1
|
Feghali J, Jackson CM. Therapeutic implications for the PD-1 axis in cerebrovascular injury. Neurotherapeutics 2025; 22:e00459. [PMID: 39368872 PMCID: PMC11840351 DOI: 10.1016/j.neurot.2024.e00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024] Open
Abstract
Since the discovery and characterization of the PD-1/PD-L pathway, mounting evidence has emerged regarding its role in regulating neuroinflammation following cerebrovascular injury. Classically, PD-L1 on antigen-presenting cells or tissues binds PD-1 on T cell surfaces resulting in T cell inhibition. In myeloid cells, PD-1 stimulation induces polarization of microglia and macrophages into an anti-inflammatory, restorative phenotype. The therapeutic potential of PD-1 agonism in ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage-related vasospasm, and traumatic brain injury rests on the notion of harnessing the immunomodulatory function of immune checkpoint pathways to temper the harmful effects of immune overactivation and secondary injury while promoting repair and recovery. Immune checkpoint agonism has greater specificity than the wider and non-specific anti-inflammatory effects of other agents, such as steroids. PD-1 agonism has already demonstrated success in clinical trials for rheumatoid arthritis and is being tested in other chronic inflammatory diseases. Further investigation of PD-1 agonism as a therapeutic strategy in cerebrovascular injury can help clarify the mechanisms underlying clinical benefit, develop drugs with optimal pharmacodynamic and pharmacokinetic properties, and mitigate unwanted side effects.
Collapse
Affiliation(s)
- James Feghali
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Tanner S, Zhou J, Bietar B, Lehmann C. Validation of a simplified model for subarachnoid hemorrhage in mice. Clin Hemorheol Microcirc 2024; 87:301-313. [PMID: 38701138 DOI: 10.3233/ch-231997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) represents a severe injury to the brain and is associated with a high mortality (40%). Several experimental SAH models are described in the literature requiring specialized equipment and a high degree of surgical expertise. Our goal was to validate a simplified, cost-effective model to permit future studies of SAH. METHODS SAH was induced by injection of homologous blood into the cisterna magna. Perfusion-fixation then perfusion of gelatinous India ink was performed. Brains and brainstems were collected and imaged for analysis of cerebral vasospasm. Triphenyl tetrazolium chloride (TTC) staining was used to analyze brain tissue cell death 24 hours following stroke. A composite neuroscore was utilized to assess SAH-related neurologic deficits. RESULTS Anterior cerebral artery and basilary artery diameters were significantly reduced at 24 hours post SAH induction. Middle cerebral artery diameter was also reduced; however, the results were not significant. TTC staining showed no infarcted tissue. Neuroscores were significantly lower in the SAH mice, indicating the presence of functional deficits. CONCLUSIONS This simplified model of SAH elicits pathological changes consistent with those described for more complex models in the literature. Therefore, it can be used in future preclinical studies examining the pathophysiology of SAH and novel treatment options.
Collapse
Affiliation(s)
- Sophie Tanner
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Bashir Bietar
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Christian Lehmann
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
Chai CZ, Ho UC, Kuo LT. Systemic Inflammation after Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:10943. [PMID: 37446118 DOI: 10.3390/ijms241310943] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is one of the most severe neurological disorders, with a high mortality rate and severe disabling functional sequelae. Systemic inflammation following hemorrhagic stroke may play an important role in mediating intracranial and extracranial tissue damage. Previous studies showed that various systemic inflammatory biomarkers might be useful in predicting clinical outcomes. Anti-inflammatory treatment might be a promising therapeutic approach for improving the prognosis of patients with aSAH. This review summarizes the complicated interactions between the nervous system and the immune system.
Collapse
Affiliation(s)
- Chang-Zhang Chai
- Department of Medical Education, National Taiwan University, School of Medicine, Taipei 100, Taiwan
| | - Ue-Cheung Ho
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
| | - Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
4
|
Quantification of human plasma metalloproteins in multiple sclerosis, ischemic stroke and healthy controls reveals an association of haptoglobin-hemoglobin complexes with age. PLoS One 2022; 17:e0262160. [PMID: 35020753 PMCID: PMC8754309 DOI: 10.1371/journal.pone.0262160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/16/2021] [Indexed: 01/22/2023] Open
Abstract
Advanced analytical methods play an important role in quantifying serum disease biomarkers. The problem of separating thousands of proteins can be reduced by analyzing for a ‘sub-proteome’, such as the ‘metalloproteome’, defined as all proteins that contain bound metals. We employed size exclusion chromatography (SEC) coupled to an inductively coupled plasma atomic emission spectrometer (ICP-AES) to analyze plasma from multiple sclerosis (MS) participants (n = 21), acute ischemic stroke (AIS) participants (n = 17) and healthy controls (n = 21) for Fe, Cu and Zn-metalloproteins. Using ANOVA analysis to compare the mean peak areas among the groups revealed no statistically significant differences for ceruloplasmin (p = 0.31), α2macroglobulin (p = 0.51) and transferrin (p = 0.31). However, a statistically significant difference was observed for the haptoglobin-hemoglobin (Hp-Hb) complex (p = 0.04), being driven by the difference between the control group and AIS (p = 0.012), but not with the MS group (p = 0.13), based on Dunnes test. A linear regression model for Hp-Hb complex with the groups now adjusted for age found no statistically significant differences between the groups (p = 0.95), but was suggestive for age (p = 0.057). To measure the strength of association between the Hp-Hb complex and age without possible modifications due to disease, we calculated the Spearman rank correlation in the healthy controls. The latter revealed a positive association (r = 0.39, 95% Confidence Interval = (-0.05, 0.83), which suggests that either the removal of Hp-Hb complexes from the blood circulation slows with age or that the release of Hb from red blood cells increases with age. We also observed that the Fe-peak corresponding to the Hp-Hb complex eluted ~100 s later in ~14% of all study samples, which was not correlated with age or disease diagnosis, but is consistent with the presence of the smaller Hp (1–1) isoform in 15% of the population.
Collapse
|
5
|
Simonato D, Borchert RJ, Vallee F, Joachim J, Civelli V, Cancian L, Houdart E, Labeyrie MA. Distribution of symptomatic cerebral vasospasm following subarachnoid hemorrhage assessed using cone-beam CT angiography. J Neurointerv Surg 2021; 14:1107-1111. [PMID: 34740985 DOI: 10.1136/neurintsurg-2021-018080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/25/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND PURPOSE Cone-beam CT angiography (CB-CTA) provides a three-dimensional spatial resolution which is, so far, unmatched in clinical practice compared with other conventional techniques such as two-dimensional digital subtracted angiography. We aimed to assess the distribution of symptomatic cerebral vasospasm following aneurysmal subarachnoid hemorrhage (aSAH) using CB-CTA. METHODS 30 consecutive patients with aSAH undergoing vasospasm percutaneous balloon angioplasty (PBA) were recruited and underwent CB-CTA in this single-center prospective cohort series. Intracranial arteries were systematically analyzed by two independent observers from the large trunks to the distal cortical branches and perforators using a high-resolution reconstruction protocol. Intermediate and severe cerebral vasospasm was defined as 30-50% and >50% narrowing in the diameter of the vessel, respectively. RESULTS 35 arterial cervical artery territories were analyzed, of which 80% were associated with clinical or radiological signs of delayed cerebral ischemia. The median spatial resolution was 150 µm (range 100-250 µm). Intermediate or severe vasospasm was observed in the proximal (86%, 95% CI 74% to 97%), middle (89%, 95% CI 78% to 99%), and distal (60%, 95% CI 44% to 76%) segments of the large trunks, as well as the cortical branches (11%, 95% CI 1% to 22%). No vasospasm was observed in basal ganglia or cortical perforators, or in arteries smaller than 900 µm. Vasospasm was more severe in middle or distal segments compared with proximal segments in 43% (95% CI 26% to 59%) of cases. CONCLUSIONS Our study demonstrated that symptomatic cerebral vasospasm following aSAH did not involve arteries smaller than 900 µm, and frequently predominated in middle or distal segments. These results offer new insights into the potential management options for vasospasm using PBA.
Collapse
Affiliation(s)
- Davide Simonato
- Neuroradiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robin Jacob Borchert
- Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Neurology, Lister Hospital, Stevenage, UK
| | - Fabrice Vallee
- INSERM U942, PARIS, France.,Intensive Care Unit Department, Groupe Hospitalier Saint-Louis Lariboisiere et Fernand-Widal, Paris, France
| | - Jona Joachim
- INSERM U942, PARIS, France.,Intensive Care Unit Department, Groupe Hospitalier Saint-Louis Lariboisiere et Fernand-Widal, Paris, France
| | | | - Luca Cancian
- Radiology, Azienda ULSS 6 Euganea, Padova, Italy
| | | | - Marc-Antoine Labeyrie
- INSERM U942, PARIS, France .,Neuroradiology, GH Lariboisiere Fernand-Widal, Paris, France
| |
Collapse
|
6
|
Dodd WS, Laurent D, Dumont AS, Hasan DM, Jabbour PM, Starke RM, Hosaka K, Polifka AJ, Hoh BL, Chalouhi N. Pathophysiology of Delayed Cerebral Ischemia After Subarachnoid Hemorrhage: A Review. J Am Heart Assoc 2021; 10:e021845. [PMID: 34325514 PMCID: PMC8475656 DOI: 10.1161/jaha.121.021845] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/09/2021] [Indexed: 01/23/2023]
Abstract
Delayed cerebral ischemia is a major predictor of poor outcomes in patients who suffer subarachnoid hemorrhage. Treatment options are limited and often ineffective despite many years of investigation and clinical trials. Modern advances in basic science have produced a much more complex, multifactorial framework in which delayed cerebral ischemia is better understood and novel treatments can be developed. Leveraging this knowledge to improve outcomes, however, depends on a holistic understanding of the disease process. We conducted a review of the literature to analyze the current state of investigation into delayed cerebral ischemia with emphasis on the major themes that have emerged over the past decades. Specifically, we discuss microcirculatory dysfunction, glymphatic impairment, inflammation, and neuroelectric disruption as pathological factors in addition to the canonical focus on cerebral vasospasm. This review intends to give clinicians and researchers a summary of the foundations of delayed cerebral ischemia pathophysiology while also underscoring the interactions and interdependencies between pathological factors. Through this overview, we also highlight the advances in translational studies and potential future therapeutic opportunities.
