1
|
Halloran KM, Saadat N, Pallas B, Vyas AK, Padmanabhan V. Exploratory analysis of differences at the transcriptional interface between the maternal and fetal compartments of the sheep placenta and potential influence of fetal sex. Mol Cell Endocrinol 2025; 603:112546. [PMID: 40222550 DOI: 10.1016/j.mce.2025.112546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/15/2025]
Abstract
An understanding of the inner workings of the placenta is imperative to elucidate how the maternal and fetal compartments coordinate to mediate fetal development. The two compartments can be separated and studied before term in sheep, a feat not possible in humans, thus providing a valuable translational model. This study investigated differential expression of gene signaling networks in the maternal and fetal compartments of the placenta and explored the potential influence of fetal sex. On approximately gestational day 120 (term: 147 days), ewes were euthanized and fetuses removed and sexed. Placentomes [n = 5 male, n = 3 female] were collected, and caruncles (maternal) and cotyledons (fetal) were separated and sequenced to assess RNA expression. Analysis revealed 2627 differentially expressed genes (FDR<0.01, abslog2FC ≥ 2) contributing to key transcriptional differences between maternal and fetal compartments, which suggested that the maternal compartment drives extracellular signaling at the interface whereas the fetal compartment controls internal mechanisms crucial for fetal-placental development. X-chromosome inactivation equalized expression of a vast majority of X-linked genes in the fetal compartment. Additionally, the female placenta had more fine-tuned regulation of key pathways for fetal-placental development, such as DNA replication, mRNA surveillance, and RNA transport, compared to males, which had enrichment of metabolic pathways including TCA cycle and galactose metabolism. These findings, in addition to supporting differences in expression in the maternal and fetal placental compartments and the possible influence of fetal sex, offer a transcriptional platform to compare placental perturbations that occur at the maternal-fetal interface that contribute to adverse pregnancy outcomes.
Collapse
Affiliation(s)
| | - Nadia Saadat
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Brooke Pallas
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Arpita K Vyas
- Department of Pediatrics, Washington University St. Louis, MO, USA
| | | |
Collapse
|
2
|
Tsai PY, Lee CI, Tam HL, Su MT. Aspirin alleviates fibronectin-induced preeclampsia phenotypes in a mouse model and reverses fibronectin-mediated trophoblast invasiveness under hypoxia by regulating ciliogenesis and Akt and MAPK signaling. Biochem Pharmacol 2024; 227:116423. [PMID: 38996930 DOI: 10.1016/j.bcp.2024.116423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
The placenta experiences a low-oxygen stage during early pregnancy. Aspirin is an effective preventative treatment for preeclampsia if applied early in pregnancy. Elevation of fibronectin (FN) level has been reported to be associated with preeclampsia; however, the role of FN in the physiological hypoxic phase and whether aspirin exerts its effect on FN at this hypoxic stage remain unknown. We determined pregnancy outcomes by injecting saline or recombinant FN protein into C57BL/6 pregnant mice and one group of FN-injected mice was fed aspirin. The effects of FN, the underlying pathways on trophoblast biology, and cilia formation under hypoxia were investigated in FN-pretreated or FN-knockdown HTR-8/SVneo cells in a hypoxic chamber (0.1 % O2). Preeclampsia-like phenotypes, including blood pressure elevation and proteinuria, developed in FN-injected pregnant mice. The fetal weight of FN-injected mice was significantly lower than that of non-FN-injected mice (p < 0.005). Trophoblast FN expression was upregulated under hypoxia, which could be suppressed by aspirin treatment. FN inhibited trophoblast invasion and migration under hypoxia, and this inhibitory effect occurred through downregulating ZEB1/2, MMP 9 and the Akt and MAPK signaling pathways. Ciliogenesis of trophoblasts was stimulated under hypoxia but was inhibited by FN treatment. Aspirin was shown to reverse the FN-mediated inhibitory effect on trophoblast invasion/migration and ciliogenesis. In conclusion, FN overexpression induces preeclampsia-like symptoms and impairs fetal growth in mice. Aspirin may exert its suppressive effect on FN upregulation and FN-mediated cell function in the hypoxic stage of pregnancy and therefore provides a preventative effect on preeclampsia development.
Collapse
Affiliation(s)
- Pei-Yin Tsai
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-I Lee
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Hoi-Lam Tam
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Mei-Tsz Su
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Obstetrics and Gynecology, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan.
| |
Collapse
|
3
|
Yu X, Li L, Ning A, Wang H, Guan C, Ma X, Xia H. Primary cilia abnormalities participate in the occurrence of spontaneous abortion through TGF-β/SMAD2/3 signaling pathway. J Cell Physiol 2024; 239:e31292. [PMID: 38704705 DOI: 10.1002/jcp.31292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
Spontaneous abortion is the most common complication in early pregnancy, the exact etiology of most cases cannot be determined. Emerging studies suggest that mutations in ciliary genes may be associated with progression of pregnancy loss. However, the involvement of primary cilia on spontaneous abortion and the underlying molecular mechanisms remains poorly understood. We observed the number and length of primary cilia were significantly decreased in decidua of spontaneous abortion in human and lipopolysaccharide (LPS)-induced abortion mice model, accompanied with increased expression of proinflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. The length of primary cilia in human endometrial stromal cell (hESC) was significantly shortened after TNF-α treatment. Knocking down intraflagellar transport 88 (IFT88), involved in cilia formation and maintenance, promoted the expression of TNF-α. There was a reverse regulatory relationship between cilia shortening and TNF-α expression. Further research found that shortened cilia impair decidualization in hESC through transforming growth factor (TGF)-β/SMAD2/3 signaling. Primary cilia were impaired in decidua tissue of spontaneous abortion, which might be mainly caused by inflammatory injury. Primary cilia abnormalities resulted in dysregulation of TGF-β/SMAD2/3 signaling transduction and decidualization impairment, which led to spontaneous abortion.
