1
|
Li R, Guo L, Liang B, Sun W, Hai F. Review of mechanisms and frontier applications in IL-17A-induced hypertension. Open Med (Wars) 2025; 20:20251159. [PMID: 40028265 PMCID: PMC11868716 DOI: 10.1515/med-2025-1159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/27/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
Background The immune system is closely related to hypertension. Hypertension is an immune disorder to a certain extent, and inflammation is the basis of abnormally elevated blood pressure (BP). The accumulation of T cells and their cytokines can increase BP and end organ damage. T cells are activated by antigen-presenting cells of the innate immune system or by the influence of a high-sodium diet, the self-environment, or the gut microbiota. These cells produce inflammatory factors and cytokines, such as interleukin-17A (IL-17A) in T helper 17 cells, causing vascular inflammation, hypertension, and target organ damage. Methods In this article, we provide an insightful review of the research progress regarding the role of IL-17A in the pathogenesis of hypertension and its effects on different organs while emphasizing the role of IL-17A and its mediated functions in the kidneys, brain, intestines, and vascular system in the development and progression of hypertension. Results At the organ level, IL-17A is involved in the development and progression of hypertension in the kidneys, brain, intestines, and blood vessels, interacting with multiple signal pathway. Conclusions These findings have significant implications for developing future immunomodulatory therapies, which may lead to the development of potential treatments for hypertension.
Collapse
Affiliation(s)
- Ruiyuan Li
- Graduate School of Jinzhou Medical University,
Jinzhou, Liaoning, China
- Department of Cardiology, Dalian Third People’s Hospital of Jinzhou Medical University, Dalian, 116033, Liaoning, China
| | - Lipeng Guo
- Department of Cardiology, Dalian Third People’s Hospital of Jinzhou Medical University, No. 40 Qianshan Road, Dalian, 116033, Liaoning, China
| | - Bin Liang
- Department of Cardiology, Dalian Third People’s Hospital of Jinzhou Medical University, Dalian, 116033, Liaoning, China
| | - Wei Sun
- Department of Cardiology, Dalian Third People’s Hospital of Jinzhou Medical University, Dalian, 116033, Liaoning, China
| | - Feng Hai
- Department of Critical Care Medicine, Dalian Third People’s Hospital of Jinzhou Medical University, Liaoning, China
| |
Collapse
|
2
|
Wang C, Li X, Yi W, Kang J, Nuermaimaiti N, Guan Y. Differential expression of microRNAs in serum exosomes of obese and non-obese mice and analysis of their function. Gene 2024; 927:148604. [PMID: 38838872 DOI: 10.1016/j.gene.2024.148604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE To extract exosomes from obese and non-obese mice, screen specifically expressed microRNAs by high-throughput sequencing and explore their roles. METHODS An animal obesity model was constructed, and the successful construction of the obesity model was verified by HE staining, Western Blot and RT-qPCR. In addition, exosomes were extracted and verified by Western Blot. High-throughput sequencing was performed on the extracted serum exosomes to screen for differentially expressed microRNAs. fluorescence quantitative RT-PCR (RT-qPCR) was used to validate the differentially expressed miRNAs and explore their functions. RESULTS 8 microRNAs were up-regulated and 11 microRNAs were down-regulated. mmu-miR-674-5p and X_28316 were significantly down-regulated and had the greatest impact on protein pathways. 8_13258 was significantly up-regulated and affected multiple protein pathways. GO enrichment analysis suggested that the differentially expressed microRNAs were mainly involved in the cleavage of microtubule activity, transferase activity/transferase pentameric acid. GO enrichment analysis suggested that differentially expressed microRNAs were mainly involved in the processes of cleavage microtubule activity, transferase activity/transfer pentamer, and threonine phosphatase/threonine kinase activity.KEGG pathway enrichment analysis showed that differentially expressed microRNAs were mainly involved in the processes of regulating the phosphorylation of TP53 activity, the G2/M DNA damage checkpoint, and the processing of the ends of DNA double-strand breaks. Protein interaction networks were enriched for Stat3, Fgr, Camk2b, Rac1, Asb6, and Ankfy1. Suggesting that they may be mediated by differential genes to participate in the process of insulin resistance. qRT-PCR results showed that the expression trend of mmu-miR-674-5p was consistent with the sequencing results. It suggests that it may be able to participate in the regulation of insulin resistance as a target gene. CONCLUSION microRNAs were differentially expressed in serum exosomes of obese and non-obese mice and might be involved in the specific regulation of insulin resistance. mmu-miR-674-5p was differentially expressed significantly and the validation trend was consistent with it, suggesting that it might be able to participate in the regulation of insulin resistance as a target gene.
