1
|
Wang YN, Liu S. The role of ALDHs in lipid peroxidation-related diseases. Int J Biol Macromol 2025; 288:138760. [PMID: 39674477 DOI: 10.1016/j.ijbiomac.2024.138760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Lipid peroxidation presents the oxidative degradation of polyunsaturated fatty acids lincited by reactive species. Excessive accumulation of lipid peroxidation byproducts, including 4-hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA), causes protein dysfunction and various illnesses. Aldehyde dehydrogenases (ALDHs) catalyze the metabolism of both endogenous and exogenous aldehydes. These enzymes participate in detoxification and intermediary metabolism. Contemporary research has affirmed the involvement of both enzymatic and non-enzymatic pathways of ALDHs in modulating the evolution of diseases associated with lipid peroxidation. This review provides an overview of the biological functions and clinical implications concerning the enzymatic and non-enzymatic pathways of ALDHs in diseases related to lipid peroxidation, such as, non-alcoholic fatty liver disease (NAFLD), atherosclerosis, and type 2 diabetes (T2DM). Furthermore, the activators or inhibitors of ALDHs represent a promising therapeutic strategy for lipid peroxidation-related diseases.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Implantology & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China
| | - Shiyue Liu
- Department of Implantology & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Caves E, Jussila A, Forni MF, Benvie A, Lei V, King D, Edelman H, Hamdan M, Odell ID, Hinchcliff M, Atit R, Horsley V. Atgl-Dependent Adipocyte Lipolysis Promotes Lipodystrophy and Restrains Fibrogenic Responses during Skin Fibrosis. J Invest Dermatol 2025:S0022-202X(25)00022-3. [PMID: 39884454 DOI: 10.1016/j.jid.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 02/01/2025]
Abstract
During skin fibrosis, extracellular matrix proteins are overproduced, and resident lipid-filled mature dermal adipocytes are depleted in both human disease and mouse models. However, the mechanisms underlying this reduction in lipid-filled adipocytes during fibrosis are poorly understood. In this study, we found that adipocyte lipolysis through the rate-limiting enzyme Atgl is required for loss of adipose tissue during skin fibrosis in mice. We found that in 2 fibrotic mouse models, adipocyte lipolysis occurred early during skin fibrosis development, and lipid storage was re-established during fibrosis recovery. In mice lacking Atgl in adipocytes, maintenance of adipocyte lipid storage occurs in both chemical and genetic models of fibrosis development. Transcriptional analysis revealed the upregulation of lipid metabolism/lipolysis genes in the skin of patients with fibrosis. Interestingly, the loss of adipocyte Atgl-driven lipolysis resulted in precocious fibrotic remodeling of the dermal extracellular matrix in bleomycin-treated mice, as indicated by histological and transcriptional changes. These data suggest that dermal adipocyte-derived fatty acids prevent fibrotic extracellular matrix remodeling in fibroblasts during the development of fibrosis. Thus, we suggest that dermal adipocyte-derived fatty acids are released during fibrosis development and delay fibroblast fibrogenic responses, which may hold therapeutic potential for treating fibrotic diseases.
Collapse
Affiliation(s)
- Elizabeth Caves
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Anna Jussila
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA; Department of Dermatology, Stanford University, Stanford, California, USA
| | - Maria Fernanda Forni
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Abigail Benvie
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Vivian Lei
- Department of Dermatology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Diane King
- Sunnycrest Bioinformatics, Flemington, New Jersey, USA
| | - Hailey Edelman
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Muhammad Hamdan
- Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ian D Odell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Monique Hinchcliff
- Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Radhika Atit
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA; Department of Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA; Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Valerie Horsley
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA; Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
3
|
Liu Y, Liu X, Pan C. Advances in Factors Affecting ALDH2 Activity and its Mechanisms. Cardiovasc Toxicol 2024; 24:1428-1438. [PMID: 39365551 DOI: 10.1007/s12012-024-09923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 10/05/2024]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme primarily involved in the detoxification of alcohol-derived aldehyde and endogenous toxic aldehydes. It exhibits widespread expression across various organs and exerts a broad and significant impact on diverse acute cardiovascular diseases, including acute coronary syndrome, acute aortic dissection, hypoxic pulmonary hypertension, and heart failure. The ALDH2 rs671 variant represents the most prevalent genetic variant in East Asian populations, with carriage rates ranging from 30 to 50% among the Chinese population. Given its widespread presence in the body, the wide range of diseases it affects, and its high rate of variation, it can serve as a crucial tool for the precise prevention and treatment of acute cardiovascular diseases, while offering individualized medication guidance. This review aims to provide a comprehensive overview of the latest advancements in factors affecting ALDH2 activity, encompassing post-transcriptional modifications, modulators of ALDH2, and relevant clinical drugs.
Collapse
Affiliation(s)
- Yun Liu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xuemei Liu
- Department of Nephrology, The Fifth People's Hospital of Jinan, Jinan, 250022, China
| | - Chang Pan
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China.
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
4
|
Khatoon S, Das N, Chattopadhyay S, Joharapurkar A, Singh A, Patel V, Nirwan A, Kumar A, Mugale MN, Mishra DP, Kumaravelu J, Guha R, Jain MR, Chattopadhyay N, Sanyal S. Apigenin-6-C-glucoside ameliorates MASLD in rodent models via selective agonism of adiponectin receptor 2. Eur J Pharmacol 2024; 978:176800. [PMID: 38950835 DOI: 10.1016/j.ejphar.2024.176800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Adiponectin plays key roles in energy metabolism and ameliorates inflammation, oxidative stress, and mitochondrial dysfunction via its primary receptors, adiponectin receptors -1 and 2 (AdipoR1 and AdipoR2). Systemic depletion of adiponectin causes various metabolic disorders, including MASLD; however adiponectin supplementation is not yet achievable owing to its large size and oligomerization-associated complexities. Small-molecule AdipoR agonists, thus, may provide viable therapeutic options against metabolic disorders. Using a novel luciferase reporter-based assay here, we have identified Apigenin-6-C-glucoside (ACG), but not apigenin, as a specific agonist for the liver-rich AdipoR isoform, AdipoR2 (EC50: 384 pM) with >10000X preference over AdipoR1. Immunoblot analysis in HEK-293 overexpressing AdipoR2 or HepG2 and PLC/PRF/5 liver cell lines revealed rapid AMPK, p38 activation and induction of typical AdipoR targets PGC-1α and PPARα by ACG at a pharmacologically relevant concentration of 100 nM (reported cMax in mouse; 297 nM). ACG-mediated AdipoR2 activation culminated in a favorable modulation of key metabolic events, including decreased inflammation, oxidative stress, mitochondrial dysfunction, de novo lipogenesis, and increased fatty acid β-oxidation as determined by immunoblotting, QRT-PCR and extracellular flux analysis. AdipoR2 depletion or AMPK/p38 inhibition dampened these effects. The in vitro results were recapitulated in two different murine models of MASLD, where ACG at 10 mg/kg body weight robustly reduced hepatic steatosis, fibrosis, proinflammatory macrophage numbers, and increased hepatic glycogen content. Together, using in vitro experiments and rodent models, we demonstrate a proof-of-concept for AdipoR2 as a therapeutic target for MASLD and provide novel chemicobiological insights for the generation of translation-worthy pharmacological agents.
Collapse
Affiliation(s)
- Shamima Khatoon
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Nabanita Das
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sourav Chattopadhyay
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | | | - Abhinav Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Vishal Patel
- Zydus Research Center, Moraiya, Ahmedabad, 382213, Gujarat, India
| | - Abhishek Nirwan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Akhilesh Kumar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Madhav Nilakanth Mugale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Durga Prasad Mishra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Jagavelu Kumaravelu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Rajdeep Guha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Laboratory Animal Facility, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | | | - Naibedya Chattopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sabyasachi Sanyal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Kiepura A, Suski M, Stachyra K, Kuś K, Czepiel K, Wiśniewska A, Ulatowska-Białas M, Olszanecki R. The Influence of the FFAR4 Agonist TUG-891 on Liver Steatosis in ApoE-Knockout Mice. Cardiovasc Drugs Ther 2024; 38:667-678. [PMID: 36705799 PMCID: PMC11266261 DOI: 10.1007/s10557-023-07430-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 01/28/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) constitutes an independent risk factor for the development of coronary heart disease. Low-grade inflammation has been shown to play an important role in the development of atherosclerosis and NAFLD. Free fatty acid receptor 4 (FFAR4/GPR120), which is involved in damping inflammatory reactions, may represent a promising target for the treatment of inflammatory diseases. Our objective was to evaluate the effect of TUG-891, the synthetic agonist of FFAR4/GPR120, on fatty liver in vivo. METHODS The effect of TUG-891 on fatty liver was investigated in apoE-/- mice fed a high-fat diet (HFD), using microscopic, biochemical, molecular, and proteomic methods. RESULTS Treatment with TUG-891 inhibited the progression of liver steatosis in apoE-/- mice, as evidenced by histological analysis, and reduced the accumulation of TG in the liver. This action was associated with a decrease in plasma AST levels. TUG-891 decreased the expression of liver genes and proteins involved in de novo lipogenesis (Srebp-1c, Fasn and Scd1) and decreased the expression of genes related to oxidation and uptake (Acox1, Ehhadh, Cd36, Fabp1). Furthermore, TUG-891 modified the levels of selected factors related to glucose metabolism (decreased Glut2, Pdk4 and Pklr, and increased G6pdx). CONCLUSION Pharmacological stimulation of FFAR4 may represent a promising lead in the search for drugs that inhibit NAFLD.
Collapse
Affiliation(s)
- Anna Kiepura
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Maciej Suski
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Kamila Stachyra
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Katarzyna Kuś
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Klaudia Czepiel
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Anna Wiśniewska
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Magdalena Ulatowska-Białas
- Department of Pathomorphology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Rafał Olszanecki
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland.
| |
Collapse
|
6
|
Dai B, Liu C, Zhang S, Huang M, Yin S. Gastrodin Suppresses the Progression of Atherosclerosis and Vascular Inflammation by Regulating TLR4/NF-κB Pathway. Cell Biochem Biophys 2024; 82:697-703. [PMID: 38270835 DOI: 10.1007/s12013-024-01218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Elevated levels of plasma triglycerides (TG) and cholesterol have been shown to contribute to the pathogenesis of several cardiovascular risk factors, such as atherosclerosis, a primary cause of mortality. Gastrodin (Gas) is an effective polyphenol extracted from Chinese natural herbal Gastrodiae elata Blume, which has been documented to be effective against atherosclerosis. However, the related mechanisms remain largely unclear. The current investigation elucidated the involvement of Gas in the development of AS generated by a high-fat diet in mice lacking the apolipoprotein E gene (ApoE-/-). The findings of our study indicate that the administration of Gas had a beneficial effect on hyperlipidemia in mice that were given a high-fat diet and lacked the ApoE gene. Specifically, Gas supplementation resulted in a reduction in blood levels of oxidized low-density lipoprotein (ox-LDL), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor-alpha (TNF-α). Additionally, the administration of Gas resulted in the suppression of lesions in the en face aortas of ApoE KO mice, accompanied by a modest improvement in lipid profiles. The intervention demonstrated the capacity to impede the development of atherosclerotic lesions and promote characteristics associated with plaque stability. The administration of Gas prevented inflammation in the aorta by decreasing the expression of IL-6, TNF-α, and MCP-1. Additionally, Gas had a mitigating effect on TLR4/NF-κB pathway components in the aorta of ApoE-/- mice. Furthermore, it has been shown that Gas has the potential to mitigate the harm caused to human umbilical vein endothelial cells (HUVECs) by ox-LDL, perhaps via inhibiting inflammation through the TLR4/NF-κB pathway. This study shows that Gas may potentially mitigate the development of atherosclerosis via its pleiotropic effects, including improvements in lipid profiles and anti-inflammatory properties.