Collapse
Affiliation(s)
- Xiaoqin Yu
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Linyuan Li
- University of Michigan College of Literature, Science, and the Arts, Ann Arbor, Michigan, USA
| | - Anfeng Ning
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Hu Wang
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Chunyi Guan
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Ma
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Hongfei Xia
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Byun KA, Kim HM, Oh S, Batsukh S, Lee S, Oh M, Lee J, Lee R, Kim JW, Oh SM, Kim J, Kim G, Park HJ, Hong H, Lee J, An SH, Oh SS, Jung YS, Son KH, Byun K. High-Intensity Focused Ultrasound Increases Facial Adipogenesis in a Swine Model via Modulation of Adipose-Derived Stem Cell Cilia. Int J Mol Sci 2024; 25:7648. [PMID: 39062891 PMCID: PMC11277104 DOI: 10.3390/ijms25147648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Decreased medial cheek fat volume during aging leads to loss of a youthful facial shape. Increasing facial volume by methods such as adipose-derived stem cell (ASC) injection can produce facial rejuvenation. High-intensity focused ultrasound (HIFU) can increase adipogenesis in subcutaneous fat by modulating cilia on ASCs, which is accompanied by increased HSP70 and decreased NF-κB expression. Thus, we evaluated the effect of HIFU on increasing facial adipogenesis in swine (n = 2) via modulation of ASC cilia. Expression of CD166, an ASC marker, differed by subcutaneous adipose tissue location. CD166 expression in the zygomatic arch (ZA) was significantly higher than that in the subcutaneous adipose tissue in the mandible or lateral temporal areas. HIFU was applied only on the right side of the face, which was compared with the left side, where HIFU was not applied, as a control. HIFU produced a significant increase in HSP70 expression, decreased expression of NF-κB and a cilia disassembly factor (AURKA), and increased expression of a cilia increasing factor (ARL13B) and PPARG and CEBPA, which are the main regulators of adipogenesis. All of these changes were most prominent at the ZA. Facial adipose tissue thickness was also increased by HIFU. Adipose tissue volume, evaluated by magnetic resonance imaging, was increased by HIFU, most prominently in the ZA. In conclusion, HIFU increased ASC marker expression, accompanied by increased HSP70 and decreased NF-κB expression. Additionally, changes in cilia disassembly and length and expression of adipogenesis were observed. These results suggest that HIFU could be used to increase facial volume by modulating adipogenesis.
Collapse
Affiliation(s)
- Kyung-A Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- LIBON Inc., Incheon 22006, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Hyoung Moon Kim
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Maylin Clinic, Goyang 10391, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Sosorburam Batsukh
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Sangsu Lee
- Mirabel Clinic, Seoul 04596, Republic of Korea
| | - Myungjune Oh
- GangnamON Clinic, Seoul 06129, Republic of Korea
| | | | - Ran Lee
- Ezen Clinic, Cheonan 31090, Republic of Korea
| | - Jae Woo Kim
- Lienjang Clinic, Seoul 04536, Republic of Korea
| | - Seung Min Oh
- GangnamON Clinic, Seoul 06129, Republic of Korea
| | - Jisun Kim
- MH Clinic, Seoul 06010, Republic of Korea
| | - Geebum Kim
- Misogain Dermatology Clinic, Gimpo 10108, Republic of Korea
| | - Hyun Jun Park
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Maylin Clinic the Cheongdam, Seoul 06091, Republic of Korea
| | - Hanbit Hong
- Lux Well Clinic, Cheongju 28424, Republic of Korea
| | - Jehyuk Lee
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Doctorbom Clinic, Seoul 06614, Republic of Korea
| | - Sang-Hyun An
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Sung Suk Oh
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Yeon-Seop Jung
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
5
|
Hunter MI, Thies KM, Winuthayanon W. Hormonal regulation of cilia in the female reproductive tract. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2024; 34:100503. [PMID: 38293616 PMCID: PMC10824531 DOI: 10.1016/j.coemr.2024.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
This review intends to bridge the gap between our knowledge of steroid hormone regulation of motile cilia and the potential involvement of the primary cilium focusing on the female reproductive tract functions. The review emphasizes hormonal regulation of the motile and primary cilia in the oviduct and uterus. Steroid hormones including estrogen, progesterone, and testosterone act through their cognate receptors to regulate the development and biological function of the reproductive tracts. These hormones modulate motile ciliary beating and, in some cases, primary cilia function. Dysfunction of motile or primary cilia due to genetic anomalies, hormone imbalances, or loss of steroid hormone receptors impairs mammalian fertility. However, further research on hormone modulation of ciliary function, especially in the primary cilium, and its signaling cascades will provide insights into the pathogenesis of mammalian infertility and the development of contraceptives or infertility treatments targeting primary and/or motile cilia.
Collapse
Affiliation(s)
- Mark I. Hunter
- OB/GYN & Women’s Health Department, School of Medicine, University of Missouri – Columbia, Columbia, MO, 65211, United States
| | - Karen M. Thies
- OB/GYN & Women’s Health Department, School of Medicine, University of Missouri – Columbia, Columbia, MO, 65211, United States
| | - Wipawee Winuthayanon
- OB/GYN & Women’s Health Department, School of Medicine, University of Missouri – Columbia, Columbia, MO, 65211, United States
| |
Collapse
|
6
|
Lee JG, Yon JM, Kim G, Lee SG, Kim CY, Cheong SA, Kim HY, Yu J, Kim K, Sung YH, Yoo HJ, Woo DC, Rho JK, Ha CH, Pack CG, Oh SH, Lim JS, Han YM, Hong EJ, Seong JK, Lee HW, Lee SW, Lee KU, Kim CJ, Nam SY, Cho YS, Baek IJ. PIBF1 regulates trophoblast syncytialization and promotes cardiovascular development. Nat Commun 2024; 15:1487. [PMID: 38374152 PMCID: PMC10876648 DOI: 10.1038/s41467-024-45647-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Proper placental development in early pregnancy ensures a positive outcome later on. The developmental relationship between the placenta and embryonic organs, such as the heart, is crucial for a normal pregnancy. However, the mechanism through which the placenta influences the development of embryonic organs remains unclear. Trophoblasts fuse to form multinucleated syncytiotrophoblasts (SynT), which primarily make up the placental materno-fetal interface. We discovered that endogenous progesterone immunomodulatory binding factor 1 (PIBF1) is vital for trophoblast differentiation and fusion into SynT in humans and mice. PIBF1 facilitates communication between SynT and adjacent vascular cells, promoting vascular network development in the primary placenta. This process affected the early development of the embryonic cardiovascular system in mice. Moreover, in vitro experiments showed that PIBF1 promotes the development of cardiovascular characteristics in heart organoids. Our findings show how SynTs organize the barrier and imply their possible roles in supporting embryogenesis, including cardiovascular development. SynT-derived factors and SynT within the placenta may play critical roles in ensuring proper organogenesis of other organs in the embryo.
Collapse
Affiliation(s)
- Jong Geol Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul, 08826, Korea
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju, 52834, Korea
| | - Jung-Min Yon
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Globinna Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Seul-Gi Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 05029, Korea
| | - C-Yoon Kim
- College of Veterinary Medicine, Konkuk University, Seoul, 05029, Korea
| | - Seung-A Cheong
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
| | | | - Jiyoung Yu
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Digital Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Young Hoon Sung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Hyun Ju Yoo
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Digital Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Dong-Cheol Woo
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Biomedical Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Jin Kyung Rho
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Chang Hoon Ha
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Chan-Gi Pack
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Biomedical Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Seak Hee Oh
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Joon Seo Lim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
| | - Yu Mi Han
- Research Institute of Medical Science, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center (KMPC), Seoul, 08826, Korea
- College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Sang-Wook Lee
- Korea Mouse Phenotyping Center (KMPC), Seoul, 08826, Korea
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Ki-Up Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Chong Jai Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Sang-Yoon Nam
- College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Korea
| | - You Sook Cho
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea.
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea.