Collapse
Affiliation(s)
- William S. Dodd
- Department of NeurosurgeryCollege of MedicineUniversity of FloridaGainesvilleFL
| | - Dimitri Laurent
- Department of NeurosurgeryCollege of MedicineUniversity of FloridaGainesvilleFL
| | - Aaron S. Dumont
- Department of Neurological SurgerySchool of MedicineTulane UniversityNew OrleansLA
| | - David M. Hasan
- Department of NeurosurgeryCarver College of MedicineUniversity of IowaIowa CityIA
| | - Pascal M. Jabbour
- Department of Neurological SurgerySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPA
| | - Robert M. Starke
- Department of Neurological SurgeryMiller School of MedicineUniversity of MiamiFL
| | - Koji Hosaka
- Department of NeurosurgeryCollege of MedicineUniversity of FloridaGainesvilleFL
| | - Adam J. Polifka
- Department of NeurosurgeryCollege of MedicineUniversity of FloridaGainesvilleFL
| | - Brian L. Hoh
- Department of NeurosurgeryCollege of MedicineUniversity of FloridaGainesvilleFL
| | - Nohra Chalouhi
- Department of NeurosurgeryCollege of MedicineUniversity of FloridaGainesvilleFL
| |
Collapse
|
7
|
Jackson CM, Choi J, Routkevitch D, Pant A, Saleh L, Ye X, Caplan JM, Huang J, McDougall CG, Pardoll DM, Brem H, Tamargo RJ, Lim M. PD-1+ Monocytes Mediate Cerebral Vasospasm Following Subarachnoid Hemorrhage. Neurosurgery 2021; 88:855-863. [PMID: 33370819 DOI: 10.1093/neuros/nyaa495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cerebral vasospasm is a major source of morbidity and mortality following aneurysm rupture and has limited treatment options. OBJECTIVE To evaluate the role of programmed death-1 (PD-1) in cerebral vasospasm. METHODS Endovascular internal carotid artery perforation (ICAp) was used to induce cerebral vasospasm in mice. To evaluate the therapeutic potential of targeting PD-1, programmed death ligand-1 (PD-L1) was administered 1 h after ICAp and vasospasm was measured histologically at the level of the ICA bifurcation bilaterally. PD-1 expressing immune cell populations were evaluated by flow cytometry. To correlate these findings to patients and evaluate the potential of PD-1 as a biomarker, monocytes were isolated from the peripheral blood and analyzed by flow cytometry in a cohort of patients with ruptured cerebral aneurysms. The daily frequency of PD-1+ monocytes in the peripheral blood was correlated to transcranial Doppler velocities as well as clinical and radiographic vasospasm. RESULTS We found that PD-L1 administration prevented cerebral vasospasm by inhibiting ingress of activated Ly6c+ and CCR2+ monocytes into the brain. Human correlative studies confirmed the presence of PD-1+ monocytes in the peripheral blood of patients with ruptured aneurysms and the frequency of these cells corresponded with cerebral blood flow velocities and clinical vasospasm. CONCLUSION Our results identify PD-1+ monocytes as mediators of cerebral vasospasm and support PD-1 agonism as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John Choi
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Denis Routkevitch
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ayush Pant
- The Bloomberg∼Kimmel Institute for Immunotherapy, The Sidney Kimmel Comprehensive Cancer Center
| | - Laura Saleh
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xiaobu Ye
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Justin M Caplan
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Judy Huang
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cameron G McDougall
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Drew M Pardoll
- The Bloomberg∼Kimmel Institute for Immunotherapy, The Sidney Kimmel Comprehensive Cancer Center
| | - Henry Brem
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rafael J Tamargo
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Lim
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
Monocyte-based inflammatory indices predict outcomes following aneurysmal subarachnoid hemorrhage. Neurosurg Rev 2021; 44:3499-3507. [PMID: 33839947 DOI: 10.1007/s10143-021-01525-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
The contribution of specific immune cell populations to the post-hemorrhagic inflammatory response in aneurysmal subarachnoid hemorrhage (aSAH) and correlations with clinical outcomes, such as vasospasm and functional status, remains unclear. We aimed to compare the predictive value of leukocyte ratios that include monocytes as compared to the neutrophil-to-lymphocyte ratio (NLR) in aSAH. A prospectively accrued database of consecutive patients presenting to our institution with aSAH between January 2013 and December 2018 was used. Patients with signs and symptoms of infection (day 1-3) were excluded. Admission values of the NLR, monocyte-neutrophil-to-lymphocyte ratio (M-NLR), and lymphocyte-to-monocyte ratio (LMR) were calculated. Associations with functional status, the primary outcome, and vasospasm were evaluated using univariable and multivariable logistic regression analyses. In the cohort of 234 patients with aSAH, the M-NLR and LMR, but not the NLR, were significantly associated with poor functional status (modified Rankin scale > 2) at 12-18 months following discharge (p = 0.001, p = 0.023, p = 0.161, respectively). The area under the curve for predicting poor functional status was significantly lower for the NLR (0.543) compared with the M-NLR (0.603, p = 0.024) and LMR (0.608, p = 0.040). The M-NLR (OR = 1.01 [1.01-1.02]) and LMR (OR = 0.88 [0.78-0.99]) were independently associated with poor functional status while controlling for age, hypertension, Fisher grade, and baseline clinical status. The LMR was significantly associated with vasospasm (OR = 0.84 [0.70-0.99]) while adjusting for age, hypertension, Fisher grade, aneurysm size, and current smoking. Inflammatory indices that incorporate monocytes (e.g., M-NLR and LMR), but not those that include only neutrophils, predict outcomes after aSAH.
Collapse
|
9
|
Saripalli M, Tan D, Chandra RV, Lai LT. Predictive Relevance of Early Temperature Elevation on the Risk of Delayed Cerebral Ischemia Development Following Aneurysmal Subarachnoid Hemorrhage. World Neurosurg 2021; 150:e474-e481. [PMID: 33722716 DOI: 10.1016/j.wneu.2021.03.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/07/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Fever in aneurysmal subarachnoid hemorrhage (aSAH) has been associated with delayed cerebral ischemia (DCI), but its relevance in risk stratification has not been explored. This study investigated whether early temperature elevation following aSAH predicts impending clinical deterioration caused by DCI. METHODS Relevant cases were identified from a prospectively maintained database for consecutive patients with aSAH treated at our center between July 2015 and January 2020. Temperature readings obtained every 2 hours for individual patients from admission through day 14 were recorded and analyzed. Demographic, clinical, treatment, and angiographic data were extracted from the electronic medical record. The primary end point was the occurrence of DCI (clinical and radiographic vasospasm). Multivariate logistic regression analyses were performed to account for patient age, smoking status, and VASOGRADE classification. RESULTS The study included 175 patients (124 women) with aSAH. The median age at diagnosis was 55.4 years (range, 20.5-87.2 years). Clinical DCI occurred in 58 patients; 2 (1.1%) responded to hemodynamic augmentation, and 56 (32.0%) required intra-arterial therapy. Temperature graphs showed a marked divergence on day 4 between clinical DCI and non-DCI groups (1.12°C ± 0.15°C and 0.76°C ± 0.08°C, respectively, P = 0.007). Patients with temperature elevation ≥2.5°C on day 4 or 5 compared with their admission temperature were more likely to clinically deteriorate owing to DCI (odds ratio 4.55, 95% confidence interval 1.31-15.77, P = 0.017). CONCLUSIONS Temperature elevation of ≥2.5°C on day 4 or 5 compared with baseline suggests a greater risk of clinical deterioration owing to DCI.
Collapse
Affiliation(s)
- Manasa Saripalli
- Department of Clinical Medicine and Surgery, Melbourne University, University of Melbourne, Parkville, Victoria, Australia
| | - Darius Tan
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia; Department of Neurosurgery, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Ronil V Chandra
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia; NeuroInterventional Radiology, Department of Imaging, Monash Medical Centre, Clayton, Victoria, Australia
| | - Leon T Lai
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia; Department of Neurosurgery, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
10
|
Chan AY, Choi EH, Yuki I, Suzuki S, Golshani K, Chen JW, Hsu FP. Cerebral vasospasm after subarachnoid hemorrhage: Developing treatments. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
11
|
Kim JE, Patel K, Jackson CM. The potential for immune checkpoint modulators in cerebrovascular injury and inflammation. Expert Opin Ther Targets 2021; 25:101-113. [PMID: 33356658 DOI: 10.1080/14728222.2021.1869213] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Neuroinflammation has been linked to poor neurologic and functional outcomes in many cerebrovascular disorders. Immune checkpoints are upregulated in the setting of traumatic brain injury, intracerebral hemorrhage, ischemic stroke, central nervous systems vasculitis, and post-hemorrhagic vasospasm, and are potential mediators of pathologic inflammation. Burgeoning evidence suggests that immune checkpoint modulation is a promising treatment strategy to decrease immune cell recruitment, cytokine secretion, brain edema, and neurodegeneration.Areas covered: This review discusses the role of immune checkpoints in neuroinflammation, and the potential for therapeutic immune checkpoint modulation in inflammatory cerebrovascular disorders. A search of Pubmed and clinicaltrials.gov was performed to find relevant literature published within the last 50 years.Expert opinion: The clinical success of immune-activating checkpoint modulators in human cancers has shown the immense clinical potential of checkpoint-based immunotherapy. Given that checkpoint blockade can also precipitate a pathologic pro-inflammatory or autoimmune response, it is plausible that these pathways may also be targeted to quell aberrant inflammation. A limited but growing number of studies suggest that immune checkpoints play a critical role in regulating the immune response in the central nervous system in a variety of contexts, and that immune-deactivating checkpoint modulators may be a promising treatment strategy for acute and chronic neuroinflammation in cerebrovascular disorders.
Collapse
Affiliation(s)
- Jennifer E Kim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kisha Patel
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Matsumura K, Kumar TP, Guddanti T, Yan Y, Blackburn SL, McBride DW. Neurobehavioral Deficits After Subarachnoid Hemorrhage in Mice: Sensitivity Analysis and Development of a New Composite Score. J Am Heart Assoc 2020; 8:e011699. [PMID: 30971151 PMCID: PMC6507191 DOI: 10.1161/jaha.118.011699] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Because of the failure of numerous clinical trials, various recommendations have been made to improve the usefulness of preclinical studies. Specifically, the STAIR (Stroke Therapy Academic Industry Roundtable) recommendations highlighted functional outcome as a critical measure. Recent reviews of experimental subarachnoid hemorrhage (SAH) studies have brought to light the numerous neurobehavioral scoring systems that are used in preclinical SAH studies. To gain insight into the utility of these scoring systems, as well as to identify a scoring system that best captures the deficits caused by SAH in mice, we designed the current study. Methods and Results Adult male C57BL/6J mice were used. One cohort of mice was randomly allocated to either sham or SAH and had functional testing performed on days 1 to 3 post‐SAH using the modified Bederson Score, Katz Score, Garcia Neuroscore, and Parra Neuroscore, as well as 21 individual subtests. A new composite neuroscore was developed using the 8 most diagnostically accurate subtests. To validate the use of the developed composite neuroscore, another cohort of mice was randomly assigned to either the sham or SAH group and neurobehavior was evaluated on days 1 to 3, 5, and 7 after injury. Receiver operating characteristic curves were used to analyze the diagnostic accuracy of each scoring system, as well as the subtests. Of the 4 published scoring systems, the Parra Neuroscore was diagnostically accurate for SAH injury in mice versus the modified Bederson and Katz Scores, but not the Garcia Neuroscore. However, the newly developed composite neuroscore was found to be statistically more diagnostically accurate than even the Parra Neuroscore. Conclusions The findings of this study promote use of the newly developed composite neuroscore for experimental SAH studies in mice.