Collapse
Affiliation(s)
- Bing Dai
- Department of vascular surgery, Tianjin University Tianjin Hospital, Tianjin, 300000, China
| | - Cunfa Liu
- Department of vascular surgery, Tianjin University Tianjin Hospital, Tianjin, 300000, China
| | - Song Zhang
- Department of vascular surgery, Tianjin University Tianjin Hospital, Tianjin, 300000, China
| | - Mei Huang
- Department of vascular surgery, Tianjin University Tianjin Hospital, Tianjin, 300000, China
| | - Shugang Yin
- Department of vascular surgery, Tianjin University Tianjin Hospital, Tianjin, 300000, China.
| |
Collapse
|
7
|
Luo J, Lu Z, Zhong Z, Pi M, Xiong Y, Li L, Chen T, Chen Y, Wang CY, Liu Z, Ye Q. ALDH2 deficiency exacerbates MCD-diet induced MASLD by modulating bile acid metabolism. Free Radic Biol Med 2024; 212:34-48. [PMID: 38104741 DOI: 10.1016/j.freeradbiomed.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Aldehyde dehydrogenase 2 (ALDH2), an acetaldehyde dehydrogenase in mitochondria, is primarily responsible for metabolizing alcohol-derived acetaldehyde and other endogenous aldehydes. Inactivating ALDH2 rs671 polymorphism is found in up to 8 % of the global population and 40 % of the East Asian population. Recent studies have shown that rs671 SNP mutation in the human ALDH2 gene is associated with an increased risk of metabolic dysfunction-associated steatotic liver diseases (MASLD), but the mechanism remains unclear. Here, we identify the role of ALDH2 in MASLD. Firstly, ALDH2 activity was lower in MASLD patients and the methionine-choline deficiency (MCD) diet induced MASLD model. Secondly, activation of ALDH2 activity with Alda-1 (ALDH2 agonist) attenuated MCD-diet induced hepatic triglyceride (TG) accumulation and steatosis, whereas the opposite result was observed with cyanamide (CYA, ALDH2 inhibitor). Furthermore, ALDH2 deficiency exacerbated hepatic steatosis, inflammation, and fibrosis in the MCD-diet induced mice. RNA sequencing (RNA-seq) revealed that oxysterol 7-α hydroxylase (Cyp7b1) and the related metabolic pathway significantly changed in the MCD-diet challenged ALDH2-/- mice. In ALDH2-/- mice, the expression of Cyp7b1 was downregulated and FXR/SHP signaling was inhibited, reducing the alternative bile acid (BA) synthetic pathway. In our in vitro experiments, knockdown of ALDH2 exacerbated TG accumulation in hepatocytes, whereas the opposite result was observed with overexpression of ALDH2. Moreover, chenodeoxycholic acid (CDCA) rescued ALDH2 downregulation induced TG accumulation in hepatocytes. Our study reveals that ALDH2 attenuates hepatocyte steatosis by regulating the alternative BA synthesis pathway, and ALDH2 may serve as a potential target for the treatment of MASLD.
Collapse
Affiliation(s)
- Jun Luo
- National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, Hubei, China
| | - Zhongshan Lu
- National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, Hubei, China
| | - Zibiao Zhong
- National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, Hubei, China
| | - Meichen Pi
- Shenzhen Qianhai Taikang Hospital, Shenzhen, Guangdong, China
| | - Yan Xiong
- National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, Hubei, China
| | - Ling Li
- National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, Hubei, China
| | - Ting Chen
- Department of Dermatology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiwen Chen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China.
| | - Zhongzhong Liu
- National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, Hubei, China.
| | - Qifa Ye
- National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, Hubei, China; Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Karunakaran U, Elumalai S, Chung SM, Maedler K, Won KC, Moon JS. Mitochondrial aldehyde dehydrogenase-2 coordinates the hydrogen sulfide - AMPK axis to attenuate high glucose-induced pancreatic β-cell dysfunction by glutathione antioxidant system. Redox Biol 2024; 69:102994. [PMID: 38128451 PMCID: PMC10776427 DOI: 10.1016/j.redox.2023.102994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
Progression of β-cell loss in diabetes mellitus is significantly influenced by persistent hyperglycemia. At the cellular level, a number of signaling cascades affect the expression of apoptotic genes, ultimately resulting in β-cell failure; these cascades have not been elucidated. Mitochondrial aldehyde dehydrogenase-2 (ALDH2) plays a central role in the detoxification of reactive aldehydes generated from endogenous and exogenous sources and protects against mitochondrial deterioration in cells. Here we report that under diabetogenic conditions, ALDH2 is strongly inactivated in β-cells through CDK5-dependent glutathione antioxidant imbalance by glucose-6-phosphate dehydrogenase (G6PD) degradation. Intriguingly, CDK5 inhibition strengthens mitochondrial antioxidant defense through ALDH2 activation. Mitochondrial ALDH2 activation selectively preserves β-cells against high-glucose-induced dysfunction by activating AMPK and Hydrogen Sulfide (H2S) signaling. This is associated with the stabilization and enhancement of the activity of G6PD by SIRT2, a cytoplasmic NAD+-dependent deacetylase, and is thereby linked to an elevation in the GSH/GSSG ratio, which leads to the inhibition of mitochondrial dysfunction under high-glucose conditions. Furthermore, treatment with NaHS, an H2S donor, selectively preserves β-cell function by promoting ALDH2 activity, leading to the inhibition of lipid peroxidation by high-glucose concentrations. Collectively, our results provide the first direct evidence that ALDH2 activation enhances H2S-AMPK-G6PD signaling, leading to improved β-cell function and survival under high-glucose conditions via the glutathione redox balance.
Collapse
Affiliation(s)
- Udayakumar Karunakaran
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea.
| | - Suma Elumalai
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Seung Min Chung
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea; Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Kathrin Maedler
- Islet Biology Laboratory, Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Kyu Chang Won
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea; Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| | - Jun Sung Moon
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea; Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
9
|
Stachowicz A, Sadiq A, Walker B, Sundararaman N, Fert-Bober J. Treatment of human cardiac fibroblasts with the protein arginine deiminase inhibitor BB-Cl-amidine activates the Nrf2/HO-1 signaling pathway. Biomed Pharmacother 2023; 167:115443. [PMID: 37703660 DOI: 10.1016/j.biopha.2023.115443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Cardiac fibrosis contributes to end-stage extracellular matrix remodeling and heart failure (HF). Cardiac fibroblasts (CFs) differentiate into myofibroblasts (myoFbs) to preserve the structural integrity of the heart; however, the molecular mechanisms regulating CF transdifferentiation remain poorly understood. Protein arginine deiminase (PAD), which converts arginine to citrulline, has been shown to play a role in myocardial infarction, fibrosis, and HF. This study aimed to investigate the role of PAD in CF differentiation to myoFbs and identify the citrullinated proteins that were associated with phenotypic changes in CFs. RESULTS Gene expression analysis showed that PAD1 and PAD2 isoforms, but not PAD4 isoforms, were abundant in both CFs and myoFbs, and PAD1 was significantly upregulated in myoFbs. The pan-PAD inhibitor BB-Cl-amidine (BB-Cl) downregulated the mRNA expression of PAD1 and PAD2 as well as the protein expression of the fibrosis marker COL1A1 in CFs and myoFbs. Interestingly, a proteomic approach pointed to the activation of the Nrf2/HO-1 signaling pathway upon BB-Cl treatment in CFs and myoFbs. BB-Cl administration resulted in the upregulation of HO-1 at both the gene and protein levels in CFs and myoFbs. Importantly, the protein citrullination landscape of CFs consisting of 86 novel citrullination sites associated with focal adhesion (FN1(R1054)), inflammation (TAGLN(R12)) and DNA replication (EEF2(R767)) pathways was identified. CONCLUSIONS In summary, we revealed that BB-Cl treatment resulted in increased HO-1 expression via the Nrf2 pathway, which could prevent excessive tissue damage, thereby leading to substantial clinical benefits for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Aneta Stachowicz
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland; Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alia Sadiq
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brian Walker
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Niveda Sundararaman
- Advanced Clinical Biosystems Research Institute, Precision Biomarker Laboratories, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Justyna Fert-Bober
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Advanced Clinical Biosystems Research Institute, Precision Biomarker Laboratories, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Li ZM, Kong CY, Mao YQ, Chen HL, Zhang SL, Huang JT, Yao JQ, Cai PR, Xie N, Han B, Wang LS. Host ALDH2 deficiency aggravates nonalcoholic steatohepatitis through gut-liver axis. Pharmacol Res 2023; 196:106902. [PMID: 37657657 DOI: 10.1016/j.phrs.2023.106902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is the major cause of liver dysfunction. Animal and population studies have shown that mitochondrial aldehyde dehydrogenase (ALDH2) is implicated in fatty liver disease. However, the role of ALDH2 in NASH and the underlying mechanisms remains unclear. To address this issue, ALDH2 knockout (ALDH2-/-) mice and wild-type littermate mice were fed a methionine-and choline-deficient (MCD) diet to induce a NASH model. Fecal, serum, and liver samples were collected and analyzed to investigate the impact of the gut microbiota and bile acids on this process. We found that MCD-fed ALDH2-/- mice exhibited increased serum pro-inflammation cytokines, hepatic inflammation and fat accumulation than their wild-type littermates. MCD-fed ALDH2-/- mice exhibited worsened MCD-induced intestinal inflammation and barrier damage, and gut microbiota disorder. Furthermore, mice receiving microbiota from MCD-fed ALDH2-/- mice had increased severity of NASH compared to those receiving microbiota from MCD-fed wild-type mice. Notably, the intestinal Lactobacillus was significantly reduced in MCD-fed ALDH2-/- mice, and gavage with Lactobacillus cocktail significantly improved MCD-induced NASH. Finally, we found that ALDH2-/- mice had reduced levels of bile salt hydrolase and specific bile acids, especially lithocholic acid (LCA), accompanied by downregulated expression of the intestinal FXR-FGF15 pathway. Supplementation of LCA in ALDH2-/- mice upregulated intestinal FXR-FGF15 pathway and alleviated NASH. In summary, ALDH2 plays a critical role in the development of NASH through modulation of gut microbiota and bile acid. The findings suggest that supplementing with Lactobacillus or LCA could be a promising therapeutic approach for treating NASH exacerbated by ALDH2 deficiency.
Collapse
Affiliation(s)
- Zhan-Ming Li
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Chao-Yue Kong
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Yu-Qin Mao
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Hui-Ling Chen
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Shi-Long Zhang
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Jia-Ting Huang
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Jin-Qing Yao
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Pei-Ran Cai
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Nuo Xie
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Bing Han
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Li-Shun Wang
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| |
Collapse
|
11
|
Chang YC, Lee HL, Yang W, Hsieh ML, Liu CC, Lee TY, Huang JY, Nong JY, Li FA, Chuang HL, Ding ZZ, Su WL, Chueh LY, Tsai YT, Chen CH, Mochly-Rosen D, Chuang LM. A common East-Asian ALDH2 mutation causes metabolic disorders and the therapeutic effect of ALDH2 activators. Nat Commun 2023; 14:5971. [PMID: 37749090 PMCID: PMC10520061 DOI: 10.1038/s41467-023-41570-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
Obesity and type 2 diabetes have reached pandemic proportion. ALDH2 (acetaldehyde dehydrogenase 2, mitochondrial) is the key metabolizing enzyme of acetaldehyde and other toxic aldehydes, such as 4-hydroxynonenal. A missense Glu504Lys mutation of the ALDH2 gene is prevalent in 560 million East Asians, resulting in reduced ALDH2 enzymatic activity. We find that male Aldh2 knock-in mice mimicking human Glu504Lys mutation were prone to develop diet-induced obesity, glucose intolerance, insulin resistance, and fatty liver due to reduced adaptive thermogenesis and energy expenditure. We find reduced activity of ALDH2 of the brown adipose tissue from the male Aldh2 homozygous knock-in mice. Proteomic analyses of the brown adipose tissue from the male Aldh2 knock-in mice identifies increased 4-hydroxynonenal-adducted proteins involved in mitochondrial fatty acid oxidation and electron transport chain, leading to markedly decreased fatty acid oxidation rate and mitochondrial respiration of brown adipose tissue, which is essential for adaptive thermogenesis and energy expenditure. AD-9308 is a water-soluble, potent, and highly selective ALDH2 activator. AD-9308 treatment ameliorates diet-induced obesity and fatty liver, and improves glucose homeostasis in both male Aldh2 wild-type and knock-in mice. Our data highlight the therapeutic potential of reducing toxic aldehyde levels by activating ALDH2 for metabolic diseases.
