1
|
Lee SE, Kim DY, Jeong TS, Park YS. Micro- and Nano-Plastic-Induced Adverse Health Effects on Lungs and Kidneys Linked to Oxidative Stress and Inflammation. Life (Basel) 2025; 15:392. [PMID: 40141737 PMCID: PMC11944196 DOI: 10.3390/life15030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Micro- and nano-plastics (MNPs) are small plastic particles that result from the breakdown of larger plastics. They are widely dispersed in the environment and pose a threat to wildlife and humans. MNPs are present in almost all everyday items, including food, drinks, and household products. Air inhalation can also lead to exposure to MNPs. Research in animals indicates that once MNPs are absorbed, they can spread to various organs, including the liver, spleen, heart, lungs, thymus, reproductive organs, kidneys, and even the brain by crossing the blood-brain barrier. Furthermore, MPs can transport persistent organic pollutants or heavy metals from invertebrates to higher levels in the food chain. When ingested, the additives and monomers that comprise MNPs can disrupt essential biological processes in the human body, thereby leading to disturbances in the endocrine and immune systems. During the 2019 coronavirus (COVID-19) pandemic, there was a significant increase in the global use of polypropylene-based face masks, leading to insufficient waste management and exacerbating plastic pollution. This review examines the existing research on the impact of MNP inhalation on human lung and kidney health based on in vitro and in vivo studies. Over the past decades, a wide range of studies suggest that MNPs can impact both lung and kidney tissues under both healthy and diseased conditions. Therefore, this review emphasizes the need for additional studies employing multi-approach analyses of various associated biomarkers and mechanisms to gain a comprehensive and precise understanding of the impact of MNPs on human health.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Microbiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Do Yun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Taek Seung Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yong Seek Park
- Department of Microbiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
2
|
Zhang X, Zhang L, Tian J, Li Y, Wu M, Zhang L, Qin X, Gong L. The application and prospects of drug delivery systems in idiopathic pulmonary fibrosis. BIOMATERIALS ADVANCES 2025; 168:214123. [PMID: 39615374 DOI: 10.1016/j.bioadv.2024.214123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease primarily affecting elderly individuals aged >65 years and has a poor prognosis. No effective treatment is currently available for IPF. The two antipulmonary fibrosis drugs nintedanib and pirfenidone approved by the FDA in the United States have somewhat decelerated IPF progression. However, the side effects of these drugs can lead to poor patient tolerance and compliance with the medications. Researchers have recently developed various methods for IPF treatment, such as gene silencing and pathway inhibitors, which hold great promise in IPF treatment. Nevertheless, the nonselectivity and nonspecificity of drugs often affect their efficacies. Drug delivery systems (DDS) are crucial for delivering drugs to specific target tissues or cells, thereby minimizing potential side effects, enhancing drug bioavailability, and reducing lung deposition. This review comprehensively summarizes the current state of DDS and various delivery strategies for IPF treatment (e.g., nano-delivery, hydrogel delivery, and biological carrier delivery) to completely expound the delivery mechanisms of different drug delivery carriers. Subsequently, the advantages and disadvantages of different DDS are fully discussed. Finally, the challenges and difficulties associated with the use of different DDS are addressed so as to accelerate their rapid clinical translation.
Collapse
Affiliation(s)
- Xi Zhang
- School of Biological Engineering, Zunyi Medical University, Guangdong 519000, China; Department of Clinical Medicine, The Fifth Clinical Institution, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Jiahua Tian
- Department of Clinical Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yunfei Li
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Manli Wu
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Longju Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Xiaofei Qin
- School of Biological Engineering, Zunyi Medical University, Guangdong 519000, China.
| | - Ling Gong
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China.
| |
Collapse
|
3
|
Yoon HY, Kim H, Bae Y, Song JW. Pirfenidone and risk of lung cancer development in idiopathic pulmonary fibrosis: a nationwide population-based study. Eur Respir J 2025; 65:2401484. [PMID: 39510556 DOI: 10.1183/13993003.01484-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) carries a high risk of lung cancer, but the effect of pirfenidone on lung cancer development remains uncertain. We investigated the association between pirfenidone use and lung cancer development in patients with IPF. METHODS We included 9938 patients with IPF from the Korean national claims database. Propensity score analysis with inverse probability of treatment weighting (IPTW) and landmark analyses were employed to evaluate lung cancer occurrence according to pirfenidone use. The association was evaluated using Cox regression models adjusted for clinical and socioeconomic variables. A single-centre IPF clinical cohort (n=941) was used for validating the findings. RESULTS The mean patient age was 69.4 years, 73.7% were men and 32.1% received pirfenidone. Lung cancer developed in 766 patients with IPF (7.7%; 21.9 cases per 1000 person-years) during a median follow-up of 3.0 years. After IPTW, the pirfenidone group showed lower incidence (10.4 versus 27.9 cases per 1000 person-years) than the no pirfenidone group. Landmark analysis at 6 months after IPF diagnosis also showed lower incidence of lung cancer in the pirfenidone group than in the no pirfenidone group. Pirfenidone use was independently associated with a reduced lung cancer risk (weighted adjusted hazard ratio (HR) 0.347, 95% CI 0.258-0.466). A clinical cohort showed similar association (weighted adjusted HR 0.716, 95% CI 0.517-0.991). The association persisted across subgroups defined by age or sex. CONCLUSION Pirfenidone use may be associated with a reduced lung cancer risk in patients with IPF.
Collapse
Affiliation(s)
- Hee-Young Yoon
- Division of Allergy and Respiratory Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Hoseob Kim
- Department of Data Science, Hanmi Pharmaceutical Co., Ltd, Seoul, Republic of Korea
| | - Yoonjong Bae
- Department of Data Science, Hanmi Pharmaceutical Co., Ltd, Seoul, Republic of Korea
| | - Jin Woo Song
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Singh K, Witek M, Brahmbhatt J, McEntire J, Thirunavukkarasu K, Oladipupo SS. Stage-Dependent Fibrotic Gene Profiling of WISP1-Mediated Fibrogenesis in Human Fibroblasts. Cells 2024; 13:2005. [PMID: 39682753 PMCID: PMC11640464 DOI: 10.3390/cells13232005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common interstitial lung disease with unknown etiology, characterized by chronic inflammation and tissue scarring. Although, Pirfenidone and Nintedanib slow the disease progression, no currently available drugs or therapeutic interventions address the underlying cause, highlighting the unmet medical need. A matricellular protein, Wnt-1-induced secreted protein 1 (WISP1), also referred to as CCN4 (cellular communication network factor 4), is a secreted multi-modular protein implicated in multi-organ fibrosis. Although the precise mechanism of WISP1-mediated fibrosis remains unclear, emerging evidence indicates that WISP1 is profibrotic in nature. While WISP1-targeting therapy is applied in the clinic for fibrosis, detailed interrogation of WISP1-mediated fibrogenic molecular and biological pathways is lacking. Here, for the first time, using NanoString® technology, we identified a novel WISP1-associated profibrotic gene signature and molecular pathways potentially involved in the initiation and progression of fibrosis in primary human dermal and lung fibroblasts from both healthy individuals and IPF patients. Our data demonstrate that WISP1 is upregulated in IPF-lung fibroblasts as compared to healthy control. Furthermore, our results confirm that WISP1 is downstream of the transforming growth factor-β (TGFβ), and it induces fibroblast cell proliferation. Additionally, WISP1 induced IL6 and CCL2 in fibroblasts. We also developed a novel, combined TGFβ and WISP1 in vitro system to demonstrate a role for WISP1 in the progression of fibrosis. Overall, our findings uncover not only similarities but also striking differences in the molecular profile of WISP1 in human fibroblasts, both during the initiation and progression phases, as well as in disease-specific context.
Collapse
Affiliation(s)
- Kirti Singh
- Biotherapeutics Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA; (K.S.); (J.M.)
| | - Marta Witek
- Protein Optimization, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA; (M.W.); (J.B.)
| | - Jaladhi Brahmbhatt
- Protein Optimization, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA; (M.W.); (J.B.)
| | - Jacquelyn McEntire
- Biotherapeutics Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA; (K.S.); (J.M.)
| | - Kannan Thirunavukkarasu
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA;
| | - Sunday S. Oladipupo
- Biotherapeutics Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA; (K.S.); (J.M.)
| |
Collapse
|
5
|
Link PA, Meridew JA, Caporarello N, Gao AY, Peters V, Rojas M, Tschumperlin DJ. A Redox-Shifted Fibroblast Subpopulation Emerges in the Fibrotic Lung. Am J Respir Cell Mol Biol 2024; 71:718-729. [PMID: 38959411 PMCID: PMC11622638 DOI: 10.1165/rcmb.2023-0346oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 07/03/2024] [Indexed: 07/05/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aggressive and, thus far, incurable disease characterized by aberrant fibroblast-mediated extracellular matrix deposition. Our understanding of the disease etiology is incomplete; however, there is consensus that a reduction-oxidation (redox) imbalance plays a role. In this study, we use the autofluorescent properties of two redox molecules, NAD(P)H and FAD, to quantify changes in their relative abundance in living lung tissue of mice with experimental lung fibrosis and in freshly isolated cells from mouse lungs and humans with IPF. Our results identify cell population-specific intracellular redox changes in the lungs in experimental and human fibrosis. We focus particularly on redox changes within collagen-producing cells, where we identified a bimodal distribution of NAD(P)H concentrations, establishing NAD(P)Hhigh and NAD(P)Hlow subpopulations. NAD(P)Hhigh fibroblasts exhibited elevated profibrotic gene expression and decreased collagenolytic protease activity relative to NAD(P)Hlow fibroblasts. The NAD(P)Hhigh population was present in healthy lungs but expanded with time after bleomycin injury, suggesting a potential role in fibrosis progression. We identified a similar increased abundance of NAD(P)Hhigh cells in freshly dissociated lungs of subjects with IPF relative to control subjects, as well as similar reductions in collagenolytic activity in this cell population. These data highlight the complexity of redox state changes in experimental and human pulmonary fibrosis and the need for selective approaches to restore redox imbalances in the fibrotic lung.
Collapse
Affiliation(s)
- Patrick A. Link
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Jeffrey A. Meridew
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | | | - Ashley Y. Gao
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Victor Peters
- Department of Internal Medicine, Ohio State University, Columbus, Ohio
| | - Mauricio Rojas
- Department of Internal Medicine, Ohio State University, Columbus, Ohio
| | | |
Collapse
|
6
|
Ahmad S, Nasser W, Ahmad A. Epigenetic mechanisms of alveolar macrophage activation in chemical-induced acute lung injury. Front Immunol 2024; 15:1488913. [PMID: 39582870 PMCID: PMC11581858 DOI: 10.3389/fimmu.2024.1488913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024] Open
Abstract
Airways, alveoli and the pulmonary tissues are the most vulnerable to the external environment including occasional deliberate or accidental exposure to highly toxic chemical gases. However, there are many effective protective mechanisms that maintain the integrity of the pulmonary tissues and preserve lung function. Alveolar macrophages form the first line of defense against any pathogen or chemical/reactant that crosses the airway mucociliary barrier and reaches the alveolar region. Resident alveolar macrophages are activated or circulating monocytes infiltrate the airspace to contribute towards inflammatory or reparative responses. Studies on response of alveolar macrophages to noxious stimuli are rapidly emerging and alveolar macrophage are also being sought as therapeutic target. Here such studies have been reviewed and put together for a better understanding of the role pulmonary macrophages in general and alveolar macrophage in particular play in the pathogenesis of disease caused by chemical induced acute lung injury.
Collapse
Affiliation(s)
- Shama Ahmad
- Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | |
Collapse
|
7
|
Nájera-Martínez M, Lara-Vega I, Avilez-Alvarado J, Pagadala NS, Dzul-Caamal R, Domínguez-López ML, Tuszynski J, Vega-López A. The Generation of ROS by Exposure to Trihalomethanes Promotes the IκBα/NF-κB/p65 Complex Dissociation in Human Lung Fibroblast. Biomedicines 2024; 12:2399. [PMID: 39457711 PMCID: PMC11505202 DOI: 10.3390/biomedicines12102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Disinfection by-products used to obtain drinking water, including halomethanes (HMs) such as CH2Cl2, CHCl3, and BrCHCl2, induce cytotoxicity and hyperproliferation in human lung fibroblasts (MRC-5). Enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) modulate these damages through their biotransformation processes, potentially generating toxic metabolites. However, the role of the oxidative stress response in cellular hyperproliferation, modulated by nuclear factor-kappa B (NF-κB), remains unclear. Methods: In this study, MRC-5 cells were treated with these compounds to evaluate reactive oxygen species (ROS) production, lipid peroxidation, phospho-NF-κB/p65 (Ser536) levels, and the activities of SOD, CAT, and GPx. Additionally, the interactions between HMs and ROS with the IκBα/NF-κB/p65 complex were analyzed using molecular docking. Results: Correlation analysis among biomarkers revealed positive relationships between pro-oxidant damage and antioxidant responses, particularly in cells treated with CH2Cl2 and BrCHCl2. Conversely, negative relationships were observed between ROS levels and NF-κB/p65 levels in cells treated with CH2Cl2 and CHCl3. The estimated relative free energy of binding using thermodynamic integration with the p65 subunit of NF-κB was -3.3 kcal/mol for BrCHCl2, -3.5 kcal/mol for both CHCl3 and O2•, and -3.6 kcal/mol for H2O2. Conclusions: Chloride and bromide atoms were found in close contact with IPT domain residues, particularly in the RHD region involved in DNA binding. Ser281 is located within this domain, facilitating the phosphorylation of this protein. Similarly, both ROS interacted with the IPT domain in the RHD region, with H2O2 forming a side-chain oxygen interaction with Leu280 adjacent to the phosphorylation site of p65. However, the negative correlation between ROS and phospho-NF-κB/p65 suggests that steric hindrance by ROS on the C-terminal domain of NF-κB/p65 may play a role in the antioxidant response.
