1
|
Du J, Zhou S, Ma Y, Wei Y, Li Q, Huang H, Chen L, Yang Y, Yu S. Folic acid functionalized gadolinium-doped carbon dots as fluorescence / magnetic resonance imaging contrast agent for targeted imaging of liver cancer. Colloids Surf B Biointerfaces 2024; 234:113721. [PMID: 38176338 DOI: 10.1016/j.colsurfb.2023.113721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Gadolinium-doped carbon dots (Gd-CDs), as a new class of nanomaterial, has a wide application prospect in targeted imaging and monitoring diagnosis and treatment of liver cancer because of their good fluorescence (FL)-magnetic resonance (MR) imaging properties. First, Gd-CDs were synthesized by hydrothermal method with gadodiamide as gadolinium source, citric acid as carbon source and silane coupling agent (KH-792) as coupling agent with FL quantum yield (QY) of 48.2%. Then, folic acid (FA), which is highly expressed in liver cancer, was used as a targeting component to modify Gd-CDs to obtain targeted imaging agent (Gd-CDs-FA). The results showed that Gd-CDs and Gd-CDs-FA have low cytotoxicity and good biocompatibility, and the targeting and selectivity of Gd-CDs-FA to HepG2 cells could be observed under confocal laser scanning microscope (CLSM). The T1 longitudinal relaxation rates (r1) of Gd-CDs and Gd-CDs-FA are 15.92 mM-1s-1 and 13.56 mM-1s-1, respectively. They showed good MR imaging ability in vitro and in vivo, and MR imaging in nude mice further proved the targeting imaging performance of Gd-CDs-FA. Therefore, Gd-CDs-FA with higher QY showed good FL-MR targeting imaging ability of liver cancer, which broke through the limitations of single molecular imaging probe in sensitivity and soft tissue resolution. This study provides a new idea for the application of Gd-CDs in FL and MR targeting imaging of liver cancer.
Collapse
Affiliation(s)
- Jinglei Du
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| | - Shizhao Zhou
- Shanxi Medical University, Taiyuan 030001, China
| | - Yihua Ma
- Honghui Hospital of Xi' an Jiaotong University, Xi' an 710054, China
| | - Yingying Wei
- Shanxi Medical University, Taiyuan 030001, China
| | - Qiang Li
- Interventional Treatment Department, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Hui Huang
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| | - Lin Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China.
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China
| | - Shiping Yu
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
2
|
Lu M, Zhang L, Pan J, Shi H, Zhang M, Li C. Advances in the study of the vascular protective effects and molecular mechanisms of hawthorn ( Crataegus anamesa Sarg.) extracts in cardiovascular diseases. Food Funct 2023. [PMID: 37337667 DOI: 10.1039/d3fo01688a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Hawthorn belongs to the rose family and is a type of functional food. It contains various chemicals, including flavonoids, terpenoids, and organic acid compounds. This study aimed to review the vascular protective effects and molecular mechanisms of hawthorn and its extracts on cardiovascular diseases (CVDs). Hawthorn has a wide range of biological functions. Evidence suggests that the active components of HE reduce oxidative stress and inflammation, regulate lipid levels to prevent lipid accumulation, and inhibit free cholesterol accumulation in macrophages and foam cell formation. Additionally, hawthorn extract (HE) can protect vascular endothelial function, regulate endothelial dysfunction, and promote vascular endothelial relaxation. It has also been reported that the effective components of hawthorn can prevent age-related endothelial dysfunction, increase cellular calcium levels, cause antiplatelet aggregation, and promote antithrombosis. In clinical trials, HE has been proved to reduce the adverse effects of CVDs on blood lipids, blood pressure, left ventricular ejection fraction, heart rate, and exercise tolerance. Previous studies have pointed to the benefits of hawthorn and its extracts in treating atherosclerosis and other vascular diseases. Therefore, as both medicine and food, hawthorn can be used as a new drug source for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jinyuan Pan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Huishan Shi
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Muxin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
3
|
Wickline SA, Hou KK, Pan H. Peptide-Based Nanoparticles for Systemic Extrahepatic Delivery of Therapeutic Nucleotides. Int J Mol Sci 2023; 24:ijms24119455. [PMID: 37298407 DOI: 10.3390/ijms24119455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Peptide-based nanoparticles (PBN) for nucleotide complexation and targeting of extrahepatic diseases are gaining recognition as potent pharmaceutical vehicles for fine-tuned control of protein production (up- and/or down-regulation) and for gene delivery. Herein, we review the principles and mechanisms underpinning self-assembled formation of PBN, cellular uptake, endosomal release, and delivery to extrahepatic disease sites after systemic administration. Selected examples of PBN that have demonstrated recent proof of concept in disease models in vivo are summarized to offer the reader a comparative view of the field and the possibilities for clinical application.
Collapse
Affiliation(s)
- Samuel A Wickline
- Division of Cardiology, Department of Medical Engineering, University of South Florida, Tampa, FL 33602, USA
| | - Kirk K Hou
- Department of Ophthalmology, Stein and Doheny Eye Institutes, University of California, Los Angeles, CA 90095, USA
| | - Hua Pan
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
4
|
Calcagno C, David JA, Motaal AG, Coolen BF, Beldman T, Corbin A, Kak A, Ramachandran S, Pruzan A, Sridhar A, Soler R, Faries CM, Fayad ZA, Mulder WJM, Strijkers GJ. Self-gated, dynamic contrast-enhanced magnetic resonance imaging with compressed-sensing reconstruction for evaluating endothelial permeability in the aortic root of atherosclerotic mice. NMR IN BIOMEDICINE 2023; 36:e4823. [PMID: 36031706 PMCID: PMC10078106 DOI: 10.1002/nbm.4823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/01/2022] [Accepted: 08/21/2022] [Indexed: 05/16/2023]
Abstract
High-risk atherosclerotic plaques are characterized by active inflammation and abundant leaky microvessels. We present a self-gated, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) acquisition with compressed sensing reconstruction and apply it to assess longitudinal changes in endothelial permeability in the aortic root of Apoe-/- atherosclerotic mice during natural disease progression. Twenty-four, 8-week-old, female Apoe-/- mice were divided into four groups (n = 6 each) and imaged with self-gated DCE-MRI at 4, 8, 12, and 16 weeks after high-fat diet initiation, and then euthanized for CD68 immunohistochemistry for macrophages. Eight additional mice were kept on a high-fat diet and imaged longitudinally at the same time points. Aortic-root pseudo-concentration curves were analyzed using a validated piecewise linear model. Contrast agent wash-in and washout slopes (b1 and b2 ) were measured as surrogates of aortic root endothelial permeability and compared with macrophage density by immunohistochemistry. b2 , indicating contrast agent washout, was significantly higher in mice kept on an high-fat diet for longer periods of time (p = 0.03). Group comparison revealed significant differences between mice on a high-fat diet for 4 versus 16 weeks (p = 0.03). Macrophage density also significantly increased with diet duration (p = 0.009). Spearman correlation between b2 from DCE-MRI and macrophage density indicated a weak relationship between the two parameters (r = 0.28, p = 0.20). Validated piecewise linear modeling of the DCE-MRI data showed that the aortic root contrast agent washout rate is significantly different during disease progression. Further development of this technique from a single-slice to a 3D acquisition may enable better investigation of the relationship between in vivo imaging of endothelial permeability and atherosclerotic plaques' genetic, molecular, and cellular makeup in this important model of disease.