Collapse
Affiliation(s)
- Changzan Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, 830017 Urumqi, Xinjiang, China
| | - Xianghui Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, 830017 Urumqi, Xinjiang, China
| | - Wenying Yi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, 830017 Urumqi, Xinjiang, China
| | - Jiawei Kang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, 830017 Urumqi, Xinjiang, China
| | - Nuerbiye Nuermaimaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, 830017 Urumqi, Xinjiang, China.
| | - Yaqun Guan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, 830017 Urumqi, Xinjiang, China.
| |
Collapse
|
3
|
Huang X, Liu B, Liang Y, Mai C, Shen Y, Huang X, Chen J, Liang X, Hu B, Li W, Li X, Zhang Y. TRAF3IP2 drives mesenchymal stem cell senescence via regulation of NAMPT-mediated NAD biosynthesis. Heliyon 2023; 9:e19505. [PMID: 37809895 PMCID: PMC10558736 DOI: 10.1016/j.heliyon.2023.e19505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
The cellular senescence of mesenchymal stem cells (MSCs) limits their application in regenerative medicine. This study aimed to clarify the role of TNF receptor-associated factor 3 interacting protein 2 (TRAF3IP2), a pro-inflammatory cytoplasmic adaptor protein, in regulating MSC senescence and to explore the potential mechanisms. Methods: MSC senescence was determined by senescence-associated β-galactosidase (SA-β-gal) staining. The expression of TRAF3IP2 and senescence-related proteins was detected by Western blotting. The nicotinamide adenine dinucleotide (NAD+) level and nicotinamide phosphoribosyl transferase (NAMPT) expression in MSCs was measured. Results: Compared with that in MSCs isolated from young donors (YMSCs), the expression of TRAF3IP2 was greatly increased in MSCs derived from aged donors (AMSCs). Overexpression of TRAF3IP2 accelerated YMSC senescence whereas downregulation significantly rescued cellular senescence. The protein level of NAMPT and the level of NAD+ were significantly decreased in AMSCs compared with YMSCs. Mechanistically, TRAF3IP2 induced MSC senescence via downregulation of NAMPT expression and NAD + level by inhibiting the AMPK signaling pathway. These effects were partially reversed by treatment with an AMPK or NAMPT activator. Conclusion: We revealed that TRAF3IP2 accelerated MSC senescence via downregulation of NAMPT-mediated NAD biosynthesis by mediation of the AMPK pathway, highlighting a novel means to rejuvenate senescent MSCs.
Collapse
Affiliation(s)
- Xiaoran Huang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Baojuan Liu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yaowen Liang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Medical College, Shantou University, Shantou, Guangdong, China
| | - Cong Mai
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Shen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xinran Huang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaqi Chen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoting Liang
- Institute of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bei Hu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Weifeng Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yuelin Zhang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Al-U'datt DGF, Tranchant CC, Alu'datt M, Abusara S, Al-Dwairi A, AlQudah M, Al-Shboul O, Hiram R, Altuntas Y, Jaradat S, Alzoubi KH. Inhibition of transglutaminase 2 (TG2) ameliorates ventricular fibrosis in isoproterenol-induced heart failure in rats. Life Sci 2023; 321:121564. [PMID: 36931499 DOI: 10.1016/j.lfs.2023.121564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
AIMS Transglutaminase (TG) inhibitors represent promising therapeutic interventions in cardiac fibrosis and related dysfunctions. However, it remains unknown how TG inhibition, TG2 in particular, affects the signaling systems that drive pathological fibrosis. This study aimed to examine the effect TG inhibition by cystamine on the progression of isoproterenol (ISO)-induced cardiac fibrosis and dysfunction in rats. MATERIALS AND METHODS Cardiac fibrosis was established by intraperitoneal injection of ISO to rats (ISO group), followed by 6 weeks of cystamine injection (ISO + Cys group). The control groups were administered normal saline alone or with cystamine. Hemodynamics, lipid profile, liver enzymes, urea, and creatinine were assessed in conjunction with heart failure markers (serum NT-proANP and cTnI). Left ventricular (LV) and atrial (LA) fibrosis, total collagen content, and mRNA expression of profibrotic markers including TG2 were quantified by Masson's trichrome staining, LC-MS/MS and quantitative PCR, respectively. KEY FINDINGS Cystamine administration to ISO rats significantly decreased diastolic and mean arterial pressures, total cholesterol, triglycerides, LDL, liver enzymes, urea, and creatinine levels, while increasing HDL. NT-proANP and cTnI serum levels remained unchanged. In LV tissues, significant reductions in ISO-induced fibrosis and elevated total collagen content were achieved after cystamine treatment, together with a reduction in TG2 concentration. Reduced mRNA expression of several profibrotic genes (COL1A1, FN1, MMP-2, CTGF, periostin, CX43) was also evidenced in LV tissues of ISO rats upon cystamine administration, whereas TGF-β1 expression was depressed in LA tissues. Cystamine decreased TG2 mRNA expression in the LV of control rats, while LV expression of TG2 was relatively low in ISO rats irrespective of cystamine treatment. SIGNIFICANCE TG2 inhibition by cystamine in vivo exerted cardioprotective effects against ISO-induced cardiac fibrosis in rats decreasing the LV abundance of several profibrotic markers and the content of TG2 and collagen, suggesting that TG2 pharmacological inhibition could be beneficial to alleviate cardiac fibrosis.
