1
|
陈 艳, 郑 金, 滕 忠, 张 龙. [Coronary CT Angiography-Based Mechanomics Predicts Atherosclerotic Plaque Formation in Regions Proximal to Myocardial Bridging]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1378-1385. [PMID: 39990838 PMCID: PMC11839342 DOI: 10.12182/20241160502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Indexed: 02/25/2025]
Abstract
Objective To assess with machine learning the predictive value of mechanomics derived from coronary CT angiography (CCTA) for atherosclerotic plaque formation in regions proximal to myocardial bridging (MB) in the left anterior descending coronary artery (LAD). Methods This retrospective study included a cohort of patients with MB in LAD and no atherosclerotic plaque formation in LAD as confirmed by two CCTA conducted between January 2007 and April 2021 at our hospital. The interval between the two CCTA examinations was more than 3 months. The primary endpoint was the formation of atherosclerotic plaques in regions proximal to the myocardial bridging. Patient demographic characteristics and clinical risk factors were documented. Then, the patients were matched by age and sex in a 1-to-1 ratio and divided into two groups, those with plaque formation and those without plaque formation. Computational fluid dynamics analysis was performed based on CCTA. Key anatomical parameters of MB, including location, length, depth, and systolic compression index, were meticulously measured on the CCTA images. Mechanomic data were extracted from the region proximal to the MB. A multivariate Cox regression analysis was performed to identify significant features. A random forest algorithm was used to select mechanomic features for subsequent modeling and to assign scores for each patient's mechanomic features. The log-rank test and Kaplan-Meier curves were used to investigate the mechanomic model's predictive performance concerning plaque formation. Additionally, the operator characteristic curves were applied to evaluate how well the model could predict plaque formation across various myocardial bridge subgroups. Results A total of 104 patients with LAD MB were recruited. The mean age of the subjects were (54.56±10.56) years and 75.00% (78/104) of them were male. Among them, 52 developed plaque formation over a median follow-up period of 3.0 years. Apart from a smoking history, which was more prevalent in the group with plaque formation than that in the group without plaque formation (21.15% vs. 5.77%, P=0.04), no significant differences between the groups were observed in terms of the other clinical or anatomical characteristics (all P≤0.05). The participants were divided into a training set (n=74) and a validation set (n=30) at a 7∶3 ratio. With the mechanomics model constructed using the random forest algorithm, the patients were classified into a high-score group (≥0.46) and a low-score group (<0.46) based on a cutoff score of 0.46. The mechanomics model achieved a sensitivity of 0.87 (0.58-0.98) and an accuracy of 0.63 (0.44-0.79) in the validation set. The multivariate Cox regression model revealed a strong positive association between mechanomics and plaque formation (hazards ratio [HR]: 10.58; 95% confidence interval [CI]: 3.23-34.64, P<0.001). The log-rank test showed that the high-score group in the mechanomics model was more likely to develop plaques at the proximal regions of the myocardial bridge compared to the low-score group (P<0.001). The area under the curve (AUC) for plaque formation, as predicted by the model, was 0.88 (95% CI: 0.82-0.95) for the entire population, 0.89 (95% CI: 0.82-0.96) for the training set, 0.86 (95% CI: 0.74-0.99) for the validation set, 0.92 (95% CI: 0.86-0.97) for the superficial MB group, 0.86 (95% CI: 0.74-0.98) for the long MB group, and 0.91 (95% CI: 0.83-0.98) for the short MB group. Conclusion The mechanomic assessment holds substantial potential as a predictive tool for atherosclerotic plaque formation in regions proximal to MB in LAD.
Collapse
Affiliation(s)
- 艳春 陈
- 南京医科大学金陵临床医学院/东部战区总医院 放射诊断科 (南京 210002)Department of Diagnostic Radiology, Jinling Hospital/General Hospital of Eastern Theater Command of PLA, Nanjing Medical University, Nanjing 210002, China
| | - 金 郑
- 南京医科大学金陵临床医学院/东部战区总医院 放射诊断科 (南京 210002)Department of Diagnostic Radiology, Jinling Hospital/General Hospital of Eastern Theater Command of PLA, Nanjing Medical University, Nanjing 210002, China
- 帝国理工学院 医学研究委员会 医学科学实验室 (伦敦 SW7 2AZ)MRC Laboratory of Medical Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - 忠照 滕
- 南京医科大学金陵临床医学院/东部战区总医院 放射诊断科 (南京 210002)Department of Diagnostic Radiology, Jinling Hospital/General Hospital of Eastern Theater Command of PLA, Nanjing Medical University, Nanjing 210002, China
- 帝国理工学院 医学研究委员会 医学科学实验室 (伦敦 SW7 2AZ)MRC Laboratory of Medical Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - 龙江 张
- 南京医科大学金陵临床医学院/东部战区总医院 放射诊断科 (南京 210002)Department of Diagnostic Radiology, Jinling Hospital/General Hospital of Eastern Theater Command of PLA, Nanjing Medical University, Nanjing 210002, China
| |
Collapse
|
2
|
Hong S, Dong Y, Gao W, Song D, Liu M, Li W, Du Y, Xu J, Dong F. Evaluation of Carotid Stenosis in a High-Stroke-Risk Population by Hemodynamic Dual-Parameters Based on Ultrasound Vector Flow Imaging. Brain Behav 2024; 14:e70150. [PMID: 39552116 PMCID: PMC11570680 DOI: 10.1002/brb3.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
OBJECTIVE This study explored the feasibility of using high-frame-rate ultrasound vector flow imaging (VFI) to quantitatively assess hemodynamics in atherosclerotic internal carotid artery stenosis (ICAS) by evaluating dual-parameters, turbulence index (Tur), and wall shear stress (WSS). Their efficacy in evaluating carotid artery stenosis was also analyzed. METHODS Fifty-nine patients with ICAS were enrolled. B-mode ultrasound and V Flow (a high-frame-rate VFI) were performed using the Resona R9 system. The stenosis rate was measured in grayscale mode, whereas the time-averaged Tur index, the time-averaged WSS (WSSmean), and maximum WSS (WSSmax) around stenosis were measured. The combined diagnostic efficacy of Tur inand WSS was also investigated. RESULTS Compared to proximal to stenosis (Tur index, 2.88% ± 3.65%), highly disordered blood flow was observed in the stenotic (23.17% ± 15.52%, p < 0.001) and distal segment (25.86% ± 17.29%, p < 0.001). WSSmax ([11.91 ± 6.73] vs. [4.43 ± 5.4] Pa, p < 0.001) and WSSmean ([3.42 ± 2.67] vs. [0.86 ± 1.21] Pa, p < 0.001) were significantly bigger in stenotic than those in the distal segment. The differences in the ratio WSSmax/Tur or WSSmean/Tur among different segments around stenosis were statistically significant (p < 0.001). The combination of Tur index and WSS had the best diagnostic performance in ICAS (AUC, 0.899). CONCLUSION The application of Tur index and WSS for quantitative assessment of ICAS hemodynamic changes is feasible, with the combined evaluation of these two parameters providing incremental diagnostic value for carotid artery stenosis. VFI-based dual quantitative parameters may offer promising noninvasive diagnostic tools for carotid artery stenosis in high-stroke-risk populations.
Collapse
Affiliation(s)
- Shaofu Hong
- Department of UltrasoundShenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Yinghui Dong
- Department of UltrasoundShenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Wenjing Gao
- Department of UltrasoundShenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Di Song
- Department of UltrasoundShenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Mengmeng Liu
- Department of UltrasoundShenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Weiyue Li
- Department of RadiologyShenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Yigang Du
- Ultrasound R&D DepartmentShenzhen Mindray Bio‐Medical Electronics Co., Ltd.ShenzhenGuangdongChina
| | - Jinfeng Xu
- Department of UltrasoundShenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Fajin Dong
- Department of UltrasoundShenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| |
Collapse
|
3
|
Fandaros M, Kwok C, Wolf Z, Labropoulos N, Yin W. Patient-Specific Numerical Simulations of Coronary Artery Hemodynamics and Biomechanics: A Pathway to Clinical Use. Cardiovasc Eng Technol 2024; 15:503-521. [PMID: 38710896 DOI: 10.1007/s13239-024-00731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE Numerical models that simulate the behaviors of the coronary arteries have been greatly improved by the addition of fluid-structure interaction (FSI) methods. Although computationally demanding, FSI models account for the movement of the arterial wall and more adequately describe the biomechanical conditions at and within the arterial wall. This offers greater physiological relevance over Computational Fluid Dynamics (CFD) models, which assume the walls do not move or deform. Numerical simulations of patient-specific cases have been greatly bolstered by the use of imaging modalities such as Computed Tomography Angiography (CTA), Magnetic Resonance Imaging (MRI), Optical Coherence Tomography (OCT), and Intravascular Ultrasound (IVUS) to reconstruct accurate 2D and 3D representations of artery geometries. The goal of this study was to conduct a comprehensive review on CFD and FSI models on coronary arteries, and evaluate their translational potential. METHODS This paper reviewed recent work on patient-specific numerical simulations of coronary arteries that describe the biomechanical conditions associated with atherosclerosis using CFD and FSI models. Imaging modality for geometry collection and clinical applications were also discussed. RESULTS Numerical models using CFD and FSI approaches are commonly used to study biomechanics within the vasculature. At high temporal and spatial resolution (compared to most cardiac imaging modalities), these numerical models can generate large amount of biomechanics data. CONCLUSIONS Physiologically relevant FSI models can more accurately describe atherosclerosis pathogenesis, and help to translate biomechanical assessment to clinical evaluation.
Collapse
Affiliation(s)
- Marina Fandaros
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Room 109, 11794, Stony Brook, NY, USA
| | - Chloe Kwok
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Room 109, 11794, Stony Brook, NY, USA
| | - Zachary Wolf
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Room 109, 11794, Stony Brook, NY, USA
| | - Nicos Labropoulos
- Department of Surgery, Stony Brook Medicine, 11794, Stony Brook, NY, USA
| | - Wei Yin
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Room 109, 11794, Stony Brook, NY, USA.
| |
Collapse
|
4
|
Ekmejian AA, Carpenter HJ, Ciofani JL, Gray BHM, Allahwala UK, Ward M, Escaned J, Psaltis PJ, Bhindi R. Advances in the Computational Assessment of Disturbed Coronary Flow and Wall Shear Stress: A Contemporary Review. J Am Heart Assoc 2024; 13:e037129. [PMID: 39291505 DOI: 10.1161/jaha.124.037129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Coronary artery blood flow is influenced by various factors including vessel geometry, hemodynamic conditions, timing in the cardiac cycle, and rheological conditions. Multiple patterns of disturbed coronary flow may occur when blood flow separates from the laminar plane, associated with inefficient blood transit, and pathological processes modulated by the vascular endothelium in response to abnormal wall shear stress. Current simulation techniques, including computational fluid dynamics and fluid-structure interaction, can provide substantial detail on disturbed coronary flow and have advanced the contemporary understanding of the natural history of coronary disease. However, the clinical application of these techniques has been limited to hemodynamic assessment of coronary disease severity, with the potential to refine the assessment and management of coronary disease. Improved computational efficiency and large clinical trials are required to provide an incremental clinical benefit of these techniques beyond existing tools. This contemporary review is a clinically relevant overview of the disturbed coronary flow and its associated pathological consequences. The contemporary methods to assess disturbed flow are reviewed, including clinical applications of these techniques. Current limitations and future opportunities in the field are also discussed.
Collapse
Affiliation(s)
- Avedis Assadour Ekmejian
- Department of Cardiology Royal North Shore Hospital Sydney Australia
- University of Sydney Northern Clinical School Sydney Australia
| | - Harry James Carpenter
- Vascular Research Centre Lifelong Health Theme, South Australia Health and Medical Research Institute Adelaide Australia
| | - Jonathan Laurence Ciofani
- Department of Cardiology Royal North Shore Hospital Sydney Australia
- University of Sydney Northern Clinical School Sydney Australia
| | | | - Usaid Khalil Allahwala
- Department of Cardiology Royal North Shore Hospital Sydney Australia
- University of Sydney Northern Clinical School Sydney Australia
| | - Michael Ward
- Department of Cardiology Royal North Shore Hospital Sydney Australia
- University of Sydney Northern Clinical School Sydney Australia
| | - Javier Escaned
- Department of Cardiology Hospital Universitario Clinico San Carlos Madrid Spain
| | - Peter James Psaltis
- Vascular Research Centre Lifelong Health Theme, South Australia Health and Medical Research Institute Adelaide Australia
- Adelaide Medical School The University of Adelaide Adelaide Australia
- Department of Cardiology Central Adelaide Local Health Network Adelaide Australia
| | - Ravinay Bhindi
- Department of Cardiology Royal North Shore Hospital Sydney Australia
- University of Sydney Northern Clinical School Sydney Australia
| |
Collapse
|
5
|
Nikpour M, Mohebbi A. Predicting coronary artery occlusion risk from noninvasive images by combining CFD-FSI, cGAN and CNN. Sci Rep 2024; 14:22693. [PMID: 39349728 PMCID: PMC11442941 DOI: 10.1038/s41598-024-73396-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Wall Shear Stress (WSS) is one of the most important parameters used in cardiovascular fluid mechanics, and it provides a lot of information like the risk level caused by any vascular occlusion. Since WSS cannot be measured directly and other available relevant methods have issues like low resolution, uncertainty and high cost, this study proposes a novel method by combining computational fluid dynamics (CFD), fluid-structure interaction (FSI), conditional generative adversarial network (cGAN) and convolutional neural network (CNN) to predict coronary artery occlusion risk using only noninvasive images accurately and rapidly. First, a cGAN model called WSSGAN was developed to predict the WSS contours on the vessel wall by training and testing the model based on the calculated WSS contours using coupling CFD-FSI simulations. Then, an 11-layer CNN was used to classify the WSS contours into three grades of occlusions, i.e. low risk, medium risk and high risk. To verify the proposed method for predicting the coronary artery occlusion risk in a real case, the patient's Magnetic Resonance Imaging (MRI) images were converted into a 3D geometry for use in the WASSGAN model. Then, the predicted WSS contours by the WSSGAN were entered into the CNN model to classify the occlusion grade.