- Korea Mouse Phenotyping Center (KMPC), Seoul, 08826, Korea.
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| |
Collapse
|
7
|
Lekva T, Sundaram AYF, Roland MCP, Åsheim J, Michelsen AE, Norwitz ER, Aukrust P, Gilfillan GD, Ueland T. Platelet and mitochondrial RNA is decreased in plasma-derived extracellular vesicles in women with preeclampsia-an exploratory study. BMC Med 2023; 21:458. [PMID: 37996819 PMCID: PMC10666366 DOI: 10.1186/s12916-023-03178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Circulating extracellular vesicles (EVs) are increased in preeclampsia (PE) and are associated with severity and progression. We examined in this exploratory cohort study if the mRNAs and long noncoding RNAs (lncRNAs) in plasma-derived EVs were dysregulated in PE compared to normal pregnancy and display different temporal patterns during gestation. METHODS We isolated EVs from plasma at weeks 22-24 and 36-38 in women with and without PE (n=7 in each group) and performed RNA-seq, focusing on mRNAs and lncRNAs. We validated highly expressed mitochondrial and platelet-derived RNAs discovered from central pathways in 60 women with/without PE. We examined further one of the regulated RNAs, noncoding mitochondrially encoded tRNA alanine (MT-TA), in leukocytes and plasma to investigate its biomarker potential and association with clinical markers of PE. RESULTS We found abundant levels of platelet-derived and mitochondrial RNAs in EVs. Expression of these RNAs were decreased and lncRNAs increased in EVs from PE compared to without PE. These findings were further validated by qPCR for mitochondrial RNAs MT-TA, MT-ND2, MT-CYB and platelet-derived RNAs PPBP, PF4, CLU in EVs. Decreased expression of mitochondrial tRNA MT-TA in leukocytes at 22-24 weeks was strongly associated with the subsequent development of PE. CONCLUSIONS Platelet-derived and mitochondrial RNA were highly expressed in plasma EVs and were decreased in EVs isolated from women with PE compared to without PE. LncRNAs were mostly increased in PE. The MT-TA in leukocytes may be a useful biomarker for prediction and/or early detection of PE.
Collapse
Affiliation(s)
- Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway.
| | - Arvind Y Fm Sundaram
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - June Åsheim
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Annika E Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Gregor D Gilfillan
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| |
Collapse
|
8
|
Hart NR. A theoretical model of dietary lipid variance as the origin of primary ciliary dysfunction in preeclampsia. Front Mol Biosci 2023; 10:1173030. [PMID: 37251083 PMCID: PMC10210153 DOI: 10.3389/fmolb.2023.1173030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/14/2023] [Indexed: 05/31/2023] Open
Abstract
Serving as the cell's key interface in communicating with the outside world, primary cilia have emerged as an area of multidisciplinary research interest over the last 2 decades. Although the term "ciliopathy" was first used to describe abnormal cilia caused by gene mutations, recent studies focus on abnormalities of cilia that are found in diseases without clear genetic antecedents, such as obesity, diabetes, cancer, and cardiovascular disease. Preeclampsia, a hypertensive disease of pregnancy, is intensely studied as a model for cardiovascular disease partially due to many shared pathophysiologic elements, but also because changes that develop over decades in cardiovascular disease arise in days with preeclampsia yet resolve rapidly after delivery, thus providing a time-lapse view of the development of cardiovascular pathology. As with genetic primary ciliopathies, preeclampsia affects multiple organ systems. While aspirin delays the onset of preeclampsia, there is no cure other than delivery. The primary etiology of preeclampsia is unknown; however, recent reviews emphasize the fundamental role of abnormal placentation. During normal embryonic development, trophoblastic cells, which arise from the outer layer of the 4-day-old blastocyst, invade the maternal endometrium and establish extensive placental vascular connections between mother and fetus. In primary cilia of trophoblasts, Hedgehog and Wnt/catenin signaling operate upstream of vascular endothelial growth factor to advance placental angiogenesis in a process that is promoted by accessible membrane cholesterol. In preeclampsia, impaired proangiogenic signaling combined with an increase in apoptotic signaling results in shallow invasion and inadequate placental function. Recent studies show primary cilia in preeclampsia to be fewer in number and shortened with functional signaling abnormalities. Presented here is a model that integrates preeclampsia lipidomics and physiology with the molecular mechanisms of liquid-liquid phase separation in model membrane studies and the known changes in human dietary lipids over the last century to explain how changes in dietary lipids might reduce accessible membrane cholesterol and give rise to shortened cilia and defects in angiogenic signaling, which underlie placental dysfunction of preeclampsia. This model offers a possible mechanism for non-genetic dysfunction in cilia and proposes a proof-of-concept study to treat preeclampsia with dietary lipids.
Collapse
|
9
|
Ritter A, Kreis NN, Roth S, Friemel A, Safdar BK, Hoock SC, Wildner JM, Allert R, Louwen F, Solbach C, Yuan J. Cancer-educated mammary adipose tissue-derived stromal/stem cells in obesity and breast cancer: spatial regulation and function. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:35. [PMID: 36710348 PMCID: PMC9885659 DOI: 10.1186/s13046-022-02592-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/29/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Breast cancer is the most frequently diagnosed cancer and a common cause of cancer-related death in women. It is well recognized that obesity is associated with an enhanced risk of more aggressive breast cancer as well as reduced patient survival. Breast adipose tissue-derived mesenchymal stromal/stem cells (bASCs) are crucial components of the tumor microenvironment. A key step initially involved in this process might be the de-differentiation of bASCs into tumor supporting phenotypes. METHODS In the present work, we isolated bASCs from adipose tissues adjacent to the tumor (aT bASCs) from lean- (ln-aT bASCs, BMI ≤ 25) and breast cancer patients with obesity (ob-aT bASCs, BMI ≥ 35), and analyzed their phenotypes with functional assays and RNA sequencing, compared to their counterparts isolated from adipose tissues distant from the tumor (dT bASCs). RESULTS We show that ln-aT bASCs are susceptible to be transformed into an inflammatory cancer-associated phenotype, whereas ob-aT bASCs are prone to be cancer-educated into a myofibroblastic phenotype. Both ln-aT- and ob-aT bASCs compromise their physiological differentiation capacity, and upregulate metastasis-promoting factors. While ln-aT bASCs stimulate proliferation, motility and chemoresistance by inducing epithelial-mesenchymal transition of low malignant breast cancer cells, ob-aT bASCs trigger more efficiently a cancer stem cell phenotype in highly malignant breast cancer cells. CONCLUSION Breast cancer-associated bASCs are able to foster malignancy of breast cancer cells by multiple mechanisms, especially, induction of epithelial-mesenchymal transition and activation of stemness-associated genes in breast cancer cells. Blocking the de-differentiation of bASCs in the tumor microenvironment could be a novel strategy to develop an effective intervention for breast cancer patients. SIGNIFICANCE This study provides mechanistic insights into how obesity affects the phenotype of bASCs in the TME. Moreover, it highlights the molecular changes inside breast cancer cells upon cell-cell interaction with cancer-educated bASCs.
