt. Using photoconvertible Kikume Green-Red mice, we also revealed that HSD drives CD4+ T cell mobilization. Next, we found that excess salt augments T cell mobilization markers, validating HSD-driven T cell migration. Also, we found that activating AhR mitigates HSD-induced T cell migration markers. Using telemetry in a model of experimental salt-sensitivity, we found that activating AhR prevents the development of salt-sensitive hypertension. Collectively, stimulating AhR through dietary ligands facilitates immunologic and systemic functions amid excess salt intake and restrains the development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Patrick A Molina
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Claudia J Edell
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Luke S Dunaway
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Cailin E Kellum
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Rachel Q Muir
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Melissa S Jennings
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Jackson C Colson
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Carmen De Miguel
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Megan K Rhoads
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Ashlyn A Buzzelli
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Laurie E Harrington
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Selene Meza-Perez
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Davide Botta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
- Immunology Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Dominik N Müller
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Lindenberger Weg 80, Berlin 13092, Germany
| | - David M Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Craig L Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| |
Collapse
|
3
|
Balhara M, Neikirk K, Marshall A, Hinton A, Kirabo A. Endoplasmic Reticulum Stress in Hypertension and Salt Sensitivity of Blood Pressure. Curr Hypertens Rep 2024; 26:273-290. [PMID: 38602583 PMCID: PMC11166838 DOI: 10.1007/s11906-024-01300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW Hypertension is a principal risk factor for cardiovascular morbidity and mortality, with its severity exacerbated by high sodium intake, particularly in individuals with salt-sensitive blood pressure. However, the mechanisms underlying hypertension and salt sensitivity are only partly understood. Herein, we review potential interactions in hypertension pathophysiology involving the immune system, endoplasmic reticulum (ER) stress, the unfolded protein response (UPR), and proteostasis pathways; identify knowledge gaps; and discuss future directions. RECENT FINDINGS Recent advancements by our research group and others reveal interactions within and between adaptive and innate immune responses in hypertension pathophysiology. The salt-immune-hypertension axis is further supported by the discovery of the role of dendritic cells in hypertension, marked by isolevuglandin (IsoLG) formation. Alongside these broadened understandings of immune-mediated salt sensitivity, the contributions of T cells to hypertension have been recently challenged by groups whose findings did not support increased resistance of Rag-1-deficient mice to Ang II infusion. Hypertension has also been linked to ER stress and the UPR. Notably, a holistic approach is needed because the UPR engages in crosstalk with autophagy, the ubiquitin proteasome, and other proteostasis pathways, that may all involve hypertension. There is a critical need for studies to establish cause and effect relationships between ER stress and the UPR in hypertension pathophysiology in humans and to determine whether the immune system and ER stress function mainly to exacerbate or initiate hypertension and target organ injury. This review of recent studies proposes new avenues for future research for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Maria Balhara
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37212-8802, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Andrea Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37212-8802, USA.
- Vanderbilt Center for Immunobiology, Nashville, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, USA.
- Vanderbilt Institute for Global Health, Nashville, USA.
| |
Collapse
|
4
|
Guzik TJ, Nosalski R, Maffia P, Drummond GR. Immune and inflammatory mechanisms in hypertension. Nat Rev Cardiol 2024; 21:396-416. [PMID: 38172242 DOI: 10.1038/s41569-023-00964-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Hypertension is a global health problem, with >1.3 billion individuals with high blood pressure worldwide. In this Review, we present an inflammatory paradigm for hypertension, emphasizing the crucial roles of immune cells, cytokines and chemokines in disease initiation and progression. T cells, monocytes, macrophages, dendritic cells, B cells and natural killer cells are all implicated in hypertension. Neoantigens, the NLRP3 inflammasome and increased sympathetic outflow, as well as cytokines (including IL-6, IL-7, IL-15, IL-18 and IL-21) and a high-salt environment, can contribute to immune activation in hypertension. The activated immune cells migrate to target organs such as arteries (especially the perivascular fat and adventitia), kidneys, the heart and the brain, where they release effector cytokines that elevate blood pressure and cause vascular remodelling, renal damage, cardiac hypertrophy, cognitive impairment and dementia. IL-17 secreted by CD4+ T helper 17 cells and γδ T cells, and interferon-γ and tumour necrosis factor secreted by immunosenescent CD8+ T cells, exert crucial effector roles in hypertension, whereas IL-10 and regulatory T cells are protective. Effector mediators impair nitric oxide bioavailability, leading to endothelial dysfunction and increased vascular contractility. Inflammatory effector mediators also alter renal sodium and water balance and promote renal fibrosis. These mechanisms link hypertension with obesity, autoimmunity, periodontitis and COVID-19. A comprehensive understanding of the immune and inflammatory mechanisms of hypertension is crucial for safely and effectively translating the findings to clinical practice.
Collapse
Affiliation(s)
- Tomasz J Guzik
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK.
- Department of Medicine and Omicron Medical Genomics Laboratory, Jagiellonian University, Collegium Medicum, Kraków, Poland.
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance ARUA & The Guild, Glasgow, UK.
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Pasquale Maffia
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance ARUA & The Guild, Glasgow, UK
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Grant R Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Drury ER, Wu J, Gigliotti JC, Le TH. Sex differences in blood pressure regulation and hypertension: renal, hemodynamic, and hormonal mechanisms. Physiol Rev 2024; 104:199-251. [PMID: 37477622 PMCID: PMC11281816 DOI: 10.1152/physrev.00041.2022] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/06/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023] Open
Abstract
The teleology of sex differences has been argued since at least as early as Aristotle's controversial Generation of Animals more than 300 years BC, which reflects the sex bias of the time to contemporary readers. Although the question "why are the sexes different" remains a topic of debate in the present day in metaphysics, the recent emphasis on sex comparison in research studies has led to the question "how are the sexes different" being addressed in health science through numerous observational studies in both health and disease susceptibility, including blood pressure regulation and hypertension. These efforts have resulted in better understanding of differences in males and females at the molecular level that partially explain their differences in vascular function and renal sodium handling and hence blood pressure and the consequential cardiovascular and kidney disease risks in hypertension. This review focuses on clinical studies comparing differences between men and women in blood pressure over the life span and response to dietary sodium and highlights experimental models investigating sexual dimorphism in the renin-angiotensin-aldosterone, vascular, sympathetic nervous, and immune systems, endothelin, the major renal sodium transporters/exchangers/channels, and the impact of sex hormones on these systems in blood pressure homeostasis. Understanding the mechanisms governing sex differences in blood pressure regulation could guide novel therapeutic approaches in a sex-specific manner to lower cardiovascular risks in hypertension and advance personalized medicine.
Collapse
Affiliation(s)
- Erika R Drury
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - Jing Wu
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, United States
| | - Joseph C Gigliotti
- Department of Integrative Physiology and Pharmacology, Liberty University College of Osteopathic Medicine, Lynchburg, Virginia, United States
| | - Thu H Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
6
|
Perrotta S, Carnevale D. Brain-Splenic Immune System Interactions in Hypertension: Cellular and Molecular Mechanisms. Arterioscler Thromb Vasc Biol 2024; 44:65-75. [PMID: 37942610 DOI: 10.1161/atvbaha.123.318230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023]
Abstract
Hypertension represents a major worldwide cause of death and disability, and it is becoming increasingly clear that available therapies are not sufficient to reduce the risk of major cardiovascular events. Various mechanisms contribute to blood pressure increase: neurohormonal activation, autonomic nervous system imbalance, and immune activation. Of note, the brain is an important regulator of blood pressure levels; it recognizes the peripheral perturbation and organizes a reflex response by modulating immune system and hormonal release to attempt at restoring the homeostasis. The connection between the brain and peripheral organs is mediated by the autonomic nervous system, which also modulates immune and inflammatory responses. Interestingly, an increased autonomic nervous system activity has been correlated with an altered immune response in cardiovascular diseases. The spleen is the largest immune organ exerting a potent influence on the cardiovascular system during disease and is characterized by a dense noradrenergic innervation. Taken together, these aspects led to hypothesize a key role of neuroimmune mechanisms in the onset and progression of hypertension. This review discusses how the nervous and splenic immune systems interact and how the mechanisms underlying the neuroimmune cross talk influence the disease progression.
Collapse
Affiliation(s)
- Sara Perrotta
- Department of Angiocardioneurology and Translational Medicine, Unit of Neuro and Cardiovascular Pathophysiology, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Neuromed, Pozzilli, Italy (S.P., D.C.)
| | - Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, Unit of Neuro and Cardiovascular Pathophysiology, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Neuromed, Pozzilli, Italy (S.P., D.C.)
- Department of Molecular Medicine, "Sapienza" University of Rome, Italy (D.C.)
| |
Collapse
|
7
|
Leinenga G, Padmanabhan P, Götz J. Improving Cognition Without Clearing Amyloid: Effects of Tau and Ultrasound Neuromodulation. J Alzheimers Dis 2024; 100:S211-S222. [PMID: 39058447 DOI: 10.3233/jad-240616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Alzheimer's disease is characterized by progressive impairment of neuronal functions culminating in neuronal loss and dementia. A universal feature of dementia is protein aggregation, a process by which a monomer forms intermediate oligomeric assembly states and filaments that develop into end-stage hallmark lesions. In Alzheimer's disease, this is exemplified by extracellular amyloid-β (Aβ) plaques which have been placed upstream of tau, found in intracellular neurofibrillary tangles and dystrophic neurites. This implies causality that can be modeled as a linear activation cascade. When Aβ load is reduced, for example, in response to an anti-Aβ immunotherapy, cognitive functions improve in plaque-forming mice. They also deteriorate less in clinical trial cohorts although real-world clinical benefits remain to be demonstrated. Given the existence of aged humans with unimpaired cognition despite a high plaque load, the central role of Aβ has been challenged. A counter argument has been that clinical symptoms would eventually develop if these aged individuals were to live long enough. Alternatively, intrinsic mechanisms that protect the brain in the presence of pathology may exist. In fact, Aβ toxicity can be abolished by either reducing or manipulating tau (through which Aβ signals), at least in preclinical models. In addition to manipulating steps in this linear pathocascade model, mechanisms of restoring brain reserve can also counteract Aβ toxicity. Low-intensity ultrasound is a neuromodulatory modality that can improve cognitive functions in Aβ-depositing mice without the need for removing Aβ. Together, this highlights a dissociation of Aβ and cognition, with important implications for therapeutic interventions.