Collapse
Affiliation(s)
- Doa'a G F Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Carole C Tranchant
- School of Food Science, Nutrition and Family Studies, Faculty of Health Sciences and Community Services, Université de Moncton, New Brunswick, Canada
| | - Muhammad Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Sara Abusara
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ahmed Al-Dwairi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohammad AlQudah
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; Physiology Department, Arabian Gulf University, Manama, Bahrain
| | - Othman Al-Shboul
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Roddy Hiram
- Montreal Heart Institute and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Yasemin Altuntas
- Montreal Heart Institute and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Saied Jaradat
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates; Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
5
|
Manrique-Acevedo C, Soares RN, Smith JA, Park LK, Burr K, Ramirez-Perez FI, McMillan NJ, Ferreira-Santos L, Sharma N, Olver TD, Emter CA, Parks EJ, Limberg JK, Martinez-Lemus LA, Padilla J. Impact of sex and diet-induced weight loss on vascular insulin sensitivity in type 2 diabetes. Am J Physiol Regul Integr Comp Physiol 2023; 324:R293-R304. [PMID: 36622084 PMCID: PMC9942885 DOI: 10.1152/ajpregu.00249.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023]
Abstract
Vascular insulin resistance, a major characteristic of obesity and type 2 diabetes (T2D), manifests with blunting of insulin-induced vasodilation. Although there is evidence that females are more whole body insulin sensitive than males in the healthy state, whether sex differences exist in vascular insulin sensitivity is unclear. Also uncertain is whether weight loss can reestablish vascular insulin sensitivity in T2D. The purpose of this investigation was to 1) establish if sex differences in vasodilatory responses to insulin exist in absence of disease, 2) determine whether female sex affords protection against the development of vascular insulin resistance with long-term overnutrition and obesity, and 3) examine if diet-induced weight loss can restore vascular insulin sensitivity in men and women with T2D. First, we show in healthy mice and humans that sex does not influence insulin-induced femoral artery dilation and insulin-stimulated leg blood flow, respectively. Second, we provide evidence that female mice are protected against impairments in insulin-induced dilation caused by overnutrition-induced obesity. Third, we show that men and women exhibit comparable levels of vascular insulin resistance when T2D develops but that diet-induced weight loss is effective at improving insulin-stimulated leg blood flow, particularly in women. Finally, we provide indirect evidence that these beneficial effects of weight loss may be mediated by a reduction in endothelin-1. In aggregate, the present data indicate that female sex confers protection against obesity-induced vascular insulin resistance and provide supportive evidence that, in women with T2D, vascular insulin resistance can be remediated with diet-induced weight loss.
Collapse
Affiliation(s)
- Camila Manrique-Acevedo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
| | - Rogerio N Soares
- NextGen Precision Health, University of Missouri, Columbia, Missouri
| | - James A Smith
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Lauren K Park
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Katherine Burr
- NextGen Precision Health, University of Missouri, Columbia, Missouri
| | | | - Neil J McMillan
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | | | - Neekun Sharma
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Department of Medicine, Center for Precision Medicine, University of Missouri, Columbia, Missouri
| | - T Dylan Olver
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Craig A Emter
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Elizabeth J Parks
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri
| | - Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Department of Medicine, Center for Precision Medicine, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| |
Collapse
|
6
|
He W, Lin A, Wang C. Adipocyte-Derived Exosomal LINC00968 Promotes Mouse Retina Microvascular Endothelial Cell Dysfunction in a High-Glucose Environment by Modulating the miR-361-5p/TRAF3 Axis. Horm Metab Res 2023; 55:124-135. [PMID: 36216243 DOI: 10.1055/a-1939-7355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
As a major cause of mortality, cardiovascular disease is associated with obesity and diabetes. However, the molecular mechanism by which diabetes-obesity causes cardiovascular complications is largely unknown. In this study, the crosstalk mediated by 3T3-L1 preadipocytes and mouse retina microvascular endothelial cells (mRMECs) was determined after co-culturing performed with a Transwell system or measuring exosome uptake by mRMECs. CCK-8 assays, EdU incorporation assays, TUNEL staining, and ELISAs were used to evaluate the functions of mRMECs. Related protein markers were analyzed by western blotting. Our results showed that LINC00968 levels were significantly elevated in the exosomes derived from H-Glu-induced 3T3-L1 preadipocytes. Both H-Glu treatment and co-culture with 3T3-L1 cells damaged mRMECs, as indicated by lower rates of proliferation and higher rates of apoptosis and cell adhesion molecule expression, as well as by induced inflammation and oxidative stress, which were enhanced by combined H-Glu and co-culture treatment. Furthermore, H-Glu and co-culture treatment increased LINC00968 expression in mRMECs, and the exosomes collected from 3T3-L1 cells had a similar effect. Functionally, LINC00968 inhibition protected mRMECs against the effects of H-Glu and co-culture treatment, while LINC00968 played the opposite role. LINC00968 was found to target miR-361-5p, and TRAF3 was identified as a target gene of miR-361-5p. Finally, miR-361-5p overexpression alleviated the effects of LINC00968 on H-Glu-induced mRMEC dysfunction in vitro. In conclusion, our results indicated that in an H-glu environment, adipocyte exosomes damage microvascular endothelial cells via a LINC00968/miR-361-5p/TRAF3 signaling pathway, which could possibly serve as a target for treating diabetes-obesity-triggered microvascular complications.
