1
|
Kim Y, Jeon S, Kim B, Jeong YJ, Kim TH, Jeong S, Kim I, Oh J, Jung Y, Lee K, Choy YB, Kim SW, Chung JJ. Sticky Polyelectrolyte Shield for Enhancing Biological Half-Life of Growth Factors. ACS APPLIED MATERIALS & INTERFACES 2025; 17:445-466. [PMID: 39694662 DOI: 10.1021/acsami.4c16261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Delivery of secretomes, which includes growth factors, cytokines, and mRNA, is critical in regenerative medicine for cell-to-cell communication. However, the harsh in vivo environment presents significant challenges for secretome delivery. Proteolytic enzymes shorten secretomes' half-lives, and secretomes tend to rapidly diffuse at defect sites. Therefore, a delivery system that ensures prolonged retention and enhanced therapeutic efficacy of secretomes is required. In this study, a Coating Optimized Drug Delivery Enhancement (COD2E) system, a coacervate composed of dopamine functionalized fucoidan and poly-l-lysine, was fabricated for secretome delivery. The dopamine modification significantly enhanced adhesive strength (>7-fold) compared to that of the neat coacervates, which enabled rapid (5 min) and uniform coating ability on collagen sponges. The COD2E system was able to encapsulate fibroblast growth factor (FGF2) and prolong the half-life of FGF2. Notably, its efficacy, demonstrated through a single application of FGF2 encapsulated COD2E on collagen sponge, in a wound model demonstrated a successful tissue repair. The COD2E system is an effective growth factor delivery vehicle since it can protect growth factors, has an antioxidant ability, adheres on various material surfaces, and is hemocompatible.
Collapse
Affiliation(s)
- Young Kim
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Clinical Medical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sungmi Jeon
- Division of Pediatric Plastic Surgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Byulhana Kim
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Bioengineering College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yu Jin Jeong
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Tae Hee Kim
- Department of Fusion Research and Collaboration, Biomedical Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Subin Jeong
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Iljin Kim
- Department of Pharmacology and Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea
| | - Joomin Oh
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Clinical Medical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- School of Electrical and Electronic Engineering, YU-KIST, Yonsei University, Seoul 03722, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Bin Choy
- Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Clinical Medical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Bioengineering College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sang Wha Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Justin J Chung
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
2
|
Grivet-Brancot A, Buscemi M, Ciardelli G, Bronco S, Sartori S, Cassino C, Al Kayal T, Losi P, Soldani G, Boffito M. Cord Blood Platelet Lysate-Loaded Thermo-Sensitive Hydrogels for Potential Treatment of Chronic Skin Wounds. Pharmaceutics 2024; 16:1438. [PMID: 39598561 PMCID: PMC11597581 DOI: 10.3390/pharmaceutics16111438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Chronic skin wounds (CSWs) are a worldwide healthcare problem with relevant impacts on both patients and healthcare systems. In this context, innovative treatments are needed to improve tissue repair and patient recovery and quality of life. Cord blood platelet lysate (CB-PL) holds great promise in CSW treatment thanks to its high growth factors and signal molecule content. In this work, thermo-sensitive hydrogels based on an amphiphilic poly(ether urethane) (PEU) were developed as CB-PL carriers for CSW treatment. METHODS A Poloxamer 407®-based PEU was solubilized in aqueous medium (10 and 15% w/v) and added with CB-PL at a final concentration of 20% v/v. Hydrogels were characterized for their gelation potential, rheological properties, and swelling/dissolution behavior in a watery environment. CB-PL release was also tested, and the bioactivity of released CB-PL was evaluated through cell viability, proliferation, and migration assays. RESULTS PEU aqueous solutions with concentrations in the range 10-15% w/v exhibited quick (within a few minutes) sol-to-gel transition at around 30-37 °C and rheological properties modulated by the PEU concentration. Moreover, CB-PL loading within the gels did not affect the overall gel properties. Stability in aqueous media was dependent on the PEU concentration, and payload release was completed between 7 and 14 days depending on the polymer content. The CB-PL-loaded hydrogels also showed biocompatibility and released CB-PL induced keratinocyte migration and proliferation, with scratch wound recovery similar to the positive control (i.e., CB-PL alone). CONCLUSIONS The developed hydrogels represent promising tools for CSW treatment, with tunable gelation properties and residence time and the ability to encapsulate and deliver active biomolecules with sustained and controlled kinetics.
Collapse
Affiliation(s)
- Arianna Grivet-Brancot
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy; (A.G.-B.); (S.B.)
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
| | - Marianna Buscemi
- Institute of Clinical Physiology, National Research Council, Massa, 56124 Pisa, Italy; (M.B.); (T.A.K.); (P.L.); (G.S.)
| | - Gianluca Ciardelli
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy; (A.G.-B.); (S.B.)
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
| | - Simona Bronco
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy; (A.G.-B.); (S.B.)
| | - Susanna Sartori
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
| | - Claudio Cassino
- Department of Science and Technological Innovation, Università del Piemonte Orientale, 15121 Alessandria, Italy;
| | - Tamer Al Kayal
- Institute of Clinical Physiology, National Research Council, Massa, 56124 Pisa, Italy; (M.B.); (T.A.K.); (P.L.); (G.S.)
| | - Paola Losi
- Institute of Clinical Physiology, National Research Council, Massa, 56124 Pisa, Italy; (M.B.); (T.A.K.); (P.L.); (G.S.)
| | - Giorgio Soldani
- Institute of Clinical Physiology, National Research Council, Massa, 56124 Pisa, Italy; (M.B.); (T.A.K.); (P.L.); (G.S.)
| | - Monica Boffito
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy; (A.G.-B.); (S.B.)
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
| |
Collapse
|
3
|
Syromiatnikova VY, Kvon AI, Starostina IG, Gomzikova MO. Strategies to enhance the efficacy of FGF2-based therapies for skin wound healing. Arch Dermatol Res 2024; 316:405. [PMID: 38878084 DOI: 10.1007/s00403-024-02953-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/22/2024] [Accepted: 04/26/2024] [Indexed: 06/23/2024]
Abstract
Basic fibroblast growth factor (FGF2 or bFGF) is critical for optimal wound healing. Experimental studies show that local application of FGF2 is a promising therapeutic approach to stimulate tissue regeneration, including for the treatment of chronic wounds that have a low healing potential or are characterised by a pathologically altered healing process. However, the problem of low efficiency of growth factors application due to their rapid loss of biological activity in the aggressive proteolytic environment of the wound remains. Therefore, ways to preserve the efficacy of FGF2 for wound treatment are being actively developed. This review considers the following strategies to improve the effectiveness of FGF2-based therapy: (1) use of vehicles/carriers for delivery and gradual release of FGF2; (2) chemical modification of FGF2 to increase the stability of the molecule; (3) use of genetic constructs encoding FGF2 for de novo synthesis of protein in the wound. In addition, this review discusses FGF2-based therapeutic strategies that are undergoing clinical trials and demonstrating the efficacy of FGF2 for skin wound healing.
Collapse
Affiliation(s)
- V Y Syromiatnikova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008, Russia
| | - A I Kvon
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008, Russia
| | - I G Starostina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008, Russia
| | - M O Gomzikova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008, Russia.
| |
Collapse
|
4
|
Mirani B, Hadisi Z, Pagan E, Dabiri SMH, van Rijt A, Almutairi L, Noshadi I, Armstrong DG, Akbari M. Smart Dual-Sensor Wound Dressing for Monitoring Cutaneous Wounds. Adv Healthc Mater 2023; 12:e2203233. [PMID: 36929644 PMCID: PMC11468884 DOI: 10.1002/adhm.202203233] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Managing slow-healing wounds and associated complications is challenging, time-consuming, and expensive. Systematic collection, analysis, and dissemination of correct wound status data are critical for enhancing healing outcomes and reducing complications. However, traditional data collection approaches are often neither accurate nor user-friendly and require diverse skill levels, resulting in the collection of inconsistent and unreliable data. As an advancement to the authors' previously developed hydrogel-based smart wound dressing, here is reported an enhanced integration of drug delivery and sensing (pH and glucose) modules for accelerated treatment and continuous monitoring of cutaneous wounds. In the current study, growth factor delivery modules and an array of colorimetric glucose sensors are incorporated into the dressing to promote wound healing and extend the dressing's utility for diabetic wound treatment. Furthermore, the efficacy of the wound dressing in monitoring infection and supporting wound healing via antibiotic and growth factor delivery is investigated in mice models. The updated dressing reveals excellent healing benefits on non-infected and infected wounds, as well as real-time monitoring and early detection of wound infection.
Collapse
Affiliation(s)
- Bahram Mirani
- Laboratory for Innovations in Microengineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Center for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaBCV8P 5C2Canada
| | - Zhina Hadisi
- Laboratory for Innovations in Microengineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Center for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaBCV8P 5C2Canada
| | - Erik Pagan
- Laboratory for Innovations in Microengineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Center for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaBCV8P 5C2Canada
| | - Seyed Mohammad Hossein Dabiri
- Laboratory for Innovations in Microengineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Center for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaBCV8P 5C2Canada
| | - Antonia van Rijt
- Laboratory for Innovations in Microengineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
| | - Lama Almutairi
- Laboratory for Innovations in Microengineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
| | - Iman Noshadi
- Department of BioengineeringUniversity of CaliforniaRiversideCA92507USA
| | - David G. Armstrong
- Southwestern Academic Limb Salvage Alliance (SALSA)Department of SurgeryKeck School of Medicine of University of Southern CaliforniaLos AngelesCA90033USA
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Center for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaBCV8P 5C2Canada
- Terasaki Institute for Biomedical InnovationLos AngelesCA90064USA
| |
Collapse
|
5
|
Zheng SY, Wan XX, Kambey PA, Luo Y, Hu XM, Liu YF, Shan JQ, Chen YW, Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes 2023; 14:364-395. [PMID: 37122434 PMCID: PMC10130901 DOI: 10.4239/wjd.v14.i4.364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Wounds in diabetic patients, especially diabetic foot ulcers, are more difficult to heal compared with normal wounds and can easily deteriorate, leading to amputation. Common treatments cannot heal diabetic wounds or control their many complications. Growth factors are found to play important roles in regulating complex diabetic wound healing. Different growth factors such as transforming growth factor beta 1, insulin-like growth factor, and vascular endothelial growth factor play different roles in diabetic wound healing. This implies that a therapeutic modality modulating different growth factors to suit wound healing can significantly improve the treatment of diabetic wounds. Further, some current treatments have been shown to promote the healing of diabetic wounds by modulating specific growth factors. The purpose of this study was to discuss the role played by each growth factor in therapeutic approaches so as to stimulate further therapeutic thinking.