Collapse
Affiliation(s)
- Kanako Matsumura
- 1 The Vivian L. Smith Department of Neurosurgery McGovern Medical School The University of Texas Health Science Center at Houston Houston TX
| | - T Peeyush Kumar
- 1 The Vivian L. Smith Department of Neurosurgery McGovern Medical School The University of Texas Health Science Center at Houston Houston TX
| | - Tejesh Guddanti
- 1 The Vivian L. Smith Department of Neurosurgery McGovern Medical School The University of Texas Health Science Center at Houston Houston TX
| | - Yuanqing Yan
- 1 The Vivian L. Smith Department of Neurosurgery McGovern Medical School The University of Texas Health Science Center at Houston Houston TX
| | - Spiros L Blackburn
- 1 The Vivian L. Smith Department of Neurosurgery McGovern Medical School The University of Texas Health Science Center at Houston Houston TX
| | - Devin W McBride
- 1 The Vivian L. Smith Department of Neurosurgery McGovern Medical School The University of Texas Health Science Center at Houston Houston TX
| |
Collapse
|
13
|
Khey KMW, Huard A, Mahmoud SH. Inflammatory Pathways Following Subarachnoid Hemorrhage. Cell Mol Neurobiol 2020; 40:675-693. [PMID: 31808009 PMCID: PMC11448815 DOI: 10.1007/s10571-019-00767-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is an acute cerebrovascular emergency resulting from the rupture of a brain aneurysm. Despite only accounting for 5% of all strokes, SAH imposes a significant health burden on society due to its relatively young age at onset. Those who survive the initial bleed are often afflicted with severe disabilities thought to result from delayed cerebral ischemia (DCI). Consequently, elucidating the underlying mechanistic pathways implicated in DCI development following SAH remains a priority. Neuroinflammation has recently been implicated as a promising new theory for the development of SAH complications. However, despite this interest, clinical trials have failed to provide consistent evidence for the use of anti-inflammatory agents in SAH patients. This may be explained by the complexity of SAH as a plethora of inflammatory pathways have been shown to be activated in the disease. By determining how these pathways may overlap and interact, we hope to better understand the developmental processes of SAH complications and how to prevent them. The goal of this review is to provide insight into the available evidence regarding the molecular pathways involved in the development of inflammation following SAH and how SAH complications may arise as a result of these inflammatory pathways.
Collapse
Affiliation(s)
- Kevin Min Wei Khey
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Alec Huard
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Sherif Hanafy Mahmoud
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
14
|
van Lieshout JH, Marbacher S, Muhammad S, Boogaarts HD, Bartels RHMA, Dibué M, Steiger HJ, Hänggi D, Kamp MA. Proposed Definition of Experimental Secondary Ischemia for Mouse Subarachnoid Hemorrhage. Transl Stroke Res 2020; 11:1165-1170. [PMID: 32152960 PMCID: PMC7496000 DOI: 10.1007/s12975-020-00796-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 01/01/2023]
Abstract
Inconsistency in outcome parameters for delayed cerebral ischemia (DCI) makes it difficult to compare results between mouse studies, in the same way inconsistency in outcome parameters in human studies has for long obstructed adequate comparison. The absence of an established definition may in part be responsible for the failed translational results. The present article proposes a standardized definition for DCI in experimental mouse models, which can be used as outcome measure in future animal studies. We used a consensus-building approach to propose a definition for "experimental secondary ischemia" (ESI) in experimental mouse subarachnoid hemorrhage that can be used as an outcome measure in preclinical studies. We propose that the outcome measure should be as follows: occurrence of focal neurological impairment or a general neurological impairment compared with a control group and that neurological impairment should occur secondarily following subarachnoid hemorrhage (SAH) induction compared with an initial assessment following SAH induction. ESI should not be used if the condition can be explained by general anesthesia or if other means of assessments sufficiently explain function impairment. If neurological impairment cannot reliably be evaluated, due to scientific setup. Verification of a significant secondary impairment of the cerebral perfusion compared with a control group is mandatory. This requires longitudinal examination in the same animal. The primary aim is that ESI should be distinguished from intervention-related ischemia or neurological deficits, in order establish a uniform definition for experimental SAH in mice that is in alignment with outcome measures in human studies.
Collapse
Affiliation(s)
- Jasper Hans van Lieshout
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany. .,Department of Neurosurgery, Radboudumc Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, the Netherlands.
| | - Serge Marbacher
- Department of Neurosurgery c/o Neuro Research Office, Kantonsspital Aarau, Tellstrasse 1, 5001, Aarau, Switzerland
| | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany
| | - Hieronymus D Boogaarts
- Department of Neurosurgery, Radboudumc Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, the Netherlands
| | - Ronald H M A Bartels
- Department of Neurosurgery, Radboudumc Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, the Netherlands
| | - Maxine Dibué
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany
| | - Hans-Jakob Steiger
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany
| | - Marcel A Kamp
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany
| |
Collapse
|
15
|
Morton MJ, Hostettler IC, Kazmi N, Alg VS, Bonner S, Brown MM, Durnford A, Gaastra B, Garland P, Grieve J, Kitchen N, Walsh D, Zolnourian A, Houlden H, Gaunt TR, Bulters DO, Werring DJ, Galea I. Haptoglobin genotype and outcome after aneurysmal subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 2020; 91:305-313. [PMID: 31937585 PMCID: PMC7116595 DOI: 10.1136/jnnp-2019-321697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/30/2019] [Accepted: 12/11/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE After aneurysmal subarachnoid haemorrhage (aSAH), extracellular haemoglobin (Hb) in the subarachnoid space is bound by haptoglobin, neutralising Hb toxicity and helping its clearance. Two exons in the HP gene (encoding haptoglobin) exhibit copy number variation (CNV), giving rise to HP1 and HP2 alleles, which influence haptoglobin expression level and possibly haptoglobin function. We hypothesised that the HP CNV associates with long-term outcome beyond the first year after aSAH. METHODS The HP CNV was typed using quantitative PCR in 1299 aSAH survivors in the Genetics and Observational Subarachnoid Haemorrhage (GOSH) Study, a retrospective multicentre cohort study with a median follow-up of 18 months. To investigate mediation of the HP CNV effect by haptoglobin expression level, as opposed to functional differences, we used rs2000999, a single nucleotide polymorphism associated with haptoglobin expression independent of the HP CNV. Outcome was assessed using modified Rankin and Glasgow Outcome Scores. SAH volume was dichotomised on the Fisher grade. Haemoglobin-haptoglobin complexes were measured in cerebrospinal fluid (CSF) of 44 patients with aSAH and related to the HP CNV. RESULTS The HP2 allele associated with a favourable long-term outcome after high-volume but not low-volume aSAH (multivariable logistic regression). However rs2000999 did not predict outcome. The HP2 allele associated with lower CSF haemoglobin-haptoglobin complex levels. The CSF Hb concentration after high-volume and low-volume aSAH was, respectively, higher and lower than the Hb-binding capacity of CSF haptoglobin. CONCLUSION The HP2 allele carries a favourable long-term prognosis after high-volume aSAH. Haptoglobin and the Hb clearance pathway are therapeutic targets after aSAH.
Collapse
Affiliation(s)
- Matthew J Morton
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - Isabel C Hostettler
- Stroke Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Nabila Kazmi
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Varinder S Alg
- Stroke Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Stephen Bonner
- Department of Anaesthesia, James Cook University Hospital, Middlesbrough, UK
| | - Martin M Brown
- Stroke Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Andrew Durnford
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Benjamin Gaastra
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Patrick Garland
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - Joan Grieve
- Department of Neurosurgery, The National Hospital of Neurology and Neurosurgery, London, UK
| | - Neil Kitchen
- Department of Neurosurgery, The National Hospital of Neurology and Neurosurgery, London, UK
| | - Daniel Walsh
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Ardalan Zolnourian
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Henry Houlden
- Neurogenetics Laboratory, The National Hospital of Neurology and Neurosurgery, London, UK
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Diederik O Bulters
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - David J Werring
- Stroke Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ian Galea
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | | |
Collapse
|
16
|
Kerchberger VE, Bastarache JA, Shaver CM, Nagata H, McNeil JB, Landstreet SR, Putz ND, Yu WK, Jesse J, Wickersham NE, Sidorova TN, Janz DR, Parikh CR, Siew ED, Ware LB. Haptoglobin-2 variant increases susceptibility to acute respiratory distress syndrome during sepsis. JCI Insight 2019; 4:131206. [PMID: 31573976 DOI: 10.1172/jci.insight.131206] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/20/2019] [Indexed: 01/15/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an inflammatory lung disorder that frequently complicates critical illness and commonly occurs in sepsis. Although numerous clinical and environmental risk factors exist, not all patients with risk factors develop ARDS, raising the possibility of genetic underpinnings for ARDS susceptibility. We have previously reported that circulating cell-free hemoglobin (CFH) is elevated during sepsis, and higher levels predict worse outcomes. Excess CFH is rapidly scavenged by haptoglobin (Hp). A common HP genetic variant, HP2, is unique to humans and is common in many populations worldwide. HP2 haptoglobin has reduced ability to inhibit CFH-mediated inflammation and oxidative stress compared with the alternative HP1. We hypothesized that HP2 increases ARDS susceptibility during sepsis when plasma CFH levels are elevated. In a murine model of sepsis with elevated CFH, transgenic mice homozygous for Hp2 had increased lung inflammation, pulmonary vascular permeability, lung apoptosis, and mortality compared with wild-type mice. We then tested the clinical relevance of our findings in 496 septic critically ill adults, finding that HP2 increased ARDS susceptibility after controlling for clinical risk factors and plasma CFH. These observations identify HP2 as a potentially novel genetic ARDS risk factor during sepsis and may have important implications in the study and treatment of ARDS.
Collapse
Affiliation(s)
- V Eric Kerchberger
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine.,Department of Biomedical Informatics
| | - Julie A Bastarache
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine.,Department of Cell and Developmental Biology, and.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ciara M Shaver
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | - Hiromasa Nagata
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - J Brennan McNeil
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | - Stuart R Landstreet
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | - Nathan D Putz
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | - Wen-Kuang Yu
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine.,Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jordan Jesse
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | - Nancy E Wickersham
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | - Tatiana N Sidorova
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | - David R Janz
- Section of Pulmonary and Critical Care Medicine, Louisiana State University School of Medicine, New Orleans, Louisiana, USA
| | - Chirag R Parikh
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Edward D Siew
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
17
|
Robicsek SA, Bhattacharya A, Rabai F, Shukla K, Doré S. Blood-Related Toxicity after Traumatic Brain Injury: Potential Targets for Neuroprotection. Mol Neurobiol 2019; 57:159-178. [PMID: 31617072 DOI: 10.1007/s12035-019-01766-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Emergency visits, hospitalizations, and deaths due to traumatic brain injury (TBI) have increased significantly over the past few decades. While the primary early brain trauma is highly deleterious to the brain, the secondary injury post-TBI is postulated to significantly impact mortality. The presence of blood, particularly hemoglobin, and its breakdown products and key binding proteins and receptors modulating their clearance may contribute significantly to toxicity. Heme, hemin, and iron, for example, cause membrane lipid peroxidation, generate reactive oxygen species, and sensitize cells to noxious stimuli resulting in edema, cell death, and increased morbidity and mortality. A wide range of other mechanisms such as the immune system play pivotal roles in mediating secondary injury. Effective scavenging of all of these pro-oxidant and pro-inflammatory metabolites as well as controlling maladaptive immune responses is essential for limiting toxicity and secondary injury. Hemoglobin metabolism is mediated by key molecules such as haptoglobin, heme oxygenase, hemopexin, and ferritin. Genetic variability and dysfunction affecting these pathways (e.g., haptoglobin and heme oxygenase expression) have been implicated in the difference in susceptibility of individual patients to toxicity and may be target pathways for potential therapeutic interventions in TBI. Ongoing collaborative efforts are required to decipher the complexities of blood-related toxicity in TBI with an overarching goal of providing effective treatment options to all patients with TBI.