Collapse
Affiliation(s)
- Mozhdeh Nikpour
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Ali Mohebbi
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
6
|
Trimarchi G, Pizzino F, Paradossi U, Gueli IA, Palazzini M, Gentile P, Di Spigno F, Ammirati E, Garascia A, Tedeschi A, Aschieri D. Charting the Unseen: How Non-Invasive Imaging Could Redefine Cardiovascular Prevention. J Cardiovasc Dev Dis 2024; 11:245. [PMID: 39195153 DOI: 10.3390/jcdd11080245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain a major global health challenge, leading to significant morbidity and mortality while straining healthcare systems. Despite progress in medical treatments for CVDs, their increasing prevalence calls for a shift towards more effective prevention strategies. Traditional preventive approaches have centered around lifestyle changes, risk factors management, and medication. However, the integration of imaging methods offers a novel dimension in early disease detection, risk assessment, and ongoing monitoring of at-risk individuals. Imaging techniques such as supra-aortic trunks ultrasound, echocardiography, cardiac magnetic resonance, and coronary computed tomography angiography have broadened our understanding of the anatomical and functional aspects of cardiovascular health. These techniques enable personalized prevention strategies by providing detailed insights into the cardiac and vascular states, significantly enhancing our ability to combat the progression of CVDs. This review focuses on amalgamating current findings, technological innovations, and the impact of integrating advanced imaging modalities into cardiovascular risk prevention, aiming to offer a comprehensive perspective on their potential to transform preventive cardiology.
Collapse
Affiliation(s)
- Giancarlo Trimarchi
- Department of Clinical and Experimental Medicine, Cardiology Unit, University of Messina, 98124 Messina, Italy
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Fausto Pizzino
- Cardiology Unit, Heart Centre, Fondazione Gabriele Monasterio-Regione Toscana, 54100 Massa, Italy
| | - Umberto Paradossi
- Cardiology Unit, Heart Centre, Fondazione Gabriele Monasterio-Regione Toscana, 54100 Massa, Italy
| | - Ignazio Alessio Gueli
- Cardiology Unit, Heart Centre, Fondazione Gabriele Monasterio-Regione Toscana, 54100 Massa, Italy
| | - Matteo Palazzini
- "De Gasperis" Cardio Center, Niguarda Hospital, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Piero Gentile
- "De Gasperis" Cardio Center, Niguarda Hospital, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Francesco Di Spigno
- Cardiology Unit of Emergency Department, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy
| | - Enrico Ammirati
- "De Gasperis" Cardio Center, Niguarda Hospital, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Andrea Garascia
- "De Gasperis" Cardio Center, Niguarda Hospital, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Andrea Tedeschi
- Cardiology Unit of Emergency Department, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy
| | - Daniela Aschieri
- Cardiology Unit of Emergency Department, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy
| |
Collapse
|
7
|
Vuong TNAM, Bartolf‐Kopp M, Andelovic K, Jungst T, Farbehi N, Wise SG, Hayward C, Stevens MC, Rnjak‐Kovacina J. Integrating Computational and Biological Hemodynamic Approaches to Improve Modeling of Atherosclerotic Arteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307627. [PMID: 38704690 PMCID: PMC11234431 DOI: 10.1002/advs.202307627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/12/2024] [Indexed: 05/07/2024]
Abstract
Atherosclerosis is the primary cause of cardiovascular disease, resulting in mortality, elevated healthcare costs, diminished productivity, and reduced quality of life for individuals and their communities. This is exacerbated by the limited understanding of its underlying causes and limitations in current therapeutic interventions, highlighting the need for sophisticated models of atherosclerosis. This review critically evaluates the computational and biological models of atherosclerosis, focusing on the study of hemodynamics in atherosclerotic coronary arteries. Computational models account for the geometrical complexities and hemodynamics of the blood vessels and stenoses, but they fail to capture the complex biological processes involved in atherosclerosis. Different in vitro and in vivo biological models can capture aspects of the biological complexity of healthy and stenosed vessels, but rarely mimic the human anatomy and physiological hemodynamics, and require significantly more time, cost, and resources. Therefore, emerging strategies are examined that integrate computational and biological models, and the potential of advances in imaging, biofabrication, and machine learning is explored in developing more effective models of atherosclerosis.
Collapse
Affiliation(s)
| | - Michael Bartolf‐Kopp
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Kristina Andelovic
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
- Department of Orthopedics, Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht3584Netherlands
| | - Nona Farbehi
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydney2052Australia
- Tyree Institute of Health EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Garvan Weizmann Center for Cellular GenomicsGarvan Institute of Medical ResearchSydneyNSW2010Australia
| | - Steven G. Wise
- School of Medical SciencesUniversity of SydneySydneyNSW2006Australia
| | - Christopher Hayward
- St Vincent's HospitalSydneyVictor Chang Cardiac Research InstituteSydney2010Australia
| | | | - Jelena Rnjak‐Kovacina
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydney2052Australia
- Tyree Institute of Health EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Australian Centre for NanoMedicine (ACN)University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
8
|
Han N, Wang J, Ma Y, Ma L, Zheng Y, Fan F, Wu C, Yue S, Li J, Liang J, Zhang H, Zhou Y, Yang T, Zhang J. The hemodynamic and geometric characteristics of carotid artery atherosclerotic plaque formation. Quant Imaging Med Surg 2024; 14:4348-4361. [PMID: 39022224 PMCID: PMC11250319 DOI: 10.21037/qims-23-1827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/08/2024] [Indexed: 07/20/2024]
Abstract
Background Ischemic stroke, which has a high incidence, disability, and mortality rate, is mainly caused by carotid atherosclerotic plaque. The difference in the geometric structures of the carotid arteries inevitably leads to the variability in the local hemodynamics, which plays a key role in the formation of carotid atherosclerosis. At present, the combined mechanisms of hemodynamic and geometric in the formation of carotid atherosclerotic plaque are not clear. Thus, this study characterized the geometric and hemodynamic characteristics of carotid atherosclerotic plaque formation using four-dimensional (4D) flow magnetic resonance imaging (MRI). Methods Ultimately, 122 carotid arteries from 61 patients were examined in this study. According to the presence of plaques at the bifurcation of the carotid artery on cervical vascular ultrasound (US), carotid arteries were placed into a plaque group (N=69) and nonplaque group (N=53). The ratio of the maximum internal carotid artery (ICA) inner diameter to the maximum common carotid artery (CCA) inner diameter (ICA-CCA diameter ratio), bifurcation angle, and tortuosity were measured using neck three-dimensional time-of-flight magnetic resonance angiography (3D TOF-MRA). Meanwhile, 4D flow MRI was used to obtain the following hemodynamic parameters of the carotid arteries: volume flow rate, velocity, wall shear stress (WSS), and pressure gradient (PG). Independent sample t-tests were used to compare carotid artery geometry and hemodynamic changes between the plaque group and nonplaque group. Results The ICA-CCA diameter ratio between the plaque group and the nonplaque group was not significantly different (P=0.124), while there were significant differences in the bifurcation angle (P=0.005) and tortuosity (P=0.032). The bifurcation angle of the plaque group was greater than that of the nonplaque group (60.70°±20.75° vs. 49.32°±22.90°), and the tortuosity was smaller than that of the nonplaque group (1.07±0.04 vs. 1.09±0.05). There were no significant differences between the two groups in terms of volume flow rate (P=0.351) and the maximum value of velocity (velocitymax) (P=0.388), but the axial, circumferential, and 3D WSS values were all significantly different, including their mean values (all P values <0.001) and the maximum value of 3D WSS (P<0.001), with the mean axial, circumferential, 3D WSS values, along with the maximum 3D WSS value, being lower in the plaque group. The two groups also differed significantly in terms of maximum PG value (P=0.030) and mean PG value (P=0.026), with these values being greater in the nonplaque group than in the plaque group. Conclusions A large bifurcation angle and a low tortuosity of the carotid artery are geometric risk factors for plaque formation in this area. Low WSS and low PG values are associated with carotid atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Na Han
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jintao Wang
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Yurong Ma
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Laiyang Ma
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yu Zheng
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Fengxian Fan
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Chuang Wu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Songhong Yue
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jie Li
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Juan Liang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Hui Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Yuxuan Zhou
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Tingli Yang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| |
Collapse
|
9
|
Mehta CR, Naeem A, Patel Y. Cardiac Computed Tomography Angiography in CAD Risk Stratification and Revascularization Planning. Diagnostics (Basel) 2023; 13:2902. [PMID: 37761268 PMCID: PMC10530183 DOI: 10.3390/diagnostics13182902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE OF REVIEW Functional stress testing is frequently used to assess for coronary artery disease (CAD) in symptomatic, stable patients with low to intermediate pretest probability. However, patients with highly vulnerable plaque may have preserved luminal patency and, consequently, a falsely negative stress test. Cardiac computed tomography angiography (CCTA) has emerged at the forefront of primary prevention screening and has excellent agency in ruling out obstructive CAD with high negative predictive value while simultaneously characterizing nonobstructive plaque for high-risk features, which invariably alters risk-stratification and pre-procedural decision making. RECENT FINDINGS We review the literature detailing the utility of CCTA in its ability to risk-stratify patients with CAD based on calcium scoring as well as high-risk phenotypic features and to qualify the functional significance of stenotic lesions. SUMMARY Calcium scores ≥ 100 should prompt consideration of statin and aspirin therapy. Spotty calcifications < 3 mm, increased non-calcified plaque > 4 mm3 per mm of the vessel wall, low attenuation < 30 HU soft plaque and necrotic core with a rim of higher attenuation < 130 HU, and a positive remodeling index ratio > 1.1 all confer additive risk for acute plaque rupture when present. Elevations in the perivascular fat attenuation index > -70.1 HU are a strong predictor of all-cause mortality and can further the risk stratification of patients in the setting of a non-to-minimal plaque burden. Lastly, a CT-derived fractional flow reserve (FFRCT) < 0.75 or values from 0.76 to 0.80 in conjunction with additional risk factors is suggestive of flow-limiting disease that would benefit from invasive testing. The wealth of information available through CCTA can allow clinicians to risk-stratify patients at elevated risk for an acute ischemic event and engage in advanced revascularization planning.
Collapse
Affiliation(s)
- Chirag R. Mehta
- Department of Cardiology, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA (Y.P.)
| | | | | |
Collapse
|
10
|
Wakako A, Sadato A, Oeda M, Higashiguchi S, Hayakawa M, Oshima M, Hirose Y. Development of a Model for Plaque Induction in Rat Carotid Arteries. Asian J Neurosurg 2023; 18:499-507. [PMID: 38152536 PMCID: PMC10749859 DOI: 10.1055/s-0043-1763522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
Objective Plaque induction through intimal injury using a balloon catheter in small animals and by artificial ligation of the carotid artery in large animals have been reported. However, these reports have not yet succeeded in inducing stable plaques nor creating a high degree of intimal thickening to be used as animal models. We have previously developed a plaque induction model in rats but have failed to obtain a plaque incidence frequency that can be used as a model. Thus, in the current study, we aimed to create a versatile disease model to examine the pharmacokinetics of drug administration, determine the efficacy of treatment, and examine the process of intimal thickening. We also attempted to create an improved model with shorter, more frequent, and more severe intimal thickening. Materials and Methods The common carotid artery of male Wistar rats was surgically exposed and completely ligated with a wire and 6-0 nylon thread. Then, the wire was removed to create a partial ligation. To create a high frequency and high degree of intimal thickening, 72 rats were divided into two groups: a single lesion group with a 0.25-mm wire and a single ligature point, and a tandem lesion group with a 0.3-mm wire and two ligature points. Each group was further divided into normal diet and high cholesterol diet groups. The presence and frequency of intimal thickening were examined for each group after 4, 8, and 16 weeks of growth. Results In the single lesion group, intimal thickening was observed in 42% of the 4-week group and 75% of the 8-week group. In the tandem lesion group, intimal thickening was observed in 75% of the 4-week group and 50% of the 8-week group. In addition, 50% of the individuals reared for 16 weeks developed intimal thickening. Conclusion We successfully induced intimal thickening in the carotid arteries of rats with high frequency in the single lesion and tandem lesion groups. The results also showed that the tandem lesion group tended to induce intimal thickening earlier than the single lesion group.