Collapse
Affiliation(s)
- Minerva Nájera-Martínez
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City 07738, Mexico; (M.N.-M.); (I.L.-V.)
| | - Israel Lara-Vega
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City 07738, Mexico; (M.N.-M.); (I.L.-V.)
| | - Jhonatan Avilez-Alvarado
- Laboratorio de Visión Artificial, Unidad Culhuacán, Escuela Superior de Ingeniería Mecánica y Eléctrica, Instituto Politécnico Nacional, Av. Santa Ana 1000, San Francisco Culhuacán CTM V, Mexico City 04440, Mexico;
| | | | - Ricardo Dzul-Caamal
- Instituto EPOMEX, Universidad Autónoma de Campeche, Av. Héroe de Nacozari No. 480, Campeche 24070, Mexico;
| | - María Lilia Domínguez-López
- Laboratorio de Inmunoquímica I, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala s/n, Casco de Santo Tomás, Mexico City 11340, Mexico;
| | - Jack Tuszynski
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Armando Vega-López
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City 07738, Mexico; (M.N.-M.); (I.L.-V.)
| |
Collapse
|
8
|
Lim EY, Kim GD. Particulate Matter-Induced Emerging Health Effects Associated with Oxidative Stress and Inflammation. Antioxidants (Basel) 2024; 13:1256. [PMID: 39456509 PMCID: PMC11505051 DOI: 10.3390/antiox13101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Environmental pollution continues to increase with industrial development and has become a threat to human health. Atmospheric particulate matter (PM) was designated as a Group 1 carcinogen by the International Agency for Research on Cancer in 2013 and is an emerging global environmental risk factor that is a major cause of death related to cardiovascular and respiratory diseases. PM is a complex composed of highly reactive organic matter, chemicals, and metal components, which mainly cause excessive production of reactive oxygen species (ROS) that can lead to DNA and cell damage, endoplasmic reticulum stress, inflammatory responses, atherosclerosis, and airway remodeling, contributing to an increased susceptibility to and the exacerbation of various diseases and infections. PM has various effects on human health depending on the particle size, physical and chemical characteristics, source, and exposure period. PM smaller than 5 μm can penetrate and accumulate in the alveoli and circulatory system, causing harmful effects on the respiratory system, cardiovascular system, skin, and brain. In this review, we describe the relationship and mechanism of ROS-mediated cell damage, oxidative stress, and inflammatory responses caused by PM and the health effects on major organs, as well as comprehensively discuss the harmfulness of PM.
Collapse
Affiliation(s)
| | - Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea;
| |
Collapse
|
9
|
Noh W, Baik I. Associations of Serum Vitamin A and E Concentrations with Pulmonary Function Parameters and Chronic Obstructive Pulmonary Disease. Nutrients 2024; 16:3197. [PMID: 39339797 PMCID: PMC11434823 DOI: 10.3390/nu16183197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Oxidative stress, an imbalance between oxidants and antioxidants, is known to affect pulmonary function (PF), thereby leading to the development of chronic obstructive pulmonary disease (COPD). However, data on the associations of serum vitamin A and E concentrations with PF parameters and COPD are inconsistent. The present cross-sectional study aimed to investigate these associations, considering inflammatory status. PARTICIPANTS/METHODS This study included 2005 male and female adults aged ≥40 years who had participated in a population-based national survey. Spirometry without a bronchodilator was conducted to yield PF parameters, such as forced expiratory volume in one second (FEV1), forced vital capacity (FVC), and the FEV1/FVC ratio, which were used to define COPD. Serum vitamin A (retinol) and E (α-tocopherol) concentrations were assayed. Multivariable regression analysis was performed after adjusting for potential confounding variables. RESULTS Serum vitamin A concentration was positively associated with FEV1 (p for trend < 0.01) among all participants. In addition, the odds ratio (95% confidence interval) of the highest serum vitamin A concentration tertile for the prevalence of COPD, which was defined by the FEV1/FVC ratio < 0.7, was 0.53 (0.31, 0.90) compared with that of the lowest tertile (p for trend < 0.05). Analysis stratified by a cutoff point of 1 mg/L serum high-sensitivity C-reactive protein (hs-CRP) revealed that such associations with FEV1 and COPD prevalence were stronger in participants with lower hs-CRP levels (p for trend < 0.05). In contrast, serum vitamin E concentration was associated with neither PF parameters nor COPD prevalence. CONCLUSIONS These findings suggest that serum vitamin A concentration may be important in preventing the progressive decline in PF parameters that results in COPD. Further epidemiological investigations are warranted to evaluate the causal associations of antioxidant vitamin status with PF parameters and COPD.
Collapse
Affiliation(s)
- Wonjun Noh
- Department of Foods and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Inkyung Baik
- Department of Foods and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
10
|
Ma Z, Qiu L, Sun J, Wu Z, Liang S, Zhao Y, Yang J, Yue S, Hu M, Li Y. A novel pulmonary fibrosis NOD/SCID murine model with natural aging. BMC Pulm Med 2024; 24:457. [PMID: 39285370 PMCID: PMC11406766 DOI: 10.1186/s12890-024-03268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is an age-related disease severely affecting life quality with its prevalence rising as the population ages, yet there is still no effective treatment available. Cell therapy has emerged as a promising option for IPF, however, the absence of mature and stable animal models for IPF immunodeficiency hampers preclinical evaluations of human cell therapies, primarily due to rapid immune clearance of administered cells. This study aims to establish a reliable pulmonary fibrosis (PF) model in immunodeficient mice that supports autologous cell therapy and to investigate underlying mechanism. METHODS We utilized thirty 5-week-old male NOD/SCID mice, categorizing them into three age groups: 12weeks, 32 weeks and 43 weeks, with 6 mice euthanized randomly from each cohort for lung tissue analysis. We assessed fibrosis using HE staining, Masson's trichrome staining, α-SMA immunohistochemistry and hydroxyproline content measurement. Further, β-galactosidase staining and gene expression analysis of MMP9, TGF-β1, TNF-α, IL-1β, IL-6, IL-8, SOD1, SOD2, NRF2, SIRT1, and SIRT3 were performed. ELISA was employed to quantify protein levels of TNF-α, TGF-β1, and IL-8. RESULTS When comparing lung tissues from 32-week-old and 43-week-old mice to those from 12-week-old mice, we noted a marked increase in inflammatory infiltration, fibrosis severity, and hydroxyproline content, alongside elevated expression levels of α-SMA and MMP9. Notably, the degree of fibrosis intensified with age. Additionally, β-galactosidase staining became more pronounced in older mice. Quantitative PCR analyses revealed age-related, increases in the expression of senescence markers (GLB1, P16, P21), and proinflammatory genes (TGF-β1, TNF-α, IL-1β, IL-6, and IL-8). Conversely, the expression of anti-oxidative stress-related genes (SOD1, SOD2, NRF2, SIRT1, and SIRT3) declined, showing statistically significant differences (*P < 0.05, **P < 0.01, ***P < 0.001). ELISA results corroborated these findings, indicating a progressive rise in the protein levels of TGF-β1, TNF-α, and IL-8 as the mice aged. CONCLUSIONS The findings suggest that NOD/SCID mice aged 32 weeks and 43 weeks effectively model pulmonary fibrosis in an elderly context, with the disease pathogenesis likely driven by age-associated inflammation and oxidative stress.
Collapse
Affiliation(s)
- Zhaoxia Ma
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
| | - Lihua Qiu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
| | - Jianxiu Sun
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd, Kunming, Yunnan, 650101, China
| | - Zhen Wu
- Shenzhen Zhendejici Pharmaceutical Research and Development Co., Ltd, Shenzhen, 518048, Guangdong, China
| | - Shu Liang
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
| | - Yunhui Zhao
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd, Kunming, Yunnan, 650101, China
| | - Jinmei Yang
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd, Kunming, Yunnan, 650101, China
| | - Shijun Yue
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
| | - Min Hu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China.
| | - Yanjiao Li
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China.
| |
Collapse
|
11
|
Kumari S, Singh P, Singh R. Repeated Silica exposures lead to Silicosis severity via PINK1/PARKIN mediated mitochondrial dysfunction in mice model. Cell Signal 2024; 121:111272. [PMID: 38944258 DOI: 10.1016/j.cellsig.2024.111272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND AND OBJECTIVES Silicosis, one of the occupational health illnesses is caused by inhalation of crystalline silica. Deposition of extracellular matrix and fibroblast proliferation in lungs are linked to silicosis development. Mitochondrial dysfunction plays critical role in some diseases, but how these processes progress and regulated in silicosis, remains limited. Detailed study of silica induced pulmonary fibrosis in mouse model, its progression and severity may be helpful in designing future therapeutic strategies. METHODS In present study, mice model of silicosis has been developed after repeated silica exposures which may closely resemble clinical symptoms of silicosis in human. In addition to efficiently mimicking the acute/chronic transformation processes of silicosis, this is practical and efficient in terms of time and output, which avoids mechanical injury to the upper respiratory tract due to surgical interventions. Sonicated sterile silica suspension (120 mg/kg) was administered through intranasal route thrice a week at regular intervals (21, 28 and 35 days). RESULTS Presence of minute to larger silicotic nodules in H&E-stained lung sections were observed in all silica induced model groups. Enhanced ECM deposition was noted in MT stained lung sections of silica exposure groups as compared to control which were confirmed by significantly higher MMP9 expression levels and hydroxyproline content in silica 35 days group. Increase in Reactive oxygen species (ROS), inflammatory cell recruitment mainly, neutrophils and macrophage were observed in all three silica exposure groups. Transmission electron microscopic analysis has confirmed presence of many aberrant shaped mitochondria (swollen, round shape) in 35 days model where autophagosomes were minimum. Western blot analysis of mitophagy and autophagy markers such as Pink1, Parkin, Cytochrome c, SQSTM1/p62, the ratio of light chain LC3B II/LC3B I was found higher in 21 and 28 days which were significantly reduced in 35 days silica model. CONCLUSIONS Higher MMP9 activity and MMP9 /TIMP1 ratio demonstrate excessive extracellular matrix damage and deposition in 35 days model. Significantly reduced expressions of autophagy and mitophagy markers have also confirmed progression in fibrosis severity and its association with repeated silica exposures in 35 days model group.
Collapse
Affiliation(s)
- Sneha Kumari
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Payal Singh
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Rashmi Singh
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
12
|
Du X, Ma Z, Xing Y, Feng L, Li Y, Dong C, Ma X, Huo R, Tian X. Identification and validation of potential biomarkers related to oxidative stress in idiopathic pulmonary fibrosis. Immunobiology 2024; 229:152791. [PMID: 39180853 DOI: 10.1016/j.imbio.2024.152791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 08/27/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic interstitial pneumonia with a poor prognosis and a pathogenesis that has not been fully elucidated. Oxidative stress is closely associated with IPF. In this research, we aimed to identify reliable diagnostic biomarkers associated with the oxidative stress through bioinformatics techniques. The gene expression profile data from the GSE70866 dataset was retrieved from the gene expression omnibus (GEO) database. We extracted 437 oxidative stress-related genes (ORGs) from gene set enrichment analysis (GSEA). The GSE141939 dataset was used for single-cell RNA-seq analysis to identify the expression of diagnostic genes in different cell clusters. A total of 10 differentially expressed oxidative stress-related genes (DE-ORGs) were screened. Subsequently, SOD3, CD36, ACOX2, RBM11, CYP1B1, SNCA, and MPO from the 10 DE-ORGs were identified as diagnostic genes based on random forest algorithm with randomized least absolute shrinkage and selection operator (LASSO) regression. A nomogram was constructed to evaluate the risk of disease. The decision curve analysis (DCA) and clinical impact curves indicated that the nomogram based on these seven biomarkers had extraordinary predictive power. Immune cell infiltration analysis results revealed that DE-ORGs were closely related to various immune cells, especially CYP1B1 was in positive correlation with monocytes and negative correlation with macrophages M1. Single-cell RNA-seq analysis showed that CYP1B1 was mainly associated with macrophages, and SNCA was mainly associated with basal cells. CYP1B1 and SNCA were diagnostic genes associated with oxidative stress in IPF.