Collapse
Affiliation(s)
- Steven A Robicsek
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA. .,Departments of Neurosurgery, Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Ayon Bhattacharya
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA.,Department of Pharmacology, KPC Medical College, West Bengal University of Health Sciences, Kolkata, West Bengal, India
| | - Ferenc Rabai
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Krunal Shukla
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA. .,Departments of Neurology, Psychiatry, Pharmaceutics and Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
18
|
Griffiths S, Clark J, Adamides AA, Ziogas J. The role of haptoglobin and hemopexin in the prevention of delayed cerebral ischaemia after aneurysmal subarachnoid haemorrhage: a review of current literature. Neurosurg Rev 2019; 43:1273-1288. [PMID: 31493061 DOI: 10.1007/s10143-019-01169-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/23/2019] [Accepted: 08/26/2019] [Indexed: 01/01/2023]
Abstract
Delayed cerebral ischaemia (DCI) after aneurysmal subarachnoid haemorrhage (aSAH) is a major cause of mortality and morbidity. The pathophysiology of DCI after aSAH is thought to involve toxic mediators released from lysis of red blood cells within the subarachnoid space, including free haemoglobin and haem. Haptoglobin and hemopexin are endogenously produced acute phase proteins that are involved in the clearance of these toxic mediators. The aim of this review is to investigate the pathophysiological mechanisms involved in DCI and the role of both endogenous as well as exogenously administered haptoglobin and hemopexin in the prevention of DCI.
Collapse
Affiliation(s)
- Sean Griffiths
- Department of Neurosurgery, Royal Melbourne Hospital, 300 Grattan St, Parkville, 3050, Australia. .,Western Hospital, 160 Gordon St, Footscray, 3011, Australia.
| | - Jeremy Clark
- Department of Neurosurgery, Royal Melbourne Hospital, 300 Grattan St, Parkville, 3050, Australia
| | - Alexios A Adamides
- Department of Neurosurgery, Royal Melbourne Hospital, 300 Grattan St, Parkville, 3050, Australia
| | - James Ziogas
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, 3010, Australia
| |
Collapse
|
19
|
Abstract
Haemoglobin is released into the CNS during the breakdown of red blood cells after intracranial bleeding. Extracellular free haemoglobin is directly neurotoxic. Haemoglobin scavenging mechanisms clear haemoglobin and reduce toxicity; these mechanisms include erythrophagocytosis, haptoglobin binding of haemoglobin, haemopexin binding of haem and haem oxygenase breakdown of haem. However, the capacity of these mechanisms is limited in the CNS, and they easily become overwhelmed. Targeting of haemoglobin toxicity and scavenging is, therefore, a rational therapeutic strategy. In this Review, we summarize the neurotoxic mechanisms of extracellular haemoglobin and the peculiarities of haemoglobin scavenging pathways in the brain. Evidence for a role of haemoglobin toxicity in neurological disorders is discussed, with a focus on subarachnoid haemorrhage and intracerebral haemorrhage, and emerging treatment strategies based on the molecular pathways involved are considered. By focusing on a fundamental biological commonality between diverse neurological conditions, we aim to encourage the application of knowledge of haemoglobin toxicity and scavenging across various conditions. We also hope that the principles highlighted will stimulate research to explore the potential of the pathways discussed. Finally, we present a consensus opinion on the research priorities that will help to bring about clinical benefits.
Collapse
|
20
|
Gaastra B, Ren D, Alexander S, Bennett ER, Bielawski DM, Blackburn SL, Borsody MK, Doré S, Galea J, Garland P, He T, Iihara K, Kawamura Y, Leclerc JL, Meschia JF, Pizzi MA, Tamargo RJ, Yang W, Nyquist PA, Bulters DO, Galea I. Haptoglobin genotype and aneurysmal subarachnoid hemorrhage: Individual patient data analysis. Neurology 2019; 92:e2150-e2164. [PMID: 30952792 DOI: 10.1212/wnl.0000000000007397] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/04/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To perform an individual patient-level data (IPLD) analysis and to determine the relationship between haptoglobin (HP) genotype and outcomes after aneurysmal subarachnoid hemorrhage (aSAH). METHODS The primary outcome was favorable outcome on the modified Rankin Scale or Glasgow Outcome Scale up to 12 months after ictus. The secondary outcomes were occurrence of delayed ischemic neurologic deficit, radiologic infarction, angiographic vasospasm, and transcranial Doppler evidence of vasospasm. World Federation of Neurological Surgeons (WFNS) scale, Fisher grade, age, and aneurysmal treatment modality were covariates for both primary and secondary outcomes. As preplanned, a 2-stage IPLD analysis was conducted, followed by these sensitivity analyses: (1) unadjusted; (2) exclusion of unpublished studies; (3) all permutations of HP genotypes; (4) sliding dichotomy; (5) ordinal regression; (6) 1-stage analysis; (7) exclusion of studies not in Hardy-Weinberg equilibrium (HWE); (8) inclusion of studies without the essential covariates; (9) inclusion of additional covariates; and (10) including only covariates significant in univariate analysis. RESULTS Eleven studies (5 published, 6 unpublished) totaling 939 patients were included. Overall, the study population was in HWE. Follow-up times were 1, 3, and 6 months for 355, 516, and 438 patients. HP genotype was not associated with any primary or secondary outcome. No trends were observed. When taken through the same analysis, higher age and WFNS scale were associated with an unfavorable outcome as expected. CONCLUSION This comprehensive IPLD analysis, carefully controlling for covariates, refutes previous studies showing that HP1-1 associates with better outcome after aSAH.
Collapse
Affiliation(s)
- Ben Gaastra
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Dianxu Ren
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sheila Alexander
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ellen R Bennett
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Dawn M Bielawski
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Spiros L Blackburn
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mark K Borsody
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sylvain Doré
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - James Galea
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Patrick Garland
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tian He
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Koji Iihara
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yoichiro Kawamura
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jenna L Leclerc
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - James F Meschia
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael A Pizzi
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rafael J Tamargo
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Wuyang Yang
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Paul A Nyquist
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Diederik O Bulters
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ian Galea
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
21
|
Role of Apolipoprotein E Genotypes in Aneurysmal Subarachnoid Hemorrhage: Susceptibility, Complications, and Prognosis. World Neurosurg 2018; 118:e666-e676. [DOI: 10.1016/j.wneu.2018.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/01/2018] [Accepted: 07/03/2018] [Indexed: 12/20/2022]
|
22
|
Barrow JW, Turan N, Wangmo P, Roy AK, Pradilla G. The role of inflammation and potential use of sex steroids in intracranial aneurysms and subarachnoid hemorrhage. Surg Neurol Int 2018; 9:150. [PMID: 30105144 PMCID: PMC6080146 DOI: 10.4103/sni.sni_88_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
Background Aneurysmal subarachnoid hemorrhage (aSAH) continues to be a devastating neurological condition with a high risk of associated morbidity and mortality. Inflammation has been shown to increase the risk of complications associated with aSAH such as vasospasm and brain injury in animal models and humans. The goal of this review is to discuss the inflammatory mechanisms of aneurysm formation, rupture and vasospasm and explore the role of sex hormones in the inflammatory response to aSAH. Methods A literature review was performed using PubMed using the following search terms: "intracranial aneurysm," "cerebral aneurysm," "dihydroepiandrosterone sulfate" "estrogen," "hormone replacement therapy," "inflammation," "oral contraceptive," "progesterone," "sex steroids," "sex hormones" "subarachnoid hemorrhage," "testosterone." Only studies published in English language were included in the review. Results Studies have shown that administration of sex hormones such as progesterone and estrogen at early stages in the inflammatory cascade can lower the risk and magnitude of subsequent complications. The exact mechanism by which these hormones act on the brain, as well as their role in the inflammatory cascade is not fully understood. Moreover, conflicting results have been published on the effect of hormone replacement therapy in humans. This review will scrutinize the variations in these studies to provide a more detailed understanding of sex hormones as potential therapeutic agents for intracranial aneurysms and aSAH. Conclusion Inflammation may play a role in the pathogenesis of intracranial aneurysm formation and subarachnoid hemorrhage, and administration of sex hormones as anti-inflammatory agents has been associated with improved functional outcome in experimental models. Further studies are needed to determine the therapeutic role of these hormones in the intracranial aneurysms and aSAH.
Collapse
Affiliation(s)
- Jack W Barrow
- Cerebrovascular Research Laboratory, Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA.,Mercer University School of Medicine, Savannah, Georgia, USA
| | - Nefize Turan
- Cerebrovascular Research Laboratory, Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Pasang Wangmo
- Cerebrovascular Research Laboratory, Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anil K Roy
- Cerebrovascular Research Laboratory, Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gustavo Pradilla
- Cerebrovascular Research Laboratory, Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Leclerc JL, Garcia JM, Diller MA, Carpenter AM, Kamat PK, Hoh BL, Doré S. A Comparison of Pathophysiology in Humans and Rodent Models of Subarachnoid Hemorrhage. Front Mol Neurosci 2018; 11:71. [PMID: 29623028 PMCID: PMC5875105 DOI: 10.3389/fnmol.2018.00071] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/20/2018] [Indexed: 01/03/2023] Open
Abstract
Non-traumatic subarachnoid hemorrhage (SAH) affects an estimated 30,000 people each year in the United States, with an overall mortality of ~30%. Most cases of SAH result from a ruptured intracranial aneurysm, require long hospital stays, and result in significant disability and high fatality. Early brain injury (EBI) and delayed cerebral vasospasm (CV) have been implicated as leading causes of morbidity and mortality in these patients, necessitating intense focus on developing preclinical animal models that replicate clinical SAH complete with delayed CV. Despite the variety of animal models currently available, translation of findings from rodent models to clinical trials has proven especially difficult. While the explanation for this lack of translation is unclear, possibilities include the lack of standardized practices and poor replication of human pathophysiology, such as delayed cerebral vasospasm and ischemia, in rodent models of SAH. In this review, we summarize the different approaches to simulating SAH in rodents, in particular elucidating the key pathophysiology of the various methods and models. Ultimately, we suggest the development of standardized model of rodent SAH that better replicates human pathophysiology for moving forward with translational research.