Collapse
Affiliation(s)
- Claudia Calcagno
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - John A David
- Amsterdam University Medical Centers, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Abdallah G Motaal
- Siemens Healthineers, Cardiovascular Care Group, Advanced Therapies Business, Erlangen, Germany
| | - Bram F Coolen
- Amsterdam University Medical Centers, Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Thijs Beldman
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexandra Corbin
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Arnav Kak
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarayu Ramachandran
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alison Pruzan
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Arthi Sridhar
- Department of Hematology/Oncology, UTHealth McGovern Medical School, Houston, TX, USA
| | - Raphael Soler
- CNRS, CRMBM, Marseille, France
- Department of Vascular and Endovascular Surgery, Hôpital Universitaire de la Timone, APHM, Marseille, France
| | - Christopher M Faries
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Zahi A Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Willem J M Mulder
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gustav J Strijkers
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Amsterdam University Medical Centers, Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Kluza E, Beldman TJ, Shami A, Scholl ER, Malinova TS, Grootemaat AE, van der Wel NN, Gonçalves I, Huveneers S, Mulder WJM, Lutgens E. Diverse ultrastructural landscape of atherosclerotic endothelium. Atherosclerosis 2021; 339:35-45. [PMID: 34847419 DOI: 10.1016/j.atherosclerosis.2021.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIMS The endothelium plays a major role in atherosclerosis, yet the endothelial plaque surface is a largely uncharted territory. Here we hypothesize that atherosclerosis-driven remodeling of the endothelium is a dynamic process, involving both damaging and regenerative mechanisms. METHODS Using scanning electron microscopy (SEM) and immuno-SEM, we studied endothelial junction ultrastructure, endothelial openings and immune cell-endothelium interactions in eight apoe-/- mice and two human carotid plaques. RESULTS The surface of early mouse plaques (n = 11) displayed a broad range of morphological alterations, including junctional disruptions and large transcellular endothelial pores with the average diameter between 0.6 and 3 μm. The shoulder region of advanced atherosclerotic lesions (n = 7) had a more aggravated morphology with 8 μm-size paracellular openings at two-fold higher density. In contrast, the central apical surface of advanced plaques, i.e., the plaque body (n = 7), displayed endothelial normalization, as shown by a significantly higher frequency of intact endothelial junctions and a lower incidence of paracellular pores. This normalized endothelial phenotype correlated with low immune cell density (only 5 cells/mm2). The human carotid plaque surface (n = 2) displayed both well-organized and disrupted endothelium with similar features as described above. In addition, they were accompanied by extensive thrombotic areas. CONCLUSIONS Our study unveils the spectrum of endothelial abnormalities associated with the development of atherosclerosis. These were highly abundant in early lesions and in the shoulder region of advanced plaques, while normalized at the advanced plaque's body. Similar endothelial features were observed in human atherosclerotic plaques, underlining the versatility of endothelial transformations in atherosclerosis.
Collapse
Affiliation(s)
- Ewelina Kluza
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Center, Amsterdam, 1105, AZ, the Netherlands; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Thijs J Beldman
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Center, Amsterdam, 1105, AZ, the Netherlands
| | - Annelie Shami
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden
| | - Edwin R Scholl
- Electron Microscopy Center Amsterdam, Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, 1105, AZ, the Netherlands
| | - Tsveta S Malinova
- Vascular Microenvironment and Integrity, Department of Medical Biochemistry, Amsterdam University Medical Center, Amsterdam, 1105, AZ, the Netherlands
| | - Anita E Grootemaat
- Electron Microscopy Center Amsterdam, Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, 1105, AZ, the Netherlands
| | - Nicole N van der Wel
- Electron Microscopy Center Amsterdam, Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, 1105, AZ, the Netherlands
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden; Department of Cardiology, Skåne University Hospital, Lund University, Sweden
| | - Stephan Huveneers
- Vascular Microenvironment and Integrity, Department of Medical Biochemistry, Amsterdam University Medical Center, Amsterdam, 1105, AZ, the Netherlands
| | - Willem J M Mulder
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Center, Amsterdam, 1105, AZ, the Netherlands; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands; Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esther Lutgens
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Center, Amsterdam, 1105, AZ, the Netherlands; Institute for Cardiovascular Prevention, Ludwig Maximilians University, Munich, 80336, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
6
|
Zhang K, Qin X, Qiu J, Sun T, Qu K, Din AU, Yan W, Li T, Chen Y, Gu W, Rao X, Wang G. Desulfovibrio desulfuricans aggravates atherosclerosis by enhancing intestinal permeability and endothelial TLR4/NF-κB pathway in Apoe mice. Genes Dis 2021; 10:239-253. [PMID: 37013030 PMCID: PMC10066333 DOI: 10.1016/j.gendis.2021.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/27/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022] Open
Abstract
It is increasingly aware that gut microbiota is closely associated with atherosclerosis. However, which and how specific gut bacteria regulate the progression of atherosclerosis is still poorly understood. In this study, modified linear discriminant analysis was performed in comparing the gut microbiota structures of atherosclerotic and non-atherosclerotic mice, and Desulfovibrio desulfuricans (D. desulfuricans) was found to be associated with atherosclerosis. D. desulfuricans-treated Apoe -/- mice showed significantly aggravated atherosclerosis. The proatherogenic effect of D. desulfuricans was attributed to its ability to increase intestinal permeability and subsequent raise in the transit of lipopolysaccharide (LPS) from the intestine to the bloodstream. Excessive LPS in the blood can elicit local and systemic inflammation and activate Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling of endothelial cells. TAK-242, a specific inhibitor of TLR4, can ameliorate the development of D. desulfuricans-induced atherosclerosis by blocking the LPS-induced activation of TLR4/NF-κB signaling.
Collapse
|
7
|
Assessment of Albumin ECM Accumulation and Inflammation as Novel In Vivo Diagnostic Targets for Multi-Target MR Imaging. BIOLOGY 2021; 10:biology10100964. [PMID: 34681063 PMCID: PMC8533611 DOI: 10.3390/biology10100964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 01/17/2023]
Abstract
Atherosclerosis is a progressive inflammatory vascular disease characterized by endothelial dysfunction and plaque burden. Extracellular matrix (ECM)-associated plasma proteins play an important role in disease development. Our magnetic resonance imaging (MRI) study investigates the feasibility of using two different molecular MRI probes for the simultaneous assessment of ECM-associated intraplaque albumin deposits caused by endothelial damage and progressive inflammation in atherosclerosis. Male apolipoprotein E-deficient (ApoE-/-)-mice were fed a high-fat diet (HFD) for 2 or 4 months. Another ApoE-/--group was treated with pravastatin and received a HFD for 4 months. T1- and T2*-weighted MRI was performed before and after albumin-specific MRI probe (gadofosveset) administration and a macrophage-specific contrast agent (ferumoxytol). Thereafter, laser ablation inductively coupled plasma mass spectrometry and histology were performed. With advancing atherosclerosis, albumin-based MRI signal enhancement and ferumoxytol-induced signal loss areas in T2*-weighted MRI increased. Significant correlations between contrast-to-noise-ratio (CNR) post-gadofosveset and albumin stain (R2 = 0.78, p < 0.05), and signal loss areas in T2*-weighted MRI with Perls' Prussian blue stain (R2 = 0.83, p < 0.05) were observed. No interference of ferumoxytol with gadofosveset enhancement was detectable. Pravastatin led to decreased inflammation and intraplaque albumin. Multi-target MRI combining ferumoxytol and gadofosveset is a promising method to improve diagnosis and treatment monitoring in atherosclerosis.