Collapse
Affiliation(s)
- Xianglin Du
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhen Ma
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanqing Xing
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Liting Feng
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yupeng Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chuanchuan Dong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinkai Ma
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rujie Huo
- Department of Respiratory Medicine, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi, China
| | - Xinrui Tian
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
13
|
Saha P, Talwar P. Idiopathic pulmonary fibrosis (IPF): disease pathophysiology, targets, and potential therapeutic interventions. Mol Cell Biochem 2024; 479:2181-2194. [PMID: 37707699 DOI: 10.1007/s11010-023-04845-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, degenerative pulmonary condition. Transforming growth factor (TGF)-β, platelet-derived growth factor (PDGF), and tumor necrosis factor-α (TNF-α) are the major modulators of IPF that mediate myofibroblast differentiation and promote fibrotic remodeling of the lung. Cigarette smoke, asbestos fiber, drugs, and radiation are known to favor fibrotic remodeling of the lungs. Oxidative stress in the endoplasmic reticulum (ER) also leads to protein misfolding and promotes ER stress, which is predominant in IPF. This phenomenon further results in excess reactive oxygen species (ROS) aggregation, increasing oxidative stress. During protein folding in the ER, thiol groups on the cysteine residue are oxidized and disulfide bonds are formed, which leads to the production of hydrogen peroxide (H2O2) as a by-product. With the accumulation of misfolded proteins in the ER, multiple signaling cascades are initiated by the cell, collectively termed as the unfolded protein response (UPR). UPR also induces ROS production within the ER and mitochondria and promotes both pro-apoptotic and pro-survival pathways. The prevalence of post-COVID-19 pulmonary fibrosis (PCPF) is 44.9%, along with an alarming increase in "Coronavirus Disease 2019" (COVID-19) comorbidities. Fibrotic airway remodeling and declined lung function are the common endpoints of SARS-CoV-2 infection and IPF. Flavonoids are available in our dietary supplements and exhibit medicinal properties. Apigenin is a flavonoid found in plants, including chamomile, thyme, parsley, garlic, guava, and broccoli, and regulates several cellular functions, such as oxidative stress, ER stress, and fibrotic responses. In this study, we focus on the IPF and COVID-19 pathogenesis and the potential role of Apigenin in addressing disease progression.
Collapse
Affiliation(s)
- Pritha Saha
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
- Apoptosis and Cell Survival Research Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
14
|
Li C, An Q, Jin Y, Jiang Z, Li M, Wu X, Dang H. Identification of oxidative stress-related diagnostic markers and immune infiltration features for idiopathic pulmonary fibrosis by bibliometrics and bioinformatics. Front Med (Lausanne) 2024; 11:1356825. [PMID: 39165378 PMCID: PMC11333355 DOI: 10.3389/fmed.2024.1356825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) garners considerable attention due to its high fatality rate and profound impact on quality of life. Our study conducts a comprehensive literature review on IPF using bibliometric analysis to explore existing hot research topics, and identifies novel diagnostic and therapeutic targets for IPF using bioinformatics analysis. Publications related to IPF from 2013 to 2023 were searched on the Web of Science Core Collection (WoSCC) database. Data analysis and visualization were conducted using CiteSpace and VOSviewer software primarily. The gene expression profiles GSE24206 and GSE53845 were employed as the training dataset. The GSE110147 dataset was employed as the validation dataset. We identified differentially expressed genes (DEGs) and differentially expressed genes related to oxidative stress (DEOSGs) between IPF and normal samples. Then, we conducted Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The hub genes were screened by protein-protein interaction (PPI) networks and machine learning algorithms. The CIBERSORT was used to analyze the immune infiltration of 22 kinds of immune cells. Finally, we conducted the expression and validation of hub genes. The diagnostic efficacy of hub genes was evaluated by employing Receiver Operating Characteristic (ROC) curves and the associations between hub genes and immune cells were analyzed. A total of 6,500 articles were identified, and the annual number of articles exhibited an upward trend. The United States emerged as the leading contributor in terms of publication count, institutional affiliations, highly cited articles, and prolific authorship. According to co-occurrence analysis, oxidative stress and inflammation are hot topics in IPF research. A total of 1,140 DEGs were identified, and 72 genes were classified as DEOSGs. By employing PPI network analysis and machine learning algorithms, PON2 and TLR4 were identified as hub genes. A total of 10 immune cells exhibited significant differences between IPF and normal samples. PON2 and TLR4, as oxidative stress-related genes, not only exhibit high diagnostic efficacy but also show close associations with immune cells. In summary, our study highlights oxidative stress and inflammation are hot topics in IPF research. Oxidative stress and immune cells play a vital role in the pathogenesis of IPF. Our findings suggest the potential of PON2 and TLR4 as novel diagnostic and therapeutic targets for IPF.
Collapse
Affiliation(s)
- Chang Li
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qing An
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yi Jin
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zefei Jiang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meihe Li
- Department of Renal Transplantation, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoling Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huimin Dang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
15
|
Li Z, Yang Y, Gao F. Monomeric compounds from natural products for the treatment of pulmonary fibrosis: a review. Inflammopharmacology 2024; 32:2203-2217. [PMID: 38724690 DOI: 10.1007/s10787-024-01485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/23/2024] [Indexed: 08/06/2024]
Abstract
Pulmonary fibrosis (PF) is the end stage of lung injury and chronic lung diseases that results in diminished lung function, respiratory failure, and ultimately mortality. Despite extensive research, the pathogenesis of this disease remains elusive, and effective therapeutic options are currently limited, posing a significant clinical challenge. In addition, research on traditional Chinese medicine and naturopathic medicine is hampered by several complications due to complex composition and lack of reference compounds. Natural product monomers, possessing diverse biological activities and excellent safety profiles, have emerged as potential candidates for preventing and treating PF. The effective anti-PF ingredients identified can be generally divided into flavonoids, saponins, polysaccharides, and alkaloids. Specifically, these monomeric compounds can attenuate inflammatory response, oxidative stress, and other physiopathological processes of the lung through many signaling pathways. They also improve pulmonary factors. Additionally, they ameliorate epithelial-mesenchymal transition (EMT) and fibroblast-myofibroblast transdifferentiation (FMT) by regulating multiple signal amplifiers in the lungs, thereby mitigating PF. This review highlights the significant role of monomer compounds derived from natural products in reducing inflammation, oxidative stress, and inhibiting EMT process. The article provides comprehensive information and serves as a solid foundation for further exploration of new strategies to harness the potential of botanicals in the treatment of PF.
Collapse
Affiliation(s)
- Zhuqing Li
- University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China
| | - Yanyong Yang
- Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, China.
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, People's Republic of China.
| | - Fu Gao
- University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.
- Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, China.
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
16
|
Higashi Y, Nishida C, Tomonaga T, Izumi H, Kawai N, Morimoto T, Hara K, Yamasaki K, Moriyama A, Takeshita JI, Wang KY, Higashi H, Ono R, Sumiya K, Sakurai K, Yatera K, Morimoto Y. Intratracheal instillation of polyacrylic acid induced pulmonary fibrosis with elevated transforming growth factor-β1 and connective tissue growth factor. Toxicology 2024; 506:153845. [PMID: 38801935 DOI: 10.1016/j.tox.2024.153845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
We investigated the intratracheal instillation of Polyacrylic acid (PAA) in rats to determine if it would cause pulmonary disorders, and to see what factors would be associated with the pathological changes. Male F344 rats were intratracheally instilled with low (0.2 mg/rat) and high (1.0 mg/rat) doses of PAA. They were sacrificed at 3 days, 1 week, 1 month, 3 months, and 6 months after PAA exposure to examine inflammatory and fibrotic changes in the lungs. There was a persistent increase in the neutrophil count, lactate dehydrogenase (LDH) levels, cytokine-induced neutrophil chemoattractant (CINC) values in bronchoalveolar lavage fluid (BALF), and heme oxygenase-1 (HO-1) in lung tissue. Transforming growth factor-beta 1 (TGF-β1), a fibrotic factor, showed a sustained increase in the BALF until 6 months after intratracheal instillation, and connective tissue growth factor (CTGF) in lung tissue was elevated at 3 days after exposure. Histopathological findings in the lung tissue showed persistent (more than one month) inflammation, fibrotic changes, and epithelial-mesenchymal transition (EMT) changes. There was also a strong correlation between TGF-β1 in the BALF and, especially, in the fibrosis score of histopathological specimens. Intratracheal instillation of PAA induced persistent neutrophilic inflammation, fibrosis, and EMT in the rats' lungs, and TGF-β1 and CTGF appeared to be associated with the persistent fibrosis.
Collapse
Affiliation(s)
- Yasuyuki Higashi
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Chinatsu Nishida
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Taisuke Tomonaga
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Naoki Kawai
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Toshiki Morimoto
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Kanako Hara
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Kei Yamasaki
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Akihiro Moriyama
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Jun-Ichi Takeshita
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Ke-Yong Wang
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Hidenori Higashi
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Ryohei Ono
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuki Sumiya
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Yasuo Morimoto
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan.
| |
Collapse
|
17
|
Dawood SA, Asseri AA, Shati AA, Eid RA, El-Gamal B, Zaki MSA. L-Carnitine Ameliorates Amiodarone-Mediated Alveolar Damage: Oxidative Stress Parameters, Inflammatory Markers, Histological and Ultrastructural Insights. Pharmaceuticals (Basel) 2024; 17:1004. [PMID: 39204109 PMCID: PMC11357083 DOI: 10.3390/ph17081004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
The aim of this study was to assess L-carnitine's effects on adult male rats' lung damage brought on by amiodarone, which is a potent antiarrhythmic with limited clinical efficacy due to potentially life-threatening amiodarone-induced lung damage. Because of the resemblance among the structural abnormalities in rats' lungs that follows amiodarone medication and pulmonary toxicity in human beings, this animal model may be an appropriate example for this disease entity. Amiodarone produced pulmonary toxicity in twenty-four healthy male albino rats (150-180 g) over a period of 6 weeks. Four groups of six rats each were established: control, sham, amiodarone, and L-carnitine plus amiodarone. Histological, ultrastructural, oxidative stress, and inflammatory markers were determined during a 6-week exposure experiment. Amiodarone-induced lung damage in rats may be brought on due to oxidative stress producing significant pulmonary cytotoxicity, as evidenced by the disruption of the mitochondrial structure, severe fibrosis, and inflammatory response of the lung tissue. Lungs already exposed to such harmful effects may be partially protected by the antioxidant L-carnitine. Biochemical markers of lung damage brought on by amiodarone include lung tissue levels of the enzyme's catalase, superoxide dismutase, and reduced glutathione. The levels of lipid peroxides in lung tissue measured as malondialdehyde increased significantly upon exposure to amiodarone. In addition, the levels of tumor necrosis factor alpha were significantly elevated in response to amiodarone. The effect of L-carnitine on amiodarone-induced pulmonary toxicity was studied in rats. It is interesting to note that the intake of L-carnitine in rats treated with amiodarone partially restored the biochemical and histopathological alterations brought on by amiodarone to their original levels. Tumor necrosis factor alpha levels were significantly reduced upon L-carnitine exposure. These results suggest that L-carnitine can be used to treat amiodarone-induced pulmonary dysfunction.
Collapse
Affiliation(s)
- Samy A. Dawood
- Department of Child Health, College of Medicine, King Khalid University, P.O. Box 62529, Abha 12573, Saudi Arabia; (S.A.D.); (A.A.A.); (A.A.S.)
| | - Ali Alsuheel Asseri
- Department of Child Health, College of Medicine, King Khalid University, P.O. Box 62529, Abha 12573, Saudi Arabia; (S.A.D.); (A.A.A.); (A.A.S.)
| | - Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, P.O. Box 62529, Abha 12573, Saudi Arabia; (S.A.D.); (A.A.A.); (A.A.S.)
| | - Refaat A. Eid
- Department of Pathology, College of Medicine, King Khalid University, P.O. Box 62529, Abha 12573, Saudi Arabia
| | - Basiouny El-Gamal
- Clinical Biochemistry Department, College of Medicine, King Khalid University, P.O. Box 62529, Abha 12573, Saudi Arabia;
| | - Mohamed Samir A. Zaki
- Department of Anatomy, College of Medicine, King Khalid University, P.O. Box 62529, Abha 12573, Saudi Arabia;
| |
Collapse
|
18
|
Lee S, Lee CH, Lee J, Jeong Y, Park JH, Nam IJ, Lee DS, Lee HM, Ahn SY, Kim E, Jeong S, Yu SS, Lee W. Botanical formulation HX110B ameliorates PPE-induced emphysema in mice via regulation of PPAR/RXR signaling pathway. PLoS One 2024; 19:e0305911. [PMID: 39052574 PMCID: PMC11271920 DOI: 10.1371/journal.pone.0305911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD), an inflammatory lung disease, causes approximately 3 million deaths each year; however, its pathological mechanisms are not fully understood. In this study, we examined whether HX110B, a mixture of Taraxacum officinale, Dioscorea batatas, and Schizonepeta tenuifolia extracts, could suppress porcine pancreatic elastase (PPE)-induced emphysema in mice and its mechanism of action. The therapeutic efficacy of HX110B was tested using a PPE-induced emphysema mouse model and human bronchial epithelial cell line BEAS-2B. In vivo data showed that the alveolar wall and air space expansion damaged by PPE were improved by HX110B administration. HX110B also effectively suppresses the expression levels of pro-inflammatory mediators including IL-6, IL-1β, MIP-2, and iNOS, while stimulating the expression of lung protective factors such as IL-10, CC16, SP-D, and sRAGE. Moreover, HX110B improved the impaired OXPHOS subunit gene expression. In vitro analysis revealed that HX110B exerted its effects by activating the PPAR-RXR signaling pathways. Overall, our data demonstrated that HX110B could be a promising therapeutic option for COPD treatment.