Collapse
Affiliation(s)
- Wenjing He
- Department of Endocrinology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Anhua Lin
- Department of Endocrinology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Chenxiu Wang
- Department of Endocrinology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
7
|
Cai Y, Wang M, Zong Y, Li C, Fu S, Xie K. Demethylation of miR-299-5p by aerobic exercise relieves insulin resistance in the vascular endothelium by repressing resistin. Diabetes Res Clin Pract 2023; 195:110176. [PMID: 36427628 DOI: 10.1016/j.diabres.2022.110176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/13/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
AIMS Insulin resistance (IR) is a critical marker underlying type 2 diabetes mellitus (T2DM). Exercise is reported to prevent IR, yet the mechanism of which is complicated and largely unknown. Here, the study aimed to ascertain whether and how aerobic exercise mediates IR in T2DM. METHODS An in vivo model of high-fat diet (HFD)-induced IR and an in vitro model of high-glucose-induced IR were constructed. RESULTS Aerobic exercise training in mice led to attenuation of IR in the vascular endothelium. microRNA-299-5p (miR-299-5p) expression was deficient in T2MD, which could be restored by aerobic exercise through modulating the DNA methylation modification enzymes. The expression of miR-299-5p enhanced by aerobic exercise consequently resulted in ameliorating the IR in vivo. Furthermore, increased levels of nitric oxide (NO), reduced levels of Angiotensin II (Ang II), vascular endothelial growth factor (VEGF), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) in response to miR-299-5p elevation suggested the anti-IR role of miR-299-5p in IR-cell model. Dual-luciferase reporter and ChIP assays identified that miR-299-5p could bind to resistin and hence repressed the resistin level. CONCLUSION The key observation of the study is that aerobic exercise stimulates miR-299-5p-targeted resistin inhibition through demethylation, which underlies the mechanism of reducing IR.
Collapse
Affiliation(s)
- Ying Cai
- Department of Rehabilitation Medicine, Xiangya Hospital Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, PR China
| | - Mingzhu Wang
- Department of Rehabilitation Medicine, Xiangya Hospital Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, PR China
| | - Yujiao Zong
- Department of Rehabilitation Medicine, Xiangya Hospital Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, PR China
| | - Cui Li
- Department of Rehabilitation Medicine, Xiangya Hospital Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, PR China
| | - Siqian Fu
- Department of Rehabilitation Medicine, Xiangya Hospital Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, PR China
| | - Kangling Xie
- Department of Rehabilitation Medicine, Xiangya Hospital Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, PR China.
| |
Collapse
|
8
|
Wang B, Gan L, Deng Y, Zhu S, Li G, Nasser MI, Liu N, Zhu P. Cardiovascular Disease and Exercise: From Molecular Mechanisms to Clinical Applications. J Clin Med 2022; 11:jcm11247511. [PMID: 36556132 PMCID: PMC9785879 DOI: 10.3390/jcm11247511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
Inactivity is a significant risk factor for cardiovascular disease. Exercise may greatly enhance the metabolism and function of the cardiovascular system, lower several risk factors, and prevent the development and treatment of cardiovascular disease while delivering easy, physical, and emotional enjoyment. Exercise regulates the cardiovascular system by reducing oxidative stress and chronic inflammation, regulating cardiovascular insulin sensitivity and the body's metabolism, promoting stem cell mobilization, strengthening autophagy and myocardial mitochondrial function, and enhancing cardiovascular damage resistance, among other effects. Appropriate exercise intervention has become an essential adjuvant therapy in clinical practice for treating and rehabilitating various cardiovascular diseases. However, the prescription of exercise for preventing and treating cardiovascular diseases, particularly the precise selection of individual exercise techniques and their volume, remains controversial. Using multiomics to explain further the molecular process underlying the positive effects of exercise on cardiovascular health will not only improve our understanding of the effects of exercise on health but also establish a scientific basis and supply new ideas for preventing and treating cardiovascular diseases by activating the endogenous protective mechanisms of the body and suggesting more specific exercise prescriptions for cardiovascular rehabilitation.