Collapse
Affiliation(s)
- Shen-Yuan Zheng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yan Luo
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Fan Liu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jia-Qi Shan
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Yu-Wei Chen
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
- Key Laboratory of Emergency and Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, Hainan Province, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
6
|
Cao J, Zhang Y, Yang Y, Xie J, Su Z, Li F, Li J, Zhang B, Wang Z, Zhang P, Li Z, He L, Liu H, Zheng W, Zhang S, Hong A, Chen X. Turning gray selenium and sublimed sulfur into a nanocomposite to accelerate tissue regeneration by isothermal recrystallization. J Nanobiotechnology 2023; 21:57. [PMID: 36803772 PMCID: PMC9942369 DOI: 10.1186/s12951-023-01796-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/24/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Globally, millions of patients suffer from regenerative deficiencies, such as refractory wound healing, which is characterized by excessive inflammation and abnormal angiogenesis. Growth factors and stem cells are currently employed to accelerate tissue repair and regeneration; however, they are complex and costly. Thus, the exploration of new regeneration accelerators is of considerable medical interest. This study developed a plain nanoparticle that accelerates tissue regeneration with the involvement of angiogenesis and inflammatory regulation. METHODS Grey selenium and sublimed sulphur were thermalized in PEG-200 and isothermally recrystallised to composite nanoparticles (Nano-Se@S). The tissue regeneration accelerating activities of Nano-Se@S were evaluated in mice, zebrafish, chick embryos, and human cells. Transcriptomic analysis was performed to investigate the potential mechanisms involved during tissue regeneration. RESULTS Through the cooperation of sulphur, which is inert to tissue regeneration, Nano-Se@S demonstrated improved tissue regeneration acceleration activity compared to Nano-Se. Transcriptome analysis revealed that Nano-Se@S improved biosynthesis and ROS scavenging but suppressed inflammation. The ROS scavenging and angiogenesis-promoting activities of Nano-Se@S were further confirmed in transgenic zebrafish and chick embryos. Interestingly, we found that Nano-Se@S recruits leukocytes to the wound surface at the early stage of regeneration, which contributes to sterilization during regeneration. CONCLUSION Our study highlights Nano-Se@S as a tissue regeneration accelerator, and Nano-Se@S may provide new inspiration for therapeutics for regenerative-deficient diseases.
Collapse
Affiliation(s)
- Jieqiong Cao
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yibo Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yiqi Yang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Junye Xie
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zijian Su
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Fu Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Jingsheng Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Bihui Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zhenyu Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Peiguang Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zhixin Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Liu He
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Hongwei Liu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wenjie Zheng
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Shuixing Zhang
- The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - An Hong
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China.
- The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Xiaojia Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China.
- The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
7
|
Berry-Kilgour C, Cabral J, Wise L. Advancements in the Delivery of Growth Factors and Cytokines for the Treatment of Cutaneous Wound Indications. Adv Wound Care (New Rochelle) 2021; 10:596-622. [PMID: 33086946 PMCID: PMC8392095 DOI: 10.1089/wound.2020.1183] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 10/19/2020] [Indexed: 01/05/2023] Open
Abstract
Significance: Wound healing involves the phasic production of growth factors (GFs) and cytokines to progress an acute wound to a resolved scar. Dysregulation of these proteins contributes to both wound chronicity and excessive scarring. Direct supplementation of GFs and cytokines for treatment of healing and scarring complications has, however, been disappointing. Failings likely relate to an inability to deliver recombinant proteins at physiologically relevant levels to an environment conducive to healing. Recent Advances: Inspired by the extracellular matrix, natural biomaterials have been developed that resemble human skin, and are capable of delivering bioactives. Hybrid biomaterials made using multiple polymers, fabrication methods, and proteins are proving efficacious in animal models of acute and impaired wound healing. Critical Issues: For clinical translation, these delivery systems must be tailored for specific wound indications and the correct phase of healing. GFs and cytokines must be delivered in a controlled manner that will target specific healing or scarring impairments. Preclinical assessment in clinically relevant animal models of impaired or excessive healing is critical. Future Directions: Clinical success will likely depend on the GF or cytokine selected, their compatibility with the chosen biomaterial(s), degradation rate of the fabricated system, and the degree of control over release kinetics. Further testing is essential to assess which wound indications are most suited to specific delivery systems and to prove whether they provide superior efficacy over direct protein therapies.
Collapse
Affiliation(s)
- Caitlin Berry-Kilgour
- Department of Pharmacology and Toxicology, School of Biomedical Sciences; Dunedin, New Zealand
| | - Jaydee Cabral
- Department of Chemistry, University of Otago, Dunedin, New Zealand
- Department of Food Sciences, University of Otago, Dunedin, New Zealand
| | - Lyn Wise
- Department of Pharmacology and Toxicology, School of Biomedical Sciences; Dunedin, New Zealand
| |
Collapse
|
8
|
Wang TL, Zhou ZF, Liu JF, Hou XD, Zhou Z, Dai YL, Hou ZY, Chen F, Zheng LP. Donut-like MOFs of copper/nicotinic acid and composite hydrogels with superior bioactivity for rh-bFGF delivering and skin wound healing. J Nanobiotechnology 2021; 19:275. [PMID: 34503490 PMCID: PMC8427876 DOI: 10.1186/s12951-021-01014-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/25/2021] [Indexed: 12/27/2022] Open
Abstract
Background Skin injury and the resultant defects are common clinical problems, and usually lead to chronic skin ulcers and even life-threatening diseases. Copper, an essential trace element of human body, has been reported to promote the regeneration of skin by stimulating proliferation of endothelial cell and enhance angiogenesis. Results Herein, we have prepared a new donut-like metal–organic frameworks (MOF) of copper-nicotinic acid (CuNA) by a simple solvothermal reaction. The rough surface of CuNA is beneficial for loading/release basic fibroblast growth factor (bFGF). The CuNAs with/without bFGF are easily processed into a light-responsive composite hydrogel with GelMA, which not only show excellent mechanical properties, but also display superior biocompatibility, antibacterial ability and bioactivity. Moreover, in the in vivo full-thickness defect model of skin wound, the resultant CuNA-bFGF@GelMA hydrogels significantly accelerate the wound healing, by simultaneously inhibiting the inflammatory response, promoting the new blood vessels formation and the deposition of collagen and elastic fibers. Conclusions Considering the superior biocompatibility, antibacterial ability and bioactivity, the CuNA and its composite light-responsive hydrogel system will be promising in the applications of skin and even other tissue regeneration. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01014-z.
Collapse
Affiliation(s)
- Tian-Long Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Zi-Fei Zhou
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China.,Shanghai Trauma Emergency Center, Shanghai, 200072, China
| | - Jun-Feng Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Xiao-Dong Hou
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Zhi Zhou
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Yun-Lu Dai
- Cancer Centre, Faculty of Health Sciences, University of Macau, 999078, Macau SAR, China
| | - Zhi-Yong Hou
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.
| | - Feng Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China.
| | - Long-Po Zheng
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China. .,Shanghai Trauma Emergency Center, Shanghai, 200072, China.
| |
Collapse
|
9
|
Chakrabarti S, Mazumder B, Rajkonwar J, Pathak MP, Patowary P, Chattopadhyay P. bFGF and collagen matrix hydrogel attenuates burn wound inflammation through activation of ERK and TRK pathway. Sci Rep 2021; 11:3357. [PMID: 33558597 PMCID: PMC7870886 DOI: 10.1038/s41598-021-82888-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
Burn injuries are most challenging to manage since it causes loss of the integrity of large portions of the skin leading to major disability or even death. Over the years, hydrogels are considered as a significant delivery system for wound treatment because of several advantages over other conventional formulations. We hypothesized that the bFGF-collagen-AgSD incorporated hydrogel formulation can accelerate the rate of burn healing in animal model and would promote fibroblast cell proliferation. Neovascularization and re-epithelialization is a hall mark of burn wound healing. In the present study, histopathological investigation and scanning electron microscopy of skin tissue of Wistar rats showed almost complete epithelialisation after 16 days in the treatment group. The developed hydrogel showed significantly accelerated wound closure compared with a standard and control group. The faster wound closure resulted from increased re-epithelialization and granulation tissue formation because of the presence of collagen and growth factor. Expressions of proteins such as TrkA, p- TrkA, ERK1/2, p-ERK1/2, NF-kβ, and p-NF-kβ involved in nerve growth factor (NGF) signalling pathway were analysed by western blot. All the findings obtained from this study indicated that the hydrogel can be considered as a promising delivery system against second degree burn by faster healing.