Collapse
Affiliation(s)
- Jenna L Leclerc
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Joshua M Garcia
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Matthew A Diller
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Anne-Marie Carpenter
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Pradip K Kamat
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Brian L Hoh
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neurology, Psychiatry, and Pharmaceutics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
24
|
Haptoglobin Genotype and Outcome after Subarachnoid Haemorrhage: New Insights from a Meta-Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6747940. [PMID: 29104730 PMCID: PMC5634574 DOI: 10.1155/2017/6747940] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/10/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
Haptoglobin (Hp) is a plasma protein involved in clearing extracellular haemoglobin and regulating inflammation; it exists as two genetic variants (Hp1 and Hp2). In a meta-analysis of six published studies, we confirm that Hp genotype affects short-term outcome (cerebral vasospasm and/or delayed cerebral ischemia) after subarachnoid haemorrhage (SAH) but not long-term outcome (Glasgow Outcome Score and modified Rankin Scale between one and three months). A closer examination of the heterozygous group revealed that the short-term outcome of Hp2-1 individuals clustered with that of Hp1-1 and not Hp2-2, suggesting that the presence of one Hp1 allele was sufficient to confer protection. Since the presence of the Hp dimer is the only common feature between Hp1-1 and Hp2-1 individuals, the absence of this Hp moiety is most likely to underlie vasospasm in Hp2-2 individuals. These results have implications for prognosis after SAH and will inform further research into Hp-based mechanism of action and treatment.
Collapse
|
25
|
Connor DE, Chaitanya GV, Chittiboina P, McCarthy P, Scott LK, Schrott L, Minagar A, Nanda A, Alexander JS. Variations in the cerebrospinal fluid proteome following traumatic brain injury and subarachnoid hemorrhage. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2017; 24:169-183. [PMID: 28549769 PMCID: PMC7303909 DOI: 10.1016/j.pathophys.2017.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 04/06/2017] [Accepted: 04/28/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Proteomic analysis of cerebrospinal fluid (CSF) has shown great promise in identifying potential markers of injury in neurodegenerative diseases [1-13]. Here we compared CSF proteomes in healthy individuals, with patients diagnosed with traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) in order to characterize molecular biomarkers which might identify these different clinical states and describe different molecular mechanisms active in each disease state. METHODS Patients presenting to the Neurosurgery service at the Louisiana State University Hospital-Shreveport with an admitting diagnosis of TBI or SAH were prospectively enrolled. Patients undergoing CSF sampling for diagnostic procedures were also enrolled as controls. CSF aliquots were subjected to 2-dimensional gel electrophoresis (2D GE) and spot percentage densities analyzed. Increased or decreased spot expression (compared to controls) was defined in terms of in spot percentages, with spots showing consistent expression change across TBI or SAH specimens being followed up by Matrix-Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). Polypeptide masses generated were matched to known standards using a search of the NCBI and/or GenPept databases for protein matches. Eight hundred fifteen separately identifiable polypeptide migration spots were identified on 2D GE gels. MALDI-MS successfully identified 13 of 22 selected 2D GE spots as recognizable polypeptides. RESULTS Statistically significant changes were noted in the expression of fibrinogen, carbonic anhydrase-I (CA-I), peroxiredoxin-2 (Prx-2), both α and β chains of hemoglobin, serotransferrin (Tf) and N-terminal haptoglobin (Hp) in TBI and SAH specimens, as compared to controls. The greatest mean fold change among all specimens was seen in CA-I and Hp at 30.7 and -25.7, respectively. TBI specimens trended toward greater mean increases in CA-I and Prx-2 and greater mean decreases in Hp and Tf. CONCLUSIONS Consistent CSF elevation of CA-I and Prx-2 with concurrent depletion of Hp and Tf may represent a useful combination of biomarkers for the prediction of severity and prognosis following brain injury.
Collapse
Affiliation(s)
- David E Connor
- Baptist Health Neurosurgery Arkansas, Little Rock, AR, United States.
| | - Ganta V Chaitanya
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States.
| | - Prashant Chittiboina
- Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, Bethesda, MD, United States.
| | - Paul McCarthy
- Department of Medicine, Sect. of Nephrology, University of Maryland, Baltimore, MD, United States.
| | - L Keith Scott
- Department of Critical Care Medicine, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Lisa Schrott
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Anil Nanda
- Department of Neurosurgery, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| |
Collapse
|
26
|
Kamp MA, Lieshout JHV, Dibué-Adjei M, Weber JK, Schneider T, Restin T, Fischer I, Steiger HJ. A Systematic and Meta-Analysis of Mortality in Experimental Mouse Models Analyzing Delayed Cerebral Ischemia After Subarachnoid Hemorrhage. Transl Stroke Res 2017; 8:206-219. [DOI: 10.1007/s12975-016-0513-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 01/18/2023]
|
27
|
Murthy SB, Caplan J, Levy AP, Pradilla G, Moradiya Y, Schneider EB, Shalom H, Ziai WC, Tamargo RJ, Nyquist PA. Haptoglobin 2-2 Genotype Is Associated With Cerebral Salt Wasting Syndrome in Aneurysmal Subarachnoid Hemorrhage. Neurosurgery 2016; 78:71-6. [PMID: 26348010 DOI: 10.1227/neu.0000000000001000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Haptoglobin (Hp) genotype has been shown to be a predictor of clinical outcomes in subarachnoid hemorrhage. Cerebral salt wasting (CSW) has been suggested to precede the development of symptomatic vasospasm. OBJECTIVE To determine if Hp genotype was associated with CSW and subsequent vasospasm after aneurysmal subarachnoid hemorrhage. METHODS Hp genotypic determination was done for patients admitted with a diagnosis of subarachnoid hemorrhage. Outcome measures included CSW, delayed cerebral infarction, and Glasgow Outcome Score of 4 to 5 at 30 days. Criteria for CSW included hyponatremia <135 mEq/L, and urine output >4 L in 12 hours with urine sodium >40 mEq/L. RESULTS A total of 133 patients were included in the study. The 3 Hp subgroups did not differ in terms of baseline characteristics. CSW occurred in 1 patient (3.4%) with Hp 1-1, 8 (14.0%) patients with Hp 2-1, and 15 (31.9%) patients with Hp 2-2 (P = .004). In the multivariate regression model, Hp 2-2 was associated with CSW (odds ratio [OR]: 4.94; CI: 1.78-17.43; P = .01), but Hp 2-1 was not (OR: 2.92; CI: 0.56-4.95; P = .15) compared with Hp 1-1. There were no associations between Hp genotypes and functional outcome or delayed cerebral infarction. CSW was associated with delayed cerebral infarction (OR: 7.46; 95% CI: 2.54-21.9; P < .001). CONCLUSION Hp 2-2 genotype was an independent predictor of CSW after subarachnoid hemorrhage. Because CSW is strongly associated with delayed cerebral infarction, the use of Hp genotype testing requires more investigation, and larger prospective confirmation is warranted. Additionally, a more objective definition of CSW needs to be delineated.
Collapse
Affiliation(s)
- Santosh B Murthy
- *Division of Neurosciences Critical Care and‡Department of Neurological Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland;§Department of Medicine, Technion Institute of Technology, Haifa, Israel;¶Department of Neurological Surgery, Emory University, Atlanta, Georgia;‖Center for Surgical Trials and Outcomes Research, Johns Hopkins University, Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Glushakov AV, Arias RA, Tolosano E, Doré S. Age-Dependent Effects of Haptoglobin Deletion in Neurobehavioral and Anatomical Outcomes Following Traumatic Brain Injury. Front Mol Biosci 2016; 3:34. [PMID: 27486583 PMCID: PMC4949397 DOI: 10.3389/fmolb.2016.00034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022] Open
Abstract
Cerebral hemorrhages are common features of traumatic brain injury (TBI) and their presence is associated with chronic disabilities. Recent clinical and experimental evidence suggests that haptoglobin (Hp), an endogenous hemoglobin-binding protein most abundant in blood plasma, is involved in the intrinsic molecular defensive mechanism, though its role in TBI is poorly understood. The aim of this study was to investigate the effects of Hp deletion on the anatomical and behavioral outcomes in the controlled cortical impact model using wildtype (WT) C57BL/6 mice and genetically modified mice lacking the Hp gene (Hp(-∕-)) in two age cohorts [2-4 mo-old (young adult) and 7-8 mo-old (older adult)]. The data obtained suggest age-dependent significant effects on behavioral and anatomical TBI outcomes and recovery from injury. Moreover, in the adult cohort, neurological deficits in Hp(-∕-) mice at 24 h were significantly improved compared to WT, whereas there were no significant differences in brain pathology between these genotypes. In contrast, in the older adult cohort, Hp(-∕-) mice had significantly larger lesion volumes compared to WT, but neurological deficits were not significantly different. Immunohistochemistry for ionized calcium-binding adapter molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP) revealed significant differences in microglial and astrocytic reactivity between Hp(-∕-) and WT in selected brain regions of the adult but not the older adult-aged cohort. In conclusion, the data obtained in the study provide clarification on the age-dependent aspects of the intrinsic defensive mechanisms involving Hp that might be involved in complex pathways differentially affecting acute brain trauma outcomes.
Collapse
Affiliation(s)
- Alexander V Glushakov
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA
| | - Rodrigo A Arias
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA
| | - Emanuela Tolosano
- Departments of Molecular Biotechnology and Health Sciences, University of Torino Torino, Italy
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of MedicineGainesville, FL, USA; Departments of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics and Neuroscience, University of Florida College of MedicineGainesville, FL, USA
| |
Collapse
|
29
|
Burrell C, Avalon NE, Siegel J, Pizzi M, Dutta T, Charlesworth MC, Freeman WD. Precision medicine of aneurysmal subarachnoid hemorrhage, vasospasm and delayed cerebral ischemia. Expert Rev Neurother 2016; 16:1251-1262. [PMID: 27314601 DOI: 10.1080/14737175.2016.1203257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Precision medicine provides individualized treatment of diseases through leveraging patient-to-patient variation. Aneurysmal subarachnoid hemorrhage carries tremendous morbidity and mortality with cerebral vasospasm and delayed cerebral ischemia proving devastating and unpredictable. Lack of treatment measures for these conditions could be improved through precision medicine. Areas covered: Discussed are the pathophysiology of CV and DCI, treatment guidelines, and evidence for precision medicine used for prediction and prevention of poor outcomes following aSAH. A PubMed search was performed using keywords cerebral vasospasm or delayed cerebral ischemia and either biomarkers, precision medicine, metabolomics, proteomics, or genomics. Over 200 peer-reviewed articles were evaluated. The studies presented cover biomarkers identified as predictive markers or therapeutic targets following aSAH. Expert commentary: The biomarkers reviewed here correlate with CV, DCI, and neurologic outcomes after aSAH. Though practical use in clinical management of aSAH is not well established, using these biomarkers as predictive tools or therapeutic targets demonstrates the potential of precision medicine.
