1
|
Karam M, Aqel S, Haider MZ, Fathima A, Charafedine A, Daher MA, Shaito A, El-Sabban M, Saliba J. Beyond the Injury: How Does Smoking Impair Stem Cell-Mediated Repair Mechanisms? A Dual Review of Smoking-Induced Stem Cell Damage and Stem Cell-Based Therapeutic Applications. Stem Cell Rev Rep 2025:10.1007/s12015-025-10886-9. [PMID: 40279029 DOI: 10.1007/s12015-025-10886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
While the literature on molecular and clinical effects of smoking on the lungs and other organs has been expansively reviewed, there is no comprehensive compilation of the effects of smoking on stem cell (SC) populations. Recent research has shown that tobacco exposure severely compromises the function of SC populations, particularly those involved in tissue regeneration: mesenchymal SCs (MSCs), neural progenitors, and hematopoietic SCs. SC-based therapies have emerged as a promising approach to counteract smoking-related damage. In particular, MSCs have been extensively studied for their immunomodulatory properties, demonstrating the ability to repair damaged tissues, reduce inflammation, and slow disease progression in conditions such as chronic obstructive pulmonary disease. Combination therapies, which integrate pharmaceuticals with SC treatments, have shown potential in enhancing regenerative outcomes. This review examines the impact of smoking on SC biology, describes the processes impairing SC-mediated repair mechanisms and highlights recent advancements in SC-based therapies in the treatment of smoking-induced diseases. This review has two prongs: (1) it attempts to explain potential smoking-related disease etiology, and (2) it addresses a gap in the literature on SC-mediated repair mechanisms in chronic smokers.
Collapse
Affiliation(s)
- Mario Karam
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Translational Cancer Medicine, Faculty of Medicine, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Helsinki, Finland
| | - Sarah Aqel
- Medical Research Center, Hamad Medical Corporation, Doha, Qatar
| | - Mohammad Z Haider
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Aseela Fathima
- Biomedical Research Center and Department of Biomedical Sciences at College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Adib Charafedine
- College Of Pharmacy, American University of Iraq-Baghdad, Baghdad, Iraq
| | - Mira Abou Daher
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Public Health, Faculty of Health Sciences, University of Balamand, Sin El Fil, PO Box: 55251, Beirut, Lebanon
| | - Abdullah Shaito
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
- Biomedical Research Center and Department of Biomedical Sciences at College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jessica Saliba
- Department of Public Health, Faculty of Health Sciences, University of Balamand, Sin El Fil, PO Box: 55251, Beirut, Lebanon.
- Department of Biology, Faculty of Science, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
2
|
Wu L, Zhang E, Tu Y, Chen Y, Wang C, Ren Y, Fang B. Inherent immunity and adaptive immunity: Mechanism and role in AECOPD. Innate Immun 2025; 31:17534259251322612. [PMID: 40017227 PMCID: PMC11869301 DOI: 10.1177/17534259251322612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 12/20/2024] [Accepted: 02/04/2025] [Indexed: 03/01/2025] Open
Abstract
Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is the leading cause of hospitalization and mortality in COPD patients. The occurrence of antibiotic resistance and the progression of non-infectious diseases contribute to poor patient outcomes. Thus, a comprehensive understanding of the mechanisms underlying AECOPD is essential for effective prevention. It is widely acknowledged that the immune system plays a fundamental role in pathogen clearance and the development of inflammation. Immune dysregulation, either due to deficiency or hyperactivity, has been implicated in AECOPD pathogenesis. Therefore, the purpose of this review is to investigate the possible mechanisms underlying dysregulated immune function and disease progression in COPD patients, specifically focusing on the innate and adaptive immune responses. The ultimate aim is to provide new insights for clinical prevention and treatment strategies targeting AECOPD.
