1
|
Lan T, Li M, Luo X, Du H, Lu X, Mao H, Guo H, Guo Q. Enhanced Renal Protection in Acute Kidney Injury with ROS-Activated Nanoparticles Targeting Oxidative Stress and Inflammation. ACS Biomater Sci Eng 2025; 11:2713-2726. [PMID: 40257281 DOI: 10.1021/acsbiomaterials.4c01917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Acute kidney injury (AKI) is often associated with oxidative stress, which leads to a range of pathological changes, including inflammation and cell apoptosis. These mechanisms highlight the crucial role of eliminating ROS in the pathogenesis of AKI. This study presented a ROS-activated drug delivery system, NPSPBA@Hib, designed for the targeted delivery of the anti-inflammatory and antioxidant drug hibifolin (Hib) to the kidneys, marking its inaugural application in AKI therapy. The drug loading of Hib was up to be 15% by conversely binding with the phenylboronic acid parts in the nanoparticles. NPSPBA@Hib increased cellular uptake of drugs in HK-2 cells and reduced oxidative stress-induced damage by scavenging ROS. The nanoparticles notably extended the retention of Hib in AKI kidneys when compared to healthy kidneys, leading to heightened accumulation in the renal tubules. NPSPBA@Hib demonstrated Hib's reno-protective effects by reducing oxidative stress and inflammation. In essence, this research serves as the primary confirmation of Hib's efficacy in inhibiting NLRP3 signaling pathway for the AKI treatment. The findings suggest that NPSPBA@Hib nanoparticles are effective in treating AKI, highlighting the promising potential of utilizing Hib as a natural antioxidant nanoplatform for AKI, as well as other ROS-related diseases.
Collapse
Affiliation(s)
- Tianyu Lan
- School of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang 550025, China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Mei Li
- VIP Healthcare Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiuheng Luo
- Department of Nephrology, Chongqing Hospital of Jiangsu Province Hospital, Chongqing 401420, China
| | - Haijun Du
- School of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang 550025, China
| | - Xin Lu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Huijuan Mao
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - Honglei Guo
- Department of Nephrology, Chongqing Hospital of Jiangsu Province Hospital, Chongqing 401420, China
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
2
|
Wang Z, Zhang C. Nanomaterials for targeted therapy of kidney diseases: Strategies and advances. Mater Today Bio 2025; 31:101534. [PMID: 39990736 PMCID: PMC11846943 DOI: 10.1016/j.mtbio.2025.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/25/2025] Open
Abstract
The treatment and management of kidney diseases pose a significant global burden. Due to the presence of blood circulation barriers and glomerular filtration barriers, drug therapy for kidney diseases faces challenges such as poor renal targeting, short half-life, and severe systemic side effects, severely hindering therapeutic progress. Therefore, the research and development of kidney-targeted therapeutic agents is of great clinical significance. In recent years, the application of nanotechnology in the field of nephrology has shown potential for revolutionizing the diagnosis and treatment of kidney diseases. Carefully designed nanomaterials can exhibit optimal biological characteristics, influencing various aspects such as circulation, retention, targeting, and excretion. Rationally designing and modifying nanomaterials based on the anatomical structure and pathophysiological environment of the kidney to achieve highly specific kidney-targeted nanomaterials or nanodrug delivery systems is both feasible and promising. Based on the targeted therapy of kidney diseases, this review discusses the advantages and limitations of current nanomedicine in the targeted therapy of kidney diseases, and summarizes the application and challenges of current renal active/passive targeting strategies, in order to further promote the development of kidney-targeted nanomedicine through a preliminary summary of previous studies and future prospects.
Collapse
Affiliation(s)
- Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
3
|
Meng Y, Sui L, Xu T, Zhao H, Yuan Q, Sun L. Research and Application Prospect of Nanomedicine in Kidney Disease: A Bibliometric Analysis From 2003 to 2024. Int J Nanomedicine 2025; 20:3007-3030. [PMID: 40093546 PMCID: PMC11910916 DOI: 10.2147/ijn.s510016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Kidney disease is a major public health concern that has a significant effect on a patient's life span and quality of life. However, effective treatment for most kidney diseases is lacking. Nanotechnology mainly explores the design, characterization, production, and applications of objects in the nanoscale range and has been widely used in the medical field. To date, there has been an increasing amount of research on the application of nanotechnology in kidney disease. However, systematic bibliometric studies remain rare. In this review, data collected from the Web of Science Core Collection database until December 31, 2024, were subjected to a bibliometric analysis. A total of 1179 articles and reviews were included. The publication trends, countries, institutions, authors, co-authorship, co-citations, journals, keywords, and references pertaining to this topic were examined. The results showed that nanotechnology research in kidney disease is increasing. The leading country, organization, and author were China, Sichuan University, and Professor Peng Huang, respectively. ACS APPLIED MATERIALS & INTERFACES was the top journal among the 464 journals in which articles on nanotechnology in kidney disease were published. KIDNEY INTERNATIONAL was the most cited journal in the field. The most significant increases were shown for "acute kidney disease", "drug delivery", "oxidative stress", "diabetic nephropathy", and "chronic kidney disease", indicating the current research hotspots. Furthermore, the development prospects and challenges of nanotechnology in kidney disease were discussed in this review. How to achieve precise drug delivery to render kidney-targeting therapy a reality may be problematic in future studies.
Collapse
Affiliation(s)
- Yilin Meng
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, People’s Republic of China
| | - Lu Sui
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, People’s Republic of China
| | - Tianhua Xu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, People’s Republic of China
| | - Hainan Zhao
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou121001, People’s Republic of China
| | - Quan Yuan
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, People’s Republic of China
| | - Li Sun
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, People’s Republic of China
| |
Collapse
|
4
|
Roointan A, Xu R, Corrie S, Hagemeyer CE, Alt K. Nanotherapeutics in Kidney Disease: Innovations, Challenges, and Future Directions. J Am Soc Nephrol 2025; 36:500-518. [PMID: 39705082 PMCID: PMC11888965 DOI: 10.1681/asn.0000000608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/17/2024] [Indexed: 12/22/2024] Open
Abstract
The treatment and management of kidney diseases present a significant global challenge, affecting over 800 million individuals and necessitating innovative therapeutic strategies that transcend symptomatic relief. The application of nanotechnology to therapies for kidney diseases, while still in its early stages, holds transformative potential for improving treatment outcomes. Recent advancements in nanoparticle-based drug delivery leverage the unique physicochemical properties of nanoparticles for targeted and controlled therapeutic delivery to the kidneys. Current research is focused on understanding the functional and phenotypic changes in kidney cells during both acute and chronic conditions, allowing for the identification of optimal target cells. In addition, the development of tailored nanomedicines enhances their retention and binding to key renal membranes and cell populations, ultimately improving localization, tolerability, and efficacy. However, significant barriers remain, including inconsistent nanoparticle synthesis and the complexity of kidney-specific targeting. To overcome these challenges, the field requires advanced synthesis techniques, refined targeting strategies, and the establishment of animal models that accurately reflect human kidney diseases. These efforts are critical for the clinical application of nanotherapeutics, which promise novel solutions for kidney disease management. This review evaluates a substantial body of in vivo research, highlighting the prospects, challenges, and opportunities presented by nanotechnology-mediated therapies and their potential to transform kidney disease treatment.
Collapse
Affiliation(s)
- Amir Roointan
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- NanoTheranostics Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Rong Xu
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Simon Corrie
- Department of Chemical and Biological Engineering, Monash University, Melbourne, Victoria, Australia
| | - Christoph E. Hagemeyer
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Karen Alt
- NanoTheranostics Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Guo Q, Geng K, Wan J, Lan T, Lu X, Tao L, Duan K, Zhou W, Guo H, Shen X. Lysozyme-targeted liposomes for enhanced tubular targeting in the treatment of acute kidney injury. Acta Biomater 2025; 192:394-408. [PMID: 39674240 DOI: 10.1016/j.actbio.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Acute kidney injury (AKI) is defined by the release of pro-inflammatory factors, leading to structural damage in renal tubules and subsequent tubular cell injury and death. Delivering drugs specifically to renal tubules to mitigate tubular cell damage holds potential for AKI treatment. In this work, we developed functional liposomes (LZM-PLNPs-TP) designed to bypass the glomerular filtration barrier and target tubules by leveraging the unique structural and pathological characteristics of glomeruli and tubules. LZM-PLNPs-TP, incorporating lysozyme (LZM) and cationic liposome, and carrying the anti-inflammatory and antioxidant drug Triptolide (TP), demonstrated favorable stability, efficient drug release, and good cytocompatibility in wide TP concentrations (0-100 ng/mL). These liposomes exhibited the enhanced renal accumulation, tubular retention, and cellular targeting through endocytosis by peritubular capillary endothelial cells. The administration of LZM-PLNPs-TP at a minimal TP dosage (0.01 mg/kg) demonstrated significant protection through the mitigation of oxidative stress and inflammation in ischemia/reperfusion injury (IRI) mice, while the naked TP (0.01 mg/kg) exhibited lower efficacy. Following treatment with LZM-PLNPs-TP, levels of serum creatine, blood urea nitrogen, superoxide dismutase, malondialdehyde, as well as the inflammatory cytokines IL-1β and IL-6 in renal IRI mice were found to be significantly reduced by factors of 2.9, 1.7, 0.7, 1.3, 2.1, and 1.9, respectively, compared to mice treated with TP alone. In summary, this study presents an LZM-targeted drug delivery system that synergistically enhances tubular reabsorption and cellular uptake, offering a promising strategy for AKI treatment. STATEMENT OF SIGNIFICANCE: We have designed specialized liposomes (LZM-PLNPs-TP) with targeting capabilities towards renal tubules to enhance cellular internalization, offering a promising therapeutic strategy for AKI treatment. Our research confirms that the increased accumulation of LZM-PLNPs-TP in renal tubules is facilitated by peritubular capillary endothelial cells rather than glomerular filtration. LZM-PLNPs-TP demonstrated effective mitigation of oxidative stress, inflammation suppression, and significant improvement in kidney injury, ultimately leading to the restoration of renal function in murine models of AKI induced by ischemia/reperfusion. This study introduces LZM-targeted liposomes that enhance tubular reabsorption and cellular uptake synergistically, providing a promising therapeutic approach for AKI management.