Collapse
Affiliation(s)
- Gerhard Leinenga
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, Australia
| | - Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Bode M, Herrnstadt GR, Dreher L, Ehnert N, Kirkerup P, Lindenmeyer MT, Meyer-Schwesinger CF, Ehmke H, Köhl J, Huber TB, Krebs CF, Steinmetz OM, Wiech T, Wenzel UO. Deficiency of Complement C3a and C5a receptors Does Not Prevent Angiotensin II-Induced Hypertension and Hypertensive End-Organ Damage. Hypertension 2024; 81:138-150. [PMID: 37909169 DOI: 10.1161/hypertensionaha.123.21599] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Complement may drive the pathology of hypertension through effects on innate and adaptive immune responses. Recently an injurious role for the anaphylatoxin receptors C3aR (complement component 3a receptor) and C5aR1 (complement component 5a receptor) in the development of hypertension was shown through downregulation of Foxp3+ (forkhead box protein 3) regulatory T cells. Here, we deepen our understanding of the therapeutic potential of targeting both receptors in hypertension. METHODS Data from the European Renal cDNA Bank, single cell sequencing and immunohistochemistry were examined in hypertensive patients. The effect of C3aR or C3aR/C5aR1 double deficiency was assessed in two models of Ang II (angiotensin II)-induced hypertension in knockout mice. RESULTS We found increased expression of C3aR, C5aR1 and Foxp3 cells in kidney biopsies of patients with hypertensive nephropathy. Expression of both receptors was mainly found in myeloid cells. No differences in blood pressure, renal injury (albuminuria, glomerular filtration rate, glomerular and tubulointerstitial injury, inflammation) or cardiac injury (cardiac fibrosis, heart weight, gene expression) between control and mutant mice was discerned in C3aR-/- as well as C3aR/C5aR1-/- double knockout mice. The number of renal Tregs was not decreased in Ang II as well as in DOCA salt induced hypertension. CONCLUSIONS Hypertensive nephropathy in mice and men is characterized by an increase of renal regulatory T cells and enhanced expression of anaphylatoxin receptors. Our investigations do not corroborate a role for C3aR/C5aR1 axis in Ang II-induced hypertension hence challenging the concept of anaphylatoxin receptor targeting in the treatment of hypertensive disease.
Collapse
Affiliation(s)
- Marlies Bode
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| | - Georg R Herrnstadt
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| | - Leonie Dreher
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
| | - Nicolas Ehnert
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
| | - Pia Kirkerup
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
| | - Maja T Lindenmeyer
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| | - Catherine F Meyer-Schwesinger
- Department of Cellular and Integrative Physiology (C.M.-S., H.E.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| | - Heimo Ehmke
- Department of Cellular and Integrative Physiology (C.M.-S., H.E.), University Hospital Hamburg-Eppendorf
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, Lübeck, Germany (J.K.)
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, OH (J.K.)
| | - Tobias B Huber
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| | - Christian F Krebs
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| | - Oliver M Steinmetz
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| | - Thorsten Wiech
- Department of Pathology, Section of Nephropathology (T.W.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| | - Ulrich O Wenzel
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| |
Collapse
|
9
|
Dayton A, Almutlaq RN, Guntipally S, Ross J, Evans LC. T-cells regulate albuminuria but not hypertension, renal histology, or the medullary transcriptome in the Dahl SSCD247 +/+ rat. Am J Physiol Renal Physiol 2024; 326:F95-F104. [PMID: 37916287 PMCID: PMC11194049 DOI: 10.1152/ajprenal.00229.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
In the current study, we took advantage of the loss of protection from hypertension in SSCD247-/- rats to characterize the pathological effects of renal T-cells in isolation from the confounding effects of elevated renal perfusion pressure. Male SSCD247-/- and SSCD247+/+ littermates were fed 4.0% NaCl (high salt) diet to induce hypertension. Blood pressure was assessed continuously throughout the time course with radiotelemetry. Urine albumin and protein excretion were assessed on the final day of high salt. Renal injury and medullary transcriptome were assessed after completion of the high salt protocol. In contrast to previous studies, mean arterial pressure was not significantly different between SSCD247-/- and SSCD247+/+ rats. Despite this lack of pressure difference, urinary albumin was significantly lower in SSCD247-/- rats than their wild-type littermates. In the outer medulla, substantially more transcriptomic changes were found to correlate with endpoint blood pressure than with the absence of presence of renal T-cells. We also demonstrated that renal histological damage was driven by elevated renal perfusion pressure rather than the presence of renal T-cells. In conclusion, using the loss of protection from hypertension in SSCD247-/- rats, we demonstrated that renal perfusion pressure has more profound pathological effects on the kidney than renal T-cells. However, renal T-cells, independently of blood pressure, modulate the progression of albuminuria.NEW & NOTEWORTHY In vivo studies in a T-cell-deficient rat model of salt-sensitive hypertension (SSCD247-/- rats) were used to evaluate the role of T-cells on the development of hypertension and renal damage. Detailed physiological and transcriptomic analysis demonstrated no difference in blood pressure between rats with (SSCD247+/+) or without (SSCD247-/-) T-cells. Despite this, albuminuria was significantly lower in SSCD247-/- rats than SSCD247+/+ rats.
Collapse
Affiliation(s)
- Alex Dayton
- Division of Nephrology and Hypertension, University of Minnesota, Minneapolis, Minnesota, United States
| | - Rawan N Almutlaq
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Sridhatri Guntipally
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States
| | - Jaryd Ross
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States
| | - Louise C Evans
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
10
|
Walton SD, Dasinger JH, Burns EC, Cherian-Shaw M, Abais-Battad JM, Mattson DL. Functional NADPH oxidase 2 in T cells amplifies salt-sensitive hypertension and associated renal damage. Am J Physiol Renal Physiol 2023; 325:F214-F223. [PMID: 37318993 PMCID: PMC10396224 DOI: 10.1152/ajprenal.00014.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/10/2023] [Accepted: 05/28/2023] [Indexed: 06/17/2023] Open
Abstract
Infiltrating T cells in the kidney amplify salt-sensitive (SS) hypertension and renal damage, but the mechanisms are not known. Genetic deletion of T cells (SSCD247-/-) or of the p67phox subunit of NADPH oxidase 2 (NOX2; SSp67phox-/-) attenuates SS hypertension in the Dahl SS rat. We hypothesized that reactive oxygen species produced by NOX2 in T cells drive the SS phenotype and renal damage. T cells were reconstituted by adoptively transferring splenocytes (∼10 million) from the Dahl SS (SS→CD247) rat, the SSp67phox-/- rat (p67phox→CD247), or only PBS (PBS→CD247) into the SSCD247-/- rat on postnatal day 5. Animals were instrumented with radiotelemeters and studied at 8 wk of age. There were no detectable differences in mean arterial pressure (MAP) or albuminuria between groups when rats were maintained on a low-salt (0.4% NaCl) diet. After 21 days of high-salt diet (4.0% NaCl), MAP and albuminuria were significantly greater in SS→CD247 rats compared with p67phox→CD247 and PBS→CD247 rats. Interestingly, there was no difference between p67phox→CD247 and PBS→CD247 rats in albuminuria or MAP after 21 days. The lack of CD3+ cells in PBS→CD247 rats and the presence of CD3+ cells in rats that received the T cell transfer demonstrated the effectiveness of the adoptive transfer. No differences in the number of CD3+, CD4+, or CD8+ cells were observed in the kidneys of SS→CD247 and p67phox→CD247 rats. These results indicate that reactive oxygen species produced by NOX2 in T cells participates in the amplification of SS hypertension and renal damage.NEW & NOTEWORTHY Our current work used the adoptive transfer of T cells that lack functional NADPH oxidase 2 into a genetically T cell-deficient Dahl salt-sensitive (SS) rat model. The results demonstrated that reactive oxygen species produced by NADPH oxidase 2 in T cells participate in the amplification of SS hypertension and associated renal damage and identifies a potential mechanism that exacerbates the salt-sensitive phenotype.
Collapse
Affiliation(s)
- Samuel D Walton
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - John Henry Dasinger
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Emily C Burns
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Mary Cherian-Shaw
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Justine M Abais-Battad
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - David L Mattson
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
11
|
Benson LN, Liu Y, Deck K, Mora C, Mu S. IFN- γ Contributes to the Immune Mechanisms of Hypertension. KIDNEY360 2022; 3:2164-2173. [PMID: 36591357 PMCID: PMC9802558 DOI: 10.34067/kid.0001292022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/19/2022] [Indexed: 12/31/2022]
Abstract
Hypertension is the leading cause of cardiovascular disease and the primary risk factor for mortality worldwide. For more than half a century, researchers have demonstrated that immunity plays an important role in the development of hypertension; however, the precise mechanisms are still under investigation. The current body of knowledge indicates that proinflammatory cytokines may play an important role in contributing to immune-related pathogenesis of hypertension. Interferon gamma (IFN-γ), in particular, as an important cytokine that modulates immune responses, has been recently identified as a critical regulator of blood pressure by several groups, including us. In this review, we focus on exploring the role of IFN-γ in contributing to the pathogenesis of hypertension, outlining the various immune producers of this cytokine and described signaling mechanisms involved. We demonstrate a key role for IFN-γ in hypertension through global knockout studies and related downstream signaling pathways that IFN-γ production from CD8+ T cell (CD8T) in the kidney promoting CD8T-stimulated salt retention via renal tubule cells, thereby exacerbating hypertension. We discuss potential activators of these T cells described by the current literature and relay a novel hypothesis for activation.
Collapse
Affiliation(s)
- Lance N. Benson
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Yunmeng Liu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Katherine Deck
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Christoph Mora
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
12
|
Mattson DL, Dasinger JH, Abais-Battad JM. Gut-Immune-Kidney Axis: Influence of Dietary Protein in Salt-Sensitive Hypertension. Hypertension 2022; 79:2397-2408. [PMID: 35983758 PMCID: PMC9790111 DOI: 10.1161/hypertensionaha.122.18556] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Humans with salt-sensitive hypertension demonstrate increased morbidity, increased mortality, and renal end-organ damage when compared with normotensive subjects or those with salt-resistant hypertension. Substantial evidence from humans and animals has also demonstrated the role of dietary components other than salt to modulate hypertension. Evidence presented in this review provides support for the view that immunity and inflammation serve to amplify the development of salt-sensitive hypertension and leads to malignant disease accompanied by end-organ damage. Interestingly, salt-sensitive disease is modulated by changes in dietary protein intake, which also influences immune mechanisms. Together, the evidence presented in this review from animal and human studies indicates that changes in dietary protein source have profound effects on the gut microbiota, microbiota-derived metabolites, DNA methylation, gene expression, immune cell activation, the production of cytokines and other factors, and the development of salt-sensitive hypertension and related disease phenotypes.