Collapse
Affiliation(s)
- Srijita Chakrabarti
- Defence Research Laboratory, Tezpur, Assam, 784 001, India
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | | | | | - Pompy Patowary
- Defence Research Laboratory, Tezpur, Assam, 784 001, India
| | | |
Collapse
|
10
|
Shi X, Jiang L, Zhao X, Chen B, Shi W, Cao Y, Chen Y, Li X, He Y, Li C, Liu X, Li X, Lu H, Chen C, Liu J. Adipose-Derived Stromal Cell-Sheets Sandwiched, Book-Shaped Acellular Dermal Matrix Capable of Sustained Release of Basic Fibroblast Growth Factor Promote Diabetic Wound Healing. Front Cell Dev Biol 2021; 9:646967. [PMID: 33842472 PMCID: PMC8027315 DOI: 10.3389/fcell.2021.646967] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The management of diabetic wounds is a therapeutic challenge in clinical settings. Current tissue engineering strategies for diabetic wound healing are insufficient, owing to the lack of an appropriate scaffold that can load a large number of stem cells and induce the interaction of stem cells to form granulation tissue. Herein we fabricated a book-shaped decellularized dermal matrix (BDDM), which shows a high resemblance to native dermal tissue in terms of its histology, microstructure, and ingredients, is non-cytotoxic and low-immunogenic, and allows adipose-derived stromal cell (ASC) attachment and proliferation. Then, a collagen-binding domain (CBD) capable of binding collagen was fused into basic fibroblast growth factor (bFGF) to synthetize a recombinant growth factor (termed as CBD-bFGF). After that, CBD-bFGF was tethered onto the collagen fibers of BDDM to improve its endothelial inducibility. Finally, a functional scaffold (CBD-bFGF/BDDM) was fabricated. In vitro and in vivo experiments demonstrated that CBD-bFGF/BDDM can release tethered bFGF with a sustained release profile, steadily inducing the interaction of stem cells down to endothelial differentiation. ASCs were cultured to form a cell sheet and then sandwiched by CBD-bFGF/BDDM, thus enlarging the number of stem cells loaded into the scaffold. Using a rat model, the ASC sheets sandwiched with CBD-bFGF/BDDM (ASCs/CBD-bFGF/BDDM) were capable of enhancing the formation of granulation tissue, promoting angiogenesis, and facilitating collagen deposition and remodeling. Therefore, the findings of this study demonstrate that ASCs/CBD-bFGF/BDDM could be applicable for diabetic wound healing.
Collapse
Affiliation(s)
- Xin Shi
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, China
| | - Liyuan Jiang
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Zhao
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, China
| | - Bei Chen
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, China
| | - Wei Shi
- Department of Emergency, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Yanpeng Cao
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, China
| | - Yaowu Chen
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, China
| | - Xiying Li
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, China
| | - Yusheng He
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, China
| | - Chengjie Li
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, China
| | - Xiaoren Liu
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, China
| | - Xing Li
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Can Chen
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Can Chen,
| | - Jun Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, China
- The First School of Clinical Medicine, Xiangnan University, Chenzhou, China
- Jun Liu,
| |
Collapse
|
11
|
Watanabe M, Li H, Yamamoto M, Horinaka JI, Tabata Y, Flake AW. Addition of glycerol enhances the flexibility of gelatin hydrogel sheets; application for in utero tissue engineering. J Biomed Mater Res B Appl Biomater 2020; 109:921-931. [PMID: 33166052 DOI: 10.1002/jbm.b.34756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/02/2020] [Accepted: 10/24/2020] [Indexed: 11/10/2022]
Abstract
Gelatin hydrogels are naturally derived scaffolds useful for tissue engineering because of their cytocompatibility and controllable degradability. However, they are brittle and inflexible when dry, which limits their use for in utero tissue engineering in large animal models. Therefore, in this study, we attempted to generate flexible gelatin sheets by adding various plasticizers with different molecular weights (MW). We systematically evaluated the flexibility, sustainability, and potential clinical utility of the resulting flexible gelatin sheets. Gelatin sheets with low-MW plasticizers, such as monosaccharides or sugar alcohols, showed a reduced tensile modulus in dynamic viscoelasticity, which reflected their actual flexibility. Wet gelatin sheets containing plasticizers showed higher tensile strength than the nonplasticizer control, although wet gelatin sheets under all conditions had a much lower tensile strength than dry gelatin sheets. In a functional study, gelatin sheets containing glycerol, which has the lowest MW among sugar alcohols, showed encouraging results, such as good fit to the curvature of the experimental animal, biocompatibility, and suitability for endoscopic approaches. The findings of this study should enable the expansion of future applications for flexible gelatin sheets.
Collapse
Affiliation(s)
- Miho Watanabe
- The Department of Surgery and Children's Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,The Department of Pediatric Surgery, Osaka University graduate School of Medicine, Osaka, Japan
| | - Haiying Li
- The Department of Surgery and Children's Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Masaya Yamamoto
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Ma rial Processing, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Jun-Ichi Horinaka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Alan W Flake
- The Department of Surgery and Children's Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Bello AB, Kim D, Kim D, Park H, Lee SH. Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:164-180. [PMID: 31910095 DOI: 10.1089/ten.teb.2019.0256] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Health care and medicine were revolutionized in recent years by the development of biomaterials, such as stents, implants, personalized drug delivery systems, engineered grafts, cell sheets, and other transplantable materials. These materials not only support the growth of cells before transplantation but also serve as replacements for damaged tissues in vivo. Among the various biomaterials available, those made from natural biological sources such as extracellular proteins (collagen, fibronectin, laminin) have shown significant benefits, and thus are widely used. However, routine biomaterial-based research requires copious quantities of proteins and the use of pure and intact extracellular proteins could be highly cost ineffective. Gelatin is a molecular derivative of collagen obtained through the irreversible denaturation of collagen proteins. Gelatin shares a very close molecular structure and function with collagen and thus is often used in cell and tissue culture to replace collagen for biomaterial purposes. Recent technological advancements such as additive manufacturing, rapid prototyping, and three-dimensional printing, in general, have resulted in great strides toward the generation of functional gelatin-based materials for medical purposes. In this review, the structural and molecular similarities of gelatin to other extracellular matrix proteins are compared and analyzed. Current strategies for gelatin crosslinking and production are described and recent applications of gelatin-based biomaterials in cell culture and tissue regeneration are discussed. Finally, recent improvements in gelatin-based biomaterials for medical applications and future directions are elaborated. Impact statement In this study, we described gelatin's biochemical properties and compared its advantages and drawbacks over other extracellular matrix proteins and polymers used for biomaterial application. We also described how gelatin can be used with other polymers in creating gelatin composite materials that have enhanced mechanical properties, increased biocompatibility, and boosted bioactivity, maximizing its benefits for biomedical purposes. The article is relevant, as it discussed not only the chemistry of gelatin, but also listed the current techniques in gelatin/biomaterial manufacturing and described the most recent trends in gelatin-based biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Alvin Bacero Bello
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.,Department of Biomedical Science, Dongguk University, Gyeonggi, Republic of Korea
| | - Deogil Kim
- Department of Biomedical Science, CHA University, Seongnam-Si, Republic of Korea
| | - Dohyun Kim
- Department of Biomedical Science, Dongguk University, Gyeonggi, Republic of Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Science, Dongguk University, Gyeonggi, Republic of Korea
| |
Collapse
|
13
|
Imaizumi M, Nakamura R, Nakaegawa Y, Dirja BT, Tada Y, Tani A, Sugino T, Tabata Y, Omori K. Regenerative potential of basic fibroblast growth factor contained in biodegradable gelatin hydrogel microspheres applied following vocal fold injury: Early effect on tissue repair in a rabbit model. Braz J Otorhinolaryngol 2019; 87:274-282. [PMID: 31711791 PMCID: PMC9422641 DOI: 10.1016/j.bjorl.2019.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/19/2019] [Accepted: 09/04/2019] [Indexed: 11/18/2022] Open
Abstract
Introduction Postoperative dysphonia is mostly caused by vocal fold scarring, and careful management of vocal fold surgery has been reported to reduce the risk of scar formation. However, depending on the vocal fold injury, treatment of postoperative dysphonia can be challenging. Objective The goal of the current study was to develop a novel prophylactic regenerative approach for the treatment of injured vocal folds after surgery, using biodegradable gelatin hydrogel microspheres as a drug delivery system for basic fibroblast growth factor. Methods Videoendoscopic laryngeal surgery was performed to create vocal fold injury in 14 rabbits. Immediately following this procedure, biodegradable gelatin hydrogel microspheres with basic fibroblast growth factor were injected in the vocal fold. Two weeks after injection, larynges were excised for evaluation of vocal fold histology and mucosal movement. Results The presence of poor vibratory function was confirmed in the injured vocal folds. Histology and digital image analysis demonstrated that the injured vocal folds injected with gelatin hydrogel microspheres with basic fibroblast growth factor showed less scar formation, compared to the injured vocal folds injected with gelatin hydrogel microspheres only, or those without any injection. Conclusion A prophylactic injection of basic fibroblast growth factor -containing biodegradable gelatin hydrogel microspheres demonstrates a regenerative potential for injured vocal folds in a rabbit model.
Collapse
Affiliation(s)
- Mitsuyoshi Imaizumi
- Fukushima Medical University, School of Medicine, Department of Otolaryngology, Fukushima, Japan.
| | | | - Yuta Nakaegawa
- Fukushima Medical University, School of Medicine, Department of Otolaryngology, Fukushima, Japan
| | - Bayu Tirta Dirja
- Fukushima Medical University, School of Medicine, Department of Otolaryngology, Fukushima, Japan
| | - Yasuhiro Tada
- Fukushima Medical University, School of Medicine, Department of Otolaryngology, Fukushima, Japan
| | - Akiko Tani
- Fukushima Medical University, School of Medicine, Department of Otolaryngology, Fukushima, Japan
| | - Takashi Sugino
- Shizuoka Cancer Center, Division of Pathology, Shizuoka, Japan
| | - Yasuhiko Tabata
- Kyoto University, Institute for Frontier Life and Medical Sciences, Department of Regeneration Science and Engineering, Laboratory of Biomaterials, Kyoto, Japan
| | - Koichi Omori
- Kyoto University, Department of Otolaryngology, Kyoto, Japan
| |
Collapse
|
14
|
Herold C, Engeli S, Beckmann B, Vogt PM, Rennekampff HO. Adipokine concentrations in lipoaspirates may have a role in wound healing. Indian J Plast Surg 2019; 50:56-63. [PMID: 28615811 PMCID: PMC5469237 DOI: 10.4103/ijps.ijps_103_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES In addition to its use as a volume filler, fat grafting may have a potential role in wound healing based on the concentration of growth factors in the lipoaspirate. In this study, we compare the quantitative and qualitative concentration of the various growth factors and adipokines using the Shippert or the Coleman techniques to prepare the lipoaspirate. METHODS We measured leptin, adiponectin and the growth factors, i.e., acidic fibroblast growth factor (aFGF), basic FGF (bFGF), keratinocyte growth factor (KGF), bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) by ELISA in solid and liquid fractions obtained with both techniques in human fat obtained with Coleman technique and Shippert technique. RESULTS All of these peptides, except BMP-2, were detected in relevant quantities in the solid fraction. The Coleman but not the Shippert technique resulted in statistically higher adiponectin concentrations in the solid tissue fraction. The other four growth factors occurred in significantly higher concentrations in the solid fractions compared to the liquid fractions, independent of the processing technique. CONCLUSION In summary, we demonstrated that KGF, aFGF, bFGF and VEGF, as well as leptin and adiponectin, are contained in fat suspensions obtained by liposuction and in the supernatant. Only the concentration of adiponectin was in the range reported to contribute to wound healing.