Collapse
Affiliation(s)
- Linguangjin Wu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Emergency Department, Shanghai, China
| | - Erxin Zhang
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yadan Tu
- Chongqing Hospital of Traditional Chinese Medicine, Classic Department of Traditional Chinese Medicine, Chongqing, China
| | - Yong Chen
- Chongqing Hospital of Traditional Chinese Medicine, Classic Department of Traditional Chinese Medicine, Chongqing, China
| | - Chenghu Wang
- Chongqing Hospital of Traditional Chinese Medicine, Classic Department of Traditional Chinese Medicine, Chongqing, China
| | - Yi Ren
- Chongqing Hospital of Traditional Chinese Medicine, Classic Department of Traditional Chinese Medicine, Chongqing, China
| | - Bangjiang Fang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Emergency Department, Shanghai, China
| |
Collapse
|
3
|
Han L, Zhu W, Qi H, He L, Wang Q, Shen J, Song Y, Shen Y, Zhu Q, Zhou J. The cuproptosis-related gene glutaminase promotes alveolar macrophage copper ion accumulation in chronic obstructive pulmonary disease. Int Immunopharmacol 2024; 129:111585. [PMID: 38325045 DOI: 10.1016/j.intimp.2024.111585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
Cuproptosis, a novel mode of cell death, is strongly associated with a variety of diseases. However, the contribution of cuproptosis to the onset or progression of chronic obstructive pulmonary disease (COPD), the third most common chronic cause of mortality, is not yet clear. To investigate the potential role of cuproptosis in COPD, raw datasets from multiple public clinical COPD databases (including RNA-seq, phenotype, and lung function data) were used. For further validation, mice exposed to cigarette smoke for three months were used as in vivo models, and iBMDMs (immortalized bone marrow-derived macrophages) and RAW264.7 cells stimulated with cigarette smoke extract were used as in vitro models. For the first time, the expression of the cuproptosis-related gene glutaminase (GLS) was found to be decreased in COPD, and the low expression of GLS was significantly associated with the grade of pulmonary function. In vivo experiments confirmed the decreased expression of GLS in COPD, particularly in alveolar macrophages. Furthermore, in vitro studies revealed that copper ions accumulated in alveolar macrophages, leading to a substantially decreased amount of cell activity of macrophages when stimulated with cigarette extract. In summary, we demonstrate the high potential of GLS as an avenue for diagnosis and therapy in COPD.
Collapse
Affiliation(s)
- Linxiao Han
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai 200032, China; Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai 200032, China
| | - Wensi Zhu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai 200032, China; Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai 200032, China
| | - Hui Qi
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang 050091, Hebei, China
| | - Ludan He
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai 200032, China; Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai 200032, China
| | - Qin Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai 200032, China; Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai 200032, China
| | - Jie Shen
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Fudan University, Shanghai 200540, China; Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Fudan University, Shanghai 200540, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 200540, China
| | - Yuanlin Song
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai 200032, China
| | - Yao Shen
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Shanghai 201399, China.
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| | - Jian Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai 200032, China; Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai 200032, China; Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang 050091, Hebei, China; Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Fudan University, Shanghai 200540, China; Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Fudan University, Shanghai 200540, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 200540, China.
| |
Collapse
|
4
|
Poole JA, Thiele GM, Ramler E, Nelson AJ, Duryee MJ, Schwab AD, Gleason A, Hunter CD, Gaurav R, Wyatt TA, England BR, Mikuls TR. Combined repetitive inhalant endotoxin and collagen-induced arthritis drive inflammatory lung disease and arthritis severity in a testosterone-dependent manner. Am J Physiol Lung Cell Mol Physiol 2024; 326:L239-L251. [PMID: 38086040 PMCID: PMC11280680 DOI: 10.1152/ajplung.00221.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/07/2023] [Accepted: 12/10/2023] [Indexed: 02/01/2024] Open
Abstract
Respiratory-related diseases are a leading cause of death in rheumatoid arthritis (RA) and are disproportionately higher in men, which may be attributable to environmental risk factors. Animal studies have demonstrated potentiated autoimmunity, arthritis, and profibrotic/inflammatory lung disease with a combination of airborne exposures and collagen-induced arthritis (CIA). This study aimed to determine whether hormone-dependent differences explained these observations. Arthritis-prone male intact and castrated DBA/1J mice received intranasal inhalation of lipopolysaccharide (LPS) daily for 5 wk and CIA induction. Arthritis scores and serum pentraxin-2 levels were increased in castrated versus intact mice. In contrast, airway cell influx, lung tissue infiltrates, and lung levels of proinflammatory and profibrotic markers (C5a, IL-33, and matrix metalloproteinases) were reduced in castrated versus intact mice. CIA + LPS-induced lung histopathology changes and the expression of lung autoantigens including malondialdehyde acetaldehyde (MAA)- and citrulline (CIT)-modified proteins and vimentin were reduced in castrated animals. There were no differences in serum anti-MAA or anti-CIT protein antibody (ACPA) levels or serum pentraxin levels between groups. Testosterone replacement led to a reversal of several lung inflammatory/profibrotic endpoints noted earlier in castrated male CIA + LPS-treated mice with testosterone supplementation promoting neutrophil influx, MAA expression, and TNF-α, IL-6, and MMP-9. These findings imply that testosterone contributes to lung and arthritis inflammatory responses following CIA + LPS coexposure, but not to systemic autoantibody responses. The CIA + LPS model provides a paradigm for investigations focused on the mechanistic underpinnings for epidemiologic and phenotypic sex differences in RA-related lung disease.NEW & NOTEWORTHY Our study shows that testosterone acts as a key immunomodulatory hormone contributing to critical features of rheumatoid arthritis (RA)-associated lung disease in the setting of airborne endotoxin (lipopolysaccharide; LPS) exposures and concomitant arthritis induction in mice. The exaggerated airway inflammation observed following combined exposures in male mice was accompanied by increases in profibrotic mediators, netosis, and increased expression of lung autoantigens, all relevant to the pathogenesis of lung disease in arthritis.