Collapse
Affiliation(s)
- David L Mattson
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - John Henry Dasinger
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | | |
Collapse
|
13
|
Atis M, Akcan U, Altunsu D, Ayvaz E, Uğur Yılmaz C, Sarıkaya D, Temizyürek A, Ahıshalı B, Girouard H, Kaya M. Targeting the blood-brain barrier disruption in hypertension by ALK5/TGF-Β type I receptor inhibitor SB-431542 and dynamin inhibitor dynasore. Brain Res 2022; 1794:148071. [PMID: 36058283 DOI: 10.1016/j.brainres.2022.148071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
Abstract
INTRODUCTION In this study, we aimed to target two molecules, transforming growth factor-beta (TGF-β) and dynamin to explore their roles in blood-brain barrier (BBB) disruption in hypertension. METHODS For this purpose, angiotensin (ANG) II-induced hypertensive mice were treated with SB-431542, an inhibitor of the ALK5/TGF-β type I receptor, and dynasore, an inhibitor of dynamin. Albumin-Alexa fluor 594 was used to assess BBB permeability. The alterations in the expression of claudin-5, caveolin (Cav)-1, glucose transporter (Glut)-1, and SMAD4 in the cerebral cortex and the hippocampus were evaluated by quantification of immunofluorescence staining intensity. RESULTS ANG II infusion increased BBB permeability to albumin-Alexa fluor 594 which was reduced by SB-431542 (P < 0.01), but not by dynasore. In hypertensive animals treated with dynasore, claudin-5 immunofluorescence intensity increased in the cerebral cortex and hippocampus while it decreased in the cerebral cortex of SB-431542 treated hypertensive mice (P < 0.01). Both dynasore and SB-431542 prevented the increased Cav-1 immunofluorescence intensity in the cerebral cortex and hippocampus of hypertensive animals (P < 0.01). SB-431542 and dynasore decreased Glut-1 immunofluorescence intensity in the cerebral cortex and hippocampus of mice receiving ANG II (P < 0.01). SB-431542 increased SMAD4 immunofluorescence intensity in the cerebral cortex of hypertensive animals, while in the hippocampus a significant decrease was noted by both SB-431542 and dynasore (P < 0.01). CONCLUSION Our data suggest that inhibition of the TGFβ type I receptor prevents BBB disruption under hypertensive conditions. These results emphasize the therapeutic potential of targeting TGFβ signaling as a novel treatment modality to protect the brain of hypertensive patients.
Collapse
Affiliation(s)
- Muge Atis
- Graduate School of Health Sciences, Koç University, 34450 Istanbul, Turkey
| | - Uğur Akcan
- Graduate School of Health Sciences, Koç University, 34450 Istanbul, Turkey
| | - Deniz Altunsu
- Graduate School of Health Sciences, Koç University, 34450 Istanbul, Turkey
| | - Ecem Ayvaz
- Graduate School of Health Sciences, Koç University, 34450 Istanbul, Turkey
| | - Canan Uğur Yılmaz
- Department of Pharmaceutical Bioscience, Biomedical Centrum, Uppsala University, Sweden
| | - Deniz Sarıkaya
- Department of Physiology, Koç University School of Medicine, 34450 Istanbul, Turkey
| | - Arzu Temizyürek
- Koç University Research Center for Translational Medicine, 34450 Istanbul, Turkey
| | - Bülent Ahıshalı
- Department of Histology and Embryology, Koç University School of Medicine, 34450, Istanbul, Turkey
| | - Hélène Girouard
- Department of Pharmacology and Physiology, Faculty of Medicine, Montreal University, Montreal, QC, Canada
| | - Mehmet Kaya
- Department of Physiology, Koç University School of Medicine, 34450 Istanbul, Turkey; Koç University Research Center for Translational Medicine, 34450 Istanbul, Turkey.
| |
Collapse
|
14
|
Interleukin 17A infusion has no acute or long-term hypertensive action in conscious unrestrained male mice. Pflugers Arch 2022; 474:709-719. [DOI: 10.1007/s00424-022-02705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/03/2022] [Accepted: 05/05/2022] [Indexed: 11/26/2022]
|
15
|
Hengel FE, Benitah JP, Wenzel UO. Mosaic theory revised: inflammation and salt play central roles in arterial hypertension. Cell Mol Immunol 2022; 19:561-576. [PMID: 35354938 PMCID: PMC9061754 DOI: 10.1038/s41423-022-00851-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
The mosaic theory of hypertension was advocated by Irvine Page ~80 years ago and suggested that hypertension resulted from the close interactions of different causes. Increasing evidence indicates that hypertension and hypertensive end-organ damage are not only mediated by the proposed mechanisms that result in hemodynamic injury. Inflammation plays an important role in the pathophysiology and contributes to the deleterious consequences of arterial hypertension. Sodium intake is indispensable for normal body function but can be detrimental when it exceeds dietary requirements. Recent data show that sodium levels also modulate the function of monocytes/macrophages, dendritic cells, and different T-cell subsets. Some of these effects are mediated by changes in the microbiome and metabolome due to high-salt intake. The purpose of this review is to propose a revised and extended version of the mosaic theory by summarizing and integrating recent advances in salt, immunity, and hypertension research. Salt and inflammation are placed in the middle of the mosaic because both factors influence each of the remaining pieces.
Collapse
Affiliation(s)
- Felicitas E Hengel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jean-Pierre Benitah
- Inserm UMR-S 1180, Faculty of Pharmacy, University Paris Saclay, Gif-sur-Yvette, France
| | - Ulrich O Wenzel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
16
|
Carnevale D. Neuroimmune axis of cardiovascular control: mechanisms and therapeutic implications. Nat Rev Cardiol 2022; 19:379-394. [PMID: 35301456 DOI: 10.1038/s41569-022-00678-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/21/2022]
Abstract
Cardiovascular diseases (CVDs) make a substantial contribution to the global burden of disease. Prevention strategies have succeeded in reducing the effect of acute CVD events and deaths, but the long-term consequences of cardiovascular risk factors still represent the major cause of disability and chronic illness, suggesting that some pathophysiological mechanisms might not be adequately targeted by current therapies. Many of the underlying causes of CVD have now been recognized to have immune and inflammatory components. However, inflammation and immune activation were mostly regarded as a consequence of target-organ damage. Only more recent findings have indicated that immune dysregulation can be pathogenic for CVD, identifying a need for novel immunomodulatory therapeutic strategies. The nervous system, through an array of afferent and efferent arms of the autonomic nervous system, profoundly affects cardiovascular function. Interestingly, the autonomic nervous system also innervates immune organs, and neuroimmune interactions that are biologically relevant to CVD have been discovered, providing the foundation to target neural reflexes as an immunomodulatory therapeutic strategy. This Review summarizes how the neural regulation of immunity and inflammation participates in the onset and progression of CVD and explores promising opportunities for future therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Carnevale
- Department of Molecular Medicine, Sapienza University, Rome, Italy. .,Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli, Italy.
| |
Collapse
|
17
|
Yin L, Bai J, Yu WJ, Liu Y, Li HH, Lin QY. Blocking VCAM-1 Prevents Angiotensin II-Induced Hypertension and Vascular Remodeling in Mice. Front Pharmacol 2022; 13:825459. [PMID: 35222039 PMCID: PMC8866968 DOI: 10.3389/fphar.2022.825459] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/20/2022] [Indexed: 12/27/2022] Open
Abstract
Adhesion of monocytes to the vascular endothelium frequently leads to an inflammatory response, which contributes to hypertension and vascular remodeling. Vascular cellular adhesion molecule-1 (VCAM-1) plays an important role in leukocyte adhesion and migration during inflammatory diseases. However, its role in angiotensin (Ang) II -induced hypertension and vascular dysfunction remains largely unknown. Wild-type (WT) mice were administered a VCAM-1 neutralizing antibody (0.1 or 0.2 mg/mouse/day) or IgG control and then infused with Ang II (490 ng kg−1 min−1) or saline continuously for 14 days. Systolic blood pressure (SBP) was measured with a tail-cuff system, pathological changes in the aorta were assessed by histological staining, and vascular relaxation was analyzed an aortic ring assay. Our results indicated that compared with saline infusion, Ang II infusion significantly upregulated VCAM-1 expression in the mouse aorta and serum. Moreover, Ang II infusion markedly increased arterial hypertension, wall thickness, fibrosis, infiltration of Mac-2+ macrophages, reactive oxygen species (ROS) production and vascular relaxation dysfunction. Conversely, blockade of VCAM-1 with a neutralizing antibody substantially alleviated these effects. In vitro experiments further confirmed that the VCAM-1 neutralizing antibody inhibited Ang II-induced macrophage adhesion and migration and DNA damage and oxidative stress in endothelial cells (ECs). In conclusion, these results indicate that blockade of VCAM-1 exerts a protective effect against Ang II-induced arterial hypertension and dysfunction by regulating monocytes adhesion and infiltration into the endothelium and represents a novel therapeutic approach for hypertension.
Collapse
Affiliation(s)
- Liangqingqing Yin
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jie Bai
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei-Jia Yu
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Liu
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui-Hua Li
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Hui-Hua Li, ; Qiu-Yue Lin,
| | - Qiu-Yue Lin
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Hui-Hua Li, ; Qiu-Yue Lin,
| |
Collapse
|
18
|
van der Heijden CDCC, Bode M, Riksen NP, Wenzel UO. The role of the mineralocorticoid receptor in immune cells in in cardiovascular disease. Br J Pharmacol 2021; 179:3135-3151. [PMID: 34935128 DOI: 10.1111/bph.15782] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/22/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
Chronic low-grade inflammation and immune cell activation are important mechanisms in the pathophysiology of cardiovascular disease (CVD). Therefore, targeted immunosuppression is a promising novel therapy to lower cardiovascular risk. In this review, we identify the mineralocorticoid receptor (MR) on immune cells as a potential target to modulate inflammation. The MR is present in almost all cells of the cardiovascular system, including immune cells. Activation of the MR in innate and adaptive immune cells induces inflammation which can contribute to CVD, by inducing endothelial dysfunction and hypertension. Moreover, it accelerates atherosclerotic plaque formation and destabilization and impairs tissue regeneration after ischemic events. Identifying the molecular targets for these non-renal actions of the MR provide promising novel cardiovascular drug targets for mineralocorticoid receptor antagonists (MRAs), which are currently mainly applied in hypertension and heart failure.