Collapse
Affiliation(s)
- Andreas Ritter
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Nina-Naomi Kreis
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Susanne Roth
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Alexandra Friemel
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Babek Kahn Safdar
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Samira Catharina Hoock
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Julia Maria Wildner
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Roman Allert
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Frank Louwen
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Christine Solbach
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Juping Yuan
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
10
|
Amack JD. Structures and functions of cilia during vertebrate embryo development. Mol Reprod Dev 2022; 89:579-596. [PMID: 36367893 PMCID: PMC9805515 DOI: 10.1002/mrd.23650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
Cilia are hair-like structures that project from the surface of cells. In vertebrates, most cells have an immotile primary cilium that mediates cell signaling, and some specialized cells assemble one or multiple cilia that are motile and beat synchronously to move fluids in one direction. Gene mutations that alter cilia structure or function cause a broad spectrum of disorders termed ciliopathies that impact virtually every system in the body. A wide range of birth defects associated with ciliopathies underscores critical functions for cilia during embryonic development. In many cases, the mechanisms underlying cilia functions during development and disease remain poorly understood. This review describes different types of cilia in vertebrate embryos and discusses recent research results from diverse model systems that provide novel insights into how cilia form and function during embryo development. The work discussed here not only expands our understanding of in vivo cilia biology, but also opens new questions about cilia and their roles in establishing healthy embryos.
Collapse
Affiliation(s)
- Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA,,BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, New York, USA
| |
Collapse
|
11
|
Monosomy X in isogenic human iPSC-derived trophoblast model impacts expression modules preserved in human placenta. Proc Natl Acad Sci U S A 2022; 119:e2211073119. [PMID: 36161909 DOI: 10.1073/pnas.2211073119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammalian sex chromosomes encode homologous X/Y gene pairs that were retained on the Y chromosome in males and escape X chromosome inactivation (XCI) in females. Inferred to reflect X/Y pair dosage sensitivity, monosomy X is a leading cause of miscarriage in humans with near full penetrance. This phenotype is shared with many other mammals but not the mouse, which offers sophisticated genetic tools to generate sex chromosomal aneuploidy but also tolerates its developmental impact. To address this critical gap, we generated X-monosomic human induced pluripotent stem cells (hiPSCs) alongside otherwise isogenic euploid controls from male and female mosaic samples. Phased genomic variants in these hiPSC panels enable systematic investigation of X/Y dosage-sensitive features using in vitro models of human development. Here, we demonstrate the utility of these validated hiPSC lines to test how X/Y-linked gene dosage impacts a widely used model for human syncytiotrophoblast development. While these isogenic panels trigger a GATA2/3- and TFAP2A/C-driven trophoblast gene circuit irrespective of karyotype, differential expression implicates monosomy X in altered levels of placental genes and in secretion of placental growth factor (PlGF) and human chorionic gonadotropin (hCG). Remarkably, weighted gene coexpression network modules that significantly reflect these changes are also preserved in first-trimester chorionic villi and term placenta. Our results suggest monosomy X may skew trophoblast cell type composition and function, and that the combined haploinsufficiency of the pseudoautosomal region likely plays a key role in these changes.
Collapse
|
12
|
Marozio L, Dassie F, Bertschy G, Canuto EM, Milan G, Cosma S, Maffei P, Benedetto C. Case Report:Pregnancy and birth in a mild phenotype of Alström syndrome. Front Genet 2022; 13:995947. [PMID: 36263420 PMCID: PMC9573963 DOI: 10.3389/fgene.2022.995947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Alström syndrome (AS) is an ultrarare multisystemic progressive disease caused by autosomal recessive variations of the ALMS1 gene (2p13). AS is characterized by double sensory impairment, cardiomyopathy, childhood obesity, extreme insulin resistance, early nonalcoholic fatty liver disease, renal dysfunction, respiratory disease, endocrine and urologic disorders. In female AS patients, hyperandrogenism has been described but fertility issues and conception have not been investigated so far. Case: This case report describes the spontaneous conception, pregnancy, and birth in a 27-year-old woman with AS, characterized by a mild phenotype with late onset of visual impairment, residual perception of light, and hypertension. Before pregnancy, menses were regular with increased levels of dihydrotestosterone and androstanediol glucuronide in the follicular phase, and the ovaries and endometrium were normal during vaginal ultrasound. A thorough clinical follow-up of the maternal and fetal conditions was carried out. A weight gain of 10 kg during pregnancy was recorded, and serial blood and urine tests were all within the normal range, except for mild anemia. The course of pregnancy was uneventful up to 34 weeks of gestation when preeclampsia developed with an abnormally high level of blood pressure and edema in the lower limbs. At 35 weeks + 3 days of gestation, an urgent cesarean section was performed, and a healthy male weighing 1,950 g was born. Histological examination of the placenta showed partial signs of flow obstruction, limited abruption areas, congested fetal vessels and villi, and a small single infarcted area. Conclusion: The present case demonstrates for the first time that conceiving is possible for patients with ALMS. Particular attention should be given to the management of AS systemic comorbidities through the course of pregnancy.
Collapse
Affiliation(s)
- Luca Marozio
- Department of Obstetrics and Gynecology, University of Turin, Turin, Italy
| | - Francesca Dassie
- Department of Medicine, University of Padua, Padua, Italy
- *Correspondence: Francesca Dassie,
| | - Gianluca Bertschy
- Department of Obstetrics and Gynecology, University of Turin, Turin, Italy
| | - Emilie M. Canuto
- Department of Obstetrics and Gynecology, University of Turin, Turin, Italy
| | | | - Stefano Cosma
- Department of Obstetrics and Gynecology, University of Turin, Turin, Italy
| | - Pietro Maffei
- Department of Medicine, University of Padua, Padua, Italy
| | - Chiara Benedetto
- Department of Obstetrics and Gynecology, University of Turin, Turin, Italy
| |
Collapse
|
13
|
Primary Cilia: A Cellular Regulator of Articular Cartilage Degeneration. Stem Cells Int 2022; 2022:2560441. [PMID: 36193252 PMCID: PMC9525753 DOI: 10.1155/2022/2560441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/29/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease that can cause pain and disability in adults. The main pathological characteristic of OA is cartilage degeneration, which is caused by chondrocyte apoptosis, cartilage matrix degradation, and inflammatory factor destruction. The current treatment for patients with OA focuses on delaying its progression, such as oral anti-inflammatory analgesics or injection of sodium gluconate into the joint cavity. Primary cilia are an important structure involved in cellular signal transduction. Thus, they are very sensitive to mechanical and physicochemical stimuli. It is reported that the primary cilia may play an important role in the development of OA. Here, we review the correlation between the morphology (location, length, incidence, and orientation) of chondrocyte primary cilia and OA and summarize the relevant signaling pathways in chondrocytes that could regulate the OA process through primary cilia, including Hedgehog, Wnt, and inflammation-related signaling pathways. These data provide new ideas for OA treatment.