Collapse
Affiliation(s)
- Christian Herold
- Department of Plastic and Aesthetic Surgery, Hand Surgery, Sana Klinikum Hameln Pyrmont, Hameln, Germany
| | - Stefan Engeli
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | - Bibiana Beckmann
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | - Peter M Vogt
- Department of Plastic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
15
|
Shi M, Zhang H, Song T, Liu X, Gao Y, Zhou J, Li Y. Sustainable Dual Release of Antibiotic and Growth Factor from pH-Responsive Uniform Alginate Composite Microparticles to Enhance Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22730-22744. [PMID: 31141337 DOI: 10.1021/acsami.9b04750] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydrogel-based wound dressings provided a moist microenvironment and local release of bioactive molecules. Single drug loading along with fast release rates and usually in hydrogel sheets limited their performance. Hence, uniform alginate/CaCO3 composite microparticles (∼430 μm) with tunable compositions for sustainable release of drug and pH-sensitivity were successfully fabricated using microfluidic technology. Due to the presence of CaCO3 and the strong interactions with alginate molecules, lyophilized composite microparticles reverted to hydrogel state after rehydration. Regardless of microparticle states (hydrogel or lyophilized) and pH values (6.4 or 7.4), in vitro release rates of model drug were inversely related with CaCO3 concentrations and much lower than that for pure alginate microparticles. The release rate at pH 6.4 (simulating wound microenvironment) was always slower than that at pH 7.4 for the same type of microparticles. Rifamycin and basic fibroblast growth factor (bFGF) were independently encapsulated into AD-5-R and AD-40-F to achieve a fast release of rifamycin and a slower, more sustained release of bFGF, respectively; CD-F-R was a mixture of AD-5-R and AD-40-F at weight ratio 1/1. For AD-5-R and CD-F-R, inhibition zones of S. aureus were observed until day 5, showing a sustained antibacterial property. On the basis of in vitro wound healing model of NIH-3T3 cell micropattern on glass coverslips with a hole array, it was found that AD-40-F and CD-F-R significantly promoted cell proliferation and migration rates. In a full-thickness skin wound model of rats, CD-F-R microparticles significantly accelerated wound healing with higher granulation tissue thickness and better bioactivity to stimulate angiogenesis than the control group. Furthermore, CD-F-R microparticles demonstrated a good biocompatibility and biodegradability in vivo. Taken together, CD-F-R composite microparticles may ideally meet the requirements for different stages during wound healing and demonstrated a good potential to be used as dressing materials.
Collapse
Affiliation(s)
- Ming Shi
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
| | - Hao Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
| | - Ting Song
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
| | - Xiaofang Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
| | - Yunfen Gao
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
| | - Jianhua Zhou
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital , Harvard Medical School , Cambridge , Massachusetts 02139 , United States
| | - Yan Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
| |
Collapse
|
16
|
Barthes J, Dollinger C, Muller CB, Liivas U, Dupret-Bories A, Knopf-Marques H, Vrana NE. Immune Assisted Tissue Engineering via Incorporation of Macrophages in Cell-Laden Hydrogels Under Cytokine Stimulation. Front Bioeng Biotechnol 2018; 6:108. [PMID: 30177966 PMCID: PMC6110199 DOI: 10.3389/fbioe.2018.00108] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/13/2018] [Indexed: 02/01/2023] Open
Abstract
The function of soft tissues is intricately linked to their connections with the other systems of the body such as circulation, nervous system, and immune system. The presence of resident macrophages in tissues provides a means to control tissue homeostasis and also a way to react to the physical/biological insults and tissue damage. Thus, incorporation of resident macrophage like phenotype-controlled macrophages in engineered tissues can improve their fidelity as model tissues and also improve their rate of integration and facilitate the resolution of inflammation for regenerative medicine applications. Herein, we demonstrate two potential ways to immunoassist the remodeling process of engineered soft tissues in three-dimensional (3-D) gelatin based hydrogels containing fibroblasts and/or endothelial cells: (i) with supplementation of interleukin-4 (IL-4) in the presence of macrophages and (ii) in tri-culture via naive monocytes or differentiated macrophages. The presence of IL-4 had a proliferative effect on fibroblasts, with a significant boosting effect on proliferation and cytokine secretion in the presence of differentiated macrophages with an upregulation of activin, interleukin-1 receptor antagonist (IL-1RA), tumor necrosis factor alpha (TNF-α), and interleukin-1 beta (IL-1β), creating a more stimulating microenvironment. The addition of IL-4 in endothelial cell/macrophage co-culture configuration improved the organization of the sprout-like structures, with a boost in proliferation at day 1 and with an upregulation of IL-6 and IL-1RA at the earliest stage in the presence of differentiated macrophages creating a favorable microenvironment for angiogenesis. In tri-culture conditions, the presence of monocytes or macrophages resulted in a denser tissue-like structure with highly remodeled hydrogels. The presence of differentiated macrophages had a boosting effect on the angiogenic secretory microenvironment, such as IL-6 and IL-8, without any additional cytokine supplementation. The presence of fibroblasts in combination with endothelial cells also had a significant effect on the secretion of angiopoietin. Our results demonstrate that incorporation of macrophages in a resident macrophage function and their phenotype control have significant effects on the maturation and cytokine microenvironment of 3-D multiple cell type-laden hydrogels, which can be harnessed for better integration of implantable systems and for more physiologically relevant in vitro tissue models with an immune component.
Collapse
Affiliation(s)
- Julien Barthes
- PROTiP Medical, Strasbourg, France.,INSERM UMR 1121, Strasbourg, France
| | | | | | | | - Agnes Dupret-Bories
- Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Helena Knopf-Marques
- INSERM UMR 1121, Strasbourg, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Nihal E Vrana
- PROTiP Medical, Strasbourg, France.,INSERM UMR 1121, Strasbourg, France
| |
Collapse
|
17
|
Development of gelatin hydrogel pads incorporated with Eupatorium adenophorum essential oil as antibacterial wound dressing. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2395-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Aoki S, Fujii M, Fujie T, Nishiwaki K, Miyazaki H, Saitoh D, Takeoka S, Kiyosawa T, Kinoshita M. The efficacy of basic fibroblast growth factor-loaded poly(lactic-co
-glycolic acid) nanosheet for mouse wound healing. Wound Repair Regen 2018; 25:1008-1016. [DOI: 10.1111/wrr.12604] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/26/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Shimpo Aoki
- Department of Plastic Surgery; National Defense Medical College; Saitama Japan
| | - Mao Fujii
- Department of Life Science and Medical Bioscience; Graduate School of Advanced Science and Engineering, Waseda University; Tokyo Japan
| | - Toshinori Fujie
- Waseda Institute for Advanced Study, Waseda University; Tokyo Japan
- Japan Science and Technology Agency, PRESTO; Saitama Japan
| | - Keisuke Nishiwaki
- Department of Life Science and Medical Bioscience; Graduate School of Advanced Science and Engineering, Waseda University; Tokyo Japan
| | - Hiromi Miyazaki
- Division of Traumatology; Research Institute, National Defense Medical College; Saitama Japan
| | - Daizoh Saitoh
- Division of Traumatology; Research Institute, National Defense Medical College; Saitama Japan
| | - Shinji Takeoka
- Department of Life Science and Medical Bioscience; Graduate School of Advanced Science and Engineering, Waseda University; Tokyo Japan
| | - Tomoharu Kiyosawa
- Department of Plastic Surgery; National Defense Medical College; Saitama Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology; National Defense Medical College; Saitama Japan
| |
Collapse
|
19
|
Hydrogel and Platelet-Rich Plasma Combined Treatment to Accelerate Wound Healing in a Nude Mouse Model. Arch Plast Surg 2017; 44:194-201. [PMID: 28573093 PMCID: PMC5447528 DOI: 10.5999/aps.2017.44.3.194] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 12/24/2022] Open
Abstract
Background Platelet-rich plasma (PRP) contains high concentrations of growth factors involved in wound healing. Hydrogel is a 3-dimensional, hydrophilic, high-molecular, reticular substance generally used as a dressing formulation to accelerate wound healing, and also used as a bio-applicable scaffold or vehicle. This study aimed to investigate the effects of PRP and hydrogel on wound healing, in combination and separately, in an animal wound model. Methods A total of 64 wounds, with 2 wounds on the back of each nude mouse, were classified into 4 groups: a control group, a hydrogel-only group, a PRP-only group, and a combined-treatment group. All mice were assessed for changes in wound size and photographed on scheduled dates. The number of blood vessels was measured in all specimens. Immunohistochemical staining was used for the analysis of vascular endothelial growth factor (VEGF) expression. Results Differences in the decrease and change in wound size in the combined-treatment group were more significant than those in the single-treatment groups on days 3, 5, 7, and 10. Analysis of the number of blood vessels through histological examination showed a pattern of increase over time that occurred in all groups, but the combined-treatment group exhibited the greatest increase on days 7 and 14. Immunohistochemical staining showed that VEGF expression in the combined-treatment group exhibited its highest value on day 7. Conclusions This experiment demonstrated improved wound healing using a PRP–hydrogel combined treatment compared to either treatment individually, resulting in a decrease in wound size and a shortening of the healing period.
Collapse
|
20
|
A moist edge environment aids the regeneration of traumatic tympanic membrane perforations. The Journal of Laryngology & Otology 2017; 131:564-571. [PMID: 28502255 DOI: 10.1017/s0022215117001001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To review the history of moist therapy used to regenerate traumatic tympanic membrane perforations. STUDY DESIGN Literature review. METHODS The literature on topical agents used to treat traumatic tympanic membrane perforations was reviewed, and the advantages and disadvantages of moist therapy were analysed. RESULTS A total of 76 studies were included in the analysis. Topical applications of certain agents (e.g. growth factors, Ofloxacin Otic Solution, and insulin solutions) to the moist edges of traumatic tympanic membrane perforations shortened closure times and improved closure rates. CONCLUSION Dry tympanic membrane perforation edges may be associated with crust formation and centrifugal migration, delaying perforation closure. On the contrary, moist edges inhibit necrosis at the perforation margins, stimulate proliferation of granulation tissue and aid eardrum healing. Thus, moist perforation margins upon topical application of solutions of appropriate agents aid the regeneration of traumatic tympanic membrane perforations.