Collapse
Affiliation(s)
- Akira Wakako
- Department of Neurosurgery, Fujita Medical University Okazaki Medical Center, Okazaki, Aichi, Japan
| | - Akiyo Sadato
- Department of Neurosurgery, Fujita Medical University, Toyoake, Aichi, Japan
| | - Motoki Oeda
- Department of Neurosurgery, Toyota Memorial Hospital, Toyota, Aichi, Japan
| | - Saeko Higashiguchi
- Department of Neurosurgery, Fujita Medical University Okazaki Medical Center, Okazaki, Aichi, Japan
| | - Motoharu Hayakawa
- Department of Neurosurgery, Fujita Medical University Okazaki Medical Center, Okazaki, Aichi, Japan
| | - Marie Oshima
- Institute of Industrial Science/Graduate School of Interdisciplinary Information Studies, University of Tokyo, Tokyo, Japan
| | - Yuichi Hirose
- Department of Neurosurgery, Fujita Medical University, Toyoake, Aichi, Japan
| |
Collapse
|
11
|
Revaiah PC, Serruys PW, Yates DP, Onuma Y, Luis Zamorano J. Glagov revisited: coronary artery disease phenotype on non-invasive imaging provides rationale for implementing preventive pharmacotherapy-a case report. Eur Heart J Case Rep 2023; 7:ytad416. [PMID: 37662582 PMCID: PMC10473852 DOI: 10.1093/ehjcr/ytad416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/03/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Background Glagov et al. showed that no reduction in vessel lumen occurred until the atherosclerotic plaque burden exceeded 40% of the vessel area. Most major adverse cardiac events occurring in the first 4 years after a myocardial infarction arise from untreated angiographically mild, non-flow-limiting lesions at the time of the index event. We report how computed tomography (CT) coronary angiography (CCTA) can be used to non-invasively risk stratify a patient with non-obstructive coronary artery disease (CAD) and guide further management. Case summary A 69-year-old non-smoking female with hypertension, dyslipidaemia, and hypothyroidism presented with atypical chest pain. Electrocardiogram and left ventricular ejection fraction were normal. Her lipidic profile was normal. CCTA showed a lipid-rich plaque with very low attenuation (<30 HU) in the left main stem (LMS) extending into the proximal left anterior descending (LAD) and in the mid LAD artery. The maximum plaque burden in the LMS was 67% with a remodelling index of 1.375, and an area stenosis of 22%. Tissue characterization showed a lipid-rich plaque with a thin fibrous cap. The perivascular fat attenuation index (FAI) in the proximal LAD was suggestive of (-69 HU) inflamed perivascular fat. Shear stress analysis of the LMS plaque showed normal wall shear stress (WSS); however, the axial plaque stress was high. Her medications were intensified to rosuvastatin 20 mg once daily (OD) and ezetimibe 10 mg OD. The patient remained asymptomatic at 6 months follow-up. Discussion Our case exemplifies the value of CCTA as a diagnostic 'one-stop shop' (CCTA, finite element analysis, computed tomographic density [CTD], tissue characterization analysis, FAI analysis, WSS and wall strain, and etc.) when stratifying a patient with non-obstructive CAD. With further development of novel potent anti-lipidaemic and anti-inflammatory drugs, non-obstructive lesions with adverse plaque and haemodynamic parameters will have the opportunity to be treated with additional preventive pharmacological therapy.
Collapse
Affiliation(s)
- Pruthvi C Revaiah
- Department of Cardiology, University of Galway, University Road, Galway H91 TK33, Ireland
| | - Patrick W Serruys
- Department of Cardiology, University of Galway, University Road, Galway H91 TK33, Ireland
| | - Denise P Yates
- Biomedical Research, Novartis Institutes of Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Yoshinobu Onuma
- Department of Cardiology, University of Galway, University Road, Galway H91 TK33, Ireland
| | - Jose Luis Zamorano
- Department of Cardiology, University Hospital Ramon y Cajal, Madrid, Spain
| |
Collapse
|
12
|
Ding J, Du Y, Zhao R, Yang Q, Zhu L, Tong Y, Wen C, Wang M. Detection of Abnormal Wall Shear Stress and Oscillatory Shear Index via Ultrasound Vector Flow Imaging as Possible Indicators for Arteriovenous Fistula Stenosis in Hemodialysis. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1830-1836. [PMID: 37270353 DOI: 10.1016/j.ultrasmedbio.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 06/05/2023]
Abstract
OBJECTIVE The arteriovenous fistula (AVF) is an essential vascular access for hemodialysis patients. AVF stenosis may occur at sites with abnormal wall shear stress (WSS) and oscillatory shear index (OSI), which are caused by the complex flow in the AVF. At present, an effective method for rapid determination of the WSS and OSI of the AVF is lacking. The objective of this study was to apply an ultrasound-based method for determination of the WSS and OSI to explore the risk sites of the AVF. METHODS In this study, the ultrasound vector flow imaging technique V Flow was applied to measure the WSS and OSI at four different regions of the AVF to detect and analyze the risk sites: (i) anastomosis region, (ii) curved region, (iii) proximal vein and (iv) distal vein. Twenty-one patients were included in this study. The relative residence time was calculated based on the measured WSS and OSI. RESULTS The curved region had the lowest WSS; the anastomosis region had a significantly higher OSI (p < 0.05) compared with the venous regions, and the curved region had a significantly higher RRT (p < 0.05) compared with the proximal vein region. CONCLUSION V Flow is a feasible tool for studying WSS variations in AVF. The possible risk site in the AVF may be located in the anastomosis and curved regions, where the latter could present a higher risk for AVF stenosis.
Collapse
Affiliation(s)
- Jiaxiang Ding
- Peking University International Hospital, Beijing, China.
| | - Yigang Du
- Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, China
| | - Rui Zhao
- Peking University International Hospital, Beijing, China
| | - Qinghua Yang
- Peking University International Hospital, Beijing, China
| | - Lei Zhu
- Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, China
| | - Yisha Tong
- Department of Vascular Surgery, Austin Hospital, University of Melbourne, Melbourne, Australia
| | - Chaoyang Wen
- Peking University International Hospital, Beijing, China
| | - Mei Wang
- Peking University International Hospital, Beijing, China
| |
Collapse
|
13
|
Qiao HY, Wu Y, Li HC, Zhang HY, Wu QH, You QJ, Ma X, Hu SD. Role of Quantitative Plaque Analysis and Fractional Flow Reserve Derived From Coronary Computed Tomography Angiography to Assess Plaque Progression. J Thorac Imaging 2023; 38:186-193. [PMID: 36728026 PMCID: PMC10128899 DOI: 10.1097/rti.0000000000000697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE To explore the role of quantitative plaque analysis and fractional flow reserve (CT-FFR) derived from coronary computed angiography (CCTA) in evaluating plaque progression (PP). METHODS A total of 248 consecutive patients who underwent serial CCTA examinations were enrolled. All patients' images were analyzed quantitatively by plaque analysis software. The quantitative analysis indexes included diameter stenosis (%DS), plaque length, plaque volume (PV), calcified PV, noncalcified PV, minimum lumen area (MLA), and remodeling index (RI). PP is defined as PAV (percentage atheroma volume) change rate >1%. CT-FFR analysis was performed using the cFFR software. RESULTS A total of 76 patients (30.6%) and 172 patients (69.4%) were included in the PP group and non-PP group, respectively. Compared with the non-PP group, the PP group showed greater %DS, smaller MLA, larger PV and non-calcified PV, larger RI, and lower CT-FFR on baseline CCTA (all P <0.05). Logistic regression analysis showed that RI≥1.10 (odds ratio [OR]: 2.709, 95% CI: 1.447-5.072), and CT-FFR≤0.85 (OR: 5.079, 95% CI: 2.626-9.283) were independent predictors of PP. The model based on %DS, quantitative plaque features, and CT-FFR (area under the receiver-operating characteristics curve [AUC]=0.80, P <0.001) was significantly better than that based rarely on %DS (AUC=0.61, P =0.007) and that based on %DS and quantitative plaque characteristics (AUC=0.72, P <0.001). CONCLUSIONS Quantitative plaque analysis and CT-FFR are helpful to identify PP. RI and CT-FFR are important predictors of PP. Compared with the prediction model only depending on %DS, plaque quantitative markers and CT-FFR can further improve the predictive performance of PP.
Collapse
Affiliation(s)
| | - Yong Wu
- Departments of Medical Imaging
| | - Hai Cheng Li
- Department of Medical Imaging, Minhe County People’s Hospital, Haidong, Qing hai, China
| | - Hai Yan Zhang
- Department of Medical Imaging, Minhe County People’s Hospital, Haidong, Qing hai, China
| | | | - Qing Jun You
- Thoracic Surgery, Affiliated Hospital of Jiangnan University
| | - Xin Ma
- School of Medicine, Jiangnan University, Wuxi, Jiangsu
| | | |
Collapse
|
14
|
Wajihah SA, Sankar DS. A review on non-Newtonian fluid models for multi-layered blood rheology in constricted arteries. ARCHIVE OF APPLIED MECHANICS = INGENIEUR-ARCHIV 2023; 93:1771-1796. [PMID: 36743075 PMCID: PMC9886544 DOI: 10.1007/s00419-023-02368-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Haemodynamics is a branch of fluid mechanics which investigates the features of blood when it flows not only via blood vessels of smaller/larger diameter, but also under normal as well as abnormal flow states, such as in the presence of stenosis, aneurysm, and thrombosis. This review aims to discuss the rheological properties of blood, geometry of constrictions, dilations and the emergence of single-layered fluid to four-layered fluid models. To discuss further the influence of the aforesaid parameters on the physiologically important flow quantities, the mathematical formulation and solution methodology of the two-layered and four layered arterial blood flow problems studied by the authors (Afiqah and Sankar in ARPN J Eng Appl Sci 15:1129--1143, 2020, Comput Methods Programs Biomed 199:105907, 2021. 10.1016/j.cmpb.2020.105907) are recalled. It should be pointed out that the increasing resistive impedance to flow in three distinct states encompassing healthy, anaemic, and diabetic demonstrates that the greater the restriction in the artery, very few blood is carried to the pathetic organs, leading to subjects' death. It is also discovered that the pulsatile nature of blood movement produces a dynamic environment that poses a slew of intriguing and unstable fluid mechanical state. It is hoped that the intriguing results gathered from this literature survey and review conducted may help the medical practitioners to forecast blood behaviour mobility in stenotic arteries. Furthermore, the physiological information gathered from the available clinical data from the literature on patients diagnosed with diabetes and anaemia may be beneficial to doctors in deciding the therapeutic procedure for treating some particular cardiovascular disease.
Collapse
Affiliation(s)
- S. Afiqah Wajihah
- Applied Mathematics and Economics Programme Area, School of Applied Sciences and Mathematics, Universiti Teknologi Brunei, Jalan Tungku Link, Gadong, Bandar Seri Begawan, BE1410 Brunei Darussalam
| | - D. S. Sankar
- Applied Mathematics and Economics Programme Area, School of Applied Sciences and Mathematics, Universiti Teknologi Brunei, Jalan Tungku Link, Gadong, Bandar Seri Begawan, BE1410 Brunei Darussalam
| |
Collapse
|
15
|
Computational Study of Hemodynamic Field of an Occluded Artery Model with Anastomosis. Bioengineering (Basel) 2023; 10:bioengineering10020146. [PMID: 36829640 PMCID: PMC9952429 DOI: 10.3390/bioengineering10020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
In this research work, the hemodynamic field of an occluded artery with anastomosis by means of computational simulation has been studied. The main objective of the current study is the investigation of 3D flow field phenomena in the by-pass region and the effect of the bypass graft to stenosis volume flow ratio on their formation. The anastomosis type was end-to-side with a 45° angle, while stenosis imposed a 75% area blockage of the aorta vessel and the total volume flow was 220 lt/h. The computational study of the flow field was utilized via a laminar flow model and three turbulence models (k-ε RNG, standard k-ω, and k-ω SST). Numerical results were compared qualitatively with experimental visualizations carried out under four different flow conditions, varying according to the flow ratio between the stenosis and the anastomotic graft. Comparison between computational results and experimental visualization findings exhibited a good agreement. Results showed that SST k-ω turbulence models reproduce better visually obtained flow patterns. Furthermore, cross-sectional velocity distributions demonstrated two distinct flow patterns down the bypass graft, depending on the flow ratio. Low values of flow ratio are characterized by fluid rolling up, whereas for high values fluid volume twisting was observed. Finally, areas with low wall shear stresses were mapped, as these are more prone to postoperative degradation of the bypass graft due to the development of subendothelial hyperplasia.