Collapse
Affiliation(s)
- Bo Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China; (B.W.); (L.G.); (Y.D.); (S.Z.); (G.L.)
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou 510640, China
| | - Lin Gan
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China; (B.W.); (L.G.); (Y.D.); (S.Z.); (G.L.)
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou 510640, China
| | - Yuzhi Deng
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China; (B.W.); (L.G.); (Y.D.); (S.Z.); (G.L.)
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou 510640, China
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China; (B.W.); (L.G.); (Y.D.); (S.Z.); (G.L.)
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou 510640, China
| | - Ge Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China; (B.W.); (L.G.); (Y.D.); (S.Z.); (G.L.)
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou 510640, China
| | - Moussa Ide Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China; (B.W.); (L.G.); (Y.D.); (S.Z.); (G.L.)
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou 510640, China
- Correspondence: (M.I.N.); (N.L.); (P.Z.)
| | - Nanbo Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China; (B.W.); (L.G.); (Y.D.); (S.Z.); (G.L.)
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou 510640, China
- Correspondence: (M.I.N.); (N.L.); (P.Z.)
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China; (B.W.); (L.G.); (Y.D.); (S.Z.); (G.L.)
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou 510640, China
- Correspondence: (M.I.N.); (N.L.); (P.Z.)
| |
Collapse
|
9
|
Padilla J, Manrique-Acevedo C, Martinez-Lemus LA. New insights into mechanisms of endothelial insulin resistance in type 2 diabetes. Am J Physiol Heart Circ Physiol 2022; 323:H1231-H1238. [PMID: 36331555 PMCID: PMC9705017 DOI: 10.1152/ajpheart.00537.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Insulin resistance in the vasculature is a hallmark of type 2 diabetes (T2D), and blunting of insulin-induced vasodilation is its primary consequence. Individuals with T2D exhibit a marked impairment in insulin-induced dilation in resistance arteries across vascular beds. Importantly, reduced insulin-stimulated vasodilation and blood flow to skeletal muscle limits glucose uptake and contributes to impaired glucose control in T2D. The study of mechanisms responsible for the suppressed vasodilatory effects of insulin has been a growing topic of interest for not only its association with glucose control and extension to T2D but also its relationship with cardiovascular disease development and progression. In this mini-review, we integrate findings from recent studies by our group with the existing literature focused on the mechanisms underlying endothelial insulin resistance in T2D.
Collapse
Affiliation(s)
- Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
| | - Camila Manrique-Acevedo
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
10
|
Soares RN, Ramirez-Perez FI, Cabral-Amador FJ, Morales-Quinones M, Foote CA, Ghiarone T, Sharma N, Power G, Smith JA, Rector RS, Martinez-Lemus LA, Padilla J, Manrique-Acevedo C. SGLT2 inhibition attenuates arterial dysfunction and decreases vascular F-actin content and expression of proteins associated with oxidative stress in aged mice. GeroScience 2022; 44:1657-1675. [PMID: 35426600 PMCID: PMC9213629 DOI: 10.1007/s11357-022-00563-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Aging of the vasculature is characterized by endothelial dysfunction and arterial stiffening, two key events in the pathogenesis of cardiovascular disease (CVD). Treatment with sodium glucose transporter 2 (SGLT2) inhibitors is now known to decrease cardiovascular morbidity and mortality in type 2 diabetes. However, whether SGLT2 inhibition attenuates vascular aging is unknown. We first confirmed in a cohort of adult subjects that aging is associated with impaired endothelial function and increased arterial stiffness and that these two variables are inversely correlated. Next, we investigated whether SGLT2 inhibition with empagliflozin (Empa) ameliorates endothelial dysfunction and reduces arterial stiffness in aged mice with confirmed vascular dysfunction. Specifically, we assessed mesenteric artery endothelial function and stiffness (via flow-mediated dilation and pressure myography mechanical responses, respectively) and aortic stiffness (in vivo via pulse wave velocity and ex vivo via atomic force microscopy) in Empa-treated (14 mg/kg/day for 6 weeks) and control 80-week-old C57BL/6 J male mice. We report that Empa-treated mice exhibited improved mesenteric endothelial function compared with control, in parallel with reduced mesenteric artery and aortic stiffness. Additionally, Empa-treated mice had greater vascular endothelial nitric oxide synthase activation, lower phosphorylated cofilin, and filamentous actin content, with downregulation of pathways involved in production of reactive oxygen species. Our findings demonstrate that Empa improves endothelial function and reduces arterial stiffness in a preclinical model of aging, making SGLT2 inhibition a potential therapeutic alternative to reduce the progression of CVD in older individuals.