Collapse
|
21
|
Neuregulin-1 released by biodegradable gelatin hydrogels can accelerate facial nerve regeneration and functional recovery of traumatic facial nerve palsy. J Plast Reconstr Aesthet Surg 2016; 69:328-34. [DOI: 10.1016/j.bjps.2015.10.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/15/2015] [Accepted: 10/21/2015] [Indexed: 02/07/2023]
|
22
|
Ogino S, Morimoto N, Sakamoto M, Jinno C, Taira T, Suzuki S. Efficacy of gelatin gel sheets sustaining epidermal growth factor for murine skin defects. J Surg Res 2015; 201:446-54. [PMID: 27020831 DOI: 10.1016/j.jss.2015.11.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/05/2015] [Accepted: 11/18/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Epidermal growth factor (EGF) plays an important role in wound healing. However, EGF must be applied daily due to rapid inactivation in vivo. We investigated the sustained release of EGF from gelatin gel sheets (GGSs) and the efficacy of GGSs impregnated with EGF for promoting wound healing. MATERIALS AND METHODS GGSs impregnated with EGF were prepared by cross-linking via glutaraldehyde to gelatin solution containing EGF. The sustained release of EGF and the bioactivity of released EGF were evaluated. Then, three kinds of GGSs containing NSS (normal saline solution; NSS group), 2.5 μg of EGF (EGF-L group), or 25 μg of EGF (EGF-H group) were applied to full-thickness skin defects created on the backs of mice. The wounds covered with polyurethane film without GGS were used as a control (PUF group). The wound area, neoepithelium length, regenerated granulation tissue, and newly formed capillaries were evaluated. RESULTS EGF was sustained and released from GGS as it degraded. The bioactivity of released EGF was confirmed. EGF-L group promoted the neoepithelium length, regenerated granulation tissue, and newly formed capillaries compared with those in the PUF and NSS groups. The area of regenerated granulation tissue in the NSS group (week 1: 2.6 + 0.2 mm(2), week 2: 2.8 + 0.3 mm(2)) was larger than that in the PUF group (week 1: 0.6 + 0.1 mm(2), week 2: 1.0 + 0.1 mm(2)). The area of newly formed capillaries in the EGF-L group (9967 + 1903 μm(2)) was larger than that of the EGF-H group (3485 + 1050 μm(2)). CONCLUSIONS GGSs impregnated with EGF-L showed promising results regarding wound healing.
Collapse
Affiliation(s)
- Shuichi Ogino
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Hirakata, Japan.
| | - Michiharu Sakamoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chizuru Jinno
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Shigehiko Suzuki
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
23
|
Huang C, Orbay H, Tobita M, Miyamoto M, Tabata Y, Hyakusoku H, Mizuno H. Proapoptotic effect of control-released basic fibroblast growth factor on skin wound healing in a diabetic mouse model. Wound Repair Regen 2015; 24:65-74. [PMID: 26488443 DOI: 10.1111/wrr.12375] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 10/17/2015] [Indexed: 11/28/2022]
Abstract
The ability of basic fibroblast growth factor (bFGF) to improve wound healing is attenuated by its short half-life in free form. This study aimed to enhance skin wound healing in a diabetes mouse model while concomitantly decreasing scar formation using control-released bFGF together with acidic gelatin hydrogel microspheres (AGHMs). Bilateral full-thickness wounds (10 mm in diameter) were made on the backs of db/db mice. Forty-five mice were divided into three groups, and the base of the wound under the panniculus carnosus and the wound periphery were injected with phosphate-buffered saline (300 μL) containing (1) control-released bFGF (50 μg), (2) control-released bFGF (20 μg), or (3) AGHMs alone. The size of the wound area was recorded on each postoperative day (POD). Mice were sacrificed on postoperative day 4, 7, 10, 14, and 28, and skin wound specimens were obtained to assess the endothelium/angiogenesis index via cluster of differentiation 31 immunohistochemistry, the proliferation index via Ki-67 immunohistochemistry, and the myofibroblast and fibroblast apoptosis indices by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and alpha-smooth muscle actin or vimentin staining, respectively. Epithelialization rates and indices of proliferation and myofibroblast/fibroblast apoptosis were higher in the bFGF groups than in the AGHM group, mainly within 2 weeks of injury. No dose-effect relationship was found for control-released bFGF, although the actions of 50 μg bFGF seemed to last longer than those of 20 μg bFGF. Therefore, control-released bFGF may accelerate diabetic skin wound healing and induce myofibroblast/fibroblast apoptosis, thereby reducing scar formation.
Collapse
Affiliation(s)
- Chenyu Huang
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan.,Department of Plastic and Reconstructive Surgery, Medical Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China.,Department of Plastic Surgery, Meitan General Hospital, Beijing, China
| | - Hakan Orbay
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Morikuni Tobita
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiko Hyakusoku
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Hiroshi Mizuno
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
24
|
Woo CH, Choi YC, Choi JS, Lee HY, Cho YW. A bilayer composite composed of TiO2-incorporated electrospun chitosan membrane and human extracellular matrix sheet as a wound dressing. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:841-54. [PMID: 26096447 DOI: 10.1080/09205063.2015.1061349] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We designed bilayer composites composed of an upper layer of titanium dioxide (TiO2)-incorporated chitosan membrane and a sub-layer of human adipose-derived extracellular matrix (ECM) sheet as a wound dressing for full-thickness wound healing. The dense and fibrous top layer, which aims to protect the wound from bacterial infection, was prepared by electrospinning of chitosan solution followed by immersion in TiO2 solution. The sponge-like sub-layer, which aims to promote new tissue regeneration, was prepared with acellular ECM derived from human adipose tissue. Using a modified drop plate method, there was a 33.9 and 69.6% reduction in viable Escherichia coli and Staphylococcus aureus on the bilayer composite, respectively. In an in vivo experiment using rats, the bilayer composites exhibited good biocompatibility and provided proper physicochemical and compositional cues at the wound site. Changes in wound size and histological examination of full-thickness wounds showed that the bilayer composites induced faster regeneration of granulation tissue and epidermis with less scar formation, than control wounds. Overall results suggest that the TiO2-incorporated chitosan/ECM bilayer composite can be a suitable candidate as a wound dressing, with an excellent inhibition of bacterial penetration and wound healing acceleration effects.
Collapse
Affiliation(s)
- Chang Hee Woo
- a Department of Chemical Engineering , Hanyang University , Ansan , Gyeonggi-do 426-791 , Republic of Korea
| | | | | | | | | |
Collapse
|
25
|
Liu Q, Huang Y, Lan Y, Zuo Q, Li C, Zhang Y, Guo R, Xue W. Acceleration of skin regeneration in full-thickness burns by incorporation of bFGF-loaded alginate microspheres into a CMCS-PVA hydrogel. J Tissue Eng Regen Med 2015; 11:1562-1573. [DOI: 10.1002/term.2057] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/25/2015] [Accepted: 04/29/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Quan Liu
- Key Laboratory of Biomaterials; Guangdong Higher Education Institutes; Guangzhou People's Republic of China
- Department of Biomedical Engineering; Jinan University; Guangzhou People's Republic of China
| | - Yuchen Huang
- Key Laboratory of Biomaterials; Guangdong Higher Education Institutes; Guangzhou People's Republic of China
- Department of Biomedical Engineering; Jinan University; Guangzhou People's Republic of China
| | - Yong Lan
- Key Laboratory of Biomaterials; Guangdong Higher Education Institutes; Guangzhou People's Republic of China
| | - Qinhua Zuo
- Key Laboratory of Biomaterials; Guangdong Higher Education Institutes; Guangzhou People's Republic of China
- Department of Biomedical Engineering; Jinan University; Guangzhou People's Republic of China
| | - Chenghua Li
- Key Laboratory of Biomaterials; Guangdong Higher Education Institutes; Guangzhou People's Republic of China
- Department of Biomedical Engineering; Jinan University; Guangzhou People's Republic of China
| | - Yi Zhang
- Key Laboratory of Biomaterials; Guangdong Higher Education Institutes; Guangzhou People's Republic of China
- Department of Biomedical Engineering; Jinan University; Guangzhou People's Republic of China
| | - Rui Guo
- Key Laboratory of Biomaterials; Guangdong Higher Education Institutes; Guangzhou People's Republic of China
- Department of Biomedical Engineering; Jinan University; Guangzhou People's Republic of China
| | - Wei Xue
- Key Laboratory of Biomaterials; Guangdong Higher Education Institutes; Guangzhou People's Republic of China
- Department of Biomedical Engineering; Jinan University; Guangzhou People's Republic of China
- Key Laboratory of Functional Protein Research; Guangdong Higher Education Institute; Guangzhou People's Republic of China
| |
Collapse
|
26
|
Morimoto N, Kakudo N, Matsui M, Ogura T, Hara T, Suzuki K, Yamamoto M, Tabata Y, Kusumoto K. Exploratory clinical trial of combination wound therapy with a gelatin sheet and platelet-rich plasma in patients with chronic skin ulcers: study protocol. BMJ Open 2015; 5:e007733. [PMID: 25968005 PMCID: PMC4431137 DOI: 10.1136/bmjopen-2015-007733] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Chronic skin ulcers, such as diabetic ulcers, venous leg ulcers and pressure ulcers, are intractable and increasing in prevalence, representing a costly problem in healthcare. We developed a combination therapy with a gelatin sheet, capable of providing sustained release of platelet-rich plasma (PRP). The objective of this study is to investigate the safety and efficacy of autologous PRP covered with a hydrocolloid dressing and PRP covered with a gelatin sheet in the treatment of chronic skin ulcers. METHODS AND ANALYSIS Thirty patients with chronic skin ulcers who have not healed with conventional therapy for at least 1 month are being recruited. The patients will receive PRP after debridement, and the wounds will be covered with a hydrocolloid dressing or gelatin sheet. The efficacy will be evaluated according to the time from the beginning of PRP application to secondary healing or the day on which wound closure is achieved with a relatively simple surgical procedure, such as skin grafting or suturing. All patients will be followed up until 6 weeks after application to observe adverse events related to the application of PRP and the dressings. This study was designed to address and compare the safety and efficacy of PRP covered with a hydrocolloid dressing versus a gelatin sheet. If successful, this combination therapy may be an alternative to bioengineered skin substitutes containing living cells and lead to substantial progress in the management of chronic skin ulcers. ETHICS AND DISSEMINATION The study protocol was approved by the Institutional Review Board of Kansai Medical University (KMU Number 0649-1, 4 August 2014: V.1.0). The findings of this trial will be disseminated through peer-reviewed journals, and national and international scientific meetings as well as to the patients. TRIAL REGISTRATION NUMBER UMIN000015689.
