1
|
Chen J, Li Y, Quan X, Chen J, Han Y, Yang L, Zhou M, Mok GSP, Wang R, Zhao Y. Utilizing engineered extracellular vesicles as delivery vectors in the management of ischemic stroke: a special outlook on mitochondrial delivery. Neural Regen Res 2025; 20:2181-2198. [PMID: 39101653 PMCID: PMC11759020 DOI: 10.4103/nrr.nrr-d-24-00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 08/06/2024] Open
Abstract
Ischemic stroke is a secondary cause of mortality worldwide, imposing considerable medical and economic burdens on society. Extracellular vesicles, serving as natural nano-carriers for drug delivery, exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke. However, the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency. By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles, their delivery efficacy may be greatly improved. Furthermore, previous studies have indicated that microvesicles, a subset of large-sized extracellular vesicles, can transport mitochondria to neighboring cells, thereby aiding in the restoration of mitochondrial function post-ischemic stroke. Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components, such as proteins or deoxyribonucleic acid, or their sub-components, for extracellular vesicle-based ischemic stroke therapy. In this review, we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies. Given the complex facets of treating ischemic stroke, we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process. Moreover, given the burgeoning interest in mitochondrial delivery, we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Xingping Quan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Jinfen Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Li Yang
- Department of Pharmacy, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Manfei Zhou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Greta Seng Peng Mok
- Department of Electrical and Computer Engineering, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Ruibing Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region, China
| |
Collapse
|
2
|
Nowaczewska-Kuchta A, Ksiazek-Winiarek D, Glabinski A. Interaction Between Neutrophils and Elements of the Blood-Brain Barrier in the Context of Multiple Sclerosis and Ischemic Stroke. Int J Mol Sci 2025; 26:4437. [PMID: 40362673 PMCID: PMC12072651 DOI: 10.3390/ijms26094437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
The blood-brain barrier (BBB) is a semi-permeable membrane in physiological conditions, but in pathologies like multiple sclerosis (MS) and ischemic stroke (IS), its permeability increases. In this review, we focus on neutrophils and their interaction with cellular components of the BBB: endothelial cells (EC), pericytes (PC), and astrocytes (AC). Nowadays, neutrophils receive more attention, mostly due to advanced research techniques that show the complexity of their population. Additionally, neutrophils have the ability to secrete extracellular vesicles (EVs), reactive oxygen species (ROS) and cytokines, which both destroy and restore the BBB. Astrocytes, PCs, and ECs also have dual roles in the pathogenesis of MS and IS. The interaction between neutrophils and cellular components of the BBB provides us with a wider insight into the pathogenesis of common diseases in the central nervous system. Further, we comprehensively review knowledge about the influence of neutrophils on the BBB in the context of MS and IS. Moreover, we describe new therapeutic strategies for patients with MS and IS like cell-based therapies and therapies that use the neutrophil function.
Collapse
Affiliation(s)
| | | | - Andrzej Glabinski
- Department of Neurology and Stroke, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland; (A.N.-K.); (D.K.-W.)
| |
Collapse
|
3
|
Poondla N, Babaeizad A, Sheykhhasan M, Barry CJ, Manoochehri H, Tanzadehpanah H, Mahaki H, Al-Musawi S. Exosome-based therapies and biomarkers in stroke: Current advances and future directions. Exp Neurol 2025; 391:115286. [PMID: 40328416 DOI: 10.1016/j.expneurol.2025.115286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 04/22/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
Stroke is a challenging neurological condition caused by interrupted blood flow to the brain and presents substantial global health concerns due to its prevalence and limited treatment options. Exosomes, tiny vesicles released by cells, are gaining attention for their potential in targeted drug delivery and as diagnostic and therapeutic biomarkers for stroke. This article outlines recent advances in exosome-based drug delivery systems and examines their application in managing stroke. Stroke presents with diverse symptoms depending on the brain region affected, and current treatments primarily aim to restore blood flow and manage risk factors. Exosomes exhibit a unique structure and composition and contain bioactive molecules. Their ability to cross the blood-brain barrier and target specific cells makes them promising candidates for precise drug delivery in stroke therapy. Exosomes contribute extensively to stroke pathophysiology and present considerable therapeutic promise by promoting neuroprotection and assisting in brain repair mechanisms. They can be engineered to carry various therapeutic substances, such as small molecules, enabling highly specific targeted delivery. Furthermore, the molecular compositions of exosomes reflect the pathological changes observed in stroke, indicating their potential use as biomarkers for early diagnosis, monitoring of disease progression, and creating individualized treatment strategies. Despite promising developments, challenges remain in optimizing exosome production, purification, and cargo loading. Further investigations into their biological mechanisms and clinical validation are crucial for translating their potential into tangible benefits for patients. This article highlights recent advances and future prospects in exosome research, underscoring their application as novel diagnostic and therapeutic tools in stroke management.
Collapse
Affiliation(s)
- Naresh Poondla
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Global Health Research, Saveetha Medical College& Hospital, Chennai 602105, India
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| | | | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanie Mahaki
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
4
|
Mathias K, Machado RS, Petronilho T, Sulzbacher VAR, de Rezende VL, Prophiro JS, Petronilho F. Glial and blood-brain barrier cell-derived exosomes: Implications in stroke. Microvasc Res 2025; 160:104812. [PMID: 40246225 DOI: 10.1016/j.mvr.2025.104812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/03/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Exosomes are small extracellular vesicles released by cells that play a pivotal role in intercellular communication, significantly influencing both the pathophysiology and potential treatment of ischemic stroke (IS). This review examines exosomes derived from key brain cell types, including microglia, astrocytes, oligodendrocytes, oligodendrocyte precursor cells (NG2+ cells), endothelial cells, and pericytes, emphasizing their molecular cargo and functional impact in IS. Microglia-derived exosomes regulate neuroinflammation, with M2-type exosomes exhibiting neuroprotective effects, while astrocyte-derived exosomes modulate pathways involved in pyroptosis and autophagy, influencing neuronal survival. Oligodendrocyte and NG2+ cell-derived exosomes contribute to remyelination, axonal growth, and inflammatory modulation. Endothelial and pericyte-derived exosomes play critical roles in BBB integrity, neurovascular remodeling, and drug transport across the BBB. This synthesis highlights recent advances in understanding how exosome-mediated communication impacts IS recovery and explores their translational potential for biomarker development and targeted therapies. By manipulating exosomal composition and delivery mechanisms, novel therapeutic strategies may emerge, offering hope for improved IS treatment outcomes.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Extremo Sul Catarinense, Criciuma, SC, Brazil; Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Taise Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Victor Augusto Rodrigues Sulzbacher
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Victoria Linden de Rezende
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Josiane Somariva Prophiro
- Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Extremo Sul Catarinense, Criciuma, SC, Brazil.
| |
Collapse
|
5
|
Irisa K, Shichita T. Neural repair mechanisms after ischemic stroke. Inflamm Regen 2025; 45:7. [PMID: 40098163 PMCID: PMC11912631 DOI: 10.1186/s41232-025-00372-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Ischemic stroke triggers inflammation that promotes neuronal injury, leading to disruption of neural circuits and exacerbated neurological deficits in patients. Immune cells contribute to not only the acute inflammatory responses but also the chronic neural repair. During the post-stroke recovery, reparative immune cells support the neural circuit reorganization that occurs around the infarct region to connect broad brain areas. This review highlights the time-dependent changes of neuro-immune interactions and reorganization of neural circuits after ischemic brain injury. Understanding the molecular mechanisms involving immune cells in acute inflammation, subsequent neural repair, and neuronal circuit reorganization that compensate for the lost brain function is indispensable to establish treatment strategies for stroke patients.
Collapse
Affiliation(s)
- Koshi Irisa
- Department of Neuroinflammation and Repair, Medical Research Laboratory, Institute of Science Tokyo, Bunkyo-Ku, Tokyo, 113-8510, Japan.
| | - Takashi Shichita
- Department of Neuroinflammation and Repair, Medical Research Laboratory, Institute of Science Tokyo, Bunkyo-Ku, Tokyo, 113-8510, Japan
| |
Collapse
|
6
|
Lu YP, Luo YL, Wu ZY, Han C, Jin YZ, Han JM, Chen SY, Teng F, Han F, Liu XX, Lu YM. Semaphorin 3s signaling in the central nervous system: Mechanisms and therapeutic implication for brain diseases. Pharmacol Ther 2025; 267:108800. [PMID: 39855276 DOI: 10.1016/j.pharmthera.2025.108800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/16/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Class 3 semaphorins (Sema3s), identified as secreted soluble proteins, present many therapeutic potentials. Recent evidence has suggested that Sema3s as molecular cue participate in neuroregulation, angiogenesis, and microenvironment homeostasis of the central nervous system. Moreover, Sema3s signaling pathways may be targeted for enhancing neural network connectivity, promoting neural regeneration and repair, and inhibiting pathological angiogenesis. Due to the complex co-expression patterns and crosstalk among Sema3s, new drugs targeting Sema3s-related signaling pathways are expected to be discovered to counter brain diseases. This review summarizes the specific roles of Sema3s in pathological processes of various brain diseases, and provides potential targeted strategies for the prevention and treatment.