Collapse
|
16
|
The Need to Shift from Morphological to Structural Assessment for Carotid Plaque Vulnerability. Biomedicines 2022; 10:biomedicines10123038. [PMID: 36551791 PMCID: PMC9776071 DOI: 10.3390/biomedicines10123038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Degree of luminal stenosis is generally considered to be an important indicator for judging the risk of atherosclerosis burden. However, patients with the same or similar degree of stenosis may have significant differences in plaque morphology and biomechanical factors. This study investigated three patients with carotid atherosclerosis within a similar range of stenosis. Using our developed fluid-structure interaction (FSI) modelling method, this study analyzed and compared the morphological and biomechanical parameters of the three patients. Although their degrees of carotid stenosis were similar, the plaque components showed a significant difference. The distribution range of time-averaged wall shear stress (TAWSS) of patient 2 was wider than that of patient 1 and patient 3. Patient 2 also had a much smaller plaque stress compared to the other two patients. There were significant differences in TAWSS and plaque stresses among three patients. This study suggests that plaque vulnerability is not determined by a single morphological factor, but rather by the combined structure. It is necessary to transform the morphological assessment into a structural assessment of the risk of plaque rupture.
Collapse
|
17
|
Song D, Liu M, Dong Y, Hong S, Chen M, Du Y, Li S, Xu J, Gao W, Dong F. Investigation on the differences of hemodynamics in normal common carotid, subclavian, and common femoral arteries using the vector flow technique. Front Cardiovasc Med 2022; 9:956023. [PMID: 36465451 PMCID: PMC9712999 DOI: 10.3389/fcvm.2022.956023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/31/2022] [Indexed: 10/16/2023] Open
Abstract
OBJECTIVES To investigate the feasibility of the vector flow imaging (V Flow) technique to measure peripheral arterial hemodynamic parameters, including wall shear stress (WSS) and turbulence index (Tur) in healthy adults, and compare the results in different arteries. MATERIALS AND METHODS Fifty-two healthy adult volunteers were recruited in this study. The maximum and mean values of WSS, and the Tur values at early-systole, mid-systole, late-systole, and early diastole for total 156 normal peripheral arteries [common carotid arteries (CCA), subclavian arteries (SCA), and common femoral arteries (CFA)] were assessed using the V Flow technique. RESULTS The mean WSS values for CCA, SCA, and CFA were (1.66 ± 0.68) Pa, (0.62 ± 0.30) Pa, and (0.56 ± 0.27) Pa, respectively. The mean Tur values for CCA, SCA, and CFA were (0.46 ± 1.09%), (20.7 ± 9.06%), and (24.63 ± 17.66%), respectively. The CCA and SCA, as well as the CCA and CFA, showed statistically significant differences in the mean WSS and the mean Tur (P < 0.01). The mean Tur values had a negative correlation with the mean WSS; the correlation coefficient between log(Tur) and WSS is -0.69 (P < 0.05). CONCLUSION V Flow technique is a simple, practical, and feasible quantitative imaging approach for assessing WSS and Tur in peripheral arteries. It has the potential to be a useful tool for evaluating atherosclerotic plaques in peripheral arteries. The results provide a new quantitative foundation for future investigations into diverse arterial hemodynamic parameters.
Collapse
Affiliation(s)
- Di Song
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Mengmeng Liu
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yinghui Dong
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Shaofu Hong
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Ming Chen
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yigang Du
- Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, Guangdong, China
| | - Shuangshuang Li
- Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, Guangdong, China
| | - Jinfeng Xu
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Wenjing Gao
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Fajin Dong
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
18
|
van den Hoogen IJ, Schultz J, Kuneman JH, de Graaf MA, Kamperidis V, Broersen A, Jukema JW, Sakellarios A, Nikopoulos S, Kyriakidis S, Naka KK, Michalis L, Fotiadis DI, Maaniitty T, Saraste A, Bax JJ, Knuuti J. Detailed behaviour of endothelial wall shear stress across coronary lesions from non-invasive imaging with coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging 2022; 23:1708-1716. [PMID: 35616068 PMCID: PMC10017098 DOI: 10.1093/ehjci/jeac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/15/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Evolving evidence suggests that endothelial wall shear stress (ESS) plays a crucial role in the rupture and progression of coronary plaques by triggering biological signalling pathways. We aimed to investigate the patterns of ESS across coronary lesions from non-invasive imaging with coronary computed tomography angiography (CCTA), and to define plaque-associated ESS values in patients with coronary artery disease (CAD). METHODS AND RESULTS Symptomatic patients with CAD who underwent a clinically indicated CCTA scan were identified. Separate core laboratories performed blinded analysis of CCTA for anatomical and ESS features of coronary atherosclerosis. ESS was assessed using dedicated software, providing minimal and maximal ESS values for each 3 mm segment. Each coronary lesion was divided into upstream, start, minimal luminal area (MLA), end and downstream segments. Also, ESS ratios were calculated using the upstream segment as a reference. From 122 patients (mean age 64 ± 7 years, 57% men), a total of 237 lesions were analyzed. Minimal and maximal ESS values varied across the lesions with the highest values at the MLA segment [minimal ESS 3.97 Pa (IQR 1.93-8.92 Pa) and maximal ESS 5.64 Pa (IQR 3.13-11.21 Pa), respectively]. Furthermore, minimal and maximal ESS values were positively associated with stenosis severity (P < 0.001), percent atheroma volume (P < 0.001), and lesion length (P ≤ 0.023) at the MLA segment. Using ESS ratios, similar associations were observed for stenosis severity and lesion length. CONCLUSIONS Detailed behaviour of ESS across coronary lesions can be derived from routine non-invasive CCTA imaging. This may further improve risk stratification.
Collapse
Affiliation(s)
| | - Jussi Schultz
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, Turku 20520, Finland
| | - Jurrien H Kuneman
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michiel A de Graaf
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vasileios Kamperidis
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander Broersen
- Department of Radiology, Division of Image Processing, Leiden University Medical Center, Leiden, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Antonis Sakellarios
- Department of Biomedical Research, FORTH-IMBB, Ioannina, Greece.,Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
| | - Sotirios Nikopoulos
- Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Savvas Kyriakidis
- Department of Biomedical Research, FORTH-IMBB, Ioannina, Greece.,Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
| | - Katerina K Naka
- Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Lampros Michalis
- Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Dimitrios I Fotiadis
- Department of Biomedical Research, FORTH-IMBB, Ioannina, Greece.,Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
| | - Teemu Maaniitty
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, Turku 20520, Finland
| | - Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, Turku 20520, Finland.,Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.,Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Juhani Knuuti
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.,Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, Turku 20520, Finland
| |
Collapse
|
19
|
Lyras KG, Lee J. Haemodynamic analysis using multiphase flow dynamics in tubular lesions. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 220:106780. [PMID: 35483270 DOI: 10.1016/j.cmpb.2022.106780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE The role of red blood cell dynamics is emphasised in certain cardiovascular diseases, and thus needs to be closely studied. A multiphase model of blood flow allows the resolution of locally varying density of red blood cells within a complex vessel geometrical domain, and haemodynamic consequences of such build up. METHODS A novel computational fluid dynamics solver for simulating multiphase flows is used for modelling blood flow using level set for a sharp interface representation. Single-phase simulations and reduced order models are used for pressure comparisons. The new solver is used for numerically studying AHA type B lesions. The impact of hematocrit and degree of stenosis on the haemodynamics of coronary arteries is investigated. RESULTS The comparisons with single-phase flow simulations indicate differences in pressure when considering red blood cell aggregation. Multiphase simulations provide slightly lower pressure drop for the same stenosis severity compared to the single-phase simulations. Secondary flow patterns and the interactions between the two phases leads to the red blood cell aggregation at the end of the diastole cycle, which significantly changes the red blood cell distribution, the shear stresses and velocity in tubular lesions. CONCLUSIONS Neither pressure drop nor mean velocity are not strongly changed in the multiphase modelling, but particle buildup significantly changes which is only revealed by the multiphase approach.
Collapse
Affiliation(s)
- Konstantinos G Lyras
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EU, United Kingdom.
| | - Jack Lee
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EU, United Kingdom.
| |
Collapse
|
20
|
Sun Z, Jiang D, Liu P, Muccio M, Li C, Cao Y, Wisniewski TM, Lu H, Ge Y. Age-Related Tortuosity of Carotid and Vertebral Arteries: Quantitative Evaluation With MR Angiography. Front Neurol 2022; 13:858805. [PMID: 35572919 PMCID: PMC9099009 DOI: 10.3389/fneur.2022.858805] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/30/2022] [Indexed: 01/14/2023] Open
Abstract
Background and Purpose The vascular tortuosity (VT) of the internal carotid artery (ICA), and vertebral artery (VA) can impact blood flow and neuronal function. However, few studies involved quantitative investigation of VT based on magnetic resonance imaging (MRI). The main purpose of our study was to evaluate the age and gender effects on ICA and VA regarding the tortuosity and flow changes by applying automatic vessel segmentation, centerline tracking, and phase mapping on MR angiography. Methods A total of 247 subjects (86 males and 161 females) without neurological diseases participated in this study. All subjects obtained T1-weighted MRI, 3D time-of-flight MR angiography, and 2D phase-contrast (PC) MRI scans. To generate quantitative tortuosity metrics from TOF images, the vessel segmentation and centerline tracking were implemented based on Otsu thresholding and fast marching algorithms, respectively. Blood flow and velocity were measured using PC MRI. Among the 247 subjects, 144 subjects (≤ 60 years, 49 males/95 females) were categorized as the young group; 103 subjects (>60 years, 37 males/66 females) were categorized as the old group. Results Independent t-test showed that older subjects had higher tortuosity metrics, whereas lower blood flow and velocity than young subjects (p < 0.0025, Bonferroni-corrected). Cerebral blood flow calculated using the sum flux of four target arteries normalized by the brain mass also showed significantly lower values in older subjects (p < 0.001). The age was observed to be positively correlated with the VT metrics. Compared to the males, the females demonstrated higher geometric indices within VAs as well as faster age-related vascular profile changes. After adjusting age and gender as covariates, maximum blood velocity is negatively correlated with geometric measurements. No association was observed between blood flux and geometric measures. Conclusions Vascular auto-segmentation, centerline tracking, and phase mapping provide promising quantitative assessments of tortuosity and its effects on blood flow. The neck arteries demonstrate quantifiable and significant age-related morphological and hemodynamic alterations. Moreover, females showed more distinct vascular changes with age. Our work is built upon a comprehensive quantitative investigation of a large cohort of populations covering adult lifespan using MRI, the results can serve as reference ranges of each decade in the general population.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States
- Vilcek Institute of Biomedical Science, NYU Grossman School of Medicine, New York, NY, United States
| | - Dengrong Jiang
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peiying Liu
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Marco Muccio
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States
| | - Chenyang Li
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States
- Vilcek Institute of Biomedical Science, NYU Grossman School of Medicine, New York, NY, United States
| | - Yan Cao
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Thomas M. Wisniewski
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, United States
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, United States
| | - Hanzhang Lu
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yulin Ge
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
21
|
The Effects of the Mechanical Properties of Vascular Grafts and an Anisotropic Hyperelastic Aortic Model on Local Hemodynamics during Modified Blalock-Taussig Shunt Operation, Assessed Using FSI Simulation. MATERIALS 2022; 15:ma15082719. [PMID: 35454414 PMCID: PMC9026531 DOI: 10.3390/ma15082719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 12/05/2022]
Abstract
Cardiovascular surgery requires the use of state-of-the-art artificial materials. For example, microporous polytetrafluoroethylene grafts manufactured by Gore-Tex® are used for the treatment of cyanotic heart defects (i.e., modified Blalock–Taussig shunt). Significant mortality during this palliative operation has led surgeons to adopt mathematical models to eliminate complications by performing fluid–solid interaction (FSI) simulations. To proceed with FSI modeling, it is necessary to know either the mechanical properties of the aorta and graft or the rheological properties of blood. The properties of the aorta and blood can be found in the literature, but there are no data about the mechanical properties of Gore-Tex® grafts. Experimental studies were carried out on the mechanical properties vascular grafts adopted for modified pediatric Blalock–Taussig shunts. Parameters of two models (the five-parameter Mooney–Rivlin model and the three-parameter Yeoh model) were determined by uniaxial experimental curve fitting. The obtained data were used for patient-specific FSI modeling of local blood flow in the “aorta-modified Blalock–Taussig shunt–pulmonary artery” system in three different shunt locations: central, right, and left. The anisotropic model of the aortic material showed higher stress values at the peak moment of systole, which may be a key factor determining the strength characteristics of the aorta and pulmonary artery. Additionally, this mechanical parameter is important when installing a central shunt, since it is in the area of the central anastomosis that an increase in stress on the aortic wall is observed. According to computations, the anisotropic model shows smaller values for the displacements of both the aorta and the shunt, which in turn may affect the success of preoperative predictions. Thus, it can be concluded that the anisotropic properties of the aorta play an important role in preoperative modeling.