Collapse
Affiliation(s)
| | - Marlies Bode
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, GA, Nijmegen, The Netherlands.,Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, GA, The Netherlands
| | - Ulrich O Wenzel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Murray EC, Nosalski R, MacRitchie N, Tomaszewski M, Maffia P, Harrison DG, Guzik TJ. Therapeutic targeting of inflammation in hypertension: from novel mechanisms to translational perspective. Cardiovasc Res 2021; 117:2589-2609. [PMID: 34698811 PMCID: PMC9825256 DOI: 10.1093/cvr/cvab330] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023] Open
Abstract
Both animal models and human observational and genetic studies have shown that immune and inflammatory mechanisms play a key role in hypertension and its complications. We review the effects of immunomodulatory interventions on blood pressure, target organ damage, and cardiovascular risk in humans. In experimental and small clinical studies, both non-specific immunomodulatory approaches, such as mycophenolate mofetil and methotrexate, and medications targeting T and B lymphocytes, such as tacrolimus, cyclosporine, everolimus, and rituximab, lower blood pressure and reduce organ damage. Mechanistically targeted immune interventions include isolevuglandin scavengers to prevent neo-antigen formation, co-stimulation blockade (abatacept, belatacept), and anti-cytokine therapies (e.g. secukinumab, tocilizumab, canakinumab, TNF-α inhibitors). In many studies, trial designs have been complicated by a lack of blood pressure-related endpoints, inclusion of largely normotensive study populations, polypharmacy, and established comorbidities. Among a wide range of interventions reviewed, TNF-α inhibitors have provided the most robust evidence of blood pressure lowering. Treatment of periodontitis also appears to deliver non-pharmacological anti-hypertensive effects. Evidence of immunomodulatory drugs influencing hypertension-mediated organ damage are also discussed. The reviewed animal models, observational studies, and trial data in humans, support the therapeutic potential of immune-targeted therapies in blood pressure lowering and in hypertension-mediated organ damage. Targeted studies are now needed to address their effects on blood pressure in hypertensive individuals.
Collapse
Affiliation(s)
- Eleanor C Murray
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, UK
| | - Ryszard Nosalski
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, UK,Department of Internal Medicine, Collegium Medicum, Jagiellonian University, 31-008 Kraków, Poland
| | - Neil MacRitchie
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, UK
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, M13 9PL Manchester, UK,Manchester Heart Centre and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, M13 9WL Manchester, UK
| | - Pasquale Maffia
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, UK,Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, UK,Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbildt University Medical Centre, Nashville, 37232 TN, USA
| | - Tomasz J Guzik
- Corresponding author. Tel: +44 141 3307590; fax: +44 141 3307590, E-mail:
| |
Collapse
|
20
|
Abstract
Chronic cardiovascular diseases are associated with inflammatory responses within the blood vessels and end organs. The origin of this inflammation has not been certain, and neither is its relationship to disease clear. There is a need to determine whether this association is causal or coincidental to the processes leading to cardiovascular disease. These processes are themselves complex: many cardiovascular diseases arise in conjunction with the presence of sustained elevation of blood pressure. Inflammatory processes have been linked to hypertension, and causality has been suggested. Evidence of causality poses the difficult challenge of linking the integrated and multifaceted biology of blood pressure regulation with vascular function and complex elements of immune system function. These include both, innate and adaptive immunity, as well as interactions between the host immune system and the omnipresent microorganisms that are encountered in the environment and that colonize and exist in commensal relationship with the host. Progress has been made in this task and has drawn on experimental approaches in animals, much of which have focused on hypertension occurring with prolonged infusion of angiotensin II. These laboratory studies are complemented by studies that seek to inform disease mechanism by examining the genomic basis of heritable disease susceptibility in human populations. In this realm too, evidence has emerged that implicates genetic variation affecting immunity in disease pathogenesis. In this article, we survey the genetic and genomic evidence linking high blood pressure and its end-organ injuries to immune system function and examine evidence that genomic factors can influence disease risk. © 2021 American Physiological Society. Compr Physiol 11:1-22, 2021.
Collapse
Affiliation(s)
- Isha S Dhande
- Center for Human Genetics, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Peter A Doris
- Center for Human Genetics, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
21
|
Wenzel UO, Ehmke H, Bode M. Immune mechanisms in arterial hypertension. Recent advances. Cell Tissue Res 2021; 385:393-404. [PMID: 33394136 PMCID: PMC8523494 DOI: 10.1007/s00441-020-03409-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Increasing evidence indicates that hypertension and hypertensive end-organ damage are not only mediated by hemodynamic injury. Inflammation also plays an important role in the pathophysiology and contributes to the deleterious consequences of this disease. Cells of the innate immune system including monocyte/macrophages and dendritic cells can promote blood pressure elevation via effects mostly on kidney and vascular function. Moreover, convincing evidence shows that T and B cells from the adaptive immune system are involved in hypertension and hypertensive end-organ damage. Skin monocyte/macrophages, regulatory T cells, natural killer T cells, and myeloid-derived suppressor cells have been shown to exert blood pressure controlling effects. Sodium intake is undoubtedly indispensable for normal body function but can be detrimental when taken in excess of dietary requirements. Sodium levels also modulate the function of monocyte/macrophages, dendritic cells, and different T cell subsets. Some of these effects are mediated by changes in the microbiome and metabolome that can be found after high salt intake. Modulation of the immune response can reduce severity of blood pressure elevation and hypertensive end-organ damage in several animal models. The purpose of this review is to briefly summarize recent advances in immunity and hypertension as well as hypertensive end-organ damage.
Collapse
Affiliation(s)
- Ulrich O Wenzel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Heimo Ehmke
- Department of Cellular and Integrative Physiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Marlies Bode
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| |
Collapse
|
22
|
Wenzel UO, Kemper C, Bode M. The role of complement in arterial hypertension and hypertensive end organ damage. Br J Pharmacol 2021; 178:2849-2862. [PMID: 32585035 PMCID: PMC10725187 DOI: 10.1111/bph.15171] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/23/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence indicates that hypertension and hypertensive end organ damage are not only mediated by haemodynamic injury but that inflammation also plays an important role. The complement system protects the host from a hostile microbial environment and maintains tissue and cell integrity through the elimination of altered or dead cells. As an important effector arm of innate immunity, it plays also central roles in the regulation of adaptive immunity. Thus, complement activation may drive the pathology of hypertension through its effects on innate and adaptive immune responses, aside from direct effects on the vasculature. Recent experimental data strongly support a role for complement in all stages of arterial hypertension. The remarkably similar clinical and histopathological features of malignant nephrosclerosis and atypical haemolytic uraemic syndrome suggest also a role for complement in the development of malignant nephrosclerosis. Here, we review the role of complement in hypertension and hypertensive end organ damage. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Ulrich O Wenzel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Marlies Bode
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Rianto F, Hoang T, Revoori R, Sparks MA. Angiotensin receptors in the kidney and vasculature in hypertension and kidney disease. Mol Cell Endocrinol 2021; 529:111259. [PMID: 33781840 DOI: 10.1016/j.mce.2021.111259] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/05/2021] [Accepted: 03/20/2021] [Indexed: 12/24/2022]
Abstract
Kidney disease, blood pressure determination, hypertension pathogenesis, and the renin-angiotensin system (RAS) are inextricably linked. Hence, understanding the RAS is pivotal to unraveling the pathophysiology of hypertension and the determinants to maintaining normal blood pressure. The RAS has been the subject of intense investigation for over a century. Moreover, medications that block the RAS are mainstay therapies in clinical medicine and have been shown to reduce morbidity and mortality in patients with diabetes, cardiovascular, and kidney diseases. The main effector peptide of the RAS is the interaction of the octapeptide- Ang II with its receptor. The type 1 angiotensin receptor (AT1R) is the effector receptor for Ang II. These G protein-coupled receptors (GPCRs) are ubiquitously expressed in a variety of cell lineages and tissues relevant to cardiovascular disease throughout the body. The advent of cell specific deletion of genes using Cre LoxP technology in mice has allowed for the identification of discreet actions of AT1Rs in blood pressure control and kidney disease. The kidney is one of the major targets of the RAS, which is responsible in maintaining fluid, electrolyte balance, and blood pressure. In this review we will discuss the role of AT1Rs in the kidney, vasculature, and immune cells and address their effects on hypertension and kidney disease.
Collapse
MESH Headings
- Angiotensin I/genetics
- Angiotensin I/metabolism
- Angiotensin II/genetics
- Angiotensin II/metabolism
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Blood Pressure/genetics
- Gene Expression Regulation
- Humans
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/pathology
- Kidney Tubules, Proximal/enzymology
- Kidney Tubules, Proximal/pathology
- Mice
- Mice, Knockout
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renin-Angiotensin System/genetics
- Signal Transduction
- Water-Electrolyte Balance/genetics
Collapse
Affiliation(s)
- Fitra Rianto
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Thien Hoang
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Ritika Revoori
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States; Renal Section, Durham VA Health Care System, Durham, NC, United States.
| |
Collapse
|
24
|
Madhur MS, Elijovich F, Alexander MR, Pitzer A, Ishimwe J, Van Beusecum JP, Patrick DM, Smart CD, Kleyman TR, Kingery J, Peck RN, Laffer CL, Kirabo A. Hypertension: Do Inflammation and Immunity Hold the Key to Solving this Epidemic? Circ Res 2021; 128:908-933. [PMID: 33793336 PMCID: PMC8023750 DOI: 10.1161/circresaha.121.318052] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elevated cardiovascular risk including stroke, heart failure, and heart attack is present even after normalization of blood pressure in patients with hypertension. Underlying immune cell activation is a likely culprit. Although immune cells are important for protection against invading pathogens, their chronic overactivation may lead to tissue damage and high blood pressure. Triggers that may initiate immune activation include viral infections, autoimmunity, and lifestyle factors such as excess dietary salt. These conditions activate the immune system either directly or through their impact on the gut microbiome, which ultimately produces chronic inflammation and hypertension. T cells are central to the immune responses contributing to hypertension. They are activated in part by binding specific antigens that are presented in major histocompatibility complex molecules on professional antigen-presenting cells, and they generate repertoires of rearranged T-cell receptors. Activated T cells infiltrate tissues and produce cytokines including interleukin 17A, which promote renal and vascular dysfunction and end-organ damage leading to hypertension. In this comprehensive review, we highlight environmental, genetic, and microbial associated mechanisms contributing to both innate and adaptive immune cell activation leading to hypertension. Targeting the underlying chronic immune cell activation in hypertension has the potential to mitigate the excess cardiovascular risk associated with this common and deadly disease.
Collapse
Affiliation(s)
- Meena S. Madhur
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew R. Alexander
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
| | - Ashley Pitzer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeanne Ishimwe
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin P. Van Beusecum
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David M. Patrick
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
| | - Charles D. Smart
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| | - Thomas R. Kleyman
- Departments of Medicine, Cell Biology, Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Justin Kingery
- Center for Global Health, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania
| | - Robert N. Peck
- Center for Global Health, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania
- Mwanza Intervention Trials Unit (MITU), Mwanza, Tanzania
| | - Cheryl L. Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| |
Collapse
|
25
|
Zhang RM, McNerney KP, Riek AE, Bernal‐Mizrachi C. Immunity and Hypertension. Acta Physiol (Oxf) 2021; 231:e13487. [PMID: 32359222 DOI: 10.1111/apha.13487] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
Abstract
Hypertension is the primary cause of cardiovascular mortality. Despite multiple existing treatments, only half of those with the disease achieve adequate control. Therefore, understanding the mechanisms causing hypertension is essential for the development of novel therapies. Many studies demonstrate that immune cell infiltration of the vessel wall, kidney and central nervous system, as well as their counterparts of oxidative stress, the renal renin-angiotensin system (RAS) and sympathetic tone play a critical role in the development of hypertension. Genetically modified mice lacking components of innate and/or adaptive immunity confirm the importance of chronic inflammation in hypertension and its complications. Depletion of immune cells improves endothelial function, decreases oxidative stress, reduces vascular tone and prevents renal interstitial infiltrates, sodium retention and kidney damage. Moreover, the ablation of microglia or central nervous system perivascular macrophages reduces RAS-induced inflammation and prevents sympathetic nervous system activation and hypertension. Therefore, understanding immune cell functioning and their interactions with tissues that regulate hypertensive responses may be the future of novel antihypertensive therapies.