Collapse
Affiliation(s)
- Qianqian Guo
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China; The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guiyang 550025, Guizhou Province, China.
| | - Kedui Geng
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China; The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Jiangmin Wan
- Department of nephrology, Chongqing Hospital of Jiangsu Province Hospital, Chongqing 401420, China
| | - Tianyu Lan
- College of Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, Guizhou Province, China
| | - Xin Lu
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China; The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China; The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Kunyuan Duan
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Wen Zhou
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Honglei Guo
- Department of nephrology, Chongqing Hospital of Jiangsu Province Hospital, Chongqing 401420, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China; The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
6
|
Tain YL, Hsu CN, Hou CY, Chen CK. Antihypertensive Effects of a Sodium Thiosulfate-Loaded Nanoparticle in a Juvenile Chronic Kidney Disease Rat Model. Antioxidants (Basel) 2024; 13:1574. [PMID: 39765901 PMCID: PMC11673196 DOI: 10.3390/antiox13121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Sodium thiosulfate (STS), a precursor of hydrogen sulfide (H2S), has demonstrated antihypertensive properties. Previous studies have suggested that H2S-based interventions can prevent hypertension in pediatric chronic kidney disease (CKD). However, the clinical application of STS is limited by its rapid release and intravenous administration. To address this, we developed a poly-lactic acid (PLA)-based nanoparticle system for sustained STS delivery and investigated whether weekly treatment with STS-loaded nanoparticles (NPs) could protect against hypertension in a juvenile CKD rat model. Male Sprague Dawley rats, aged three weeks, were fed a diet containing 0.5% adenine for three weeks to induce a model of pediatric CKD. STS-loaded NPs (25 mg/kg) were administered intravenously during weeks 6, 7, and 8, and at week 9, all rats were sacrificed. Treatment with STS-loaded NPs reduced systolic and diastolic blood pressure by 10 mm Hg and 8 mm Hg, respectively, in juvenile CKD rats. The protective effect of STS-loaded NPs was linked to increased renal expression of H2S-producing enzymes, including cystathionine γ-lyase (CSE) and D-amino acid oxidase (DAO). Additionally, STS-loaded NP therapy restored nitric oxide (NO) signaling, increasing L-arginine levels, which were disrupted in CKD. Furthermore, the beneficial effects of STS-loaded NPs were associated with inhibition of the renin-angiotensin system (RAS) and the enhancement of the NO signaling pathway. Our findings suggest that STS-loaded NP treatment provides sustained STS delivery and effectively reduces hypertension in a juvenile CKD rat model, bringing us closer to the clinical translation of STS-based therapy for pediatric CKD-induced hypertension.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
7
|
Tavakolidakhrabadi N, Ding WY, Saleem MA, Welsh GI, May C. Gene therapy and kidney diseases. Mol Ther Methods Clin Dev 2024; 32:101333. [PMID: 39434922 PMCID: PMC11492605 DOI: 10.1016/j.omtm.2024.101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Chronic kidney disease (CKD) poses a significant global health challenge, projected to become one of the leading causes of death by 2040. Current treatments primarily manage complications and slow progression, highlighting the urgent need for personalized therapies targeting the disease-causing genes. Our increased understanding of the underlying genomic changes that lead to kidney diseases coupled with recent successful gene therapies targeting specific kidney cells have turned gene therapy and genome editing into a promising therapeutic approach for treating kidney disease. This review paper reflects on different delivery routes and systems that can be exploited to target specific kidney cells and the ways that gene therapy can be used to improve kidney health.
Collapse
Affiliation(s)
- Nadia Tavakolidakhrabadi
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Wen Y. Ding
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Moin A. Saleem
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
- Department of Paediatric Nephrology, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
| | - Gavin I. Welsh
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Carl May
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| |
Collapse
|
8
|
Tai Y, Liu Z, Wang Y, Zhang X, Li R, Yu J, Chen Y, Zhao L, Li J, Bai X, Kong D, Midgley AC. Enhanced glomerular transfection by BMP7 gene nanocarriers inhibits CKD and promotes SOX9-dependent tubule regeneration. NANO TODAY 2024; 59:102545. [DOI: 10.1016/j.nantod.2024.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
|
9
|
Yang X, Zhu L, Pan H, Yang Y. Cardiopulmonary bypass associated acute kidney injury: better understanding and better prevention. Ren Fail 2024; 46:2331062. [PMID: 38515271 PMCID: PMC10962309 DOI: 10.1080/0886022x.2024.2331062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiopulmonary bypass (CPB) is a common technique in cardiac surgery but is associated with acute kidney injury (AKI), which carries considerable morbidity and mortality. In this review, we explore the range and definition of CPB-associated AKI and discuss the possible impact of different disease recognition methods on research outcomes. Furthermore, we introduce the specialized equipment and procedural intricacies associated with CPB surgeries. Based on recent research, we discuss the potential pathogenesis of AKI that may result from CPB, including compromised perfusion and oxygenation, inflammatory activation, oxidative stress, coagulopathy, hemolysis, and endothelial damage. Finally, we explore current interventions aimed at preventing and attenuating renal impairment related to CPB, and presenting these measures from three perspectives: (1) avoiding CPB to eliminate the fundamental impact on renal function; (2) optimizing CPB by adjusting equipment parameters, optimizing surgical procedures, or using improved materials to mitigate kidney damage; (3) employing pharmacological or interventional measures targeting pathogenic factors.
Collapse
Affiliation(s)
- Xutao Yang
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Li Zhu
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- The Jinhua Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Hong Pan
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Yi Yang
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
10
|
Yao S, Wang Y, Mou X, Yang X, Cai Y. Recent advances of photoresponsive nanomaterials for diagnosis and treatment of acute kidney injury. J Nanobiotechnology 2024; 22:676. [PMID: 39501286 PMCID: PMC11536863 DOI: 10.1186/s12951-024-02906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/04/2024] [Indexed: 11/09/2024] Open
Abstract
Non-invasive imaging in the near-infrared region (NIR) offers enhanced tissue penetration, reduced spontaneous fluorescence of biological tissues, and improved signal-to-noise ratio (SNR), rendering it more suitable for in vivo deep tissue imaging. In recent years, a plethora of NIR photoresponsive materials have been employed for disease diagnosis, particularly acute kidney injury (AKI). These encompass inorganic nonmetallic materials such as carbon (C), silicon (Si), phosphorus (P), and upconversion nanoparticles (UCNPs); precious metal nanoparticles like gold and silver; as well as small molecule and organic semiconductor polymer nanoparticles with near infrared responsiveness. These materials enable effective therapy triggered by NIR light and serve as valuable tools for monitoring AKI in living systems. The review provides a concise overview of the current state and pathological characteristics of AKI, followed by an exploration of the application of nanomaterials and photoresponsive nanomaterials in AKI. Finally, it presents the design challenges and prospects associated with NIR photoresponsive materials in AKI.
Collapse
Affiliation(s)
- Shijie Yao
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yinan Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Xianghong Yang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Clinical Research Institute, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
11
|
Wu Q, Zhou Z, Xu L, Zhong H, Xiong B, Ren T, Li Z, Yuan L, Zhang XB. Multivalent supramolecular fluorescent probes for accurate disease imaging. SCIENCE ADVANCES 2024; 10:eadp8719. [PMID: 39423274 PMCID: PMC11488570 DOI: 10.1126/sciadv.adp8719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
Optical imaging is a powerful tool for early disease detection and effective treatment planning, but its accuracy is often compromised by the uptake of imaging materials by the mononuclear phagocyte system (MPS). Herein, we leverage multivalent host-guest interactions between cyanine dyes and β-cyclodextrin polymers to develop supramolecular probes with enhanced stability, optical, and transport profiles for accurate in vivo imaging. These multivalent interactions not only ensure the stability of the probes but also enhance fluorescence efficiency by minimizing nonradiative decay. Our self-assembly approach effectively modulates probe size and surface properties, enabling evasion of MPS clearance and promoting prolonged bloodstream circulation, thereby improving the signal-to-background ratio for imaging. The effectiveness of our design is demonstrated by substantial advancements in the early diagnosis of acute kidney injury and by providing high-contrast imaging and precise surgical navigation across various tumor models. Our strategy not only advances optical imaging materials toward clinical translation but also establishes a versatile platform applicable to multiple imaging modalities.
Collapse
Affiliation(s)
| | | | - Li Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Haichen Zhong
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bin Xiong
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tianbing Ren
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhe Li
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
12
|
Sabra MS, Allam EAH, Hassanein KMA. Sildenafil and furosemide nanoparticles as a novel pharmacological treatment for acute renal failure in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7865-7879. [PMID: 38748227 PMCID: PMC11449963 DOI: 10.1007/s00210-024-03128-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/28/2024] [Indexed: 10/04/2024]
Abstract
Hospitalized patients often develop acute renal failure (ARF), which causes severe morbidity and death. This research investigates the potential renoprotective benefits of sildenafil and furosemide in glycerol-induced ARF, and measures kidney function metrics in response to nanoparticle versions of these medications. Inducing ARF is commonly done by injecting 50% glycerol intramuscularly. Rats underwent a 24-h period of dehydration and starvation before slaughter for renal function testing. We investigated urine analysis, markers of oxidative stress, histology of kidney tissue, immunohistochemistry analysis of caspase-3 and interleukin-1 beta (IL-1 β), kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL), which are specific indicators of kidney tissue damage. The results of our study showed that the combination of sildenafil and furosemide, using both traditional and nanoparticle formulations, had a greater protective effect on the kidneys compared to using either drug alone. The recovery of renal tissue indicators, serum markers, and urine markers, which are indicative of organ damage, provides evidence of improvement. This was also indicated by the reduction in KIM-1 and NGAL tubular expression. The immunohistochemistry tests showed that the combination therapy, especially with the nanoforms, greatly improved the damaged cellular changes in the kidneys, as shown by higher levels of caspase-3 and IL-1β. According to the findings, a glycerol-induced rat model demonstrates that sildenafil and furosemide, either alone or in combination, in conventional or nanoparticulate forms, improve ARF dysfunction. The synergistic nanoparticulate compositions show remarkable effectiveness. This observation highlights the possible therapeutic implications for ARF treatment.
Collapse
Affiliation(s)
- Mahmoud S Sabra
- Pharmacology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Essmat A H Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Khaled M Ahmed Hassanein
- Pathology and Clinical Pathology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
13
|
Lebreton V, Legeay S, Rapenne C, Saulnier P, Lagarce F. Elimination study of intact lipid nanocapsules after intravenous rat administration. Nanomedicine (Lond) 2024; 19:1123-1131. [PMID: 38690778 PMCID: PMC11418280 DOI: 10.2217/nnm-2024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Aim: The present study investigated renal elimination after intravenous administration of four different formulations of lipid nanocapsules (LNCs) containing dyes adapted to Förster resonance energy transfer (FRET-LNCs).Materials & methods: FRET-LNCs of 85 or 50 nm with or without a pegylated surface were injected and collected in the blood or urine of rats at different time points. Quantitative analysis was performed to measure intact FRET-LNCs.Results & conclusion: No intact LNCs were found in urine (0 particles/ml) for all formulations. The 50-nm pegylated LNCs were eliminated faster from the blood, whereas 85-nm pegylated LNCS were eliminated slower than nonpegylated LNCs. Elimination of FRET-LNCs was mainly due to liver tissue interaction and not renal elimination.