Collapse
|
22
|
Han D, Lin A, Kuronuma K, Tzolos E, Kwan AC, Klein E, Andreini D, Bax JJ, Cademartiri F, Chinnaiyan K, Chow BJW, Conte E, Cury RC, Feuchtner G, Hadamitzky M, Kim YJ, Leipsic JA, Maffei E, Marques H, Plank F, Pontone G, Villines TC, Al-Mallah MH, de Araújo Gonçalves P, Danad I, Gransar H, Lu Y, Lee JH, Lee SE, Baskaran L, Al’Aref SJ, Yoon YE, Van Rosendael A, Budoff MJ, Samady H, Stone PH, Virmani R, Achenbach S, Narula J, Chang HJ, Min JK, Lin FY, Shaw LJ, Slomka PJ, Dey D, Berman DS. Association of Plaque Location and Vessel Geometry Determined by Coronary Computed Tomographic Angiography With Future Acute Coronary Syndrome-Causing Culprit Lesions. JAMA Cardiol 2022; 7:309-319. [PMID: 35080587 PMCID: PMC8792800 DOI: 10.1001/jamacardio.2021.5705] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
IMPORTANCE Distinct plaque locations and vessel geometric features predispose to altered coronary flow hemodynamics. The association between these lesion-level characteristics assessed by coronary computed tomographic angiography (CCTA) and risk of future acute coronary syndrome (ACS) is unknown. OBJECTIVE To examine whether CCTA-derived adverse geometric characteristics (AGCs) of coronary lesions describing location and vessel geometry add to plaque morphology and burden for identifying culprit lesion precursors associated with future ACS. DESIGN, SETTING, AND PARTICIPANTS This substudy of ICONIC (Incident Coronary Syndromes Identified by Computed Tomography), a multicenter nested case-control cohort study, included patients with ACS and a culprit lesion precursor identified on baseline CCTA (n = 116) and propensity score-matched non-ACS controls (n = 116). Data were collected from July 20, 2012, to April 30, 2017, and analyzed from October 1, 2020, to October 31, 2021. EXPOSURES Coronary lesions were evaluated for the following 3 AGCs: (1) distance from the coronary ostium to lesion; (2) location at vessel bifurcations; and (3) vessel tortuosity, defined as the presence of 1 bend of greater than 90° or 3 curves of 45° to 90° using a 3-point angle within the lesion. MAIN OUTCOMES AND MEASURES Association between lesion-level AGCs and risk of future ACS-causing culprit lesions. RESULTS Of 548 lesions, 116 culprit lesion precursors were identified in 116 patients (80 [69.0%] men; mean [SD], age 62.7 [11.5] years). Compared with nonculprit lesions, culprit lesion precursors had a shorter distance from the ostium (median, 35.1 [IQR, 23.6-48.4] mm vs 44.5 [IQR, 28.2-70.8] mm), more frequently localized to bifurcations (85 [73.3%] vs 168 [38.9%]), and had more tortuous vessel segments (5 [4.3%] vs 6 [1.4%]; all P < .05). In multivariable Cox regression analysis, an increasing number of AGCs was associated with a greater risk of future culprit lesions (hazard ratio [HR] for 1 AGC, 2.90 [95% CI, 1.38-6.08]; P = .005; HR for ≥2 AGCs, 6.84 [95% CI, 3.33-14.04]; P < .001). Adverse geometric characteristics provided incremental discriminatory value for culprit lesion precursors when added to a model containing stenosis severity, adverse morphological plaque characteristics, and quantitative plaque characteristics (area under the curve, 0.766 [95% CI, 0.718-0.814] vs 0.733 [95% CI, 0.685-0.782]). In per-patient comparison, patients with ACS had a higher frequency of lesions with adverse plaque characteristics, AGCs, or both compared with control patients (≥2 adverse plaque characteristics, 70 [60.3%] vs 50 [43.1%]; ≥2 AGCs, 92 [79.3%] vs 60 [51.7%]; ≥2 of both, 37 [31.9%] vs 20 [17.2%]; all P < .05). CONCLUSIONS AND RELEVANCE These findings support the concept that CCTA-derived AGCs capturing lesion location and vessel geometry are associated with risk of future ACS-causing culprit lesions. Adverse geometric characteristics may provide additive prognostic information beyond plaque assessment in CCTA.
Collapse
Affiliation(s)
- Donghee Han
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Andrew Lin
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Keiichiro Kuronuma
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Evangelos Tzolos
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Alan C. Kwan
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Eyal Klein
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Daniele Andreini
- Department of Clinical Sciences and Community Health, University of Milan, Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Jeroen J. Bax
- Department of Cardiology, Heart Lung Center, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Kavitha Chinnaiyan
- Department of Cardiology, William Beaumont Hospital, Royal Oaks, Michigan
| | - Benjamin J. W. Chow
- Department of Medicine and Radiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Edoardo Conte
- Department of Clinical Sciences and Community Health, University of Milan, Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | | | - Gudrun Feuchtner
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Hadamitzky
- Department of Radiology and Nuclear Medicine, German Heart Center, Munich, Germany
| | - Yong-Jin Kim
- Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jonathon A. Leipsic
- Department of Medicine and Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Hugo Marques
- UNICA, Unit of Cardiovascular Imaging, Hospital da Luz, Lisboa, Portugal
| | - Fabian Plank
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gianluca Pontone
- Department of Clinical Sciences and Community Health, University of Milan, Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Todd C. Villines
- Cardiology Service, Walter Reed National Military Center, Bethesda, Maryland
| | - Mouaz H. Al-Mallah
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas
| | | | - Ibrahim Danad
- Department of Cardiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Heidi Gransar
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yao Lu
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York
| | - Ji-Hyun Lee
- Division of Cardiology, Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea
| | - Sang-Eun Lee
- Department of Cardiology, Ewha Womans University Seoul Hospital, Seoul, South Korea
| | | | - Subhi J. Al’Aref
- Division of Cardiology, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock
| | - Yeonyee E. Yoon
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York
| | - Alexander Van Rosendael
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York
| | - Matthew J. Budoff
- Department of Medicine, Lundquist Institute at Harbor-UCLA (University of California, Los Angeles), Torrance, California
| | - Habib Samady
- Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Peter H. Stone
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Renu Virmani
- Department of Pathology, CVPath Institute, Gaithersburg, Maryland
| | | | - Jagat Narula
- Department of Cardiology, Icahn School of Medicine at Mt Sinai Hospital, New York, New York
| | - Hyuk-Jae Chang
- Division of Cardiology, Severance Cardiovascular Hospital, Integrative Cardiovascular Imaging Center, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Fay Y. Lin
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York
| | - Leslee J. Shaw
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York
| | - Piotr J. Slomka
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Damini Dey
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Daniel S. Berman
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
23
|
Starodumov IO, Sokolov SY, Alexandrov DV, Zubarev AY, Bessonov IS, Chestukhin VV, Blyakhman FA. Modelling of hemodynamics in bifurcation lesions of coronary arteries before and after myocardial revascularization. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200303. [PMID: 34974725 DOI: 10.1098/rsta.2020.0303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/16/2021] [Indexed: 06/14/2023]
Abstract
Modelling of patient-specific hemodynamics for a clinical case of severe coronary artery disease with the bifurcation stenosis was carried out with allowance for standard angiographic data obtained before and after successfully performed myocardial revascularization by stenting of two arteries. Based on a non-Newtonian fluid model and an original algorithm for fluid dynamics computation operated with a limited amount of initial data, key characteristics of blood flow were determined to analyse the features of coronary disease and the consequences of its treatment. The results of hemodynamic modelling near bifurcation sites are presented with an emphasis on physical, physiological and clinical phenomena to demonstrate the feasibility of the proposed approach. The main limitations and ways to minimize them are the subjects of discussion as well. This article is part of the theme issue 'Transport phenomena in complex systems (part 2)'.
Collapse
Affiliation(s)
- Ilya O Starodumov
- Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg 620000, Russian Federation
- Ural State Medical University, Ekaterinburg 620028, Russian Federation
| | - Sergey Yu Sokolov
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620000, Russian Federation
- Ural State Medical University, Ekaterinburg 620028, Russian Federation
| | - Dmitri V Alexandrov
- Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg 620000, Russian Federation
| | - Andrey Yu Zubarev
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620000, Russian Federation
| | - Ivan S Bessonov
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 625026, Russian Federation
| | - Vasily V Chestukhin
- Sklifosovsky Research Institute of Emergency Care, Moscow 129090, Russian Federation
| | - Felix A Blyakhman
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620000, Russian Federation
- Ural State Medical University, Ekaterinburg 620028, Russian Federation
| |
Collapse
|
24
|
S SN, Saha S, Bhattacharjee A. A 2D FSI mathematical model of blood flow to analyze the hyper-viscous effects in atherosclerotic COVID patients. RESULTS IN ENGINEERING 2021; 12:100275. [PMID: 35317220 PMCID: PMC8382661 DOI: 10.1016/j.rineng.2021.100275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 06/14/2023]
Abstract
Recent researches on COVID 19 has been extended to analyze the various morphological and anatomical changes in a patient's body due to the invasion of the virus. These latest studies have concluded that there happens a high rise in the viscosity of the blood in a COVID 19 patient, supported by the extensive analysis of the clinical data. In the present paper, a mathematical model in the form of a differential equation system has been proposed to disclose the various changes that occur in the flow across the stenosis of an arterial segment. The consequences of the hyperviscosity of blood on the blood flow characteristics in a stenosed artery are analyzed by solving the model using a finite element method (FEM) solver. A laminar flow coupled with solid mechanics through the Fluid-Structure Interaction (FSI) interface has been studied using an Arbitrary Lagrangian-Eulerian (ALE) method. For the first time, the mathematical model was used to analyze the hyper-viscous flow condition in COVID 19 patients. The present research is mainly based on the numerous clinical reports enlisting the various morphological, hematological, and rheological changes in the blood.
Collapse
Affiliation(s)
- Shankar Narayan S
- CMR Institute of Technology, Bengaluru, 560037, India
- Dayananda Sagar University, Bengaluru, 560068, India
| | - Sunanda Saha
- Vellore Institute of Technology, Vellore, 632014, India
| | | |
Collapse
|
25
|
Lu G, Ye W, Ou J, Li X, Tan Z, Li T, Liu H. Coronary Computed Tomography Angiography Assessment of High-Risk Plaques in Predicting Acute Coronary Syndrome. Front Cardiovasc Med 2021; 8:743538. [PMID: 34660742 PMCID: PMC8517134 DOI: 10.3389/fcvm.2021.743538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023] Open
Abstract
Coronary computed tomography angiography (CCTA) is a comprehensive, non-invasive and cost-effective imaging assessment approach, which can provide the ability to identify the characteristics and morphology of high-risk atherosclerotic plaques associated with acute coronary syndrome (ACS). The development of CCTA and latest advances in emerging technologies, such as computational fluid dynamics (CFD), have made it possible not only to identify the morphological characteristics of high-risk plaques non-invasively, but also to assess the hemodynamic parameters, the environment surrounding coronaries and so on, which may help to predict the risk of ACS. In this review, we present how CCTA was used to characterize the composition and morphology of high-risk plaques prone to ACS and the current role of CCTA, including emerging CCTA technologies, advanced analysis, and characterization techniques in prognosticating the occurrence of ACS.
Collapse
Affiliation(s)
- Guanyu Lu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,College of Medicine, Shantou University, Shantou, China
| | - Weitao Ye
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiehao Ou
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xinyun Li
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zekun Tan
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tingyu Li
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hui Liu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,College of Medicine, Shantou University, Shantou, China
| |
Collapse
|
26
|
Harky A, Sokal PA, Hasan K, Papaleontiou A. The Aortic Pathologies: How Far We Understand It and Its Implications on Thoracic Aortic Surgery. Braz J Cardiovasc Surg 2021; 36:535-549. [PMID: 34617429 PMCID: PMC8522328 DOI: 10.21470/1678-9741-2020-0089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Thoracic aortic diseases contribute to a major part of cardiac surgeries. The severity of pathologies varies significantly from emergency and life-threatening to conservatively managed conditions. Life-threatening conditions include type A aortic dissection and rupture. Aortic aneurysm is an example of a conservatively managed condition. Pathologies that affect the arterial wall can have a profound impact on the presentation of such cases. Several risk factors have been identified that increase the risk of emergency presentations such as connective tissue disease, hypertension, and vasculitis. The understanding of aortic pathologies is essential to improve management and clinical outcomes.