Collapse
|
8
|
Lavin Plaza B, Phinikaridou A, Andia ME, Potter M, Lorrio S, Rashid I, Botnar RM. Sustained Focal Vascular Inflammation Accelerates Atherosclerosis in Remote Arteries. Arterioscler Thromb Vasc Biol 2020; 40:2159-2170. [PMID: 32673527 PMCID: PMC7447189 DOI: 10.1161/atvbaha.120.314387] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Evidence from preclinical and clinical studies has demonstrated that myocardial infarction promotes atherosclerosis progression. The impact of focal vascular inflammation on the progression and phenotype of remote atherosclerosis remains unknown. Approach and Results: We used a novel ApoE-/- knockout mouse model of sustained arterial inflammation, initiated by mechanical injury in the abdominal aorta. Using serial in vivo molecular MRI and ex vivo histology and flow cytometry, we demonstrate that focal arterial inflammation triggered by aortic injury, accelerates atherosclerosis in the remote brachiocephalic artery. The brachiocephalic artery atheroma had distinct histological features including increased plaque size, plaque permeability, necrotic core to collagen ratio, infiltration of more inflammatory monocyte subsets, and reduced collagen content. We also found that arterial inflammation following focal vascular injury evoked a prolonged systemic inflammatory response manifested as a persistent increase in serum IL-6 (interleukin 6). Finally, we demonstrate that 2 therapeutic interventions-pravastatin and minocycline-had distinct anti-inflammatory effects at the plaque and systemic level. CONCLUSIONS We show for the first time that focal arterial inflammation in response to vascular injury enhances systemic vascular inflammation, accelerates remote atheroma progression and induces plaques more inflamed, lipid-rich, and collagen-poor in the absence of ischemic myocardial injury. This inflammatory cascade is modulated by pravastatin and minocycline treatments, which have anti-inflammatory effects at both plaque and systemic levels that mitigate atheroma progression.
Collapse
Affiliation(s)
- Begoña Lavin Plaza
- From the School of Biomedical Engineering and Imaging Sciences, King's College London, United Kingdom (B.L.P., A.P., M.P., S.L., I.R., R.M.B.)
| | - Alkystis Phinikaridou
- From the School of Biomedical Engineering and Imaging Sciences, King's College London, United Kingdom (B.L.P., A.P., M.P., S.L., I.R., R.M.B.)
| | - Marcelo E Andia
- Radiology Department & Millennium Nucleus for Cardiovascular Magnetic Resonance (M.E.A.), Pontificia Universidad Católica de Chile
| | - Myles Potter
- From the School of Biomedical Engineering and Imaging Sciences, King's College London, United Kingdom (B.L.P., A.P., M.P., S.L., I.R., R.M.B.)
| | - Silvia Lorrio
- From the School of Biomedical Engineering and Imaging Sciences, King's College London, United Kingdom (B.L.P., A.P., M.P., S.L., I.R., R.M.B.)
| | - Imran Rashid
- From the School of Biomedical Engineering and Imaging Sciences, King's College London, United Kingdom (B.L.P., A.P., M.P., S.L., I.R., R.M.B.).,Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (I.R.)
| | - Rene M Botnar
- From the School of Biomedical Engineering and Imaging Sciences, King's College London, United Kingdom (B.L.P., A.P., M.P., S.L., I.R., R.M.B.).,Escuela de Ingeniería (R.M.B.), Pontificia Universidad Católica de Chile
| |
Collapse
|
9
|
Fayad ZA, Swirski FK, Calcagno C, Robbins CS, Mulder W, Kovacic JC. Monocyte and Macrophage Dynamics in the Cardiovascular System: JACC Macrophage in CVD Series (Part 3). J Am Coll Cardiol 2019; 72:2198-2212. [PMID: 30360828 DOI: 10.1016/j.jacc.2018.08.2150] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/16/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022]
Abstract
It has long been recognized that the bone marrow is the primary site of origin for circulating monocytes that may later become macrophages in atherosclerotic lesions. However, only in recent times has the complex relationship among the bone marrow, monocytes/macrophages, and atherosclerotic plaques begun to be understood. Moreover, the systemic nature of these interactions, which also involves additional compartments such as extramedullary hematopoietic sites (i.e., spleen), is only just becoming apparent. In parallel, progressive advances in imaging and cell labeling techniques have opened new opportunities for in vivo imaging of monocyte/macrophage trafficking in atherosclerotic lesions and at the systemic level. In this Part 3 of a 4-part review series covering the macrophage in cardiovascular disease, the authors intersect systemic biology with advanced imaging techniques to explore monocyte and macrophage dynamics in the cardiovascular system, with an emphasis on how events at the systemic level might affect local atherosclerotic plaque biology.
Collapse
Affiliation(s)
- Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Claudia Calcagno
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Clinton S Robbins
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Peter Munk Cardiac Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Willem Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
10
|
Calcagno C, Fayad ZA. Imaging the Permeable Endothelium: Predicting Plaque Rupture in Atherosclerotic Rabbits. Circ Cardiovasc Imaging 2018; 9:CIRCIMAGING.116.005955. [PMID: 27940960 DOI: 10.1161/circimaging.116.005955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Claudia Calcagno
- From the Translational and Molecular Imaging Institute (C.C., Z.A.F.) and Department of Radiology (C.C., Z.A.F.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Zahi A Fayad
- From the Translational and Molecular Imaging Institute (C.C., Z.A.F.) and Department of Radiology (C.C., Z.A.F.), Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
11
|
Lavin B, Protti A, Lorrio S, Dong X, Phinikaridou A, Botnar RM, Shah A. MRI with gadofosveset: A potential marker for permeability in myocardial infarction. Atherosclerosis 2018; 275:400-408. [PMID: 29735362 PMCID: PMC6100880 DOI: 10.1016/j.atherosclerosis.2018.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/27/2018] [Accepted: 04/18/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Acute ischemia is associated with myocardial endothelial damage and microvessel formation, resulting in leakage of plasma albumin into the myocardial extravascular space. In this study, we tested whether an albumin-binding intravascular contrast agent (gadofosveset) allows for improved quantification of myocardial permeability compared to the conventional extracellular contrast agent Gd-DTPA using late gadolinium enhancement (LGE) and T1 mapping in vivo. METHODS MI was induced in C57BL/6 mice (n = 6) and cardiac magnetic resonance imaging (CMR) was performed at 3, 10 and 21 days post-MI using Gd-DTPA and 24 h later using gadofosveset. Functional, LGE and T1 mapping protocols were performed 45 min post-injection of the contrast agent. RESULTS LGE images showed that both contrast agents provided similar measurements of infarct area at all time points following MI. Importantly, the myocardial R1 measurements after administration of gadofosveset were higher in the acute phase-day 3 (R1 [s-1] = 6.29 ± 0.29) compared to the maturation phase-days 10 and 21 (R1 [s-1] = 4.76 ± 0.30 and 4.48 ± 0.14), suggesting that the uptake of this agent could be used to stage myocardial remodeling. No differences in myocardial R1 were observed after administration of Gd-DTPA at different time points post-MI (R1 [s-1] = 3d: 3.77 ± 0.37; 10d: 2.74 ± 0.06; 21d: 3.35 ± 0.26). The MRI results were validated by ex vivo histology that showed albumin leakage in the myocardium in the acute phase and microvessel formation at later stages. CONCLUSIONS We demonstrate the merits of an albumin-binding contrast agent for monitoring changes in myocardial permeability between acute ischemia and chronic post-MI myocardial remodeling.