Collapse
Affiliation(s)
| | - Nicole E Avalon
- a Department of Neurology , Mayo Clinic , Jacksonville , FL , USA
| | - Jason Siegel
- a Department of Neurology , Mayo Clinic , Jacksonville , FL , USA
| | - Michael Pizzi
- a Department of Neurology , Mayo Clinic , Jacksonville , FL , USA
| | - Tumpa Dutta
- b Endocrine Research Unit , Mayo Clinic , Rochester , MN , USA
| | | | | |
Collapse
|
30
|
Przybycien-Szymanska MM, Yang Y, Ashley WW. Microparticle derived proteins as potential biomarkers for cerebral vasospasm post subarachnoid hemorrhage. A preliminary study. Clin Neurol Neurosurg 2016; 141:48-55. [DOI: 10.1016/j.clineuro.2015.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023]
|
31
|
de Oliveira Manoel AL, Goffi A, Marotta TR, Schweizer TA, Abrahamson S, Macdonald RL. The critical care management of poor-grade subarachnoid haemorrhage. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:21. [PMID: 26801901 PMCID: PMC4724088 DOI: 10.1186/s13054-016-1193-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Aneurysmal subarachnoid haemorrhage is a neurological syndrome with complex systemic complications. The rupture of an intracranial aneurysm leads to the acute extravasation of arterial blood under high pressure into the subarachnoid space and often into the brain parenchyma and ventricles. The haemorrhage triggers a cascade of complex events, which ultimately can result in early brain injury, delayed cerebral ischaemia, and systemic complications. Although patients with poor-grade subarachnoid haemorrhage (World Federation of Neurosurgical Societies 4 and 5) are at higher risk of early brain injury, delayed cerebral ischaemia, and systemic complications, the early and aggressive treatment of this patient population has decreased overall mortality from more than 50% to 35% in the last four decades. These management strategies include (1) transfer to a high-volume centre, (2) neurological and systemic support in a dedicated neurological intensive care unit, (3) early aneurysm repair, (4) use of multimodal neuromonitoring, (5) control of intracranial pressure and the optimisation of cerebral oxygen delivery, (6) prevention and treatment of medical complications, and (7) prevention, monitoring, and aggressive treatment of delayed cerebral ischaemia. The aim of this article is to provide a summary of critical care management strategies applied to the subarachnoid haemorrhage population, especially for patients in poor neurological condition, on the basis of the modern concepts of early brain injury and delayed cerebral ischaemia.
Collapse
Affiliation(s)
- Airton Leonardo de Oliveira Manoel
- St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1 W8, Canada. .,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1 W8, Canada.
| | - Alberto Goffi
- Toronto Western Hospital MSNICU, 2nd Floor McLaughlin Room 411-H, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Tom R Marotta
- St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1 W8, Canada
| | - Tom A Schweizer
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1 W8, Canada
| | - Simon Abrahamson
- St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1 W8, Canada
| | - R Loch Macdonald
- St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1 W8, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1 W8, Canada
| |
Collapse
|
32
|
Rosalind Lai PM, Du R. Role of Genetic Polymorphisms in Predicting Delayed Cerebral Ischemia and Radiographic Vasospasm After Aneurysmal Subarachnoid Hemorrhage: A Meta-Analysis. World Neurosurg 2015; 84:933-41.e2. [PMID: 26074429 DOI: 10.1016/j.wneu.2015.05.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/19/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The pathophysiology on cerebral vasospasm and delayed cerebral ischemia (DCI) remains poorly understood. Much research has been dedicated to finding genetic loci associated with vasospasm and ischemia. We present a systematic review and meta-analysis to identify genetic polymorphisms associated with delayed ischemic neurologic deficit (DIND), radiographic infarction attributed to ischemia, and radiographic vasospasm. METHODS PubMed, the Cochrane Library, and Excerpta Medica dataBASE (EMBASE) databases were used to identify relevant studies published up to March 2015 containing the subject terms cerebral or intracranial vasospasm and DCI in combination with genetics, gene, polymorphism or marker. Meta-analyses were performed using a random-effects model to calculate summary odds ratio (ORs) and 95% confidence intervals for each respective gene. RESULTS Of 269 articles initially identified, 20 studies with 1670 patients were included in our comprehensive review, including 27 polymorphisms in 11 genes. The following 6 polymorphisms in 3 genes were selected for subsequent meta-analyses: apolipoprotein E (ApoE2, E4); endothelial nitric oxide (eNOS T786C, VNTR intron 4 a/b, G894T); and haptoglobin (Hp) 1/2 phenotypes. The eNOS VNTR a allele was associated with DIND (a vs. b allele: OR 1.92 [1.31-2.81], padj = 0.008). The Hp 2-2 allele was associated with radiographic vasospasm (2-2 vs. 2-1 and 1-1: OR 3.86 [1.86-8.03], padj = 0.003) but did not reach significance for DIND. CONCLUSIONS This is the first systemic review and meta-analysis to study and evaluate the associations between genetic polymorphism with DCI and radiographic vasospasm independently. In our study, eNOS VNTR and Hp polymorphisms appear to have the strongest associations with DIND and radiographic vasospasm, respectively.
Collapse
Affiliation(s)
- Pui Man Rosalind Lai
- Department of Neurological Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rose Du
- Department of Neurological Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
33
|
Murthy SB, Levy AP, Duckworth J, Schneider EB, Shalom H, Hanley DF, Tamargo RJ, Nyquist PA. Presence of haptoglobin-2 allele is associated with worse functional outcomes after spontaneous intracerebral hemorrhage. World Neurosurg 2014; 83:583-7. [PMID: 25527876 DOI: 10.1016/j.wneu.2014.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To determine if the haptoglobin (Hp) phenotype, which has been shown to be a predictor of clinical outcomes in cerebrovascular disorders, particularly subarachnoid hemorrhage, was predictive of functional outcomes after spontaneous intracerebral hemorrhage (ICH). METHODS Patients admitted with a diagnosis of ICH were prospectively included and divided into 3 groups based on their genetically determined Hp phenotype: 1-1, 2-1, and 2-2. Outcome measures included mortality and 30-day modified Rankin Scale scores. Demographics and outcomes were compared for each phenotype using multivariate linear regression analysis. RESULTS The study included 94 patients. The distribution of Hp phenotype was Hp 1-1, 12 (13%); Hp 2-1, 46 (49%); and Hp 2-2, 36 (38%). The 3 Hp subgroups did not differ in terms of demographic variables, comorbidities, or ICH characteristics. There was a nonsignificant trend toward increased mortality in Hp 2-1 and Hp 2-2 compared with Hp 1-1, with mortality of 8% in Hp 1-1, 17% in Hp 2-1, and 25% in Hp 2-2 (P = 0.408). In the regression model adjusted for confounders, Hp 2-1 (odds ratio = 0.05, 95% confidence interval = 0.01-0.47, P < 0.001) and Hp 2-2 phenotypes (odds ratio = 0.14, 95% confidence interval = 0.02-0.86, P = 0.045) had significantly lower odds of modified Rankin Scale scores 0-2 compared with Hp 1-1. CONCLUSIONS After ICH, individuals with the Hp-2 allele (2-1 and 2-2) had worse functional outcomes than individuals with the Hp-1 allele (Hp 1-1). There was a nonsignificant association between Hp phenotype and mortality. Larger prospective studies with better surrogates of ICH outcomes are warranted.
Collapse
Affiliation(s)
- Santosh B Murthy
- Division of Neurosciences Critical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Andrew P Levy
- Department of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Joshua Duckworth
- Division of Neurosciences Critical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric B Schneider
- Center for Surgical Trials and Outcomes Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hadar Shalom
- Department of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Daniel F Hanley
- Division of Neurosciences Critical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rafael J Tamargo
- Department of Neurological Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul A Nyquist
- Division of Neurosciences Critical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Inflammation, vasospasm, and brain injury after subarachnoid hemorrhage. BIOMED RESEARCH INTERNATIONAL 2014; 2014:384342. [PMID: 25105123 PMCID: PMC4106062 DOI: 10.1155/2014/384342] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/14/2014] [Accepted: 05/26/2014] [Indexed: 12/15/2022]
Abstract
Subarachnoid hemorrhage (SAH) can lead to devastating neurological outcomes, and there are few pharmacologic treatments available for treating this condition. Both animal and human studies provide evidence of inflammation being a driving force behind the pathology of SAH, leading to both direct brain injury and vasospasm, which in turn leads to ischemic brain injury. Several inflammatory mediators that are elevated after SAH have been studied in detail. While there is promising data indicating that blocking these factors might benefit patients after SAH, there has been little success in clinical trials. One of the key factors that complicates clinical trials of SAH is the variability of the initial injury and subsequent inflammatory response. It is likely that both genetic and environmental factors contribute to the variability of patients' post-SAH inflammatory response and that this confounds trials of anti-inflammatory therapies. Additionally, systemic inflammation from other conditions that affect patients with SAH could contribute to brain injury and vasospasm after SAH. Continuing work on biomarkers of inflammation after SAH may lead to development of patient-specific anti-inflammatory therapies to improve outcome after SAH.
Collapse
|
35
|
Muroi C, Fujioka M, Okuchi K, Fandino J, Keller E, Sakamoto Y, Mishima K, Iwasaki K, Fujiwara M. Filament perforation model for mouse subarachnoid hemorrhage: Surgical-technical considerations. Br J Neurosurg 2014; 28:722-32. [DOI: 10.3109/02688697.2014.918579] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Garzon-Muvdi T, Pradilla G, Ruzevick JJ, Bender M, Edwards L, Grossman R, Zhao M, Rudek MA, Riggins G, Levy A, Tamargo RJ. A glutamate receptor antagonist, S-4-carboxyphenylglycine (S-4-CPG), inhibits vasospasm after subarachnoid hemorrhage in haptoglobin 2-2 mice [corrected]. Neurosurgery 2014; 73:719-28; discussion 729. [PMID: 23842553 DOI: 10.1227/neu.0000000000000080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Vasospasm contributes to delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage (SAH). Glutamate concentrations increase after SAH and correlate with vasospasm in experimental SAH. The haptoglobin (Hp) 2-2 genotype is associated with higher risk of vasospasm after SAH. We tested the efficacy of (S)-4-carboxyphenylglycine (S-4-CPG), a metabotropic glutamate receptor inhibitor, for the treatment of vasospasm after SAH in Hp 2-2 and Hp 1-1 mice. OBJECTIVE To evaluate the effect on vasospasm and neurobehavioral scores after SAH of systemic S-4-CPG, as well as its toxicity, and phosphorylation of vasodilator-stimulated phosphoprotein (VASP) in Hp 2-2 mice. METHODS Western blot was used to assess changes in VASP phosphorylation in response to glutamate with and without S-4-CPG. A pharmacokinetics study was done to evaluate S-4-CPG penetration through the blood-brain barrier in vivo. Toxicity was assessed by administering increasing S-4-CPG doses. Efficacy of S-4-CPG assessed the effect of S-4-CPG on lumen patency of the basilar artery and animal behavior after SAH in Hp 1-1 and Hp 2-2 mice. Immunohistochemistry was used to evaluate the presence of neutrophils surrounding the basilar artery after SAH. RESULTS Exposure of human brain microvascular endothelial cells to glutamate decreased phosphorylation of VASP, but glutamate treatment in the presence of S-4-CPG maintains phosphorylation of VASP. S-4-CPG crosses the blood-brain barrier and was not toxic to mice. S-4-CPG treatment significantly prevents vasospasm after SAH. S-4-CPG administered after SAH resulted in a trend toward improvement of animal behavior. CONCLUSION S-4-CPG prevents vasospasm after experimental SAH in Hp2-2 mice. S-4-CPG was not toxic and is a potential therapeutic agent for vasospasm after SAH.