Collapse
Affiliation(s)
- Jill A Poole
- Division of Allergy & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Geoffrey M Thiele
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, Nebraska, United States
- Division of Rheumatology & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Elizabeth Ramler
- Division of Allergy & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Amy J Nelson
- Division of Allergy & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Michael J Duryee
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, Nebraska, United States
- Division of Rheumatology & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Aaron D Schwab
- Division of Allergy & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Angela Gleason
- Division of Allergy & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Carlos D Hunter
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, Nebraska, United States
- Division of Rheumatology & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Rohit Gaurav
- Division of Allergy & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Todd A Wyatt
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, Nebraska, United States
- Department of Environmental, Agricultural & Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Division of Pulmonary Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Bryant R England
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, Nebraska, United States
- Division of Rheumatology & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Ted R Mikuls
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, Nebraska, United States
- Division of Rheumatology & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| |
Collapse
|
5
|
Linden DA, Guo-Parke H, McKelvey MC, Einarsson GG, Lee AJ, Fairley DJ, Brown V, Lundy G, Campbell C, Logan D, McFarland M, Singh D, McAuley DF, Taggart CC, Kidney JC. Valaciclovir for Epstein-Barr Virus Suppression in Moderate-to-Severe COPD: A Randomized Double-Blind Placebo-Controlled Trial. Chest 2023; 164:625-636. [PMID: 37011709 PMCID: PMC10808072 DOI: 10.1016/j.chest.2023.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/25/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) frequently is measured at high levels in COPD using sputum quantitative polymerase chain reaction, whereas airway immunohistochemistry analysis has shown EBV detection to be common in severe disease. RESEARCH QUESTION Is valaciclovir safe and effective for EBV suppression in COPD? STUDY DESIGN AND METHODS The Epstein-Barr Virus Suppression in COPD (EViSCO) trial was a randomized double-blind placebo-controlled trial conducted at the Mater Hospital Belfast, Northern Ireland. Eligible patients had stable moderate-to-severe COPD and sputum EBV (measured using quantitative polymerase chain reaction) and were assigned randomly (1:1) to valaciclovir (1 g tid) or matching placebo for 8 weeks. The primary efficacy outcome was sputum EBV suppression (defined as ≥ 90% sputum viral load reduction) at week 8. The primary safety outcome was the incidence of serious adverse reactions. Secondary outcome measures were FEV1 and drug tolerability. Exploratory outcomes included changes in quality of life, sputum cell counts, and cytokines. RESULTS From November 2, 2018, through March 12, 2020, 84 patients were assigned randomly (n = 43 to valaciclovir). Eighty-one patients completed trial follow-up and were included in the intention-to-treat analysis of the primary outcome. A greater number of participants in the valaciclovir group achieved EBV suppression (n = 36 [87.8%] vs n = 17 [42.5%]; P < .001). Valaciclovir was associated with a significant reduction in sputum EBV titer compared with placebo (-90,404 copies/mL [interquartile range, -298,000 to -15,200 copies/mL] vs -3,940 copies/mL [interquartile range, -114,400 to 50,150 copies/mL]; P = .002). A statistically nonsignificant 24-mL numerical FEV1 increase was shown in the valaciclovir group (difference, -44 mL [95% CI, -150 to 62 mL]; P = .41). However, a reduction in sputum white cell count was noted in the valaciclovir group compared with the placebo group (difference, 2.89 [95% CI, 1.5 × 106-7.4 × 106]; P = .003). INTERPRETATION Valaciclovir is safe and effective for EBV suppression in COPD and may attenuate the sputum inflammatory cell infiltrate. The findings from the current study provide support for a larger trial to evaluate long-term clinical outcomes. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT03699904; URL: www. CLINICALTRIALS gov.
Collapse
Affiliation(s)
- Dermot A Linden
- Mater Hospital Belfast, Belfast Health and Social Care Trus, Belfast, Northern Ireland; Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Belfast, Northern Ireland.