Collapse
Affiliation(s)
- Yi-Cheng Chang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Lin Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wenjin Yang
- Foresee Pharmaceuticals, Co.Ltd, Taipei, Taiwan
| | - Meng-Lun Hsieh
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Cai-Cin Liu
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Tung-Yuan Lee
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Jing-Yong Huang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiun-Yi Nong
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Fu-An Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Zhi-Zhong Ding
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Wei-Lun Su
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Li-Yun Chueh
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Tsai
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- Graduate Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
12
|
Shi XY, Yue XL, Xu YS, Jiang M, Li RJ. Aldehyde dehydrogenase 2 and NOD-like receptor thermal protein domain associated protein 3 inflammasome in atherosclerotic cardiovascular diseases: A systematic review of the current evidence. Front Cardiovasc Med 2023; 10:1062502. [PMID: 36910525 PMCID: PMC9996072 DOI: 10.3389/fcvm.2023.1062502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Inflammation and dyslipidemia underlie the pathological basis of atherosclerosis (AS). Clinical studies have confirmed that there is still residual risk of atherosclerotic cardiovascular diseases (ASCVD) even after intense reduction of LDL. Some of this residual risk can be explained by inflammation as anti-inflammatory therapy is effective in improving outcomes in subjects treated with LDL-lowering agents. NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activation is closely related to early-stage inflammation in AS. Aldehyde dehydrogenase 2 (ALDH2) is an important enzyme of toxic aldehyde metabolism located in mitochondria and works in the metabolism of toxic aldehydes such as 4-HNE and MDA. Despite studies confirming that ALDH2 can negatively regulate NLRP3 inflammasome and delay the development of atherosclerosis, the mechanisms involved are still poorly understood. Reactive Oxygen Species (ROS) is a common downstream pathway activated for NLRP3 inflammasome. ALDH2 can reduce the multiple sources of ROS, such as oxidative stress, inflammation, and mitochondrial damage, thereby reducing the activation of NLRP3 inflammasome. Further, according to the downstream of ALDH2 and the upstream of NLRP3, the molecules and related mechanisms of ALDH2 on NLRP3 inflammasome are comprehensively expounded as possible. The potential mechanism may provide potential inroads for treating ASCVD.
Collapse
Affiliation(s)
- Xue-Yun Shi
- Qilu Medical College, Shandong University, Jinan, China
| | - Xiao-Lin Yue
- Qilu Medical College, Shandong University, Jinan, China
| | - You-Shun Xu
- Qilu Medical College, Shandong University, Jinan, China
| | - Mei Jiang
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China
| | - Rui-Jian Li
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
13
|
Stachowicz A, Pandey R, Sundararaman N, Venkatraman V, Van Eyk JE, Fert-Bober J. Protein arginine deiminase 2 (PAD2) modulates the polarization of THP-1 macrophages to the anti-inflammatory M2 phenotype. J Inflamm (Lond) 2022; 19:20. [DOI: 10.1186/s12950-022-00317-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Macrophages are effector cells of the innate immune system that undergo phenotypical changes in response to organ injury and repair. These cells are most often classified as proinflammatory M1 and anti-inflammatory M2 macrophages. Protein arginine deiminase (PAD), which catalyses the irreversible conversion of protein-bound arginine into citrulline, is expressed in macrophages. However, the substrates of PAD and its role in immune cells remain unclear. This study aimed to investigate the role of PAD in THP-1 macrophage polarization to the M1 and M2 phenotypes and identify the citrullinated proteins and modified arginines that are associated with this biological switch using mass spectrometry.
Results
Our study showed that PAD2 and, to a lesser extent, PAD1 and PAD4 were predominantly expressed in M1 macrophages. We showed that inhibiting PAD expression with BB-Cl-amidine decreased macrophage polarization to the M1 phenotype (TNF-α, IL-6) and increased macrophage polarization to the M2 phenotype (MRC1, ALOX15). This process was mediated by the downregulation of proteins involved in the NF-κβ pathway. Silencing PAD2 confirmed the activation of M2 macrophages by increasing the antiviral innate immune response and interferon signalling. A total of 192 novel citrullination sites associated with inflammation, cell death and DNA/RNA processing pathways were identified in M1 and M2 macrophages.
Conclusions
We showed that inhibiting PAD activity using a pharmacological inhibitor or silencing PAD2 with PAD2 siRNA shifted the activation of macrophages towards the M2 phenotype, which can be crucial for designing novel macrophage-mediated therapeutic strategies. We revealed a major citrullinated proteome and its rearrangement following macrophage polarization, which after further validation could lead to significant clinical benefits for the treatment of inflammation and autoimmune diseases.
Collapse
|
14
|
Li J, Lü H, Chen S, Xiang H, Liu H, Zhao S. Trimethylamine oxide induces pyroptosis of vascular endothelial cells through ALDH2/ROS/NLRP3/GSDMD pathway. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:1171-1181. [PMID: 36411700 PMCID: PMC10930322 DOI: 10.11817/j.issn.1672-7347.2022.220086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Trimethylamine oxide (TMAO) is a metabolite of intestinal flora and is known to promote the progression of atherosclerotic plaques. However, how TMAO works, including its effect on vascular endothelial cells, is not fully understood. This study aims to explore the biological role of TMAO in human umbilical vein endothelial cells (HUVECs) and the underlying mechanism. METHODS Cell pyroptosis and the loss of plasma membrane integrity were induced under TMAO stimulation in HUVECs. The plasma membrane integrity of the cells was measured by Hoechst 33342/propidium iodide (PI) staining and lactate dehydrogenase leakage assay, and the changes in cell morphology were observed by atomic force microscope. The expression of proteins related to pyroptosis was determined by Western blotting or immunofluorescence. Mitochondrial acetaldehyde dehydrogenase 2 (ALDH2) activity in HUVECs was measured by the ALDH2 activity assay kit, and the level of reactive oxygen species (ROS) was detected by fluorescent probe DCFH-DA. RESULTS TMAO induced pyroptotic cell death, manifesting by the presence of propidium iodide-positive cells, the leakage of lactate dehydrogenase, the production of N-terminal gasdermin D (GSDMD-N), and the formation of plasma membrane pores. Moreover, TMAO induced elevated expression of inflammasome components, nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), and caspase-1 in cells. TMAO significantly inhibited ALDH2 activity and increased intracellular ROS production. However, the activation of ALDH2 by pharmacological manipulation attenuated TMAO-induced inflammasome activation and GSDMD-N production. CONCLUSIONS TMAO induces pyroptosis of vascular endothelial cells through the ALDH2/ROS/NLRP3/GSDMD signaling pathway, which may be a potential therapeutic target for improving the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jialing Li
- Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha 410013.
| | - Hongwei Lü
- Center for Experimental Medicine, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences, Central South University, Changsha 410013
| | - Hong Xiang
- Center for Experimental Medicine, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Hengdao Liu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhenzhou 450000
| | - Shaoli Zhao
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
15
|
Liu H, Wu S, Lee H, Baudo G, Massaro M, Zhang A, Hamilton DJ, Blanco E. Polymer‐Functionalized Mitochondrial Transplantation to Plaque Macrophages as a Therapeutic Strategy Targeting Atherosclerosis. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haoran Liu
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Suhong Wu
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Hyunho Lee
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Gherardo Baudo
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- College of Materials Sciences and Opto‐Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Matteo Massaro
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- College of Materials Sciences and Opto‐Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Aijun Zhang
- Center for Bioenergetics Houston Methodist Research Institute Houston TX 77030 USA
| | - Dale J. Hamilton
- Center for Bioenergetics Houston Methodist Research Institute Houston TX 77030 USA
- Division Endocrinology, Diabetes, and Metabolism, Department of Medicine Houston Methodist Hospital Houston TX 77030 USA
- Department of Medicine Weill Cornell Medical College New York NY 10065 USA
| | - Elvin Blanco
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Medicine Weill Cornell Medical College New York NY 10065 USA
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center Houston Methodist Hospital Houston TX 77030 USA
| |
Collapse
|
16
|
Aldehyde dehydrogenase 2-associated metabolic abnormalities and cardiovascular diseases: current status, underlying mechanisms, and clinical recommendations. CARDIOLOGY PLUS 2022. [DOI: 10.1097/cp9.0000000000000002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Shang D, Wang P, Tang W, Mo R, Lai R, Lu J, Li Z, Wang X, Cai W, Wang H, Zhao G, Xie Q, Xiang X. Genetic Variations of ALDH (rs671) Are Associated With the Persistence of HBV Infection Among the Chinese Han Population. Front Med (Lausanne) 2022; 9:811639. [PMID: 35237626 PMCID: PMC8882735 DOI: 10.3389/fmed.2022.811639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Alcohol dehydrogenase 1B (ADH1B) and aldehyde dehydrogenase 2 (ALDH2), members of the alcohol dehydrogenase family, have important roles in liver diseases. The roles of the polymorphisms of ADH1B rs1229984 and ALDH2 rs671 in hepatitis B virus (HBV) susceptibility and persistent infection were investigated in the present study. Total 1,034 patients with hepatitis B [99 acute hepatitis B (AHB), 521 chronic hepatitis B (CHB), 158 acute-on-chronic liver failure (ACLF), 159 liver cirrhosis (LC), and 97 hepatocellular carcinoma (HCC)] and 1,262 healthy controls (HCs) of the Chinese Han population were recruited, and single nucleotide polymorphisms (SNPs) of rs671 and rs1229984 were genotyped. Independent and joint roles of rs671 and rs1229984 in HBV infection were analyzed. The results showed that rs671 genotypes had a significantly different distribution among different subgroups. Compared with HCs, the frequency of rs671-AA genotype was higher in hepatitis B individuals, especially in the CHB group [adjusted OR (95%CI) = 1.899 (1.232–2.928), p = 0.003, in the co-dominant model], which showed a significant positive association. It was further confirmed that CHB individuals who carried ALDH2 rs671-AA genotype had a higher risk of persistent HBV infection and higher HBV-DNA quantitation compared with those with GG/GA genotype. In addition, the rs671-AA genotype might predict HCC incidence in patients with CHB. There were no different distributions of alleles or genotypes in rs671 mutant among AHB, ACLF, LC, or HCC groups compared with HCs. These data suggested the possible hazardous role of rs671-AA variant in HBV infection and persistence.
Collapse
Affiliation(s)
- Dabao Shang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peng Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Hepatobiliary Medicine, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Weiliang Tang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruidong Mo
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rongtao Lai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ziqiang Li
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaolin Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Cai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Gangde Zhao
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Gangde Zhao
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Qing Xie
| | - Xiaogang Xiang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Xiaogang Xiang
| |
Collapse
|
18
|
Kogiso T, Sagawa T, Kodama K, Taniai M, Hashimoto E, Tokushige K. Outcomes of Japanese patients with non-alcoholic fatty liver disease according to genetic background and lifestyle-related diseases. Ann Hepatol 2021; 21:100260. [PMID: 32987175 DOI: 10.1016/j.aohep.2020.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Genetic background may be involved in the mechanisms of liver injury and the development of non-alcoholic fatty liver disease (NAFLD). However, its contributions to the long-term outcome of NAFLD have been unclear. METHODS We enrolled 314 Japanese patients with biopsy-confirmed NAFLD from 2000 to 2018 (161 men [51.3%]; median age, 53 [14-84] years; 114 with advanced fibrosis [37.5%]) in the patients without hepatocellular carcinoma at diagnosis. Genomic DNA was extracted from peripheral blood and single nucleotide polymorphisms (SNPs) were analyzed. Associations of mortality with patatin-like phospholipase 3 (PNPLA3) and aldehyde dehydrogenase 2 (ALDH2) were analyzed. Finally, a subgroup analysis according to lifestyle-related disease was performed. RESULTS During the median 7 years of follow-up, 20 patients (6.4%) died (13 liver-related [4.1%] and 7 non-liver-related deaths [2.2%]). Patients with ALDH2 (non-GG genotype) who had reduced alcohol metabolism tended to have a poor prognosis (p = 0.06). Patients carrying both risk SNPs of PNPLA3 (GG) and ALDH2 (non-GG) had a significantly poor prognosis (p = 0.01). In the subgroup analysis, patients with PNPLA3 (GG) who were non-diabetics (p = 0.06) or non-dyslipidemic (p = 0.03), with ALDH2 (non-GG) who were non-dyslipidemic (p = 0.01) or hypertensive (p = 0.03), also had a poor prognosis. The Cox analysis revealed that ALDH2 (non-GG) was associated with a poor prognosis (Hazard ratio: 4.568, 95% Confidence Interval: 1.294-16.131, p = 0.02) similar to the liver function tests. CONCLUSIONS Genetic background may affect NAFLD prognosis and ALDH2 SNP could predict the outcome.