Collapse
Affiliation(s)
- Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan
| | - Natsuko Kakudo
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan
| | - Makoto Matsui
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tsunetaka Ogura
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan
| | - Tomoya Hara
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan
| | - Kenji Suzuki
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan
| | - Masaya Yamamoto
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kenji Kusumoto
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan
| |
Collapse
|
27
|
Otani Y, Komura M, Komura H, Ishimaru T, Konishi K, Komuro H, Hoshi K, Takato T, Tabata Y, Iwanaka T. Optimal amount of basic fibroblast growth factor in gelatin sponges incorporating β-tricalcium phosphate with chondrocytes. Tissue Eng Part A 2015; 21:627-36. [PMID: 25287675 DOI: 10.1089/ten.tea.2013.0655] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND A gelatin sponge with slowly releasing basic fibroblast growth factor (b-FGF) enhances chondrogenesis. This study investigated the optimal amount of b-FGF in gelatin sponges to fabricate engineered cartilage. MATERIALS AND METHODS b-FGF (0, 10, 100, 500, 1000, and 2000 μg/cm(3))-impregnated gelatin sponges incorporating β-tricalcium phosphate (β-TCP) were produced. Chondrocytes were isolated from the auricular cartilage of C57B6J mice and expanded. The expanded auricular chondrocytes (10×10(6) cells/cm(3)) were seeded onto the gelatin sponges, which served as scaffolds. The construct assembly was implanted in the subcutaneous space of mice through a syngeneic fashion. Thereafter, constructs were retrieved at 2, 4, or 6 weeks. RESULTS (1) Morphology: The size of implanted constructs was larger than the size of the scaffold with 500, 1000, and 2000 μg/cm(3) b-FGF-impregnated gelatin sponges incorporating β-TCP at 4 and 6 weeks after implantation. (2) The weight of the constructs increased roughly proportional to the increase in volume of the b-FGF-impregnated scaffold at 2, 4, and 6 weeks after implantation, except in the 2000 μg/cm(3) b-FGF-impregnated constructs group. (3) Histological examination: Extracellular matrix in the center of the constructs was observed in gelatin sponges impregnated with more than 100 μg/cm(3) b-FGF at 4 weeks after implantation. The areas of cells with an abundant extracellular matrix were positive for cartilage-specific marker type 2 collagen in the constructs. (4) Protein assay: Glycosaminoglycan and collagen type 2 expression were significantly increased at 4 and 6 weeks on implantation of gelatin sponges impregnated with more than 100 μg/cm(3) b-FGF. At 6 weeks after implantation, the ratio of type 2 collagen to type 1 collagen in constructs impregnated with 100 μg/cm(3) or more b-FGF was higher than that in mice auricular cartilage. CONCLUSION Gelatin sponges impregnated with more than 100 μg/cm(3) b-FGF incorporating β-TCP with chondrocytes (10×10(6) cells/cm(3)) can fabricate engineered cartilage at 4 weeks after implantation.
Collapse
Affiliation(s)
- Yushi Otani
- 1 Department of Pediatric Surgery, Graduate School of Medicine, University of Tokyo , Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Notodihardjo PV, Morimoto N, Kakudo N, Matsui M, Sakamoto M, Liem PH, Suzuki K, Tabata Y, Kusumoto K. Gelatin hydrogel impregnated with platelet-rich plasma releasate promotes angiogenesis and wound healing in murine model. J Artif Organs 2014; 18:64-71. [DOI: 10.1007/s10047-014-0795-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 10/04/2014] [Indexed: 10/24/2022]
|
29
|
Abstract
HYPOTHESIS In this developmental research study that aimed to develop tympanic membrane regeneration therapy, we devised a method of sustained bFGF formulation release using gelatin hydrogel in a guinea pig eardrum perforation model. BACKGROUND Basic fibroblast growth factor (bFGF) can promote perforation closure. In addition, several studies of bFGF formulations have used gelatin hydrogel-bFGF coupled electrostatically to a gelatin polymer. BFGF is released gradually as a result of degradation of the gelatin polymer, and studies have shown that the long-term pharmacologic effects of bFGF can be maintained. METHODS Using a CO(2) laser, total tympanic membrane perforations were created in 24 guinea pig ears and divided into 3 groups: the bFGF-gelatin hydrogel group(n = 8), the saline-gelatin hydrogel group (n = 8), and the control group (n = 8). Either a bFGF formulation or saline was impregnated into gelatin hydrogen and implanted into the perforated tympanic membrane. RESULTS All ear drums of the control group showed large perforations at even the 30th postoperative day. The perforation persisted in 3 of 8 ears in the saline-gelatin hydrogel group, and the tympanic membranes that had achieved closure were thinned, whereas all ears in the bFGF-gelatin hydrogel group achieved closure of the perforation. In the ears in which a normal tympanic membrane had regenerated, histologic observation with hematoxylin and eosin staining revealed that, although mucosal and epithelial layer regeneration had occurred in the saline-gelatin hydrogel group, the bFGF-gelatin hydrogel group showed regeneration of the fibrous layer in addition to the other 2 layers. CONCLUSION These data suggest that hydrogel impregnated with bFGF induces regeneration of the tympanic membrane and can conservatively treat tympanic membrane perforation.
Collapse
|
30
|
The Effect of Control-released Basic Fibroblast Growth Factor in Wound Healing: Histological Analyses and Clinical Application. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2013; 1:e44. [PMID: 25289238 PMCID: PMC4174161 DOI: 10.1097/gox.0b013e3182a88787] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 07/30/2013] [Indexed: 12/25/2022]
Abstract
Background: Basic fibroblast growth factors (bFGFs) play a crucial role in wound healing by promoting fibroblast proliferation and neovascularization. However, drawback of bFGF is short half-life in free form. Gelatin has a capability of sustaining growth factors, which are gradually released while degradation. The purpose of this study is to see whether bFGF-impregnated gelatin sheet is effective in a murine model and whether it could also be available for patients in a safe manner. Methods: Full-thickness skin defect was created on C57BL/6J mice and covered with bFGF with gelatin sheet (group A), bFGF without gelatin sheet (group B), phosphate buffer saline (PBS) with gelatin sheet (group C), and only PBS (group D). Wound healing was evaluated in terms of percent wound closure, granulation thickness, wound maturity, and vascular density. Clinical trial was conducted for patients who received either acute or chronic ulcers. The sheets were put onto the wounds and covered by hydrocolloid dressing, which was changed weekly. Results: Groups A and B exhibited better wound healing than groups C and D in all aspects. Moreover, group A showed better results than group B at day 7 in terms of wound closure, collagen maturity, and vascularity. Efficacy without any adverse events was found in the clinical series. Conclusions: These findings suggest that control-released bFGF using gelatin sheet is effective for promoting wound healing. Such therapeutic strategy was considered to offer several clinical advantages including rapid healing and reduction of the dressing change with less patient discomfort.
Collapse
|
31
|
Lee JY, Choi B, Wu B, Lee M. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering. Biofabrication 2013; 5:045003. [PMID: 24060622 DOI: 10.1088/1758-5082/5/4/045003] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Three-dimensional printing (3DP) is a rapid prototyping technique that can create complex 3D structures by inkjet printing of a liquid binder onto powder biomaterials for tissue engineering scaffolds. Direct fabrication of scaffolds from 3DP, however, imposes a limitation on material choices by manufacturing processes. In this study, we report an indirect 3DP approach wherein a positive replica of desired shapes was printed using gelatin particles, and the final scaffold was directly produced from the printed mold. To create patient-specific scaffolds that match precisely to a patient's external contours, we integrated our indirect 3DP technique with imaging technologies and successfully created custom scaffolds mimicking human mandibular condyle using polycaprolactone and chitosan for potential osteochondral tissue engineering. To test the ability of the technique to precisely control the internal morphology of the scaffolds, we created orthogonal interconnected channels within the scaffolds using computer-aided-design models. Because very few biomaterials are truly osteoinductive, we modified inert 3D printed materials with bioactive apatite coating. The feasibility of these scaffolds to support cell growth was investigated using bone marrow stromal cells (BMSC). The BMSCs showed good viability in the scaffolds, and the apatite coating further enhanced cellular spreading and proliferation. This technique may be valuable for complex scaffold fabrication.
Collapse
Affiliation(s)
- Ju-Yeon Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
32
|
Effect of Gelatin Hydrogel Sheet Containing Basic Fibroblast Growth Factor on Proximal Sesamoid Bone Transverse Fracture Healing in the Horse. J Equine Vet Sci 2013. [DOI: 10.1016/j.jevs.2012.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Kawazoe T, Kim HH. Tissue augmentation by white blood cell-containing platelet-rich plasma. Cell Transplant 2012; 21:601-7. [PMID: 22793069 DOI: 10.3727/096368911x605538] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Platelet-rich plasma (PRP) is a matrix of fibrin and platelets that releases cytokines that are important in wound healing. PRP is produced from the patient's blood and therefore has less risk of allergic reaction and infection. We have obtained PRP with an enhanced white blood cell component (W-PRP) by optimizing the centrifugal separation of PRP from plasma. Here we show that injection of W-PRP into the auricle of nude mice gave greater tissue augmentation compared to PRP. Further augmentation occurred when bFGF was added to W-PRP, and there was a significant increase in the number of α-smooth muscle actin-positive cells in mice treated with W-PRP+bFGF. Our results suggest that W-PRP may have value in cosmetic surgery aimed at rejuvenation of wrinkled and sagging skin. W-PRP injection constitutes a new concept in cell transplantation, in which cells required for tissue regeneration are induced by cytokines released from the transplanted cells.