| | - Hong Guo-Parke
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Belfast, Northern Ireland
| | - Michael C McKelvey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Belfast, Northern Ireland
| | - Gisli G Einarsson
- Halo Research Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland
| | - Andrew J Lee
- Halo Research Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland
| | - Derek J Fairley
- Regional Virus Laboratory, Belfast Health and Social Care Trust, Belfast, Northern Ireland
| | - Vanessa Brown
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Belfast, Northern Ireland
| | - Gavin Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Belfast, Northern Ireland
| | | | - Danielle Logan
- Northern Ireland Clinical Trials Unit, Belfast, Northern Ireland
| | | | - Dave Singh
- Division of Infection and Immunity, University of Manchester, Manchester, England
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Belfast, Northern Ireland; Royal Victoria Hospital, Belfast, Northern Ireland
| | - Clifford C Taggart
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Belfast, Northern Ireland
| | - Joseph C Kidney
- Mater Hospital Belfast, Belfast Health and Social Care Trus, Belfast, Northern Ireland
| |
Collapse
|
6
|
Feredj E, Wiedemann A, Krief C, Maitre B, Derumeaux G, Chouaid C, Le Corvoisier P, Lacabaratz C, Gallien S, Lelièvre JD, Boyer L. Immune response to pertussis vaccine in COPD patients. Sci Rep 2023; 13:11654. [PMID: 37468500 DOI: 10.1038/s41598-023-38355-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Exacerbation triggered by respiratory infection is an important cause of morbidity and mortality in chronic obstructive pulmonary disease (COPD) patients. Strategies aiming to preventing infection may have significant public health impact. Our previous study demonstrated decreased immunological response to seasonal flu vaccination in COPD patients, questioning the efficiency of other vaccines in this group of patients. We performed a prospective, monocenter, longitudinal study that evaluated the humoral and cellular responses upon pertussis vaccination. We included 13 patients with stable COPD and 8 healthy volunteers. No difference in circulating B and T cell subsets at baseline was noted. Both groups presented similar levels of TFH, plasmablasts and pertussis specific antibodies induction after vaccination. Moreover, monitoring T cell immunity after ex-vivo peptide stimulation revealed equivalent induction of functional and specific CD4+ T cells (IFNγ, TNFα and IL-2-expressing T cells) in both groups. Our results highlight the immunological efficiency of pertussis vaccination in this particularly vulnerable population and challenge the concept that COPD patients are less responsive to all immunization strategies. Healthcare providers should stress the necessity of decennial Tdap booster vaccination in COPD patients.
Collapse
Affiliation(s)
- E Feredj
- Infectious Disease Department, AP-HP (Assistance Publique-Hôpitaux de Paris), Groupe Hospitalier Henri-Mondor/Albert Chenevier, 94010, Créteil, France.
- INSERM U955, Equipe 16, IMRB (Institut Mondor de Recherche Biomédicale), Université Paris-Est-Créteil (UPEC), 94010, Créteil, France.
| | - A Wiedemann
- INSERM U955, Equipe 16, IMRB (Institut Mondor de Recherche Biomédicale), Université Paris-Est-Créteil (UPEC), 94010, Créteil, France
- Vaccine Research Institute, 94010, Créteil, France
| | - C Krief
- INSERM U955, Equipe 16, IMRB (Institut Mondor de Recherche Biomédicale), Université Paris-Est-Créteil (UPEC), 94010, Créteil, France
- Vaccine Research Institute, 94010, Créteil, France
| | - B Maitre
- Department of Physiology, APHP, Hôpital Henri Mondor, 94010, Créteil, France
- Department of Pulmonology, Centre Hospitalier Intercommunal, 94010, Créteil, France
| | - G Derumeaux
- Department of Physiology, APHP, Hôpital Henri Mondor, 94010, Créteil, France
| | - C Chouaid
- Department of Pulmonology, Centre Hospitalier Intercommunal, 94010, Créteil, France
| | - P Le Corvoisier
- INSERM, Clinical Investigation Center 1430, Hôpital Henri Mondor, 94010, Créteil, France
| | - C Lacabaratz
- INSERM U955, Equipe 16, IMRB (Institut Mondor de Recherche Biomédicale), Université Paris-Est-Créteil (UPEC), 94010, Créteil, France
- Vaccine Research Institute, 94010, Créteil, France
| | - S Gallien
- Infectious Disease Department, AP-HP (Assistance Publique-Hôpitaux de Paris), Groupe Hospitalier Henri-Mondor/Albert Chenevier, 94010, Créteil, France
- EA Dynamyc, Université Paris Est Créteil-École Vétérinaire de Maison Alfort, 94000, Créteil, France
| | - J D Lelièvre
- Infectious Disease Department, AP-HP (Assistance Publique-Hôpitaux de Paris), Groupe Hospitalier Henri-Mondor/Albert Chenevier, 94010, Créteil, France
- INSERM U955, Equipe 16, IMRB (Institut Mondor de Recherche Biomédicale), Université Paris-Est-Créteil (UPEC), 94010, Créteil, France
- Vaccine Research Institute, 94010, Créteil, France
| | - L Boyer
- INSERM U955, Equipe 16, IMRB (Institut Mondor de Recherche Biomédicale), Université Paris-Est-Créteil (UPEC), 94010, Créteil, France
- Department of Physiology, APHP, Hôpital Henri Mondor, 94010, Créteil, France
| |
Collapse
|
7
|
Reddy-Vari H, Kim Y, Rajput C, Sajjan US. Increased expression of miR146a dysregulates TLR2-induced HBD2 in airway epithelial cells from patients with COPD. ERJ Open Res 2023; 9:00694-2022. [PMID: 37228294 PMCID: PMC10204848 DOI: 10.1183/23120541.00694-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/23/2023] [Indexed: 05/27/2023] Open