Collapse
Affiliation(s)
- Ya-Ping Lu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 210019, China
| | - Yi-Ling Luo
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Zhou-Yue Wu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chao Han
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Yin-Zhi Jin
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Jun-Ming Han
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Shu-Yang Chen
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Fei Teng
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 210019, China; The affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Huaian 223300, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiu-Xiu Liu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Ying-Mei Lu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China; Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
7
|
Chen W, Su G, Chai M, An Y, Song J, Zhang Z. Astrogliosis and glial scar in ischemic stroke - focused on mechanism and treatment. Exp Neurol 2025; 385:115131. [PMID: 39733853 DOI: 10.1016/j.expneurol.2024.115131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Ischemic stroke is a kind of neurological dysfunction caused by cerebral ischemia. Astrocytes, as the most abundant type of glial cells in the central nervous system, are activated into reactive astrocytes after cerebral ischemia, and this process involves the activation or change of a series of cell surface receptors, ion channels and ion transporters, GTPases, signaling pathways, and so on. The role of reactive astrocytes in the development of ischemic stroke is time-dependent. In the early stage of ischemia, reactive astrocytes proliferate moderately and surround the ischemic tissue to prevent the spread of the lesion. At the same time, reactive astrocytes release neuroprotective factors, ultimately relieving brain injury. In the late stage of ischemia, reactive astrocytes excessively proliferate and migrate to form dense glial scar tissue, which hinders the repair of damaged tissue. At the same time, reactive astrocytes in the glial scar release a large number of neurotoxic factors, ultimately aggravating ischemic stroke. In this paper, we focus on the molecular mechanism of astrogliosis and glial scar formation after cerebral ischemia, and explore the relevant studies using glial scar as a therapeutic target, providing a reference for the selection of therapeutic strategies for ischemic stroke and further research directions.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730030, Gansu, China.
| | - Miao Chai
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Yang An
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Jinyang Song
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Zhenchang Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China.
| |
Collapse
|
8
|
Poongodi R, Hsu YW, Yang TH, Huang YH, Yang KD, Lin HC, Cheng JK. Stem Cell-Derived Extracellular Vesicle-Mediated Therapeutic Signaling in Spinal Cord Injury. Int J Mol Sci 2025; 26:723. [PMID: 39859437 PMCID: PMC11765593 DOI: 10.3390/ijms26020723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as a promising therapeutic strategy for spinal cord injury (SCI). These nanosized vesicles possess unique properties such as low immunogenicity and the ability to cross biological barriers, making them ideal carriers for delivering bioactive molecules to injured tissues. MSC-EVs have been demonstrated to exert multiple beneficial effects in SCI, including reducing inflammation, promoting neuroprotection, and enhancing axonal regeneration. Recent studies have delved into the molecular mechanisms underlying MSC-EV-mediated therapeutic effects. Exosomal microRNAs (miRNAs) have been identified as key regulators of various cellular processes involved in SCI pathogenesis and repair. These miRNAs can influence inflammation, oxidative stress, and apoptosis by modulating gene expression. This review summarized the current state of MSC-EV-based therapies for SCI, highlighting the underlying mechanisms and potential clinical applications. We discussed the challenges and limitations of translating these therapies into clinical practice, such as inconsistent EV production, complex cargo composition, and the need for targeted delivery strategies. Future research should focus on optimizing EV production and characterization, identifying key therapeutic miRNAs, and developing innovative delivery systems to maximize the therapeutic potential of MSC-EVs in SCI.
Collapse
Affiliation(s)
- Raju Poongodi
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Yung-Wei Hsu
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei 10449, Taiwan; (Y.-W.H.); (Y.-H.H.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| | - Tao-Hsiang Yang
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Ya-Hsien Huang
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei 10449, Taiwan; (Y.-W.H.); (Y.-H.H.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| | - Kuender D. Yang
- Institute of Long-Term Care, MacKay Medical College, New Taipei City 25245, Taiwan;
- MacKay Children’s Hospital, Taipei 10449, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan;
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Jen-Kun Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei 10449, Taiwan; (Y.-W.H.); (Y.-H.H.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| |
Collapse
|
9
|
Zhu A, Jiang Y, Pan L, Li J, Huang Y, Shi M, Di L, Wang L, Wang R. Cell inspired delivery system equipped with natural membrane structures in applications for rescuing ischemic stroke. J Control Release 2025; 377:54-80. [PMID: 39547421 DOI: 10.1016/j.jconrel.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Ischemic stroke (IS), accounting for 87 % of stroke incidences, constitutes a paramount health challenge owing to neurological impairments and irreversible tissue damage arising from cerebral ischemia. Chief among therapeutic obstacles are the restrictive penetration of the blood-brain barrier (BBB) and insufficient targeting precision, hindering the accumulation of drugs in ischemic brain areas. Motivated by the remarkable capabilities of natural membrane-based delivery vehicles in achieving targeted delivery and traversing the BBB, thanks to their biocompatible architecture and bioactive components, numerous membrane-engineered systems such as cells, cell membranes and extracellular vesicles have emerged as promising platforms to augment IS treatment efficacy with the help of nanotechnology. This review consolidates the primary pathological manifestations following IS, elucidates the unique functionalities of natural membrane drug delivery systems (DDSs) with nanotechnology, as well as delineates the structural characteristics of various natural membranes alongside rational design strategies employed. The review illuminates both the potential and challenges encountered when employing natural membrane DDSs in IS drug therapy, offering fresh perspectives and insights for devising efficacious and practical delivery systems tailored to IS intervention.
Collapse
Affiliation(s)
- Anran Zhu
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yingyu Jiang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Longxiang Pan
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiale Li
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yao Huang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Minghui Shi
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liuqing Di
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Ruoning Wang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
10
|
Ahmad S, Christova T, Pye M, Narimatsu M, Song S, Wrana JL, Attisano L. Small Extracellular Vesicles Promote Axon Outgrowth by Engaging the Wnt-Planar Cell Polarity Pathway. Cells 2025; 14:56. [PMID: 39791757 PMCID: PMC11720052 DOI: 10.3390/cells14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
In neurons, the acquisition of a polarized morphology is achieved upon the outgrowth of a single axon from one of several neurites. Small extracellular vesicles (sEVs), such as exosomes, from diverse sources are known to promote neurite outgrowth and thus may have therapeutic potential. However, the effect of fibroblast-derived exosomes on axon elongation in neurons of the central nervous system under growth-permissive conditions remains unclear. Here, we show that fibroblast-derived sEVs promote axon outgrowth and a polarized neuronal morphology in mouse primary embryonic cortical neurons. Mechanistically, we demonstrate that the sEV-induced increase in axon outgrowth requires endogenous Wnts and core PCP components including Prickle, Vangl, Frizzled, and Dishevelled. We demonstrate that sEVs are internalized by neurons, colocalize with Wnt7b, and induce relocalization of Vangl2 to the distal axon during axon outgrowth. In contrast, sEVs derived from neurons or astrocytes do not promote axon outgrowth, while sEVs from activated astrocytes inhibit elongation. Thus, our data reveal that fibroblast-derived sEVs promote axon elongation through the Wnt-PCP pathway in a manner that is dependent on endogenous Wnts.
Collapse
Affiliation(s)
- Samar Ahmad
- Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; (S.A.); (T.C.); (S.S.)
| | - Tania Christova
- Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; (S.A.); (T.C.); (S.S.)
| | - Melanie Pye
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada; (M.P.); (M.N.); (J.L.W.)
| | - Masahiro Narimatsu
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada; (M.P.); (M.N.); (J.L.W.)
| | - Siyuan Song
- Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; (S.A.); (T.C.); (S.S.)
| | - Jeffrey L. Wrana
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada; (M.P.); (M.N.); (J.L.W.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Liliana Attisano
- Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; (S.A.); (T.C.); (S.S.)
| |
Collapse
|
11
|
Zhu Y, Wang F, Xia Y, Wang L, Lin H, Zhong T, Wang X. Research progress on astrocyte-derived extracellular vesicles in the pathogenesis and treatment of neurodegenerative diseases. Rev Neurosci 2024; 35:855-875. [PMID: 38889403 DOI: 10.1515/revneuro-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024]
Abstract
Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), pose significant global health risks and represent a substantial public health concern in the contemporary era. A primary factor in the pathophysiology of these disorders is aberrant accumulation and aggregation of pathogenic proteins within the brain and spinal cord. Recent investigations have identified extracellular vesicles (EVs) in the central nervous system (CNS) as potential carriers for intercellular transport of misfolded proteins associated with neurodegenerative diseases. EVs are involved in pathological processes that contribute to various brain disorders including neurodegenerative disorders. Proteins linked to neurodegenerative disorders are secreted and distributed from cell to cell via EVs, serving as a mechanism for direct intercellular communication through the transfer of biomolecules. Astrocytes, as active participants in CNS intercellular communication, release astrocyte-derived extracellular vesicles (ADEVs) that are capable of interacting with diverse target cells. This review primarily focuses on the involvement of ADEVs in the development of neurological disorders and explores their potential dual roles - both advantageous and disadvantageous in the context of neurological disorders. Furthermore, this review examines the current studies investigating ADEVs as potential biomarkers for the diagnosis and treatment of neurodegenerative diseases. The prospects and challenges associated with the application of ADEVs in clinical settings were also comprehensively reviewed.
Collapse
Affiliation(s)
- Yifan Zhu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Fangsheng Wang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Yu Xia
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Lijuan Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Haihong Lin
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Xiaoling Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
12
|
Ueno Y, Morishima Y, Hata T, Shindo A, Murata H, Saito T, Nakamura Y, Shindo K. Current progress in microRNA profiling of circulating extracellular vesicles in amyotrophic lateral sclerosis: A systematic review. Neurobiol Dis 2024; 200:106639. [PMID: 39168358 DOI: 10.1016/j.nbd.2024.106639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting upper and lower motor neurons, leading to death resulting mainly from respiratory failure, for which there is currently no curative treatment. Underlying pathological mechanisms for the development of ALS are diverse and have yet to be elucidated. Non-invasive testing to isolate circulating molecules including microRNA to diagnose ALS has been reported, but circulating extracellular vesicle (EV)-derived microRNA has not been fully studied in the ALS population. METHODS A systematic literature review to explore studies investigating the profile of microRNAs in EVs from blood samples of ALS patients was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guideline. RESULTS Eleven studies including a total of 263 patients with ALS were included in the present systematic review. The majority of patients had sporadic ALS, though a small number of patients with ALS having genetic mutations were included. Seven studies used plasma-derived EVs, and the remaining four studies used serum-derived EVs. RNA sequencing or microarrays were used in eight studies, and quantitative PCR was used in eight studies, of which five studies used RNA sequencing or microarrays for screening and quantitative PCR for validation. There was overlap of miR-199a-3p and miR-199a-5p in three studies. CONCLUSIONS Overall, the systematic review addressed the current advances in the profiling of microRNAs in circulating EVs of ALS patients. Blood samples, isolation of EVs, and microRNA analysis were diverse. Although there was an overlap of miR-199a-3p and miR-199a-5p, collection of further evidence is warranted.