Collapse
Affiliation(s)
- Rong M. Zhang
- Department of Medicine Division of Endocrinology, Metabolism, and Lipid Research Washington University School of Medicine St. Louis MO USA
| | - Kyle P. McNerney
- Department of Pediatrics Washington University School of Medicine St. Louis MO USA
| | - Amy E. Riek
- Department of Medicine Division of Endocrinology, Metabolism, and Lipid Research Washington University School of Medicine St. Louis MO USA
| | - Carlos Bernal‐Mizrachi
- Department of Medicine Division of Endocrinology, Metabolism, and Lipid Research Washington University School of Medicine St. Louis MO USA
- Department of Cell Biology and Physiology Washington University School of Medicine St. Louis MO USA
- Department of Medicine VA Medical Center St. Louis MO USA
| |
Collapse
|
26
|
Higaki A, Mahmoud AUM, Paradis P, Schiffrin EL. Role of interleukin-23/interleukin-17 axis in T-cell-mediated actions in hypertension. Cardiovasc Res 2020; 117:1274-1283. [PMID: 32870976 DOI: 10.1093/cvr/cvaa257] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/01/2020] [Accepted: 08/25/2020] [Indexed: 12/25/2022] Open
Abstract
Current knowledge suggests that hypertension is in part mediated by immune mechanisms. Both interleukin (IL)-23 and IL-17 are up-regulated in several experimental hypertensive rodent models, as well as in hypertensive humans in observational studies. Recent preclinical studies have shown that either IL-23 or IL-17A treatment induce blood pressure elevation. However, the IL-23/IL-17 axis has not been a major therapeutic target in hypertension, unlike in other autoimmune diseases. In this review, we summarize current knowledge on the role of these cytokines in immune mechanisms contributing to hypertension, and discuss the potential of IL-23/IL-17-targeted therapy for treatment of hypertension.
Collapse
Affiliation(s)
| | | | | | - Ernesto L Schiffrin
- Lady Davis Institute for Medical Research.,Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte-Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
27
|
Ji H, de Souza AMA, Bajaj B, Zheng W, Wu X, Speth RC, Sandberg K. Sex-Specific Modulation of Blood Pressure and the Renin-Angiotensin System by ACE (Angiotensin-Converting Enzyme) 2. Hypertension 2020; 76:478-487. [PMID: 32564694 DOI: 10.1161/hypertensionaha.120.15276] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We showed ACE (angiotensin-converting enzyme) 2 is higher in the kidney of male compared with female mice. To further investigate this sex difference, we examined the role of ACE2 in Ang-[1-8] (angiotensin [1-8])-induced hypertension and regulation of the renin-angiotensin system in the kidney of WT (wild type) and Ace2 KO (knockout) mice. Mean arterial pressure rose faster in WT male than WT female mice after Ang-[1-8] infusion. This sex difference was attenuated in ACE2 KO mice. Ang-[1-8] infusion reduced glomerular AT1R (angiotensin type 1 receptor) binding in WT female mice by 30%, and deletion of Ace2 abolished this effect. In contrast, Ang-[1-8] infusion increased glomerular AT1R binding in WT male mice by 1.2-fold, and this effect of Ang-[1-8] persisted in Ace2 KO male mice (1.3-fold). ACE2 also had an effect on renal protein expression of the neutral endopeptidase NEP (neprilysin), the enzyme that catabolizes Ang-[1-10] (angiotensin [1-10]), the precursor of Ang-[1-8]. Ang-[1-8] infusion downregulated NEP protein expression by 20% in WT male, whereas there was a slight increase in NEP expression in WT female mice. Deletion of Ace2 resulted in lowered NEP expression after Ang-[1-8] infusion in both sexes. These findings suggest sex-specific ACE2 regulation of the renin-angiotensin system contributes to female protection from Ang-[1-8]-induced hypertension. These findings have ramifications for the current coronavirus disease 2019 (COVID-19) pandemic, especially in hypertension since ACE2 is the SARS-CoV-2 receptor and hypertension is a major risk factor for poor outcomes.
Collapse
Affiliation(s)
- Hong Ji
- From the Division of Nephrology and Hypertension, Department of Medicine (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC.,Center for the Study of Sex Differences in Health, Aging and Disease (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC
| | - Aline M A de Souza
- From the Division of Nephrology and Hypertension, Department of Medicine (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC.,Center for the Study of Sex Differences in Health, Aging and Disease (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC
| | - Bilkish Bajaj
- From the Division of Nephrology and Hypertension, Department of Medicine (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC.,Center for the Study of Sex Differences in Health, Aging and Disease (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC
| | - Wei Zheng
- From the Division of Nephrology and Hypertension, Department of Medicine (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC.,Center for the Study of Sex Differences in Health, Aging and Disease (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC
| | - Xie Wu
- From the Division of Nephrology and Hypertension, Department of Medicine (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC.,Center for the Study of Sex Differences in Health, Aging and Disease (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC
| | - Robert C Speth
- Department of Pharmaceutical Science, School of Pharmacy, Nova South Eastern University, Fort Lauderdale, FL (R.C.S.)
| | - Kathryn Sandberg
- From the Division of Nephrology and Hypertension, Department of Medicine (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC.,Center for the Study of Sex Differences in Health, Aging and Disease (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC
| |
Collapse
|
28
|
Nakagawa P, Nair AR, Agbor LN, Gomez J, Wu J, Zhang SY, Lu KT, Morgan DA, Rahmouni K, Grobe JL, Sigmund CD. Increased Susceptibility of Mice Lacking Renin-b to Angiotensin II-Induced Organ Damage. HYPERTENSION (DALLAS, TEX. : 1979) 2020; 76:468-477. [PMID: 32507043 DOI: 10.1161/hypertensionaha.120.14972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several cardiac and renal diseases are attributed to a dysregulation of the renin-angiotensin system. Renin, the rate-limiting enzyme of the renin-angiotensin system, has 2 isoforms. The classical renin isoform (renin-a) encoding preprorenin is mainly confined to the juxtaglomerular cells and released into the circulation upon stimulation. Alternatively, renin-b is predicted to remain intracellular and is expressed in the brain, heart, and adrenal gland. In the brain, ablation of renin-b (Ren-bNull mice) results in increased brain renin-angiotensin system activity. However, the consequences of renin-b ablation in tissues outside the brain remain unknown. Therefore, we hypothesized that renin-b protects from hypertensive cardiac and renal end-organ damage in mice. Ren-bNull mice exhibited normal blood pressure at baseline. Thus, we induced hypertension by using a slow pressor dose of Ang II (angiotensin II). Ang II increased blood pressure in both wild type and Ren-bNull to the same degree. Although the blood pressure between Ren-bNull and wild-type mice was elevated equally, 4-week infusion of Ang II resulted in exacerbated cardiac remodeling in Ren-bNull mice compared with wild type. Ren-bNull mice also exhibited a modest increase in renal glomerular matrix deposition, elevated plasma aldosterone, and a modestly enhanced dipsogenic response to Ang II. Interestingly, ablation of renin-b strongly suppressed plasma renin, but renal cortical renin mRNA was preserved. Altogether, these data indicate that renin-b might play a protective role in the heart, and thus renin-b could be a potential target to treat hypertensive heart disease.
Collapse
Affiliation(s)
- Pablo Nakagawa
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee (P.N., J.G., J.W., K.-T.L., J.L.G., C.D.S.)
| | - Anand R Nair
- Department of Neuroscience and Pharmacology, Roy J. and Lucille. Carver College of Medicine, University of Iowa (A.R.N., L.A., S.Y.Z., D.A.M., K.R.)
| | - Larry N Agbor
- Department of Neuroscience and Pharmacology, Roy J. and Lucille. Carver College of Medicine, University of Iowa (A.R.N., L.A., S.Y.Z., D.A.M., K.R.)
| | - Javier Gomez
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee (P.N., J.G., J.W., K.-T.L., J.L.G., C.D.S.)
| | - Jing Wu
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee (P.N., J.G., J.W., K.-T.L., J.L.G., C.D.S.)
| | - Shao Yang Zhang
- Department of Neuroscience and Pharmacology, Roy J. and Lucille. Carver College of Medicine, University of Iowa (A.R.N., L.A., S.Y.Z., D.A.M., K.R.)
| | - Ko-Ting Lu
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee (P.N., J.G., J.W., K.-T.L., J.L.G., C.D.S.)
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, Roy J. and Lucille. Carver College of Medicine, University of Iowa (A.R.N., L.A., S.Y.Z., D.A.M., K.R.)
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, Roy J. and Lucille. Carver College of Medicine, University of Iowa (A.R.N., L.A., S.Y.Z., D.A.M., K.R.)
| | - Justin L Grobe
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee (P.N., J.G., J.W., K.-T.L., J.L.G., C.D.S.)
| | - Curt D Sigmund
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee (P.N., J.G., J.W., K.-T.L., J.L.G., C.D.S.)
| |
Collapse
|
29
|
Belanger KM, Crislip GR, Gillis EE, Abdelbary M, Musall JB, Mohamed R, Baban B, Elmarakby A, Brands MW, Sullivan JC. Greater T Regulatory Cells in Females Attenuate DOCA-Salt-Induced Increases in Blood Pressure Versus Males. Hypertension 2020; 75:1615-1623. [PMID: 32336228 DOI: 10.1161/hypertensionaha.119.14089] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypertension is the most common risk factor for cardiovascular disease, causing over 18 million deaths a year. Although the mechanisms controlling blood pressure (BP) in either sex remain largely unknown, T cells play a critical role in the development of hypertension. Further evidence supports a role for the immune system in contributing to sex differences in hypertension. The goal of the current study was to first, determine the impact of sex on the renal T-cell profiles in DOCA-salt hypertensive males and females and second, test the hypothesis that greater numbers of T regulatory cells (Tregs) in females protect against DOCA-salt-induced increases in BP and kidney injury. Male rats displayed greater increases in BP than females following 3 weeks of DOCA-salt treatment, although increases in renal injury were comparable between the sexes. DOCA-salt treatment resulted in an increase in proinflammatory T cells in both sexes; however, females had more anti-inflammatory Tregs than males. Additional male and female DOCA-salt rats were treated with anti-CD25 to decrease Tregs. Decreasing Tregs significantly increased BP only in females, thereby abolishing the sex difference in the BP response to DOCA-salt. This data supports the hypothesis that Tregs protect against the development of hypertension and are particularly important for the control of BP in females.