Collapse
Affiliation(s)
- Vincent Lebreton
- MINT, INSERM U1066, CNRS 6021, University of Angers, SFR-ICAT 4208, Angers, 49933, France
- CHU Angers, Pharmacy department, 49933, Angers, France
| | - Samuel Legeay
- MINT, INSERM U1066, CNRS 6021, University of Angers, SFR-ICAT 4208, Angers, 49933, France
| | - Clara Rapenne
- MINT, INSERM U1066, CNRS 6021, University of Angers, SFR-ICAT 4208, Angers, 49933, France
| | - Patrick Saulnier
- MINT, INSERM U1066, CNRS 6021, University of Angers, SFR-ICAT 4208, Angers, 49933, France
- CHU Angers, Pharmacy department, 49933, Angers, France
| | - Frédéric Lagarce
- MINT, INSERM U1066, CNRS 6021, University of Angers, SFR-ICAT 4208, Angers, 49933, France
- CHU Angers, Pharmacy department, 49933, Angers, France
| |
Collapse
|
14
|
Gu XR, Tai YF, Liu Z, Zhang XY, Liu K, Zhou LY, Yin WJ, Deng YX, Kong DL, Midgley AC, Zuo XC. Layer-by-Layer Assembly of Renal-Targeted Polymeric Nanoparticles for Robust Arginase-2 Knockdown and Contrast-Induced Acute Kidney Injury Prevention. Adv Healthc Mater 2024; 13:e2304675. [PMID: 38688026 DOI: 10.1002/adhm.202304675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/27/2024] [Indexed: 05/02/2024]
Abstract
The mitochondrial enzyme arginase-2 (Arg-2) is implicated in the pathophysiology of contrast-induced acute kidney injury (CI-AKI). Therefore, Arg-2 represents a candid target for CI-AKI prevention. Here, layer-by-layer (LbL) assembled renal-targeting polymeric nanoparticles are developed to efficiently deliver small interfering RNA (siRNA), knockdown Arg-2 expression in renal tubules, and prevention of CI-AKI is evaluated. First, near-infrared dye-loaded poly(lactic-co-glycolic acid) (PLGA) anionic cores are electrostatically coated with cationic chitosan (CS) to facilitate the adsorption and stabilization of Arg-2 siRNA. Next, nanoparticles are coated with anionic hyaluronan (HA) to provide protection against siRNA leakage and shielding against early clearance. Sequential electrostatic layering of CS and HA improves loading capacity of Arg-2 siRNA and yields LbL-assembled nanoparticles. Renal targeting and accumulation is enhanced by modifying the outermost layer of HA with a kidney targeting peptide (HA-KTP). The resultant kidney-targeting and siRNA loaded nanoparticles (PLGA/CS/HA-KTP siRNA) exhibit proprietary accumulation in kidneys and proximal tubular cells at 24 h post-tail vein injection. In iohexol-induced in vitro and in vivo CI-AKI models, PLGA/CS/HA-KTP siRNA delivery alleviates oxidative and nitrification stress, and rescues mitochondrial dysfunction while reducing apoptosis, thereby demonstrating a robust and satisfactory therapeutic effect. Thus, PLGA/CS/HA-KTP siRNA nanoparticles offer a promising candidate therapy to protect against CI-AKI.
Collapse
Affiliation(s)
- Xu-Rui Gu
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yi-Fan Tai
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhen Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin-Yan Zhang
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Kun Liu
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Ling-Yun Zhou
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Wen-Jun Yin
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yi-Xuan Deng
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - De-Ling Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiao-Cong Zuo
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
15
|
Yamaguchi S, Sedaka R, Kapadia C, Huang J, Hsu JS, Berryhill TF, Wilson L, Barnes S, Lovelady C, Oduk Y, Williams RM, Jaimes EA, Heller DA, Saigusa T. Rapamycin-encapsulated nanoparticle delivery in polycystic kidney disease mice. Sci Rep 2024; 14:15140. [PMID: 38956234 PMCID: PMC11219830 DOI: 10.1038/s41598-024-65830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Rapamycin slows cystogenesis in murine models of polycystic kidney disease (PKD) but failed in clinical trials, potentially due to insufficient drug dosing. To improve drug efficiency without increasing dose, kidney-specific drug delivery may be used. Mesoscale nanoparticles (MNP) selectively target the proximal tubules in rodents. We explored whether MNPs can target cystic kidney tubules and whether rapamycin-encapsulated-MNPs (RapaMNPs) can slow cyst growth in Pkd1 knockout (KO) mice. MNP was intravenously administered in adult Pkd1KO mice. Serum and organs were harvested after 8, 24, 48 or 72 h to measure MNP localization, mTOR levels, and rapamycin concentration. Pkd1KO mice were then injected bi-weekly for 6 weeks with RapaMNP, rapamycin, or vehicle to determine drug efficacy on kidney cyst growth. Single MNP injections lead to kidney-preferential accumulation over other organs, specifically in tubules and cysts. Likewise, one RapaMNP injection resulted in higher drug delivery to the kidney compared to the liver, and displayed sustained mTOR inhibition. Bi-weekly injections with RapaMNP, rapamycin or vehicle for 6 weeks resulted in inconsistent mTOR inhibition and little change in cyst index, however. MNPs serve as an effective short-term, kidney-specific delivery system, but long-term RapaMNP failed to slow cyst progression in Pkd1KO mice.
Collapse
Affiliation(s)
- Shinobu Yamaguchi
- Division of Nephrology, Department of Medicine, Section of Cardio-Renal Physiology and Medicine, McCallum Basic Health Science Building, University of Alabama at Birmingham, Room 533, 1918 University Blvd, Birmingham, AL, 35233, USA
| | - Randee Sedaka
- Division of Nephrology, Department of Medicine, Section of Cardio-Renal Physiology and Medicine, McCallum Basic Health Science Building, University of Alabama at Birmingham, Room 533, 1918 University Blvd, Birmingham, AL, 35233, USA
| | | | - Jifeng Huang
- Division of Nephrology, Department of Medicine, Section of Cardio-Renal Physiology and Medicine, McCallum Basic Health Science Building, University of Alabama at Birmingham, Room 533, 1918 University Blvd, Birmingham, AL, 35233, USA
| | - Jung-Shan Hsu
- Division of Nephrology, Department of Medicine, Section of Cardio-Renal Physiology and Medicine, McCallum Basic Health Science Building, University of Alabama at Birmingham, Room 533, 1918 University Blvd, Birmingham, AL, 35233, USA
| | - Taylor F Berryhill
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Landon Wilson
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephen Barnes
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Caleb Lovelady
- Division of Nephrology, Department of Medicine, Section of Cardio-Renal Physiology and Medicine, McCallum Basic Health Science Building, University of Alabama at Birmingham, Room 533, 1918 University Blvd, Birmingham, AL, 35233, USA
| | | | - Ryan M Williams
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Edgar A Jaimes
- Department of Medicine, Renal Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel A Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Takamitsu Saigusa
- Division of Nephrology, Department of Medicine, Section of Cardio-Renal Physiology and Medicine, McCallum Basic Health Science Building, University of Alabama at Birmingham, Room 533, 1918 University Blvd, Birmingham, AL, 35233, USA.
| |
Collapse
|
16
|
Shang S, Li X, Wang H, Zhou Y, Pang K, Li P, Liu X, Zhang M, Li W, Li Q, Chen X. Targeted therapy of kidney disease with nanoparticle drug delivery materials. Bioact Mater 2024; 37:206-221. [PMID: 38560369 PMCID: PMC10979125 DOI: 10.1016/j.bioactmat.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
With the development of nanomedicine, nanomaterials have been widely used, offering specific drug delivery to target sites, minimal side effects, and significant therapeutic effects. The kidneys have filtration and reabsorption functions, with various potential target cell types and a complex structural environment, making the strategies for kidney function protection and recovery after injury complex. This also lays the foundation for the application of nanomedicine in kidney diseases. Currently, evidence in preclinical and clinical settings supports the feasibility of targeted therapy for kidney diseases using drug delivery based on nanomaterials. The prerequisite for nanomedicine in treating kidney diseases is the use of carriers with good biocompatibility, including nanoparticles, hydrogels, liposomes, micelles, dendrimer polymers, adenoviruses, lysozymes, and elastin-like polypeptides. These carriers have precise renal uptake, longer half-life, and targeted organ distribution, protecting and improving the efficacy of the drugs they carry. Additionally, attention should also be paid to the toxicity and solubility of the carriers. While the carriers mentioned above have been used in preclinical studies for targeted therapy of kidney diseases both in vivo and in vitro, extensive clinical trials are still needed to ensure the short-term and long-term effects of nano drugs in the human body. This review will discuss the advantages and limitations of nanoscale drug carrier materials in treating kidney diseases, provide a more comprehensive catalog of nanocarrier materials, and offer prospects for their drug-loading efficacy and clinical applications.
Collapse
Affiliation(s)
- Shunlai Shang
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Xiangmeng Li
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, China
- Peking Union Medical College, Beijing, China
| | - Haoran Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yena Zhou
- School of Medicine, Nankai University, Tianjin, China
| | - Keying Pang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiaomin Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Min Zhang
- Department of Nephrology, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Wenge Li
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Qinggang Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
17
|
Huang Y, Ning X, Ahrari S, Cai Q, Rajora N, Saxena R, Yu M, Zheng J. Physiological principles underlying the kidney targeting of renal nanomedicines. Nat Rev Nephrol 2024; 20:354-370. [PMID: 38409369 DOI: 10.1038/s41581-024-00819-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Kidney disease affects more than 10% of the global population and is associated with considerable morbidity and mortality, highlighting a need for new therapeutic options. Engineered nanoparticles for the treatment of kidney diseases (renal nanomedicines) represent one such option, enabling the delivery of targeted therapeutics to specific regions of the kidney. Although they are underdeveloped compared with nanomedicines for diseases such as cancer, findings from preclinical studies suggest that renal nanomedicines may hold promise. However, the physiological principles that govern the in vivo transport and interactions of renal nanomedicines differ from those of cancer nanomedicines, and thus a comprehensive understanding of these principles is needed to design nanomedicines that effectively and specifically target the kidney while ensuring biosafety in their future clinical translation. Herein, we summarize the current understanding of factors that influence the glomerular filtration, tubular uptake, tubular secretion and extrusion of nanoparticles, including size and charge dependency, and the role of specific transporters and processes such as endocytosis. We also describe how the transport and uptake of nanoparticles is altered by kidney disease and discuss strategic approaches by which nanoparticles may be harnessed for the detection and treatment of a variety of kidney diseases.
Collapse
Affiliation(s)
- Yingyu Huang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Xuhui Ning
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Samira Ahrari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Qi Cai
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nilum Rajora
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ramesh Saxena
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
18
|
Huang Q, Tang J, Ding Y, Li F. Application and design considerations of ROS-based nanomaterials in diabetic kidney disease. Front Endocrinol (Lausanne) 2024; 15:1351497. [PMID: 38742196 PMCID: PMC11089164 DOI: 10.3389/fendo.2024.1351497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Diabetic nephropathy (DKD) is a common chronic complication of diabetes mellitus and an important cause of cardiovascular-related death. Oxidative stress is a key mechanism leading to diabetic nephropathy. However, the current main therapeutic approach remains combination therapy and lacks specific therapies targeting oxidative stress. With the development of nanotechnology targeting ROS, therapeutic fluids regarding their treatment of diabetic nephropathy have attracted attention. In this review, we provide a brief overview of various ROS-based nanomaterials for DKD, including ROS-scavenging nanomaterials, ROS-associated nanodelivery materials, and ROS-responsive nanomaterials. In addition, we summarize and discuss key factors that should be considered when designing ROS-based nanomaterials, such as biosafety, efficacy, targeting, and detection and monitoring of ROS.