Collapse
Affiliation(s)
- Yuji Ueno
- Department of Neurology, University of Yamanashi, Chuo, Japan.
| | - Yuto Morishima
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Takanori Hata
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Atsuhiko Shindo
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Hiroaki Murata
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Tatsuya Saito
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Yuki Nakamura
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Kazumasa Shindo
- Department of Neurology, University of Yamanashi, Chuo, Japan
| |
Collapse
|
13
|
Fang X, Zhou D, Wang X, Ma Y, Zhong G, Jing S, Huang S, Wang Q. Exosomes: A Cellular Communication Medium That Has Multiple Effects On Brain Diseases. Mol Neurobiol 2024; 61:6864-6892. [PMID: 38356095 DOI: 10.1007/s12035-024-03957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Exosomes, as membranous vesicles generated by multiple cell types and secreted to extracellular space, play a crucial role in a range of brain injury-related brain disorders by transporting diverse proteins, RNA, DNA fragments, and other functional substances. The nervous system's pathogenic mechanisms are complicated, involving pathological processes like as inflammation, apoptosis, oxidative stress, and autophagy, all of which result in blood-brain barrier damage, cognitive impairment, and even loss of normal motor function. Exosomes have been linked to the incidence and progression of brain disorders in recent research. As a result, a thorough knowledge of the interaction between exosomes and brain diseases may lead to the development of more effective therapeutic techniques that may be implemented in the clinic. The potential role of exosomes in brain diseases and the crosstalk between exosomes and other pathogenic processes were discussed in this paper. Simultaneously, we noted the delicate events in which exosomes as a media allow the brain to communicate with other tissues and organs in physiology and disease, and compiled a list of natural compounds that modulate exosomes, in order to further improve our understanding of exosomes and propose new ideas for treating brain disorders.
Collapse
Affiliation(s)
- Xiaoling Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Dishu Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Xinyue Wang
- Department of Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510405, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 510405, Guangzhou, China
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Shangwen Jing
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Shuiqing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China.
| |
Collapse
|
14
|
Xu H, Li H, Zhang P, Gao Y, Ma H, Gao T, Liu H, Hua W, Zhang L, Zhang X, Yang P, Liu J. The functions of exosomes targeting astrocytes and astrocyte-derived exosomes targeting other cell types. Neural Regen Res 2024; 19:1947-1953. [PMID: 38227520 PMCID: PMC11040311 DOI: 10.4103/1673-5374.390961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/20/2023] [Accepted: 09/08/2023] [Indexed: 01/17/2024] Open
Abstract
Astrocytes are the most abundant glial cells in the central nervous system; they participate in crucial biological processes, maintain brain structure, and regulate nervous system function. Exosomes are cell-derived extracellular vesicles containing various bioactive molecules including proteins, peptides, nucleotides, and lipids secreted from their cellular sources. Increasing evidence shows that exosomes participate in a communication network in the nervous system, in which astrocyte-derived exosomes play important roles. In this review, we have summarized the effects of exosomes targeting astrocytes and the astrocyte-derived exosomes targeting other cell types in the central nervous system. We also discuss the potential research directions of the exosome-based communication network in the nervous system. The exosome-based intercellular communication focused on astrocytes is of great significance to the biological and/or pathological processes in different conditions in the brain. New strategies may be developed for the diagnosis and treatment of neurological disorders by focusing on astrocytes as the central cells and utilizing exosomes as communication mediators.
Collapse
Affiliation(s)
- Hongye Xu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - He Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Emergency, Naval Hospital of Eastern Theater, Zhoushan, Zhejiang Province, China
| | - Ping Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuan Gao
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hongyu Ma
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tianxiang Gao
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hanchen Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Weilong Hua
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lei Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoxi Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Pengfei Yang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianmin Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
15
|
Wang Y, Li H, Sun H, Xu C, Sun H, Wei W, Song J, Jia F, Zhong D, Li G. A2 reactive astrocyte-derived exosomes alleviate cerebral ischemia-reperfusion injury by delivering miR-628. J Cell Mol Med 2024; 28:e70004. [PMID: 39159174 PMCID: PMC11332600 DOI: 10.1111/jcmm.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Ischemia and hypoxia activate astrocytes into reactive types A1 and A2, which play roles in damage and protection, respectively. However, the function and mechanism of A1 and A2 astrocyte exosomes are unknown. After astrocyte exosomes were injected into the lateral ventricle, infarct volume, damage to the blood-brain barrier (BBB), apoptosis and the expression of microglia-related proteins were measured. The dual luciferase reporter assay was used to detect the target genes of miR-628, and overexpressing A2-Exos overexpressed and knocked down miR-628 were constructed. qRT-PCR, western blotting and immunofluorescence staining were subsequently performed. A2-Exos obviously reduced the infarct volume, damage to the BBB and apoptosis and promoted M2 microglial polarization. RT-PCR showed that miR-628 was highly expressed in A2-Exos. Dual luciferase reporter assays revealed that NLRP3, S1PR3 and IRF5 are target genes of miR-628. After miR-628 was overexpressed or knocked down, the protective effects of A2-Exos increased or decreased, respectively. A2-Exos reduced pyroptosis and BBB damage and promoted M2 microglial polarization through the inhibition of NLRP3, S1PR3 and IRF5 via the delivery of miR-628. This study explored the mechanism of action of A2-Exos and provided new therapeutic targets and concepts for treating cerebral ischemia.
Collapse
Affiliation(s)
- Yingju Wang
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangPeople's Republic of China
| | - He Li
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangPeople's Republic of China
| | - Hanwen Sun
- Department of EmergencyRui Jin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Chen Xu
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangPeople's Republic of China
| | - Hongxue Sun
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangPeople's Republic of China
| | - Wan Wei
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangPeople's Republic of China
| | - Jihe Song
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangPeople's Republic of China
| | - Feihong Jia
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangPeople's Republic of China
| | - Di Zhong
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangPeople's Republic of China
| | - Guozhong Li
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangPeople's Republic of China
- Department of NeurologyHeilongjiang Provincial HospitalHarbinHeilongjiangPeople's Republic of China
| |
Collapse
|
16
|
Imura T, Abiko M, Tanaka R. Bioinformatic Exploration of Circulating microRNAs Related to Functional Outcomes in Patients With Acute Ischemic Stroke: An Exploratory Prospective Study. Cureus 2024; 16:e67476. [PMID: 39310540 PMCID: PMC11415936 DOI: 10.7759/cureus.67476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Background Although epigenetic modifications have been expected to play an important role in neuroplasticity for stroke recovery, the role of dynamic microRNA (miRNA) regulation related to functional outcomes after ischemic stroke remains unclear. Therefore, the current study performed a comprehensive miRNA expression analysis in serum to identify specifically altered circulating miRNAs associated with different grades of functional outcomes in patients with acute ischemic stroke (AIS). Methods Twelve patients with AIS in the middle cerebral artery region were included in this study. Peripheral blood samples were collected from patients one or two days after hospitalization. Total RNA, including small RNAs, was extracted from 400 µL of serum, and comprehensive miRNA expression analysis was performed to identify specifically altered circulating miRNAs associated with different grades of functional outcomes. Functional outcomes were evaluated three months after stroke onset using the modified Rankin Scale (mRS), classified as favorable (mRS score of 0 or 1) or unfavorable (mRS score of 2 to 5). Differentially expressed miRNAs were analyzed using the DESeq2 package. Target genes of the miRNAs were explored using miRTargetLink 2.0. Results Acute miRNA expression dynamics were characterized by differences in the patients' functional outcomes following ischemic stroke. The favorable outcome group exhibited significantly downregulated miRNAs, including hsa-miR-218-1, hsa-miR-218-2, hsa-miR-320e, hsa-miR-320d-1, hsa-miR-320d-2, hsa-miR-326, and hsa-miR-4429. In addition, 15 miRNAs, including hsa-miR-223, hsa-miR-18a, hsa-miR-411, and hsa-miR-128-1, were significantly upregulated in the favorable outcome group compared to the unfavorable outcome group. Interesting and strong validated networks between miRNAs and their target genes were identified. Conclusion This study identified specifically altered circulating miRNAs in serum associated with varying grades of functional outcomes in AIS patients and explored miRNA-target gene networks that might contribute to these outcomes. Although further studies are needed, this study highlights their potential role as biomarkers for predicting functional outcomes in patients with AIS.
Collapse
Affiliation(s)
- Takeshi Imura
- Department of Rehabilitation, Hiroshima Cosmopolitan University, Hiroshima, JPN
| | - Masaru Abiko
- Department of Neurosurgery, JA Onomichi General Hospital, Onomichi, JPN
| | - Ryo Tanaka
- Graduate School of Humanities and Social Sciences, Hiroshima University, Higashihiroshima, JPN
| |
Collapse
|
17
|
Yan B, Liao P, Liu Y, Han Z, Wang C, Chen F, Lei P. Therapeutic potential of microglia-derived extracellular vesicles in ischemic stroke. Int Immunopharmacol 2024; 139:112712. [PMID: 39032476 DOI: 10.1016/j.intimp.2024.112712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Ischemic stroke (IS) is a debilitating neurological disorder with limited treatment options. Extracellular vesicles (EVs) have emerged as crucial lipid bilayer particles derived from various cell types that facilitate intercellular communication and enable the exchange of proteins, lipids, and genetic material. Microglia are resident brain cells that play a crucial role in brain development, maintenance of neuronal networks, and injury repair. They secrete numerous extracellular vesicles in different states. Recent evidence indicates that microglia-derived extracellular vesicles (M-EVs) actively participate in mediating various biological processes, such as neuroprotection and neurorepair, in stroke, making them an excellent therapeutic approach for treating this condition. This review comprehensively summarizes the latest research on M-EVs in stroke and explores their potential as novel therapeutic targets for this disorder. Additionally, it provides an overview of the effects and functions of M-EVs on stroke recovery to facilitate the development of clinically relevant therapies for IS.