Collapse
Affiliation(s)
- Tomas Garzon-Muvdi
- Department of †Neurosurgery; ‡Oncology Center-Chemical Therapeutics, The Johns Hopkins University School of Medicine, Baltimore, Maryland; §Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Atkinson SH, Uyoga SM, Nyatichi E, Macharia AW, Nyutu G, Ndila C, Kwiatkowski DP, Rockett KA, Williams TN. Epistasis between the haptoglobin common variant and α+thalassemia influences risk of severe malaria in Kenyan children. Blood 2014; 123:2008-16. [PMID: 24478401 PMCID: PMC3968387 DOI: 10.1182/blood-2013-10-533489] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/21/2014] [Indexed: 11/20/2022] Open
Abstract
Haptoglobin (Hp) scavenges free hemoglobin following malaria-induced hemolysis. Few studies have investigated the relationship between the common Hp variants and the risk of severe malaria, and their results are inconclusive. We conducted a case-control study of 996 children with severe Plasmodium falciparum malaria and 1220 community controls and genotyped for Hp, hemoglobin (Hb) S heterozygotes, and α(+)thalassemia. Hb S heterozygotes and α(+)thalassemia homozygotes were protected from severe malaria (odds ratio [OR], 0.12; 95% confidence interval [CI], 0.07-0.18 and OR, 0.69; 95% CI, 0.53-0.91, respectively). The risk of severe malaria also varied by Hp genotype: Hp2-1 was associated with the greatest protection against severe malaria and Hp2-2 with the greatest risk. Meta-analysis of the current and published studies suggests that Hp2-2 is associated with increased risk of severe malaria compared with Hp2-1. We found a significant interaction between Hp genotype and α(+)thalassemia in predicting risk of severe malaria: Hp2-1 in combination with heterozygous or homozygous α(+)thalassemia was associated with protection from severe malaria (OR, 0.73; 95% CI, 0.54-0.99 and OR, 0.48; 95% CI, 0.32-0.73, respectively), but α(+)thalassemia in combination with Hp2-2 was not protective. This epistatic interaction together with varying frequencies of α(+)thalassemia across Africa may explain the inconsistent relationship between Hp genotype and malaria reported in previous studies.
Collapse
Affiliation(s)
- Sarah H Atkinson
- Department of Paediatrics, Oxford University Hospitals National Health Service Trust, University of Oxford, and
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Li T, Wang H, Ding Y, Zhou M, Zhou X, Zhang X, Ding K, He J, Lu X, Xu J, Wei W. Genetic elimination of Nrf2 aggravates secondary complications except for vasospasm after experimental subarachnoid hemorrhage in mice. Brain Res 2014; 1558:90-9. [PMID: 24576487 DOI: 10.1016/j.brainres.2014.02.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/18/2014] [Indexed: 01/27/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key endogenous protective regulator in the body. This study aimed to explore the role of Nrf2 in subarachnoid hemorrhage (SAH)-induced secondary complications. Wild type (WT) and Nrf2 knockout (KO) mice were subjected to experimental SAH by injecting fresh autologous blood into pre-chiasmatic cistern. The absence of Nrf2 function in mice resulted in exacerbated brain injury with increased brain edema, blood-brain barrier (BBB) disruption, neural apoptosis, and severe neurological deficits at 24h after SAH. Moreover, cerebral vasospasm was severe at 24h after SAH, but not significantly different between WT and Nrf2 KO mice after SAH. Meanwhile, Molondialdehyde (MDA) was increased and GSH/GSSG ratio was decreased in Nrf2 KO mice after SAH. Furthermore, higher expression of TNF-α and IL-1β was also found after SAH in Nrf2 KO mice. In conclusion, our results revealed that Nrf2 plays an important role in attenuating SAH-induced secondary complications by regulating excessive oxidative stress and inflammatory response.
Collapse
Affiliation(s)
- Tao Li
- Department of Neurosurgery, Jinling Hospital Affiliated to Nanjing University School of Medicine, Nanjing, Jiangsu 210089, PR China; Department of Neurosurgery, Jinling Hospital, Neurosurgical Institution of People's Liberation Army of China, PR China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Neurosurgical Institution of People's Liberation Army of China, PR China.
| | - Yu Ding
- Department of Neurosurgery, Jinling Hospital Affiliated to Nanjing University School of Medicine, Nanjing, Jiangsu 210089, PR China
| | - Mengliang Zhou
- Department of Neurosurgery, Jinling Hospital, Neurosurgical Institution of People's Liberation Army of China, PR China
| | - Xiaoming Zhou
- Department of Neurosurgery, Jinling Hospital, Neurosurgical Institution of People's Liberation Army of China, PR China
| | - Xiangshen Zhang
- Department of Neurosurgery, Jinling Hospital, Neurosurgical Institution of People's Liberation Army of China, PR China
| | - Ke Ding
- Department of Neurosurgery, Jinling Hospital, Neurosurgical Institution of People's Liberation Army of China, PR China
| | - Jin He
- Department of Neurosurgery, Jinling Hospital, Neurosurgical Institution of People's Liberation Army of China, PR China
| | - Xinyu Lu
- Department of Neurosurgery, Jinling Hospital Affiliated to Nanjing University School of Medicine, Nanjing, Jiangsu 210089, PR China
| | - Jianguo Xu
- Department of Neurosurgery, Jinling Hospital Affiliated to Nanjing University School of Medicine, Nanjing, Jiangsu 210089, PR China
| | - Wuting Wei
- Neurosurgery Department of Southern Medical University, Guangzhou, Guangdong 510515, PR China
| |
Collapse
|
39
|
Cox SE, Makani J, Soka D, L'Esperence VS, Kija E, Dominguez-Salas P, Newton CRJ, Birch AA, Prentice AM, Kirkham FJ. Haptoglobin, alpha-thalassaemia and glucose-6-phosphate dehydrogenase polymorphisms and risk of abnormal transcranial Doppler among patients with sickle cell anaemia in Tanzania. Br J Haematol 2014; 165:699-706. [PMID: 24666344 PMCID: PMC4154124 DOI: 10.1111/bjh.12791] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/05/2014] [Indexed: 02/04/2023]
Abstract
Transcranial Doppler ultrasonography measures cerebral blood flow velocity (CBFv) of basal intracranial vessels and is used clinically to detect stroke risk in children with sickle cell anaemia (SCA). Co‐inheritance in SCA of alpha‐thalassaemia and glucose‐6‐phosphate dehydrogenase (G6PD) polymorphisms is reported to associate with high CBFv and/or risk of stroke. The effect of a common functional polymorphism of haptoglobin (HP) is unknown. We investigated the effect of co‐inheritance of these polymorphisms on CBFv in 601 stroke‐free Tanzanian SCA patients aged <24 years. Homozygosity for alpha‐thalassaemia 3·7 deletion was significantly associated with reduced mean CBFv compared to wild‐type (β‐coefficient −16·1 cm/s, P = 0·002) adjusted for age and survey year. Inheritance of 1 or 2 alpha‐thalassaemia deletions was associated with decreased risk of abnormally high CBFv, compared to published data from Kenyan healthy control children (Relative risk ratio [RRR] = 0·53 [95% confidence interval (CI):0·35–0·8] & RRR = 0·43 [95% CI:0·23–0·78]), and reduced risk of abnormally low CBFv for 1 deletion only (RRR = 0·38 [95% CI:0·17–0·83]). No effects were observed for G6PD or HP polymorphisms. This is the first report of the effects of co‐inheritance of common polymorphisms, including the HP polymorphism, on CBFv in SCA patients resident in Africa and confirms the importance of alpha‐thalassaemia in reducing risk of abnormal CBFv.
Collapse
Affiliation(s)
- Sharon E Cox
- MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, UK; Muhimbili Wellcome Programme, Muhimbili University of Health & Allied Sciences, Dar es Salaam, Tanzania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Subarachnoid haemorrhage (SAH) causes early brain injury (EBI) that is mediated by effects of transient cerebral ischaemia during bleeding plus effects of the subarachnoid blood. Secondary effects of SAH include increased intracranial pressure, destruction of brain tissue by intracerebral haemorrhage, brain shift, and herniation, all of which contribute to pathology. Many patients survive these phenomena, but deteriorate days later from delayed cerebral ischaemia (DCI), which causes poor outcome or death in up to 30% of patients with SAH. DCI is thought to be caused by the combined effects of angiographic vasospasm, arteriolar constriction and thrombosis, cortical spreading ischaemia, and processes triggered by EBI. Treatment for DCI includes prophylactic administration of nimodipine, and current neurointensive care. Prompt recognition of DCI and immediate treatment by means of induced hypertension and balloon or pharmacological angioplasty are considered important by many physicians, although the evidence to support such approaches is limited. This Review summarizes the pathophysiology of DCI after SAH and discusses established treatments for this condition. Novel strategies--including drugs such as statins, sodium nitrite, albumin, dantrolene, cilostazol, and intracranial delivery of nimodipine or magnesium--are also discussed.