Collapse
Affiliation(s)
| | | | - Yunchuan Ding
- Department of Endocrinology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Fangping Li
- Department of Endocrinology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
19
|
Vasylaki A, Ghosh P, Jaimes EA, Williams RM. Targeting the Kidneys at the Nanoscale: Nanotechnology in Nephrology. KIDNEY360 2024; 5:618-630. [PMID: 38414130 PMCID: PMC11093552 DOI: 10.34067/kid.0000000000000400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
Kidney diseases, both acute and chronic, are a substantial burden on individual and public health, and they continue to increase in frequency. Despite this and an intense focus on the study of disease mechanisms, few new therapeutic approaches have extended to the clinic. This is in part due to poor pharmacology of many, if not most, therapeutics with respect to the sites of kidney disease within the glomerulus or nephron. Considering this, within the past decade, and more pointedly over the past 2 years, there have been substantial developments in nanoparticle systems to deliver therapeutics to the sites of kidney disease. Here, we provide a broad overview of the various classes of nanomaterials that have been developed to improve therapeutic development for kidney diseases, the strategy used to provide kidney accumulation, and briefly the disease models they focused on, if any. We then focus on one specific system, polymeric mesoscale nanoparticles, which has broadly been used over 13 publications, demonstrating targeting of the tubular epithelium with 26-fold specificity compared with other organs. While there have been several nanomedicines that have advanced to the clinic in the past several decades, including mRNA-based coronavirus disease vaccines and others, none have focused on kidney diseases specifically. In total, we are confident that the rapid advancement of nanoscale-based kidney targeting and a concerted focus by clinicians, scientists, engineers, and other stakeholders will push one or more of these technologies into clinical trials over the next decade.
Collapse
Affiliation(s)
- Anastasiia Vasylaki
- Department of Biomedical Engineering, The City College of New York, New York, New York
| | - Pratyusha Ghosh
- Department of Biomedical Engineering, The City College of New York, New York, New York
| | - Edgar A. Jaimes
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Ryan M. Williams
- Department of Biomedical Engineering, The City College of New York, New York, New York
- PhD Program in Chemistry, The Graduate Center of CUNY, New York, New York
| |
Collapse
|
20
|
Ba X, Ye T, Shang H, Tong Y, Huang Q, He Y, Wu J, Deng W, Zhong Z, Yang X, Wang K, Xie Y, Zhang Y, Guo X, Tang K. Recent Advances in Nanomaterials for the Treatment of Acute Kidney Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12117-12148. [PMID: 38421602 DOI: 10.1021/acsami.3c19308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Acute kidney injury (AKI) is a serious clinical syndrome with high morbidity, elevated mortality, and poor prognosis, commonly considered a "sword of Damocles" for hospitalized patients, especially those in intensive care units. Oxidative stress, inflammation, and apoptosis, caused by the excessive production of reactive oxygen species (ROS), play a key role in AKI progression. Hence, the investigation of effective and safe antioxidants and inflammatory regulators to scavenge overexpressed ROS and regulate excessive inflammation has become a promising therapeutic option. However, the unique physiological structure and complex pathological alterations in the kidneys render traditional therapies ineffective, impeding the residence and efficacy of most antioxidant and anti-inflammatory small molecule drugs within the renal milieu. Recently, nanotherapeutic interventions have emerged as a promising and prospective strategy for AKI, overcoming traditional treatment dilemmas through alterations in size, shape, charge, and surface modifications. This Review succinctly summarizes the latest advancements in nanotherapeutic approaches for AKI, encompassing nanozymes, ROS scavenger nanomaterials, MSC-EVs, and nanomaterials loaded with antioxidants and inflammatory regulator. Following this, strategies aimed at enhancing biocompatibility and kidney targeting are introduced. Furthermore, a brief discussion on the current challenges and future prospects in this research field is presented, providing a comprehensive overview of the evolving landscape of nanotherapeutic interventions for AKI.
Collapse
Affiliation(s)
- Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Ye
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zichen Zhong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kangyang Wang
- Department of Urology, Wenchang People's Hospital, Wenchang 571300, Hainan Province, China
| | - Yabin Xie
- Department of Urology, Wenchang People's Hospital, Wenchang 571300, Hainan Province, China
| | - Yanlong Zhang
- GuiZhou University Medical College, Guiyang 550025, Guizhou Province, China
| | - Xiaolin Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
21
|
Cheng HT, Ngoc Ta YN, Hsia T, Chen Y. A quantitative review of nanotechnology-based therapeutics for kidney diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1953. [PMID: 38500369 DOI: 10.1002/wnan.1953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
Kidney-specific nanocarriers offer a targeted approach to enhance therapeutic efficacy and reduce off-target effects in renal treatments. The nanocarriers can achieve organ or cell specificity via passive targeting and active targeting mechanisms. Passive targeting capitalizes on the unique physiological traits of the kidney, with factors like particle size, charge, shape, and material properties enhancing organ specificity. Active targeting, on the other hand, achieves renal specificity through ligand-receptor interactions, modifying nanocarriers with molecules, peptides, or antibodies for receptor-mediated delivery. Nanotechnology-enabled therapy targets diseased kidney tissue by modulating podocytes and immune cells to reduce inflammation and enhance tissue repair, or by inhibiting myofibroblast differentiation to mitigate renal fibrosis. This review summarizes the current reports of the drug delivery systems that have been tested in vivo, identifies the nanocarriers that may preferentially accumulate in the kidney, and quantitatively compares the efficacy of various cargo-carrier combinations to outline optimal strategies and future research directions. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Hui-Teng Cheng
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Zhu Bei City, Taiwan
| | - Yen-Nhi Ngoc Ta
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu, Taiwan
| | - Tiffaney Hsia
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
22
|
Chen J, Zhang H, Yi X, Dou Q, Yang X, He Y, Chen J, Chen K. Cellular senescence of renal tubular epithelial cells in acute kidney injury. Cell Death Discov 2024; 10:62. [PMID: 38316761 PMCID: PMC10844256 DOI: 10.1038/s41420-024-01831-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
Cellular senescence represents an irreversible state of cell-cycle arrest during which cells secrete senescence-associated secretory phenotypes, including inflammatory factors and chemokines. Additionally, these cells exhibit an apoptotic resistance phenotype. Cellular senescence serves a pivotal role not only in embryonic development, tissue regeneration, and tumor suppression but also in the pathogenesis of age-related degenerative diseases, malignancies, metabolic diseases, and kidney diseases. The senescence of renal tubular epithelial cells (RTEC) constitutes a critical cellular event in the progression of acute kidney injury (AKI). RTEC senescence inhibits renal regeneration and repair processes and, concurrently, promotes the transition of AKI to chronic kidney disease via the senescence-associated secretory phenotype. The mechanisms underlying cellular senescence are multifaceted and include telomere shortening or damage, DNA damage, mitochondrial autophagy deficiency, cellular metabolic disorders, endoplasmic reticulum stress, and epigenetic regulation. Strategies aimed at inhibiting RTEC senescence, targeting the clearance of senescent RTEC, or promoting the apoptosis of senescent RTEC hold promise for enhancing the renal prognosis of AKI. This review primarily focuses on the characteristics and mechanisms of RTEC senescence, and the impact of intervening RTEC senescence on the prognosis of AKI, aiming to provide a foundation for understanding the pathogenesis and providing potentially effective approaches for AKI treatment.
Collapse
Affiliation(s)
- Juan Chen
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Huhai Zhang
- Department of Nephrology, Southwest Hospital, Army Medical University, 400042, Chongqing, China
| | - Xiangling Yi
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Qian Dou
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Xin Yang
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Yani He
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Jia Chen
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China.
| | - Kehong Chen
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China.
| |
Collapse
|
23
|
Paul P, Chacko L, Dua TK, Chakraborty P, Paul U, Phulchand V, Jha NK, Jha SK, Kandimalla R, Dewanjee S. Nanomedicines for the management of diabetic nephropathy: present progress and prospects. Front Endocrinol (Lausanne) 2023; 14:1236686. [PMID: 38027185 PMCID: PMC10656621 DOI: 10.3389/fendo.2023.1236686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious microvascular consequence of diabetes mellitus (DM), posing an encumbrance to public health worldwide. Control over the onset and progress of DN depend heavily on early detection and effective treatment. DN is a major contributor to end-stage renal disease, and a complete cure is yet to be achieved with currently available options. Though some therapeutic molecules have exhibited promise in treating DN complications, their poor solubility profile, low bioavailability, poor permeation, high therapeutic dose and associated toxicity, and low patient compliance apprehend their clinical usefulness. Recent research has indicated nano-systems as potential theranostic platforms displaying futuristic promise in the diagnosis and treatment of DN. Early and accurate diagnosis, site-specific delivery and retention by virtue of ligand conjugation, and improved pharmacokinetic profile are amongst the major advantages of nano-platforms, defining their superiority. Thus, the emergence of nanoparticles has offered fresh approaches to the possible diagnostic and therapeutic strategies regarding DN. The present review corroborates an updated overview of different types of nanocarriers regarding potential approaches for the diagnosis and therapy of DN.
Collapse
Affiliation(s)
- Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, Rockville, MD, United States
| | - Tarun K. Dua
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Udita Paul
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Vishwakarma Vishal Phulchand
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Niraj K. Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Saurabh K. Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana, India
- Department of Applied Biology, Indian Institute of Technology, Council of Scientific & Industrial Research (CSIR), Hyderabad, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
24
|
Fu L, Zhang Y, Farokhzad RA, Mendes BB, Conde J, Shi J. 'Passive' nanoparticles for organ-selective systemic delivery: design, mechanism and perspective. Chem Soc Rev 2023; 52:7579-7601. [PMID: 37817741 PMCID: PMC10623545 DOI: 10.1039/d2cs00998f] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Nanotechnology has shown tremendous success in the drug delivery field for more effective and safer therapy, and has recently enabled the clinical approval of RNA medicine, a new class of therapeutics. Various nanoparticle strategies have been developed to improve the systemic delivery of therapeutics, among which surface modification of targeting ligands on nanoparticles has been widely explored for 'active' delivery to a specific organ or diseased tissue. Meanwhile, compelling evidence has recently been reported that organ-selective targeting may also be achievable by systemic administration of nanoparticles without surface ligand modification. In this Review, we highlight this unique set of 'passive' nanoparticles and their compositions and mechanisms for organ-selective delivery. In particular, the lipid-based, polymer-based, and biomimetic nanoparticles with tropism to different specific organs after intravenous administration are summarized. The underlying mechanisms (e.g., protein corona and size effect) of these nanosystems for organ selectivity are also extensively discussed. We further provide perspectives on the opportunities and challenges in this exciting area of organ-selective systemic nanoparticle delivery.