Collapse
Affiliation(s)
- Tomomi Kogiso
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Takaomi Sagawa
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Kazuhisa Kodama
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Makiko Taniai
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Etsuko Hashimoto
- Seibu Railway Health Support Center, 1-11-2 Seibu Second Building 7th Floor, Kusunoki-dai, Tokorozawa-shi, Saitama, 359-0037, Japan
| | - Katsutoshi Tokushige
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
19
|
Tsai HY, Hsu YJ, Lu CY, Tsai MC, Hung WC, Chen PC, Wang JC, Hsu LA, Yeh YH, Chu P, Tsai SH. Pharmacological Activation Of Aldehyde Dehydrogenase 2 Protects Against Heatstroke-Induced Acute Lung Injury by Modulating Oxidative Stress and Endothelial Dysfunction. Front Immunol 2021; 12:740562. [PMID: 34764958 PMCID: PMC8576434 DOI: 10.3389/fimmu.2021.740562] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Heatstroke (HS) can cause acute lung injury (ALI). Heat stress induces inflammation and apoptosis via reactive oxygen species (ROS) and endogenous reactive aldehydes. Endothelial dysfunction also plays a crucial role in HS-induced ALI. Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that detoxifies aldehydes such as 4-hydroxy-2-nonenal (4-HNE) protein adducts. A single point mutation in ALDH2 at E487K (ALDH2*2) intrinsically lowers the activity of ALDH2. Alda-1, an ALDH2 activator, attenuates the formation of 4-HNE protein adducts and ROS in several disease models. We hypothesized that ALDH2 can protect against heat stress-induced vascular inflammation and the accumulation of ROS and toxic aldehydes. Homozygous ALDH2*2 knock-in (KI) mice on a C57BL/6J background and C57BL/6J mice were used for the animal experiments. Human umbilical vein endothelial cells (HUVECs) were used for the in vitro experiment. The mice were directly subjected to whole-body heating (WBH, 42°C) for 1 h at 80% relative humidity. Alda-1 (16 mg/kg) was administered intraperitoneally prior to WBH. The severity of ALI was assessed by analyzing the protein levels and cell counts in the bronchoalveolar lavage fluid, the wet/dry ratio and histology. ALDH2*2 KI mice were susceptible to HS-induced ALI in vivo. Silencing ALDH2 induced 4-HNE and ROS accumulation in HUVECs subjected to heat stress. Alda-1 attenuated the heat stress-induced activation of inflammatory pathways, senescence and apoptosis in HUVECs. The lung homogenates of mice pretreated with Alda-1 exhibited significantly elevated ALDH2 activity and decreased ROS accumulation after WBH. Alda-1 significantly decreased the WBH-induced accumulation of 4-HNE and p65 and p38 activation. Here, we demonstrated the crucial roles of ALDH2 in protecting against heat stress-induced ROS production and vascular inflammation and preserving the viability of ECs. The activation of ALDH2 by Alda-1 attenuates WBH-induced ALI in vivo.
Collapse
Affiliation(s)
- Hsiao-Ya Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Center for the Prevention and Treatment of Heat Stroke, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Yo Lu
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Wan-Chu Hung
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Po-Chuan Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jen-Chun Wang
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lung-An Hsu
- Cardiovascular Department, Chang-Gung Memorial Hospital and School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang-Gung Memorial Hospital and School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Pauling Chu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Center for the Prevention and Treatment of Heat Stroke, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
20
|
Wang C, Wang Y, Shen L. Mitochondrial proteins in heart failure: The role of deacetylation by SIRT3. Pharmacol Res 2021; 172:105802. [PMID: 34363948 DOI: 10.1016/j.phrs.2021.105802] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022]
Abstract
Heart failure (HF) is still the leading cause of death worldwide, occurring with a variety of complex mechanisms. However, most intervention for HF do not directly target the pathological mechanisms underlying cell damage in failing cardiomyocytes. Mitochondria are involved in many physiological processes, which is an important guarantee for normal heart function. Mitochondrial dysfunction is considered to be the critical node of the development of HF. Strict modulation of the mitochondrial function can ameliorate the myocardial injury and protect cardiac function. Acetylation plays an important role in mitochondrial protein homeostasis, and SIRT3, the most important deacetylation protein in mitochondria, is involved in the maintenance of mitochondrial function. SIRT3 can delay the progression of HF by improving mitochondrial function. Herein we summarize the interaction between SIRT3 and proteins related to mitochondrial function including oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), mitochondrial biosynthesis, mitochondrial quality control. In addition, we also sum up the effects of this interaction on HF and the research progress of treatments targeting SIRT3, so as to find potential HF therapeutic for clinical use in the future.
Collapse
Affiliation(s)
- Chunfang Wang
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renming Road, Changsha, Hunan 410011, PR China.
| | - Yating Wang
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renming Road, Changsha, Hunan 410011, PR China.
| | - Li Shen
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renming Road, Changsha, Hunan 410011, PR China.
| |
Collapse
|
21
|
Stachowicz A, Wiśniewska A, Kuś K, Białas M, Łomnicka M, Totoń-Żurańska J, Kiepura A, Stachyra K, Suski M, Bujak-Giżycka B, Jawień J, Olszanecki R. Diminazene Aceturate Stabilizes Atherosclerotic Plaque and Attenuates Hepatic Steatosis in apoE-Knockout Mice by Influencing Macrophages Polarization and Taurine Biosynthesis. Int J Mol Sci 2021; 22:5861. [PMID: 34070749 PMCID: PMC8199145 DOI: 10.3390/ijms22115861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Atherosclerosis and nonalcoholic fatty liver disease are leading causes of morbidity and mortality in the Western countries. The renin-angiotensin system (RAS) with its two main opposing effectors, i.e., angiotensin II (Ang II) and Ang-(1-7), is widely recognized as a major regulator of cardiovascular function and body metabolic processes. Angiotensin-converting enzyme 2 (ACE2) by breaking-down Ang II forms Ang-(1-7) and thus favors Ang-(1-7) actions. Therefore, the aim of our study was to comprehensively evaluate the influence of prolonged treatment with ACE2 activator, diminazene aceturate (DIZE) on the development of atherosclerotic lesions and hepatic steatosis in apoE-/- mice fed a high-fat diet (HFD). We have shown that DIZE stabilized atherosclerotic lesions and attenuated hepatic steatosis in apoE-/- mice fed an HFD. Such effects were associated with decreased total macrophages content and increased α-smooth muscle actin levels in atherosclerotic plaques. Moreover, DIZE changed polarization of macrophages towards increased amount of anti-inflammatory M2 macrophages in the atherosclerotic lesions. Interestingly, the anti-steatotic action of DIZE in the liver was related to the elevated levels of HDL in the plasma, decreased levels of triglycerides, and increased biosynthesis and concentration of taurine in the liver of apoE-/- mice. However, exact molecular mechanisms of both anti-atherosclerotic and anti-steatotic actions of DIZE require further investigations.
Collapse
Affiliation(s)
- Aneta Stachowicz
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland; (A.W.); (K.K.); (M.Ł.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (B.B.-G.); (J.J.); (R.O.)
| | - Anna Wiśniewska
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland; (A.W.); (K.K.); (M.Ł.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (B.B.-G.); (J.J.); (R.O.)
| | - Katarzyna Kuś
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland; (A.W.); (K.K.); (M.Ł.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (B.B.-G.); (J.J.); (R.O.)
| | - Magdalena Białas
- Chair of Pathomorphology, Jagiellonian University Medical College, 31-531 Krakow, Poland;
| | - Magdalena Łomnicka
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland; (A.W.); (K.K.); (M.Ł.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (B.B.-G.); (J.J.); (R.O.)
| | - Justyna Totoń-Żurańska
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland; (A.W.); (K.K.); (M.Ł.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (B.B.-G.); (J.J.); (R.O.)
| | - Anna Kiepura
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland; (A.W.); (K.K.); (M.Ł.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (B.B.-G.); (J.J.); (R.O.)
| | - Kamila Stachyra
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland; (A.W.); (K.K.); (M.Ł.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (B.B.-G.); (J.J.); (R.O.)
| | - Maciej Suski
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland; (A.W.); (K.K.); (M.Ł.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (B.B.-G.); (J.J.); (R.O.)
| | - Beata Bujak-Giżycka
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland; (A.W.); (K.K.); (M.Ł.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (B.B.-G.); (J.J.); (R.O.)
| | - Jacek Jawień
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland; (A.W.); (K.K.); (M.Ł.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (B.B.-G.); (J.J.); (R.O.)
| | - Rafał Olszanecki
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland; (A.W.); (K.K.); (M.Ł.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (B.B.-G.); (J.J.); (R.O.)
| |
Collapse
|
22
|
Oxidative Stress and New Pathogenetic Mechanisms in Endothelial Dysfunction: Potential Diagnostic Biomarkers and Therapeutic Targets. J Clin Med 2020; 9:jcm9061995. [PMID: 32630452 PMCID: PMC7355625 DOI: 10.3390/jcm9061995] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVD), including heart and pathological circulatory conditions, are the world's leading cause of mortality and morbidity. Endothelial dysfunction involved in CVD pathogenesis is a trigger, or consequence, of oxidative stress and inflammation. Endothelial dysfunction is defined as a diminished production/availability of nitric oxide, with or without an imbalance between endothelium-derived contracting, and relaxing factors associated with a pro-inflammatory and prothrombotic status. Endothelial dysfunction-induced phenotypic changes include up-regulated expression of adhesion molecules and increased chemokine secretion, leukocyte adherence, cell permeability, low-density lipoprotein oxidation, platelet activation, and vascular smooth muscle cell proliferation and migration. Inflammation-induced oxidative stress results in an increased accumulation of reactive oxygen species (ROS), mainly derived from mitochondria. Excessive ROS production causes oxidation of macromolecules inducing cell apoptosis mediated by cytochrome-c release. Oxidation of mitochondrial cardiolipin loosens cytochrome-c binding, thus, favoring its cytosolic release and activation of the apoptotic cascade. Oxidative stress increases vascular permeability, promotes leukocyte adhesion, and induces alterations in endothelial signal transduction and redox-regulated transcription factors. Identification of new endothelial dysfunction-related oxidative stress markers represents a research goal for better prevention and therapy of CVD. New-generation therapeutic approaches based on carriers, gene therapy, cardiolipin stabilizer, and enzyme inhibitors have proved useful in clinical practice to counteract endothelial dysfunction. Experimental studies are in continuous development to discover new personalized treatments. Gene regulatory mechanisms, implicated in endothelial dysfunction, represent potential new targets for developing drugs able to prevent and counteract CVD-related endothelial dysfunction. Nevertheless, many challenges remain to overcome before these technologies and personalized therapeutic strategies can be used in CVD management.