Collapse
|
14
|
Plianchaisuk A, Kusama K, Kato K, Sriswasdi S, Tamura K, Iwasaki W. Origination of LTR Retroelement-Derived NYNRIN Coincides with Therian Placental Emergence. Mol Biol Evol 2022; 39:msac176. [PMID: 35959649 PMCID: PMC9447858 DOI: 10.1093/molbev/msac176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The emergence of the placenta is a revolutionary event in the evolution of therian mammals, to which some LTR retroelement-derived genes, such as PEG10, RTL1, and syncytin, are known to contribute. However, therian genomes contain many more LTR retroelement-derived genes that may also have contributed to placental evolution. We conducted large-scale evolutionary genomic and transcriptomic analyses to comprehensively search for LTR retroelement-derived genes whose origination coincided with therian placental emergence and that became consistently expressed in therian placentae. We identified NYNRIN as another Ty3/Gypsy LTR retroelement-derived gene likely to contribute to placental emergence in the therian stem lineage. NYNRIN knockdown inhibited the invasion of HTR8/SVneo invasive-type trophoblasts, whereas the knockdown of its nonretroelement-derived homolog KHNYN did not. Functional enrichment analyses suggested that NYNRIN modulates trophoblast invasion by regulating epithelial-mesenchymal transition and extracellular matrix remodeling and that the ubiquitin-proteasome system is responsible for the functional differences between NYNRIN and KHNYN. These findings extend our knowledge of the roles of LTR retroelement-derived genes in the evolution of therian mammals.
Collapse
Affiliation(s)
- Arnon Plianchaisuk
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Sira Sriswasdi
- Center of Excellence in Computational Molecular Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand
| | - Kazuhiro Tamura
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Wataru Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
- Institute for Quantitative Biosciences, The University of Tokyo. Bunkyo-ku, Tokyo 113-0032, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
15
|
Oh S, Kim HM, Batsukh S, Sun HJ, Kim T, Kang D, Son KH, Byun K. High-Intensity Focused Ultrasound Induces Adipogenesis via Control of Cilia in Adipose-Derived Stem Cells in Subcutaneous Adipose Tissue. Int J Mol Sci 2022; 23:ijms23168866. [PMID: 36012125 PMCID: PMC9408610 DOI: 10.3390/ijms23168866] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
During skin aging, the volume of subcutaneous adipose tissue (sWAT) and the adipogenesis potential of adipose-derived stem cells (ASCs) decrease. It is known that the shortening of cilia length by pro-inflammatory cytokines is related to the decreased adipogenic differentiation of ASCs via increase in Wnt5a/β-catenin. High-intensity focused ultrasound (HIFU) is known to upregulate heat shock proteins (HSP), which decrease levels of pro-inflammatory cytokines. In this study, we evaluated whether HIFU modulates the cilia of ASCs by upregulating HSP70 and decreasing inflammatory cytokines. HIFU was applied at 0.2 J to rat skin, which was harvested at 1, 3, 7, and 28 days. All results for HIFU-applied animals were compared with control animals that were not treated. HIFU increased expression of HSP70 and decreased expression of NF-κB, IL-6, and TNF-α in sWAT. HIFU decreased the expression of cilia disassembly-related factors (AurA and HDAC9) in ASCs. Furthermore, HIFU increased the expression of cilia assembly-related factors (KIF3A and IFT88), decreased that of WNT5A/β-catenin, and increased that of the adipogenesis markers PPARγ and CEBPα in sWAT. HIFU increased the number of adipocytes in the sWAT and the thickness of sWAT. In conclusion, HIFU could selectively increase sWAT levels by modulating the cilia of ASCs and be used for skin rejuvenation.
Collapse
Affiliation(s)
- Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine, Incheon 21999, Korea
| | - Hyoung Moon Kim
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine, Incheon 21999, Korea
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea
| | - Sosorburam Batsukh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine, Incheon 21999, Korea
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea
| | | | | | | | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea
- Correspondence: (K.H.S.); (K.B.); Tel.: +82-32-460-3666 (K.H.S.); +82-32-899-6511 (K.B.)
| | - Kyunghee Byun
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine, Incheon 21999, Korea
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea
- Correspondence: (K.H.S.); (K.B.); Tel.: +82-32-460-3666 (K.H.S.); +82-32-899-6511 (K.B.)
| |
Collapse
|
16
|
Liu M, Lin P, Qu M, Zhai R, Zhang L, Zhang L, Zhu L, Liu C, Shu H, Feng X, Su C, Yu T, Wang F, Man D. Neutrophil count is a useful marker to predict the severity of preeclampsia. Clin Exp Hypertens 2022; 44:334-340. [PMID: 35343343 DOI: 10.1080/10641963.2022.2043891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND At present, pre-eclampsia is a growing concern and still a diagnostic challenge for obstetricians. AIMS This study aimed to evaluate whether the relationship of second trimester of pregnancy neutrophil count differed among pregnancies with mild preeclampsia, severe preeclampsia, and healthy status and explore whether or not neutrophil count in the second trimester of pregnancy would be useful as new predictors of subsequent preeclampsia. PATIENTS AND METHODS This study involved 933 pregnancies from 1 January 2018 to 30 January 2021, comprising 396 healthy pregnancies, 222 pregnancies with mild preeclampsia, and 315 pregnancies with severe preeclampsia. The relationship between preeclampsia and neutrophil count was analyzed by multiple logistic regression. In addition, maternal placental tissues of three groups were immunohistochemically stained for myeloperoxidase (MPO). RESULTS Neutrophil count was significantly higher in pregnancies with preeclampsia (including pregnancies with mild and severe preeclampsia) than that in healthy pregnancies. The neutrophil count level was prominently higher in patients with severe preeclampsia compared with those with mild preeclampsia (p < .001). The neutrophil count level was significantly positively associated with preeclampsia after adjusting for gestational week at time of blood sampling, BMI, and age (β:1.23; 95%CI:1.09-1.36; p < .0001). In addition, MPO expressions of placental tissues in preeclamptic groups were significantly increased than these in healthy pregnant controls (p < .05). CONCLUSIONS Increased neutrophil count in the second trimester of pregnancy was significantly positively associated with preeclampsia. Hence, neutrophil count plays a role in predicting the severity of preeclampsia. At the same time, it may be an independent predictor of subsequent preeclampsia.Abbreviations: BMI: body mass index; MPO: myeloperoxidase.