Collapse
Affiliation(s)
- Liyi Fu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yang Zhang
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ryan A Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bárbara B Mendes
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
25
|
Chan CKW, Szeto CC, Lee LKC, Xiao Y, Yin B, Ding X, Lee TWY, Lau JYW, Choi CHJ. A sub-10-nm, folic acid-conjugated gold nanoparticle as self-therapeutic treatment of tubulointerstitial fibrosis. Proc Natl Acad Sci U S A 2023; 120:e2305662120. [PMID: 37812696 PMCID: PMC10589645 DOI: 10.1073/pnas.2305662120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/11/2023] [Indexed: 10/11/2023] Open
Abstract
Nanomedicines for treating chronic kidney disease (CKD) are on the horizon, yet their delivery to renal tubules where tubulointerstitial fibrosis occurs remains inefficient. We report a folic acid-conjugated gold nanoparticle that can transport into renal tubules and treat tubulointerstitial fibrosis in mice with unilateral ureteral obstruction. The 3-nm gold core allows for the dissection of bio-nano interactions in the fibrotic kidney, ensures the overall nanoparticle (~7 nm) to be small enough for glomerular filtration, and naturally inhibits the p38α mitogen-activated protein kinase in the absence of chemical or biological drugs. The folic acids support binding to selected tubule cells with overexpression of folate receptors and promote retention in the fibrotic kidney. Upon intravenous injection, this nanoparticle can selectively accumulate in the fibrotic kidney over the nonfibrotic contralateral kidney at ~3.6% of the injected dose. Delivery to the fibrotic kidney depends on nanoparticle size and disease stage. Notably, a single injection of this self-therapeutic nanoparticle reduces tissue degeneration, inhibits genes related to the extracellular matrix, and treats fibrosis more effectively than standard Captopril therapy. Our data underscore the importance of constructing CKD nanomedicines based on renal pathophysiology.
Collapse
Affiliation(s)
- Cecilia Ka Wing Chan
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Cheuk Chun Szeto
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Leo Kit Cheung Lee
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Yu Xiao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Bohan Yin
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Xiaofan Ding
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Thomas Wai Yip Lee
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - James Yun Wong Lau
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
26
|
Li Z, Fan X, Fan J, Zhang W, Liu J, Liu B, Zhang H. Delivering drugs to tubular cells and organelles: the application of nanodrugs in acute kidney injury. Nanomedicine (Lond) 2023; 18:1477-1493. [PMID: 37721160 DOI: 10.2217/nnm-2023-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Acute kidney injury (AKI) is a common clinical syndrome with limited treatment options and high mortality rates. Proximal tubular epithelial cells (PTECs) play a key role in AKI progression. Subcellular dysfunctions, including mitochondrial, nuclear, endoplasmic reticulum and lysosomal dysfunctions, are extensively studied in PTECs. These studies have led to the development of potential therapeutic drugs. However, clinical development of those drugs faces challenges such as low solubility, short circulation time and severe systemic side effects. Nanotechnology provides a promising solution by improving drug properties through nanocrystallization and enabling targeted delivery to specific sites. This review summarizes advancements and limitations of nanoparticle-based drug-delivery systems in targeting PTECs and subcellular organelles, particularly mitochondria, for AKI treatment.
Collapse
Affiliation(s)
- Zhi Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Xiao Fan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Jialong Fan
- College of Biology, Hunan University, Changsha, 410082, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Jun Liu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China
- Department of Physiology & Pathophysiology, NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| |
Collapse
|
27
|
Li H, Dai W, Xiao L, Sun L, He L. Biopolymer-Based Nanosystems: Potential Novel Carriers for Kidney Drug Delivery. Pharmaceutics 2023; 15:2150. [PMID: 37631364 PMCID: PMC10459991 DOI: 10.3390/pharmaceutics15082150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Kidney disease has become a serious public health problem throughout the world, and its treatment and management constitute a huge global economic burden. Currently, the main clinical treatments are not sufficient to cure kidney diseases. During its development, nanotechnology has shown unprecedented potential for application to kidney diseases. However, nanotechnology has disadvantages such as high cost and poor bioavailability. In contrast, biopolymers are not only widely available but also highly bioavailable. Therefore, biopolymer-based nanosystems offer new promising solutions for the treatment of kidney diseases. This paper reviews the biopolymer-based nanosystems that have been used for renal diseases and describes strategies for the specific, targeted delivery of drugs to the kidney as well as the physicochemical properties of the nanoparticles that affect the targeting success.
Collapse
Affiliation(s)
| | | | | | | | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha 410011, China; (H.L.)
| |
Collapse
|
28
|
Sabiu G, Kasinath V, Jung S, Li X, Tsokos GC, Abdi R. Targeted nanotherapy for kidney diseases: a comprehensive review. Nephrol Dial Transplant 2023; 38:1385-1396. [PMID: 35945647 PMCID: PMC10229287 DOI: 10.1093/ndt/gfac233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney diseases represent a major public health problem, affecting millions of people worldwide. Moreover, the treatment of kidney diseases is burdened by the problematic effects of conventional drug delivery, such as systemic drug toxicity, rapid drug clearance, and the absence of precise targeting of the kidney. Although the use of nanotechnology in medicine is in its early stage and lacks robust translational studies, nanomedicines have already shown great promise as novel drug-delivery systems for the treatment of kidney disease. On the basis of our current knowledge of renal anatomy and physiology, pathophysiology of kidney diseases, and physicochemical characteristics of nanoparticles, an expansive repertoire and wide use of nanomedicines could be developed for kidney diseases in the near future. Some limitations have slowed the transition of these agents from preclinical studies to clinical trials, however. In this review, we summarize the current knowledge on renal drug-delivery systems and recent advances in renal cell targeting; we also demonstrate their important potential as future paradigm-shifting therapies for kidney diseases.
Collapse
Affiliation(s)
- Gianmarco Sabiu
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- School of Nephrology, University of Milan, Milan, Italy
| | - Vivek Kasinath
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sungwook Jung
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaofei Li
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Reza Abdi
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Trac N, Ashraf A, Giblin J, Prakash S, Mitragotri S, Chung EJ. Spotlight on Genetic Kidney Diseases: A Call for Drug Delivery and Nanomedicine Solutions. ACS NANO 2023; 17:6165-6177. [PMID: 36988207 PMCID: PMC10145694 DOI: 10.1021/acsnano.2c12140] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Nanoparticles as drug delivery carriers have benefited diseases, including cancer, since the 1990s, and more recently, their promise to quickly and efficiently be mobilized to fight against global diseases such as in the COVID-19 pandemic have been proven. Despite these success stories, there are limited nanomedicine efforts for chronic kidney diseases (CKDs), which affect 844 million people worldwide and can be linked to a variety of genetic kidney diseases. In this Perspective, we provide a brief overview of the clinical status of genetic kidney diseases, background on kidney physiology and a summary of nanoparticle design that enable kidney access and targeting, and emerging technological strategies that can be applied for genetic kidney diseases, including rare and congenital kidney diseases. Finally, we conclude by discussing gaps in knowledge remaining in both genetic kidney diseases and kidney nanomedicine and collective efforts that are needed to bring together stakeholders from diverse expertise and industries to enable the development of the most relevant drug delivery strategies that can make an impact in the clinic.
Collapse
Affiliation(s)
- Noah Trac
- Department
of Biomedical Engineering, University of
Southern California, Los Angeles, California 90089, United States
| | - Anisa Ashraf
- Department
of Biomedical Engineering, University of
Southern California, Los Angeles, California 90089, United States
| | - Joshua Giblin
- Department
of Biomedical Engineering, University of
Southern California, Los Angeles, California 90089, United States
| | - Supriya Prakash
- John
A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, Massachusetts 02134, United States
- Wyss
Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - Samir Mitragotri
- John
A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, Massachusetts 02134, United States
- Wyss
Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - Eun Ji Chung
- Department
of Biomedical Engineering, University of
Southern California, Los Angeles, California 90089, United States
- Division
of Nephrology and Hypertension, Department of Medicine, Keck School
of Medicine, University of Southern California, Los Angeles, California 90033, United States
- Norris
Comprehensive Cancer Center, University
of Southern California, Los Angeles, California 90033, United States
- Eli and Edythe
Broad Center for Regenerative Medicine and Stem Cell Research, Keck
School of Medicine, University of Southern
California, Los Angeles, California 90033, United States
- Division
of Vascular Surgery and Endovascular Therapy, Department of Surgery,
Keck School of Medicine, University of Southern
California, Los Angeles, California 90033, United States
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
30
|
Yang D, Tang M, Zhang M, Ren H, Li X, Zhang Z, He B, Peng S, Wang W, Fang D, Song Y, Xiong Y, Liu ZZ, Liang L, Shi W, Fu C, Hu Y, Jose PA, Zhou L, Han Y, Zeng C. Downregulation of G protein-coupled receptor kinase 4 protects against kidney ischemia-reperfusion injury. Kidney Int 2023; 103:719-734. [PMID: 36669643 DOI: 10.1016/j.kint.2022.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/19/2023]
Abstract
Ischemia/reperfusion injury of the kidney is associated with high morbidity and mortality, and treatment of this injury remains a challenge. G protein-coupled receptor kinase 4 (GRK4) plays a vital role in essential hypertension and myocardial infarction, but its function in kidney ischemia/reperfusion injury remains undetermined. Among the GRK subtypes (GRK2-6) expressed in kidneys, the increase in GRK4 expression was much more apparent than that of the other four GRKs 24 hours after injury and was found to accumulate in the nuclei of injured mouse and human renal tubule cells. Gain- and loss-of-function experiments revealed that GRK4 overexpression exacerbated acute kidney ischemia/reperfusion injury, whereas kidney tubule-specific knockout of GRK4 decreased injury-induced kidney dysfunction. Necroptosis was the major type of tubule cell death mediated by GRK4, because GRK4 significantly increased receptor interacting kinase (RIPK)1 expression and phosphorylation, subsequently leading to RIPK3 and mixed lineage kinase domain-like protein (MLKL) phosphorylation after kidney ischemia/reperfusion injury, but was reversed by necrostatin-1 pretreatment (an RIPK1 inhibitor). Using co-immunoprecipitation, mass spectrometry, and siRNA screening studies, we identified signal transducer and activator of transcription (STAT)1 as a GRK4 binding protein, which co-localized with GRK4 in the nuclei of renal tubule cells. Additionally, GRK4 phosphorylated STAT1 at serine 727, whose inactive mutation effectively reversed GRK4-mediated RIPK1 activation and tubule cell death. Kidney-targeted GRK4 silencing with nanoparticle delivery considerably ameliorated kidney ischemia/reperfusion injury. Thus, our findings reveal that GRK4 triggers necroptosis and aggravates kidney ischemia/reperfusion injury, and its downregulation may provide a promising therapeutic strategy for kidney protection.