Collapse
Affiliation(s)
| | | | | | | | - Christopher A. Foote
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO USA
| | - Thaysa Ghiarone
- Department of Medicine, University of Missouri, Columbia, MO USA
| | - Neekun Sharma
- Department of Medicine, University of Missouri, Columbia, MO USA
| | - Gavin Power
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO USA
| | - James A. Smith
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO USA
| | - R. Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO USA ,Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO USA ,Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO USA
| | - Luis A. Martinez-Lemus
- Department of Medicine, University of Missouri, Columbia, MO USA ,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO USA ,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO USA ,Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO USA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO USA ,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO USA
| | - Camila Manrique-Acevedo
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO USA ,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO USA ,Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri, Columbia, MO USA
| |
Collapse
|
11
|
Limberg JK, Soares RN, Padilla J. Role of the Autonomic Nervous System in the Hemodynamic Response to Hyperinsulinemia-Implications for Obesity and Insulin Resistance. Curr Diab Rep 2022; 22:169-175. [PMID: 35247145 PMCID: PMC9012695 DOI: 10.1007/s11892-022-01456-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW Herein, we summarize recent advances which provide new insights into the role of the autonomic nervous system in the control of blood flow and blood pressure during hyperinsulinemia. We also highlight remaining gaps in knowledge as it pertains to the translation of findings to relevant human chronic conditions such as obesity, insulin resistance, and type 2 diabetes. RECENT FINDINGS Our findings in insulin-sensitive adults show that increases in muscle sympathetic nerve activity with hyperinsulinemia do not result in greater sympathetically mediated vasoconstriction in the peripheral circulation. Both an attenuation of α-adrenergic-receptor vasoconstriction and augmented β-adrenergic vasodilation in the setting of high insulin likely explain these findings. In the absence of an increase in sympathetically mediated restraint of peripheral vasodilation during hyperinsulinemia, blood pressure is supported by increases in cardiac output in insulin-sensitive individuals. We highlight a dynamic interplay between central and peripheral mechanisms during hyperinsulinemia to increase sympathetic nervous system activity and maintain blood pressure in insulin-sensitive adults. Whether these results translate to the insulin-resistant condition and implications for long-term cardiovascular regulation warrants further exploration.
Collapse
Affiliation(s)
- Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, 204 Gwynn Hall, Columbia, MO, 65211, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| | - Rogerio N Soares
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, 204 Gwynn Hall, Columbia, MO, 65211, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
12
|
You Y, Wang D, Liu J, Chen Y, Ma X, Li W. Physical Exercise in the Context of Air Pollution: An Emerging Research Topic. Front Physiol 2022; 13:784705. [PMID: 35295574 PMCID: PMC8918627 DOI: 10.3389/fphys.2022.784705] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Physical exercise (PE) brings physiological benefits to human health; paradoxically, exposure to air pollution (AP) is harmful. Hence, the combined effects of AP and PE are interesting issues worth exploring. The objective of this study is to review literature involved in AP-PE fields to perform a knowledge-map analysis and explore the collaborations, current hotspots, physiological applications, and future perspectives. Herein, cluster, co-citation, and co-occurrence analysis were applied using CiteSpace and VOSviewer software. The results demonstrated that AP-PE domains have been springing up and in rapid growth since the 21st century. Subsequently, active countries and institutions were identified, and the productive institutions were mainly located in USA, China, UK, Spain, and Canada. Developed countries seemed to be the major promoters. Additionally, subject analysis found that environmental science, public health, and sports medicine were the core subjects, and multidimensional communications were forming. Thereafter, a holistic presentation of reference co-citation clusters was conducted to discover the research topics and trace the development focuses. Youth, elite athletes, and rural population were regarded as the noteworthy subjects. Commuter exposure and moderate aerobic exercise represented the common research context and exercise strategy, respectively. Simultaneously, the research hotspots and application fields were elaborated by keyword co-occurrence distribution. It was noted that physiological adaptations including respiratory, cardiovascular, metabolic, and mental health were the major themes; oxidative stress and inflammatory response were the mostly referred mechanisms. Finally, several challenges were proposed, which are beneficial to promote the development of the research field. Molecular mechanisms and specific pathways are still unknown and the equilibrium points and dose-effect relationships remain to be further explored. We are highly confident that this study provides a unique perspective to systematically and comprehensively review the pieces of AP-PE research and its related physiological mechanisms for future investigations.