Collapse
Affiliation(s)
- Miao Liu
- College of Clinical Medicine, Jining Medical University, Jining, SD, China.,Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, SD, China
| | - Peng Lin
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, SD, China
| | - Miaomiao Qu
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, SD, China
| | - Ruixia Zhai
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, SD, China
| | - Liangjiao Zhang
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, SD, China
| | - Lihua Zhang
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, SD, China
| | - Liangxi Zhu
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, SD, China
| | - Chan Liu
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, SD, China
| | - Hua Shu
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, SD, China
| | - Xueqin Feng
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, SD, China
| | - Chunlong Su
- College of Clinical Medicine, Jining Medical University, Jining, SD, China.,Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, SD, China
| | - Tiantian Yu
- College of Clinical Medicine, Jining Medical University, Jining, SD, China.,Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, SD, China
| | - Fengge Wang
- College of Clinical Medicine, Jining Medical University, Jining, SD, China.,Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, SD, China
| | - Dongmei Man
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, SD, China
| |
Collapse
|
17
|
Romberg SI, Kreis NN, Friemel A, Roth S, Souto AS, Hoock SC, Fischer K, Nowak T, Solbach C, Louwen F, Ritter A, Yuan J. Human placental mesenchymal stromal cells are ciliated and their ciliation is compromised in preeclampsia. BMC Med 2022; 20:35. [PMID: 35081949 PMCID: PMC8793243 DOI: 10.1186/s12916-021-02203-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The development of the human placenta is tightly coordinated by a multitude of placental cell types, including human chorionic villi mesenchymal stromal cells (hCV-MSCs). Defective hCV-MSCs have been reported in preeclampsia (PE), a gestational hypertensive disease characterized by maternal endothelial dysfunction and systemic inflammation. Our goal was to determine whether hCV-MSCs are ciliated and whether altered ciliation is responsible for defective hCV-MSCs in preeclamptic placentas, as the primary cilium is a hub for signal transduction, which is important for various cellular activities. METHODS In the present work, we collected placental tissues from different gestational stages and we isolated hCV-MSCs from 1st trimester, term control, and preeclamptic placentas. We studied their ciliation, functionality, and impact on trophoblastic cell lines and organoids formed from human trophoblast stem cells (hTSCs) and from the trophoblastic cell line JEG-3 with various cellular and molecular methods, including immunofluorescence staining, gene analysis, spheroid/organoid formation, motility, and cellular network formation assay. The statistical evaluation was performed using a Student's t test (two-tailed and paired or homoscedastic) or an unpaired Mann-Whitney U test (two-tailed). RESULTS The results show that primary cilia appeared abundantly in normal hCV-MSCs, especially in the early development of the placenta. Compared to control hCV-MSCs, the primary cilia were truncated, and there were fewer ciliated hCV-MSCs derived from preeclamptic placentas with impaired hedgehog signaling. Primary cilia are necessary for hCV-MSCs' proper signal transduction, motility, homing, and differentiation, which are impaired in preeclamptic hCV-MSCs. Moreover, hCV-MSCs derived from preeclamptic placentas are significantly less capable of promoting growth and differentiation of placental organoids, as well as cellular network formation. CONCLUSIONS These data suggest that the primary cilium is required for the functionality of hCV-MSCs and primary cilia are impaired in hCV-MSCs from preeclamptic placentas.
Collapse
Affiliation(s)
- Sophia Indira Romberg
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe- University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Nina-Naomi Kreis
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe- University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Alexandra Friemel
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe- University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Susanne Roth
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe- University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Alice Steglich Souto
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe- University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Samira Catharina Hoock
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe- University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Kyra Fischer
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe- University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Thorsten Nowak
- Medical practice for Gynecology, Mainzer Landstraße 265, D-60326, Frankfurt, Germany
| | - Christine Solbach
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe- University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Frank Louwen
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe- University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Andreas Ritter
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe- University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany.
| | - Juping Yuan
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe- University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany.
| |
Collapse
|
18
|
Zhang Y, Yang H, Zhang Y, Shi J, Long Y. A Novel Circular RNA CircBRAP May Be Used as an Early Predictor of Preeclampsia and Its Potential Mechanism. Reprod Sci 2022; 29:2565-2579. [PMID: 35015290 DOI: 10.1007/s43032-022-00842-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/31/2021] [Indexed: 11/28/2022]
Abstract
Preeclampsia (PE), a pregnancy-related multisystem syndrome, is one of the leading causes of maternal and fetal mortality worldwide. The aim of this study was to combine the plasma protein soluble Fms-related tyrosine kinase 1 (sFLT1) levels with uterine artery Doppler ultrasound findings and CircBRAP levels during the first trimester to predict the occurrence of preeclampsia and to explore the potential mechanism by which CircBRAP functions in preeclampsia. Here, we used qRT-PCR to investigate the expression of CircBRAP in forty-nine pairs of plasma specimens and placental tissues from preeclampsia patients and control subjects. The uterine artery (UtA) pulsatility index (PI) was measured using four-dimensional color Doppler ultrasound, and the sFLT1 levels were evaluated by human immunoassay. Exogenous upregulation or downregulation of CircBRAP expression in TEV-1 trophoblast cells was performed to investigate the role of CircBRAP in cell biological behavior. Mechanistically, luciferase reporter, RNA immunoprecipitation (RIP), and biotin-coupled RNA pull-down assays were conducted to verify the relationship between CircBRAP and sFLT1 in TEV-1 cells. The results showed that the predictive power was strengthened when the plasma sFLT1 and CircBRAP levels were combined with the UtA-PI to predict preeclampsia occurrence. Our study also revealed that CircBRAP may regulate miR-106b and the HIF-2α axis to modulate the proliferation, invasion, and apoptosis of TEV-1 trophoblast cells. In summary, placenta-derived CircBRAP in plasma may be a novel biomarker for preeclampsia that, together with plasma sFLT1 levels and uterine artery Doppler ultrasound findings, can more effectively predict preeclampsia, and CircBRAP may play a potential role in preeclampsia.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, NO187, Guanlan Avenue, Shenzhen, 518110, Guangdong, China.
| | - Hongling Yang
- Department of Clinical Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Yipeng Zhang
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, NO187, Guanlan Avenue, Shenzhen, 518110, Guangdong, China
| | - Junzhu Shi
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, NO187, Guanlan Avenue, Shenzhen, 518110, Guangdong, China
| | - Yan Long
- Department of Clinical Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| |
Collapse
|
19
|
Abnormal ciliogenesis in decidual stromal cellsin recurrent miscarriage. J Reprod Immunol 2022; 150:103486. [DOI: 10.1016/j.jri.2022.103486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/29/2021] [Accepted: 01/15/2022] [Indexed: 11/21/2022]
|
20
|
Hickey SM, Ung B, Bader C, Brooks R, Lazniewska J, Johnson IRD, Sorvina A, Logan J, Martini C, Moore CR, Karageorgos L, Sweetman MJ, Brooks DA. Fluorescence Microscopy-An Outline of Hardware, Biological Handling, and Fluorophore Considerations. Cells 2021; 11:35. [PMID: 35011596 PMCID: PMC8750338 DOI: 10.3390/cells11010035] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Fluorescence microscopy has become a critical tool for researchers to understand biological processes at the cellular level. Micrographs from fixed and live-cell imaging procedures feature in a plethora of scientific articles for the field of cell biology, but the complexities of fluorescence microscopy as an imaging tool can sometimes be overlooked or misunderstood. This review seeks to cover the three fundamental considerations when designing fluorescence microscopy experiments: (1) hardware availability; (2) amenability of biological models to fluorescence microscopy; and (3) suitability of imaging agents for intended applications. This review will help equip the reader to make judicious decisions when designing fluorescence microscopy experiments that deliver high-resolution and informative images for cell biology.