Collapse
Affiliation(s)
- Donghai Yang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Ming Tang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Mingming Zhang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Xiaoping Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Ziyue Zhang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Bo He
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Song Peng
- Department of Urology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Wei Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Dandong Fang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Yi Song
- Department of Cardiac Surgery, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Yao Xiong
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, People's Republic of China
| | - Zhi Zhao Liu
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, People's Republic of China
| | - Lijia Liang
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, People's Republic of China
| | - Weibin Shi
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Chunjiang Fu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Yijie Hu
- Department of Cardiac Surgery, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine and Pharmacology-Physiology, The George Washington University School of Medicine & Health Sciences, Washington D.C., USA
| | - Lin Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Yu Han
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China; Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, People's Republic of China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
31
|
Benson LN, Guo Y, Deck K, Mora C, Liu Y, Mu S. The link between immunity and hypertension in the kidney and heart. Front Cardiovasc Med 2023; 10:1129384. [PMID: 36970367 PMCID: PMC10034415 DOI: 10.3389/fcvm.2023.1129384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Hypertension is the primary cause of cardiovascular disease, which is a leading killer worldwide. Despite the prevalence of this non-communicable disease, still between 90% and 95% of cases are of unknown or multivariate cause ("essential hypertension"). Current therapeutic options focus primarily on lowering blood pressure through decreasing peripheral resistance or reducing fluid volume, but fewer than half of hypertensive patients can reach blood pressure control. Hence, identifying unknown mechanisms causing essential hypertension and designing new treatment accordingly are critically needed for improving public health. In recent years, the immune system has been increasingly implicated in contributing to a plethora of cardiovascular diseases. Many studies have demonstrated the critical role of the immune system in the pathogenesis of hypertension, particularly through pro-inflammatory mechanisms within the kidney and heart, which, eventually, drive a myriad of renal and cardiovascular diseases. However, the precise mechanisms and potential therapeutic targets remain largely unknown. Therefore, identifying which immune players are contributing to local inflammation and characterizing pro-inflammatory molecules and mechanisms involved will provide promising new therapeutic targets that could lower blood pressure and prevent progression from hypertension into renal or cardiac dysfunction.
Collapse
Affiliation(s)
- Lance N. Benson
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, United States
| | | | | | | | | | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, United States
| |
Collapse
|
32
|
Chen W, Wang B, Liang S, Wang M, Zheng L, Xu S, Wang J, Fang H, Yang P, Feng W. Renal clearance of graphene oxide: glomerular filtration or tubular secretion and selective kidney injury association with its lateral dimension. J Nanobiotechnology 2023; 21:51. [PMID: 36765370 PMCID: PMC9913007 DOI: 10.1186/s12951-023-01781-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/12/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Renal excretion is one of the major routes of nanomaterial elimination from the body. Many previous studies have found that graphene oxide nanosheets are excreted in bulk through the kidneys. However, how the lateral size affects GO disposition in the kidneys including glomerular filtration, active tubular secretion and tubular reabsorption is still unknown. RESULTS The thin, two-dimensional graphene oxide nanosheets (GOs) was observed to excrete in urine through the kidneys, but the lateral dimension of GOs affects their renal clearance pathway and renal injury. The s-GOs could be renal excreted via the glomerular filtration, while the l-GOs were predominately excreted via proximal tubular secretion at a much faster renal clearance rate than the s-GOs. For the tubular secretion of l-GOs, the mRNA level of basolateral organic anion transporters Oat1 and Oat2 in the kidney presented dose dependent increase, while no obvious alterations of the efflux transporters such as Mdr1 and Mrp4 mRNA expression levels were observed, suggesting the accumulation of l-GOs. During the GO renal elimination, mostly the high dose of 15 mg/kg s-GO and l-GO treatment showed obvious kidney injuries but at different renal compartment, i.e., the s-GOs induced obvious glomerular changes in podocytes, while the l-GOs induced more obvious tubular injuries including necrosis of renal tubular epithelial cells, loss of brush border, cast formation and tubular dilatation. The specifically tubular injury biomarkers KIM1 and NGAL were shown slight increase with mRNA levels in l-GO administrated mice. CONCLUSIONS This study shows that the lateral size of GOs affected their interactions with different renal compartments, renal excretion pathways and potential kidney injuries.
Collapse
Affiliation(s)
- Wei Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shanshan Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Si Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Jiali Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Hao Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pu Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiyue Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
33
|
Advanced Drug Delivery Systems for Renal Disorders. Gels 2023; 9:gels9020115. [PMID: 36826285 PMCID: PMC9956928 DOI: 10.3390/gels9020115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Kidney disease management and treatment are currently causing a substantial global burden. The kidneys are the most important organs in the human urinary system, selectively filtering blood and metabolic waste into urine via the renal glomerulus. Based on charge and/or molecule size, the glomerular filtration apparatus acts as a barrier to therapeutic substances. Therefore, drug distribution to the kidneys is challenging, resulting in therapy failure in a variety of renal illnesses. Hence, different approaches to improve drug delivery across the glomerulus filtration barrier are being investigated. Nanotechnology in medicine has the potential to have a significant impact on human health, from illness prevention to diagnosis and treatment. Nanomaterials with various physicochemical properties, including size, charge, surface and shape, with unique biological attributes, such as low cytotoxicity, high cellular internalization and controllable biodistribution and pharmacokinetics, have demonstrated promising potential in renal therapy. Different types of nanosystems have been employed to deliver drugs to the kidneys. This review highlights the features of the nanomaterials, including the nanoparticles and corresponding hydrogels, in overcoming various barriers of drug delivery to the kidneys. The most common delivery sites and strategies of kidney-targeted drug delivery systems are also discussed.
Collapse
|
34
|
Peng Z, Wang H, Zheng J, Wang J, Xiang Y, Liu C, Ji M, Liu H, Pan L, Qin X, Qu X. Is the proximal tubule the focus of tubulointerstitial fibrosis? Heliyon 2023; 9:e13508. [PMID: 36846656 PMCID: PMC9950842 DOI: 10.1016/j.heliyon.2023.e13508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/15/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Tubulointerstitial fibrosis (TIF), a common end result of almost all progressive chronic kidney diseases (CKD), is also the best predictor of kidney survival. Almost all cells in the kidney are involved in the progression of TIF. Myofibroblasts, the primary producers of extracellular matrix, have previously received a great deal of attention; however, a large body of emerging evidence reveals that proximal tubule (PT) plays a central role in TIF progression. In response to injury, renal tubular epithelial cells (TECs) transform into inflammatory and fibroblastic cells, producing various bioactive molecules that drive interstitial inflammation and fibrosis. Here we reviewed the increasing evidence for the key role of the PT in promoting TIF in tubulointerstitial and glomerular injury and discussed the therapeutic targets and carrier systems involving the PT that holds particular promise for treating patients with fibrotic nephropathy.
Collapse
Affiliation(s)
- Zhi Peng
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Hui Wang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Jiaoyun Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Chi Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Ming Ji
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Lang Pan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
35
|
Li H, Dai W, Liu Z, He L. Renal Proximal Tubular Cells: A New Site for Targeted Delivery Therapy of Diabetic Kidney Disease. Pharmaceuticals (Basel) 2022; 15:ph15121494. [PMID: 36558944 PMCID: PMC9786989 DOI: 10.3390/ph15121494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Diabetic kidney disease (DKD) is a major complication of diabetes mellitus (DM) and the leading cause of end-stage kidney disease (ESKD) worldwide. A significant number of drugs have been clinically investigated for the treatment of DKD. However, a large proportion of patients still develop end-stage kidney disease unstoppably. As a result, new effective therapies are urgently needed to slow down the progression of DKD. Recently, there is increasing evidence that targeted drug delivery strategies such as large molecule carriers, small molecule prodrugs, and nanoparticles can improve drug efficacy and reduce adverse side effects. There is no doubt that targeted drug delivery strategies have epoch-making significance and great application prospects for the treatment of DKD. In addition, the proximal tubule plays a very critical role in the progression of DKD. Consequently, the purpose of this paper is to summarize the current understanding of proximal tubule cell-targeted therapy, screen for optimal targeting strategies, and find new therapeutic approaches for the treatment of DKD.
Collapse
Affiliation(s)
| | | | | | - Liyu He
- Correspondence: ; Tel.: +86-731-8529-2064
| |
Collapse
|
36
|
Sun W, Jin C, Bai Y, Ma R, Deng Y, Gao Y, Pan G, Yang Z, Yan L. Blood uptake and urine excretion of nano- and micro-plastics after a single exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157639. [PMID: 35905964 DOI: 10.1016/j.scitotenv.2022.157639] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Nano- and micro-plastic (NMP) pollution has emerged as a global issue; however, uptake in the blood is controversial. Also, there is no evidence that NMPs are excreted via urine. This study was designed to clarify the time course of NMPs absorption in blood and the excretion in urine. Male mice received a single administration of fluorescent polystyrene (PS) beads (100-nm and 3-μm) via tail vein injection, gavage, or pulmonary perfusion. Blood and urine samples were measured 0.5, 1, 2, and 4 h after exposure by confocal laser scanning microscope (CLSM). Transmission electron microscopy (TEM) was performed to corroborate the findings. Fluorescence particles were detected in both blood and urine from the 100-nm and 3-μm PS-treated groups after exposure. In the 3-μm PS treated group, particles with corresponding diameters were detected after intravenous injection and pulmonary perfusion, and particles with a diameter <3 μm were detected in blood samples after gavage. The fluorescent signal in urine was particularly weak and the size was <3 μm. Significant time course changes in fluorescence intensity were demonstrated in blood and urine (P < 0.05) after intravenous injection and pulmonary perfusion in the 100-nm PS-treated group. By contrast, significant changes were detected in the urine (P < 0.05), but not the blood, after gavage. TEM confirmed the presence of particles with corresponding diameters in blood samples; however, the excretion in urine was difficult to confirm for nano-plastics (NPs) and micro-plastics (MPs) because all particles with diameters of approximately 100 nm and 3 μm had irregular shapes and no clear boundaries. Our findings revealed that both NPs and MPs enter the blood circulation through digestive and respiratory pathways. Both 100-nm and 3-μm NMPs may be excreted through urine, but further evidence is needed. The physical and chemical properties of MPs may be impacted by digestive processes in vivo.