Collapse
Affiliation(s)
- Begoña Lavin
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK; The British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, United Kingdom.
| | - Andrea Protti
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK; The British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, United Kingdom; Cardiovascular Division, James Black Centre, King's College Hospital Denmark Hill London, London, SE5 9NU, United Kingdom
| | - Silvia Lorrio
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK; The British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, United Kingdom
| | - Xuebin Dong
- Cardiovascular Division, James Black Centre, King's College Hospital Denmark Hill London, London, SE5 9NU, United Kingdom
| | - Alkystis Phinikaridou
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK; The British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, United Kingdom
| | - René M Botnar
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK; The British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, United Kingdom; Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| | - Ajay Shah
- The British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, United Kingdom; Cardiovascular Division, James Black Centre, King's College Hospital Denmark Hill London, London, SE5 9NU, United Kingdom
| |
Collapse
|
12
|
Kerkhof PLM, Khamaganova I. Sex-Specific Cardiovascular Comorbidities with Associations in Dermatologic and Rheumatic Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1065:489-509. [DOI: 10.1007/978-3-319-77932-4_30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Lavin Plaza B, Gebhardt P, Phinikaridou A, Botnar RM. Atherosclerotic Plaque Imaging. PROTOCOLS AND METHODOLOGIES IN BASIC SCIENCE AND CLINICAL CARDIAC MRI 2018:261-300. [DOI: 10.1007/978-3-319-53001-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Coolen BF, Calcagno C, van Ooij P, Fayad ZA, Strijkers GJ, Nederveen AJ. Vessel wall characterization using quantitative MRI: what's in a number? MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 31:201-222. [PMID: 28808823 PMCID: PMC5813061 DOI: 10.1007/s10334-017-0644-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/04/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022]
Abstract
The past decade has witnessed the rapid development of new MRI technology for vessel wall imaging. Today, with advances in MRI hardware and pulse sequences, quantitative MRI of the vessel wall represents a real alternative to conventional qualitative imaging, which is hindered by significant intra- and inter-observer variability. Quantitative MRI can measure several important morphological and functional characteristics of the vessel wall. This review provides a detailed introduction to novel quantitative MRI methods for measuring vessel wall dimensions, plaque composition and permeability, endothelial shear stress and wall stiffness. Together, these methods show the versatility of non-invasive quantitative MRI for probing vascular disease at several stages. These quantitative MRI biomarkers can play an important role in the context of both treatment response monitoring and risk prediction. Given the rapid developments in scan acceleration techniques and novel image reconstruction, we foresee the possibility of integrating the acquisition of multiple quantitative vessel wall parameters within a single scan session.
Collapse
Affiliation(s)
- Bram F Coolen
- Department of Biomedical Engineering and Physics, Academic Medical Center, PO BOX 22660, 1100 DD, Amsterdam, The Netherlands. .,Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands.
| | - Claudia Calcagno
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pim van Ooij
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Academic Medical Center, PO BOX 22660, 1100 DD, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Mamdani N, Tung B, Wang Y, Jaffer FA, Tawakol A. Imaging the Coronary Artery Plaque: Approaches, Advances, and Challenges. CURRENT CARDIOVASCULAR IMAGING REPORTS 2017. [DOI: 10.1007/s12410-017-9419-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Phinikaridou A, Andia ME, Lavin B, Smith A, Saha P, Botnar RM. Increased Vascular Permeability Measured With an Albumin-Binding Magnetic Resonance Contrast Agent Is a Surrogate Marker of Rupture-Prone Atherosclerotic Plaque. Circ Cardiovasc Imaging 2016; 9:e004910. [PMID: 27940955 PMCID: PMC5388187 DOI: 10.1161/circimaging.116.004910] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 09/30/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Compromised structural integrity of the endothelium and higher microvessel density increase vascular permeability. We investigated whether vascular permeability measured in vivo by magnetic resonance imaging using the albumin-binding contrast agent, gadofosveset, is a surrogate marker of rupture-prone atherosclerotic plaque in a rabbit model. METHODS AND RESULTS New Zealand white rabbits (n=10) were rendered atherosclerotic by cholesterol-diet and endothelial denudation. Plaque rupture was triggered with Russell's viper venom and histamine. Animals were imaged pre-triggering, at 3 and 12 weeks, to quantify plaque area, vascular permeability, vasodilation, and stiffness and post-triggering to identify thrombus. Plaques identified on the pretrigger scans were classified as stable or rupture-prone based on the absence or presence of thrombus on the corresponding post-trigger magnetic resonance imaging, respectively. All rabbits had developed atherosclerosis, and 60% had ruptured plaques. Rupture-prone plaques had higher vessel wall relaxation rate (R1; 2.30±0.5 versus 1.86±0.3 s-1; P<0.001), measured 30 minutes after gadofosveset administration, and higher R1/plaque area ratio (0.70±0.06 versus 0.47±0.02, P= 0.01) compared with stable plaque at 12 weeks. Rupture-prone plaques had higher percent change in R1 between the 3 and 12 weeks compared with stable plaque (50.80±7.2% versus 14.22±2.2%; P<0.001). Immunohistochemistry revealed increased vessel wall albumin and microvessel density in diseased aortas and especially in ruptured plaque. Electron microscopy showed lack of structural integrity in both luminal and microvascular endothelium in diseased vessels. Functionally, the intrinsic vasodilation of the vessel wall decreased at 12 weeks compared with 3 weeks (18.60±1.0% versus 23.43±0.8%; P<0.001) and in rupture-prone compared with stable lesions (16.40±2.0% versus 21.63±1.2%; P<0.001). Arterial stiffness increased at 12 weeks compared with 3 weeks (5.00±0.1 versus 2.53±0.2 m/s; P<0.001) both in animals with stable and rupture-prone lesions. CONCLUSIONS T1 mapping using an albumin-binding contrast agent (gadofosveset) could quantify the changes in vascular permeability associated with atherosclerosis progression and rupture-prone plaques.