Collapse
Affiliation(s)
- Kasey M Belanger
- From the Departments of Physiology (K.M.B., G.R.C., E.E.G., M.A., J.B.M., R.M., M.W.B., J.C.S.), Medical College of Georgia at Augusta University, GA
| | - G Ryan Crislip
- From the Departments of Physiology (K.M.B., G.R.C., E.E.G., M.A., J.B.M., R.M., M.W.B., J.C.S.), Medical College of Georgia at Augusta University, GA
| | - Ellen E Gillis
- From the Departments of Physiology (K.M.B., G.R.C., E.E.G., M.A., J.B.M., R.M., M.W.B., J.C.S.), Medical College of Georgia at Augusta University, GA
| | - Mahmoud Abdelbary
- From the Departments of Physiology (K.M.B., G.R.C., E.E.G., M.A., J.B.M., R.M., M.W.B., J.C.S.), Medical College of Georgia at Augusta University, GA
| | - Jacqueline B Musall
- From the Departments of Physiology (K.M.B., G.R.C., E.E.G., M.A., J.B.M., R.M., M.W.B., J.C.S.), Medical College of Georgia at Augusta University, GA
| | - Riyaz Mohamed
- From the Departments of Physiology (K.M.B., G.R.C., E.E.G., M.A., J.B.M., R.M., M.W.B., J.C.S.), Medical College of Georgia at Augusta University, GA
| | - Babak Baban
- Oral Biology (B.B., A.E.), Medical College of Georgia at Augusta University, GA
| | - Ahmed Elmarakby
- Oral Biology (B.B., A.E.), Medical College of Georgia at Augusta University, GA
| | - Michael W Brands
- From the Departments of Physiology (K.M.B., G.R.C., E.E.G., M.A., J.B.M., R.M., M.W.B., J.C.S.), Medical College of Georgia at Augusta University, GA
| | - Jennifer C Sullivan
- From the Departments of Physiology (K.M.B., G.R.C., E.E.G., M.A., J.B.M., R.M., M.W.B., J.C.S.), Medical College of Georgia at Augusta University, GA
| |
Collapse
|
30
|
Rios FJ, Montezano AC, Touyz RM. Lessons Learned From RAG-1-Deficient Mice in Hypertension. Hypertension 2020; 75:935-937. [PMID: 32078397 DOI: 10.1161/hypertensionaha.119.14406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Francisco J Rios
- From the Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom
| | - Augusto C Montezano
- From the Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom
| | - Rhian M Touyz
- From the Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom
| |
Collapse
|
31
|
Madhur MS, Kirabo A, Guzik TJ, Harrison DG. From Rags to Riches: Moving Beyond RAG1 in Studies of Hypertension. Hypertension 2020; 75:930-934. [PMID: 32078385 DOI: 10.1161/hypertensionaha.119.14612] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Meena S Madhur
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.S.M., A.K., D.G.H.)
| | - Annet Kirabo
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.S.M., A.K., D.G.H.)
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom (T.J.G.).,Department of Internal and Agricultural Medicine, Jagiellonian University Collegium Medicum, Krakow, Poland (T.J.G.)
| | - David G Harrison
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.S.M., A.K., D.G.H.)
| |
Collapse
|
32
|
Seniuk A, Thiele JL, Stubbe A, Oser P, Rosendahl A, Bode M, Meyer-Schwesinger C, Wenzel UO, Ehmke H. B6.Rag1 Knockout Mice Generated at the Jackson Laboratory in 2009 Show a Robust Wild-Type Hypertensive Phenotype in Response to Ang II (Angiotensin II). Hypertension 2020; 75:1110-1116. [PMID: 32078412 DOI: 10.1161/hypertensionaha.119.13773] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A key finding supporting a causal role of the immune system in the pathogenesis of hypertension is the observation that RAG1 knockout mice on a C57Bl/6J background (B6.Rag1-/-), which lack functional B and T cells, develop a much milder hypertensive response to Ang II (angiotensin II) than control C57Bl/6J mice. Here, we report that we never observed any Ang II resistance of B6.Rag1-/- mice purchased directly from the Jackson Laboratory as early as 2009. B6.Rag1-/- mice displayed nearly identical blood pressure increases monitored via radiotelemetry and hypertensive end-organ damage in response to different doses of Ang II and different levels of salt intake (0.02%, 0.3%, and 3% NaCl diet). Similarly, restoration of T-cell immunity by adoptive cell transfer did not affect the blood pressure response to Ang II in B6.Rag1-/- mice. Full development of the hypertension-resistant phenotype in B6.Rag1-/- mice appears to depend on the action of yet unidentified nongenetic modifiers in addition to the absence of functional T cells.
Collapse
Affiliation(s)
- Anika Seniuk
- From the Institute of Cellular and Integrative Physiology (A. Seniuk, J.L.T., A. Stubbe, P.O., C.M.-S., H.E.), University Medical Center Hamburg, Germany.,German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck (A. Seniuk, A.R., U.O.W., H.E.)
| | - Jonas L Thiele
- From the Institute of Cellular and Integrative Physiology (A. Seniuk, J.L.T., A. Stubbe, P.O., C.M.-S., H.E.), University Medical Center Hamburg, Germany
| | - Andra Stubbe
- From the Institute of Cellular and Integrative Physiology (A. Seniuk, J.L.T., A. Stubbe, P.O., C.M.-S., H.E.), University Medical Center Hamburg, Germany
| | - Philipp Oser
- From the Institute of Cellular and Integrative Physiology (A. Seniuk, J.L.T., A. Stubbe, P.O., C.M.-S., H.E.), University Medical Center Hamburg, Germany
| | - Alva Rosendahl
- Third Department of Medicine (A.R., M.B., U.O.W.), University Medical Center Hamburg, Germany.,German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck (A. Seniuk, A.R., U.O.W., H.E.)
| | - Marlies Bode
- Third Department of Medicine (A.R., M.B., U.O.W.), University Medical Center Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- From the Institute of Cellular and Integrative Physiology (A. Seniuk, J.L.T., A. Stubbe, P.O., C.M.-S., H.E.), University Medical Center Hamburg, Germany
| | - Ulrich O Wenzel
- Third Department of Medicine (A.R., M.B., U.O.W.), University Medical Center Hamburg, Germany.,German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck (A. Seniuk, A.R., U.O.W., H.E.)
| | - Heimo Ehmke
- From the Institute of Cellular and Integrative Physiology (A. Seniuk, J.L.T., A. Stubbe, P.O., C.M.-S., H.E.), University Medical Center Hamburg, Germany.,German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck (A. Seniuk, A.R., U.O.W., H.E.)
| |
Collapse
|
33
|
Lu X, Rudemiller NP, Wen Y, Ren J, Hammer GE, Griffiths R, Privratsky JR, Yang B, Sparks MA, Crowley SD. A20 in Myeloid Cells Protects Against Hypertension by Inhibiting Dendritic Cell-Mediated T-Cell Activation. Circ Res 2019; 125:1055-1066. [PMID: 31630621 DOI: 10.1161/circresaha.119.315343] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE The ubiquitin-editing protein A20 in dendritic cells (DCs) suppresses NF-κB (nuclear factor-κB) signaling and constrains DC-mediated T-cell stimulation, but the role of A20 in modulating the hypertensive response requires elucidation. OBJECTIVE Here, we tested the hypothesis that A20 in CD11c-expressing myeloid cells mitigates Ang II (angiotensin II)-induced hypertension by limiting renal T-cell activation. METHODS AND RESULTS Mice with heterozygous deletion of A20 in CD11c-expressing myeloid cells (DC ACT[Cd11c-Cre+ A20flox/wt]) have spontaneous DC activation but have normal baseline blood pressures. In response to low-dose chronic Ang II infusion, DC ACT mice compared with WT (wild type) controls had an exaggerated hypertensive response and augmented proportions of CD62LloCD44hi effector memory T lymphocytes in the kidney lymph node. After 10 days of Ang II, DC ACT kidneys had increased numbers of memory effector CD8+, but not CD4+ T cells, compared with WTs. Moreover, the expressions of TNF-α (tumor necrosis factor-α) and IFN-γ (interferon-γ) were upregulated in the DC ACT renal CD8+ T cells but not CD4+ T cells. Saline challenge testing revealed enhanced renal fluid retention in the DC ACT mice. DC ACT kidneys showed augmented protein expression of γ-epithelial sodium channel and NHE3 (sodium-hydrogen antiporter 3). DC ACT mice also had greater reductions in renal blood flow following acute injections with Ang II and enhanced oxidant stress in the vasculature as evidenced by higher circulating levels of malondialdehyde compared with WT controls. To directly test whether enhanced T-cell activation in the DC ACT cohort was responsible for their exaggerated hypertensive response, we chronically infused Ang II into lymphocyte-deficient DC ACT Rag1 (recombination activating protein 1)-deficient (Rag1-/-) mice and WT (Cd11c-Cre- A20flox/wt) Rag1-/- controls. The difference in blood pressure elevation accruing from DC activation was abrogated on the Rag1-/- strain. CONCLUSIONS Following stimulation of the renin-angiotensin system, A20 suppresses DC activation and thereby mitigates T-cell-dependent blood pressure elevation.