Collapse
Affiliation(s)
- Takeshi Kawazoe
- Department of Plastic Reconstructive and Aesthetic Surgery, Kijunkai, Yoshikawa Hospital, Sakyo-ku, Kyoto, Japan.
| | | |
Collapse
|
34
|
Inpanya P, Faikrua A, Ounaroon A, Sittichokechaiwut A, Viyoch J. Effects of the blended fibroin/aloe gel film on wound healing in streptozotocin-induced diabetic rats. Biomed Mater 2012; 7:035008. [DOI: 10.1088/1748-6041/7/3/035008] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
35
|
Hato N, Nota J, Komobuchi H, Teraoka M, Yamada H, Gyo K, Yanagihara N, Tabata Y. Facial nerve decompression surgery using bFGF-impregnated biodegradable gelatin hydrogel in patients with Bell palsy. Otolaryngol Head Neck Surg 2011; 146:641-6. [PMID: 22166965 DOI: 10.1177/0194599811431661] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Basic fibroblast growth factor (bFGF) promotes the regeneration of denervated nerves. The aim of this study was to evaluate the regeneration-facilitating effects of novel facial nerve decompression surgery using bFGF in a gelatin hydrogel in patients with severe Bell palsy. STUDY DESIGN Prospective clinical study. SETTING Tertiary referral center. SUBJECTS AND METHODS Twenty patients with Bell palsy after more than 2 weeks following the onset of severe paralysis were treated with the new procedure. The facial nerve was decompressed between tympanic and mastoid segments via the mastoid. A bFGF-impregnated biodegradable gelatin hydrogel was placed around the exposed nerve. Regeneration of the facial nerve was evaluated by the House-Brackmann (H-B) grading system. The outcomes were compared with the authors' previous study, which reported outcomes of the patients who underwent conventional decompression surgery (n = 58) or conservative treatment (n = 43). RESULTS The complete recovery (H-B grade 1) rate of the novel surgery (75.0%) was significantly better than the rate of conventional surgery (44.8%) and conservative treatment (23.3%). Every patient in the novel decompression surgery group improved to H-B grade 2 or better even when undergone between 31 and 99 days after onset. CONCLUSION Advantages of this decompression surgery are low risk of complications and long effective period after onset of the paralysis. To the authors' knowledge, this is the first clinical report of the efficacy of bFGF using a new drug delivery system in patients with severe Bell palsy.
Collapse
Affiliation(s)
- Naohito Hato
- Department of Otolaryngology, Ehime University School of Medicine, Ehime, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Katsuno A, Aimoto T, Uchida E, Tabata Y, Miyamoto M, Tajiri T. The Controlled Release of Basic Fibroblast Growth Factor Promotes a Rapid Healing of Pancreaticojejunal Anastomosis with Potent Angiogenesis and Accelerates Apoptosis in Granulation Tissue. J Surg Res 2011; 167:166-72. [PMID: 19766245 DOI: 10.1016/j.jss.2009.05.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/09/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022]
|
37
|
Watanabe M, Li H, Roybal J, Santore M, Radu A, Jo JI, Kaneko M, Tabata Y, Flake A. A Tissue Engineering Approach for Prenatal Closure of Myelomeningocele: Comparison of Gelatin Sponge and Microsphere Scaffolds and Bioactive Protein Coatings. Tissue Eng Part A 2011; 17:1099-110. [DOI: 10.1089/ten.tea.2010.0390] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Miho Watanabe
- The Department of Surgery and Children's Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatric Surgery, University of Tsukuba, Graduate School of Comprehensive Human Sciences and Clinical Sciences, Tsukuba, Japan
| | - Hiaying Li
- The Department of Surgery and Children's Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jessica Roybal
- The Department of Surgery and Children's Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew Santore
- The Department of Surgery and Children's Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Antonetta Radu
- The Department of Surgery and Children's Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jun-Ichiro Jo
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto, Japan
| | - Michio Kaneko
- Department of Pediatric Surgery, University of Tsukuba, Graduate School of Comprehensive Human Sciences and Clinical Sciences, Tsukuba, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto, Japan
| | - Alan Flake
- The Department of Surgery and Children's Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Kim MS, Bhang SH, Yang HS, Rim NG, Jun I, Kim SI, Kim BS, Shin H. Development of functional fibrous matrices for the controlled release of basic fibroblast growth factor to improve therapeutic angiogenesis. Tissue Eng Part A 2011; 16:2999-3010. [PMID: 20486788 DOI: 10.1089/ten.tea.2009.0828] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, novel fibrous matrices were developed as a depot to store and liberate growth factors in a controlled manner. Specifically, heparin was covalently conjugated onto the surface of fibrous matrices (composites of poly[caprolactone] and gelatin crosslinked with genipin), and basic fibroblast growth factor (bFGF) was then reversibly immobilized. The immobilization of bFGF was controlled as a function of the amount of conjugated heparin. The sustained release of bFGF from the fibrous matrices was successfully achieved over 4 weeks whereas physical adsorption of bFGF released quickly. The bFGF released from the fibrous matrices significantly enhanced in vitro proliferation of human umbilical vein endothelial cells. From the in vivo study, the group implanted with a higher amount of immobilized bFGF significantly facilitated neo-blood vessel formation as compared with other implantation groups. These results indicate that the sustained release of bFGF is important for the formation of blood vessels and that our fibrous matrices could be useful for regulation of tissue damage requiring angiogenesis. Further, our system can be combined with other growth factors with heparin binding domains, representing a facile depot for spatiotemporal control over the delivery of bioactive molecules in regenerative medicine.
Collapse
Affiliation(s)
- Min Sup Kim
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Komobuchi H, Hato N, Teraoka M, Wakisaka H, Takahashi H, Gyo K, Tabata Y, Yamamoto M. Basic fibroblast growth factor combined with biodegradable hydrogel promotes healing of facial nerve after compression injury: an experimental study. Acta Otolaryngol 2010; 130:173-8. [PMID: 19680989 DOI: 10.3109/00016480902896139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CONCLUSION Topical application of basic fibroblast growth factor (bFGF) hydrogel facilitates faster healing from traumatic facial paralysis due to continuous release of bFGF. OBJECTIVES bFGF is considered a potent agent to facilitate recovery from neuronal damage; however, exogenously applied bFGF does not work well because of its short acting time. To enhance the effects in vivo, we developed a new drug delivery system by embedding bFGF in a gelatin hydrogel that degrades slowly. In this study, the effects of bFGF-hydrogel on traumatic facial nerve paralysis were investigated in guinea pigs. METHODS The intratemporal facial nerve was exposed and clamped at the vertical portion using micro needle forceps. The animals were then subjected to one of the following three procedures: group A, no further treatment; group B, one-shot application of bFGF to the nerve; and group C, application of bFGF-hydrogel instead. Six weeks later, facial nerve functions were evaluated by three test batteries: observation of facial movements, electrophysiological testing, and histological study. RESULTS The results for groups A and B were similar in the three tests, indicating that one-shot application of bFGF did not benefit facial nerve recovery. In contrast, group C achieved better results in all tests.
Collapse
Affiliation(s)
- Hayato Komobuchi
- Department of Otolaryngology, Ehime University School of Medicine, Ehime, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Recombinant Gelatin Microspheres: Novel Formulations for Tissue Repair? Tissue Eng Part A 2010; 16:1811-21. [DOI: 10.1089/ten.tea.2009.0592] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
41
|
A Tissue Engineering Approach for Prenatal Closure of Myelomeningocele with Gelatin Sponges Incorporating Basic Fibroblast Growth Factor. Tissue Eng Part A 2010; 16:1645-55. [DOI: 10.1089/ten.tea.2009.0532] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
42
|
Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol Lett 2010; 32:733-42. [DOI: 10.1007/s10529-010-0221-0] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 01/13/2010] [Accepted: 01/18/2010] [Indexed: 02/06/2023]
|
43
|
Park CJ, Clark SG, Lichtensteiger CA, Jamison RD, Johnson AJW. Accelerated wound closure of pressure ulcers in aged mice by chitosan scaffolds with and without bFGF. Acta Biomater 2009; 5:1926-36. [PMID: 19342320 DOI: 10.1016/j.actbio.2009.03.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 02/21/2009] [Accepted: 03/02/2009] [Indexed: 11/18/2022]
Abstract
Pressure ulcers are a significant healthcare concern, especially for elderly populations. Our work served to ameliorate the chronicity of these ulcers by addressing ischemia-reperfusion injury mediated by neutrophils and the concomitant loss of vasculature in these wounds. To this end, chitosan scaffolds loaded with basic fibroblast growth factor (bFGF) contained in gelatin microparticles were developed and tested for clinical relevance in an aged mouse model. Pressure ulcers were induced in aged mice, and efficacy of treatment was assessed. On days 3 and 7, both chitosan and chitosan-bFGF scaffolds significantly accelerated wound closure compared to gauze control. By day 10, all wounds achieved similar closure. Delivery and angiogenic function of bFGF was verified through ELISA and histology. Elevated neutrophil levels were observed in chitosan and chitosan-bFGF groups. Since neutrophil elastase contributes to the proteolytic environments of pressure ulcers, the effect of chitosan on elastase was assessed. In vitro, chitosan inhibited elastase activity. In vivo, elastase protein levels in wounds were reduced with chitosan-bFGF scaffolds by day 10. These results suggest that chitosan is an effective material for growth factor delivery and can help to heal chronic ulcers. Collectively, our data show that chitosan-bFGF scaffolds are effective in accelerating wound closure of pressure ulcers in aged animals.