Collapse
Affiliation(s)
- Alkystis Phinikaridou
- From the Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., B.L., R.M.B.), Academic Department of Surgery, Cardiovascular Division (A.S., P.S.), BHF Centre of Excellence, Cardiovascular Division (A.S., R.M.B.), and Wellcome Trust and EPSRC Medical Engineering Center (P.S., R.M.B.), King's College London, United Kingdom; and Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (M.E.A.).
| | - Marcelo E Andia
- From the Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., B.L., R.M.B.), Academic Department of Surgery, Cardiovascular Division (A.S., P.S.), BHF Centre of Excellence, Cardiovascular Division (A.S., R.M.B.), and Wellcome Trust and EPSRC Medical Engineering Center (P.S., R.M.B.), King's College London, United Kingdom; and Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (M.E.A.)
| | - Begoña Lavin
- From the Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., B.L., R.M.B.), Academic Department of Surgery, Cardiovascular Division (A.S., P.S.), BHF Centre of Excellence, Cardiovascular Division (A.S., R.M.B.), and Wellcome Trust and EPSRC Medical Engineering Center (P.S., R.M.B.), King's College London, United Kingdom; and Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (M.E.A.)
| | - Alberto Smith
- From the Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., B.L., R.M.B.), Academic Department of Surgery, Cardiovascular Division (A.S., P.S.), BHF Centre of Excellence, Cardiovascular Division (A.S., R.M.B.), and Wellcome Trust and EPSRC Medical Engineering Center (P.S., R.M.B.), King's College London, United Kingdom; and Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (M.E.A.)
| | - Prakash Saha
- From the Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., B.L., R.M.B.), Academic Department of Surgery, Cardiovascular Division (A.S., P.S.), BHF Centre of Excellence, Cardiovascular Division (A.S., R.M.B.), and Wellcome Trust and EPSRC Medical Engineering Center (P.S., R.M.B.), King's College London, United Kingdom; and Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (M.E.A.)
| | - René M Botnar
- From the Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., B.L., R.M.B.), Academic Department of Surgery, Cardiovascular Division (A.S., P.S.), BHF Centre of Excellence, Cardiovascular Division (A.S., R.M.B.), and Wellcome Trust and EPSRC Medical Engineering Center (P.S., R.M.B.), King's College London, United Kingdom; and Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (M.E.A.)
| |
Collapse
|
17
|
Palekar RU, Jallouk AP, Lanza GM, Pan H, Wickline SA. Molecular imaging of atherosclerosis with nanoparticle-based fluorinated MRI contrast agents. Nanomedicine (Lond) 2016; 10:1817-32. [PMID: 26080701 DOI: 10.2217/nnm.15.26] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As atherosclerosis remains one of the most prevalent causes of patient mortality, the ability to diagnose early signs of plaque rupture and thrombosis represents a significant clinical need. With recent advances in nanotechnology, it is now possible to image specific molecular processes noninvasively with MRI, using various types of nanoparticles as contrast agents. In the context of cardiovascular disease, it is possible to specifically deliver contrast agents to an epitope of interest for detecting vascular inflammatory processes, which serve as predecessors to atherosclerotic plaque development. Herein, we review various applications of nanotechnology in detecting atherosclerosis using MRI, with an emphasis on perfluorocarbon nanoparticles and fluorine imaging, along with theranostic prospects of nanotechnology in cardiovascular disease.
Collapse
Affiliation(s)
- Rohun U Palekar
- Department of Biomedical Engineering, Washington University, Whitaker Hall, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA
| | - Andrew P Jallouk
- Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| | - Gregory M Lanza
- Department of Biomedical Engineering, Washington University, Whitaker Hall, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA.,Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| | - Hua Pan
- Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| | - Samuel A Wickline
- Department of Biomedical Engineering, Washington University, Whitaker Hall, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA.,Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| |
Collapse
|
18
|
Abstract
Molecular imaging offers great potential for noninvasive visualization and quantitation of the cellular and molecular components involved in atherosclerotic plaque stability. In this chapter, we review emerging molecular imaging modalities and approaches for quantitative, noninvasive detection of early biological processes in atherogenesis, including vascular endothelial permeability, endothelial adhesion molecule up-regulation, and macrophage accumulation, with special emphasis on mouse models. We also highlight a number of targeted imaging nanomaterials for assessment of advanced atherosclerotic plaques, including extracellular matrix degradation, proteolytic enzyme activity, and activated platelets using mouse models of atherosclerosis. The potential for clinical translation of molecular imaging nanomaterials for assessment of atherosclerotic plaque biology, together with multimodal approaches is also discussed.
Collapse
|
19
|
Calcagno C, Lobatto ME, Dyvorne H, Robson PM, Millon A, Senders ML, Lairez O, Ramachandran S, Coolen BF, Black A, Mulder WJM, Fayad ZA. Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques. NMR IN BIOMEDICINE 2015; 28:1304-14. [PMID: 26332103 PMCID: PMC4573915 DOI: 10.1002/nbm.3369] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 06/19/2015] [Accepted: 07/06/2015] [Indexed: 05/28/2023]
Abstract
Atherosclerotic plaques that cause stroke and myocardial infarction are characterized by increased microvascular permeability and inflammation. Dynamic contrast-enhanced MRI (DCE-MRI) has been proposed as a method to quantify vessel wall microvascular permeability in vivo. Until now, most DCE-MRI studies of atherosclerosis have been limited to two-dimensional (2D) multi-slice imaging. Although providing the high spatial resolution required to image the arterial vessel wall, these approaches do not allow the quantification of plaque permeability with extensive anatomical coverage, an essential feature when imaging heterogeneous diseases, such as atherosclerosis. To our knowledge, we present the first systematic evaluation of three-dimensional (3D), high-resolution, DCE-MRI for the extensive quantification of plaque permeability along an entire vascular bed, with validation in atherosclerotic rabbits. We compare two acquisitions: 3D turbo field echo (TFE) with motion-sensitized-driven equilibrium (MSDE) preparation and 3D turbo spin echo (TSE). We find 3D TFE DCE-MRI to be superior to 3D TSE DCE-MRI in terms of temporal stability metrics. Both sequences show good intra- and inter-observer reliability, and significant correlation with ex vivo permeability measurements by Evans Blue near-infrared fluorescence (NIRF). In addition, we explore the feasibility of using compressed sensing to accelerate 3D DCE-MRI of atherosclerosis, to improve its temporal resolution and therefore the accuracy of permeability quantification. Using retrospective under-sampling and reconstructions, we show that compressed sensing alone may allow the acceleration of 3D DCE-MRI by up to four-fold. We anticipate that the development of high-spatial-resolution 3D DCE-MRI with prospective compressed sensing acceleration may allow for the more accurate and extensive quantification of atherosclerotic plaque permeability along an entire vascular bed. We foresee that this approach may allow for the comprehensive and accurate evaluation of plaque permeability in patients, and may be a useful tool to assess the therapeutic response to approved and novel drugs for cardiovascular disease.
Collapse
Affiliation(s)
- Claudia Calcagno
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark E Lobatto
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiology, Academisch Medisch Centrum, Amsterdam, the Netherlands
| | - Hadrien Dyvorne
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip M Robson
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Antoine Millon
- Department of Vascular Surgery, University Hospital of Lyon, Lyon, France
| | - Max L Senders
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivier Lairez
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiac Imaging Center, University Hospital of Rangueil, Toulouse, France
| | - Sarayu Ramachandran
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bram F Coolen
- Department of Radiology, Academisch Medisch Centrum, Amsterdam, the Netherlands
| | - Alexandra Black
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Willem J M Mulder
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiology, Academisch Medisch Centrum, Amsterdam, the Netherlands
| | - Zahi A Fayad
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
20
|
Bakermans AJ, Abdurrachim D, Moonen RPM, Motaal AG, Prompers JJ, Strijkers GJ, Vandoorne K, Nicolay K. Small animal cardiovascular MR imaging and spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:1-47. [PMID: 26282195 DOI: 10.1016/j.pnmrs.2015.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
The use of MR imaging and spectroscopy for studying cardiovascular disease processes in small animals has increased tremendously over the past decade. This is the result of the remarkable advances in MR technologies and the increased availability of genetically modified mice. MR techniques provide a window on the entire timeline of cardiovascular disease development, ranging from subtle early changes in myocardial metabolism that often mark disease onset to severe myocardial dysfunction associated with end-stage heart failure. MR imaging and spectroscopy techniques play an important role in basic cardiovascular research and in cardiovascular disease diagnosis and therapy follow-up. This is due to the broad range of functional, structural and metabolic parameters that can be quantified by MR under in vivo conditions non-invasively. This review describes the spectrum of MR techniques that are employed in small animal cardiovascular disease research and how the technological challenges resulting from the small dimensions of heart and blood vessels as well as high heart and respiratory rates, particularly in mice, are tackled.