Collapse
Affiliation(s)
- Bo Yan
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Pan Liao
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; School of Medicine, Nankai University, Tianjin 300192, China
| | - Yaru Liu
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Conglin Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Fanglian Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; School of Medicine, Nankai University, Tianjin 300192, China.
| |
Collapse
|
18
|
Lénárt N, Cserép C, Császár E, Pósfai B, Dénes Á. Microglia-neuron-vascular interactions in ischemia. Glia 2024; 72:833-856. [PMID: 37964690 DOI: 10.1002/glia.24487] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Cerebral ischemia is a devastating condition that results in impaired blood flow in the brain leading to acute brain injury. As the most common form of stroke, occlusion of cerebral arteries leads to a characteristic sequence of pathophysiological changes in the brain tissue. The mechanisms involved, and comorbidities that determine outcome after an ischemic event appear to be highly heterogeneous. On their own, the processes leading to neuronal injury in the absence of sufficient blood supply to meet the metabolic demand of the cells are complex and manifest at different temporal and spatial scales. While the contribution of non-neuronal cells to stroke pathophysiology is increasingly recognized, recent data show that microglia, the main immune cells of the central nervous system parenchyma, play previously unrecognized roles in basic physiological processes beyond their inflammatory functions, which markedly change during ischemic conditions. In this review, we aim to discuss some of the known microglia-neuron-vascular interactions assumed to contribute to the acute and delayed pathologies after cerebral ischemia. Because the mechanisms of neuronal injury have been extensively discussed in several excellent previous reviews, here we focus on some recently explored pathways that may directly or indirectly shape neuronal injury through microglia-related actions. These discoveries suggest that modulating gliovascular processes in different forms of stroke and other neurological disorders might have presently unexplored therapeutic potential in combination with neuroprotective and flow restoration strategies.
Collapse
Affiliation(s)
- Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Eszter Császár
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
19
|
Yang H, Niu L, Jia J, Liang W, Li Q, Pan Y. Extracellular vesicles: Mediators of microenvironment in hypoxia-associated neurological diseases. Clin Neurol Neurosurg 2024; 240:108250. [PMID: 38552364 DOI: 10.1016/j.clineuro.2024.108250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/29/2024]
Abstract
Hypoxia is a prevalent characteristic of numerous neurological disorders including stroke, Alzheimer's disease, and Parkinson's disease. Extracellular vesicles (EVs) are minute particles released by cells that contain diverse biological materials, including proteins, lipids, and nucleic acids. They have been implicated in a range of physiological and pathological processes including intercellular communication, immune responses, and disease progression. EVs are believed to play a pivotal role in modulating the microenvironment of hypoxia-associated neurological diseases. These EVs are capable of transporting hypoxia-inducible factors such as proteins and microRNAs to neighboring or remote cells, thereby influencing their behavior. Furthermore, EVs can traverse the blood-brain barrier, shielding the brain from detrimental substances in the bloodstream. This enables them to deliver their payload directly to the brain cells, potentially intensifying the effects of hypoxia. Nonetheless, the capacity of EVs to breach the blood-brain barrier presents new opportunities for drug delivery. The objective of this study was to elucidate the role of EVs as mediators of information exchange during tissue hypoxia, a pathophysiological process in ischemic stroke and malignant gliomas. We also investigated their involvement in the progression and regression of major diseases of the central nervous system, which are pertinent to the development of therapeutic interventions for neurological disorders.
Collapse
Affiliation(s)
- Hu Yang
- Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Liang Niu
- Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou 730030, China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Juan Jia
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Department of Anesthesiology, The Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Wentao Liang
- Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Qiang Li
- Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou 730030, China.
| | - Yawen Pan
- Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
20
|
Edwardson MA, Mitsuhashi M, Van Epps D. Elevation of astrocyte-derived extracellular vesicles over the first month post-stroke in humans. Sci Rep 2024; 14:5272. [PMID: 38438491 PMCID: PMC10912590 DOI: 10.1038/s41598-024-55983-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
We sought to identify alterations in the quantity of plasma brain-derived extracellular vesicles (EV) over the first month post-stroke to shed light on related injury and repair mechanisms. We assessed plasma levels of presumed neuron-derived EVs (NDEs), astrocyte-derived EVs (ADEs), and oligodendrocyte-derived EVs (ODEs) in 58 patients 5, 15, and 30 days post-ischemic stroke and 46 controls matched for cardiovascular risk factors using sandwich immunoassays. Subsets of brain-derived EVs were identified by co-expression of the general EV marker CD9 and markers for neurons (L1CAM, CD171), astrocytes (EAAT1), and oligodendrocytes (MOG) respectively. Clinical MRIs assessed lesion volume and presence of hemorrhagic transformation. ADE levels were elevated 5, 15, and 30 days post-stroke compared to controls (p = 0.002, p = 0.002, and p = 0.005 respectively) with no significant change for NDE or ODE. ADEs were increased 15 days post-stroke in patients with hemorrhagic transformation (p = 0.04) compared to patients with no hemorrhage. We conclude that ADE levels are preferentially increased over the first month post-stroke in humans, possibly to provide trophic support to injured neurons following ischemia. ADEs hold potential as biomarkers of blood-brain barrier breakdown and hemorrhagic transformation, but this requires further study at earlier time points post-stroke.
Collapse
Affiliation(s)
- Matthew A Edwardson
- Department of Neurology, Georgetown University, Washington, DC, USA.
- Research Division, MedStar National Rehabilitation Hospital, Washington, DC, USA.
| | | | | |
Collapse
|
21
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
22
|
Liu J, Guo Y, Zhang Y, Zhao X, Fu R, Hua S, Xu S. Astrocytes in ischemic stroke: Crosstalk in central nervous system and therapeutic potential. Neuropathology 2024; 44:3-20. [PMID: 37345225 DOI: 10.1111/neup.12928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/04/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
In the central nervous system (CNS), a large group of glial cells called astrocytes play important roles in both physiological and disease conditions. Astrocytes participate in the formation of neurovascular units and interact closely with other cells of the CNS, such as microglia and neurons. Stroke is a global disease with high mortality and disability rate, most of which are ischemic stroke. Significant strides in understanding astrocytes have been made over the past few decades. Astrocytes respond strongly to ischemic stroke through a process known as activation or reactivity. Given the important role played by reactive astrocytes (RAs) in different spatial and temporal aspects of ischemic stroke, there is a growing interest in the potential therapeutic role of astrocytes. Currently, interventions targeting astrocytes, such as mediating astrocyte polarization, reducing edema, regulating glial scar formation, and reprogramming astrocytes, have been proven in modulating the progression of ischemic stroke. The aforementioned potential interventions on astrocytes and the crosstalk between astrocytes and other cells of the CNS will be summarized in this review.
Collapse
Affiliation(s)
- Jueling Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuying Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoxiao Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rong Fu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shengyu Hua
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| |
Collapse
|
23
|
Kijima C, Inaba T, Hira K, Miyamoto N, Yamashiro K, Urabe T, Hattori N, Ueno Y. Astrocytic Extracellular Vesicles Regulated by Microglial Inflammatory Responses Improve Stroke Recovery. Mol Neurobiol 2024; 61:1002-1021. [PMID: 37676390 PMCID: PMC10861643 DOI: 10.1007/s12035-023-03629-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
There are no effective treatments for post-stroke glial scar formation, which inhibits axonal outgrowth and functional recovery after stroke. We investigated whether astrocytic extracellular vesicles (AEVs) regulated by microglia modulate glial scars and improve stroke recovery. We found that peri-infarct glial scars comprised reactive astrocytes with proliferating C3d and decreased S100A10 expression in chronic stroke. In cultured astrocytes, microglia-conditioned media and treatment with P2Y1 receptor antagonists increased and reduced the area of S100A10- and C3d-expressing reactive astrocytes, respectively, by suppressing mitogen-activated protein kinase/nuclear factor-κβ (NF-κB)/tumor necrosis factor-α (TNF-α)/interleukin-1β signaling after oxygen-glucose deprivation. Intracerebral administrations of AEVs enriched miR-146a-5p, downregulated NF-κB, and suppressed TNF-α expressions, by transforming reactive astrocytes to those with S100A10 preponderance, causing functional recovery in rats subjected to middle cerebral artery occlusion. Modulating neuroinflammation in post-stroke glial scars could permit axonal outgrowth, thus providing a basis for stroke recovery with neuroprotective AEVs.
Collapse
Affiliation(s)
- Chikage Kijima
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Toshiki Inaba
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kenichiro Hira
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Nobukazu Miyamoto
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kazuo Yamashiro
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Takao Urabe
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| | - Yuji Ueno
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan.
| |
Collapse
|
24
|
Yoshida T, Tashiro S, Nagoshi N, Shinozaki M, Shibata T, Inoue M, Ogawa S, Shibata S, Tsuji T, Okano H, Nakamura M. Chronic Spinal Cord Injury Regeneration with Combined Therapy Comprising Neural Stem/Progenitor Cell Transplantation, Rehabilitation, and Semaphorin 3A Inhibitor. eNeuro 2024; 11:ENEURO.0378-23.2024. [PMID: 38262737 PMCID: PMC10866332 DOI: 10.1523/eneuro.0378-23.2024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024] Open
Abstract
Spinal cord injury (SCI) often results in various long-term sequelae, and chronically injured spinal cords exhibit a refractory feature, showing a limited response to cell transplantation therapies. To our knowledge, no preclinical studies have reported a treatment approach with results surpassing those of treatment comprising rehabilitation alone. In this study of rats with SCI, we propose a novel combined therapy involving a semaphorin 3A inhibitor (Sema3Ai), which enhances axonal regeneration, as the third treatment element in combination with neural stem/progenitor cell transplantation and rehabilitation. This comprehensive therapeutic strategy achieved significant improvements in host-derived neuronal and oligodendrocyte differentiation at the SCI epicenter and promoted axonal regeneration even in the chronically injured spinal cord. The elongated axons established functional electrical connections, contributing to significant enhancements in locomotor mobility when compared with animals treated with transplantation and rehabilitation. As a result, our combined transplantation, Sema3Ai, and rehabilitation treatment have the potential to serve as a critical step forward for chronic SCI patients, improving their ability to regain motor function.
Collapse
Affiliation(s)
- Takashi Yoshida
- Departments of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Syoichi Tashiro
- Departments of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Narihito Nagoshi
- Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Munehisa Shinozaki
- Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takahiro Shibata
- Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mitsuhiro Inoue
- Regenerative and Cellular Medicine Kobe Center, Sumitomo Pharma, Kobe, Hyogo 650-0047, Japan
| | - Shoji Ogawa
- Formulation Research & Development Laboratories, Sumitomo Pharma, Suita, Osaka 564-0053, Japan
| | - Shinsuke Shibata
- Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata-shi, Niigata 951-8510, Japan
| | - Tetsuya Tsuji
- Departments of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
25
|
Liu W, Jin M, Chen Q, Li Q, Xing X, Luo Y, Sun X. Insight into extracellular vesicles in vascular diseases: intercellular communication role and clinical application potential. Cell Commun Signal 2023; 21:310. [PMID: 37907962 PMCID: PMC10617214 DOI: 10.1186/s12964-023-01304-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/02/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Cells have been increasingly known to release extracellular vesicles (EVs) to the extracellular environment under physiological and pathological conditions. A plethora of studies have revealed that EVs contain cell-derived biomolecules and are found in circulation, thereby implicating them in molecular trafficking between cells. Furthermore, EVs have an effect on physiological function and disease development and serve as disease biomarkers. MAIN BODY Given the close association between EV circulation and vascular disease, this review aims to provide a brief introduction to EVs, with a specific focus on the EV cargoes participating in pathological mechanisms, diagnosis, engineering, and clinical potential, to highlight the emerging evidence suggesting promising targets in vascular diseases. Despite the expansion of research in this field, some noticeable limitations remain for clinical translational research. CONCLUSION This review makes a novel contribution to a summary of recent advances and a perspective on the future of EVs in vascular diseases. Video Abstract.