Collapse
Affiliation(s)
- Amer Harky
- Department of Cardiothoracic Surgery, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom.,School of Medicine, University of Liverpool, Liverpool, United Kingdom.,Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | | | - Khubbaib Hasan
- School of Medicine, University of Liverpool, Liverpool, United Kingdom
| | | |
Collapse
|
27
|
Kalykakis GE, Antonopoulos AS, Pitsargiotis T, Siogkas P, Exarchos T, Kafouris P, Sakelarios A, Liga R, Tzifa A, Giannopoulos A, Scholte AJHA, Kaufmann PA, Parodi O, Knuuti J, Fotiadis DI, Neglia D, Anagnostopoulos CD. Relationship of Endothelial Shear Stress with Plaque Features with Coronary CT Angiography and Vasodilating Capability with PET. Radiology 2021; 300:549-556. [PMID: 34184936 DOI: 10.1148/radiol.2021204381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Advances in three-dimensional reconstruction techniques and computational fluid dynamics of coronary CT angiography (CCTA) data sets make feasible evaluation of endothelial shear stress (ESS) in the vessel wall. Purpose To investigate the relationship between CCTA-derived computational fluid dynamics metrics, anatomic and morphologic characteristics of coronary lesions, and their comparative performance in predicting impaired coronary vasodilating capability assessed by using PET myocardial perfusion imaging (MPI). Materials and Methods In this retrospective study, conducted between October 2019 and September 2020, coronary vessels in patients with stable chest pain and with intermediate probability of coronary artery disease who underwent both CCTA and PET MPI with oxygen 15-labeled water or nitrogen 13 ammonia and quantification of myocardial blood flow were analyzed. CCTA images were used in assessing stenosis severity, lesion-specific total plaque volume (PV), noncalcified PV, calcified PV, and plaque phenotype. PET MPI was used in assessing significant coronary stenosis. The predictive performance of the CCTA-derived parameters was evaluated by using area under the receiver operating characteristic curve (AUC) analysis. Results There were 92 coronary vessels evaluated in 53 patients (mean age, 65 years ± 7; 31 men). ESS was higher in lesions with greater than 50% stenosis versus those without significant stenosis (mean, 15.1 Pa ± 30 vs 4.6 Pa ± 4 vs 3.3 Pa ± 3; P = .004). ESS was higher in functionally significant versus nonsignificant lesions (median, 7 Pa [interquartile range, 5-23 Pa] vs 2.6 Pa [interquartile range, 1.8-5 Pa], respectively; P ≤ .001). Adding ESS to stenosis severity improved prediction (change in AUC, 0.10; 95% CI: 0.04, 0.17; P = .002) for functionally significant lesions. Conclusion The combination of endothelial shear stress with coronary CT angiography (CCTA) stenosis severity improved prediction of an abnormal PET myocardial perfusion imaging result versus CCTA stenosis severity alone. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Kusmirek and Wieben in this issue.
Collapse
Affiliation(s)
- Georgios-Eleftherios Kalykakis
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Alexios S Antonopoulos
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Thomas Pitsargiotis
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Panagiotis Siogkas
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Themistoklis Exarchos
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Pavlos Kafouris
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Antonis Sakelarios
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Riccardo Liga
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Aphrodite Tzifa
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Andreas Giannopoulos
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Arthur J H A Scholte
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Philipp A Kaufmann
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Oberdan Parodi
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Juhani Knuuti
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Dimitrios I Fotiadis
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Danilo Neglia
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Constantinos D Anagnostopoulos
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| |
Collapse
|
28
|
Boussoussou M, Vattay B, Szilveszter B, Kolossváry M, Simon J, Vecsey-Nagy M, Merkely B, Maurovich-Horvat P. Functional assessment of coronary plaques using CT based hemodynamic simulations: Current status, technical principles and clinical value. IMAGING 2021. [DOI: 10.1556/1647.2020.00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractIn recent years, coronary computed tomography angiography (CCTA) has emerged as an accurate and safe non-invasive imaging modality in terms of detecting and excluding coronary artery disease (CAD). In the latest European Society of Cardiology Guidelines CCTA received Class I recommendation for the evaluation of patients with stable chest pain with low to intermediate clinical likelihood of CAD. Despite its high negative predictive value, the diagnostic performance of CCTA is limited by the relatively low specificity, especially in patients with heavily calcified lesions. The discrepancy between the degree of stenosis and ischemia is well established based on both invasive and non-invasive tests. The rapid evolution of computational flow dynamics has allowed the simulation of CCTA derived fractional flow reserve (FFR-CT), which improves specificity by combining anatomic and functional information regarding coronary atherosclerosis. FFR-CT has been extensively validated against invasively measured FFR as the reference standard. Due to recent technological advancements FFR-CT values can also be calculated locally, without offsite processing. Wall shear stress (WSS) and axial plaque stress (APS) are additional key hemodynamic elements of atherosclerotic plaque characteristics, which can also be measured using CCTA images. Current evidence suggests that WSS and APS are important hemodynamic features of adverse coronary plaques. CCTA based hemodynamic calculations could therefore improve prognostication and the management of patients with stable CAD.
Collapse
Affiliation(s)
- Melinda Boussoussou
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Borbála Vattay
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Bálint Szilveszter
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Márton Kolossváry
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Judit Simon
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Milán Vecsey-Nagy
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Pál Maurovich-Horvat
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| |
Collapse
|
29
|
Vardhan M, Gounley J, Chen SJ, Chi EC, Kahn AM, Leopold JA, Randles A. Non-invasive characterization of complex coronary lesions. Sci Rep 2021; 11:8145. [PMID: 33854076 PMCID: PMC8047040 DOI: 10.1038/s41598-021-86360-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/15/2021] [Indexed: 02/02/2023] Open
Abstract
Conventional invasive diagnostic imaging techniques do not adequately resolve complex Type B and C coronary lesions, which present unique challenges, require personalized treatment and result in worsened patient outcomes. These lesions are often excluded from large-scale non-invasive clinical trials and there does not exist a validated approach to characterize hemodynamic quantities and guide percutaneous intervention for such lesions. This work identifies key biomarkers that differentiate complex Type B and C lesions from simple Type A lesions by introducing and validating a coronary angiography-based computational fluid dynamic (CFD-CA) framework for intracoronary assessment in complex lesions at ultrahigh resolution. Among 14 patients selected in this study, 7 patients with Type B and C lesions were included in the complex lesion group including ostial, bifurcation, serial lesions and lesion where flow was supplied by collateral bed. Simple lesion group included 7 patients with lesions that were discrete, [Formula: see text] long and readily accessible. Intracoronary assessment was performed using CFD-CA framework and validated by comparing to clinically measured pressure-based index, such as FFR. Local pressure, endothelial shear stress (ESS) and velocity profiles were derived for all patients. We validates the accuracy of our CFD-CA framework and report excellent agreement with invasive measurements ([Formula: see text]). Ultra-high resolution achieved by the model enable physiological assessment in complex lesions and quantify hemodynamic metrics in all vessels up to 1mm in diameter. Importantly, we demonstrate that in contrast to traditional pressure-based metrics, there is a significant difference in the intracoronary hemodynamic forces, such as ESS, in complex lesions compared to simple lesions at both resting and hyperemic physiological states [n = 14, [Formula: see text]]. Higher ESS was observed in the complex lesion group ([Formula: see text] Pa) than in simple lesion group ([Formula: see text] Pa). Complex coronary lesions have higher ESS compared to simple lesions, such differential hemodynamic evaluation can provide much the needed insight into the increase in adverse outcomes for such patients and has incremental prognostic value over traditional pressure-based indices, such as FFR.
Collapse
Affiliation(s)
- Madhurima Vardhan
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - John Gounley
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - S James Chen
- Department of Medicine/Cardiology, University of Colorado AMC, Aurora, CO, 80045, USA
| | - Eric C Chi
- Department of Statistics, North Carolina State University, Raleigh, 27695, USA
| | - Andrew M Kahn
- Division of Cardiovascular Medicine, University of California San Diego, San Diego, 92103, USA
| | - Jane A Leopold
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Amanda Randles
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA.
| |
Collapse
|
30
|
Andelovic K, Winter P, Jakob PM, Bauer WR, Herold V, Zernecke A. Evaluation of Plaque Characteristics and Inflammation Using Magnetic Resonance Imaging. Biomedicines 2021; 9:185. [PMID: 33673124 PMCID: PMC7917750 DOI: 10.3390/biomedicines9020185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is an inflammatory disease of large and medium-sized arteries, characterized by the growth of atherosclerotic lesions (plaques). These plaques often develop at inner curvatures of arteries, branchpoints, and bifurcations, where the endothelial wall shear stress is low and oscillatory. In conjunction with other processes such as lipid deposition, biomechanical factors lead to local vascular inflammation and plaque growth. There is also evidence that low and oscillatory shear stress contribute to arterial remodeling, entailing a loss in arterial elasticity and, therefore, an increased pulse-wave velocity. Although altered shear stress profiles, elasticity and inflammation are closely intertwined and critical for plaque growth, preclinical and clinical investigations for atherosclerosis mostly focus on the investigation of one of these parameters only due to the experimental limitations. However, cardiovascular magnetic resonance imaging (MRI) has been demonstrated to be a potent tool which can be used to provide insights into a large range of biological parameters in one experimental session. It enables the evaluation of the dynamic process of atherosclerotic lesion formation without the need for harmful radiation. Flow-sensitive MRI provides the assessment of hemodynamic parameters such as wall shear stress and pulse wave velocity which may replace invasive and radiation-based techniques for imaging of the vascular function and the characterization of early plaque development. In combination with inflammation imaging, the analyses and correlations of these parameters could not only significantly advance basic preclinical investigations of atherosclerotic lesion formation and progression, but also the diagnostic clinical evaluation for early identification of high-risk plaques, which are prone to rupture. In this review, we summarize the key applications of magnetic resonance imaging for the evaluation of plaque characteristics through flow sensitive and morphological measurements. The simultaneous measurements of functional and structural parameters will further preclinical research on atherosclerosis and has the potential to fundamentally improve the detection of inflammation and vulnerable plaques in patients.
Collapse
Affiliation(s)
- Kristina Andelovic
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany
- Experimental Physics V, University of Würzburg, 97074 Würzburg, Germany; (P.W.); (P.M.J.); (V.H.)
| | - Patrick Winter
- Experimental Physics V, University of Würzburg, 97074 Würzburg, Germany; (P.W.); (P.M.J.); (V.H.)
- Internal Medicine I, Cardiology, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Peter Michael Jakob
- Experimental Physics V, University of Würzburg, 97074 Würzburg, Germany; (P.W.); (P.M.J.); (V.H.)
| | - Wolfgang Rudolf Bauer
- Internal Medicine I, Cardiology, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Volker Herold
- Experimental Physics V, University of Würzburg, 97074 Würzburg, Germany; (P.W.); (P.M.J.); (V.H.)
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
31
|
Abstract
Atherosclerosis is one of the main causes of cardiovascular events, namely, myocardium infarction and cerebral stroke, responsible for a great number of deaths every year worldwide. This pathology is caused by the progressive accumulation of low-density lipoproteins, cholesterol, and other substances on the arterial wall, narrowing its lumen. To date, many hemodynamic studies have been conducted experimentally and/or numerically; however, this disease is not yet fully understood. For this reason, the research of this pathology is still ongoing, mainly, resorting to computational methods. These have been increasingly used in biomedical research of atherosclerosis because of their high-performance hardware and software. Taking into account the attempts that have been made in computational techniques to simulate realistic conditions of blood flow in both diseased and healthy arteries, the present review aims to give an overview of the most recent numerical studies focused on coronary arteries, by addressing the blood viscosity models, and applied physiological flow conditions. In general, regardless of the boundary conditions, numerical studies have been contributed to a better understanding of the development of this disease, its diagnosis, and its treatment.
Collapse
|
32
|
Eslami P, Thondapu V, Karady J, Hartman EMJ, Jin Z, Albaghdadi M, Lu M, Wentzel JJ, Hoffmann U. Physiology and coronary artery disease: emerging insights from computed tomography imaging based computational modeling. Int J Cardiovasc Imaging 2020; 36:2319-2333. [PMID: 32779078 PMCID: PMC8323761 DOI: 10.1007/s10554-020-01954-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022]
Abstract
Improvements in spatial and temporal resolution now permit robust high quality characterization of presence, morphology and composition of coronary atherosclerosis in computed tomography (CT). These characteristics include high risk features such as large plaque volume, low CT attenuation, napkin-ring sign, spotty calcification and positive remodeling. Because of the high image quality, principles of patient-specific computational fluid dynamics modeling of blood flow through the coronary arteries can now be applied to CT and allow the calculation of local lesion-specific hemodynamics such as endothelial shear stress, fractional flow reserve and axial plaque stress. This review examines recent advances in coronary CT image-based computational modeling and discusses the opportunity to identify lesions at risk for rupture much earlier than today through the combination of anatomic and hemodynamic information.