Collapse
Affiliation(s)
- Xiaohan Lu
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., Y.W., J.R., R.G., J.R.P., B.Y., M.A.S., S.D.C.)
| | - Nathan P Rudemiller
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., Y.W., J.R., R.G., J.R.P., B.Y., M.A.S., S.D.C.)
| | - Yi Wen
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., Y.W., J.R., R.G., J.R.P., B.Y., M.A.S., S.D.C.)
| | - Jiafa Ren
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., Y.W., J.R., R.G., J.R.P., B.Y., M.A.S., S.D.C.)
| | - Gianna E Hammer
- Department of Immunology, Duke University School of Medicine, Durham, NC (G.E.H.).,Department of Molecular Genetics and Microbiology, Durham, NC (G.E.H.)
| | - Robert Griffiths
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., Y.W., J.R., R.G., J.R.P., B.Y., M.A.S., S.D.C.)
| | - Jamie R Privratsky
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., Y.W., J.R., R.G., J.R.P., B.Y., M.A.S., S.D.C.)
| | - Bo Yang
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., Y.W., J.R., R.G., J.R.P., B.Y., M.A.S., S.D.C.)
| | - Matthew A Sparks
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., Y.W., J.R., R.G., J.R.P., B.Y., M.A.S., S.D.C.)
| | - Steven D Crowley
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., Y.W., J.R., R.G., J.R.P., B.Y., M.A.S., S.D.C.)
| |
Collapse
|
34
|
Pai AV, West CA, de Souza AMA, Kadam PS, Pollner EJ, West DA, Li J, Ji H, Wu X, Zhu MJ, Baylis C, Sandberg K. Renal T cell infiltration occurs despite attenuation of development of hypertension with hydralazine in Envigo's female Dahl rat maintained on a low-Na + diet. Am J Physiol Renal Physiol 2019; 317:F572-F583. [PMID: 31241996 PMCID: PMC6766632 DOI: 10.1152/ajprenal.00512.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/20/2022] Open
Abstract
Many studies have suggested that renal T cell infiltration contributes to the pathogenesis of salt-sensitive hypertension. To investigate this mechanism further, we determined T cell profiles in the kidney and lymphoid tissues as a function of blood pressure in the female Envigo Dahl salt-sensitive (SS) rat maintained on low-Na+ (LS) diet. Mean arterial pressure and heart rate were measured by telemetry in SS rats from 1 mo old (juvenile) to 4 mo old. Normotensive salt-resistant (SR) rats were included as controls. Frequencies of T helper (CD4+) cells were greater in the kidney, lymph nodes, and spleen in 4-mo-old hypertensive SS rats compared with normotensive SR animals and SS juvenile rats, suggesting that renal T cell infiltration contributes to hypertension in the SS rat on a LS diet. At 1.5 mo, half of the SS rats were treated with vehicle (Veh), and the rest received hydralazine (HDZ; 25 mg·kg-1·day-1) for 11 wk. HDZ impeded the development of hypertension compared with Veh-treated control rats [mean arterial pressure: 157 ± 4 mmHg in the Veh-treated group (n = 6) vs. 133 ± 3 mmHg in the HDZ-treated group (n = 7), P < 0.001] without impacting T helper cell frequencies in the tissues, suggesting that HDZ can overcome mechanisms of hypertension driven by renal T cell infiltration under the LS diet. Renal frequencies of CD4+CD25+ and CD4+CD25+FoxP3+ regulatory T cells were significantly higher in 4-mo-old hypertensive rats compared with normotensive SR rats and SS juvenile rats, suggesting that these T cell subpopulations play a compensatory role in the development of hypertension. Greater understanding of these T cell populations could lead to new therapeutic targets for treating inflammatory diseases associated with hypertension.
Collapse
Affiliation(s)
- Amrita V Pai
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia
| | - Crystal A West
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | | | - Parnika S Kadam
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia
| | - Emma J Pollner
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | - David A West
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Jia Li
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Hong Ji
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Xie Wu
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Michelle J Zhu
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Chris Baylis
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Kathryn Sandberg
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia
- Department of Medicine, Georgetown University, Washington, District of Columbia
| |
Collapse
|
35
|
Brown IAM, Diederich L, Good ME, DeLalio LJ, Murphy SA, Cortese-Krott MM, Hall JL, Le TH, Isakson BE. Vascular Smooth Muscle Remodeling in Conductive and Resistance Arteries in Hypertension. Arterioscler Thromb Vasc Biol 2019; 38:1969-1985. [PMID: 30354262 DOI: 10.1161/atvbaha.118.311229] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is a leading cause of death worldwide and accounts for >17.3 million deaths per year, with an estimated increase in incidence to 23.6 million by 2030. 1 Cardiovascular death represents 31% of all global deaths 2 -with stroke, heart attack, and ruptured aneurysms predominantly contributing to these high mortality rates. A key risk factor for cardiovascular disease is hypertension. Although treatment or reduction in hypertension can prevent the onset of cardiovascular events, existing therapies are only partially effective. A key pathological hallmark of hypertension is increased peripheral vascular resistance because of structural and functional changes in large (conductive) and small (resistance) arteries. In this review, we discuss the clinical implications of vascular remodeling, compare the differences between vascular smooth muscle cell remodeling in conductive and resistance arteries, discuss the genetic factors associated with vascular smooth muscle cell function in hypertensive patients, and provide a prospective assessment of current and future research and pharmacological targets for the treatment of hypertension.
Collapse
Affiliation(s)
- Isola A M Brown
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.)
| | - Lukas Diederich
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University, Dusseldorf, Germany (L.D., M.M.C.-K.)
| | - Miranda E Good
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.)
| | - Leon J DeLalio
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.).,Department of Pharmacology (L.J.D.)
| | - Sara A Murphy
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.)
| | - Miriam M Cortese-Krott
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University, Dusseldorf, Germany (L.D., M.M.C.-K.)
| | - Jennifer L Hall
- Lillehei Heart Institute (J.L.H.).,Division of Cardiology, Department of Medicine (J.L.H.), University of Minnesota, Minneapolis.,American Heart Association, Dallas, TX (J.L.H.)
| | - Thu H Le
- Division of Nephrology, Department of Medicine (T.H.L.)
| | - Brant E Isakson
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.).,Department of Molecular Physiology and Biophysics (B.E.I.), University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
36
|
Batchu SN, Dugbartey GJ, Wadosky KM, Mickelsen DM, Ko KA, Wood RW, Zhao Y, Yang X, Fowell DJ, Korshunov VA. Innate Immune Cells Are Regulated by Axl in Hypertensive Kidney. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 188:1794-1806. [PMID: 30033030 DOI: 10.1016/j.ajpath.2018.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/03/2018] [Accepted: 04/12/2018] [Indexed: 11/26/2022]
Abstract
The balance between adaptive and innate immunity in kidney damage in salt-dependent hypertension is unclear. We investigated early renal dysfunction and the influence of Axl, a receptor tyrosine kinase, on innate immune response in hypertensive kidney in mice with lymphocyte deficiency (Rag1-/-). The data suggest that increased presence of CD11b+ myeloid cells in the medulla might explain intensified salt and water retention as well as initial hypertensive response in Rag1-/- mice. Global deletion of Axl on Rag1-/- background reversed kidney dysfunction and accumulation of myeloid cells in the kidney medulla. Chimeric mice that lack Axl in innate immune cells (in the absence of lymphocytes) significantly improved kidney function and abolished early hypertensive response. The bioinformatics analyses of Axl-related gene-gene interaction networks established tissue-specific variation in regulatory pathways. It was confirmed that complement C3 is important for Axl-mediated interactions between myeloid and vascular cells in hypertensive kidney. In summary, innate immunity is crucial for renal dysfunction in early hypertension, and is highly influenced by the presence of Axl.
Collapse
Affiliation(s)
- Sri N Batchu
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - George J Dugbartey
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Kristine M Wadosky
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Deanne M Mickelsen
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Kyung A Ko
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Ronald W Wood
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Deborah J Fowell
- Department of Microbiology and Immunology and David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Vyacheslav A Korshunov
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York.
| |
Collapse
|
37
|
Carnagarin R, Matthews V, Zaldivia MTK, Peter K, Schlaich MP. The bidirectional interaction between the sympathetic nervous system and immune mechanisms in the pathogenesis of hypertension. Br J Pharmacol 2019; 176:1839-1852. [PMID: 30129037 PMCID: PMC6534787 DOI: 10.1111/bph.14481] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/26/2018] [Accepted: 08/05/2018] [Indexed: 12/14/2022] Open
Abstract
Over the last few years, evidence has accumulated to suggest that hypertension is, at least in part, an immune-mediated inflammatory disorder. Many links between immunity and hypertension have been established and provide a complex framework of mechanistic interactions contributing to the rise in BP. These include immune-mediated inflammatory processes affecting regulatory brain nuclei and interactions with other mediators of cardiovascular regulation such as the sympathetic nervous system. Sympathoexcitation differentially regulates T-cells based upon activation status of the immune cell as well as the resident organ. Exogenous and endogenous triggers activate signalling pathways in innate and adaptive immune cells resulting in pro-inflammatory cytokine production and activation of T-lymphocytes in the cardiovascular and renal regions, now considered major factors in the development of essential hypertension. The inflammatory cascade is sustained and exacerbated by the immune flow via the brain-bone marrow-spleen-gastrointestinal axis and thereby further aggravating immune-mediated pathways resulting in a vicious cycle of established hypertension and target organ damage. This review summarizes the evidence and recent advances in linking immune-mediated inflammation, sympathetic activation and their bidirectional interactions with the development of hypertension. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
- Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine – Royal Perth Hospital UnitThe University of Western AustraliaPerthWAAustralia
| | - Vance Matthews
- Dobney Hypertension Centre, School of Medicine – Royal Perth Hospital UnitThe University of Western AustraliaPerthWAAustralia
| | - Maria T K Zaldivia
- Atherothrombosis and Vascular BiologyBaker Heart and Diabetes InstituteMelbourneVicAustralia
- Department of MedicineMonash University, Royal Perth HospitalPerthWAAustralia
| | - Karlheinz Peter
- Atherothrombosis and Vascular BiologyBaker Heart and Diabetes InstituteMelbourneVicAustralia
- Department of MedicineMonash University, Royal Perth HospitalPerthWAAustralia
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine – Royal Perth Hospital UnitThe University of Western AustraliaPerthWAAustralia
- Department of CardiologyRoyal Perth HospitalPerthWAAustralia
- Department of NephrologyRoyal Perth HospitalPerthWAAustralia
| |
Collapse
|
38
|
Pai AV, Maddox T, Sandberg K. T Cells and Hypertension: Solved and Unsolved Mysteries Regarding the Female Rat. Physiology (Bethesda) 2019; 33:254-260. [PMID: 29897303 DOI: 10.1152/physiol.00011.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
T-cell function in female animal models of hypertension is poorly understood since most research is conducted in males. Our findings in Dahl-salt-sensitive and Dahl salt-resistant rats support prior research showing sex-specific T-cell effects in the pathophysiology of hypertension. Further studies are needed to inform clinical studies in both sexes and to provide clues into immune mechanisms underlying susceptibility and resilience to developing hypertension and associated disease.