Collapse
Affiliation(s)
- Wenxiu Liu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Meiqi Jin
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Qiuyan Chen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Qiaoyu Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Xiaoyan Xing
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.
| |
Collapse
|
26
|
UENO YUJI. Mechanism of Post-stroke Axonal Outgrowth and Functional Recovery. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2023; 69:364-369. [PMID: 38845728 PMCID: PMC10984353 DOI: 10.14789/jmj.jmj23-0025-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 06/09/2024]
Abstract
Axonal outgrowth after stroke plays an important role in tissue repair and is critical for functional recovery. In the peri-infarct area of a rat middle cerebral artery occlusion model, we found that the axons and dendrites that had fallen off in the acute phase of stroke (7 days) were regenerated in the chronic phase of stroke (56 days). In vitro, we showed that phosphatase tensin homolog deleted on chromosome 10/Akt/Glycogen synthase kinase 3β signaling is implicated in postischemic axonal regeneration. In a rat model of chronic cerebral hypoperfusion, oral administration of L-carnitine induced axonal and oligodendrocyte regeneration in the cerebral white matter, resulting in myelin thickening, and it improved cognitive impairment in rats with chronic cerebral ischemia. Recently, it has been shown that exosomes enhanced functional recovery after stroke. Exosome treatment has less tumorigenicity, does not occlude the microvascular system, has low immunogenicity, and does not require a host immune response compared to conventional cell therapy. Several studies demonstrated specific microRNA in exosomes, which regulated signaling pathways related to neurogenesis after stroke. Collectively, there are various mechanisms of axonal regeneration and functional recovery after stroke, and it is expected that new therapeutic agents for stroke with the aim of axonal regeneration will be developed and used in real-world clinical practice in the future.
Collapse
Affiliation(s)
- YUJI UENO
- Corresponding author: Yuji Ueno, Department of Neurology, University of Yamanashi, 1110 Shimokato, Chuo-city, Yamanashi 409-3898, Japan, TEL/FAX: +81-55-273-9896 E-mail: ,
| |
Collapse
|
27
|
Sang Y, Tsuji K, Nakanoh H, Fukushima K, Kitamura S, Wada J. Role of Semaphorin 3A in Kidney Development and Diseases. Diagnostics (Basel) 2023; 13:3038. [PMID: 37835781 PMCID: PMC10572269 DOI: 10.3390/diagnostics13193038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Kidney diseases are worldwide public health problems affecting millions of people. However, there are still limited therapeutic options against kidney diseases. Semaphorin 3A (SEMA3A) is a secreted and membrane-associated protein, which regulates diverse functions, including immune regulation, cell survival, migration and angiogenesis, thus involving in the several pathogeneses of diseases, including eyes and neurons, as well as kidneys. SEMA3A is expressed in podocytes and tubular cells in the normal adult kidney, and recent evidence has revealed that excess SEMA3A expression and the subsequent signaling pathway aggravate kidney injury in a variety of kidney diseases, including nephrotic syndrome, diabetic nephropathy, acute kidney injury, and chronic kidney disease. In addition, several reports have demonstrated that the inhibition of SEMA3A ameliorated kidney injury via a reduction in cell apoptosis, fibrosis and inflammation; thus, SEMA3A may be a potential therapeutic target for kidney diseases. In this review article, we summarized the current knowledge regarding the role of SEMA3A in kidney pathophysiology and their potential use in kidney diseases.
Collapse
Affiliation(s)
- Yizhen Sang
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
- Department of Rheumatology and Immunology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Kenji Tsuji
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
| | - Hiroyuki Nakanoh
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
| | - Kazuhiko Fukushima
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shinji Kitamura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
- Department of Nursing Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
| |
Collapse
|
28
|
Zeng CW, Tsai HJ. The Promising Role of a Zebrafish Model Employed in Neural Regeneration Following a Spinal Cord Injury. Int J Mol Sci 2023; 24:13938. [PMID: 37762240 PMCID: PMC10530783 DOI: 10.3390/ijms241813938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating event that results in a wide range of physical impairments and disabilities. Despite the advances in our understanding of the biological response to injured tissue, no effective treatments are available for SCIs at present. Some studies have addressed this issue by exploring the potential of cell transplantation therapy. However, because of the abnormal microenvironment in injured tissue, the survival rate of transplanted cells is often low, thus limiting the efficacy of such treatments. Many studies have attempted to overcome these obstacles using a variety of cell types and animal models. Recent studies have shown the utility of zebrafish as a model of neural regeneration following SCIs, including the proliferation and migration of various cell types and the involvement of various progenitor cells. In this review, we discuss some of the current challenges in SCI research, including the accurate identification of cell types involved in neural regeneration, the adverse microenvironment created by SCIs, attenuated immune responses that inhibit nerve regeneration, and glial scar formation that prevents axonal regeneration. More in-depth studies are needed to fully understand the neural regeneration mechanisms, proteins, and signaling pathways involved in the complex interactions between the SCI microenvironment and transplanted cells in non-mammals, particularly in the zebrafish model, which could, in turn, lead to new therapeutic approaches to treat SCIs in humans and other mammals.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huai-Jen Tsai
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
29
|
Dey A, Ghosh S, Bhuniya T, Koley M, Bera A, Guha S, Chakraborty K, Muthu S, Gorai S, Vorn R, Vadivalagan C, Anand K. Clinical Theragnostic Signature of Extracellular Vesicles in Traumatic Brain Injury (TBI). ACS Chem Neurosci 2023; 14:2981-2994. [PMID: 37624044 PMCID: PMC10485905 DOI: 10.1021/acschemneuro.3c00386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Traumatic brain injury (TBI) is a common cause of disability and fatality worldwide. Depending on the clinical presentation, it is a type of acquired brain damage that can be mild, moderate, or severe. The degree of patient's discomfort, prognosis, therapeutic approach, survival rates, and recurrence can all be strongly impacted by an accurate diagnosis made early on. The Glasgow Coma Scale (GCS), along with neuroimaging (MRI (Magnetic Resonance Imaging) and CT scan), is a neurological assessment tools used to evaluate and categorize the severity of TBI based on the patient's level of consciousness, eye opening, and motor response. Extracellular vesicles (EVs) are a growing domain, explaining neurological complications in a more detailed manner. EVs, in general, play a role in cellular communication. Its molecular signature such as DNA, RNA, protein, etc. contributes to the status (health or pathological stage) of the parental cell. Brain-derived EVs support more specific screening (diagnostic and prognostic) in TBI research. Therapeutic impact of EVs are more promising for aiding in TBI healing. It is nontoxic, biocompatible, and capable of crossing the blood-brain barrier (BBB) to transport therapeutic molecules. This review has highlighted the relationships between EVs and TBI theranostics, EVs and TBI-related clinical trials, and related research domain-associated challenges and solutions. This review motivates further exploration of associations between EVs and TBI and develops a better approach to TBI management.
Collapse
Affiliation(s)
- Anuvab Dey
- Department
of Biological Sciences and Biological Engineering, IIT Guwahati, North
Guwahati, Assam 781039, India
| | | | - Tiyasa Bhuniya
- Department
of Biotechnology, NIT Durgapur, Mahatma Gandhi Rd, A-Zone, Durgapur, West Bengal 713209, India
| | - Madhurima Koley
- Chemistry
and Chemical Biology department, IIT(ISM), Dhanbad 826004, India
| | - Aishi Bera
- Heritage
Institute of Technology, Chowbaga, Anandapur, Kolkata 700107, India
| | - Sudeepta Guha
- Chemistry
and Chemical Biology department, IIT(ISM), Dhanbad 826004, India
| | | | - Sathish Muthu
- Department
of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department
of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Sukhamoy Gorai
- Rush University
Medical Center, 1620 W Harrison St, Chicago, Illinois 60612, United States
| | - Rany Vorn
- School
of Nursing and Medicine, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Chithravel Vadivalagan
- Department
of Surgery, University of Michigan Medical
Center, Ann Arbor, Michigan 48109, United States
| | - Krishnan Anand
- Department
of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
30
|
Gao J, Liu J, Li Y, Liu J, Wang H, Chai M, Dong Y, Zhang Z, Su G, Wang M. Targeting p53 for neuroinflammation: New therapeutic strategies in ischemic stroke. J Neurosci Res 2023. [PMID: 37156641 DOI: 10.1002/jnr.25200] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
Ischemic stroke (IS) is characterized by high incidence, high recurrence, and high mortality and places a heavy burden on society and families. The pathological mechanisms of IS are complex, among which secondary neurological impairment mediated by neuroinflammation is considered to be the main factor in cerebral ischemic injury. At present, there is still a lack of specific therapies to treat neuroinflammation. The tumor suppressor protein p53 has long been regarded as a key substance in the regulation of the cell cycle and apoptosis in the past. Recently, studies have found that p53 also plays an important role in neuroinflammatory diseases, such as IS. Therefore, p53 may be a crucial target for the regulation of the neuroinflammatory response. Here, we provide a comprehensive review of the potential of targeting p53 in the treatment of neuroinflammation after IS. We describe the function of p53, the major immune cells involved in neuroinflammation, and the role of p53 in inflammatory responses mediated by these cells. Finally, we summarize the therapeutic strategies of targeting p53 in regulating the neuroinflammatory response after IS to provide new directions and ideas for the treatment of ischemic brain injury.