Collapse
Affiliation(s)
- Parastou Eslami
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Vikas Thondapu
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julia Karady
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eline M J Hartman
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
| | - Zexi Jin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mazen Albaghdadi
- Department of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Lu
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jolanda J Wentzel
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
| | - Udo Hoffmann
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Assessment of late-term progression of cardiac allograft vasculopathy in patients with orthotopic heart transplantation using quantitative cardiac 82Rb PET. Int J Cardiovasc Imaging 2020; 37:1461-1472. [PMID: 33123937 DOI: 10.1007/s10554-020-02086-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
The risk stratification and long-term survival of patients with orthotopic heart transplantation (OHT) is impacted by the complication of cardiac allograft vasculopathy (CAV). This study evaluates changes in myocardial blood flow (MBF) and myocardial coronary flow reserve (CFR) in a group of long-term OHT patients using quantitative cardiac 82Rb-positron emission tomography (PET). Twenty patients (7 females and 13 males, mean age = 72.7 ± 12.2 years with CAV and 62.9 ± 7.2 years without CAV and post-OHT mean time = 13.9 years), were evaluated retrospectively using dynamic cardiac 82Rb-PET at rest and regadenoson-induced stress. The patients also underwent selective coronary angiography (SCA) for diagnosis and risk stratification. CAV was diagnosed based on SCA findings and maximal intimal thickness greater than 0.5 mm, as defined by International Society of Heart and Lung Transplantation (ISHLT). Global and regional MBFs were estimated in three vascular territories using the standard 1-tissue compartment model for dynamic 82Rb-PET. The myocardial CFR was also calculated as the ratio of peak stress MBF to rest MBF. Among twenty patients, seven had CAV in, at least, one major coronary artery (ISHLT CAV grade 1 or higher) while 13 patients did not have CAV (NonCAV). Mean rate-pressure products (RPP) at rest were significantly elevated in CAV patients compared to those without CAV (P = 0.002) but it was insignificant at stress (P = NS). There was no significant difference in the stress MBFs between CAV and NonCAV patients (P = NS). However, the difference in RPP-normalized stress MBFs was significant (P = 0.045), while RPP-normalized MBFs at rest was not significant (P = NS). Both CFR and RPP-normalized CFR were significantly lower in CAV compared to NonCAV patients (P < 0.001). There were significant correlations between MBFs and RPPs at rest for both CAV (ρ = 0.764, P = 0.047) and NonCAV patients (ρ = 0.641, P = 0.017), while there were no correlations at stress for CAV (ρ = 0.232, P = NS) and NonCAV patients (ρ = 0.068, P = NS). This study indicates that the resting MBF is higher in late-term post-OHT patients. The high resting MBF and reduced CFR suggest an unprecedented demand of blood flow and blunted response to stress due to impaired vasodilatory capacity that is exacerbated by the presence of CAV.
Collapse
|
34
|
Collet C, Conte E, Mushtaq S, Brouwers S, Shinke T, Coskun AU, Pu Z, Hakim D, Stone PH, Andreini D. Reviewing imaging modalities for the assessment of plaque erosion. Atherosclerosis 2020; 318:52-59. [PMID: 33129585 DOI: 10.1016/j.atherosclerosis.2020.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/17/2020] [Accepted: 10/08/2020] [Indexed: 12/22/2022]
Abstract
Plaque rupture followed by intracoronary thrombus formation is recognized as the most common pathophysiological mechanism in acute coronary syndromes (ACS). The second most common underlying substrate for ACS is plaque erosion whose hallmark is thrombus formation without cap disruption. Invasive and non-invasive methods have emerged as a promising tool for evaluation of plaque features that either predict or detect plaque erosion. Optical coherence tomography (OCT), high-definition intravascular ultrasound (IVUS), near-infrared spectroscopy (NIRS), and near-infrared autofluorescence (NIRF) have been used to study plaque erosion. The detection of plaque erosion in the clinical setting, mainly facilitated by OCT, has shed light upon the complex pathophysiology underlying ACS not related to plaque rupture. Coronary computed tomography angiography (CCTA), which is to date the most commonly used non-invasive technique for coronary plaque evaluation, may also have a role in the evaluation of patients predisposed to erosion. Also, computational models enabling quantification of endothelial shear stress may pave the way to new research in coronary plaque pathophysiology. This review focuses on the recent imaging techniques for the evaluation of plaque erosion including invasive and non-invasive assessment.
Collapse
Affiliation(s)
- Carlos Collet
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium
| | - Edoardo Conte
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| | - Saima Mushtaq
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| | - Sofie Brouwers
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Experimental Pharmacology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Toshiro Shinke
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Japan
| | | | - Zhongyue Pu
- Cardiovascular Division, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Diaa Hakim
- Cardiovascular Division, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Daniele Andreini
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy.
| |
Collapse
|
35
|
Validation of Wall Shear Stress Assessment in Non-invasive Coronary CTA versus Invasive Imaging: A Patient-Specific Computational Study. Ann Biomed Eng 2020; 49:1151-1168. [PMID: 33067688 DOI: 10.1007/s10439-020-02631-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022]
Abstract
Endothelial shear stress (ESS) identifies coronary plaques at high risk for progression and/or rupture leading to a future acute coronary syndrome. In this study an optimized methodology was developed to derive ESS, pressure drop and oscillatory shear index using computational fluid dynamics (CFD) in 3D models of coronary arteries derived from non-invasive coronary computed tomography angiography (CTA). These CTA-based ESS calculations were compared to the ESS calculations using the gold standard with fusion of invasive imaging and CTA. In 14 patients paired patient-specific CFD models based on invasive and non-invasive imaging of the left anterior descending (LAD) coronary arteries were created. Ten patients were used to optimize the methodology, and four patients to test this methodology. Time-averaged ESS (TAESS) was calculated for both coronary models applying patient-specific physiological data available at the time of imaging. For data analysis, each 3D reconstructed coronary artery was divided into 2 mm segments and each segment was subdivided into 8 arcs (45°).TAESS and other hemodynamic parameters were averaged per segment as well as per arc. Furthermore, the paired segment- and arc-averaged TAESS were categorized into patient-specific tertiles (low, medium and high). In the ten LADs, used for optimization of the methodology, we found high correlations between invasively-derived and non-invasively-derived TAESS averaged over segments (n = 263, r = 0.86) as well as arcs (n = 2104, r = 0.85, p < 0.001). The correlation was also strong in the four testing-patients with r = 0.95 (n = 117 segments, p = 0.001) and r = 0.93 (n = 936 arcs, p = 0.001).There was an overall high concordance of 78% of the three TAESS categories comparing both methodologies using the segment- and 76% for the arc-averages in the first ten patients. This concordance was lower in the four testing patients (64 and 64% in segment- and arc-averaged TAESS). Although the correlation and concordance were high for both patient groups, the absolute TAESS values averaged per segment and arc were overestimated using non-invasive vs. invasive imaging [testing patients: TAESS segment: 30.1(17.1-83.8) vs. 15.8(8.8-63.4) and TAESS arc: 29.4(16.2-74.7) vs 15.0(8.9-57.4) p < 0.001]. We showed that our methodology can accurately assess the TAESS distribution non-invasively from CTA and demonstrated a good correlation with TAESS calculated using IVUS/OCT 3D reconstructed models.
Collapse
|
36
|
Balloon Deflation Strategy during Primary Percutaneous Coronary Intervention in Acute ST-Segment Elevation Myocardial Infarction: A Randomized Controlled Clinical Trial and Numerical Simulation-Based Analysis. Cardiol Res Pract 2020; 2020:4826073. [PMID: 32963824 PMCID: PMC7492947 DOI: 10.1155/2020/4826073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022] Open
Abstract
Background Primary percutaneous coronary intervention (PCI) is the best available reperfusion strategy in patients with acute ST-segment elevation myocardial infarction (STEMI). However, PCI is associated with a serious problem known as no-reflow phenomenon, resulting in poor clinical and functional outcomes. This study aimed to compare the influences of different balloon deflation velocity on coronary flow and cardiovascular events during primary PCI in STEM as well as transient hemodynamic changes in in vitro experiments. Method and Results. 211 STEMI patients were randomly assigned to either a rapid or a slow balloon deflation group during stent deployment. The primary end point was coronary flow at the end of PCI procedure, and secondary end points included myocardial infarct size. Transient hemodynamic changes were evaluated through an in vitro experimental apparatus and a computer model. In clinical practice, the level of corrected TIMI frame count (cTFC) in slow balloon deflation after primary PCI was significantly lower than that of rapid balloon deflation, which was associated with smaller infarct size. Numerical simulations revealed that the rapid deflation led to a sharp acceleration of flow in the balloon-vessel gap and a concomitant abnormal rise in wall shear stress (WSS). Conclusion This randomized study demonstrated that the slow balloon deflation during stent implantation improved coronary flow and reduced infarct size in reperfused STEMI. The change of flow in the balloon-vessel gap and WSS resulted from different balloon deflation velocity might be partly accounted for this results.
Collapse
|
37
|
Abdelrahman KM, Chen MY, Dey AK, Virmani R, Finn AV, Khamis RY, Choi AD, Min JK, Williams MC, Buckler AJ, Taylor CA, Rogers C, Samady H, Antoniades C, Shaw LJ, Budoff MJ, Hoffmann U, Blankstein R, Narula J, Mehta NN. Coronary Computed Tomography Angiography From Clinical Uses to Emerging Technologies: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 76:1226-1243. [PMID: 32883417 PMCID: PMC7480405 DOI: 10.1016/j.jacc.2020.06.076] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/08/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Evaluation of coronary artery disease (CAD) using coronary computed tomography angiography (CCTA) has seen a paradigm shift in the last decade. Evidence increasingly supports the clinical utility of CCTA across various stages of CAD, from the detection of early subclinical disease to the assessment of acute chest pain. Additionally, CCTA can be used to noninvasively quantify plaque burden and identify high-risk plaque, aiding in diagnosis, prognosis, and treatment. This is especially important in the evaluation of CAD in immune-driven conditions with increased cardiovascular disease prevalence. Emerging applications of CCTA based on hemodynamic indices and plaque characterization may provide personalized risk assessment, affect disease detection, and further guide therapy. This review provides an update on the evidence, clinical applications, and emerging technologies surrounding CCTA as highlighted at the 2019 National Heart, Lung and Blood Institute CCTA Summit.
Collapse
Affiliation(s)
- Khaled M Abdelrahman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Marcus Y Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Amit K Dey
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Renu Virmani
- Department of Pathology, CVPath Institute, Gaithersburg, Maryland
| | - Aloke V Finn
- Department of Pathology, CVPath Institute, Gaithersburg, Maryland
| | - Ramzi Y Khamis
- Vascular Sciences Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Andrew D Choi
- Division of Cardiology and Department of Radiology, The George Washington University School of Medicine, Washington, DC
| | - James K Min
- Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, New York
| | - Michelle C Williams
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; Edinburgh Imaging, Queen's Medical Research Institute University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | - Habib Samady
- Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Leslee J Shaw
- Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, New York
| | - Matthew J Budoff
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Udo Hoffmann
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ron Blankstein
- Departments of Medicine (Cardiovascular Division) and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jagat Narula
- Zena and Michael A. Wiener Cardiovascular Institute, Marie-Josée and Henry R. Kravis Center for Cardiovascular Health Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, New York, New York
| | - Nehal N Mehta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
38
|
Samady H, Molony DS, Coskun AU, Varshney AS, De Bruyne B, Stone PH. Risk stratification of coronary plaques using physiologic characteristics by CCTA: Focus on shear stress. J Cardiovasc Comput Tomogr 2020; 14:386-393. [DOI: 10.1016/j.jcct.2019.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/15/2019] [Accepted: 11/24/2019] [Indexed: 01/09/2023]
|
39
|
Blood flow simulations in patient-specific geometries of the carotid artery: A systematic review. J Biomech 2020; 111:110019. [PMID: 32905972 DOI: 10.1016/j.jbiomech.2020.110019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/07/2020] [Accepted: 08/26/2020] [Indexed: 12/21/2022]
Abstract
Computational Fluid Dynamics (CFD) and Fluid-Structure Interaction (FSI) are currently widely applied in the study of blood flow parameters and their alterations under pathological conditions, which are important indicators for diagnosis of atherosclerosis. In this manuscript, a systematic review of the published literature was conducted, according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses, on the simulation studies of blood flow in patient-specific geometries of the carotid artery bifurcation. Scopus, PubMed and ScienceDirect databases were used in the literature search, which was completed on the 3rd of August 2020. Forty-nine articles were included after the selection process and were organized in two distinct categories: the CFD studies (36/49 articles), which comprise only the fluid analysis and the FSI studies (13/49 articles), which includes both fluid and Fluid-Structure domain in the analysis. The data of the research works was structured in different categories (Geometry, Viscosity models, Type of Flow, Boundary Conditions, Flow Parameters, Type of Solver and Validation). The aim of this systematic review is to demonstrate the methodology in the modelling, simulation and analysis of carotid blood flow and also identify potential gaps and challenges in this research field.