Collapse
Affiliation(s)
- Shane M. Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | - Ben Ung
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wu X, Wang H, Chen H, Lin H, Li M, Yue Z, Sun L. Overexpression of smad7 inhibits the TGF-β/Smad signaling pathway and EMT in NPHP1-defective MDCK cells. Biochem Biophys Res Commun 2021; 582:57-63. [PMID: 34689106 DOI: 10.1016/j.bbrc.2021.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/23/2021] [Accepted: 10/13/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Nephronophthisis (NPHP) is a kind of ciliopathy. Interstitial fibrosis occurs at the early stage of the disease. TGF-β/Smad is a key signaling pathway in regulating interstitial fibrosis and epithelial-mesenchymal transition (EMT). In this study, we explored the activation of the TGF-β/Smad signaling pathway and EMT in NPHP1-defective MDCK cells to further understand the pathogenesis of NPHP. METHODS NPHP1-knockdown (NPHP1KD) MDCK cells were constructed by recombinant lentiviral short hairpin RNA, and NPHP1-knockout (NPHP1KO) MDCK cells were constructed by using the CRISPR/Cas9 technique. The morphology and migration ability were observed under a microscope. Western blotting was used to detect the expression of E-cadherin, β-catenin, α-smooth muscle actin (α-SMA), fibroblast-specific protein-1(FSP1), TGF-β1, Smad2, Smad3, p-Smad3, Smad4 and Smad7. The localization of Smad3 was determined by immunofluorescence assay. RESULTS NPHP1KD and NPHP1KO MDCK cells were spindle-shaped and presented EMT-like changes. E-cadherin and β-catenin expression decreased, while α-SMA and FSP1 expression increased; the TGF-β/Smad signaling pathway was activated, Smad2, Smad3, p-Smad3 and Smad4 expression increased, Smad3 translocated to nuclear and Smad7 expression decreased compared with those in wild type MDCK cells. Overexpression of Smad7 reversed these changes to different degrees. CONCLUSIONS Our results indicate that NPHP1 defects induce the activation of the TGF-β/Smad signaling pathway and EMT in MDCK cells. These factors may be implicated in the pathogenesis of interstitial fibrosis in NPHP.
Collapse
Affiliation(s)
- Xiaohong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haiyan Wang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Huamu Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hongrong Lin
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Min Li
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhihui Yue
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liangzhong Sun
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
22
|
Moon HH, Kreis NN, Friemel A, Roth S, Schulte D, Solbach C, Louwen F, Yuan J, Ritter A. Mitotic Centromere-Associated Kinesin (MCAK/KIF2C) Regulates Cell Migration and Invasion by Modulating Microtubule Dynamics and Focal Adhesion Turnover. Cancers (Basel) 2021; 13:5673. [PMID: 34830827 PMCID: PMC8616312 DOI: 10.3390/cancers13225673] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 01/16/2023] Open
Abstract
The microtubule (MT) cytoskeleton is crucial for cell motility and migration by regulating multiple cellular activities such as transport and endocytosis of key components of focal adhesions (FA). The kinesin-13 family is important in the regulation of MT dynamics and the best characterized member of this family is the mitotic centromere-associated kinesin (MCAK/KIF2C). Interestingly, its overexpression has been reported to be related to increased metastasis in various tumor entities. Moreover, MCAK is involved in the migration and invasion behavior of various cell types. However, the precise molecular mechanisms were not completely clarified. To address these issues, we generated CRISPR/dCas9 HeLa and retinal pigment epithelium (RPE) cell lines overexpressing or downregulating MCAK. Both up- or downregulation of MCAK led to reduced cell motility and poor migration in malignant as well as benign cells. Specifically, it's up- or downregulation impaired FA protein composition and phosphorylation status, interfered with a proper spindle and chromosome segregation, disturbed the assembly and disassembly rate of FA, delayed cell adhesion, and compromised the plus-tip dynamics of MTs. In conclusion, our data suggest MCAK act as an important regulator for cell motility and migration by affecting the actin-MT cytoskeleton dynamics and the FA turnover, providing molecular mechanisms by which deregulated MCAK could promote malignant progression and metastasis of tumor cells.
Collapse
Affiliation(s)
- Ha Hyung Moon
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (H.H.M.); (N.-N.K.); (A.F.); (S.R.); (C.S.); (F.L.); (J.Y.)
| | - Nina-Naomi Kreis
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (H.H.M.); (N.-N.K.); (A.F.); (S.R.); (C.S.); (F.L.); (J.Y.)
| | - Alexandra Friemel
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (H.H.M.); (N.-N.K.); (A.F.); (S.R.); (C.S.); (F.L.); (J.Y.)
| | - Susanne Roth
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (H.H.M.); (N.-N.K.); (A.F.); (S.R.); (C.S.); (F.L.); (J.Y.)
| | - Dorothea Schulte
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, J. W. Goethe University, D-60528 Frankfurt, Germany;
| | - Christine Solbach
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (H.H.M.); (N.-N.K.); (A.F.); (S.R.); (C.S.); (F.L.); (J.Y.)
| | - Frank Louwen
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (H.H.M.); (N.-N.K.); (A.F.); (S.R.); (C.S.); (F.L.); (J.Y.)
| | - Juping Yuan
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (H.H.M.); (N.-N.K.); (A.F.); (S.R.); (C.S.); (F.L.); (J.Y.)
| | - Andreas Ritter
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (H.H.M.); (N.-N.K.); (A.F.); (S.R.); (C.S.); (F.L.); (J.Y.)
| |
Collapse
|
23
|
Chi Z, Sun Y, Yu Z, Zhou F, Wang H, Zhang M. Pseudogene fms-related tyrosine kinase 1 pseudogene 1 (FLT1P1) cooperates with RNA binding protein dyskeratosis congenita 1 (DKC1) to restrain trophoblast cell proliferation and angiogenesis by targeting fms-related tyrosine kinase 1 (FLT1) in preeclampsia. Bioengineered 2021; 12:8885-8897. [PMID: 34699328 PMCID: PMC8806956 DOI: 10.1080/21655979.2021.1988366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In preeclampsia (PE), preexistent maternal endothelial dysfunction leads to impaired placentation and vascular maladaptation. Long noncoding RNAs (lncRNAs) have been shown to participate in the placentation process. LncRNA fms-related tyrosine kinase 1 pseudogene 1 (FLT1P1) was previously reported to be upregulated in PE. In this study, we verified the effect of FLT1P1 and its cognate gene FLT1 on trophoblast cell proliferation and angiogenesis by using Cell Counting Kit-8 (CCK-8) assay, tube formation assay, and western blot analysis. Their binding to RNA binding protein dyskeratosis congenita 1 (DKC1) was validated by conducting RNA immunoprecipitation (RIP) and RNA pulldown assays. In this study, knockdown of FLT1P1 or FLT1 was found to promote cell proliferation and angiogenesis in trophoblasts. In addition, FLT1P1 recruited DKC1 to stabilize FLT1. Importantly, silencing FLT1P1 or DKC1 decreased the stability of FLT1. Rescue assays revealed that FLT1 overexpression reversed the effect of silenced FLT1P1. Overall, FLT1P1 cooperates with DKC1 to restrain trophoblast cell proliferation and angiogenesis by targeting FLT1.