Collapse
Affiliation(s)
- Juan Gao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jifei Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yonghong Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Junxi Liu
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - He Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Miao Chai
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Ying Dong
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhenchang Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
31
|
Exosomes as biomarkers and therapeutic measures for ischemic stroke. Eur J Pharmacol 2023; 939:175477. [PMID: 36543286 DOI: 10.1016/j.ejphar.2022.175477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Ischemic stroke (IS) is the leading cause of long-term disability in the world and characterized by high morbidity, recurrence, complications, and mortality. Due to the lack of early diagnostic indicators, limited therapeutic measures and inadequate prognostic indicators, the diagnosis and treatment of IS remains a particular challenge at present. It has recently been reported that exosomes (EXOs) play a significant role in the pathogenesis and treatment of IS. The purpose of this paper is to probe the role of EXOs in diagnostic biomarkers and therapeutic measures for IS and to provide innovative ideas for improving the prognosis of IS.
Collapse
|
32
|
Cui J, Li Y, Zhu M, Liu Y, Liu Y. Analysis of the Research Hotspot of Exosomes in Cardiovascular Disease: A Bibliometric-based Literature Review. Curr Vasc Pharmacol 2023; 21:316-345. [PMID: 37779407 DOI: 10.2174/0115701611249727230920042944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE To investigate the current status and development trend of research on exosomes in cardiovascular disease (CVD) using bibliometric analysis and to elucidate trending research topics. METHODS Research articles on exosomes in CVD published up to April 2022 were retrieved from the Web of Science database. Data were organized using Microsoft Office Excel 2019. CiteSpace 6.1 and VOSviewer 1.6.18 were used for bibliometric analysis and result visualization. RESULTS Overall, 256 original research publications containing 190 fundamental research publications and 66 clinical research publications were included. "Extracellular vesicle" was the most frequent research keyword, followed by "microrna," "apoptosis," and "angiogenesis." Most publications were from China (187, 73.05%), followed by the United States (57, 22.27%), the United Kingdom (7, 2.73%), and Japan (7, 2.73%). A systematic review of the publications revealed that myocardial infarction and stroke were the most popular topics and that exosomes and their contents, such as microRNAs (miRNAs), play positive roles in neuroprotection, inhibition of autophagy and apoptosis, promotion of angiogenesis, and protection of cardiomyocytes. CONCLUSION Research on exosomes in CVD has attracted considerable attention, with China having the most published studies. Fundamental research has focused on CVD pathogenesis; exosomes regulate the progression of CVD through biological processes, such as the inflammatory response, autophagy, and apoptosis. Clinical research has focused on biomarkers for CVD; studies on using miRNAs in exosomes as disease markers for diagnosis could become a future trend.
Collapse
Affiliation(s)
- Jing Cui
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiwen Li
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengmeng Zhu
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Liu
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Second Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Nassar A, Kodi T, Satarker S, Chowdari Gurram P, Upadhya D, SM F, Mudgal J, Nampoothiri M. Astrocytic MicroRNAs and Transcription Factors in Alzheimer's Disease and Therapeutic Interventions. Cells 2022; 11:cells11244111. [PMID: 36552875 PMCID: PMC9776935 DOI: 10.3390/cells11244111] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Astrocytes are important for maintaining cholesterol metabolism, glutamate uptake, and neurotransmission. Indeed, inflammatory processes and neurodegeneration contribute to the altered morphology, gene expression, and function of astrocytes. Astrocytes, in collaboration with numerous microRNAs, regulate brain cholesterol levels as well as glutamatergic and inflammatory signaling, all of which contribute to general brain homeostasis. Neural electrical activity, synaptic plasticity processes, learning, and memory are dependent on the astrocyte-neuron crosstalk. Here, we review the involvement of astrocytic microRNAs that potentially regulate cholesterol metabolism, glutamate uptake, and inflammation in Alzheimer's disease (AD). The interaction between astrocytic microRNAs and long non-coding RNA and transcription factors specific to astrocytes also contributes to the pathogenesis of AD. Thus, astrocytic microRNAs arise as a promising target, as AD conditions are a worldwide public health problem. This review examines novel therapeutic strategies to target astrocyte dysfunction in AD, such as lipid nanodiscs, engineered G protein-coupled receptors, extracellular vesicles, and nanoparticles.
Collapse
Affiliation(s)
- Ajmal Nassar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Fayaz SM
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Correspondence:
| |
Collapse
|
34
|
Effects and Mechanisms of Exosomes from Different Sources in Cerebral Ischemia. Cells 2022; 11:cells11223623. [PMID: 36429051 PMCID: PMC9688936 DOI: 10.3390/cells11223623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Cerebral ischemia refers to the symptom of insufficient blood supply to the brain. Cells of many different origins participate in the process of repairing damage after cerebral ischemia occurs, in which exosomes secreted by the cells play important roles. For their characteristics, such as small molecular weight, low immunogenicity, and the easy penetration of the blood-brain barrier (BBB), exosomes can mediate cell-to-cell communication under pathophysiological conditions. In cerebral ischemia, exosomes can reduce neuronal damage and improve the brain microenvironment by regulating inflammation, mediating pyroptosis, promoting axonal growth, and stimulating vascular remodeling. Therefore, exosomes have an excellent application prospect for the treatment of cerebral ischemia. This article reviews the roles and mechanisms of exosomes from different sources in cerebral ischemia and provides new ideas for the prevention and treatment of cerebral ischemia.
Collapse
|
35
|
Al-Thomali AW, Al-kuraishy HM, Al-Gareeb AI, K. Al-buhadiliy A, De Waard M, Sabatier JM, Khan Khalil AA, Saad HM, Batiha GES. Role of Neuropilin 1 in COVID-19 Patients with Acute Ischemic Stroke. Biomedicines 2022; 10:2032. [PMID: 36009579 PMCID: PMC9405641 DOI: 10.3390/biomedicines10082032] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection can trigger the adaptive and innate immune responses, leading to uncontrolled inflammatory reactions and associated local and systematic tissue damage, along with thromboembolic disorders that may increase the risk of acute ischemic stroke (AIS) in COVID-19 patients. The neuropilin (NRP-1) which is a co-receptor for the vascular endothelial growth factor (VEGF), integrins, and plexins, is involved in the pathogenesis of AIS. NRP-1 is also regarded as a co-receptor for the entry of SARS-CoV-2 and facilitates its entry into the brain through the olfactory epithelium. NRP-1 is regarded as a cofactor for binding of SARS-CoV-2 with angiotensin-converting enzyme 2 (ACE2), since the absence of ACE2 reduces SARS-CoV-2 infectivity even in presence of NRP-1. Therefore, the aim of the present study was to clarify the potential role of NRP-1 in COVID-19 patients with AIS. SARS-CoV-2 may transmit to the brain through NRP-1 in the olfactory epithelium of the nasal cavity, leading to different neurological disorders, and therefore about 45% of COVID-19 patients had neurological manifestations. NRP-1 has the potential capability to attenuate neuroinflammation, blood-brain barrier (BBB) permeability, cerebral endothelial dysfunction (ED), and neuronal dysfunction that are uncommon in COVID-19 with neurological involvement, including AIS. Similarly, high NRP-1 serum level is linked with ED, oxidative stress, and the risk of pulmonary thrombosis in patients with severe COVID-19, suggesting a compensatory mechanism to overcome immuno-inflammatory disorders. In conclusion, NRP-1 has an important role in the pathogenesis of COVID-19 and AIS, and could be the potential biomarker linking the development of AIS in COVID-19. The present findings cannot provide a final conclusion, and thus in silico, experimental, in vitro, in vivo, preclinical, and clinical studies are recommended to confirm the potential role of NRP-1 in COVID-19, and to elucidate the pharmacological role of NRP-1 receptor agonists and antagonists in COVID-19.
Collapse
Affiliation(s)
- Asma W. Al-Thomali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hayder M. Al-kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, MBChB, MRCP, FRCP, Baghdad P.O. Box 14132, Iraq
| | - Ali I. Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, Baghdad P.O. Box 14132, Iraq
| | - Ali K. Al-buhadiliy
- Department of Clinical Pharmacology, Medicine and Therapeutic, Medical Faculty, College of Medicine, Al-Mustansiriyah University, Baghdad P.O. Box 14132, Iraq
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120 Saint-Egrève, France
- L’institut du Thorax, INSERM, CNRS, UNIV NANTES, 44007 Nantes, France
- LabEx «Ion Channels, Science & Therapeutics», Université de Nice Sophia-Antipolis, 06560 Valbonne, France
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), Aix-Marseille Université, CNRS UMR 7051, Faculté des Sciences Médicales et Paramédicales, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Atif Ali Khan Khalil
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
36
|
Zhang Q, Li D, Zhao H, Zhang X. Decitabine attenuates ischemic stroke by reducing astrocytes proliferation in rats. PLoS One 2022; 17:e0272482. [PMID: 35917376 PMCID: PMC9345475 DOI: 10.1371/journal.pone.0272482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
DNA methylation regulates epigenetic gene expression in ischemic stroke. Decitabine attenuates ischemic stroke by inhibiting DNA methylation. However, the underlying mechanism of this effect is not known. A model of ischemic stroke in Sprague-Dawley rats was induced through middle cerebral artery occlusion followed by reperfusion step. The rats were randomly treated with decitabine or vehicle by a one-time intraperitoneal injection. Sham rats received similar treatments. Four days after treatment, the rats were perfused with saline or 4% paraformaldehyde after which the brain was excised. DNA methylation level and brain infarct volume were determined by dot blot and histochemistry, respectively. The cellular co-localization and quantitative analysis of DNA methylation were assessed by immunohistochemistry and expression levels of cdkn1b (p27) mRNA and protein were measured by qRT-PCR and immunohistochemistry, respectively. The proliferation of astrocytes and number of neurons were determined by immunohistochemistry. Rats treated with decitabine showed hypomethylation and reduced infarct volume in the cortex. DNA methylation was decreased in astrocytes. Decitabine upregulated p27 mRNA and protein expression levels and attenuated the proliferation of astrocytes in vivo and vitro. Decitabine promotes p27 gene expression possibly by inhibiting its DNA methylation, thereby decreases the proliferation of astrocytes, neuronal death and infarct volume after ischemic stroke.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Dan Li
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Haihua Zhao
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xu Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
- * E-mail:
| |
Collapse
|
37
|
Ma X, Wang Y, Shi Y, Li S, Liu J, Li X, Zhong W, Pan Q. Exosomal miR-132-3p from mesenchymal stromal cells improves synaptic dysfunction and cognitive decline in vascular dementia. Stem Cell Res Ther 2022; 13:315. [PMID: 35841005 PMCID: PMC9284820 DOI: 10.1186/s13287-022-02995-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/26/2022] [Indexed: 12/28/2022] Open
Abstract
Background/aims Vascular dementia (VD) results in cognition and memory deficit. Exosomes and their carried microRNAs (miRs) contribute to the neuroprotective effects of mesenchymal stromal cells, and miR-132-3p plays a key role in neuron plasticity. Here, we investigated the role and underlying mechanism of MSC EX and their miR-132-3p cargo in rescuing cognition and memory deficit in VD mice. Methods Bilateral carotid artery occlusion was used to generate a VD mouse model. MiR-132-3p and MSC EX levels in the hippocampus and cortex were measured. At 24-h post-VD induction, mice were administered with MSC EX infected with control lentivirus (EXCon), pre-miR-132-3p-expressing lentivirus (EXmiR-132-3p), or miR-132-3p antago lentivirus (EXantagomiR-132-3p) intravenously. Behavioral and cognitive tests were performed, and the mice were killed in 21 days after VD. The effects of MSC EX on neuron number, synaptic plasticity, dendritic spine density, and Aβ and p-Tau levels in the hippocampus and cortex were determined. The effects of MSC EX on oxygen–glucose deprivation (OGD)-injured neurons with respect to apoptosis, and neurite elongation and branching were determined. Finally, the expression levels of Ras, phosphorylation of Akt, GSK-3β, and Tau were also measured. Results Compared with normal mice, VD mice exhibited significantly decreased miR-132-3p and MSC EX levels in the cortex and hippocampus. Compared with EXCon treatment, the infusion of EXmiR-132-3p was more effective at improving cognitive function and increasing miR-132-3p level, neuron number, synaptic plasticity, and dendritic spine density, while decreasing Aβ and p-Tau levels in the cortex and hippocampus of VD mice. Conversely, EXantagomiR-132-3p treatment significantly decreased miR-132-3p expression in cortex and hippocampus, as well as attenuated EXmiR-132-3p treatment-induced functional improvement. In vitro, EXmiR-132-3p treatment inhibited RASA1 protein expression, but increased Ras and the phosphorylation of Akt and GSK-3β, and decreased p-Tau levels in primary neurons by delivering miR-132-3p, which resulted in reduced apoptosis, and increased neurite elongation and branching in OGD-injured neurons. Conclusions Our studies suggest that miR-132-3p cluster-enriched MSC EX promotes the recovery of cognitive function by improving neuronal and synaptic dysfunction through activation of the Ras/Akt/GSK-3β pathway induced by downregulation of RASA1. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02995-w.