Abstract
Background Airway epithelial cells from patients with COPD show suboptimal innate immune responses to nontypeable Haemophilus influenzae (NTHi) and Toll-like receptor (TLR)2 ligands despite expressing TLR2 similar to normal airway epithelial cells, but the underlying mechanisms are poorly understood. Methods Normal or COPD mucociliary-differentiated airway epithelial cells were treated with TLR2 agonists or infected with NTHi and expression of β-defensin (HBD)2 was examined. Interleukin-1 receptor-associated kinase (IRAK)-1 and microRNA (miR)146a were genetically inhibited in normal and COPD airway epithelial cell cultures, respectively, and HBD2 responses to TLR2 ligands were determined. IRAK-1 expression in lung sections was determined by immunofluorescence microscopy. Results Compared to normal, COPD airway epithelial cell cultures showed impaired expression of HBD2 in response to TLR2 agonists or NTHi infection. Apical secretions from TLR2 agonist-treated normal, but not COPD, airway epithelial cells efficiently killed NTHi. Knockdown of HBD2 significantly reduced NTHi killing by apical secretions of normal airway epithelial cells. Compared to normal, COPD cells showed significantly reduced expression of IRAK-1 and this was associated with increased expression of miR146a. Inhibition of miR146a increased the expression of IRAK-1, improved the expression of HBD2 in response to TLR2 agonists in COPD cells and enhanced the killing of bacteria by apical secretions obtained from TLR2 agonist-treated COPD cells. Bronchial epithelium of COPD patients showed reduced expression of IRAK-1. Conclusions These results suggest that reduced levels of IRAK-1 due to increased expression of miR146a may contribute to impaired expression of TLR2-induced HBD2 in COPD airway epithelial cells.
Collapse
Affiliation(s)
- Hymavathi Reddy-Vari
- Department of Microbiology Immunology and Inflammation, Lewis Katz Medical School, Temple University, Philadelphia, PA, USA
| | - Yerin Kim
- Department of Microbiology Immunology and Inflammation, Lewis Katz Medical School, Temple University, Philadelphia, PA, USA
| | - Charu Rajput
- Department of Microbiology Immunology and Inflammation, Lewis Katz Medical School, Temple University, Philadelphia, PA, USA
| | - Umadevi S. Sajjan
- Department of Microbiology Immunology and Inflammation, Lewis Katz Medical School, Temple University, Philadelphia, PA, USA
- Department of Thoracic Surgery and Medicine, Lewis Katz Medical School, Temple University, Philadelphia, PA, USA
| |
Collapse
|
8
|
Polverino F, Mirra D, Yang CX, Esposito R, Spaziano G, Rojas-Quintero J, Sgambato M, Piegari E, Cozzolino A, Cione E, Gallelli L, Capuozzo A, Santoriello C, Berrino L, de- Torres JP, Hackett TL, Polverino M, D’Agostino B. Similar programmed death ligand 1 (PD-L1) expression profile in patients with mild COPD and lung cancer. Sci Rep 2022; 12:22402. [PMID: 36575294 PMCID: PMC9792927 DOI: 10.1038/s41598-022-26650-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Programmed Death Ligand 1 (PD-L1) is crucial in regulating the immunological tolerance in non-small cell lung cancer (NSCLC). Alveolar macrophage (AM)-derived PD-L1 binds to its receptor, PD-1, on surveilling lymphocytes, leading to lymphocyte exhaustion. Increased PD-L1 expression is associated with cigarette smoke (CS)-exposure. However, the PD-L1 role in CS-associated lung diseases associated with NSCLC, such as chronic obstructive pulmonary disease (COPD), is still unclear. In two different cohorts of ever smokers with COPD or NSCLC, and ever and never smoker controls, we evaluated PD-L1 expression: (1) via cutting-edge digital spatial proteomic and transcriptomic profiling (Geomx) of formalin-fixed paraffin-embedded (FFPE) lung tissue sections (n = 19); and (2) via triple immunofluorescence staining of bronchoalveolar lavage (BAL) AMs (n = 83). PD-L1 mRNA expression was also quantified in BAL AMs exposed to CS extract. PD-L1 expression was increased in the bronchiolar wall, parenchyma, and vascular wall from mild-moderate (GOLD 1-2) COPD patients compared to severe-very severe (GOLD 3-4) COPD patients and controls. Within all the COPD patients, PD-L1 protein expression was associated with upregulation of genes involved in tumor progression and downregulation of oncosuppressive genes, and strongly directly correlated with the FEV1% predicted, indicating higher PD-L1 expression in the milder vs. more severe COPD stages. In bronchioles, PD-L1 levels were strongly directly correlated with the number of functionally active AMs. In BAL, we confirmed that AMs from patients with both GOLD 1-2 COPD and NSCLC had the highest and similar, PD-L1 expression levels versus all the other groups, independently from active cigarette smoking. Intriguingly, AMs from patients with more severe COPD had reduced AM PD-L1 expression compared to patients with mild COPD. Acute CS extract stimulation increased PD-L1 mRNA expression only in never-and not in ever-smoker AMs. Lungs from patients with mild COPD and NSCLC are characterized by a similar strong PD-L1 expression signature in bronchioles and functionally active AMs compared to patients with severe COPD and controls. Active smoking does not affect PD-L1 levels. These observations represent a new resource in understanding the innate immune mechanisms underlying the link between COPD and lung cancer onset and progression and pave the way to future studies focused on the mechanisms by which CS promotes tumorigenesis and COPD.