Collapse
Affiliation(s)
- Zhenjing Chi
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Yanlan Sun
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Zhou Yu
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Fenmei Zhou
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Hairong Wang
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Muling Zhang
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| |
Collapse
|
24
|
Li J, Tian J, Yin H, Peng Y, Liu S, Yao S, Zhang L. Chemical conjugation of FITC to track silica nanoparticles in vivo and in vitro: An emerging method to assess the reproductive toxicity of industrial nanomaterials. ENVIRONMENT INTERNATIONAL 2021; 152:106497. [PMID: 33714870 DOI: 10.1016/j.envint.2021.106497] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/02/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Previous studies have demonstrated that silica nanoparticle (SiNP) exposure induces pulmonary and cardiovascular diseases, yet their transportation and degradation in vivo have not been fully elucidated. From the perspective of reproduction, this study was implemented to examine the uterine accumulation of SiNP and explore its reproductive toxicity and pathogenic mechanisms. First, we coupled FITC onto SiNPs and intratracheally instilled them into pregnant mice on the fifth gestational day, and the toxic effect of SiNP was evaluated in vitro and in vivo. It was found that SiNP penetrated the trophoblast membrane, leading to apoptosis and suppression of cell proliferation, tube formation, and invasion in a dose-dependent manner. Mechanistically, SiNP dysregulated the expression of Scd1, Slc27a1, and Cpt1a, and induced over synthesis and efflux obstruction of fatty acid through the PPARγ signaling pathway. The downregulation of Caspase-3 triggered apoptosis of trophoblast, which was causally associated with intracellular fatty acid accumulation as revealed by the correlation analysis. Besides, SiNP induced uterine inflammation in vivo, which aggravated with the observation prolongation within 24 h. Overall, SiNPs were visualized by coupling with FITC, and the uterine accumulation of SiNP induced fatty acid metabolic disorder, biological dysfunction, and trophoblast apoptosis, which were mediated in part by the PPARγ signaling pathway. These findings would contribute to understanding the environmental impacts of SiNP better, as well as the development of control measures for environmental pollution.
Collapse
Affiliation(s)
- Junxia Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Jiaqi Tian
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Haoyu Yin
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Yanjie Peng
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Song Liu
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang 453000, China
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China.
| |
Collapse
|
25
|
Huang Y, Zheng XD, Li H. Protective role of SIRT1-mediated Sonic Hedgehog signaling pathway in the preeclampsia rat models. J Assist Reprod Genet 2021; 38:1843-1851. [PMID: 33772412 PMCID: PMC8324598 DOI: 10.1007/s10815-021-02158-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/16/2021] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To explore the role of silent information regulator 1 (SIRT1)-mediated Sonic Hedgehog (SHH) pathway in reduced uterine perfusion pressure (RUPP) model of preeclampsia (PE) in rats. METHODS The pregnant rats were divided into sham, RUPP, RUPP + rSIRT1 (recombinant SIRT1 protein), RUPP + rSHH (recombinant SHH protein), and RUPP + rSIRT1+ Cy (cyclopamine, an SHH pathway inhibitor) groups, followed by the determination of mean arterial pressure (MAP) and pregnancy outcome. The gene or protein expression was determined by enzyme-linked immunosorbent assay (ELISA), quantitative reverse transcription-polymerase chain reaction (qRT-PCR), or Western blotting. RESULTS RUPP rats showed increases MAP with the lower levels of vascular endothelial growth factor (VEGF) and nitrite and nitrate (NOx), as well as the higher levels of soluble FMS-like tyrosine kinase-1 (sFlt-1), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 in maternal plasma, which was attenuated after rSIRT1 or rSHH treatment. Besides, the improvement in the pregnancy outcome was seen in the rats from the RUPP + rSIRT1/rSHH groups as compared with the RUPP group. However, the therapeutic effect of rSIRT1 was reversed by cyclopamine. Placenta tissues of RUPP rats manifested the down-regulations of SIRT1, Patched-1 (PTCH1), and GLI family zinc finger 2 (GLI2), which were up-regulated in the RUPP + rSIRT1 group. CONCLUSION SIRT1 was down-regulated while SHH pathway was inhibited in the placental tissue of PE rats. SIRT1 improved the blood pressure, angiogenic imbalance, inflammation, and pregnancy outcome in PE rats via SHH pathway, supporting its potential use for the treatment of PE.
Collapse
Affiliation(s)
- Yi Huang
- Department of Obstetrics and Gynecology, Jingzhou Central Hospital, Jingzhou, City, 434020, Hubei Province, People's Republic of China
| | - Xiao-Dan Zheng
- Department of Obstetrics and Gynecology, Jingzhou Central Hospital, Jingzhou, City, 434020, Hubei Province, People's Republic of China
| | - Hui Li
- Department of Obstetrics and Gynecology, Jingzhou Central Hospital, Jingzhou, City, 434020, Hubei Province, People's Republic of China.
| |
Collapse
|
26
|
Duong Phu M, Bross S, Burkhalter MD, Philipp M. Limitations and opportunities in the pharmacotherapy of ciliopathies. Pharmacol Ther 2021; 225:107841. [PMID: 33771583 DOI: 10.1016/j.pharmthera.2021.107841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Ciliopathies are a family of rather diverse conditions, which have been grouped based on the finding of altered or dysfunctional cilia, potentially motile, small cellular antennae extending from the surface of postmitotic cells. Cilia-related disorders include embryonically arising conditions such as Joubert, Usher or Kartagener syndrome, but also afflictions with a postnatal or even adult onset phenotype, i.e. autosomal dominant polycystic kidney disease. The majority of ciliopathies are syndromic rather than affecting only a single organ due to cilia being found on almost any cell in the human body. Overall ciliopathies are considered rare diseases. Despite that, pharmacological research and the strive to help these patients has led to enormous therapeutic advances in the last decade. In this review we discuss new treatment options for certain ciliopathies, give an outlook on promising future therapeutic strategies, but also highlight the limitations in the development of therapeutic approaches of ciliopathies.
Collapse
Affiliation(s)
- Max Duong Phu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Stefan Bross
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany.
| |
Collapse
|