Collapse
Affiliation(s)
- Yanwei You
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Dizhi Wang
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Jianxiu Liu
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Yuquan Chen
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xindong Ma
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Wenkai Li
- China Table Tennis College, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
13
|
Ramirez-Perez FI, Cabral-Amador FJ, Whaley-Connell AT, Aroor AR, Morales-Quinones M, Woodford ML, Ghiarone T, Ferreira-Santos L, Jurrissen TJ, Manrique-Acevedo CM, Jia G, DeMarco VG, Padilla J, Martinez-Lemus LA, Lastra G. Cystamine reduces vascular stiffness in Western diet-fed female mice. Am J Physiol Heart Circ Physiol 2022; 322:H167-H180. [PMID: 34890280 PMCID: PMC8742720 DOI: 10.1152/ajpheart.00431.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Consumption of diets high in fat, sugar, and salt (Western diet, WD) is associated with accelerated arterial stiffening, a major independent risk factor for cardiovascular disease (CVD). Women with obesity are more prone to develop arterial stiffening leading to more frequent and severe CVD compared with men. As tissue transglutaminase (TG2) has been implicated in vascular stiffening, our goal herein was to determine the efficacy of cystamine, a nonspecific TG2 inhibitor, at reducing vascular stiffness in female mice chronically fed a WD. Three experimental groups of female mice were created. One was fed regular chow diet (CD) for 43 wk starting at 4 wk of age. The second was fed a WD for the same 43 wk, whereas a third cohort was fed WD, but also received cystamine (216 mg/kg/day) in the drinking water during the last 8 wk on the diet (WD + C). All vascular stiffness parameters assessed, including aortic pulse wave velocity and the incremental modulus of elasticity of isolated femoral and mesenteric arteries, were significantly increased in WD- versus CD-fed mice, and reduced in WD + C versus WD-fed mice. These changes coincided with respectively augmented and diminished vascular wall collagen and F-actin content, with no associated effect in blood pressure. In cultured human vascular smooth muscle cells, cystamine reduced TG2 activity, F-actin:G-actin ratio, collagen compaction capacity, and cellular stiffness. We conclude that cystamine treatment represents an effective approach to reduce vascular stiffness in female mice in the setting of WD consumption, likely because of its TG2 inhibitory capacity.NEW & NOTEWORTHY This study evaluates the novel role of transglutaminase 2 (TG2) inhibition to directly treat vascular stiffness. Our data demonstrate that cystamine, a nonspecific TG2 inhibitor, improves vascular stiffness induced by a diet rich in fat, fructose, and salt. This research suggests that TG2 inhibition might bear therapeutic potential to reduce the disproportionate burden of cardiovascular disease in females in conditions of chronic overnutrition.
Collapse
Affiliation(s)
- Francisco I. Ramirez-Perez
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,2Biomedical, Biological, and Chemical Engineering Department, University of Missouri, Columbia, Missouri
| | | | - Adam T. Whaley-Connell
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,4Division of Nephrology and Hypertension, Department of Medicine, University of Missouri, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | - Annayya R. Aroor
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | | | - Makenzie L. Woodford
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Thaysa Ghiarone
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Larissa Ferreira-Santos
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,6Instituto do Coracao, Hospital das Clínicas da Faculdade de
Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade
de São Paulo, São Paulo, Brazil
| | - Thomas J. Jurrissen
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,7Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Camila M. Manrique-Acevedo
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | - GuangHong Jia
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | - Vincent G. DeMarco
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,4Division of Nephrology and Hypertension, Department of Medicine, University of Missouri, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri,8Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,7Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Luis A. Martinez-Lemus
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,2Biomedical, Biological, and Chemical Engineering Department, University of Missouri, Columbia, Missouri,8Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Guido Lastra
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
14
|
Wang L, Lin M, Yu J, Fan Z, Zhang S, Lin Y, Chen X, Peng F. The Impact of Bariatric Surgery Versus Non-Surgical Treatment on Blood Pressure: Systematic Review and Meta-Analysis. Obes Surg 2021; 31:4970-4984. [PMID: 34519991 DOI: 10.1007/s11695-021-05671-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 02/05/2023]
Abstract
The purpose of this study was to compare bariatric surgery versus non-surgical treatment on blood pressure for patients with obesity. Nineteen RCTs (1353 total patients) were included. In the pooled analyses, bariatric surgery reduces more systolic blood pressure (WMD: - 3.937 mmHg, CI95%: - 6.000 to - 1.875, p < 0.001, I2 = 0%), diastolic blood pressure (WMD: - 2.690 mmHg, CI95%: - 3.994 to - 1.385, P < 0.001, I2 = 0%) and more antihypertensives. In subgroup analyses, patients after Roux-en-Y gastric bypass, with poor control of hypertension (BP > 130/80 mmHg) and diabetes mellitus (HbA1C > 7.0%, FPG > 7.0 mmol/L), elder patients (> 45 years), non-severe obesity (BMI < 40 kg/cm2, body weight < 120 kg), less waist circumference (< 115 cm) tend to decrease more blood pressure. Besides, patients after surgery also lost more weight (p < 0.001), decreased more waist circumference (p < 0.001), fasting plasma glucose (p < 0.001), glycosylated hemoglobin (p < 0.001), triglycerides (p < 0.001), hsCRP (p = 0.001), increased more high-density lipoprotein cholesterol (p < 0.001), and had better remission of metabolic syndrome (p < 0.001). Changes in total cholesterol, low-density lipoprotein cholesterol, renal function, resting heart rate, and 6-min walking test were not significantly different. Therefore, bariatric surgery is more effective than non-surgical treatment in controlling patients' blood pressure.