Collapse
Affiliation(s)
- Wei Sun
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Institute of Preventive Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Yinglong Bai
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Ruixue Ma
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Yuan Deng
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Yuan Gao
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Institute of Preventive Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Guowei Pan
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Institute of Preventive Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Zuosen Yang
- Institute of Preventive Medicine, China Medical University, Shenyang 110122, People's Republic of China; Institute of Chronic Diseases, Liaoning Provincial Center for Disease Control and Prevention, Shenyang, People's Republic of China
| | - Lingjun Yan
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China.
| |
Collapse
|
37
|
Vallorz EL, Janda J, Mansour HM, Schnellmann RG. Kidney targeting of formoterol containing polymeric nanoparticles improves recovery from ischemia reperfusion-induced acute kidney injury in mice. Kidney Int 2022; 102:1073-1089. [PMID: 35779607 DOI: 10.1016/j.kint.2022.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/22/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022]
Abstract
The β2 adrenergic receptor agonist, formoterol, is an inducer of mitochondrial biogenesis and restorer of mitochondrial and kidney function in acute and chronic models of kidney injury. Unfortunately, systemic administration of formoterol has the potential for adverse cardiovascular effects, increased heart rate, and decreased blood pressure. To minimize these effects, we developed biodegradable and biocompatible polymeric nanoparticles containing formoterol that target the kidney, thereby decreasing the effective dose, and lessen cardiovascular effects while restoring kidney function after injury. Male C57Bl/6 mice, treated with these nanoparticles daily, had reduced ischemia-reperfusion-induced serum creatinine and kidney cortex kidney injury molecule-1 levels by 78% and 73% respectively, compared to control mice six days after injury. With nanoparticle therapy, kidney cortical mitochondrial number and proteins reduced by ischemic injury, recovered to levels of sham-operated mice. Tubular necrosis was reduced 69% with nanoparticles treatment. Nanoparticles improved kidney recovery even when the dosing frequency was reduced from daily to two days per week. Finally, compared to treatment with formoterol-free drug alone, these nanoparticles did not increase heart rate nor decrease blood pressure. Thus, targeted kidney delivery of formoterol-containing nanoparticles is an improvement in standard formoterol therapy for ischemia-reperfusion-induced acute kidney injuries by decreasing the dose, dosing frequency, and cardiac side effects.
Collapse
Affiliation(s)
- Ernest L Vallorz
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA
| | - Jaroslav Janda
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA
| | - Heidi M Mansour
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA; The University of Arizona College of Medicine, Tucson, Arizona, USA; The University of Arizona, BIO5 Institute, Tucson, Arizona, USA
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA; The University of Arizona College of Medicine, Tucson, Arizona, USA; The University of Arizona, BIO5 Institute, Tucson, Arizona, USA; Southern Arizona VA Health Care System, USA.
| |
Collapse
|
38
|
Prevention of cisplatin-induced nephrotoxicity by kidney-targeted siRNA delivery. Int J Pharm 2022; 628:122268. [DOI: 10.1016/j.ijpharm.2022.122268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/10/2022] [Accepted: 10/02/2022] [Indexed: 11/24/2022]
|
39
|
Skelton R, Roach A, Prudhomme LE, Cen Feng JYC, Gaikwad P, Williams RM. Formulation of Lipid-Free Polymeric Mesoscale Nanoparticles Encapsulating mRNA. Pharm Res 2022; 39:2699-2707. [PMID: 36163410 PMCID: PMC9513001 DOI: 10.1007/s11095-022-03398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022]
Abstract
Introduction Nanoparticle-mediated gene therapy has found substantial clinical impact, primarily focused on lipid-based nanoparticles. In comparison with lipid nanoparticles, polymeric particles may have certain advantages such as increased biocompatibility and controlled release. Our prior studies have found that polymeric mesoscale nanoparticles exhibited specific targeting to the renal proximal tubules. Thus, in this study, we sought to identify formulation parameters that allow for development of polymeric mesoscale nanoparticles encapsulating functional mRNA for delivery into tubular epithelial cells. Methods We evaluated particle uptake in vitro prior to exploring formulation parameters related to introduction of a primary mixture of polymer in acetonitrile and hydrophilic mRNA in water. Finally, we evaluated their functionality in a renal tubular epithelial cell line. Results We found that MNPs are endocytosed within 15 min and that the mesoscale nanoparticle formulation procedure was generally robust to introduction of a primary mixture and encapsulation of mRNA. These particles exhibited substantial uptake in renal cells in vitro and rapid (< 1 h) expression of a model mCherry fluorescent protein. Conclusion We anticipate these findings having potential in the delivery of specific gene therapies for renal disorders and cancer.
Collapse
Affiliation(s)
- Rachel Skelton
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Arantxa Roach
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Lauren E Prudhomme
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | | | - Pooja Gaikwad
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
- PhD Program in Chemistry, Graduate Center, City University of New York, New York, NY, 10016, USA
| | - Ryan M Williams
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA.
- PhD Program in Chemistry, Graduate Center, City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
40
|
L-Serine-Modified Poly-L-Lysine as a Biodegradable Kidney-Targeted Drug Carrier for the Efficient Radionuclide Therapy of Renal Cell Carcinoma. Pharmaceutics 2022; 14:pharmaceutics14091946. [PMID: 36145694 PMCID: PMC9503061 DOI: 10.3390/pharmaceutics14091946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
In the present study, L-serine (Ser)-modified poly-L-lysine (PLL) was synthesized to develop a biodegradable, kidney-targeted drug carrier for efficient radionuclide therapy in renal cell carcinoma (RCC). Ser-PLL was labeled with 111In/90Y via diethylenetriaminepentaacetic acid (DTPA) chelation for biodistribution analysis/radionuclide therapy. In mice, approximately 91% of the total dose accumulated in the kidney 3 h after intravenous injection of 111In-labeled Ser-PLL. Single-photon emission computed tomography/computed tomography (SPECT/CT) imaging showed that 111In-labeled Ser-PLL accumulated in the renal cortex following intravenous injection. An intrarenal distribution study showed that fluorescein isothiocyanate (FITC)-labeled Ser-PLL accumulated mainly in the renal proximal tubules. This pattern was associated with RCC pathogenesis. Moreover, 111In-labeled Ser-PLL rapidly degraded and was eluted along with the low-molecular-weight fractions of the renal homogenate in gel filtration chromatography. Continuous Ser-PLL administration over five days had no significant effect on plasma creatinine, blood urea nitrogen (BUN), or renal histology. In a murine RCC model, kidney tumor growth was significantly inhibited by the administration of the beta-emitter 90Y combined with Ser-PLL. The foregoing results indicate that Ser-PLL is promising as a biodegradable drug carrier for kidney-targeted drug delivery and efficient radionuclide therapy in RCC.
Collapse
|
41
|
Abstract
The burden of acute and chronic kidney diseases to the health care system is exacerbated by the high mortality that this disease carries paired with the still limited availability of comprehensive therapies. A reason partially resides in the complexity of the kidney, with multiple potential target cell types and a complex structural environment that complicate strategies to protect and recover renal function after injury. Management of both acute and chronic renal disease, irrespective of the cause, are mainly focused on supportive treatments and renal replacement strategies when needed. Emerging preclinical evidence supports the feasibility of drug delivery technology for the kidney, and recent studies have contributed to building a robust catalog of peptides, proteins, nanoparticles, liposomes, extracellular vesicles, and other carriers that may be fused to therapeutic peptides, proteins, nucleic acids, or small molecule drugs. These fusions can display a precise renal uptake, an enhanced circulating time, and a directed intraorgan biodistribution while protecting their cargo to improve therapeutic efficacy. However, several hurdles that slow the transition towards clinical applications are still in the way, such as solubility, toxicity, and sub-optimal renal targeting. This review will discuss the feasibility and current limitations of drug delivery technologies for the treatment of renal disease, offering an update on their potential and the future directions of these promising strategies.
Collapse
Affiliation(s)
- Alejandro R. Chade
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS
| | - Gene L. Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
42
|
Tang TT, Wang B, Lv LL, Dong Z, Liu BC. Extracellular vesicles for renal therapeutics: State of the art and future perspective. J Control Release 2022; 349:32-50. [PMID: 35779658 DOI: 10.1016/j.jconrel.2022.06.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/21/2022]
Abstract
With the ever-increasing burden of kidney disease, the need for developing new therapeutics to manage this disease has never been greater. Extracellular vesicles (EVs) are natural membranous nanoparticles present in virtually all organisms. Given their excellent delivery capacity in the body, EVs have emerged as a frontier technology for drug delivery and have the potential to usher in a new era of nanomedicine for kidney disease. This review is focused on why EVs are such compelling drug carriers and how to release their fullest potentiality in renal therapeutics. We discuss the unique features of EVs compared to artificial nanoparticles and outline the engineering technologies and steps in developing EV-based therapeutics, with an emphasis on the emerging approaches to target renal cells and prolong kidney retention. We also explore the applications of EVs as natural therapeutics or as drug carriers in the treatment of renal disorders and present our views on the critical challenges in manufacturing EVs as next-generation renal therapeutics.
Collapse
Affiliation(s)
- Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Nanjing, China; Department of Pathology and Pathophysiology, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Nanjing, China.
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Nanjing, China.
| |
Collapse
|
43
|
Lin B, Ma YY, Wang JW. Nano-Technological Approaches for Targeting Kidney Diseases With Focus on Diabetic Nephropathy: Recent Progress, and Future Perspectives. Front Bioeng Biotechnol 2022; 10:870049. [PMID: 35646840 PMCID: PMC9136139 DOI: 10.3389/fbioe.2022.870049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease worldwide. With the rising prevalence of diabetes, the occurrence of DN is likely to hit pandemic proportions. The current treatment strategies employed for DN focus on the management of blood pressure, glycemia, and cholesterol while neglecting DN’s molecular progression mechanism. For many theranostic uses, nano-technological techniques have evolved in biomedical studies. Several nanotechnologically based theranostics have been devised that can be tagged with targeting moieties for both drug administration and/or imaging systems and are being studied to identify various clinical conditions. The molecular mechanisms involved in DN are discussed in this review to assist in understanding its onset and progression pattern. We have also discussed emerging strategies for establishing a nanomedicine-based platform for DN-targeted drug delivery to increase drug’s efficacy and safety, as well as their reported applications.
Collapse
Affiliation(s)
- Bo Lin
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Ying-Yu Ma
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Ying-Yu Ma, ; Jun-Wei Wang,
| | - Jun-Wei Wang
- Emergency Department, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
- *Correspondence: Ying-Yu Ma, ; Jun-Wei Wang,
| |
Collapse
|
44
|
Benson LN, Liu Y, Wang X, Xiong Y, Rhee SW, Guo Y, Deck KS, Mora CJ, Li LX, Huang L, Andrews JT, Qin Z, Hoover RS, Ko B, Williams RM, Heller DA, Jaimes EA, Mu S. The IFNγ-PDL1 Pathway Enhances CD8T-DCT Interaction to Promote Hypertension. Circ Res 2022; 130:1550-1564. [PMID: 35430873 PMCID: PMC9106883 DOI: 10.1161/circresaha.121.320373] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/05/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Renal T cells contribute importantly to hypertension, but the underlying mechanism is incompletely understood. We reported that CD8Ts directly stimulate distal convoluted tubule cells (DCTs) to increase NCC (sodium chloride co-transporter) expression and salt reabsorption. However, the mechanistic basis of this pathogenic pathway that promotes hypertension remains to be elucidated. METHODS We used mouse models of DOCA+salt (DOCA) treatment and adoptive transfer of CD8+ T cells (CD8T) from hypertensive animals to normotensive animals in in vivo studies. Co-culture of mouse DCTs and CD8Ts was used as in vitro model to test the effect of CD8T activation in promoting NCC-mediated sodium retention and to identify critical molecular players contributing to the CD8T-DCT interaction. Interferon (IFNγ)-KO mice and mice receiving renal tubule-specific knockdown of PDL1 were used to verify in vitro findings. Blood pressure was continuously monitored via radio-biotelemetry, and kidney samples were saved at experimental end points for analysis. RESULTS We identified critical molecular players and demonstrated their roles in augmenting the CD8T-DCT interaction leading to salt-sensitive hypertension. We found that activated CD8Ts exhibit enhanced interaction with DCTs via IFN-γ-induced upregulation of MHC-I and PDL1 in DCTs, thereby stimulating higher expression of NCC in DCTs to cause excessive salt retention and progressive elevation of blood pressure. Eliminating IFN-γ or renal tubule-specific knockdown of PDL1 prevented T cell homing into the kidney, thereby attenuating hypertension in 2 different mouse models. CONCLUSIONS Our results identified the role of activated CD8Ts in contributing to increased sodium retention in DCTS through the IFNγ-PDL1 pathway. These findings provide a new mechanism for T cell involvement in the pathogenesis of hypertension and reveal novel therapeutic targets.