Collapse
|
23
|
Tsai SH, Hsu LA, Tsai HY, Yeh YH, Lu CY, Chen PC, Wang JC, Chiu YL, Lin CY, Hsu YJ. Aldehyde dehydrogenase 2 protects against abdominal aortic aneurysm formation by reducing reactive oxygen species, vascular inflammation, and apoptosis of vascular smooth muscle cells. FASEB J 2020; 34:9498-9511. [PMID: 32463165 DOI: 10.1096/fj.201902550rrr] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022]
Abstract
Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is an enzyme that detoxifies aldehydes by converting them to carboxylic acids. ALDH2 deficiency is known to increase oxidative stress. Increased oxidative stress plays a pivotal role in abdominal aortic aneurysm (AAA) pathogenesis. Reactive oxygen species (ROS) promote degradation of the extracellular matrix (ECM) and vascular smooth muscle cell (VSMC) apoptosis. Reducing oxidative stress by an ALDH2 activator could have therapeutic potential for limiting AAA development. We hypothesized that ALDH2 deficiency could increase the risk for AAA by decreasing ROS elimination and that an ALDH2 activator could provide an alternative option for AAA treatment. The National Center for Biotechnology (NCBI) Gene Expression Omnibus (GEO) database was used. Human aortic smooth muscle cells (HASMCs) were used for the in vitro experiments. Gene-targeted ALDH2*2 KI knock-in mice on a C57BL/6J background and apolipoprotein E knockout (ApoE KO) mice were obtained. An animal model of AAA was constructed using osmotic minipumps to deliver 1000 ng/kg/min angiotensin II (AngII) for 28 days. Patients with AAA had significantly lower ALDH2 expression levels than normal subjects. ALDH2*2 KI mice were susceptible to AngII administration, exhibiting significantly increased AAA incidence rates and increased aortic diameters. Alda-1, an ALDH2 activator, reduced AngII-induced ROS production, NF-kB activation, and apoptosis in HASMCs. Alda-1 attenuated AngII-induced aneurysm formation and decreased aortic expansion in ApoE KO mice. We concluded that ALDH2 deficiency is associated with the development of AAAs in humans and a murine disease model. ALDH2 deficiency increases susceptibility to AngII-induced AAA formation by attenuating anti-ROS effects and increasing VSMC apoptosis and vascular inflammation. Alda-1 was shown to attenuate the progression of experimental AAA in a murine model.
Collapse
Affiliation(s)
- Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Lung-An Hsu
- Cardiovascular Department, Chang-Gung Memorial Hospital and School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Hsiao-Ya Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang-Gung Memorial Hospital and School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Cheng-Yo Lu
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Chuan Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jen-Chun Wang
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yuan Lin
- Department of Surgery, Division of Cardiovascular surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
24
|
Wang W, Wang C, Xu H, Gao Y. Aldehyde Dehydrogenase, Liver Disease and Cancer. Int J Biol Sci 2020; 16:921-934. [PMID: 32140062 PMCID: PMC7053332 DOI: 10.7150/ijbs.42300] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Acetaldehyde dehydrogenase 2 (ALDH2) is the key enzyme responsible for metabolism of the alcohol metabolite acetaldehyde in the liver. In addition to conversion of the acetaldehyde molecule, ALDH is also involved in other cellular functions. Recently, many studies have investigated the involvement of ALDH expression in viral hepatitis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), liver fibrosis, and liver cancer. Notably, ALDH2 expression has been linked with liver cancer risk, as well as pathogenesis and prognosis, and has emerged as a promising therapeutic target. Of note, approximately 8% of the world's population, and approximately 30-40% of the population in East Asia carry an inactive ALDH2 gene. This review summarizes new progress in understanding tissue-specific acetaldehyde metabolism by ALDH2 as well as the association of ALDH2 gene polymorphisms with liver disease and cancer. New research directions emerging in the field are also briefly discussed.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China
| | - Chunguang Wang
- Department of Thoracic & Cardiovascular Surgery, Second Clinical College, Jilin University, Changchun, 130041, China
| | - Hongxin Xu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China
| | - Yanhang Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China
| |
Collapse
|
25
|
Hao X, Zeng Q. The Association and Interaction of Aldehyde Dehydrogenase 2 Polymorphisms with Food Group Intake and Probability of Having Non-Alcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2020; 13:5049-5057. [PMID: 33376374 PMCID: PMC7765681 DOI: 10.2147/dmso.s290491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE This study investigated the association between the aldehyde dehydrogenase 2 (ALDH2) rs671 polymorphism, food group intake, and the probability of having non-alcoholic fatty liver disease (NAFLD) in a Chinese population. PATIENTS AND METHODS A total of 3506 adults were enrolled in this study, and all underwent physical examinations and genotyping of polymorphisms with polymerase chain reaction. Participants filled out a dietary questionnaire that was used to assess the frequency and quantity of food consumption. RESULTS We found that milk groups were associated with a lower probability of developing NAFLD. On the contrary, meat and salted and smoked foods were associated with a higher probability of NAFLD. However, the influences of salted and smoked foods and fresh fruit and vegetables on NAFLD were obviously different in the two genotype groups. Salted and smoked foods intake was a factor associated with a higher probability of having NAFLD or nonalcoholic steatohepatitis (NASH) in the A genotype group, but there was no effect in the G genotype group. Moreover, eating salted and smoked foods several times per week was associated with a higher probability of having NAFLD than seldom consuming them. Consumption of fresh fruit and vegetables was not a factor influencing the probability of having NAFLD in the A genotype group, and there was no effect in the G genotype group. Further analysis of the interaction indicated that the GA +AA genotype showed an interaction with fresh fruit and vegetables and salted and smoked foods. Moreover, it was not obvious that meat intake increased the probability of having NAFLD or NASH among different genotypes. CONCLUSION Our results indicate that ALDH2 rs671 GA and AA genotypes are factors associated with increased probability of NAFLD among Chinese subjects. This could stimulate the development of novel approaches for preventing NAFLD.
Collapse
Affiliation(s)
- Xiaoyan Hao
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Qiang Zeng
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Correspondence: Qiang Zeng Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, People’s Republic of ChinaTel +86-10-68295751Fax +86-21-64085875 Email
| |
Collapse
|
26
|
Zhang Y, Ma L. Identification of key genes and pathways in calcific aortic valve disease by bioinformatics analysis. J Thorac Dis 2019; 11:5417-5426. [PMID: 32030260 DOI: 10.21037/jtd.2019.11.57] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background Calcific aortic valve disease (CAVD) is the most common type of valvular heart disease in the elderly. This study is aimed to explore molecular mechanism of CAVD via bioinformatics analysis. Methods The gene expression profiles of GSE51472 (including 5 normal aortic valve and 5 calcified aortic valve) and GSE83453 (including 8 normal aortic valve and 19 calcified aortic valve) were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened using the MetaDE package in R software. Functional and pathway enrichment analysis were performed based on Gene ontology (GO) and KEGG pathway database. Then, STRING database, Cytoscape and MCODE were applied to construct the protein-protein interaction (PPI) network and screen hub genes. Pathway enrichment analysis was further performed for hub genes and gene clusters identified via module analysis. Results A total of 107 DEGs were identified in CAVD (53 up-regulated genes, and 54 down-regulated genes), and they were mainly enriched in the terms of immune response, extracellular matrix organization, leukocyte transendothelial migration, cell adhesion molecules (CAMs), and fatty acid metabolism. Five hub genes including VCAM1, MMP9, ITGB2, RAC2, and vWF were identified via PPI network, which were mainly enriched in terms of leukocyte transendothelial migration and cell adhesion. An independently down-regulated protein cluster containing ALDH2, HIBCH, ACADVL, ECHDC2, VAT1L, and MAOA was also identified via PPI network. Conclusions The present study identified VCAM1, MMP9, ITGB2, RAC2, vWF and ALDH2 as key genes in the progression of CAVD. Immune cells infiltration might play a key role in the progression of CAVD, while ALDH2-mediated detoxification effect might play a protective role in CAVD. Further studies are needed to elucidate the pathogenesis of CAVD.
Collapse
Affiliation(s)
- Yiran Zhang
- Department of Cardiovascular Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liang Ma
- Department of Cardiovascular Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Aldehyde Dehydrogenase 2 and Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:89-106. [PMID: 31368099 DOI: 10.1007/978-981-13-6260-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Heart failure (HF) is a structural or functional cardiac abnormal syndrome characterized with series of symptoms and signs such as breathlessness, fatigue, pulmonary crackles, and peripheral edema. Being a terminal phase of most myocardial lesions, HF has become a leading cause of mobility and mortality worldwide, associated with heavy clinical burden and economic costs affecting over 23 million people [14]. There is an increase to 5.5% with systolic dysfunction and an increase to 36.0% with diastolic dysfunction in people 60 years or older [85]. The costs accompanied with heart failure stand 2-3% of the total healthcare system expenditure in high-income countries and are expected to increase >2-fold in the next 2 decades [34].
Collapse
|
28
|
Yin F, Gupta R, Vergnes L, Driscoll WS, Ricks J, Ramanathan G, Stewart JA, Shih DM, Faull KF, Beaven SW, Lusis AJ, Reue K, Rosenfeld ME, Araujo JA. Diesel Exhaust Induces Mitochondrial Dysfunction, Hyperlipidemia, and Liver Steatosis. Arterioscler Thromb Vasc Biol 2019; 39:1776-1786. [PMID: 31340670 PMCID: PMC6703953 DOI: 10.1161/atvbaha.119.312736] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 06/17/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Air pollution is associated with increased cardiovascular morbidity and mortality, as well as dyslipidemia and metabolic syndrome. Our goal was to dissect the mechanisms involved. Approach and Results: We assessed the effects of exposure to air pollution on lipid metabolism in mice through assessment of plasma lipids and lipoproteins, oxidized fatty acids 9-HODE (9-hydroxyoctadecadienoic) and 13-HODE (13-hydroxyoctadecadienoic), lipid, and carbohydrate metabolism. Findings were corroborated, and mechanisms were further assessed in HepG2 hepatocytes in culture. ApoE knockout mice exposed to inhaled diesel exhaust (DE, 6 h/d, 5 days/wk for 16 weeks) exhibited elevated plasma cholesterol and triglyceride levels, increased hepatic triglyceride content, and higher hepatic levels of 9-HODE and 13-HODE, as compared to control mice exposed to filtered air. A direct effect of DE exposure on hepatocytes was demonstrated by treatment of HepG2 cells with a methanol extract of DE particles followed by loading with oleic acid. As observed in vivo, this led to increased triglyceride content and significant downregulation of ACAD9 mRNA expression. Treatment of HepG2 cells with DE particles and oleic acid did not alter de novo lipogenesis but inhibited total, mitochondrial, and ATP-linked oxygen consumption rate, indicative of mitochondrial dysfunction. Treatment of isolated mitochondria, prepared from mouse liver, with DE particles and oleic acid also inhibited mitochondrial complex activity and β-oxidation. CONCLUSIONS DE exposure leads to dyslipidemia and liver steatosis in ApoE knockout mice, likely due to mitochondrial dysfunction and decreased lipid catabolism.
Collapse
Affiliation(s)
- Fen Yin
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA
| | - Rajat Gupta
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine at University of California Los Angeles, 659 Charles E. Young Drive South, Los Angeles, CA
| | | | - Jerry Ricks
- Department of Pathology, University of Washington, Seattle, WA
| | - Gajalakshmi Ramanathan
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA
| | - James A. Stewart
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Diana M. Shih
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA
| | - Kym F. Faull
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California Los Angeles, 760 Westwood Boulevard, Los Angeles, CA
| | - Simon W. Beaven
- Division of Gastroenterology, David Geffen School of Medicine at University of California Los Angeles, 10833 Le Conte Avenue, CHS 44-144, Los Angeles, CA
| | - Aldons J. Lusis
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA
- Department of Human Genetics, David Geffen School of Medicine at University of California Los Angeles, 659 Charles E. Young Drive South, Los Angeles, CA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at University of California Los Angeles, 659 Charles E. Young Drive South, Los Angeles, CA
| | - Michael E. Rosenfeld
- Department of Pathology, University of Washington, Seattle, WA
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Jesus A. Araujo
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA
| |
Collapse
|
29
|
Aldehyde dehydrogenase 2 deficiency promotes atherosclerotic plaque instability through accelerating mitochondrial ROS-mediated vascular smooth muscle cell senescence. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1782-1792. [DOI: 10.1016/j.bbadis.2018.09.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 01/18/2023]
|
30
|
Laskar AA, Danishuddin, Khan SH, Subbarao N, Younus H. Enhancement in the Catalytic Activity of Human Salivary Aldehyde Dehydrogenase by Alliin from Garlic: Implications in Aldehyde Toxicity and Oral Health. Curr Pharm Biotechnol 2019; 20:506-516. [PMID: 31038061 DOI: 10.2174/1389201020666190416140817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/23/2019] [Accepted: 04/09/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lower human salivary aldehyde dehydrogenase (hsALDH) activity increases the risk of aldehyde mediated pathogenesis including oral cancer. Alliin, the bioactive compound of garlic, exhibits many beneficial health effects. OBJECTIVE To study the effect of alliin on hsALDH activity. METHODS Enzyme kinetics was performed to study the effect of alliin on the activity of hsALDH. Different biophysical techniques were employed for structural and binding studies. Docking analysis was done to predict the binding region and the type of binding forces. RESULTS Alliin enhanced the dehydrogenase activity of the enzyme. It slightly reduced the Km and significantly enhanced the Vmax value. At 1 µM alliin concentration, the initial reaction rate increased by about two times. Further, it enhanced the hsALDH esterase activity. Biophysical studies indicated a strong complex formation between the enzyme and alliin (binding constant, Kb: 2.35 ± 0.14 x 103 M-1). It changes the secondary structure of hsALDH. Molecular docking study indicated that alliin interacts to the enzyme near the substrate binding region involving some active site residues that are evolutionary conserved. There was a slight increase in the nucleophilicity of active site cysteine in the presence of alliin. Ligand efficiency metrics values indicate that alliin is an efficient ligand for the enzyme. CONCLUSION Alliin activates the catalytic activity of the enzyme. Hence, consumption of alliincontaining garlic preparations or alliin supplements and use of alliin in pure form may lower aldehyde related pathogenesis including oral carcinogenesis.