Collapse
Affiliation(s)
- Soojin Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Chang Hyung Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Jungkyu Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Yoonseon Jeong
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Jong-Hyung Park
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - In-Jeong Nam
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Doo Suk Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Hyun Myung Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Soo-Yeon Ahn
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Eujung Kim
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Seungyeon Jeong
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Seung-Shin Yu
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Wonwoo Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| |
Collapse
|
19
|
Shaikh TB, Chandra Y, Andugulapati SB, Sistla R. Vistusertib improves pulmonary inflammation and fibrosis by modulating inflammatory/oxidative stress mediators via suppressing the mTOR signalling. Inflamm Res 2024; 73:1223-1237. [PMID: 38789791 DOI: 10.1007/s00011-024-01894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
INTRODUCTION Inflammation and oxidative stress are key factors in the development of pulmonary fibrosis (PF) by promoting the differentiation of fibroblasts through modulating various pathways including Wnt/β-catenin, TGF-β and mTOR signalling. OBJECTIVE AND METHODS This study aimed to evaluate the effects and elucidate the mechanisms of vistusertib (VSB) in treating pulmonary inflammation/fibrosis, specifically by targeting the mTOR pathway using various in vitro and in vivo models. RESULTS Lipopolysaccharide (LPS)-induced inflammation model in macrophages (RAW 264.7), epithelial (BEAS-2B) and endothelial (HMVEC-L) cells revealed that treatment with VSB significantly reduced the IL-6, TNF-α, CCL2, and CCL7 expression. TGF-β induced differentiation was also significantly reduced upon VSB treatment in fibrotic cells (LL29 and DHLF). Further, bleomycin-induced inflammation and fibrosis models demonstrated that treatment with VSB significantly ameliorated the severe inflammation, and lung architectural distortion, by reducing the inflammatory markers expression/levels, inflammatory cells and oxidative stress indicators. Further, fibrosis model results exhibited that, VSB treatment significantly reduced the α-SMA, collagen and TGF-β expressions, improved the lung architecture and restored lung functions. CONCLUSION Overall, this study uncovers the anti-inflammatory/anti-fibrotic effects of VSB by modulating the mTOR activation. Although VSB was tested for lung fibrosis, it can be tested for other fibrotic disorders to improve the patient's survival and quality of life.
Collapse
Affiliation(s)
- Taslim B Shaikh
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Yogesh Chandra
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India
| | - Sai Balaji Andugulapati
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| | - Ramakrishna Sistla
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
20
|
Wu M, Li H, Zhai R, Shan B, Guo C, Chen J. Tanshinone IIA positively regulates the Keap1-Nrf2 system to alleviate pulmonary fibrosis via the sestrin2-sqstm1 signaling axis-mediated autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155620. [PMID: 38669964 DOI: 10.1016/j.phymed.2024.155620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Activation of myofibroblasts, linked to oxidative stress, emerges as a pivotal role in the progression of pulmonary fibrosis (PF). Our prior research has underscored the therapeutic promise of tanshinone IIA (Tan-IIA) in mitigating PF by enhancing nuclear factor-erythroid 2-related factor 2 (Nrf2) activity. Nevertheless, the molecular basis through which Tan-IIA influences Nrf2 activity has yet to be fully elucidated. METHODS The influence of Tan-IIA on PF was assessed in vivo and in vitro models. Inhibitors, overexpression plasmids, and small interfering RNA (siRNA) were utilized to probe its underlying mechanism of action in vitro. RESULTS We demonstrate that Tan-IIA effectively activates the kelch-like ECH-associated protein 1 (Keap1)-Nrf2 antioxidant pathway, which in turn inhibits myofibroblast activation and ameliorates PF. Notably, the stability and nucleo-cytoplasmic shuttling of Nrf2 is shown to be dependent on augmented autophagic flux, which is in alignment with the observation that Tan-IIA induces autophagy. Inhibition of autophagy, conversely, fosters the activation of extracellular matrix (ECM)-producing myofibroblasts. Further, Tan-IIA initiates an autophagy program through the sestrin 2 (Sesn2)-sequestosome 1 (Sqstm1) signaling axis, crucial for protecting Nrf2 from Keap1-mediated degradation. Meanwhile, these findings were corroborated in a murine model of PF. CONCLUSION Collectively, we observed for the first time that the Sqstm1-Sesn2 axis-mediated autophagic degradation of Keap1 effectively prevents myofibroblast activation and reduces the synthesis of ECM. This autophagy-dependent degradation of Keap1 can be initiated by the Tan-IIA treatment, which solidifies its potential as an Nrf2-modulating agent for PF treatment.
Collapse
Affiliation(s)
- Mingyu Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hongxia Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 22530, China
| | - Rao Zhai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Baixi Shan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Congying Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
21
|
Rezaie F, Ghafouri Khosroshahi A, Larki-Harchegani A, Nourian A, Khosravi H. Hydroalcoholic Sumac Extract as a Protective Agent Against X-Ray-Induced Pulmonary Fibrosis. Rep Biochem Mol Biol 2024; 13:231-242. [PMID: 39995652 PMCID: PMC11847579 DOI: 10.61186/rbmb.13.2.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/23/2024] [Indexed: 02/26/2025]
Abstract
Background X-ray exposure can result in acute or chronic damage to lung tissue, leading to pneumonitis and fibrosis. Given the potent antioxidant properties of sumac, this study investigates the impact of hydroalcoholic sumac extract on X-ray-induced pulmonary fibrosis in rats. Methods In this experimental study, 36 rats were randomly divided into six groups of six rats each. The treatment and sham groups received intraperitoneal administration of the extract daily for one week before exposure to X-ray radiation. On the seventh day, all rats except those in group 3 were exposed to 2 Gy of 6 MV X-rays using an electro-linear accelerator. Lung tissue was subsequently removed to assess the subacute effects of the extract. Data analysis involved independent sample t-tests and one-way ANOVA using SPSS 26. Results A single dose of X-rays significantly increased oxidative stress and lung tissue damage in rats. However, rats receiving vitamin C and hydroalcoholic sumac extract at two different doses (100 and 400 mg/kg intraperitoneally) positively improved lung damage and decreased antioxidant parameters. Conclusions The findings demonstrate that hydroalcoholic sumac extract can mitigate oxidative stress and enhance lung repair following X-ray radiation exposure.
Collapse
Affiliation(s)
- Faezeh Rezaie
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| | | | - Amir Larki-Harchegani
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Alireza Nourian
- Department of Pathobiology, School of Veterinary Science, Bu-Ali Sina University, Hamadan, Iran.
| | - Hossein Khosravi
- Department of Radiology, School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
22
|
Lee JS, Jeong YH, Kim YH, Yun JH, Ahn JO, Chung JY, An JH. Analyzing small RNA sequences from canine stem cell-derived extracellular vesicles primed with TNF-α and IFN-γ and exploring their potential in lung repair. Front Vet Sci 2024; 11:1411886. [PMID: 39011319 PMCID: PMC11246880 DOI: 10.3389/fvets.2024.1411886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Acute lung injury is an acute inflammation disorder that disrupts the lung endothelial and epithelial barriers. In this study, we investigated the extracellular vesicles (EVs) obtained via priming inflammatory cytokines such as tumor necrosis factor (TNF)-α and interferon (IFN)-γ on canine adipose mesenchymal stem cells in improving their anti-inflammatory and/or immunosuppressive potential, and/or their ability to alleviate lipopolysaccharide-induced lung injury in vitro. We also explored the correlation between epithelial-to-mesenchymal transition and the inflammatory repressive effect of primed EVs. Using small RNA-Seq, we confirmed that miR-16 and miR-502 significantly increased in EVs from TNF-α and IFN-γ-primed canine adipose mesenchymal stem cells. The pro and anti-inflammatory cytokines were analyzed in a lipopolysaccharide-induced lung injury model and we found that the EV anti-inflammatory effect improved on priming with inflammatory cytokines. EVs obtained from primed stem cells effectively suppress endothelial-to-mesenchymal transition in a lung injury model. Our results suggest a potential therapeutic approach utilizing EVs obtained from adipose mesenchymal stem cells primed with TNF-α and IFN-γ against lung inflammation and endothelial to mesenchymal transition.
Collapse
Affiliation(s)
- Ji-Sun Lee
- Department of Veterinary Emergency and Critical Care Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Yun-Ho Jeong
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Yo-Han Kim
- Department of Large Animal Internal Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Jang-Hyuk Yun
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin-Ok Ahn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin-Young Chung
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Ju-Hyun An
- Department of Veterinary Emergency and Critical Care Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
23
|
Wang Z, Zhang Y, Li X. Mitigation of Oxidative Stress in Idiopathic Pulmonary Fibrosis Through Exosome-Mediated Therapies. Int J Nanomedicine 2024; 19:6161-6176. [PMID: 38911503 PMCID: PMC11193999 DOI: 10.2147/ijn.s453739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/01/2024] [Indexed: 06/25/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) poses a formidable clinical challenge, characterized by the thickening of alveolar septa and the onset of pulmonary fibrosis. The pronounced activation of oxidative stress emerges as a pivotal hallmark of inflammation. Traditional application of exogenous antioxidants proves inadequate in addressing oxidative stress, necessitating exploration into strategies to augment their antioxidant efficacy. Exosomes, nano-sized extracellular vesicles harboring a diverse array of bioactive factors, present as promising carriers with the potential to meet this challenge. Recent attention has been directed towards the clinical applications of exosomes in IPF, fueling the impetus for this comprehensive review. We have compiled fresh insights into the role of exosomes in modulating oxidative stress in IPF and delved into their potential as carriers for regulating endogenous reactive oxygen species generation. This review endeavors to bridge the divide between exosome research and IPF, traversing from bedside to bench. Through the synthesis of recent findings, we propose exosomes as a novel and promising strategy for improving the outcomes of IPF therapy.
Collapse
Affiliation(s)
- Zaiyan Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, People’s Republic of China
| | - Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
| | - Xiaoning Li
- Department of Geriatric Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, People’s Republic of China
| |
Collapse
|
24
|
Tanahashi H, Iwamoto H, Yamaguchi K, Sakamoto S, Horimasu Y, Masuda T, Nakashima T, Ohshimo S, Fujitaka K, Hamada H, Hattori N. Lipocalin-2 as a prognostic marker in patients with acute exacerbation of idiopathic pulmonary fibrosis. Respir Res 2024; 25:195. [PMID: 38704585 PMCID: PMC11070072 DOI: 10.1186/s12931-024-02825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Lipocalin-2 (LCN2) is a secretory glycoprotein upregulated by oxidative stress; moreover, patients with idiopathic pulmonary fibrosis (IPF) have shown increased LCN2 levels in bronchoalveolar lavage fluid (BALF). This study aimed to determine whether circulatory LCN2 could be a systemic biomarker in patients with IPF and to investigate the role of LCN2 in a bleomycin-induced lung injury mouse model. METHODS We measured serum LCN2 levels in 99 patients with stable IPF, 27 patients with acute exacerbation (AE) of IPF, 51 patients with chronic hypersensitivity pneumonitis, and 67 healthy controls. Further, LCN2 expression in lung tissue was evaluated in a bleomycin-induced lung injury mouse model, and the role of LCN2 was investigated using LCN2-knockout (LCN2 -/-) mice. RESULTS Serum levels of LCN2 were significantly higher in patients with AE-IPF than in the other groups. The multivariate Cox proportional hazards model showed that elevated serum LCN2 level was an independent predictor of poor survival in patients with AE-IPF. In the bleomycin-induced lung injury mouse model, a higher dose of bleomycin resulted in higher LCN2 levels and shorter survival. Bleomycin-treated LCN2 -/- mice exhibited increased BALF cell and protein levels as well as hydroxyproline content. Moreover, compared with wild-type mice, LCN2-/- mice showed higher levels of circulatory 8-isoprostane as well as lower Nrf-2, GCLC, and NQO1 expression levels in lung tissue following bleomycin administration. CONCLUSIONS Our findings demonstrate that serum LCN2 might be a potential prognostic marker of AE-IPF. Moreover, LCN2 expression levels may reflect the severity of lung injury, and LCN2 may be a protective factor against bleomycin-induced acute lung injury and oxidative stress.