Collapse
Affiliation(s)
- F. Polverino
- grid.39382.330000 0001 2160 926XPulmonary and Critical Care Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX 77030 USA
| | - D. Mirra
- grid.9841.40000 0001 2200 8888University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - C. X. Yang
- grid.17091.3e0000 0001 2288 9830University of British Columbia, Vancouver, Canada
| | - R. Esposito
- grid.9841.40000 0001 2200 8888University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - G. Spaziano
- grid.9841.40000 0001 2200 8888University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - J. Rojas-Quintero
- grid.39382.330000 0001 2160 926XPulmonary and Critical Care Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX 77030 USA
| | - M. Sgambato
- grid.9841.40000 0001 2200 8888University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - E. Piegari
- grid.9841.40000 0001 2200 8888University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - A. Cozzolino
- grid.9841.40000 0001 2200 8888University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - E. Cione
- grid.7778.f0000 0004 1937 0319University of Calabria, Rende, Italy
| | - L. Gallelli
- grid.411489.10000 0001 2168 2547University of Catanzaro, Catanzaro, Italy
| | | | | | - L. Berrino
- grid.9841.40000 0001 2200 8888University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - J. P. de- Torres
- grid.410356.50000 0004 1936 8331Queen’s University, Hamilton, Canada
| | - T. L. Hackett
- grid.17091.3e0000 0001 2288 9830University of British Columbia, Vancouver, Canada
| | | | - B. D’Agostino
- grid.9841.40000 0001 2200 8888University of Campania “Luigi Vanvitelli”, Caserta, Italy
| |
Collapse
|
9
|
Massara L, Gosset P. MicroRNA Control Lipid-laden Alveolar Macrophages in Smokers: A Potential Therapeutic Target for Chronic Obstructive Pulmonary Disease? Am J Respir Cell Mol Biol 2022; 67:619-620. [PMID: 36084079 PMCID: PMC9743187 DOI: 10.1165/rcmb.2022-0338ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Layal Massara
- Center for Infection and Immunity of LilleUniversity LilleLille, France,Center for Infection and Immunity of LilleINSERM U1019Lille, France,Center for Infection and Immunity of LilleCNRS UMR9017Lille, France,Center for Infection and Immunity of LilleInstitut Pasteur LilleLille, France,Center for Infection and Immunity of LilleCHRU LilleLille, France
| | - Philippe Gosset
- Center for Infection and Immunity of LilleUniversity LilleLille, France,Center for Infection and Immunity of LilleINSERM U1019Lille, France,Center for Infection and Immunity of LilleCNRS UMR9017Lille, France,Center for Infection and Immunity of LilleInstitut Pasteur LilleLille, France,Center for Infection and Immunity of LilleCHRU LilleLille, France
| |
Collapse
|
10
|
Lea S, Beech A, Baker J, Gaskell R, Pindolia D, Dikwa AB, Shah R, Singh D. Differential responses of COPD macrophages to respiratory bacterial pathogens. ERJ Open Res 2022; 8:00044-2022. [PMID: 35923420 PMCID: PMC9339767 DOI: 10.1183/23120541.00044-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/04/2022] [Indexed: 11/08/2022] Open
Abstract
COPD patients have increased susceptibility to airway bacterial colonisation. Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae are three of the most common respiratory bacterial species in COPD. H. influenzae colonisation, but not other bacteria, in COPD patients is associated with higher sputum neutrophil counts. Alveolar macrophages are key in clearance of bacteria as well as releasing mediators to recruit and activate other immune cells in response to infection. The aim was to characterise differences in COPD macrophage responses to H. influenzae, M. catarrhalisand S. pneumoniae, focusing on release of inflammatory and chemotactic mediators, and apoptosis regulation. Lung macrophages and monocyte-derived macrophages from COPD patients and control subjects were exposed to H. influenzae, M. catarrhalisor S. pneumoniae. Cytokine secretion (tumour necrosis factor-α, interleukin (IL)-6, CXCL8, CCL5 and IL-1β) were measured by ELISA and quantitative reverse transcriptase PCR (RT-qPCR), and apoptosis genes MCL-1, BCL-2, BAX and BAK1 by RT-qPCR. Apoptosis and reactive oxygen species (ROS) release were also measured. Macrophages responded differentially to the bacterial species, with increased, prolonged production of the neutrophil chemoattractant CXCL8 in response to H. influenzae and M. catarrhalis but