Collapse
Affiliation(s)
- Xiaotang Ma
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yan Wang
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524001, China
| | - Yumeng Shi
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Suqing Li
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jinhua Liu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiangyong Li
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524001, China
| | - Wangtao Zhong
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Qunwen Pan
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
38
|
Veerabathiran R, Mohammed V, Kalarani IB. Nanomedicine in Neuroscience: An Application Towards the Treatment of Various Neurological Diseases. CURRENT NANOMEDICINE 2022; 12:84-92. [DOI: 10.2174/2468187312666220516144008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/07/2023]
Abstract
Absatract:The effectiveness, cell viability, and selective delivery of medications and diagnostic substances to target organs, tissues, and organs are typical concerns in the care and prognosis of many illnesses. Neurological diseases pose complex challenges, as cerebral targeting represents a yet unresolved challenge in pharmacotherapy, owing to the blood-brain boundary, a densely com-pacted membrane of endothelial cells that prohibits undesired chemicals from reaching the brain. Engineered nanoparticles, with dimensions ranging from 1 to 100 nm, provide intriguing biomedi-cal techniques that may allow for resolving these issues, including the ability to cross the blood-brain barrier. It has substantially explored nanoparticles in the previous century, contributing to sub-stantial progress in biomedical studies and medical procedures. Using many synthesized nanoparti-cles on the molecular level has given many potential gains in various domains of regenerative medi-cine, such as illness detection, cascaded cell treatment, tissue regeneration, medication, and gene editing. This review will encapsulate the novel developments of nanostructured components used in neurological diseases with an emphasis on the most recent discoveries and forecasts for the future of varied biological nanoparticles for tissue repair, drug inventions, and the synthesizing of the deliv-ery mechanism.
Collapse
Affiliation(s)
- Ramakrishnan Veerabathiran
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103, India
| | - Vajagathali Mohammed
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103, India
| | - Iyshwarya Bhaskar Kalarani
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103, India
| |
Collapse
|
39
|
Ma X, Zhao J, Li S, Wang Y, Liu J, Shi Y, Liu J, Chen Y, Chen Y, Pan Q. Rab27a-dependent exosomes protect against cerebral ischemic injury by reducing endothelial oxidative stress and apoptosis. CNS Neurosci Ther 2022; 28:1596-1612. [PMID: 35770324 PMCID: PMC9437240 DOI: 10.1111/cns.13902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Multicellular crosstalk within the brain tissue has been suggested to play a critical role in maintaining cerebral vascular homeostasis. Exosomes (EXs) mediated cell–cell communication, but its role in cerebral ischemic injury is largely unknown. Rab27a is one of the major genes controlling EX release. Here, we explored the role of Rab27a in regulating brain EXs secretion, and the effects of Rab27a‐mediated EXs on ischemia evoked cerebral vascular disruption and brain injury. Methods Cerebral ischemia was induced in Rab27a knockout (Rab27a−/−) and wide type (WT) mice by transient middle cerebral artery occlusion (tMCAO). Differential gene expression analysis was performed in ischemic brain tissue by using mRNA sequencing. EXs isolated from brain tissue of Rab27a−/− and WT mice (EXWT or EXRab27a−/−) were pre‐administrated into tMCAO operated Rab27a−/− mice or oxygen and glucose deprivation (OGD) treated primary brain vascular endothelial cells (ECs). Results We demonstrated that Rab27a expression in the peri‐infarct area of brain was significantly elevated, which was associated with local elevation in EXs secretion. Rab27a deficiency dramatically decreased the level of EXs in brain tissue of normal and tMCAO‐treated mice, and Rab27a−/− mice displayed an increase in infarct volume and NDS, and a decrease in cMVD and CBF following tMCAO. Pre‐infusion of EXWT increased the brain EXs levels in the tMCAO operated Rab27a−/− mice, accompanied with an increase in cMVD and CBF, and a decrease in infarct volume, NDS, ROS production, and apoptosis. The effects of EXRab27a−/− infusion were much diminished although in a dose‐dependent manner. In OGD‐treated ECs, EXRab27a−/− showed less effectivity than EXWT in decreasing ROS overproduction and apoptosis, paralleling with down‐regulated expression of NOX2 and cleaved caspase‐3. Conclusion Our study demonstrates that Rab27a controls brain EXs secretion and functions, contributing to cerebral vascular protection from ischemic insult by preventing oxidative stress and apoptosis via down‐regulating NOX2 and cleaved caspase‐3 expression.
Collapse
Affiliation(s)
- Xiaotang Ma
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jia Zhao
- Emergency Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Suqing Li
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yan Wang
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Jinhua Liu
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yumeng Shi
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiehong Liu
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanyu Chen
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanfang Chen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Qunwen Pan
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
40
|
He T, Yang GY, Zhang Z. Crosstalk of Astrocytes and Other Cells during Ischemic Stroke. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060910. [PMID: 35743941 PMCID: PMC9228674 DOI: 10.3390/life12060910] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
Stroke is a leading cause of death and long-term disability worldwide. Astrocytes structurally compose tripartite synapses, blood–brain barrier, and the neurovascular unit and perform multiple functions through cell-to-cell signaling of neurons, glial cells, and vasculature. The crosstalk of astrocytes and other cells is complicated and incompletely understood. Here we review the role of astrocytes in response to ischemic stroke, both beneficial and detrimental, from a cell–cell interaction perspective. Reactive astrocytes provide neuroprotection through antioxidation and antiexcitatory effects and metabolic support; they also contribute to neurorestoration involving neurogenesis, synaptogenesis, angiogenesis, and oligodendrogenesis by crosstalk with stem cells and cell lineage. In the meantime, reactive astrocytes also play a vital role in neuroinflammation and brain edema. Glial scar formation in the chronic phase hinders functional recovery. We further discuss astrocyte enriched microRNAs and exosomes in the regulation of ischemic stroke. In addition, the latest notion of reactive astrocyte subsets and astrocytic activity revealed by optogenetics is mentioned. This review discusses the current understanding of the intimate molecular conversation between astrocytes and other cells and outlines its potential implications after ischemic stroke. “Neurocentric” strategies may not be sufficient for neurological protection and recovery; future therapeutic strategies could target reactive astrocytes.
Collapse
Affiliation(s)
- Tingting He
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, China;
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: (G.-Y.Y.); (Z.Z.); Tel.: +86-21-62933186 (G.-Y.Y.); Fax: +86-21-62932302 (G.-Y.Y.)
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: (G.-Y.Y.); (Z.Z.); Tel.: +86-21-62933186 (G.-Y.Y.); Fax: +86-21-62932302 (G.-Y.Y.)
| |
Collapse
|
41
|
Song BG, Kwon SY, Kyung JW, Roh EJ, Choi H, Lim CS, An SB, Sohn S, Han I. Synaptic Cell Adhesion Molecule 3 (SynCAM3) Deletion Promotes Recovery from Spinal Cord Injury by Limiting Glial Scar Formation. Int J Mol Sci 2022; 23:ijms23116218. [PMID: 35682897 PMCID: PMC9181792 DOI: 10.3390/ijms23116218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 02/07/2023] Open
Abstract
Synaptic cell adhesion molecules (SynCAMs) play an important role in the formation and maintenance of synapses and the regulation of synaptic plasticity. SynCAM3 is expressed in the synaptic cleft of the central nervous system (CNS) and is involved in the connection between axons and astrocytes. We hypothesized that SynCAM3 may be related to the astrocytic scar (glial scar, the most important factor of CNS injury treatment) through extracellular matrix (ECM) reconstitution. Thus, we investigated the influence of the selective removal of SynCAM3 on the outcomes of spinal cord injury (SCI). SynCAM3 knock-out (KO) mice were subjected to moderate compression injury of the lower thoracic spinal cord using wild-type (WT) (C57BL/6JJc1) mice as controls. Single-cell RNA sequencing analysis over time, quantitative real-time polymerase chain reaction (qRT-PCR) analysis, and immunohistochemistry (IHC) showed reduced scar formation in SynCAM3 KO mice compared to WT mice. SynCAM3 KO mice showed improved functional recovery from SCI by preventing the transformation of reactive astrocytes into scar-forming astrocytes, resulting in improved ECM reconstitution at four weeks after injury. Our findings suggest that SynCAM3 could be a novel therapeutic target for SCI.