Collapse
Affiliation(s)
- Hiroki Tanahashi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
25
|
Yang C, Rubin L, Yu X, Lazarovici P, Zheng W. Preclinical evidence using synthetic compounds and natural products indicates that AMPK represents a potential pharmacological target for the therapy of pulmonary diseases. Med Res Rev 2024; 44:1326-1369. [PMID: 38229486 DOI: 10.1002/med.22014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 01/18/2024]
Abstract
Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is a highly conserved eukaryotic enzyme discovered as a key regulator of cellular energy homeostasis, with anti-inflammation, antioxidative stress, anticancer, and antifibrosis beneficial effects. AMPK is dysregulated in human pulmonary diseases such as acute lung injury, nonsmall cell lung cancer, pulmonary fibrosis, chronic obstructive pulmonary disease, and asthma. This review provides an overview of the beneficial role of natural, synthetic, and Chinese traditional medicines AMPK modulators in pulmonary diseases, and highlights the role of the AMPK signaling pathway in the lung, emphasizing the importance of finding lead compounds and drugs that can target and modulate AMPK to treat the lung diseases.
Collapse
Affiliation(s)
- Chao Yang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Limor Rubin
- Allergy and Clinical Immunology Unit, Department of Medicine, Jerusalem, Israel
| | - Xiyong Yu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
26
|
Tong Z, Du X, Zhou Y, Jing F, Ma J, Feng Y, Lou S, Wang Q, Dong Z. Drp1-mediated mitochondrial fission promotes pulmonary fibrosis progression through the regulation of lipid metabolic reprogramming by ROS/HIF-1α. Cell Signal 2024; 117:111075. [PMID: 38311302 DOI: 10.1016/j.cellsig.2024.111075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVE To confirm the mechanism of dynamic-related protein 1 (Drp1)-mediated mitochondrial fission through ROS/HIF-1α-mediated regulation of lipid metabolic reprogramming in the progression of pulmonary fibrosis (PF). METHODS A mouse model of PF was established by intratracheal instillation of bleomycin (BLM) (2.5 mg/kg). A PF cell model was constructed by stimulating MRC-5 cells with TGF-β (10 ng/mL). Pathological changes in the lung tissue and related protein levels were observed via tissue staining. The indicators related to lipid oxidation were detected by a kit, and lipid production was confirmed through oil red O staining. Inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA). RT-qPCR, Western blotting and immunofluorescence staining were used to detect the expression of genes and proteins related to the disease. We used CCK-8 and EdU staining to confirm cell proliferation, flow cytometry was used to confirm apoptosis and ROS levels, α-SMA expression was detected by immunofluorescence staining, and mitochondria were observed by MitoTracker staining. RESULTS The BLM induced lung tissue structure and alveolar wall thickening in mice. Mitochondrial fission was observed in MRC-5 cells induced by TGF-β, which led to increased cell proliferation; decreased apoptosis; increased expression of collagen, α-SMA and Drp1; and increased lipid oxidation and inflammation. Treatment with the Drp1 inhibitor mdivi-1 or transfection with si-Drp1 attenuated the induction of BLM and TGF-β. For lipid metabolism, lipid droplets were formed in BLM-induced lung tissue and in TGF-β-induced cells, fatty acid oxidation genes and lipogenesis-related genes were upregulated, ROS levels in cells were increased, and the expression of HIF-1α was upregulated. Mdivi-1 treatment reversed TGF-β induction, while H2O2 treatment or OE-HIF-1α transfection reversed the effect of mdivi-1. CONCLUSION In PF, inhibition of Drp1 can prevent mitochondrial fission in fibroblasts and regulate lipid metabolism reprogramming through ROS/HIF-1α; thus, fibroblast activation was inhibited, alleviating the progression of PF.
Collapse
Affiliation(s)
- Zhongkai Tong
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Xuekui Du
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Ying Zhou
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Fangxue Jing
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China; Health Science Center, Ningbo University, Ningbo 315211, China
| | - JiangPo Ma
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325000, China
| | - Yingying Feng
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China; Health Science Center, Ningbo University, Ningbo 315211, China
| | - Saiyun Lou
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China; Second Clinical Medicine Faculty of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiong Wang
- Department of Respiratory Infection, Zhenhai Hospital of Traditional Chinese Medicine, Ningbo 315200, China
| | - Zhaoxing Dong
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China.
| |
Collapse
|
27
|
Lan YW, Chen YC, Yen CC, Chen HL, Tung MC, Fan HC, Chen CM. Kefir peptides mitigate bleomycin-induced pulmonary fibrosis in mice through modulating oxidative stress, inflammation and gut microbiota. Biomed Pharmacother 2024; 174:116431. [PMID: 38522238 DOI: 10.1016/j.biopha.2024.116431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive and life-threatening lung disease with high mortality rates. The limited availability of effective drugs for IPF treatment, coupled with concerns regarding adverse effects and restricted responsiveness, underscores the need for alternative approaches. Kefir peptides (KPs) have demonstrated antioxidative, anti-inflammatory, and antifibrotic properties, along with the capability to modulate gut microbiota. This study aims to investigate the impact of KPs on bleomycin-induced pulmonary fibrosis. METHODS Mice were treated with KPs for four days, followed by intratracheal injection of bleomycin for 21 days. Comprehensive assessments included pulmonary functional tests, micro-computed tomography (µ-CT), in vivo image analysis using MMPsense750, evaluation of inflammation- and fibrosis-related gene expression in lung tissue, and histopathological examinations. Furthermore, a detailed investigation of the gut microbiota community was performed using full-length 16 S rRNA sequencing in control mice, bleomycin-induced fibrotic mice, and KPs-pretreated fibrotic mice. RESULTS In KPs-pretreated bleomycin-induced lung fibrotic mice, notable outcomes included the absence of significant bodyweight loss, enhanced pulmonary functions, restored lung tissue architecture, and diminished thickening of inter-alveolar septa, as elucidated by morphological and histopathological analyses. Concurrently, a reduction in the expression levels of oxidative biomarkers, inflammatory factors, and fibrotic indicators was observed. Moreover, 16 S rRNA sequencing demonstrated that KPs pretreatment induced alterations in the relative abundances of gut microbiota, notably affecting Barnesiella_intestinihominis, Kineothrix_alysoides, and Clostridium_viride. CONCLUSIONS Kefir peptides exerted preventive effects, protecting mice against bleomycin-induced lung oxidative stress, inflammation, and fibrosis. These effects are likely linked to modifications in the gut microbiota community. The findings highlight the therapeutic potential of KPs in mitigating pulmonary fibrosis and advocate for additional exploration in clinical settings.
Collapse
Affiliation(s)
- Ying-Wei Lan
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; Phoenix Children's Health Research Institute, Department of Child Health, University of Arizona College of Medicine, Phoenix 85004, USA.
| | - Ying-Cheng Chen
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; Department of Basic Medical Sciences, Veterinary Medicines, Purdue University, West Lafayette, Indiana 47906, USA.
| | - Chih-Ching Yen
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan.
| | - Hsiao-Ling Chen
- Department of Biomedical Science, Da-Yeh University, Changhua 515, Taiwan; Phermpep Co., Ltd., China Chemical & Pharmaceutical Group (CCPG), Taichung 42881, Taiwan
| | - Min-Che Tung
- Department of Surgery, and Tungs' Taichung Metro Harbor Hospital, Taichung 435, Taiwan
| | - Hueng-Chuen Fan
- Department of Surgery, and Tungs' Taichung Metro Harbor Hospital, Taichung 435, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
28
|
Huang CW, Lee SY, Du CX, Wu ST, Kuo YH, Ku HC. Caffeic acid ethanolamide induces antifibrosis, anti-inflammatory, and antioxidant effects protects against bleomycin-induced pulmonary fibrosis. Biomed Pharmacother 2024; 173:116298. [PMID: 38394850 DOI: 10.1016/j.biopha.2024.116298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/04/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease; its cause is unknown, and it leads to notable health problems. Currently, only two drugs are recommended for IPF treatment. Although these drugs can mitigate lung function decline, neither can improve nor stabilize IPF or the symptoms perceived by patients. Therefore, the development of novel treatment options for pulmonary fibrosis is required. The present study investigated the effects of a novel compound, caffeic acid ethanolamide (CAEA), on human pulmonary fibroblasts and evaluated its potential to mitigate bleomycin-induced pulmonary fibrosis in mice. CAEA inhibited TGF-β-induced α-SMA and collagen expression in human pulmonary fibroblasts, indicating that CAEA prevents fibroblasts from differentiating into myofibroblasts following TGF-β exposure. In animal studies, CAEA treatment efficiently suppressed immune cell infiltration and the elevation of TNF-α and IL-6 in bronchoalveolar lavage fluid in mice with bleomycin-induced pulmonary fibrosis. Additionally, CAEA exerted antioxidant effects by recovering the enzymatic activities of oxidant scavengers. CAEA directly inhibited activation of TGF-β receptors and protected against bleomycin-induced pulmonary fibrosis through inhibition of the TGF-β/SMAD/CTGF signaling pathway. The protective effect of CAEA was comparable to that of pirfenidone, a clinically available drug. Our findings support the potential of CAEA as a viable method for preventing the progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Cheng-Wei Huang
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Shih-Yi Lee
- Division of Pulmonary and Critical Care Medicine, MacKay Memorial Hospital, Taipei, Taiwan; MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Chen-Xuan Du
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Shao-Tung Wu
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Hui-Chun Ku
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
29
|
Luo J, Li P, Dong M, Zhang Y, Lu S, Chen M, Zhou H, Lin N, Jiang H, Wang Y. SLC15A3 plays a crucial role in pulmonary fibrosis by regulating macrophage oxidative stress. Cell Death Differ 2024; 31:417-430. [PMID: 38374230 PMCID: PMC11043330 DOI: 10.1038/s41418-024-01266-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal and irreversible disease with few effective treatments. Alveolar macrophages (AMs) are involved in the development of IPF from the initial stages due to direct exposure to air and respond to external oxidative damage (a major inducement of pulmonary fibrosis). Oxidative stress in AMs plays an indispensable role in promoting fibrosis development. The oligopeptide histidine transporter SLC15A3, mainly expressed on the lysosomal membrane of macrophages and highly expressed in the lung, has proved to be involved in innate immune and antiviral signaling pathways. In this study, we demonstrated that during bleomycin (BLM)- or radiation-induced pulmonary fibrosis, the recruitment of macrophages induced an increase of SLC15A3 in the lung, and the deficiency of SLC15A3 protected mice from pulmonary fibrosis and maintained the homeostasis of the pulmonary microenvironment. Mechanistically, deficiency of SLC15A3 resisted oxidative stress in macrophages, and SLC15A3 interacted with the scaffold protein p62 to regulate its expression and phosphorylation activation, thereby regulating p62-nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant stress pathway protein, which is related to the production of reactive oxygen species (ROS). Overall, our data provided a novel mechanism for targeting SLC15A3 to regulate oxidative stress in macrophages, supporting the therapeutic potential of inhibiting or silencing SLC15A3 for the precautions and treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jun Luo
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ping Li
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Minlei Dong
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingqiong Zhang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shuanghui Lu
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Mingyang Chen
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nengming Lin
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
| | - Yuqing Wang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China.
| |
Collapse
|
30
|
Mohanan A, Washimkar KR, Mugale MN. Unraveling the interplay between vital organelle stress and oxidative stress in idiopathic pulmonary fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119676. [PMID: 38242330 DOI: 10.1016/j.bbamcr.2024.119676] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease characterized by excessive accumulation of extracellular matrix, leading to irreversible fibrosis. Emerging evidence suggests that endoplasmic reticulum (ER) stress, mitochondrial stress, and oxidative stress pathways play crucial roles in the pathogenesis of IPF. ER stress occurs when the protein folding capacity of the ER is overwhelmed, triggering the unfolded protein response (UPR) and contributing to protein misfolding and cellular stress in IPF. Concurrently, mitochondrial dysfunction involving dysregulation of key regulators, including PTEN-induced putative kinase 1 (PINK1), Parkin, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and sirtuin 3 (SIRT3), disrupts mitochondrial homeostasis and impairs cellular energy metabolism. This leads to increased reactive oxygen species (ROS) production, release of pro-fibrotic mediators, and activation of fibrotic pathways, exacerbating IPF progression. The UPR-induced ER stress further disrupts mitochondrial metabolism, resulting in altered mitochondrial mechanisms that increase the generation of ROS, resulting in further ER stress, creating a feedback loop that contributes to the progression of IPF. Oxidative stress also plays a pivotal role in IPF, as ROS-mediated activation of TGF-β, NF-κB, and MAPK pathways promotes inflammation and fibrotic responses. This review mainly focuses on the links between ER stress, mitochondrial dysfunctions, and oxidative stress with different signaling pathways involved in IPF. Understanding these mechanisms and targeting key molecules within these pathways may offer promising avenues for intervention.