Collapse
Affiliation(s)
- Amrita V Pai
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University , Washington, DC.,Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University , Washington, DC
| | - Taylor Maddox
- Department of Medicine, Georgetown University , Washington, DC.,Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University , Washington, DC
| | - Kathryn Sandberg
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University , Washington, DC.,Department of Medicine, Georgetown University , Washington, DC.,Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University , Washington, DC
| |
Collapse
|
39
|
Reckelhoff JF, Alexander BT. Reproducibility in animal models of hypertension: a difficult problem. Biol Sex Differ 2018; 9:53. [PMID: 30577880 PMCID: PMC6303982 DOI: 10.1186/s13293-018-0216-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/11/2018] [Indexed: 11/10/2022] Open
Abstract
In 2016, the National Institutes of Health mandated that all grant proposals enhance reproducibility through rigor and transparency. In the past few years, physiological outcomes in established animal models of hypertension, in particular in regard to sex differences, have varied from study to study or laboratory to laboratory. The aim of this commentary is to increase investigator awareness of caveats related to animal models that may be sensitive to vendor-, barrier-, or diet-specific changes that result in an inability to sustain the genotype and/or phenotype of well-established experimental models. These considerations are critical in order for investigators to make informed and educated decisions in regard to their hypothesis-driven research, in particular as it relates to experimental design and interpretation, and the reporting of results.
Collapse
Affiliation(s)
- Jane F Reckelhoff
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, USA. .,Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, USA. .,Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA.
| | - Barbara T Alexander
- Department of Physiology, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA.,Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, USA.,Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA
| |
Collapse
|
40
|
Per-Arnt-Sim Kinase (PASK) Deficiency Increases Cellular Respiration on a Standard Diet and Decreases Liver Triglyceride Accumulation on a Western High-Fat High-Sugar Diet. Nutrients 2018; 10:nu10121990. [PMID: 30558306 PMCID: PMC6316003 DOI: 10.3390/nu10121990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetes and the related disease metabolic syndrome are epidemic in the United States, in part due to a shift in diet and decrease in physical exercise. PAS kinase is a sensory protein kinase associated with many of the phenotypes of these diseases, including hepatic triglyceride accumulation and metabolic dysregulation in male mice placed on a high-fat diet. Herein we provide the first characterization of the effects of western diet (high-fat high-sugar, HFHS) on Per-Arnt-Sim kinase mice (PASK−/−) and the first characterization of both male and female PASK−/− mice. Soleus muscle from the PASK−/− male mice displayed a 2-fold higher oxidative phosphorylation capacity than wild type (WT) on the normal chow diet. PASK−/− male mice were also resistant to hepatic triglyceride accumulation on the HFHS diet, displaying a 2.7-fold reduction in hepatic triglycerides compared to WT mice on the HFHS diet. These effects on male hepatic triglyceride were further explored through mass spectrometry-based lipidomics. The absence of PAS kinase was found to affect many of the 44 triglycerides analyzed, preventing hepatic triglyceride accumulation in response to the HFHS diet. In contrast, the female mice showed resistance to hepatic triglyceride accumulation on the HFHS diet regardless of genotype, suggesting the effects of PAS kinase may be masked.
Collapse
|
41
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 729] [Impact Index Per Article: 104.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
42
|
Martinez-Quinones P, McCarthy CG, Watts SW, Klee NS, Komic A, Calmasini FB, Priviero F, Warner A, Chenghao Y, Wenceslau CF. Hypertension Induced Morphological and Physiological Changes in Cells of the Arterial Wall. Am J Hypertens 2018; 31:1067-1078. [PMID: 29788246 DOI: 10.1093/ajh/hpy083] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022] Open
Abstract
Morphological and physiological changes in the vasculature have been described in the evolution and maintenance of hypertension. Hypertension-induced vascular dysfunction may present itself as a contributing, or consequential factor, to vascular remodeling caused by chronically elevated systemic arterial blood pressure. Changes in all vessel layers, from the endothelium to the perivascular adipose tissue (PVAT), have been described. This mini-review focuses on the current knowledge of the structure and function of the vessel layers, specifically muscular arteries: intima, media, adventitia, PVAT, and the cell types harbored within each vessel layer. The contributions of each cell type to vessel homeostasis and pathophysiological development of hypertension will be highlighted.
Collapse
Affiliation(s)
- Patricia Martinez-Quinones
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, Georgia
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Cameron G McCarthy
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Nicole S Klee
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Amel Komic
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, Georgia
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Fabiano B Calmasini
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Fernanda Priviero
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Alexander Warner
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Yu Chenghao
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Camilla F Wenceslau
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| |
Collapse
|
43
|
Pai AV, West CA, A de Souza AM, Cheng X, West DA, Ji H, Wu X, Baylis C, Sandberg K. Salt-sensitive (Rapp) rats from Envigo spontaneously develop accelerated hypertension independent of ovariectomy on a low-sodium diet. Am J Physiol Regul Integr Comp Physiol 2018; 315:R915-R924. [PMID: 30024774 DOI: 10.1152/ajpregu.00449.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inbred salt-sensitive (SS) rats developed by John Rapp and distributed by Harlan (SS/JrHsd) were shown to model ovariectomy-induced hypertension because on a low-sodium (LS) diet, ovariectomized SS (SS-OVX) animals became hypertensive in contrast to their sham-operated (SS-SHAM) normotensive littermates. After Harlan merged with Envigo in 2015, inconsistencies in the LS normotensive phenotype were reported. To further investigate these inconsistencies, we studied the effects of ovariectomy on SS and salt-resistant (SR) rats purchased from Envigo (SS/JrHsd/Env) between 2015 and 2017. The mean arterial pressure (MAP) in SS rats on a LS diet exceeded 160 mmHg at 7 mo old. Ovariectomy at 3 mo had no detectable effect on MAP from 4 to 7 mo, nor did ovariectomy at 1.5 mo significantly affect MAP at 10 mo in either strain; only strain differences in MAP were observed [MAP: SR-SHAM ( n = 7 rats), 102 ± 3 mmHg; SR-OVX ( n = 6 rats), 114 ± 1 mmHg; SS-SHAM ( n = 7 rats), 177 ± 6 mmHg; SS-OVX ( n = 5 rats), 190 ± 12 mmHg; where P < 0.0001 vs. SR, same ovarian-status for SS-SHAM and SS-OVX, respectively]. Whole genome sequencing revealed more genomic variants of SS/JrHsd/Env, including single nucleotide and insertion deletion polymorphisms and higher heterozygous/homozygous ratios compared with the reference genome, than for SS/JrHsd/Mcwi and SS/Jr rats maintained in Milwaukee, WI and Toledo, OH, respectively, and which still exhibit normal blood pressure on a LS diet. These findings demonstrate that the female SS/JrHsd/Env rat has genetically diverged from the original phenotype, which was normotensive on a LS diet when the ovaries were intact but rapidly developed hypertension when the ovaries were removed. Nonetheless, the SS/JrHsd/Env rat could be a valuable model that complements other animal models of spontaneous hypertension used to investigate mechanisms of essential hypertension.
Collapse
Affiliation(s)
- Amrita V Pai
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University , Washington, District of Columbia
| | - Crystal A West
- Department of Medicine, Georgetown University , Washington, District of Columbia
| | - Aline M A de Souza
- Department of Medicine, Georgetown University , Washington, District of Columbia
| | - Xi Cheng
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| | - David A West
- Department of Medicine, Georgetown University , Washington, District of Columbia
| | - Hong Ji
- Department of Medicine, Georgetown University , Washington, District of Columbia
| | - Xie Wu
- Department of Medicine, Georgetown University , Washington, District of Columbia
| | - Chris Baylis
- Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida
| | - Kathryn Sandberg
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University , Washington, District of Columbia.,Department of Medicine, Georgetown University , Washington, District of Columbia
| |
Collapse
|
44
|
Wenzel UO, Bode M, Kurts C, Ehmke H. Salt, inflammation, IL-17 and hypertension. Br J Pharmacol 2018; 176:1853-1863. [PMID: 29767465 DOI: 10.1111/bph.14359] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/08/2018] [Accepted: 04/17/2018] [Indexed: 12/18/2022] Open
Abstract
Traditionally, arterial hypertension and subsequent end-organ damage have been attributed to haemodynamic factors, but increasing evidence indicates that inflammation also contributes to the deleterious consequences of this disease. The immune system has evolved to prevent invasion of foreign microorganisms and to promote tissue healing after injury. However, this beneficial activity comes at a cost of collateral damage when the immune system overreacts to internal injury, such as prehypertension. Over the past few years, important findings have revolutionized hypertension research. Firstly, in 2007, a seminal paper showed that adaptive immunity is involved in the pathogenesis of hypertension. Secondly, salt storage in the skin and its consequences for cardiovascular physiology were discovered. Thirdly, after the discovery that salt promotes the differentiation of CD4+ T cells into TH 17 cells, it was demonstrated that salt directly changes several cells of the innate and adaptive immune system and aggravates autoimmune disease but may improve antimicrobial defence. Herein, we will review pathways of activation of immune cells by salt in hypertension as the framework for understanding the multiple roles of salt and immunity in arterial hypertension and autoimmune disease. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
- Ulrich O Wenzel
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlies Bode
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Heimo Ehmke
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
45
|
Wolf E, Diaz EJ, Hollis AN, Hoang TA, Azad HA, Bendt KM, Griffiths RC, Sparks MA. Vascular type 1 angiotensin receptors control blood pressure by augmenting peripheral vascular resistance in female mice. Am J Physiol Renal Physiol 2018; 315:F997-F1005. [PMID: 29897266 DOI: 10.1152/ajprenal.00639.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Angiotensin II (ANG II) is a major mediator of hypertension pathogenesis. In addition, there are well-documented differences in expression of the renin-angiotensin system (RAS) components and ANG II responses between males and females, which may explain sex differences in blood pressure (BP) and hypertension epidemiology. We previously showed that type 1A angiotensin (AT1A) receptors in vascular smooth muscle cells (VSMCs) play a critical role in BP regulation and hypertension pathogenesis, but these studies were carried out in male mice. Therefore, the major goal of the current studies was to examine the impact of VSMC AT1A receptors on BP and hypertension pathogenesis in female mice. We found that elimination of VSMC AT1A receptors in female mice reduced (≈8 mmHg) baseline BP without altering sodium sensitivity. The severity of ANG II-induced hypertension was diminished (≈33% reduction in BP), particularly during the last 2 wk of chronic ANG II infusion, compared with controls, but natriuresis was not altered during the first 5 days of ANG II infusion. Urinary norepinephrine levels were enhanced in female SMKO compared with control mice. There was a virtually complete elimination of ANG II-induced kidney hemodynamic responses with attenuation of acute vasoconstrictor responses in the systemic vasculature. These findings demonstrate that direct vascular actions of AT1A receptors play a prominent role in BP control and hypertension pathogenesis in female mice.
Collapse
Affiliation(s)
- Erin Wolf
- Division of Nephrology, Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Edward J Diaz
- Division of Nephrology, Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Alison N Hollis
- Division of Nephrology, Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thien A Hoang
- Division of Nephrology, Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Hooman A Azad
- Division of Nephrology, Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Katharine M Bendt
- Division of Nephrology, Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Robert C Griffiths
- Division of Nephrology, Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University Medical Center , Durham, North Carolina.,Renal Section, Durham Veterans Affairs Medical Center , Durham, North Carolina
| |
Collapse
|