Collapse
Affiliation(s)
- Lance N Benson
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yunmeng Liu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xiangting Wang
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yunzhao Xiong
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sung W Rhee
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yunping Guo
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Katherine S Deck
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Christoph J Mora
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Lin-Xi Li
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Lu Huang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - J Tucker Andrews
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Zhiqiang Qin
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Robert S Hoover
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Benjamin Ko
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Ryan M Williams
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, USA
| | - Daniel A Heller
- Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edgar A Jaimes
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
45
|
Gu X, Liu Z, Tai Y, Zhou LY, Liu K, Kong D, Midgley AC, Zuo XC. Hydrogel and nanoparticle carriers for kidney disease therapy: trends and recent advancements. PROGRESS IN BIOMEDICAL ENGINEERING 2022; 4:022006. [DOI: 10.1088/2516-1091/ac6e18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Abstract
Achieving local therapeutic agent concentration in the kidneys through traditional systemic administration routes have associated concerns with off-target drug effects and toxicity. Additionally, kidney diseases are often accompanied by co-morbidities in other major organs, which negatively impacts drug metabolism and clearance. To circumvent these issues, kidney-specific targeting of therapeutics aims to achieve the delivery of controlled doses of therapeutic agents, such as drugs, nucleic acids, peptides, or proteins, to kidney tissues in a safe and efficient manner. Current carrier material approaches implement macromolecular and polyplex hydrogel constructs, prodrug strategies, and nanoparticle (NP)-based delivery technologies. In the context of multidisciplinary and cross-discipline innovations, the medical and bioengineering research fields have facilitated the rapid development of kidney-targeted therapies and carrier materials. In this review, we summarize the current trends and recent advancements made in the development of carrier materials for kidney disease targeted therapies, specifically hydrogel and NP-based strategies for acute kidney disease, chronic kidney disease, and renal cell carcinoma. Additionally, we discuss the current limitations in carrier materials and their delivery mechanisms.
Collapse
|
46
|
Davis G, Kurse A, Agarwal A, Sheikh-Hamad D, Kumar MNVR. Nano-encapsulation strategies to circumvent drug-induced kidney injury and targeted nanomedicines to treat kidney diseases. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Advancements in nanomedicines for the detection and treatment of diabetic kidney disease. BIOMATERIALS AND BIOSYSTEMS 2022; 6:100047. [PMID: 36824160 PMCID: PMC9934479 DOI: 10.1016/j.bbiosy.2022.100047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 12/18/2022] Open
Abstract
In the diabetic kidneys, morbidities such as accelerated ageing, hypertension and hyperglycaemia create a pro-inflammatory microenvironment characterised by extensive fibrogenesis. Radiological techniques are not yet optimised generating inconsistent and non-reproducible data. The gold standard procedure to assess renal fibrosis is kidney biopsy, followed by histopathological assessment. However, this method is risky, invasive, subjective and examines less than 0.01% of kidney tissue resulting in diagnostic errors. As such, less than 10% of patients undergo kidney biopsy, limiting the accuracy of the current diabetic kidney disease (DKD) staging method. Standard treatments suppress the renin-angiotensin system to control hypertension and use of pharmaceuticals aimed at controlling diabetes have shown promise but can cause hypoglycaemia, diuresis and malnutrition as a result of low caloric intake. New approaches to both diagnosis and treatment are required. Nanoparticles (NPs) are an attractive candidate for managing DKD due to their ability to act as theranostic tools that can carry drugs and enhance image contrast. NP-based point-of-care systems can provide physiological information previously considered unattainable and provide control over the rate and location of drug release. Here we discuss the use of nanotechnology in renal disease, its application to both the treatment and diagnosis of DKD. Finally, we propose a new method of NP-based DKD classification that overcomes the current systems limitations.
Collapse
|
48
|
Design, Development, Physicochemical Characterization, and In Vitro Drug Release of Formoterol PEGylated PLGA Polymeric Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14030638. [PMID: 35336011 PMCID: PMC8955426 DOI: 10.3390/pharmaceutics14030638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Polymeric nanoparticles’ drug delivery systems represent a promising platform for targeted controlled release since they are capable of improving the bioavailability and tissue localization of drugs compared to traditional means of administration. Investigation of key parameters of nanoparticle preparation and their impact on performance, such as size, drug loading, and sustained release, is critical to understanding the synthesis parameters surrounding a given nanoparticle formulation. This comprehensive and systematic study reports for the first time and focuses on the development and characterization of formoterol polymeric nanoparticles that have potential application in a variety of acute and chronic diseases. Nanoparticles were prepared by a variety of solvent emulsion methods with varying modifications to the polymer and emulsion system with the aim of increasing drug loading and tuning particle size for renal localization and drug delivery. Maximal drug loading was achieved by amine modification of polyethylene glycol (PEG) conjugated to the poly(lactic-co-glycolic acid) (PLGA) backbone. The resulting formoterol PEGylated PLGA polymeric nanoparticles were successfully lyophilized without compromising size distribution by using either sucrose or trehalose as cryoprotectants. The physicochemical characteristics of the nanoparticles were examined comprehensively, including surface morphology, solid-state transitions, crystallinity, and residual water content. In vitro formoterol drug release characteristics from the PEGylated PLGA polymeric nanoparticles were also investigated as a function of both polymer and emulsion parameter selection, and release kinetics modeling was successfully applied.
Collapse
|
49
|
Koca M, Sevinç Özakar R, Ozakar E, Sade R, Pirimoğlu B, Şimsek Özek N, Aysin F. Preparation and Characterization of Nanosuspensions of Triiodoaniline Derivative New Contrast Agent, and Investigation into Its Cytotoxicity and Contrast Properties. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2022; 21:e123824. [PMID: 35765507 PMCID: PMC9191222 DOI: 10.5812/ijpr.123824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/30/2023]
Abstract
Iodine-based contrast agents have limitations such as rapid clearance, potential renal toxicity, non-specific blood pool distribution, headache, and adverse events. Nowadays, it is quite common to work with nanosized systems in order to eliminate the side effects of contrast agents. This study aims to synthesize a new iodinated contrast agent, prepare its nanosuspension by using the nanoprecipitation method, investigate its cytotoxicity, and compare its contrast properties with iohexol and iopromide through in-vitro experiments. The values of nanosuspension particle size and zeta potential have been found to be ~ 400 nm and ~ (-) 15 mV, respectively. In-vitro cellular viability findings indicated that the nanosuspension has lower cytotoxicity than the iohexol and iopromide. In the computed tomography (CT) imaging study of contrast features of nanosuspensions and two commercial agents, which involved 86 CT examinations using 31 parameters and two different devices, it was found that iodine had a stronger presence in its nanosuspension form than in iohexol and iopromide, which were the other two commercial contrast agents, when used in equal amounts. Thus in the case of nanosuspensions contrast brightness was achieved by using less iodine, while the same brightness could be obtained with higher doses of iohexol and iopromide. CT imaging therefore be done without much chemical use, which indicates that it may witness fewer side effects in the future.
Collapse
Affiliation(s)
- Mehmet Koca
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Rukiye Sevinç Özakar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
- Corresponding Author: Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey.
| | - Emrah Ozakar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Recep Sade
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Berhan Pirimoğlu
- Department of Radiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Nihal Şimsek Özek
- Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Ferhunde Aysin
- Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
50
|
Guo X, Xu L, Velazquez H, Chen TM, Williams RM, Heller DA, Burtness B, Safirstein R, Desir GV. Kidney-Targeted Renalase Agonist Prevents Cisplatin-Induced Chronic Kidney Disease by Inhibiting Regulated Necrosis and Inflammation. J Am Soc Nephrol 2022; 33:342-356. [PMID: 34921111 PMCID: PMC8819981 DOI: 10.1681/asn.2021040439] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/12/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Repeated administration of cisplatin causes CKD. In previous studies, we reported that the kidney-secreted survival protein renalase (RNLS) and an agonist peptide protected mice from cisplatin-induced AKI. METHODS To investigate whether kidney-targeted delivery of RNLS might prevent cisplatin-induced CKD in a mouse model, we achieved specific delivery of a RNLS agonist peptide (RP81) to the renal proximal tubule by encapsulating the peptide in mesoscale nanoparticles (MNPs). We used genetic deletion of RNLS, single-cell RNA sequencing analysis, and Western blotting to determine efficacy and to explore underlying mechanisms. We also measured plasma RNLS in patients with advanced head and neck squamous cell carcinoma receiving their first dose of cisplatin chemotherapy. RESULTS In mice with CKD induced by cisplatin, we observed an approximate 60% reduction of kidney RNLS; genetic deletion of RNLS was associated with significantly more severe cisplatin-induced CKD. In this severe model of cisplatin-induced CKD, systemic administration of MNP-encapsulated RP81 (RP81-MNP) significantly reduced CKD as assessed by plasma creatinine and histology. It also decreased inflammatory cytokines in plasma and inhibited regulated necrosis in kidney. Single-cell RNA sequencing analyses revealed that RP81-MNP preserved epithelial components of the nephron and the vasculature and suppressed inflammatory macrophages and myofibroblasts. In patients receiving their first dose of cisplatin chemotherapy, plasma RNLS levels trended lower at day 14 post-treatment. CONCLUSIONS Kidney-targeted delivery of RNLS agonist RP81-MNP protects against cisplatin-induced CKD by decreasing cell death and improving the viability of the renal proximal tubule. These findings suggest that such an approach might mitigate the development of CKD in patients receiving cisplatin cancer chemotherapy.
Collapse
Affiliation(s)
- Xiaojia Guo
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Leyuan Xu
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Heino Velazquez
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut,Veterans Affairs Medical Center, West Haven, Connecticut
| | - Tian-Min Chen
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Ryan M. Williams
- Memorial Sloan Kettering Cancer Center, New York, New York,Department of Biomedical Engineering, The City College of New York, New York, New York
| | | | | | - Robert Safirstein
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut,Veterans Affairs Medical Center, West Haven, Connecticut
| | - Gary V. Desir
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut,Veterans Affairs Medical Center, West Haven, Connecticut
| |
Collapse
|