Collapse
Affiliation(s)
- Anushree Mohanan
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Kaveri R Washimkar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
31
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
32
|
Imaduddin UK, Berbudi A, Rohmawaty E. The Effect of Physalis angulata L. Administration on Gene Expressions Related to Lung Fibrosis Resolution in Mice-Induced Bleomycin. J Exp Pharmacol 2024; 16:49-60. [PMID: 38317831 PMCID: PMC10840535 DOI: 10.2147/jep.s439932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose To explore the potential therapeutic effects of Physalis angulata L. (Ciplukan) extract on lung fibrosis resolution in a Bleomycin-induced mouse model, researchers conducted a comprehensive study. The study focused on key genes associated with fibrosis progression, including Nox4, Mmp8, Klf4, and FAS, and assessed their mRNA expression levels following the administration of Ciplukan extract. Methods A Bleomycin-induced mice model was divided into seven groups to investigate the effects of ciplukan extract on fibrosis-related gene expressions. Mice were induced with subcutaneously injected Bleomycin to generate lung fibrosis and given different doses of the Ciplukan extract for four weeks. Lung fibrosis mRNA expression was analyzed by semi-quantitative PCR for Nox4, Klf4, Mmp8, and FAS. Results The administration of ciplukan extract resulted in a significant decrease in mRNA expression of Nox4 with p-value=0.000, Mmp8 with p-value =0.002, and Klf4 with p-value =0.007, indicating potential antifibrotic effects. However, FAS expression remained unchanged (p-value=0.127). Conclusion Ciplukan extract exhibited promising effects on fibrosis-related gene expressions, particularly Nox4, Mmp8, and Klf4. This study suggests that the extract has the potential to intervene in fibrosis progression, offering a potential avenue for therapeutic strategies.
Collapse
Affiliation(s)
- Ummul Khair Imaduddin
- Graduate School of Master Program in Anti Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Afiat Berbudi
- Parasitology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Enny Rohmawaty
- Pharmacology & Therapy Division, Departement of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| |
Collapse
|
33
|
Xiong Z, Peng G, Deng J, Liu M, Ning X, Zhuang Y, Yang H, Sun H. Therapeutic targets and potential delivery systems of melatonin in osteoarthritis. Front Immunol 2024; 15:1331934. [PMID: 38327517 PMCID: PMC10847247 DOI: 10.3389/fimmu.2024.1331934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024] Open
Abstract
Osteoarthritis (OA) is a highly prevalent age-related musculoskeletal disorder that typically results in chronic pain and disability. OA is a multifactorial disease, with increased oxidative stress, dysregulated inflammatory response, and impaired matrix metabolism contributing to its onset and progression. The neurohormone melatonin, primarily synthesized by the pineal gland, has emerged as a promising therapeutic agent for OA due to its potential to alleviate inflammation, oxidative stress, and chondrocyte death with minimal adverse effects. The present review provides a comprehensive summary of the current understanding regarding melatonin as a promising pharmaceutical agent for the treatment of OA, along with an exploration of various delivery systems that can be utilized for melatonin administration. These findings may provide novel therapeutic strategies and targets for inhibiting the advancement of OA.
Collapse
Affiliation(s)
- Zhilin Xiong
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guoxuan Peng
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jin Deng
- Department of Emergence Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Miao Liu
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xu Ning
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yong Zhuang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hua Yang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hong Sun
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Emergence Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
34
|
Liu Q, Ren Y, Jia H, Yuan H, Tong Y, Kotha S, Mao X, Huang Y, Chen C, Zheng Z, Wang L, He W. Vanadium Carbide Nanosheets with Broad-Spectrum Antioxidant Activity for Pulmonary Fibrosis Therapy. ACS NANO 2023; 17:22527-22538. [PMID: 37933888 DOI: 10.1021/acsnano.3c06105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Idiopathic pulmonary fibrosis is a chronic and highly lethal lung disease that largely results from oxidative stress; however, effective antioxidant therapy by targeting oxidative stress pathogenesis is still lacking. The big challenge is to develop an ideal antioxidant material with superior antifibrotic effects. Herein, we report that V4C3 nanosheets (NSs) can serve as a potential antioxidant for treatment of pulmonary fibrosis by scavenging reactive oxygen and nitrogen species. Interestingly, subtle autoxidation can adjust the valence composition of V4C3 NSs and significantly improve their antioxidant behavior. Valence engineering triggers multiple antioxidant mechanisms including electron transfer, H atom transfer, and enzyme-like catalysis, thus endowing V4C3 NSs with broad-spectrum, high-efficiency, and persistent antioxidant capacity. Benefiting from antioxidant properties and good biocompatibility, V4C3 NSs can significantly prevent myofibroblast proliferation and extracellular matrix abnormality, thus alleviating the progression of bleomycin-induced pulmonary fibrosis in vivo by scavenging ROS, anti-inflammation, and rebuilding antioxidant defenses. This study not only provides an important strategy for designing excellent antioxidant nanomaterials, but also proposes a proof-of-concept demonstration for the treatment of pulmonary fibrosis and other oxidative stress-related diseases.
Collapse
Affiliation(s)
- Quan Liu
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
- School of Materials, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450045, P. R. China
| | - Yaping Ren
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Zhengzhou 450046, P. R. China
| | - Huimin Jia
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
| | - Hao Yuan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuping Tong
- School of Materials, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450045, P. R. China
| | - Sumasri Kotha
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Xiaobo Mao
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Zhengzhou 450046, P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Zhi Zheng
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weiwei He
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
| |
Collapse
|
35
|
Li C, Xu J, Abdurehim A, Sun Q, Xie J, Zhang Y. TRPA1: A promising target for pulmonary fibrosis? Eur J Pharmacol 2023; 959:176088. [PMID: 37777106 DOI: 10.1016/j.ejphar.2023.176088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
Pulmonary fibrosis is a disease characterized by progressive scar formation and the ultimate manifestation of numerous lung diseases. It is known as "cancer that is not cancer" and has attracted widespread attention. However, its formation process is very complex, and the mechanism of occurrence has not been fully elucidated. Current research has found that TRPA1 may be a promising target in the pathogenesis of pulmonary fibrosis. The TRPA1 channel was first successfully isolated in human lung fibroblasts, and it was found to have a relatively concentrated distribution in the lungs and respiratory tract. It is also involved in various acute and chronic inflammatory processes of lung diseases and may even play a core role in the progression and/or prevention of pulmonary fibrosis. Natural ligands targeting TRPA1 could offer a promising alternative treatment for pulmonary diseases. Therefore, this review delves into the current understanding of pulmonary fibrogenesis, analyzes TRPA1 biological properties and regulation of lung disease with a focus on pulmonary fibrosis, summarizes the TRPA1 molecular structure and its biological function, and summarizes TRPA1 natural ligand sources, anti-pulmonary fibrosis activity and potential mechanisms. The aim is to decipher the exact role of TRPA1 channels in the pathophysiology of pulmonary fibrosis and to consider their potential in the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Chao Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Jiawen Xu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Aliya Abdurehim
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Qing Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanqing Zhang
- Biotechnology & Food Science College, Tianjin University of Commerce, Tianjin, 300134, China.
| |
Collapse
|
36
|
Link PA, Meridew JA, Caporarello N, Gao AY, Peters V, Smith GB, Rojas M, Tschumperlin DJ. A redox-shifted fibroblast subpopulation emerges in the fibrotic lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559128. [PMID: 38014129 PMCID: PMC10680805 DOI: 10.1101/2023.09.23.559128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aggressive and thus far incurable disease, characterized by aberrant fibroblast-mediated extracellular matrix deposition. Our understanding of the disease etiology is incomplete; however, there is consensus that a reduction-oxidation (redox) imbalance plays a role. In this study we use the autofluorescent properties of two redox molecules, NAD(P)H and FAD, to quantify changes in their relative abundance in living lung tissue of mice with experimental lung fibrosis, and in freshly isolated cells from mouse lungs and humans with IPF. Our results identify cell population-specific intracellular redox changes in the lungs in experimental and human fibrosis. We focus particularly on redox changes within collagen producing cells, where we identified a bimodal distribution of NAD(P)H concentrations, establishing NAD(P)H high and NAD(P)H low sub-populations. NAD(P)H high fibroblasts exhibited elevated pro-fibrotic gene expression and decreased collagenolytic protease activity relative to NAD(P)H low fibroblasts. The NAD(P)H high population was present in healthy lungs but expanded with time after bleomycin injury suggesting a potential role in fibrosis progression. We identified a similar increased abundance of NAD(P)H high cells in freshly dissociated lungs of subjects with IPF relative to controls, and similar reductions in collagenolytic activity in this cell population. These data highlight the complexity of redox state changes in experimental and human pulmonary fibrosis and the need for selective approaches to restore redox imbalances in the fibrotic lung.
Collapse
|
37
|
Mokra D, Mokry J, Barosova R, Hanusrichterova J. Advances in the Use of N-Acetylcysteine in Chronic Respiratory Diseases. Antioxidants (Basel) 2023; 12:1713. [PMID: 37760016 PMCID: PMC10526097 DOI: 10.3390/antiox12091713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
N-acetylcysteine (NAC) is widely used because of its mucolytic effects, taking part in the therapeutic protocols of cystic fibrosis. NAC is also administered as an antidote in acetaminophen (paracetamol) overdosing. Thanks to its wide antioxidative and anti-inflammatory effects, NAC may also be of benefit in other chronic inflammatory and fibrotizing respiratory diseases, such as chronic obstructive pulmonary disease, bronchial asthma, idiopathic lung fibrosis, or lung silicosis. In addition, NAC exerts low toxicity and rare adverse effects even in combination with other treatments, and it is cheap and easily accessible. This article brings a review of information on the mechanisms of inflammation and oxidative stress in selected chronic respiratory diseases and discusses the use of NAC in these disorders.
Collapse
Affiliation(s)
- Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia; (R.B.); (J.H.)
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia;
| | - Romana Barosova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia; (R.B.); (J.H.)
| | - Juliana Hanusrichterova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia; (R.B.); (J.H.)
| |
Collapse
|
38
|
Fukihara J, Kondoh Y. COVID-19 and interstitial lung diseases: A multifaceted look at the relationship between the two diseases. Respir Investig 2023; 61:601-617. [PMID: 37429073 PMCID: PMC10281233 DOI: 10.1016/j.resinv.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/09/2023] [Accepted: 05/22/2023] [Indexed: 07/12/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although it has been a fatal disease for many patients, the development of treatment strategies and vaccines have progressed over the past 3 years, and our society has become able to accept COVID-19 as a manageable common disease. However, as COVID-19 sometimes causes pneumonia, post-COVID pulmonary fibrosis (PCPF), and worsening of preexisting interstitial lung diseases (ILDs), it is still a concern for pulmonary physicians. In this review, we have selected several topics regarding the relationships between ILDs and COVID-19. The pathogenesis of COVID-19-induced ILD is currently assumed based mainly on the evidence of other ILDs and has not been well elucidated specifically in the context of COVID-19. We have summarized what has been clarified to date and constructed a coherent story about the establishment and progress of the disease. We have also reviewed clinical information regarding ILDs newly induced or worsened by COVID-19 or anti-SARS-CoV-2 vaccines. Inflammatory and profibrotic responses induced by COVID-19 or vaccines have been thought to be a risk for de novo induction or worsening of ILDs, and this has been supported by the evidence obtained through clinical experience over the past 3 years. Although COVID-19 has become a mild disease in most cases, it is still worth looking back on the above-reviewed information to broaden our perspectives regarding the relationship between viral infection and ILD. As a representative etiology for severe viral pneumonia, further studies in this area are expected.