Collapse
Affiliation(s)
- Amaj A Laskar
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Danishuddin
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shaheer H Khan
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Hina Younus
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
31
|
Ahmed Laskar A, Younus H. Aldehyde toxicity and metabolism: the role of aldehyde dehydrogenases in detoxification, drug resistance and carcinogenesis. Drug Metab Rev 2019; 51:42-64. [DOI: 10.1080/03602532.2018.1555587] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Amaj Ahmed Laskar
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Hina Younus
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
32
|
Shibata MA, Harada-Shiba M, Shibata E, Tosa H, Matoba Y, Hamaoka H, Iinuma M, Kondo Y. Crude α-Mangostin Suppresses the Development of Atherosclerotic Lesions in Apoe-Deficient Mice by a Possible M2 Macrophage-Mediated Mechanism. Int J Mol Sci 2019; 20:ijms20071722. [PMID: 30959963 PMCID: PMC6480575 DOI: 10.3390/ijms20071722] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
Lifestyle choices play a significant role in the etiology of atherosclerosis. Male Apoe−/− mice that develop spontaneous atherosclerotic lesions were fed 0%, 0.3%, and 0.4% mangosteen extracts, composed largely of α-mangostin (MG), for 17 weeks. Body weight gains were significantly decreased in both MG-treated groups compared to the control, but the general condition remained good throughout the study. The levels of total cholesterol (decreased very-low-density lipoprotein in lipoprotein profile) and triglycerides decreased significantly in the MG-treated mice in conjunction with decreased hepatic HMG-CoA synthase and Fatty acid transporter. Additionally, increased serum lipoprotein lipase activity and histopathology further showed a significant reduction in atherosclerotic lesions at both levels of MG exposure. Real-time PCR analysis for macrophage indicators showed a significant elevation in the levels of Cd163, an M2 macrophage marker, in the lesions of mice receiving 0.4% MG. However, the levels of Nos2, associated with M1 macrophages, showed no change. In addition, quantitative immunohistochemical analysis of macrophage subtypes showed a tendency for increased M2 populations (CD68+/CD163+) in the lesions of mice given 0.4% MG. In further analysis of the cytokine-polarizing macrophage subtypes, the levels of Interleukin13 (Il13), associated with M2 polarization, were significantly elevated in lesions exposed to 0.4% MG. Thus, MG could suppress the development of atherosclerosis in Apoe−/− mice, possibly through an M2 macrophage-mediated mechanism.
Collapse
Affiliation(s)
- Masa-Aki Shibata
- Department of Anatomy and Cell Biology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral & Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan.
| | - Eiko Shibata
- Department of Molecular Innovation in Lipidology, National Cerebral & Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan.
| | | | - Yoshinobu Matoba
- Ecoresource Institute Co., Ltd., Minokamo, Gifu 505-0042, Japan.
| | - Hitomi Hamaoka
- Department of Anatomy and Cell Biology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | | | - Yoichi Kondo
- Department of Anatomy and Cell Biology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| |
Collapse
|
33
|
Stachowicz A, Wiśniewska A, Kuś K, Kiepura A, Gębska A, Gajda M, Białas M, Totoń-Żurańska J, Stachyra K, Suski M, Jawień J, Korbut R, Olszanecki R. The Influence of Trehalose on Atherosclerosis and Hepatic Steatosis in Apolipoprotein E Knockout Mice. Int J Mol Sci 2019; 20:E1552. [PMID: 30925684 PMCID: PMC6479548 DOI: 10.3390/ijms20071552] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/11/2019] [Accepted: 03/24/2019] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis and nonalcoholic fatty liver disease (NAFLD) are frequent causes of death in the Western countries. Recently, it has been shown that autophagy dysfunction plays an important role in the pathogenesis of both atherosclerosis and NAFLD; thus, activators of autophagy might be useful for novel therapeutic interventions. Trehalose-a naturally occuring disaccharide present in plants, bacteria, fungi, insects, and certain types of shrimps-is a known inducer of autophagy. However, according to the literature, its anti-atherosclerotic and anti-steatotic potential seem to depend on the experimental setting. The aim of our study was to comprehensively describe the influence of a prolonged treatment with orally administered trehalose on the development of atherosclerotic lesions and hepatic steatosis in apolipoprotein E knockout (apoE-/-) mice in an experimental set up reflecting both moderate and severe proatherogenic conditions: male apoE-/- mice on a chow diet (CD) and female apoE-/- mice fed with a high-fat diet (HFD). We found that exogenous trehalose inhibited atherosclerosis and attenuated hepatic steatosis in apoE-/- mice. Such effects of trehalose were not associated with changes of plasma cholesterol, low-density lipoproteins (LDL), or high-density lipoproteins (HDL). Moreover, the anti-steatotic action of trehalose in the liver was associated with the induction of autophagy. The exact molecular mechanisms of both the anti-atherosclerotic action of trehalose and its inhibitory effect on liver steatosis require further clarification.
Collapse
Affiliation(s)
- Aneta Stachowicz
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Anna Wiśniewska
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Katarzyna Kuś
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Anna Kiepura
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Anna Gębska
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Mariusz Gajda
- Department of Histology, Jagiellonian University Medical College, 33-332 Krakow, Poland.
| | - Magdalena Białas
- Chair of Pathomorphology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | | | - Kamila Stachyra
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Maciej Suski
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Jacek Jawień
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Ryszard Korbut
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Rafał Olszanecki
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| |
Collapse
|
34
|
Targeting ALDH2 in Atherosclerosis: Molecular Mechanisms and Therapeutic Opportunities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:211-220. [PMID: 31368106 DOI: 10.1007/978-981-13-6260-6_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is an important member of the functional aldehyde dehydrogenases (ALDHs) family in human beings, playing a fundamental role in the detoxification of acetaldehyde and other aldehydes. In recent years, a number of researches have given attention to the association between ALDH2 and atherosclerosis, which provided insights on targeting ALDH2 for therapeutic intervention of atherosclerosis. In this review, these inspiring studies will be discussed, and the clinical implications and concerns will be expounded.
Collapse
|
35
|
He M, Long P, Yan W, Chen T, Guo L, Zhang Z, Wang S. ALDH2 attenuates early-stage STZ-induced aged diabetic rats retinas damage via Sirt1/Nrf2 pathway. Life Sci 2018; 215:227-235. [PMID: 30315856 DOI: 10.1016/j.lfs.2018.10.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022]
Abstract
AIMS Acetaldehyde dehydrogenase 2 (ALDH2) was reported for its protective properties on myocardial damage, stroke and neurodegeneration disease, but the effects and mechanisms of ALDH2 in the modulation of diabetic retinopathy remain unclear. The present study evaluated the protection effects of ALDH2 on streptozocin (STZ)-induced aged diabetic rats retinas damage. MAIN METHODS 24 aged male diabetic Sprague-Dawley (SD) rats induced by a single intraperitoneal injection of STZ were randomly divided into Alda1-treated group and dimethylsulfoxide (DMSO) group. Rats were intraperitoneally injected with 10 mg/kg ALDH2 activator Alda1 (or DMSO) 3 days before STZ injection and 30 days afterwards. A series of detections on retinal structural, functional and molecular levels were applied at 1 d, 7 d and 30 d after aged diabetic rats model established. KEY FINDINGS Optical coherence tomography (OCT) revealed that the thickness of outer nuclear layer (ONL) and whole retinas in Alda1-treated group were thicker than DMSO group. Full field electroretinograms (ffERG) showed a higher amplitude wave (dark-adaptation 3.0 and OPs) in Alda1-treated group. In addition, the levels of retinal tumor necrosis factor (TNF-α) and interleukin-6 (IL-6) from Alda1-treated group were lower whereas superoxide dismutase (SOD) activity was notably higher. Moreover, the expressions of ALDH2, silence information regulation factor 2 related enzyme I (Sirt1) and nuclear factor erythroid 2-related factor 2 (Nrf2) in Alda1-treated group retinas were significantly increased, while the expression of vascular endothelial growth factor (VEGF-α) was dramatically decreased. SIGNIFICANCE ALDH2 could ameliorate early-stage STZ-induced aged diabetic rats retinas damage possibly via increasing Sirt1 and Nrf2 expression.
Collapse
Affiliation(s)
- Mengshan He
- Department of Chinese Material Medical and Natural Medicines, Air Force Medical University, Xi'an, Shaanxi, China
| | - Pan Long
- Center of Clinical Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Weiming Yan
- Center of Clinical Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Tao Chen
- Center of Clinical Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Lunfeng Guo
- Department of Pharmacy, Central Hospital of Ankang City, Ankang, Shaanxi, China
| | - Zouming Zhang
- Center of Clinical Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China.
| | - Siwang Wang
- Department of Chinese Material Medical and Natural Medicines, Air Force Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
36
|
Sena CM, Leandro A, Azul L, Seiça R, Perry G. Vascular Oxidative Stress: Impact and Therapeutic Approaches. Front Physiol 2018; 9:1668. [PMID: 30564132 PMCID: PMC6288353 DOI: 10.3389/fphys.2018.01668] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress has been defined as an imbalance between oxidants and antioxidants and more recently as a disruption of redox signaling and control. It is generally accepted that oxidative stress can lead to cell and tissue injury having a fundamental role in vascular dysfunction. Physiologically, reactive oxygen species (ROS) control vascular function by modulating various redox-sensitive signaling pathways. In vascular disorders, oxidative stress instigates endothelial dysfunction and inflammation, affecting several cells in the vascular wall. Vascular ROS are derived from multiple sources herein discussed, which are prime targets for therapeutic development. This review focuses on oxidative stress in vascular physiopathology and highlights different strategies to inhibit ROS production.