Collapse
|
40
|
Razavi A, Sachdeva S, Frommelt PC, LaDisa JF. Patient-Specific Numerical Analysis of Coronary Flow in Children With Intramural Anomalous Aortic Origin of Coronary Arteries. Semin Thorac Cardiovasc Surg 2020; 33:155-167. [PMID: 32858220 DOI: 10.1053/j.semtcvs.2020.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/21/2020] [Indexed: 11/11/2022]
Abstract
Unroofing surgery for anomalous aortic origin of a coronary artery (AAOCA) alters coronary anatomy by opening the intramural segment so that the anomalous coronary orifice arises perpendicularly from appropriate aortic sinus. Computational fluid dynamics modeling (CFD) allows for quantification of hemodynamics linked to morbidity such as wall shear stress (WSS), relative to patient-specific features like the angle of origin (AO). We hypothesize that CFD will reveal abnormal WSS indices in unroofed arteries that are related to AO. Six AAOCA patients (3 left, 3 right) status post unroofing (median = 13.5 years, range 9-17) underwent cardiac magnetic resonance imaging. CFD models were created from pre (n = 2) and postunroofing (n = 6) cardiac magnetic resonance imaging data, for the anomalous and contralateral normally-arising arteries. Downstream vasculature was represented by lumped parameter networks. Time-averaged WSS (TAWSS) and oscillatory shear index (OSI) were quantified relative to AO and measured hemodynamics. TAWSS was elevated along the outer wall of the normally-arising left vs right coronary arteries, as well as along unroofed left vs right coronary arteries (n = 6/group). No significant differences were noted when comparing unroofed and same-sided normally-arising coronaries. TAWSS was reduced after unroofing (eg, 276 ± 28 dyne/cm2 vs 91 ± 15 dyne/cm2; n = 2/group). Models with more acute preoperative AO indicated lower TAWSS at the proximity of ostium. Differences in OSI were not significant. Different flow patterns exist natively between right and left coronary arteries. Unroofing may normalize TAWSS but with variance related to the AO. This study suggests CFD may help stratify risk in AAOCA.
Collapse
Affiliation(s)
- Atefeh Razavi
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin.
| | | | - Peter C Frommelt
- Children's Hospital of Wisconsin, Milwaukee, Wisconsin; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John F LaDisa
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin; Departments of Cardiovascular Medicine and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
41
|
Kay FU, Canan A, Abbara S. Future Directions in Coronary CT Angiography: CT-Fractional Flow Reserve, Plaque Vulnerability, and Quantitative Plaque Assessment. Korean Circ J 2019; 50:185-202. [PMID: 31960635 PMCID: PMC7043962 DOI: 10.4070/kcj.2019.0315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 01/12/2023] Open
Abstract
Coronary computed tomography angiography (CCTA) is a well-validated and noninvasive imaging modality for the assessment of coronary artery disease (CAD) in patients with stable ischemic heart disease and acute coronary syndromes (ACSs). CCTA not only delineates the anatomy of the heart and coronary arteries in detail, but also allows for intra- and extraluminal imaging of coronary arteries. Emerging technologies have promoted new CCTA applications, resulting in a comprehensive assessment of coronary plaques and their clinical significance. The application of computational fluid dynamics to CCTA resulted in a robust tool for noninvasive assessment of coronary blood flow hemodynamics and determination of hemodynamically significant stenosis. Detailed evaluation of plaque morphology and identification of high-risk plaque features by CCTA have been confirmed as predictors of future outcomes, identifying patients at risk for ACSs. With quantitative coronary plaque assessment, the progression of the CAD or the response to therapy could be monitored by CCTA. The aim of this article is to review the future directions of emerging applications in CCTA, such as computed tomography (CT)-fractional flow reserve, imaging of vulnerable plaque features, and quantitative plaque imaging. We will also briefly discuss novel methods appearing in the coronary imaging scenario, such as machine learning, radiomics, and spectral CT.
Collapse
Affiliation(s)
| | - Arzu Canan
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Suhny Abbara
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
42
|
Nicol ED, Rajani R. Imaging Biomechanical Endothelial Forces With Coronary Computed Tomography: A Positive Step, But Not Yet the Jewel in the Crown in the Quest for Vulnerable Plaque Prediction. JACC Cardiovasc Imaging 2018; 12:1044-1046. [PMID: 29550310 DOI: 10.1016/j.jcmg.2018.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Edward D Nicol
- Departments of Cardiology and Radiology, Royal Brompton Hospital, London, United Kingdom.
| | - Ronak Rajani
- Departments of Cardiology and Radiology, Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|
43
|
Xing R, Moerman AM, Ridwan Y, Daemen MJ, van der Steen AFW, Gijsen FJH, van der Heiden K. Temporal and spatial changes in wall shear stress during atherosclerotic plaque progression in mice. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171447. [PMID: 29657758 PMCID: PMC5882682 DOI: 10.1098/rsos.171447] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/07/2018] [Indexed: 05/03/2023]
Abstract
Wall shear stress (WSS) is involved in atherosclerotic plaque initiation, yet its role in plaque progression remains unclear. We aimed to study (i) the temporal and spatial changes in WSS over a growing plaque and (ii) the correlation between WSS and plaque composition, using animal-specific data in an atherosclerotic mouse model. Tapered casts were placed around the right common carotid arteries (RCCA) of ApoE-/- mice. At 5, 7 and 9 weeks after cast placement, RCCA geometry was reconstructed using contrast-enhanced micro-CT. Lumen narrowing was observed in all mice, indicating the progression of a lumen intruding plaque. Next, we determined the flow rate in the RCCA of each mouse using Doppler Ultrasound and computed WSS at all time points. Over time, as the plaque developed and further intruded into the lumen, absolute WSS significantly decreased. Finally at week 9, plaque composition was histologically characterized. The proximal part of the plaque was small and eccentric, exposed to relatively lower WSS. Close to the cast a larger and concentric plaque was present, exposed to relatively higher WSS. Lower WSS was significantly correlated to the accumulation of macrophages in the eccentric plaque. When pooling data of all animals, correlation between WSS and plaque composition was weak and no longer statistically significant. In conclusion, our data showed that in our mouse model absolute WSS strikingly decreased during disease progression, which was significantly correlated to plaque area and macrophage content. Besides, our study demonstrates the necessity to analyse individual animals and plaques when studying correlations between WSS and plaque composition.
Collapse
Affiliation(s)
- R. Xing
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A. M. Moerman
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Y. Ridwan
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M. J. Daemen
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - A. F. W. van der Steen
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - F. J. H. Gijsen
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
- Authors for correspondence: F. J. H. Gijsen e-mail:
| | - K. van der Heiden
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
- Authors for correspondence: K. van der Heiden e-mail:
| |
Collapse
|
44
|
Ceponiene I, Nakanishi R, Osawa K, Kanisawa M, Nezarat N, Rahmani S, Kissel K, Kim M, Jayawardena E, Broersen A, Kitslaar P, Budoff MJ. Coronary Artery Calcium Progression Is Associated With Coronary Plaque Volume Progression: Results From a Quantitative Semiautomated Coronary Artery Plaque Analysis. JACC Cardiovasc Imaging 2017; 11:1785-1794. [PMID: 29055625 DOI: 10.1016/j.jcmg.2017.07.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/05/2017] [Accepted: 07/21/2017] [Indexed: 01/07/2023]
Abstract
OBJECTIVES The aim of this study was to determine whether coronary artery calcium (CAC) progression was associated with coronary plaque progression on coronary computed tomographic angiography. BACKGROUND CAC progression and coronary plaque characteristics are associated with incident coronary heart disease. However, natural history of coronary atherosclerosis has not been well described to date, and the understanding of the association between CAC progression and coronary plaque subtypes such as noncalcified plaque progression remains unclear. METHODS Consecutive patients who were referred to our clinic for evaluation and had serial coronary computed tomography angiography scans performed were included in the study. Coronary artery plaque (total, fibrous, fibrous-fatty, low-attenuation, densely calcified) volumes were calculated using semiautomated plaque analysis software. RESULTS A total of 211 patients (61.3 ± 12.7 years of age, 75.4% men) were included in the analysis. The mean interval between baseline and follow-up scans was 3.3 ± 1.7 years. CAC progression was associated with a significant linear increase in all types of coronary plaque and no plaque progression was observed in subjects without CAC progression. In multivariate analysis, annualized and normalized total plaque (β = 0.38; p < 0.001), noncalcified plaque (β = 0.35; p = 0.001), fibrous plaque (β = 0.56; p < 0.001), and calcified plaque (β = 0.63; p = 0.001) volume progression, but not fibrous-fatty (β = 0.03; p = 0.28) or low-attenuation plaque (β = 0.11; p = 0.1) progression, were independently associated with CAC progression. Plaque progression did not differ between the sexes. A significantly increased total and calcified plaque progression was observed in statin users. CONCLUSIONS In a clinical practice setting, progression of CAC was significantly associated with an increase in both calcified and noncalcified plaque volume, except fibrous-fatty and low-attenuation plaque. Serial CAC measurements may be helpful in determining the need for intensification of preventive treatment.
Collapse
Affiliation(s)
- Indre Ceponiene
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, California; Departments of Cardiology and Radiology, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rine Nakanishi
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, California.
| | - Kazuhiro Osawa
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, California
| | - Mitsuru Kanisawa
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, California
| | - Negin Nezarat
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, California
| | - Sina Rahmani
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, California
| | - Kendall Kissel
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, California
| | - Michael Kim
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, California
| | - Eranthi Jayawardena
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, California
| | - Alexander Broersen
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pieter Kitslaar
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Medis Medical Imaging Systems, Leiden, the Netherlands
| | - Matthew J Budoff
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, California
| |
Collapse
|
45
|
Orzan M, Dobra M, Chițu M. A Comparative Preliminary Study on CT Contrast Attenuation Gradient Versus Invasive FFR in Patients with Unstable Angina. JOURNAL OF CARDIOVASCULAR EMERGENCIES 2017. [DOI: 10.1515/jce-2017-0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The aim of this preliminary study was to assess the effectiveness of transluminal contrast attenuation gradient (TAG) determined by computed tomographic angiography (CTA), for the evaluation of the functional significance of coronary artery stenoses in patients with acute coronary syndromes produced by vulnerable coronary plaques, and to demonstrate the correlation between this new parameter and the vulnerability markers of the culprit lesions.
Material and methods: This is a preliminary pilot study on 10 patients with acute coronary syndromes – unstable angina type, who underwent CTA for the assessment of coronary lesions, followed by invasive angiography and the determination of fractional flow reserve (FFR) prior to a revascularization procedure. Patients were divided into 2 groups, according to their FFR values: Group 1 consisted of 6 patients with an FFR value <0.8 (functionally significant lesion), and Group 2 consisted of 4 patients who presented an FFR value >0.8 (functionally non-significant lesion).
Results: FFR values were 0.64 ± 0.07, 95% CI: 0.5–0.7 in Group 1, and 0.86 ± 0.05, 95% CI: 0.7–0.9 in Group 2. Plaques associated with an FFR<0.8 presented a higher amount of plaque volume (192.7 ± 199.7 mm3 vs. 42.1 ± 27.3 mm3, p = 0.1), necrotic core (66.7 ± 72.9 mm3 vs. 10.0 ± 9.3 mm3, p = 0.1), and fibro-fatty tissue (29.7 ± 37.4 mm3 vs. 6.2 ± 3.8 mm3, p = 0.2). At the same time, TAG significantly correlated with the presence of a functionally significant lesion. Coronary lesions associated with low FFR presented significantly higher values of TAG along the plaque as compared with lesions with FFR values >0.8 (TAG values 22.1 ± 5.8 HU vs. 11.7 ± 2.5 HU, p = 0.01). Linear regression identified a significant correlation between TAG and FFR values as a measure of functional significance of the lesion (r = 0.7, p = 0.01).
Conclusions: Contrast attenuation gradient along the culprit lesion, determined by CTA, correlates with the FFR values and with CT markers of plaque vulnerability, indicating that the presence of vulnerability features inside a coronary plaque could increase the functional significance of a coronary lesion.
Collapse
Affiliation(s)
- Marius Orzan
- Laboratory of Advanced Research in Multimodal Cardiac Imaging , University of Medicine and Pharmacy , Tîrgu Mureș , Romania
| | - Mihaela Dobra
- Laboratory of Advanced Research in Multimodal Cardiac Imaging , University of Medicine and Pharmacy , Tîrgu Mureș , Romania
- Department of Computational Imaging , Cardio Med Medical Center , Tîrgu Mureș , Romania
| | - Monica Chițu
- Laboratory of Advanced Research in Multimodal Cardiac Imaging , University of Medicine and Pharmacy , Tîrgu Mureș , Romania
| |
Collapse
|