Collapse
|
41
|
Affiliation(s)
- R Loch Macdonald
- Division of Neurosurgery, St. Michael's Hospital; Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Keenan Research Centre, Li Ka Shing Knowledge Institute of St. Michael's Hospital; and Department of Surgery, University of Toronto, Ontario, Canada
| |
Collapse
|
42
|
Kantor E, Bayır H, Ren D, Provencio JJ, Watkins L, Crago E, Horowitz MB, Ferrell RE, Conley YP, Alexander SA. Haptoglobin genotype and functional outcome after aneurysmal subarachnoid hemorrhage. J Neurosurg 2013; 120:386-90. [PMID: 24286153 DOI: 10.3171/2013.10.jns13219] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECT Haptoglobin allele heterogeneity has been implicated in differential reactive oxidant inhibition and inflammation. Haptoglobin α2-α2 has a lower affinity for binding hemoglobin, and when bound to hemoglobin, is cleared less easily by the body. The authors hypothesized that haptoglobin α2-α2 genotype should be less protective for downstream injury after aneurysmal subarachnoid hemorrhage (aSAH) and should portend a worse outcome. METHODS Patients with Fisher Grade 2 or higher aSAH were enrolled in the study. Genotyping for haptoglobin genotype was performed from blood and/or CSF. Demographic information, medical condition variables, and hospital course were abstracted from the medical record upon enrollment into the study. Outcome data (modified Rankin Scale score, Glasgow Outcome Scale score, and mortality) were collected at 3 months posthemorrhage. RESULTS The authors enrolled 193 patients who ranged in age from 18 to 75 years. Only Caucasians were used in this analysis to minimize bias from variable haptoglobin allele frequencies in populations of different ancestral backgrounds. The sample had more women than men (overall mean age 54.45 years). Haptoglobin α2 homozygotes were older than the other individuals in the study sample (57.27 vs 53.2 years, respectively; p = 0.02) and were more likely to have Fisher Grade 3 SAH (p = 0.02). Haptoglobin α2-α2 genotype, along with Fisher grade and Hunt and Hess grade, was associated with a worse 3-month outcome compared to those with the haptoglobin α1-α1 genotype according to modified Rankin Scale score after controlling for covariates (OR 4.138, p = 0.0463). CONCLUSIONS Patients with aSAH who carry the haptoglobin α2-α2 genotype had a worse outcome. Interestingly, the presence of a single α-2 allele was associated with worse outcome, suggesting that the haptoglobin α-2 protein may play a role in the pathology of brain injury following aSAH, although the mechanism for this finding requires further research. The haptoglobin genotype may provide additional information on individual risk of secondary injury and recovery to guide care focused on improving outcomes.
Collapse
Affiliation(s)
- Ellen Kantor
- Department of Acute and Tertiary Care, School of Nursing
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang Y, Zhang Y, Zhao L, Yin Y, Wang Q, Zhou H. Addition of haptoglobin to RBCs storage, a new strategy to improve quality of stored RBCs and transfusion. Med Hypotheses 2013; 82:125-8. [PMID: 24365278 DOI: 10.1016/j.mehy.2013.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/18/2013] [Accepted: 09/13/2013] [Indexed: 12/20/2022]
Abstract
Transfusion of red blood cells (RBCs) is an effective therapy in surgery and critical care. Comparing to fresh RBCs, the therapeutic effect of stored RBCs is greatly limited because of its loss of NO during storage, which leads to vasodilatation dysfunction upon transfusion. So far, there is no effective solution to this problem. Here, we summarize the protective effects of Haptoglobin (Hp) in RBCs storage and transfusion, by using data extracted from literature review. Because Free Hemoglobin (FHb) is the major factor responsible for rapid NO loss during storage, addition of FHb-sequestering protein Haptoglobin will prevent the loss of NO and improve the quality of stored RBCs.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27 Taiping Road, HaiDian, Beijing 100850, China
| | - Yuhua Zhang
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27 Taiping Road, HaiDian, Beijing 100850, China
| | - Lian Zhao
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27 Taiping Road, HaiDian, Beijing 100850, China
| | - Yujing Yin
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27 Taiping Road, HaiDian, Beijing 100850, China
| | - Quanli Wang
- Department of Blood Transfusion, Affiliated Hospital of Academy of Military Medical Sciences, No. 8 Dongda Street, FengTai, Beijing 100071, China.
| | - Hong Zhou
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27 Taiping Road, HaiDian, Beijing 100850, China.
| |
Collapse
|
44
|
Inflammation, cerebral vasospasm, and evolving theories of delayed cerebral ischemia. Neurol Res Int 2013; 2013:506584. [PMID: 24058736 PMCID: PMC3766617 DOI: 10.1155/2013/506584] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 06/26/2013] [Accepted: 06/26/2013] [Indexed: 11/23/2022] Open
Abstract
Cerebral vasospasm (CVS) is a potentially lethal complication of aneurysmal subarachnoid hemorrhage (aSAH). Recently, the symptomatic presentation of CVS has been termed delayed cerebral ischemia (DCI), occurring as early as 3-4 days after the sentinel bleed. For the past 5-6 decades, scientific research has promulgated the theory that cerebral vasospasm plays a primary role in the pathology of DCI and subsequently delayed ischemic neurological decline (DIND). Approximately 70% of patients develop CVS after aSAH with 50% long-term morbidity rates. The exact etiology of CVS is unknown; however, a well-described theory involves an antecedent inflammatory cascade with alterations of intracellular calcium dynamics and nitric oxide fluxes, though the intricacies of this inflammatory theory are currently unknown. Consequently, there have been few advances in the clinical treatment of this patient cohort, and morbidity remains high. Identification of intermediaries in the inflammatory cascade can provide insight into newer clinical interventions in the prevention and management of cerebral vasospasm and will hopefully prevent neurological decline. In this review, we discuss current theories implicating the inflammatory cascade in the development of CVS and potential treatment targets.
Collapse
|
45
|
Haptoglobin Phenotype Predicts Cerebral Vasospasm and Clinical Deterioration after Aneurysmal Subarachnoid Hemorrhage. J Stroke Cerebrovasc Dis 2013; 22:520-6. [DOI: 10.1016/j.jstrokecerebrovasdis.2013.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/12/2012] [Accepted: 02/05/2013] [Indexed: 11/22/2022] Open
|
46
|
Abstract
Cerebral vasospasm (CV) is a major source of morbidity and mortality in aneurysmal subarachnoid hemorrhage (aSAH). It is thought that an inflammatory cascade initiated by extravasated blood products precipitates CV, disrupting vascular smooth muscle cell function of major cerebral arteries, leading to vasoconstriction. Mechanisms of CV and modes of therapy are an active area of research. Understanding the genetic basis of CV holds promise for the recognition and treatment for this devastating neurovascular event. In our review, we summarize the most recent research involving key areas within the genetics and vasospasm discussion: (1) Prognostic role of genetics—risk stratification based on gene sequencing, biomarkers, and polymorphisms; (2) Signaling pathways—pinpointing key inflammatory molecules responsible for downstream cellular signaling and altering these mediators to provide therapeutic benefit; and (3) Gene therapy and gene delivery—using viral vectors or novel protein delivery methods to overexpress protective genes in the vasospasm cascade.
Collapse
|
47
|
Inflammation in subarachnoid hemorrhage and delayed deterioration associated with vasospasm: a review. ACTA NEUROCHIRURGICA. SUPPLEMENT 2013; 115:233-8. [PMID: 22890674 DOI: 10.1007/978-3-7091-1192-5_42] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Delayed deterioration associated with vasospasm (DDAV) after subarachnoid hemorrhage (SAH), (often called vasospasm) continues to be both a difficult entity to treat and a leading cause of morbidity in patients. Until recently, attention was focused on alleviating the vascular spasm. Recent evidence shows that vascular spasm may not account for all the morbidity of DDAV. There is renewed interest in looking for other potential targets for therapy. Inflammation has become a promising area of research for new treatments. This review explores the evidence that inflammation is a driver of DDAV by asking three questions: (1) If inflammation is important in the pathogenesis of the disease, what part or parts of the inflammatory response are involved? (2) When does inflammation occur in SAH? (3) In what compartment of the skull does the inflammation occur, the cerebrospinal fluid and meninges, the cerebral arteries, or the brain itself?
Collapse
|
48
|
Systemic administration of LPS worsens delayed deterioration associated with vasospasm after subarachnoid hemorrhage through a myeloid cell-dependent mechanism. Neurocrit Care 2012; 16:327-34. [PMID: 22090172 DOI: 10.1007/s12028-011-9651-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
BACKGROUND Delayed deterioration associated with vasospasm (DDAV) after aneurismal subarachnoid hemorrhage (SAH) is a major cause of morbidity. We have previously shown that myeloid cell depletion before experimental SAH in a murine model ameliorates DDAV. In this study, we address whether systemic administration of lipopolysaccharide (LPS) worsens DDAV in a myeloid cell-dependent fashion. METHODS We challenged mice in our experimental SAH model with LPS before hemorrhage and evaluated the degree of vasospasm on day 6 with India ink angiography; behavioral deficits by rotorod, Y-maze, and Barnes maze testing; microglial activation early after SAH by immunohistochemistry; and the brain levels of the chemokines CCL5 and KC at the time of vasospasm. Another group of animals were given the myeloid cell-depleting antibody against the neutrophil antigen Ly6G/C prior to LPS administration and SAH. RESULTS LPS followed by SAH significantly worsens angiographic vasospasm as well as performance on the Barnes maze but not the Y-maze or rotorod tests. There was an increased activation of microglia in animals with LPS before SAH compared to SAH alone. Depletion of myeloid cells before LPS administration inhibited the development of vasospasm, improved the performance on behavioral tests, and reduced microglial activation. The chemokines CCL5 and KC were incrementally elevated in SAH and LPS SAH, but suppressed in animals with myeloid cell depletion. CONCLUSIONS LPS administration before SAH worsens DDAV through a myeloid cell-dependent mechanism supporting studies in humans which show that systemic inflammation increases the likelihood of developing DDAV.
Collapse
|
49
|
How Large Is the Typical Subarachnoid Hemorrhage? A Review of Current Neurosurgical Knowledge. World Neurosurg 2012; 77:686-97. [DOI: 10.1016/j.wneu.2011.02.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/07/2011] [Accepted: 02/12/2011] [Indexed: 11/22/2022]
|
50
|
Galea J, Cruickshank G, Teeling JL, Boche D, Garland P, Perry VH, Galea I. The intrathecal CD163-haptoglobin-hemoglobin scavenging system in subarachnoid hemorrhage. J Neurochem 2012; 121:785-92. [PMID: 22380637 PMCID: PMC3412209 DOI: 10.1111/j.1471-4159.2012.07716.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Delayed cerebral ischemia resulting from extracellular hemoglobin is an important determinant of outcome in subarachnoid hemorrhage. Hemoglobin is scavenged by the CD163-haptoglobin system in the circulation, but little is known about this scavenging pathway in the human CNS. The components of this system were analyzed in normal cerebrospinal fluid and after subarachnoid hemorrhage. The intrathecal presence of the CD163-haptoglobin–hemoglobin scavenging system was unequivocally demonstrated. The resting capacity of the CD163-haptoglobin–hemoglobin system in the normal CNS was 50 000-fold lower than that of the circulation. After subarachnoid hemorrhage, the intrathecal CD163-haptoglobin–hemoglobin system was saturated, as shown by the presence of extracellular hemoglobin despite detectable haptoglobin. Hemoglobin efflux from the CNS was evident, enabling rescue hemoglobin scavenging by the systemic circulation. Therefore, the CNS is not capable of dealing with significant intrathecal hemolysis. Potential therapeutic options to prevent delayed cerebral ischemia ought to concentrate on augmenting the capacity of the intrathecal CD163-haptoglobin–hemoglobin scavenging system and strategies to encourage hemoglobin efflux from the brain.
Collapse
Affiliation(s)
- James Galea
- Brain Injury Research Group, Manchester Academic Health Sciences Centre, Salford Royal NHS Foundation Trust, Manchester, UK.
| | | | | | | | | | | | | |
Collapse
|