Collapse
Affiliation(s)
- Chan J Park
- Department of Materials Science & Engineering, University of Illinois at Urbana-Champaign, 61801, USA
| | | | | | | | | |
Collapse
|
44
|
Okabe K, Yamada Y, Ito K, Kohgo T, Yoshimi R, Ueda M. Injectable soft-tissue augmentation by tissue engineering and regenerative medicine with human mesenchymal stromal cells, platelet-rich plasma and hyaluronic acid scaffolds. Cytotherapy 2009; 11:307-16. [DOI: 10.1080/14653240902824773] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
45
|
Steffansen B, Herping SP. Novel wound models for characterizing ibuprofen release from foam dressings. Int J Pharm 2008; 364:150-5. [DOI: 10.1016/j.ijpharm.2008.07.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 07/18/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
|
46
|
Huang S, Deng T, Wu H, Chen F, Jin Y. Wound dressings containing bFGF-impregnated microspheres. J Microencapsul 2008; 23:277-90. [PMID: 16801240 DOI: 10.1080/02652040500435170] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The primary objective was to synthesize a novel wound dressing containing basic fibroblast growth factor (bFGF)-loaded microspheres for promoting healing and tissue regeneration. Gelatin sponge was chosen as the underlying layer and elastomeric polyurethane membranes were used as the external layer. To achieve prolonged release, bFGF addition was loaded in microspheres. The microspheres were characterized for particle size, in vitro protein release and bioactivity. The bilayer dressings were tested in in vivo experiments on full-thickness skin defects created on pigs. Average size of the microspheres was 14.36 +/- 3.56 microm and the network sponges were characterized with an average pore size of 80-160 microm. Both the in vitro release efficiency and the protein bioactivity revealed that bFGF was released in a controlled manner and it was biologically active as assessed by its ability to induce the proliferation of fibroblasts. It was observed that sustained release of bFGF provided a higher degree of reduction in the wound areas. Histological investigations showed that the dressings were biocompatible and did not cause any mononuclear cell infiltration or foreign body reaction. The structure of the newly formed dermis was almost the same as that of the normal skin. The application of these novel bilayer wound dressings provided an optimum healing milieu for the proliferating cells and regenerating tissues in pig's skin defect models.
Collapse
Affiliation(s)
- Sha Huang
- Department of Oral Histology and Pathology, College of Stomatology, Xi'an, PR China
| | | | | | | | | |
Collapse
|
47
|
Lu PL, Lai JY, Ma DHK, Hsiue GH. Carbodiimide cross-linked hyaluronic acid hydrogels as cell sheet delivery vehicles: characterization and interaction with corneal endothelial cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2008; 19:1-18. [PMID: 18177550 DOI: 10.1163/156856208783227695] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It was reported that cell-adhesive gelatin discs have been successfully used as delivery vehicles for intraocular grafting of bioengineered corneal endothelial cell sheets. Development of alternative biomaterials to bovine-based gelatin vehicles can potentially eliminate the risk of bovine spongiform encephalopathy. In the present work, to investigate whether it was appropriate for use as cell sheet delivery vehicles, 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) cross-linked hyaluronic acid (HA) hydrogels were studied by determinations of morphological characteristic, mechanical and thermal property, water content, in vitro degradability and cytocompatibility. Glutaraldehyde (GTA) cross-linked HA samples were used for comparison. It was found that HA discs after cross-linking significantly increased its tensile stress but reduced its tensile strain, water uptake and enzymatic degradability. The results of differential scanning calorimetry demonstrated that cross-linking could lead to the alteration of polymer structure. In addition, the EDC-cross-linked HA discs had a smoother surface structure, a faster degradation rate and a relatively lower cytotoxicity as compared to the GTA cross-linked counterparts. It is concluded that EDC can be successfully applied for HA cross-linking to fabricate structurally stable, mechanically reinforced, readily deformable, transparent and cytocompatible HA hydrogel discs with the potential to be applied as delivery vehicles for corneal endothelial cell therapy.
Collapse
Affiliation(s)
- Pei-Lin Lu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | | | | | | |
Collapse
|
48
|
Li X, An HS, Ellman M, Phillips F, Thonar EJ, Park DK, Udayakumar RK, Im HJ. Action of fibroblast growth factor-2 on the intervertebral disc. Arthritis Res Ther 2008; 10:R48. [PMID: 18435858 PMCID: PMC2453768 DOI: 10.1186/ar2407] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 04/15/2008] [Accepted: 04/24/2008] [Indexed: 01/07/2023] Open
Abstract
Introduction Fibroblast growth factor 2 (FGF2) is a growth factor that is immediately released after cartilage injury and plays a pivotal role in cartilage homeostasis. In human adult articular cartilage, FGF2 mediates anti-anabolic and potentially catabolic effects via the suppression of proteoglycan (PG) production along with the upregulation of matrix-degrading enzyme activity. The aim of the present study was to determine the biological effects of FGF2 in spine disc cells and to elucidate the complex biochemical pathways utilized by FGF2 in bovine intervertebral disc (IVD) cells in an attempt to further understand the pathophysiologic processes involved in disc degeneration. Methods We studied the effect of FGF2 on IVD tissue homeostasis by assessing MMP-13 expression (potent matrix-degrading enzyme), PG accumulation, and PG synthesis in the bovine spine IVD, as well as evaluating whether FGF2 counteracts known anabolic factors such as BMP7. To understand the molecular mechanisms by which FGF2 antagonizes BMP7 activity, we also investigated the signaling pathways utilized by FGF2 in bovine disc tissue. Results The primary receptor expressed in bovine nucleus pulposus cartilage is FGFR1, and this receptor is upregulated in degenerative human IVD tissue compared with normal IVD tissue. Stimulation of bovine nucleus pulposus cells cultured in monolayer with FGF2 augmented the production of MMP-13 at the transcriptional and translational level in a dose-dependent manner. Stimulation of bovine nucleus pulposus cells cultured in alginate beads for 21 days with FGF2 resulted in a dose-dependent decrease in PG accumulation, due at least in part to the inhibition of PG synthesis. Further studies demonstrate that FGF2 (10 ng/ml) antagonizes BMP7-mediated acceleration of PG production in bovine nucleus pulposus cells via the upregulation of noggin, an inhibitor of the transforming growth factor beta/bone morphogenetic protein signaling pathway. Chemical inhibitor studies showed that FGF2 utilizes the mitogen-activated protein kinase and NF-κB pathways to upregulate noggin, serving as one potential mechanism for its anti-anabolic effects. Conclusion FGF2 is anti-anabolic in bovine spine disc cells, revealing the potential of FGF2 antagonists as unique biologic treatments for both prevention and reversal of IVD degeneration.
Collapse
Affiliation(s)
- Xin Li
- Department of Biochemistry, Rush University Medical Center, Cohn Research BD 516, 1735 W, Harrison, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Sikareepaisan P, Suksamrarn A, Supaphol P. Electrospun gelatin fiber mats containing a herbal-Centella asiatica-extract and release characteristic of asiaticoside. NANOTECHNOLOGY 2008; 19:015102. [PMID: 21730522 DOI: 10.1088/0957-4484/19/01/015102] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ultra-fine gelatin (type A, porcine skin, ∼180 Bloom) fiber mats containing a methanolic crude extract of Centella asiatica (L.) Urban, a medicinal plant widely known for its traditional medical applications including its wound healing ability, were fabricated, for the first time, from the neat gelatin solution (22% w/v in 70 vol% acetic acid) containing the crude extract (mCA) in various amounts (i.e. 5-30 wt% based on the weight of gelatin powder) by electrospinning. Incorporation of mCA in the neat gelatin solution did not affect both the morphology and the size of the mCA-loaded gelatin fibers, as both of the neat and the mCA-loaded gelatin fibers were smooth and the average diameters of these fibers ranged between 226 and 232 nm. The cross-linked mCA-loaded e-spun gelatin fiber mat from the neat gelatin solution containing 30 wt% of mCA was further investigated for the release characteristic of asiaticoside, identified as the most active compound associated with the healing of wounds, in two different types of releasing medium, i.e. acetate buffer and the buffer containing 10 vol% of methanol, based on the thin-layer chromatography (TLC)-densitometry technique. Based on the unit weight of the actual amount of asiaticoside present in the specimens, the total amount of asiaticoside released from the fiber mat specimens was lower than that from the film counterparts while, based on the unit weight of the specimens, an opposite trend was observed.
Collapse
Affiliation(s)
- Panprung Sikareepaisan
- Technological Center for Electrospun Fibers and The Petroleum and Petrochemical College, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand
| | | | | |
Collapse
|
50
|
Liu H, Fan H, Cui Y, Chen Y, Yao K, Goh JCH. Effects of the controlled-released basic fibroblast growth factor from chitosan-gelatin microspheres on human fibroblasts cultured on a chitosan-gelatin scaffold. Biomacromolecules 2007; 8:1446-55. [PMID: 17375950 DOI: 10.1021/bm061025e] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To provide for prolonged, site-specific delivery of basic fibroblast growth factor (bFGF) to the grafted skin in a convenient manner, biodegradable chitosan-gelatin microspheres containing bFGF were fabricated and incorporated into a porous chitosan-gelatin scaffold in this study. The microspheres are an integral part of the porous three-dimensional scaffolds, and their incorporation does not significantly affect the scaffold porosity and the pore size. The release kinetics of bFGF showed a fast release (23.7%) at the initial phase in the first 2 days, and the ultimate accumulated release was approximately 71.8% by day 14, indicating an extended time course for complete release. Human fibroblasts seeded on chitosan-gelatin scaffolds with and without bFGF-loaded chitosan-gelatin microspheres (bFGF-MS) were incubated in vitro for 2 weeks and showed that, compared to chitosan-gelatin scaffolds alone, the scaffolds with bFGF-MS significantly augmented the proliferation and glycosaminoglycan (GAG) synthesis of human fibroblasts. Moreover, real-time reversed transcribed polymerase chain reaction (RT-PCR) analysis for fibroblast-related extracellular matrix (ECM) gene markers demonstrated that the transcript level of laminin was markedly upregulated by about 9-fold. These results suggest that chitosan-gelatin scaffolds with bFGF-MS possess a promising potential as a tissue engineering scaffold to improve skin regeneration efficacy and to promote vascularization.
Collapse
Affiliation(s)
- Haifeng Liu
- Research Institute of Polymer Materials, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | | | | | |
Collapse
|