Collapse
Affiliation(s)
- Laicheng Wang
- Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Fuzhou, 350005, Fujian, China
| | - Meihua Lin
- Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Fuzhou, 350005, Fujian, China
| | - Jianjian Yu
- Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Fuzhou, 350005, Fujian, China
| | - Zongcheng Fan
- Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Fuzhou, 350005, Fujian, China
| | - Shunpeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Fuzhou, 350005, Fujian, China
| | - Yunchai Lin
- Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Fuzhou, 350005, Fujian, China
| | - Xin Chen
- Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Fuzhou, 350005, Fujian, China
| | - Feng Peng
- Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
15
|
Ramirez-Perez FI, Woodford ML, Morales-Quinones M, Grunewald ZI, Cabral-Amador FJ, Yoshida T, Brenner DA, Manrique-Acevedo C, Martinez-Lemus LA, Chandrasekar B, Padilla J. Mutation of the 5'-untranslated region stem-loop mRNA structure reduces type I collagen deposition and arterial stiffness in male obese mice. Am J Physiol Heart Circ Physiol 2021; 321:H435-H445. [PMID: 34242094 PMCID: PMC8526337 DOI: 10.1152/ajpheart.00076.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arterial stiffening, a characteristic feature of obesity and type 2 diabetes, contributes to the development and progression of cardiovascular diseases (CVD). Currently, no effective prophylaxis or therapeutics is available to prevent or treat arterial stiffening. A better understanding of the molecular mechanisms underlying arterial stiffening is vital to identify newer targets and strategies to reduce CVD burden. A major contributor to arterial stiffening is increased collagen deposition. In the 5'-untranslated regions of mRNAs encoding for type I collagen, an evolutionally conserved stem-loop (SL) structure plays an essential role in its stability and post-transcriptional regulation. Here, we show that feeding a high-fat/high-sucrose (HFHS) diet for 28 wk increases adiposity, insulin resistance, and blood pressure in male wild-type littermates. Moreover, arterial stiffness, assessed in vivo via aortic pulse wave velocity, and ex vivo using atomic force microscopy in aortic explants or pressure myography in isolated femoral and mesenteric arteries, was also increased in those mice. Notably, all these indices of arterial stiffness, along with collagen type I levels in the vasculature, were reduced in HFHS-fed mice harboring a mutation in the 5'SL structure, relative to wild-type littermates. This protective vascular phenotype in 5'SL-mutant mice did not associate with a reduction in insulin resistance or blood pressure. These findings implicate the 5'SL structure as a putative therapeutic target to prevent or reverse arterial stiffening and CVD associated with obesity and type 2 diabetes.NEW & NOTEWORTHY In the 5'-untranslated (UTR) regions of mRNAs encoding for type I collagen, an evolutionally conserved SL structure plays an essential role in its stability and posttranscriptional regulation. We demonstrate that a mutation of the SL mRNA structure in the 5'-UTR decreases collagen type I deposition and arterial stiffness in obese mice. Targeting this evolutionarily conserved SL structure may hold promise in the management of arterial stiffening and CVD associated with obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri
| | - Makenzie L Woodford
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | | | - Zachary I Grunewald
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | | | - Tadashi Yoshida
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - David A Brenner
- School of Medicine, University of California-San Diego, La Jolla, California
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri.,Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Bysani Chandrasekar
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri.,Division of Cardiovascular Medicine, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| |
Collapse
|