not S. pneumoniae. S. pneumoniae initiated macrophage apoptosis and ROS release, H. influenzae and M. catarrhalis did not and increased anti-apoptosis gene expression (BCL-2 5.5-fold and MCL-1 2.4-fold, respectively). Differential cytokine responses of macrophages to these bacterial species can explain neutrophilic airway inflammation associated with H. influenzae, but not S. pneumoniae in COPD. Furthermore, delayed macrophage apoptosis is a potential mechanism contributing to inability to clear H. influenzae. Differential cytokine responses of macrophages to Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae can explain neutrophilic airway inflammation associated with H. influenzae but not S. pneumoniae in COPDhttps://bit.ly/3950HVZ
Collapse
|
11
|
Mammen MJ, Tu C, Morris MC, Richman S, Mangione W, Falls Z, Qu J, Broderick G, Sethi S, Samudrala R. Proteomic Network Analysis of Bronchoalveolar Lavage Fluid in Ex-Smokers to Discover Implicated Protein Targets and Novel Drug Treatments for Chronic Obstructive Pulmonary Disease. Pharmaceuticals (Basel) 2022; 15:566. [PMID: 35631392 PMCID: PMC9147475 DOI: 10.3390/ph15050566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/23/2022] Open
Abstract
Bronchoalveolar lavage of the epithelial lining fluid (BALF) can sample the profound changes in the airway lumen milieu prevalent in chronic obstructive pulmonary disease (COPD). We compared the BALF proteome of ex-smokers with moderate COPD who are not in exacerbation status to non-smoking healthy control subjects and applied proteome-scale translational bioinformatics approaches to identify potential therapeutic protein targets and drugs that modulate these proteins for the treatment of COPD. Proteomic profiles of BALF were obtained from (1) never-smoker control subjects with normal lung function (n = 10) or (2) individuals with stable moderate (GOLD stage 2, FEV1 50−80% predicted, FEV1/FVC < 0.70) COPD who were ex-smokers for at least 1 year (n = 10). After identifying potential crucial hub proteins, drug−proteome interaction signatures were ranked by the computational analysis of novel drug opportunities (CANDO) platform for multiscale therapeutic discovery to identify potentially repurposable drugs. Subsequently, a literature-based knowledge graph was utilized to rank combinations of drugs that most likely ameliorate inflammatory processes. Proteomic network analysis demonstrated that 233 of the >1800 proteins identified in the BALF were significantly differentially expressed in COPD versus control. Functional annotation of the differentially expressed proteins was used to detail canonical pathways containing the differential expressed proteins. Topological network analysis demonstrated that four putative proteins act as central node proteins in COPD. The drugs with the most similar interaction signatures to approved COPD drugs were extracted with the CANDO platform. The drugs identified using CANDO were subsequently analyzed using a knowledge-based technique to determine an optimal two-drug combination that had the most appropriate effect on the central node proteins. Network analysis of the BALF proteome identified critical targets that have critical roles in modulating COPD pathogenesis, for which we identified several drugs that could be repurposed to treat COPD using a multiscale shotgun drug discovery approach.
Collapse
Affiliation(s)
- Manoj J. Mammen
- Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Biomedical Informatics, Jacobs School of Medicine and Biological Sciences, State University of New York, Buffalo, NY 14214, USA; (W.M.); (Z.F.)
| | - Chengjian Tu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA; (C.T.); (J.Q.)
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203, USA
| | - Matthew C. Morris
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY 14621, USA; (M.C.M.); (S.R.); (G.B.)
| | - Spencer Richman
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY 14621, USA; (M.C.M.); (S.R.); (G.B.)
| | - William Mangione
- Department of Biomedical Informatics, Jacobs School of Medicine and Biological Sciences, State University of New York, Buffalo, NY 14214, USA; (W.M.); (Z.F.)
| | - Zackary Falls
- Department of Biomedical Informatics, Jacobs School of Medicine and Biological Sciences, State University of New York, Buffalo, NY 14214, USA; (W.M.); (Z.F.)
| | - Jun Qu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA; (C.T.); (J.Q.)