Collapse
Affiliation(s)
- Cristina M. Sena
- Institute of Physiology, Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Adriana Leandro
- Institute of Physiology, Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Lara Azul
- Institute of Physiology, Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Raquel Seiça
- Institute of Physiology, Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - George Perry
- College of Sciences, One UTSA Circle, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
37
|
Hammad FT, Al-Salam S, Yuvaraju P, Lubbad L. Alda-1, an aldehyde dehydrogenase-2 agonist, causes deterioration in renal functions following ischemia-reperfusion injury due to crystalline nephropathy. Drug Dev Res 2018; 79:315-323. [PMID: 30291750 DOI: 10.1002/ddr.21454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/25/2018] [Accepted: 07/24/2018] [Indexed: 11/06/2022]
Abstract
Renal ischemia-reperfusion injury (IRI) induces the production of aldehydes which are detoxified by aldehyde dehydrogenases (ALDHs). Alda-1 is a selective ALDH2 agonist and its protective effect was demonstrated in several conditions. The effect of Alda-1 on the kidney or on renal IRI was not investigated. We investigated the effect of Alda-1 on the renal dysfunction following IRI. Wistar rats underwent left IRI for 40 min. Group-Alda (n = 11) received Alda-1 starting 24 h before IRI and continued for 7 days thereafter when renal functions were measured. Group-Vx (n = 11) underwent similar protocol but received the dissolvent. Alda-1 did not affect renal blood flow or glomerular filtration rate in the left ischemic kidney in Group-Alda compared to Group-Vx (3.05 ± 0.50 vs. 3.53 ± 0.70, and 0.40 ± 0.06 vs. 0.51 ± 0.08, respectively, p > .05 for both). However, left renal fractional sodium excretion was higher in Group-Alda (2.80 ± 0.43 vs. 1.37 ± 0.36, p = .02). Alda-1 also adversely affected the gene expressions of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin (217 ± 38 vs. 99 ± 13 and 49 ± 13 vs. 20 ± 5, respectively, p < .05 for both) and the alterations in tumor necrosis factor-α, transforming growth factor-β1, plasminogen activator inhibitor-1, fibronectin 1 and p53 (4.4 ± 0.9 vs. 2.1 ± 0.3, 1.5 ± 0.1 vs. 1.1 ± 0.1, 30.0 ± 2.7 vs. 11.7 ± 2.3, 3.6 ± 0.4 vs. 2.1 ± 0.2 and 1.3 ± 0.1 vs. 0.9 ± 0.07, respectively, p ≤ .05 for all). This was associated with intratubular crystal deposition suggestive of crystalline nephropathy. Alda-1 exacerbated the IRI-induced renal tubular dysfunction and alterations in markers of acute kidney injury, biomarkers of inflammation, fibrosis and apoptosis and this was associated with intratubular crystal deposition suggestive of crystalline nephropathy.
Collapse
Affiliation(s)
- Fayez T Hammad
- Department of Surgery and College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Priya Yuvaraju
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Loay Lubbad
- Department of Surgery and College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
38
|
The impact of ALDH2 activation by Alda-1 on the expression of VEGF in the hippocampus of a rat model of post-MI depression. Neurosci Lett 2018; 674:156-161. [DOI: 10.1016/j.neulet.2018.03.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 01/17/2023]
|
39
|
Stachowicz A, Olszanecki R, Suski M, Wiśniewska A, Kuś K, Białas M, Jawień J, Korbut R. Quantitative proteomics reveals decreased expression of major urinary proteins in the liver of apoE/eNOS-DKO mice. Clin Exp Pharmacol Physiol 2018; 45:711-719. [DOI: 10.1111/1440-1681.12927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Aneta Stachowicz
- Chair of Pharmacology; Jagiellonian University Medical College; Krakow Poland
| | - Rafał Olszanecki
- Chair of Pharmacology; Jagiellonian University Medical College; Krakow Poland
| | - Maciej Suski
- Chair of Pharmacology; Jagiellonian University Medical College; Krakow Poland
| | - Anna Wiśniewska
- Chair of Pharmacology; Jagiellonian University Medical College; Krakow Poland
| | - Katarzyna Kuś
- Chair of Pharmacology; Jagiellonian University Medical College; Krakow Poland
| | - Magdalena Białas
- Chair of Pathomorphology; Jagiellonian University Medical College; Krakow Poland
| | - Jacek Jawień
- Chair of Pharmacology; Jagiellonian University Medical College; Krakow Poland
| | - Ryszard Korbut
- Chair of Pharmacology; Jagiellonian University Medical College; Krakow Poland
| |
Collapse
|
40
|
Münzel T, Daiber A. The potential of aldehyde dehydrogenase 2 as a therapeutic target in cardiovascular disease. Expert Opin Ther Targets 2018; 22:217-231. [PMID: 29431026 DOI: 10.1080/14728222.2018.1439922] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Mitochondrial aldehyde dehydrogenase (ALDH-2) plays a major role in the ethanol detoxification pathway by removing acetaldehyde. Therefore, ALDH-2 inhibitors such as disulfiram represent the first therapeutic targeting of ALDH-2 for alcoholism therapy. Areas covered: Recently, ALDH-2 was identified as an essential bioactivating enzyme of the anti-ischemic organic nitrate nitroglycerin, bringing ALDH-2 again into the focus of clinical interest. Mechanistic studies on the nitroglycerin bioactivation process revealed that during bioconversion of nitroglycerin and in the presence of reactive oxygen and nitrogen species the active site thiols of ALDH-2 are oxidized and the enzyme activity is lost. Thus, ALDH-2 activity represents a useful marker for cardiovascular oxidative stress, a concept, which has been meanwhile supported by a number of animal disease models. Mechanistic studies on the protective role of ALDH-2 in different disease processes identified the detoxification of 4-hydroxynonenal by ALDH-2 as a fundamental process of cardiovascular, cerebral and antioxidant protection. Expert opinion: The most recent therapeutic exploitation of ALDH-2 includes activators of the enzyme such as Alda-1 but also cell-based therapies (ALDH-bright cells) that deserve further clinical characterization in the future.
Collapse
Affiliation(s)
- Thomas Münzel
- a Center for Cardiology, Cardiology 1 , Medical Center of the Johannes Gutenberg University , Mainz , Germany.,b Center for Thrombosis and Hemostasis (CTH) , Medical Center of the Johannes Gutenberg University , Mainz , Germany.,c Partner Site Rhine-Main , German Center for Cardiovascular Research (DZHK) , Mainz , Germany
| | - Andreas Daiber
- a Center for Cardiology, Cardiology 1 , Medical Center of the Johannes Gutenberg University , Mainz , Germany.,b Center for Thrombosis and Hemostasis (CTH) , Medical Center of the Johannes Gutenberg University , Mainz , Germany.,c Partner Site Rhine-Main , German Center for Cardiovascular Research (DZHK) , Mainz , Germany
| |
Collapse
|
41
|
Shao S, Sun J, Liu CY, Dong HJ, Li YQ, Gao YH. Aldehyde dehydrogenase 2 gene polymorphisms and liver diseases. Shijie Huaren Xiaohua Zazhi 2017; 25:2981-2986. [DOI: 10.11569/wcjd.v25.i33.2981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are one of major causes of disease burden in China. The composition of chronic liver diseases has changed significantly in China over the past years. The incidence of alcoholic liver disease has increased gradually. Acetaldehyde dehydrogenase 2 (ALDH2) is the principle enzyme responsible for hepatic metabolism of ethanol. Approximately 8% of individuals have the inactive ALDH2 genotype around the world, especially in the East Asian population. Presence of the mutant or inactive ALDH2*2 gene may lead to accumulation of acetaldehyde as the ethanol metabolite. Acetaldehyde is a toxic material which can cause multiple organs to be injured in the individuals with acetaldehyde accumulation. The relationship between the mutant ALDH2*2 gene and a variety of liver disorders including alcoholic liver disease needs to be explored. In the present article, we review the recent advances in understanding the relationship between ALDH2 gene polymorphisms and liver diseases, in order to provide a better understanding of the difference in the characteristics of liver disease between the Eastern and Western populations, which can help develop new strategies to prevent and treat liver diseases.
Collapse
Affiliation(s)
- Shuang Shao
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Jing Sun
- Department of Gastroenterology, Affiliated Peace Hospital, Changzhi Medical College, Changzhi 046000, Shanxi Province, China
| | - Chun-Yan Liu
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Hong-Jing Dong
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Yan-Qing Li
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Yan-Hang Gao
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
42
|
Mol M, Regazzoni L, Altomare A, Degani G, Carini M, Vistoli G, Aldini G. Enzymatic and non-enzymatic detoxification of 4-hydroxynonenal: Methodological aspects and biological consequences. Free Radic Biol Med 2017; 111:328-344. [PMID: 28161307 DOI: 10.1016/j.freeradbiomed.2017.01.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
4-Hydroxynonenal (HNE), an electrophilic end-product deriving from lipid peroxidation, undergoes a heterogeneous set of biotransformations including enzymatic and non-enzymatic reactions. The former mostly involve red-ox reactions on the HNE oxygenated functions (phase I metabolism) and GSH conjugations (phase II) while the latter are due to the HNE capacity to spontaneously condense with nucleophilic sites within endogenous molecules such as proteins, nucleic acids and phospholipids. The overall metabolic fate of HNE has recently attracted great interest not only because it clearly determines the HNE disposal, but especially because the generated metabolites and adducts are not inactive molecules (as initially believed) but show biological activities even more pronounced than those of the parent compound as exemplified by potent pro-inflammatory stimulus induced by GSH conjugates. Similarly, several studies revealed that the non-enzymatic reactions, initially considered as damaging processes randomly involving all endogenous nucleophilic reactants, are in fact quite selective in terms of both reactivity of the nucleophilic sites and stability of the generated adducts. Even though many formed adducts retain the expected toxic consequences, some adducts exhibit well-defined beneficial roles as documented by the protective effects of sublethal concentrations of HNE against toxic concentrations of HNE. Clearly, future investigations are required to gain a more detailed understanding of the metabolic fate of HNE as well as to identify novel targets involved in the biological activity of the HNE metabolites. These studies are and will be permitted by the continuous progress in the analytical methods for the identification and quantitation of novel HNE metabolites as well as for proteomic analyses able to offer a comprehensive picture of the HNE-induced adducted targets. On these grounds, the present review will focus on the major enzymatic and non-enzymatic HNE biotransformations discussing both the molecular mechanisms involved and the biological effects elicited. The review will also describe the most important analytical enhancements that have permitted the here discussed advancements in our understanding of the HNE metabolic fate and which will permit in a near future an even better knowledge of this enigmatic molecule.
Collapse
Affiliation(s)
- Marco Mol
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Genny Degani
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy.
| |
Collapse
|
43
|
Wiśniewska A, Olszanecki R, Totoń-Żurańska J, Kuś K, Stachowicz A, Suski M, Gębska A, Gajda M, Jawień J, Korbut R. Anti-Atherosclerotic Action of Agmatine in ApoE-Knockout Mice. Int J Mol Sci 2017; 18:ijms18081706. [PMID: 28777310 PMCID: PMC5578096 DOI: 10.3390/ijms18081706] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 12/30/2022] Open
Abstract
Atherosclerosis is an inflammatory disease in which dysfunction of mitochondria play an important role, and disorders of lipid management intensify this process. Agmatine, an endogenous polyamine formed by decarboxylation of arginine, exerts a protective effect on mitochondria and modulates fatty acid metabolism. We investigated the effect of exogenous agmatine on the development of atherosclerosis and changes in lipid profile in apolipoprotein E knockout (apoE-/-) mice. Agmatine caused an approximate 40% decrease of atherosclerotic lesions, as estimated by en face and cross-section methods with an influence on macrophage but not on smooth muscle content in the plaques. Agmatine treatment did not changed gelatinase activity within the plaque area. What is more, the action of agmatine was associated with an increase in the number of high density lipoproteins (HDL) in blood. Real-Time PCR analysis showed that agmatine modulates liver mRNA levels of many factors involved in oxidation of fatty acid and cholesterol biosynthesis. Two-dimensional electrophoresis coupled with mass spectrometry identified 27 differentially expressed mitochondrial proteins upon agmatine treatment in the liver of apoE-/- mice, mostly proteins related to metabolism and apoptosis. In conclusion, prolonged administration of agmatine inhibits atherosclerosis in apoE-/- mice; however, the exact mechanisms linking observed changes and elevations of HDL plasma require further investigation.