Collapse
Affiliation(s)
- Byeong Gwan Song
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
- Department of Life Science, CHA University School of Medicine, Seongnam-si 13488, Gyeonggi-do, Korea
| | - Su Yeon Kwon
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
| | - Jae Won Kyung
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
| | - Eun Ji Roh
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
- Department of Life Science, CHA University School of Medicine, Seongnam-si 13488, Gyeonggi-do, Korea
| | - Hyemin Choi
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
| | - Chang Su Lim
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
| | - Seong Bae An
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
| | - Seil Sohn
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
- Correspondence:
| |
Collapse
|
42
|
Yakovlev AA. Neuroprotective Effects of Astrocyte Extracellular Vesicles in Stroke. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Gao Y, Wang C, Jin F, Han G, Cui C. Therapeutic effect of extracellular vesicles from different cell sources in traumatic brain injury. Tissue Cell 2022; 76:101772. [DOI: 10.1016/j.tice.2022.101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
44
|
Li F, Kang X, Xin W, Li X. The Emerging Role of Extracellular Vesicle Derived From Neurons/Neurogliocytes in Central Nervous System Diseases: Novel Insights Into Ischemic Stroke. Front Pharmacol 2022; 13:890698. [PMID: 35559228 PMCID: PMC9086165 DOI: 10.3389/fphar.2022.890698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/07/2022] [Indexed: 01/05/2023] Open
Abstract
Neurons and neurogliocytes (oligodendrocytes, astrocytes, and microglia) are essential for maintaining homeostasis of the microenvironment in the central nervous system (CNS). These cells have been shown to support cell-cell communication via multiple mechanisms, most recently by the release of extracellular vesicles (EVs). Since EVs carry a variety of cargoes of nucleic acids, lipids, and proteins and mediate intercellular communication, they have been the hotspot of diagnosis and treatment. The mechanisms underlying CNS disorders include angiogenesis, autophagy, apoptosis, cell death, and inflammation, and cell-EVs have been revealed to be involved in these pathological processes. Ischemic stroke is one of the most common causes of death and disability worldwide. It results in serious neurological and physical dysfunction and even leads to heavy economic and social burdens. Although a large number of researchers have reported that EVs derived from these cells play a vital role in regulating multiple pathological mechanisms in ischemic stroke, the specific interactional relationships and mechanisms between specific cell-EVs and stroke treatment have not been clearly described. This review aims to summarize the therapeutic effects and mechanisms of action of specific cell-EVs on ischemia. Additionally, this study emphasizes that these EVs are involved in stroke treatment by inhibiting and activating various signaling pathways such as ncRNAs, TGF-β1, and NF-κB.
Collapse
Affiliation(s)
- Fan Li
- Department of Neurosurgery, Heji Hospital Affiliated Changzhi Medical College, Shanxi, China
| | - Xiaokui Kang
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Wenqiang Xin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Li
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
45
|
Yang Y, Yin N, Gu Z, Zhao Y, Liu C, Zhou T, Zhang K, Zhang Z, Liu J, Shi J. Engineered biomimetic drug-delivery systems for ischemic stroke therapy. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
46
|
Du H, Xu Y, Zhu L. Role of Semaphorins in Ischemic Stroke. Front Mol Neurosci 2022; 15:848506. [PMID: 35350431 PMCID: PMC8957939 DOI: 10.3389/fnmol.2022.848506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is one of the major causes of neurological morbidity and mortality in the world. Although the management of ischemic stroke has been improved significantly, it still imposes a huge burden on the health and property. The integrity of the neurovascular unit (NVU) is closely related with the prognosis of ischemic stroke. Growing evidence has shown that semaphorins, a family of axon guidance cues, play a pivotal role in multiple pathophysiological processes in NVU after ischemia, such as regulating the immune system, angiogenesis, and neuroprotection. Modulating the NVU function via semaphorin signaling has a potential to develop a novel therapeutic strategy for ischemic stroke. We, therefore, review recent progresses on the role of semphorin family members in neurons, glial cells and vasculature after ischemic stroke.
Collapse
Affiliation(s)
- Huaping Du
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Yuan Xu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Li Zhu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Collaborative Innovation Center of Hematology of Jiangsu Province, National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- *Correspondence: Li Zhu,
| |
Collapse
|
47
|
Mukherjee S, Pillai PP. Current insights on extracellular vesicle-mediated glioblastoma progression: Implications in drug resistance and epithelial-mesenchymal transition. Biochim Biophys Acta Gen Subj 2022; 1866:130065. [PMID: 34902452 DOI: 10.1016/j.bbagen.2021.130065] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is one of the most fatal tumors of the central nervous system with high rate of disease progression, diagnosis, prognosis and low survival rate. Therapeutic approaches that relied on surgical resection and chemotherapy have been unable to curb the disease progression and subsequently leading to increase in incidences of GBM reoccurrence. SCOPE OF THE REVIEW In the recent times, membrane-bound extracellular vesicles (EVs) have been observed as one of the key reasons for the uncontrolled growth of GBM. EVs are shown to have the potential to contribute to the disease progression via mediating drug resistance and epithelial-mesenchymal transition. The GBM-derived EVs (GDEVs) with its cargo contents act as the biological trojan horse and lead to disease progression after being received by the recipient target cells. This review article highlights the biophysical, biochemical properties of EVs, its cargo contents and its potential role in the growth and progression of GBM by altering tumour microenvironment. MAJOR CONCLUSIONS EVs are being explored for serving as novel disease biomarkers in a variety of cancer types such as adenocarcinoma, pancreatic cancer, color rectal cancer, gliomas and glioblastomas. Improvement in the EV isolation protocols, polymer-based separation techniques and transcriptomics, have made EVs a key diagnostic marker to unravel the progression and early GBM diagnosis. GDEVs role in tumour progression is under extensive investigations. GENERAL SIGNIFICANCE Attempts have been also made to discuss and compare the usage of EVs as potential therapeutic targets versus existing therapies targeting drug resistance and EMT.
Collapse
Affiliation(s)
- Swagatama Mukherjee
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Prakash P Pillai
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
| |
Collapse
|
48
|
Heras-Romero Y, Morales-Guadarrama A, Santana-Martínez R, Ponce I, Rincón-Heredia R, Poot-Hernández AC, Martínez-Moreno A, Urrieta E, Bernal-Vicente BN, Campero-Romero AN, Moreno-Castilla P, Greig NH, Escobar ML, Concha L, Tovar-Y-Romo LB. Improved post-stroke spontaneous recovery by astrocytic extracellular vesicles. Mol Ther 2022; 30:798-815. [PMID: 34563674 PMCID: PMC8821969 DOI: 10.1016/j.ymthe.2021.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 02/04/2023] Open
Abstract
Spontaneous recovery after a stroke accounts for a significant part of the neurological recovery in patients. However limited, the spontaneous recovery is mechanistically driven by axonal restorative processes for which several molecular cues have been previously described. We report the acceleration of spontaneous recovery in a preclinical model of ischemia/reperfusion in rats via a single intracerebroventricular administration of extracellular vesicles released from primary cortical astrocytes. We used magnetic resonance imaging and confocal and multiphoton microscopy to correlate the structural remodeling of the corpus callosum and striatocortical circuits with neurological performance during 21 days. We also evaluated the functionality of the corpus callosum by repetitive recordings of compound action potentials to show that the recovery facilitated by astrocytic extracellular vesicles was both anatomical and functional. Our data provide compelling evidence that astrocytes can hasten the basal recovery that naturally occurs post-stroke through the release of cellular mediators contained in extracellular vesicles.
Collapse
Affiliation(s)
- Yessica Heras-Romero
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Axayacatl Morales-Guadarrama
- Departmento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico; National Center for Medical Imaging and Instrumentation Research, Mexico City, Mexico
| | - Ricardo Santana-Martínez
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Isaac Ponce
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Microscopy Core Unit, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Augusto César Poot-Hernández
- Bioinformatics Core Unit, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Araceli Martínez-Moreno
- Divisíon de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Esteban Urrieta
- Divisíon de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Berenice N Bernal-Vicente
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aura N Campero-Romero
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Perla Moreno-Castilla
- Laboratory of Neurocognitive Aging, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nigel H Greig
- Drug Design & Development Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Martha L Escobar
- Divisíon de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Concha
- Department of Behavioral and Cognitive Neurobiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Luis B Tovar-Y-Romo
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
49
|
Xia X, Wang Y, Qin Y, Zhao S, Zheng JC. Exosome: A novel neurotransmission modulator or non-canonical neurotransmitter? Ageing Res Rev 2022; 74:101558. [PMID: 34990846 DOI: 10.1016/j.arr.2021.101558] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/13/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
Abstract
Neurotransmission is the electrical impulse-triggered propagation of signals between neurons or between neurons and other cell types such as skeletal muscle cells. Recent studies point out the involvement of exosomes, a type of small bilipid layer-enclosed extracellular vesicles, in regulating neurotransmission. Through horizontally transferring proteins, lipids, and nucleic acids, exosomes can modulate synaptic activities rapidly by controlling neurotransmitter release or progressively by regulating neural plasticity including synapse formation, neurite growth & removal, and axon guidance & elongation. In this review, we summarize the similarities and differences between exosomes and synaptic vesicles in their biogenesis, contents, and release. We also highlight the recent progress made in demonstrating the biological roles of exosome in regulating neurotransmission, and propose a modified model of neurotransmission, in which exosomes act as novel neurotransmitters. Lastly, we provide a comprehensive discussion of the enlightenment of the current knowledge on neurotransmission to the future directions of exosome research.
Collapse
|
50
|
Zheng Z, Chen J, Chopp M. Mechanisms of Plasticity Remodeling and Recovery. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|