Collapse
Affiliation(s)
- Adrianus J Bakermans
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rik P M Moonen
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Abdallah G Motaal
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katrien Vandoorne
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
21
|
Lavin B, Phinikaridou A, Lorrio S, Zaragoza C, Botnar RM. Monitoring vascular permeability and remodeling after endothelial injury in a murine model using a magnetic resonance albumin-binding contrast agent. Circ Cardiovasc Imaging 2015; 8:CIRCIMAGING.114.002417. [PMID: 25873720 PMCID: PMC4405074 DOI: 10.1161/circimaging.114.002417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Despite the beneficial effects of vascular interventions, these procedures may damage the endothelium leading to increased vascular permeability and remodeling. Re-endothelialization of the vessel wall, with functionally and structurally intact cells, is controlled by endothelial nitric oxide synthase (NOS3) and is crucial for attenuating adverse effects after injury. We investigated the applicability of the albumin-binding MR contrast agent, gadofosveset, to noninvasively monitor focal changes in vascular permeability and remodeling, after injury, in NOS3-knockout (NOS3(-/-)) and wild-type (WT) mice in vivo. METHODS AND RESULTS WT and NOS3(-/-) mice were imaged at 7, 15, and 30 days after aortic denudation or sham-surgery. T1 mapping (R1=1/T1, s(-1)) and delayed-enhanced MRI were used as measurements of vascular permeability (R1) and remodeling (vessel wall enhancement, mm(2)) after gadofosveset injection, respectively. Denudation resulted in higher vascular permeability and vessel wall enhancement 7 days after injury in both strains compared with sham-operated animals. However, impaired re-endothelialization and increased neovascularization in NOS3(-/-) mice resulted in significantly higher R1 at 15 and 30 days post injury compared with WT mice that showed re-endothelialization and lack of neovascularization (R1 [s(-1)]=15 days: NOS3 (-/-)4.02 [interquartile range, IQR, 3.77-4.41] versus WT2.39 [IQR, 2.35-2.92]; 30 days: NOS3 (-/-)4.23 [IQR, 3.94-4.68] versus WT2.64 [IQR, 2.33-2.80]). Similarly, vessel wall enhancement was higher in NOS3(-/-) but recovered in WT mice (area [mm(2)]=15 days: NOS3 (-/-)5.20 [IQR, 4.68-6.80] versus WT2.13 [IQR, 0.97-3.31]; 30 days: NOS3 (-/-)7.35 [IQR, 5.66-8.61] versus WT1.60 [IQR, 1.40-3.18]). Ex vivo histological studies corroborated the MRI findings. CONCLUSIONS We demonstrate that increased vascular permeability and remodeling, after injury, can be assessed noninvasively using an albumin-binding MR contrast agent and may be used as surrogate markers for evaluating the healing response of the vessel wall after injury.
Collapse
Affiliation(s)
- Begoña Lavin
- From the Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom (B.L., A.P., S.L., R.M.B.); The British Heart Foundation Centre of Excellence, Cardiovascular Division (B.L., A.P., R.M.B.) and Wellcome Trust and EPSRC Medical Engineering Center (B.L., R.M.B.), King's College London, London, United Kingdom; Cardiovascular Research Unit, University Francisco de Vitoria/Hospital Ramón y Cajal, Ctra. Colmenar Viejo, km 9,100, Madrid 28034, Spain (C.Z.).
| | - Alkystis Phinikaridou
- From the Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom (B.L., A.P., S.L., R.M.B.); The British Heart Foundation Centre of Excellence, Cardiovascular Division (B.L., A.P., R.M.B.) and Wellcome Trust and EPSRC Medical Engineering Center (B.L., R.M.B.), King's College London, London, United Kingdom; Cardiovascular Research Unit, University Francisco de Vitoria/Hospital Ramón y Cajal, Ctra. Colmenar Viejo, km 9,100, Madrid 28034, Spain (C.Z.)
| | - Silvia Lorrio
- From the Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom (B.L., A.P., S.L., R.M.B.); The British Heart Foundation Centre of Excellence, Cardiovascular Division (B.L., A.P., R.M.B.) and Wellcome Trust and EPSRC Medical Engineering Center (B.L., R.M.B.), King's College London, London, United Kingdom; Cardiovascular Research Unit, University Francisco de Vitoria/Hospital Ramón y Cajal, Ctra. Colmenar Viejo, km 9,100, Madrid 28034, Spain (C.Z.)
| | - Carlos Zaragoza
- From the Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom (B.L., A.P., S.L., R.M.B.); The British Heart Foundation Centre of Excellence, Cardiovascular Division (B.L., A.P., R.M.B.) and Wellcome Trust and EPSRC Medical Engineering Center (B.L., R.M.B.), King's College London, London, United Kingdom; Cardiovascular Research Unit, University Francisco de Vitoria/Hospital Ramón y Cajal, Ctra. Colmenar Viejo, km 9,100, Madrid 28034, Spain (C.Z.)
| | - René M Botnar
- From the Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom (B.L., A.P., S.L., R.M.B.); The British Heart Foundation Centre of Excellence, Cardiovascular Division (B.L., A.P., R.M.B.) and Wellcome Trust and EPSRC Medical Engineering Center (B.L., R.M.B.), King's College London, London, United Kingdom; Cardiovascular Research Unit, University Francisco de Vitoria/Hospital Ramón y Cajal, Ctra. Colmenar Viejo, km 9,100, Madrid 28034, Spain (C.Z.)
| |
Collapse
|
22
|
Palekar RU, Jallouk AP, Goette MJ, Chen J, Myerson JW, Allen JS, Akk A, Yang L, Tu Y, Miller MJ, Pham CTN, Wickline SA, Pan H. Quantifying progression and regression of thrombotic risk in experimental atherosclerosis. FASEB J 2015; 29:3100-9. [PMID: 25857553 DOI: 10.1096/fj.14-269084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/16/2015] [Indexed: 12/17/2022]
Abstract
Currently, there are no generally applicable noninvasive methods for defining the relationship between atherosclerotic vascular damage and risk of focal thrombosis. Herein, we demonstrate methods to delineate the progression and regression of vascular damage in response to an atherogenic diet by quantifying the in vivo accumulation of semipermeable 200-300 nm perfluorocarbon core nanoparticles (PFC-NP) in ApoE null mouse plaques with [(19)F] magnetic resonance spectroscopy (MRS). Permeability to PFC-NP remained minimal until 12 weeks on diet, then increased rapidly following 12 weeks, but regressed to baseline within 8 weeks after diet normalization. Markedly accelerated clotting (53.3% decrease in clotting time) was observed in carotid artery preparations of fat-fed mice subjected to photochemical injury as defined by the time to flow cessation. For all mice on and off diet, an inverse linear relationship was observed between the permeability to PFC-NP and accelerated thrombosis (P = 0.02). Translational feasibility for quantifying plaque permeability and vascular damage in vivo was demonstrated with clinical 3 T MRI of PFC-NP accumulating in plaques of atherosclerotic rabbits. These observations suggest that excessive permeability to PFC-NP may indicate prothrombotic risk in damaged atherosclerotic vasculature, which resolves within weeks after dietary therapy.