Collapse
Affiliation(s)
- Anna Wiśniewska
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Rafał Olszanecki
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Justyna Totoń-Żurańska
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Katarzyna Kuś
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Aneta Stachowicz
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Maciej Suski
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Anna Gębska
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Mariusz Gajda
- Department of Histology, Jagiellonian University Medical College, 31-034 Krakow, Poland.
| | - Jacek Jawień
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Ryszard Korbut
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| |
Collapse
|
44
|
Sfyri P, Matsakas A. Crossroads between peripheral atherosclerosis, western-type diet and skeletal muscle pathophysiology: emphasis on apolipoprotein E deficiency and peripheral arterial disease. J Biomed Sci 2017; 24:42. [PMID: 28688452 PMCID: PMC5502081 DOI: 10.1186/s12929-017-0346-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/07/2017] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory process that, in the presence of hyperlipidaemia, promotes the formation of atheromatous plaques in large vessels of the cardiovascular system. It also affects peripheral arteries with major implications for a number of other non-vascular tissues such as the skeletal muscle, the liver and the kidney. The aim of this review is to critically discuss and assimilate current knowledge on the impact of peripheral atherosclerosis and its implications on skeletal muscle homeostasis. Accumulating data suggests that manifestations of peripheral atherosclerosis in skeletal muscle originates in a combination of increased i)-oxidative stress, ii)-inflammation, iii)-mitochondrial deficits, iv)-altered myofibre morphology and fibrosis, v)-chronic ischemia followed by impaired oxygen supply, vi)-reduced capillary density, vii)- proteolysis and viii)-apoptosis. These structural, biochemical and pathophysiological alterations impact on skeletal muscle metabolic and physiologic homeostasis and its capacity to generate force, which further affects the individual's quality of life. Particular emphasis is given on two major areas representing basic and applied science respectively: a)-the abundant evidence from a well-recognised atherogenic model; the Apolipoprotein E deficient mouse and the role of a western-type diet and b)-on skeletal myopathy and oxidative stress-induced myofibre damage from human studies on peripheral arterial disease. A significant source of reactive oxygen species production and oxidative stress in cardiovascular disease is the family of NADPH oxidases that contribute to several pathologies. Finally, strategies targeting NADPH oxidases in skeletal muscle in an attempt to attenuate cellular oxidative stress are highlighted, providing a better understanding of the crossroads between peripheral atherosclerosis and skeletal muscle pathophysiology.
Collapse
Affiliation(s)
- Peggy Sfyri
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom.
| |
Collapse
|
45
|
Laskar AA, Khan MA, Askari F, Younus H. Thymoquinone binds and activates human salivary aldehyde dehydrogenase: Potential therapy for the mitigation of aldehyde toxicity and maintenance of oral health. Int J Biol Macromol 2017; 103:99-110. [PMID: 28472683 DOI: 10.1016/j.ijbiomac.2017.04.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 01/28/2023]
Abstract
Human salivary aldehyde dehydrogenase (hsALDH) is a very important anti-oxidant enzyme present in the saliva. It is involved in the detoxification of toxic aldehydes and maintenance of oral health. Reduced level of hsALDH activity is a risk factor for oral cancer development. Thymoquinone (TQ) has many pharmacological activities and health benefits. This study aimed to examine the activation of hsALDH by TQ. The effect of TQ on the activity and kinetics of hsALDH was studied. The binding of TQ with the enzyme was examined by different biophysical methods and molecular docking analysis. TQ enhanced the dehydrogenase activity of crude and purified hsALDH by 3.2 and 2.9 fold, respectively. The Km of the purified enzyme decreased and the Vmax increased. The esterase activity also increased by 1.2 fold. No significant change in the nucleophilicity of the catalytic cysteine residue was observed. TQ forms a strong complex with hsALDH without altering the secondary structures of the enzyme. It fits in the active site of ALDH3A1 close to Cys 243 and the other highly conserved amino acid residues which lead to enhancement of substrate binding affinity and catalytic efficiency of the enzyme. TQ is expected to give better protection from toxic aldehydes in the oral cavity and to reduce the risk of oral cancer development through the activation of hsALDH. Therefore, the addition of TQ in the diet and other oral formulations is expected to be beneficial for health.
Collapse
Affiliation(s)
- Amaj Ahmed Laskar
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Masood Alam Khan
- College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Fizza Askari
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Hina Younus
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
46
|
Suski M, Wiśniewska A, Stachowicz A, Olszanecki R, Kuś K, Białas M, Madej J, Korbut R. The influence of AICAR - direct activator of AMP-activated protein kinase (AMPK) - on liver proteome in apoE-knockout mice. Eur J Pharm Sci 2017; 104:406-416. [PMID: 28455001 DOI: 10.1016/j.ejps.2017.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/13/2017] [Accepted: 04/25/2017] [Indexed: 02/08/2023]
Abstract
There is a growing body of evidence that altered functioning of apoE may aggravate cellular energy homeostasis and stress response, leading to oxidative stress, mitochondrial dysfunction, endoplasmic reticulum (ER) stress and inflammation, leading to hypercholesterolemia, dyslipidemia, liver steatosis and neurodegeneration. One of the key cellular responses to mitochondria and ER-stress related processes and cellular energy imbalance is AMP-activated protein kinase (AMPK), considered as a cellular master energy sensor and critical regulator of mitochondrial homeostasis. The aim of our study was to use differential proteomics and transcriptomics approach to elucidate the effect of direct AMPK activator AICAR on liver proteome in apoE-/- mice - experimental model of atherosclerosis and moderate nonalcoholic steatosis. We applied Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) labeling and two-dimensional chromatography coupled with mass spectrometry (2DLC-MS/MS) MudPIT strategy, as well as RT-PCR to investigate the changes in mitochondrial and cytosolic proteins and transcripts expression in 6-month old AICAR-treated apoE-/-. AICAR elicited induction of proteins related to mitochondrial β-oxidation, protein degradation and energy producing pathways (i.a. tricarboxylic acid cycle members and mitochondrial adenylate kinase 2). On the other hand, AICAR repressed inflammatory and pro-apoptotic markers in the apoE-/- mice liver, alongside reduction in several peroxisomal proteins, possibly suggesting induction of anti-oxidative pexophagy.
Collapse
Affiliation(s)
- Maciej Suski
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Wiśniewska
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Aneta Stachowicz
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Rafał Olszanecki
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland.
| | - Katarzyna Kuś
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Białas
- Chair of Phatomorphology, Jagiellonian University Medical College, Krakow, Poland
| | - Józef Madej
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Ryszard Korbut
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
47
|
Harris PS, Gomez JD, Backos DS, Fritz KS. Characterizing Sirtuin 3 Deacetylase Affinity for Aldehyde Dehydrogenase 2. Chem Res Toxicol 2017; 30:785-793. [PMID: 28248093 DOI: 10.1021/acs.chemrestox.6b00315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial aldehyde dehydrogenase (ALDH2) plays a central role in the detoxification of reactive aldehydes generated through endogenous and exogenous sources. The biochemical regulation of enzyme activity through post-translational modification provides an intricate response system regulating mitochondrial detoxification pathways. ALDH2 is a known target of lysine acetylation, which arises as a consequence of mitochondrial bioenergetic flux and sirtuin deacetylase activity. The mitochondrial deacetylase Sirtuin 3 (SIRT3) has been reported to alter ALDH2 lysine acetylation status, yet the mechanism and consequence of this interaction remain unknown. The in vitro results presented here provide a novel biochemical approach using stable-isotope dilution mass spectrometry to elucidate which lysine residues are targeted by SIRT3 for deacetylation. Furthermore, HPLC-MS/MS and computational modeling elucidate a potential role for acetyl-Lys369 on ALDH2 in perturbing normal β-nicotinamide adenine dinucleotide (NAD+) cofactor binding.
Collapse
Affiliation(s)
- Peter S Harris
- Graduate Program in Toxicology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Joe D Gomez
- Graduate Program in Toxicology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Donald S Backos
- Graduate Program in Toxicology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Kristofer S Fritz
- Graduate Program in Toxicology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora, Colorado 80045, United States
| |
Collapse
|
48
|
Proteomic Analysis of Mitochondria-Enriched Fraction Isolated from the Frontal Cortex and Hippocampus of Apolipoprotein E Knockout Mice Treated with Alda-1, an Activator of Mitochondrial Aldehyde Dehydrogenase (ALDH2). Int J Mol Sci 2017; 18:ijms18020435. [PMID: 28218653 PMCID: PMC5343969 DOI: 10.3390/ijms18020435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 02/06/2023] Open
Abstract
The role of different genotypes of apolipoprotein E (apoE) in the etiology of Alzheimer’s disease is widely recognized. It has been shown that altered functioning of apoE may promote 4-hydroxynonenal modification of mitochondrial proteins, which may result in mitochondrial dysfunction, aggravation of oxidative stress, and neurodegeneration. Mitochondrial aldehyde dehydrogenase (ALDH2) is an enzyme considered to perform protective function in mitochondria by the detoxification of the end products of lipid peroxidation, such as 4-hydroxynonenal and other reactive aldehydes. The goal of our study was to apply a differential proteomics approach in concert with molecular and morphological techniques to elucidate the changes in the frontal cortex and hippocampus of apolipoprotein E knockout (apoE−/−) mice upon treatment with Alda-1—a small molecular weight activator of ALDH2. Despite the lack of significant morphological changes in the brain of apoE−/− mice as compared to age-matched wild type animals, the proteomic and molecular approach revealed many changes in the expression of genes and proteins, indicating the impairment of energy metabolism, neuroplasticity, and neurogenesis in brains of apoE−/− mice. Importantly, prolonged treatment of apoE−/− mice with Alda-1 led to the beneficial changes in the expression of genes and proteins related to neuroplasticity and mitochondrial function. The pattern of alterations implies mitoprotective action of Alda-1, however, the accurate functional consequences of the revealed changes require further research.
Collapse
|
49
|
Hyperlipidemia-associated gene variations and expression patterns revealed by whole-genome and transcriptome sequencing of rabbit models. Sci Rep 2016; 6:26942. [PMID: 27245873 PMCID: PMC4887883 DOI: 10.1038/srep26942] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/11/2016] [Indexed: 12/13/2022] Open
Abstract
The rabbit (Oryctolagus cuniculus) is an important experimental animal for studying human diseases, such as hypercholesterolemia and atherosclerosis. Despite this, genetic information and RNA expression profiling of laboratory rabbits are lacking. Here, we characterized the whole-genome variants of three breeds of the most popular experimental rabbits, New Zealand White (NZW), Japanese White (JW) and Watanabe heritable hyperlipidemic (WHHL) rabbits. Although the genetic diversity of WHHL rabbits was relatively low, they accumulated a large proportion of high-frequency deleterious mutations due to the small population size. Some of the deleterious mutations were associated with the pathophysiology of WHHL rabbits in addition to the LDLR deficiency. Furthermore, we conducted transcriptome sequencing of different organs of both WHHL and cholesterol-rich diet (Chol)-fed NZW rabbits. We found that gene expression profiles of the two rabbit models were essentially similar in the aorta, even though they exhibited different types of hypercholesterolemia. In contrast, Chol-fed rabbits, but not WHHL rabbits, exhibited pronounced inflammatory responses and abnormal lipid metabolism in the liver. These results provide valuable insights into identifying therapeutic targets of hypercholesterolemia and atherosclerosis with rabbit models.
Collapse
|
50
|
The longitudinal effect of the aldehyde dehydrogenase 2*2 allele on the risk for nonalcoholic fatty liver disease. Nutr Diabetes 2016; 6:e210. [PMID: 27214654 PMCID: PMC4895378 DOI: 10.1038/nutd.2016.17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/16/2016] [Accepted: 04/13/2016] [Indexed: 01/01/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) detoxifies toxic aldehydes and has a key role in protecting the liver. An elevated gamma-glutamyl transferase (GGT) level is related to oxidative stress and nonalcoholic fatty liver disease (NAFLD). We herein investigated the association between inactive ALDH2*2 allele (rs671) and the risk of NAFLD, including the relationship to the GGT level. A retrospective follow-up study (mean 5.4±1.1 years) was conducted among 341 Japanese health screening program participants. The receiver operating characteristic curve indicated that the GGT level predicted the development of NAFLD (area under the curve: 0.65, P<0.05) with a cutoff value of 25.5 IUl−1. The longitudinal risk of NAFLD was higher in the ALDH2*2 allele carriers than in the noncarriers (odds ratio (OR): 2.30, 95% confidence interval (CI): 1.21–4.40), and the risk was further increased among the *2 allele carriers with GGT values ⩾25.5 IUl−1 (OR: 4.28, 95% CI: 1.80–10.19). On the other hand, there were no significant changes in the subjects' body weight and body mass index during observation period. The ALDH2*2 allele, in relation to the GGT level, may potentially be a novel risk factor for NAFLD.
Collapse
|