Collapse
Affiliation(s)
- Jun Fukihara
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto, Aichi, 489-8642, Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto, Aichi, 489-8642, Japan.
| |
Collapse
|
39
|
He X, Jarrell ZR, Smith MR, Ly VT, Hu X, Sueblinvong V, Liang Y, Orr M, Go YM, Jones DP. Low-dose vanadium pentoxide perturbed lung metabolism associated with inflammation and fibrosis signaling in male animal and in vitro models. Am J Physiol Lung Cell Mol Physiol 2023; 325:L215-L232. [PMID: 37310758 PMCID: PMC10396228 DOI: 10.1152/ajplung.00303.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
Vanadium is available as a dietary supplement and also is known to be toxic if inhaled, yet little information is available concerning the effects of vanadium on mammalian metabolism when concentrations found in food and water. Vanadium pentoxide (V+5) is representative of the most common dietary and environmental exposures, and prior research shows that low-dose V+5 exposure causes oxidative stress measured by glutathione oxidation and protein S-glutathionylation. We examined the metabolic impact of V+5 at relevant dietary and environmental doses (0.01, 0.1, and 1 ppm for 24 h) in human lung fibroblasts (HLFs) and male C57BL/6J mice (0.02, 0.2, and 2 ppm in drinking water for 7 mo). Untargeted metabolomics using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) showed that V+5 induced significant metabolic perturbations in both HLF cells and mouse lungs. We noted 30% of the significantly altered pathways in HLF cells, including pyrimidines and aminosugars, fatty acids, mitochondrial and redox pathways, showed similar dose-dependent patterns in mouse lung tissues. Alterations in lipid metabolism included leukotrienes and prostaglandins involved in inflammatory signaling, which have been associated with the pathogenesis of idiopathic pulmonary fibrosis (IPF) and other disease processes. Elevated hydroxyproline levels and excessive collagen deposition were also present in lungs from V+5-treated mice. Taken together, these results show that oxidative stress from environmental V+5, ingested at low levels, could alter metabolism to contribute to common human lung diseases.NEW & NOTEWORTHY We used relevant dietary and environmental doses of Vanadium pentoxide (V+5) to examine its metabolic impact in vitro and in vivo. Using liquid chromatography-high-resolution mass spectrometry (LC-HRMS), we found significant metabolic perturbations, with similar dose-dependent patterns observed in human lung fibroblasts and male mouse lungs. Alterations in lipid metabolism included inflammatory signaling, elevated hydroxyproline levels, and excessive collagen deposition were present in V+5-treated lungs. Our findings suggest that low levels of V+5 could trigger pulmonary fibrotic signaling.
Collapse
Affiliation(s)
- Xiaojia He
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Matthew Ryan Smith
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
- Atlanta Department of Veterans Affairs Healthcare System, Decatur, Georgia, United States
| | - ViLinh Thi Ly
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Xin Hu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Viranuj Sueblinvong
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Yongliang Liang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
40
|
Tseng YH, Chen IC, Li WC, Hsu JH. Regulatory Cues in Pulmonary Fibrosis-With Emphasis on the AIM2 Inflammasome. Int J Mol Sci 2023; 24:10876. [PMID: 37446052 DOI: 10.3390/ijms241310876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Pulmonary fibrosis (PF) is a chronic lung disorder characterized by the presence of scarred and thickened lung tissues. Although the Food and Drug Administration approved two antifibrotic drugs, pirfenidone, and nintedanib, that are currently utilized for treating idiopathic PF (IPF), the clinical therapeutic efficacy remains unsatisfactory. It is crucial to develop new drugs or treatment schemes that combine pirfenidone or nintedanib to achieve more effective outcomes for PF patients. Understanding the complex mechanisms underlying PF could potentially facilitate drug discovery. Previous studies have found that the activation of inflammasomes, including nucleotide-binding and oligomerization domain (NOD)-like receptor protein (NLRP)1, NLRP3, NOD-like receptor C4, and absent in melanoma (AIM)2, contributes to lung inflammation and fibrosis. This article aims to summarize the cellular and molecular regulatory cues that contribute to PF with a particular emphasis on the role of AIM2 inflammasome in mediating pathophysiologic events during PF development. The insights gained from this research may pave the way for the development of more effective strategies for the prevention and treatment of PF.
Collapse
Affiliation(s)
- Yu-Hsin Tseng
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - I-Chen Chen
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wan-Chun Li
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
41
|
van de Zande SC, Abdulle AE, Al-Adwi Y, Stel A, de Leeuw K, Brouwer E, Arends S, Gan CT, van Goor H, Mulder DJ. Self-Reported Systemic Sclerosis-Related Symptoms Are More Prevalent in Subjects with Raynaud's Phenomenon in the Lifelines Population: Focus on Pulmonary Complications. Diagnostics (Basel) 2023; 13:2160. [PMID: 37443554 DOI: 10.3390/diagnostics13132160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Puffy fingers and Raynaud's phenomenon (RP) are important clinical predictors of the development of systemic sclerosis (SSc). We aim to assess the prevalence of SSc-related symptoms, explore pulmonary symptoms, and test the usefulness of skin autofluorescence (SAF) as a non-invasive marker for Advanced Glycation Endproducts (AGEs). Subjects from the Lifelines Cohort Study with known connective tissue disease (CTD) were excluded. Patient characteristics, SAF, self-reported pulmonary symptoms, and spirometry were obtained. Subjects (n = 73,948) were categorized into definite RP (5.3%) with and without SSc-related symptoms and non-RP. Prevalence of at least one potential SSc-related symptom (other than RP) was 8.7%; 23.5% in subjects with RP and 7.1% without RP (p < 0.001). Subjects with RP and additional SSc-related symptoms more frequently reported dyspnea at rest, dyspnea after exertion, and self-reported pulmonary fibrosis, and had the lowest mean forced vital capacity compared to the other groups (RP without SSc-related symptoms and no RP, both p < 0.001). In multivariate regression, dyspnea at rest/on exertion remained associated with an increased risk of SSc-related symptoms in subjects with RP (both p < 0.001). SAF was higher in subjects with RP and SSc-related symptoms compared to the other groups (p < 0.001), but this difference was not significant after correction for potential confounders. The prevalence of SSc-related symptoms was approximately three-fold higher in subjects with RP. Pulmonary symptoms are more prevalent in subjects with RP who also reported additional potential SSc-related symptoms. This might suggest that (suspected) early SSc develops more insidiously than acknowledged. According to this study, SAF is no marker for early detection of SSc.
Collapse
Affiliation(s)
- Saskia Corine van de Zande
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, 9712 Groningen, The Netherlands
| | - Amaal Eman Abdulle
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, 9712 Groningen, The Netherlands
| | - Yehya Al-Adwi
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, 9712 Groningen, The Netherlands
| | - Alja Stel
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, 9712 Groningen, The Netherlands
| | - Karina de Leeuw
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, 9712 Groningen, The Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, 9712 Groningen, The Netherlands
| | - Suzanne Arends
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, 9712 Groningen, The Netherlands
| | - Christiaan Tji Gan
- Department of Pulmonary Diseases and Tuberculosis, University Medical Centre Groningen, University of Groningen, 9712 Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, 9712 Groningen, The Netherlands
| | - Douwe Johannes Mulder
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, 9712 Groningen, The Netherlands
| |
Collapse
|
42
|
Yau WH, Chen SC, Wu DW, Chen HC, Lin HH, Wang CW, Hung CH, Kuo CH. Blood lead (Pb) is associated with lung fibrotic changes in non-smokers living in the vicinity of petrochemical complex: a population-based study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27784-7. [PMID: 37213022 DOI: 10.1007/s11356-023-27784-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Lead (Pb) is a toxic metal that has been extensively used in various industrial processes, and it persists in the environment, posing a continuous risk of exposure to humans. This study investigated blood lead levels in participants aged 20 years and older, who resided in Dalinpu for more than two years between 2016 to 2018, at Kaohsiung Municipal Siaogang Hospital. Graphite furnace atomic absorption spectrometry was used to analyze the blood samples for lead levels, and the LDCT (Low-Dose computed tomography) scans were interpreted by experienced radiologists. The blood lead levels were divided into quartiles, with Q1 representing levels of ≤1.10 μg/dL, Q2 representing levels of >1.11 and ≤1.60 μg/dL, Q3 representing levels of >1.61 and ≤2.30 μg/dL, and Q4 representing levels of >2.31 μg/dL. Individuals with lung fibrotic changes had significantly higher (mean ± SD) blood lead levels (1.88±1.27vs. 1.72±1.53 μg/dl, p< 0.001) than those with non-lung fibrotic changes. In multivariate analysis, we found that the highest quartile (Q4: >2.31 μg/dL) lead levels (OR: 1.36, 95% CI: 1.01-1.82; p= 0.043) and the higher quartile (Q3: >1.61 and ≤2.30 μg/dL) (OR: 1.33, 95% CI: 1.01-1.75; p= 0.041) was significantly associated with lung fibrotic changes compared with the lowest quartile (Q1: ≤1.10 μg/dL) (Cox and Snell R2, 6.1 %; Nagelkerke R2, 8.5 %). The dose-response trend was significant (Ptrend= 0.030). Blood lead exposure was significantly associated lung fibrotic change. To prevent lung toxicity, it is recommended to maintain blood lead levels lower than the current reference value.
Collapse
Affiliation(s)
- Wei-Hoong Yau
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Veterans General Hospital Tainan Branch, Tainan, Taiwan
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, 482, Shan-Ming Rd., Hsiao-Kang Dist, 812, Kaohsiung, Taiwan, Republic of China
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Da-Wei Wu
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, 482, Shan-Ming Rd., Hsiao-Kang Dist, 812, Kaohsiung, Taiwan, Republic of China
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huang-Chi Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, 482, Shan-Ming Rd., Hsiao-Kang Dist, 812, Kaohsiung, Taiwan, Republic of China
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Hsun Lin
- Department of Laboratory Technology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Chih-Wen Wang
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, 482, Shan-Ming Rd., Hsiao-Kang Dist, 812, Kaohsiung, Taiwan, Republic of China.
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chih-Hsing Hung
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, 482, Shan-Ming Rd., Hsiao-Kang Dist, 812, Kaohsiung, Taiwan, Republic of China
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
43
|
Pan L, Cheng Y, Yang W, Wu X, Zhu H, Hu M, Zhang Y, Zhang M. Nintedanib Ameliorates Bleomycin-Induced Pulmonary Fibrosis, Inflammation, Apoptosis, and Oxidative Stress by Modulating PI3K/Akt/mTOR Pathway in Mice. Inflammation 2023:10.1007/s10753-023-01825-2. [PMID: 37160579 PMCID: PMC10359208 DOI: 10.1007/s10753-023-01825-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 05/11/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) seriously threatens human life and health, and no curative therapy is available at present. Nintedanib is the first agent approved by the US Food and Drug Administration (FDA) in order to treat IPF; however, its mechanism of inhibition of IPF is still elusive. According to recent studies, nintedanib is a potent inhibitor. It can antagonize platelet-derived growth factor (PDGF), basic fibroblast growth factor (b-FGF), vascular endothelial growth factor (VEGF), etc., to inhibit pulmonary fibrosis. Whether there are other signaling pathways involved in IPF remains unknown. This study focused on investigating the therapeutic efficacy of nintedanib in bleomycin-mediated pulmonary fibrosis (PF) mice through PI3K/Akt/mTOR pathway. Following the induction of pulmonary fibrosis in C57 mice through bleomycin (BLM) administration, the mice were randomized into five groups: (1) the normal control group, (2) the BLM model control group, (3) the low-dose Nintedanib administration model group, (4) the medium-dose nintedanib administration model group, and (5) the high-dose nintedanib administration model group. For lung tissues, morphological changes were found by HE staining and Masson staining, ELISA method was used to detect inflammatory factors, alkaline water method to estimate collagen content, and western blotting for protein levels. TUNEL staining and immunofluorescence methods were used to analyze the effect of nintedanib on lung tissue and the impacts and underlying mechanisms of bleomycin-induced pulmonary fibrosis. After 28 days, bleomycin-treated mice developed significant pulmonary fibrosis. Relative to bleomycin-treated mice, nintedanib-treated mice had markedly reduced degrees of PF. In addition, nintedanib showed lung-protective effects by up-regulating antioxidant levels, down-regulating inflammatory protein expression, and reducing collagen accumulation. We demonstrated that nintedanib ameliorated bleomycin-induced lung injury by inhibiting the P13K/Akt/mTOR pathway as well as apoptosis. In addition, significant improvement in pulmonary fibrosis was seen after nintedanib (30/60/120 mg/kg body weight/day) treatment through a dose-dependent way. Histopathological results further corroborated the effect of nintedanib treatment on remarkably attenuating bleomycin-mediated mouse lung injury. According to our findings, nintedanib restores the antioxidant system, suppresses pro-inflammatory factors, and inhibits apoptosis. Nintedanib can reduce bleomycin-induced inflammation by downregulating PI3K/Akt/mTOR pathway, PF, and oxidative stress (OS).
Collapse
Affiliation(s)
- Lin Pan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yiju Cheng
- Department of Respiratory and Critical Care Medicine, Guiyang First People's Hospital, Guiyang, 550004, China.