Collapse
Affiliation(s)
- Rohun U Palekar
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Andrew P Jallouk
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Matthew J Goette
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Junjie Chen
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Jacob W Myerson
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - John S Allen
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Antonina Akk
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Lihua Yang
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Yizheng Tu
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Mark J Miller
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Christine T N Pham
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Samuel A Wickline
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Hua Pan
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
23
|
Lundeberg E, Van Der Does AM, Kenne E, Soehnlein O, Lindbom L. Assessing Large-Vessel Endothelial Permeability Using Near-Infrared Fluorescence Imaging—Brief Report. Arterioscler Thromb Vasc Biol 2015; 35:783-6. [DOI: 10.1161/atvbaha.114.305131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Loss of endothelial barrier function in arterial blood vessels is characteristic of vascular pathologies, including atherosclerosis. Here, we present a near-infrared fluorescence (NIRF) imaging methodology for quantifying endothelial permeability and macromolecular uptake in large arteries in the mouse and evaluate its applicability for studying mechanisms of vascular inflammation.
Approach and Results—
To validate the NIRF methodology, macrovascular inflammation was induced in C57bl/6 mice by local tumor necrosis factor-α stimulation of the carotid artery or in apolipoprotein E–deficient mice by Western diet for 4 weeks. Evans blue dye, serving as plasma protein marker and fluorescent in the near-infrared spectrum, was given intravenously at different doses. Carotids and aorta were excised, and Evans blue dye fluorescence was assessed through whole vessel scan in an infrared imaging system. NIRF correlated to extraction–absorbance methodology for Evans blue dye quantification and was superior at discriminating plasma protein accumulation in tumor necrosis factor-α–stimulated carotids. NIRF allowed for focal quantification of increased arterial wall Evans blue dye uptake in
apolipoprotein E–deficient
mice. Importantly, NIRF left vessels intact for subsequent histological analysis or quantification of leukocyte subpopulations by flow cytometry.
Conclusions—
The described NIRF methodology provides a sensitive and rapid tool to locate and quantify macromolecular uptake in the wall of arterial blood vessels in vascular pathologies in mice.
Collapse
Affiliation(s)
- Erik Lundeberg
- From the Department of Physiology and Pharmacology (E.L., A.M.V.D.D., E.K., L.L.) and Department of Molecular Medicine and Surgery, Center of Molecular Medicine (E.K.), Karolinska Institutet, Stockholm, Sweden; Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich, Germany (O.S.); Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (O.S.); and German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart
| | - Anne M. Van Der Does
- From the Department of Physiology and Pharmacology (E.L., A.M.V.D.D., E.K., L.L.) and Department of Molecular Medicine and Surgery, Center of Molecular Medicine (E.K.), Karolinska Institutet, Stockholm, Sweden; Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich, Germany (O.S.); Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (O.S.); and German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart
| | - Ellinor Kenne
- From the Department of Physiology and Pharmacology (E.L., A.M.V.D.D., E.K., L.L.) and Department of Molecular Medicine and Surgery, Center of Molecular Medicine (E.K.), Karolinska Institutet, Stockholm, Sweden; Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich, Germany (O.S.); Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (O.S.); and German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart
| | - Oliver Soehnlein
- From the Department of Physiology and Pharmacology (E.L., A.M.V.D.D., E.K., L.L.) and Department of Molecular Medicine and Surgery, Center of Molecular Medicine (E.K.), Karolinska Institutet, Stockholm, Sweden; Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich, Germany (O.S.); Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (O.S.); and German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart
| | - Lennart Lindbom
- From the Department of Physiology and Pharmacology (E.L., A.M.V.D.D., E.K., L.L.) and Department of Molecular Medicine and Surgery, Center of Molecular Medicine (E.K.), Karolinska Institutet, Stockholm, Sweden; Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich, Germany (O.S.); Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (O.S.); and German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart
| |
Collapse
|
24
|
Tang J, Lobatto ME, Hassing L, van der Staay S, van Rijs SM, Calcagno C, Braza MS, Baxter S, Fay F, Sanchez-Gaytan BL, Duivenvoorden R, Sager HB, Astudillo YM, Leong W, Ramachandran S, Storm G, Pérez-Medina C, Reiner T, Cormode DP, Strijkers GJ, Stroes ESG, Swirski FK, Nahrendorf M, Fisher EA, Fayad ZA, Mulder WJM. Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation. SCIENCE ADVANCES 2015; 1:e1400223. [PMID: 26295063 PMCID: PMC4539616 DOI: 10.1126/sciadv.1400223] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/05/2015] [Indexed: 05/29/2023]
Abstract
Inflammation drives atherosclerotic plaque progression and rupture, and is a compelling therapeutic target. Consequently, attenuating inflammation by reducing local macrophage accumulation is an appealing approach. This can potentially be accomplished by either blocking blood monocyte recruitment to the plaque or increasing macrophage apoptosis and emigration. Because macrophage proliferation was recently shown to dominate macrophage accumulation in advanced plaques, locally inhibiting macrophage proliferation may reduce plaque inflammation and produce long-term therapeutic benefits. To test this hypothesis, we used nanoparticle-based delivery of simvastatin to inhibit plaque macrophage proliferation in apolipoprotein E deficient mice (Apoe-/- ) with advanced atherosclerotic plaques. This resulted in rapid reduction of plaque inflammation and favorable phenotype remodeling. We then combined this short-term nanoparticle intervention with an eight-week oral statin treatment, and this regimen rapidly reduced and continuously suppressed plaque inflammation. Our results demonstrate that pharmacologically inhibiting local macrophage proliferation can effectively treat inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Jun Tang
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mark E. Lobatto
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Vascular Medicine, Academic Medical Center, 1105 AZ Amsterdam, Netherlands
| | - Laurien Hassing
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Vascular Medicine, Academic Medical Center, 1105 AZ Amsterdam, Netherlands
| | - Susanne van der Staay
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Vascular Medicine, Academic Medical Center, 1105 AZ Amsterdam, Netherlands
| | - Sarian M. van Rijs
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Vascular Medicine, Academic Medical Center, 1105 AZ Amsterdam, Netherlands
| | - Claudia Calcagno
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mounia S. Braza
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Samantha Baxter
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francois Fay
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brenda L. Sanchez-Gaytan
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raphaël Duivenvoorden
- Department of Vascular Medicine, Academic Medical Center, 1105 AZ Amsterdam, Netherlands
| | - Hendrik B. Sager
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yaritzy M. Astudillo
- Department of Medicine (Cardiology) and Cell Biology, Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Wei Leong
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarayu Ramachandran
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands
- Department of Controlled Drug Delivery, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, 7500 AE Enschede, Netherlands
| | - Carlos Pérez-Medina
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gustav J. Strijkers
- Department of Biomedical Engineering and Physics, Academic Medical Center, 1105 AZ Amsterdam, Netherlands
| | - Erik S. G. Stroes
- Department of Vascular Medicine, Academic Medical Center, 1105 AZ Amsterdam, Netherlands
| | - Filip K. Swirski
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Edward A. Fisher
- Department of Medicine (Cardiology) and Cell Biology, Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Zahi A. Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Willem J. M. Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Vascular Medicine, Academic Medical Center, 1105 AZ Amsterdam, Netherlands
| |
Collapse
|
25
|
Kareinen I, Cedó L, Silvennoinen R, Laurila PP, Jauhiainen M, Julve J, Blanco-Vaca F, Escola-Gil JC, Kovanen PT, Lee-Rueckert M. Enhanced vascular permeability facilitates entry of plasma HDL and promotes macrophage-reverse cholesterol transport from skin in mice. J Lipid Res 2015; 56:241-53. [PMID: 25473102 PMCID: PMC4306679 DOI: 10.1194/jlr.m050948] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Reverse cholesterol transport (RCT) pathway from macrophage foam cells initiates when HDL particles cross the endothelium, enter the interstitial fluid, and induce cholesterol efflux from these cells. We injected [(3)H]cholesterol-loaded J774 macrophages into the dorsal skin of mice and measured the transfer of macrophage-derived [(3)H]cholesterol to feces [macrophage-RCT (m-RCT)]. Injection of histamine to the macrophage injection site increased locally vascular permeability, enhanced influx of intravenously administered HDL, and stimulated m-RCT from the histamine-treated site. The stimulatory effect of histamine on m-RCT was abolished by prior administration of histamine H1 receptor (H1R) antagonist pyrilamine, indicating that the histamine effect was H1R-dependent. Subcutaneous administration of two other vasoactive mediators, serotonin or bradykinin, and activation of skin mast cells to secrete histamine and other vasoactive compounds also stimulated m-RCT. None of the studied vasoactive mediators affected serum HDL levels or the cholesterol-releasing ability of J774 macrophages in culture, indicating that acceleration of m-RCT was solely due to increased availability of cholesterol acceptors in skin. We conclude that disruption of the endothelial barrier by vasoactive compounds enhances the passage of HDL into interstitial fluid and increases the rate of RCT from peripheral macrophage foam cells, which reveals a novel tissue cholesterol-regulating function of these compounds.
Collapse
Affiliation(s)
| | - Lídia Cedó
- IIB Sant Pau, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona-CIBER de Diabetes y Enfermedades Metabolicas Asociadas, Barcelona, Spain
| | | | - Pirkka-Pekka Laurila
- Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Matti Jauhiainen
- Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Josep Julve
- IIB Sant Pau, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona-CIBER de Diabetes y Enfermedades Metabolicas Asociadas, Barcelona, Spain
| | - Francisco Blanco-Vaca
- IIB Sant Pau, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona-CIBER de Diabetes y Enfermedades Metabolicas Asociadas, Barcelona, Spain
| | - Joan Carles Escola-Gil
- IIB Sant Pau, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona-CIBER de Diabetes y Enfermedades Metabolicas Asociadas, Barcelona, Spain
| | | | | |
Collapse
|
26
|
Mitchell A, Fujisawa T, Newby D, Mills N, Cruden NL. Vascular injury and repair: a potential target for cell therapies. Future Cardiol 2015; 11:45-60. [DOI: 10.2217/fca.14.77] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
ABSTRACT Whether due to atherosclerotic disease or mechanical intervention, vascular injury is a frequently encountered pathology in cardiovascular medicine. The past decade has seen growing interest in the role of circulating endothelial progenitor cells in vessel recovery postinjury. Despite this, the definition, origin and potential role of endothelial progenitor cells in vascular regeneration remains highly controversial. While animal work has shown early promise, evidence of a therapeutic role for endothelial progenitor cells in humans remains elusive. To date, clinical trials involving direct cell administration, growth factor therapy and endothelial cell capture stents have largely been disappointing, although this may in part reflect limitations in study design. This article will outline the pathophysiological mechanisms of vascular injury with an emphasis on endothelial progenitor cell biology and the potential therapeutic role of this exciting new field.
Collapse
Affiliation(s)
- Andrew Mitchell
- Centre for Cardiovascular Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Takeshi Fujisawa
- Scottish Centre for Regenerative Medicine; Edinburgh Bioquarter; 5 Little France Drive, Edinburgh, UK
| | - David Newby
- Centre for Cardiovascular Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Nicholas Mills
- Centre for Cardiovascular Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Nicholas L Cruden
- Centre for Cardiovascular Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| |
Collapse
|
27
|
Kramer CD, Weinberg EO, Gower AC, He X, Mekasha S, Slocum C, Beaulieu LM, Wetzler L, Alekseyev Y, Gibson FC, Freedman JE, Ingalls RR, Genco CA. Distinct gene signatures in aortic tissue from ApoE-/- mice exposed to pathogens or Western diet. BMC Genomics 2014; 15:1176. [PMID: 25540039 PMCID: PMC4367889 DOI: 10.1186/1471-2164-15-1176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/11/2014] [Indexed: 01/15/2023] Open
Abstract
Background Atherosclerosis is a progressive disease characterized by inflammation and accumulation of lipids in vascular tissue. Porphyromonas gingivalis (Pg) and Chlamydia pneumoniae (Cp) are associated with inflammatory atherosclerosis in humans. Similar to endogenous mediators arising from excessive dietary lipids, these Gram-negative pathogens are pro-atherogenic in animal models, although the specific inflammatory/atherogenic pathways induced by these stimuli are not well defined. In this study, we identified gene expression profiles that characterize P. gingivalis, C. pneumoniae, and Western diet (WD) at acute and chronic time points in aortas of Apolipoprotein E (ApoE-/-) mice. Results At the chronic time point, we observed that P. gingivalis was associated with a high number of unique differentially expressed genes compared to C. pneumoniae or WD. For the top 500 differentially expressed genes unique to each group, we observed a high percentage (76%) that exhibited decreased expression in P. gingivalis-treated mice in contrast to a high percentage (96%) that exhibited increased expression in WD mice. C. pneumoniae treatment resulted in approximately equal numbers of genes that exhibited increased and decreased expression. Gene Set Enrichment Analysis (GSEA) revealed distinct stimuli-associated phenotypes, including decreased expression of mitochondrion, glucose metabolism, and PPAR pathways in response to P. gingivalis but increased expression of mitochondrion, lipid metabolism, carbohydrate and amino acid metabolism, and PPAR pathways in response to C. pneumoniae; WD was associated with increased expression of immune and inflammatory pathways. DAVID analysis of gene clusters identified by two-way ANOVA at acute and chronic time points revealed a set of core genes that exhibited altered expression during the natural progression of atherosclerosis in ApoE-/- mice; these changes were enhanced in P. gingivalis-treated mice but attenuated in C. pneumoniae-treated mice. Notable differences in the expression of genes associated with unstable plaques were also observed among the three pro-atherogenic stimuli. Conclusions Despite the common outcome of P. gingivalis, C. pneumoniae, and WD on the induction of vascular inflammation and atherosclerosis, distinct gene signatures and pathways unique to each pro-atherogenic stimulus were identified. Our results suggest that pathogen exposure results in dysregulated cellular responses that may impact plaque progression and regression pathways. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1176) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Caroline A Genco
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
28
|
Lavin B, Phinikaridou A, Henningsson M, Botnar RM. Current Development of Molecular Coronary Plaque Imaging using Magnetic Resonance Imaging towards Clinical Application. CURRENT CARDIOVASCULAR IMAGING REPORTS 2014. [DOI: 10.1007/s12410-014-9309-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|