- Guizhou Medical University, Guiyang, 550004, China.
| | - Wenting Yang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Xiao Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Honglan Zhu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Meigui Hu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yuquan Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Menglin Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
44
|
Shimada M, Koyama Y, Kobayashi Y, Kobayashi H, Shimada S. Effect of the new silicon-based agent on the symptoms of interstitial pneumonitis. Sci Rep 2023; 13:5707. [PMID: 37029197 PMCID: PMC10080516 DOI: 10.1038/s41598-023-32745-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Interstitial pneumonia (IP) is a collective term for diseases whose main lesion is fibrosis of the pulmonary interstitium, and the prognosis associated with acute exacerbation of these conditions is often poor. Therapeutic agents are limited to steroids, immunosuppressants, and antifibrotic drugs, which and have many side effects; therefore, the development of new therapeutic agents is required. Because oxidative stress contributes to lung fibrosis in IP, optimal antioxidants may be effective for the treatment of IP. Silicon (Si)-based agents, when administered orally, can continuously generate a large amount of antioxidant hydrogen in the intestinal tract. In this study, we investigated the effect of our Si-based agent on methotrexate-induced IP, using the IP mouse models. Pathological analysis revealed that interstitial hypertrophy was more significantly alleviated in the Si-based agent-treated group than in the untreated group (decreased by about 22%; P < 0.01). Moreover, additional morphological analysis demonstrated that infiltration of immune cells and fibrosis in the lungs were significantly inhibited by treatment with the Si-based agent. Furthermore, Si-based agent reduced oxidative stress associated with IP by increasing blood antioxidant activity. (increased by about 43%; P < 0.001). Taken together, these results suggest that Si-based agents can be effective therapeutic agents for IP.
Collapse
Affiliation(s)
- Masato Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihisa Koyama
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, 541-8567, Japan.
| | | | | | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, 541-8567, Japan
| |
Collapse
|
45
|
Zhu D, Zhong Q, Lin T, Song T. Higher serum selenium concentration is associated with lower risk of all-cause and cardiovascular mortality among individuals with chronic kidney disease: A population-based cohort study of NHANES. Front Nutr 2023; 10:1127188. [PMID: 37063340 PMCID: PMC10102510 DOI: 10.3389/fnut.2023.1127188] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundSelenium is an essential nutrient and trace element required for human health and plays an important role in antioxidative and anti-inflammatory processes. However, the long-term impact of selenium levels on the health of patients with chronic kidney disease remains unclear.MethodParticipants in this study were 3,063 CKD adults from the Third National Health and Nutrition Examination Survey (NHANES 1999–2000, 2003–2004, and 2011–2018). The mortality status and the cause of death of the study participants were obtained from the National Death Index records. For all-cause and cardiovascular disease (CVD) mortality, the models employed to estimate hazard ratios (HRs) and 95% CI were Cox proportional hazard models and competing risk models, respectively.ResultDuring the follow-up period, 884 deaths occurred, including 336 heart-disease-associated deaths. The median (IQR) concentration of serum selenium was 181.7 (156.1, 201.5) μg/L. After full adjustment, serum selenium levels were associated with a decreased risk of mortality in patients with CKD, including all-cause and CVD mortality (P < 0.001). The multivariate-adjusted HRs (95%CI) were 0.684 (0.549–0.852) for all-cause mortality (Ptrend < 0.001) and 0.513 (0.356–0.739) for CVD mortality (Ptrend < 0.001) when selenium concentrations were compared according to the extreme quartiles. Selenium levels are inversely associated with an increased risk of all-cause mortality and CVD mortality. Similar results were observed in subgroup and sensitivity analyses.ConclusionHigher serum selenium concentration was independently associated with a decreased risk of all-cause and CVD mortality in patients with CKD.
Collapse
Affiliation(s)
- Daiwen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Zhong
- Organ Transplantation Center, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Tao Lin
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Tao Lin
| | - Turun Song
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Turun Song
| |
Collapse
|
46
|
Tirunavalli SK, Kuncha M, Sistla R, Andugulapati SB. Targeting TGF-β/periostin signaling by sesamol ameliorates pulmonary fibrosis and improves lung function and survival. J Nutr Biochem 2023; 116:109294. [PMID: 36948431 DOI: 10.1016/j.jnutbio.2023.109294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/11/2022] [Accepted: 02/14/2023] [Indexed: 03/24/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disorder that severely impairs lung function, by increasing lung stiffness. Sesamol, a phenolic Phyto-molecule isolated from sesame seeds, possess a rich source of protein and is known to have extensive nutritional and health effects. Here we investigated the effect of sesamol on TGF-β/periostin-induced fibroblast differentiation in in vitro and bleomycin-induced pulmonary fibrosis in an in vivo model. Our results demonstrated that activation of (DHLF, LL29, NHLF and A549) cells with TGF-β, elevates the epithelial to mesenchymal, extracellular matrix, and collagen deposition and periostin signaling marker's expression, further treatment with sesamol attenuated these markers significantly. In addition, sesamol treatment improved the TGF-β-induced contraction and migration of cells. Mechanistic studies showed that activation of IPF cells with periostin increased the TGF-β signaling and treatment with sesamol significantly abrogated the periostin-induced TGF-β activation and its downstream fibrotic marker's expression. In in vivo, sesamol treatment attenuated the lung inflammation, infiltration of cells, wall thickening and the formation of fibrous bands significantly in BLM-induced fibrosis rats. Molecular studies revealed that sesamol treatment reduced the bleomycin-induced fibrotic, inflammatory, apoptotic marker's expression by modulating the TGF-β/periostin crosstalk signaling in a dose-dependent manner. Further, treatment with sesamol dramatically improved lung function and decreased mortality. Our study first time reports the sesamol's inhibitory effects on periostin signalling. Collectively, our study demonstrated that periostin and TGF-β seem to work in a positive-feedback loop, inducing the other, therefore, targeting TGF-β/periostin signaling may provide a better therapeutic approach against IPF and other fibrotic disorders.
Collapse
Affiliation(s)
- Satya Krishna Tirunavalli
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India
| | - Madhusudhana Kuncha
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India
| | - Ramakrishna Sistla
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India
| | - Sai Balaji Andugulapati
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India.
| |
Collapse
|
47
|
Bueno M, Calyeca J, Khaliullin T, Miller MP, Alvarez D, Rosas L, Brands J, Baker C, Nasser A, Shulkowski S, Mathien A, Uzoukwu N, Sembrat J, Mays BG, Fiedler K, Hahn SA, Salvatore SR, Schopfer FJ, Rojas M, Sandner P, Straub AC, Mora AL. CYB5R3 in type II alveolar epithelial cells protects against lung fibrosis by suppressing TGF-β1 signaling. JCI Insight 2023; 8:e161487. [PMID: 36749633 PMCID: PMC10077481 DOI: 10.1172/jci.insight.161487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
Type II alveolar epithelial cell (AECII) redox imbalance contributes to the pathogenesis of idiopathic pulmonary fibrosis (IPF), a deadly disease with limited treatment options. Here, we show that expression of membrane-bound cytochrome B5 reductase 3 (CYB5R3), an enzyme critical for maintaining cellular redox homeostasis and soluble guanylate cyclase (sGC) heme iron redox state, is diminished in IPF AECIIs. Deficiency of CYB5R3 in AECIIs led to sustained activation of the pro-fibrotic factor TGF-β1 and increased susceptibility to lung fibrosis. We further show that CYB5R3 is a critical regulator of ERK1/2 phosphorylation and the sGC/cGMP/protein kinase G axis that modulates activation of the TGF-β1 signaling pathway. We demonstrate that sGC agonists (BAY 41-8543 and BAY 54-6544) are effective in reducing the pulmonary fibrotic outcomes of in vivo deficiency of CYB5R3 in AECIIs. Taken together, these results show that CYB5R3 in AECIIs is required to maintain resilience after lung injury and fibrosis and that therapeutic manipulation of the sGC redox state could provide a basis for treating fibrotic conditions in the lung and beyond.
Collapse
Affiliation(s)
- Marta Bueno
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jazmin Calyeca
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Timur Khaliullin
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Megan P. Miller
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Diana Alvarez
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lorena Rosas
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Judith Brands
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christian Baker
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amro Nasser
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephanie Shulkowski
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - August Mathien
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nneoma Uzoukwu
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brenton G. Mays
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kaitlin Fiedler
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Scott A. Hahn
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Francisco J. Schopfer
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology
- Pittsburgh Liver Research Center (PLRC), and
- Center for Metabolism and Mitochondrial Medicine (C3M), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mauricio Rojas
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Peter Sandner
- Bayer Pharmaceuticals Wuppertal, Germany
- Hannover Medical School, Hannover, Germany
| | | | - Ana L. Mora
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
48
|
A comprehensive review of emodin in fibrosis treatment. Fitoterapia 2023; 165:105358. [PMID: 36436587 DOI: 10.1016/j.fitote.2022.105358] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Emodin is the main pharmacodynamic components of rhubarb, with significant pharmacological effects and clinical efficacy.Emodin has a variety of therapy effects, such as anti-cancer, anti-fibrosis effects, and is widely used to treat encephalitis, diabetic cataract and organ fibrosis. Several studies have shown that emodin has a good treatment effect on organ fibrosis, but the mechanism is complex. Moreover, the evidence of some studies is conflicting and confusing. This paper reviewed the mechanism, pharmacokinetics and toxicology of emodin in fibrosis treatment, and briefly discussed relevant cutting-edge new formulations to improve the efficacy, the result can provide some reference for future study.
Collapse
|
49
|
Plant miRNA osa-miR172d-5p suppressed lung fibrosis by targeting Tab1. Sci Rep 2023; 13:2128. [PMID: 36746980 PMCID: PMC9901827 DOI: 10.1038/s41598-023-29188-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Lung fibrosis, including idiopathic pulmonary fibrosis, is an intractable disease accompanied by an irreversible dysfunction in the respiratory system. Its pathogenesis involves the transforming growth factorβ (TGFβ)-induced overproduction of the extracellular matrix from fibroblasts; however, limited countermeasures have been established. In this study, we identified osa-miR172d-5p, a plant-derived microRNA (miR), as a potent anti-fibrotic miR. In silico analysis followed by an in vitro assay based on human lung fibroblasts demonstrated that osa-miR172d-5p suppressed the gene expression of TGF-β activated kinase 1 (MAP3K7) binding protein 1 (Tab1). It also suppressed the TGFβ-induced fibrotic gene expression in human lung fibroblasts. To assess the anti-fibrotic effect of osa-miR172d-5p, we established bleomycin-induced lung fibrosis models to demonstrate that osa-miR172d-5p ameliorated lung fibrosis. Moreover, it suppressed Tab1 expression in the lung tissues of bleomycin-treated mice. In conclusion, osa-miR172d-5p could be a potent candidate for the treatment of lung fibrosis, including idiopathic pulmonary fibrosis.
Collapse
|
50
|
Ommati MM, Mobasheri A, Ma Y, Xu D, Tang Z, Manthari RK, Abdoli N, Azarpira N, Lu Y, Sadeghian I, Mousavifaraz A, Nadgaran A, Nikoozadeh A, Mazloomi S, Mehrabani PS, Rezaei M, Xin H, Mingyu Y, Niknahad H, Heidari R. Taurine mitigates the development of pulmonary inflammation, oxidative stress, and histopathological alterations in a rat model of bile duct ligation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1557-1572. [PMID: 36097067 DOI: 10.1007/s00210-022-02291-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Lung injury is a significant complication associated with cholestasis/cirrhosis. This problem significantly increases the risk of cirrhosis-related morbidity and mortality. Hence, finding effective therapeutic options in this field has significant clinical value. Severe inflammation and oxidative stress are involved in the mechanism of cirrhosis-induced lung injury. Taurine (TAU) is an abundant amino acid with substantial anti-inflammatory and antioxidative properties. The current study was designed to evaluate the role of TAU in cholestasis-related lung injury. For this purpose, bile duct ligated (BDL) rats were treated with TAU (0.5 and 1% w: v in drinking water). Significant increases in the broncho-alveolar lavage fluid (BALF) level of inflammatory cells (lymphocytes, neutrophils, basophils, monocytes, and eosinophils), increased IgG, and TNF-α were detected in the BDL animals (14 and 28 days after the BDL surgery). Alveolar congestion, hemorrhage, and fibrosis were the dominant pulmonary histopathological changes in the BDL group. Significant increases in the pulmonary tissue biomarkers of oxidative stress, including reactive oxygen species formation, lipid peroxidation, increased oxidized glutathione levels, and decreased reduced glutathione, were also detected in the BDL rats. Moreover, significant myeloperoxidase activity and nitric oxide levels were seen in the lung of BDL rats. It was found that TAU significantly blunted inflammation, alleviated oxidative stress, and mitigated lung histopathological changes in BDL animals. These data suggest TAU as a potential protective agent against cholestasis/cirrhosis-related lung injury.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mobasheri
- Physics, and Technology, Faculty of Medicine, Research Unit of Medical Imaging, University of Oulu, 90014, Oulu, Finland
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
- Department of Regenerative Medicine, State Research Institute Center for Innovative Medicine, 08406, Vilnius, Lithuania
| | - Yanqin Ma
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Dongmei Xu
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zhongwei Tang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam-530045, Andhra Pradesh, India
| | - Narges Abdoli
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Negar Azarpira
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yu Lu
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolghasem Mousavifaraz
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Nadgaran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Nikoozadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahra Mazloomi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooria Sayar Mehrabani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hu Xin
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yang Mingyu
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|