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203, USA
| | - Gordon Broderick
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY 14621, USA; (M.C.M.); (S.R.); (G.B.)
| | - Sanjay Sethi
- WNY VA Healthcare System, Buffalo, NY 14215, USA;
- Department of Medicine, Jacobs School of Medicine and Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biological Sciences, State University of New York, Buffalo, NY 14214, USA; (W.M.); (Z.F.)
| |
Collapse
|
12
|
Fujii W, Kapellos TS, Baßler K, Händler K, Holsten L, Knoll R, Warnat-Herresthal S, Oestreich M, Hinkley ER, Hasenauer J, Pizarro C, Thiele C, Aschenbrenner AC, Ulas T, Skowasch D, Schultze JL. Alveolar macrophage transcriptomic profiling in COPD shows major lipid metabolism changes. ERJ Open Res 2021; 7:00915-2020. [PMID: 34527724 PMCID: PMC8435801 DOI: 10.1183/23120541.00915-2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/24/2021] [Indexed: 01/14/2023] Open
Abstract
Background Immune cells play a major role in the pathogenesis of COPD. Changes in the distribution and cellular functions of major immune cells, such as alveolar macrophages (AMs) and neutrophils are well known; however, their transcriptional reprogramming and contribution to the pathophysiology of COPD are still not fully understood. Method To determine changes in transcriptional reprogramming and lipid metabolism in the major immune cell type within bronchoalveolar lavage fluid, we analysed whole transcriptomes and lipidomes of sorted CD45+Lin−HLA-DR+CD66b−Autofluorescencehi AMs from controls and COPD patients. Results We observed global transcriptional reprogramming featuring a spectrum of activation states, including pro- and anti-inflammatory signatures. We further detected significant changes between COPD patients and controls in genes involved in lipid metabolism, such as fatty acid biosynthesis in GOLD2 patients. Based on these findings, assessment of a total of 202 lipid species in sorted AMs revealed changes of cholesteryl esters, monoacylglycerols and phospholipids in a disease grade-dependent manner. Conclusions Transcriptome and lipidome profiling of COPD AMs revealed GOLD grade-dependent changes, such as in cholesterol metabolism and interferon-α and γ responses. AMs from COPD patients undergo GOLD grade-specific transcriptional reprogramming and acquire a complex activation profile. Among the observed changes are gene programmes involved in lipid metabolism that translate into alterations in the AM lipidome.https://bit.ly/3sYAqgd
Collapse
Affiliation(s)
- Wataru Fujii
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Co-first authors
| | - Theodore S Kapellos
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Co-first authors
| | - Kevin Baßler
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Co-first authors
| | - Kristian Händler
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Lisa Holsten
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Rainer Knoll
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Stefanie Warnat-Herresthal
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Marie Oestreich
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Emily R Hinkley
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Jan Hasenauer
- Interdisciplinary Research Unit Mathematics and Life Sciences, Dept of Mathematics and Natural Sciences, University of Bonn, Bonn, Germany
| | - Carmen Pizarro
- Dept of Internal Medicine II, University Hospital Bonn, Section of Pneumology, Bonn, Germany
| | - Christoph Thiele
- Membrane Biochemistry, LIMES Institute, University of Bonn, Bonn, Germany
| | - Anna C Aschenbrenner
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Dept of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas Ulas
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Dirk Skowasch
- Dept of Internal Medicine II, University Hospital Bonn, Section of Pneumology, Bonn, Germany.,Co-senior authors
| | - Joachim L Schultze
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany.,Co-senior authors
| |
Collapse
|
13
|
Contribution of dipeptidyl peptidase 4 to non-typeable Haemophilus influenzae-induced lung inflammation in COPD. Clin Sci (Lond) 2021; 135:2067-2083. [PMID: 34405230 DOI: 10.1042/cs20210099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
Dipeptidyl peptidase 4 (DPP4) expression is increased in the lungs of chronic obstructive pulmonary disease (COPD). DPP4 is known to be associated with inflammation in various organs, including LPS-induced acute lung inflammation. Since non-typeable Haemophilus influenzae (NTHi) causes acute exacerbations in COPD patients, we examined the contribution of DPP4 in NTHi-induced lung inflammation in COPD. Pulmonary macrophages isolated from COPD patients showed higher expression of DPP4 than the macrophages isolated from normal subjects. In response to NTHi infection, COPD, but not normal macrophages show a further increase in the expression of DPP4. COPD macrophages also showed higher expression of IL-1β, and CCL3 responses to NTHi than normal, and treatment with DPP4 inhibitor, diprotin A attenuated this response. To examine the contribution of DPP4 in NTHi-induced lung inflammation, COPD mice were infected with NTHi, treated with diprotin A or PBS intraperitoneally, and examined for DPP4 expression, lung inflammation, and cytokine expression. Mice with COPD phenotype showed increased expression of DPP4, which increased further following NTHi infection. DPP4 expression was primarily observed in the infiltrated inflammatory cells. NTHi-infected COPD mice also showed sustained neutrophilic lung inflammation and expression of CCL3, and this was inhibited by DPP4 inhibitor. These observations indicate that enhanced expression of DPP4 in pulmonary macrophages may contribute to sustained lung inflammation in COPD following NTHi infection. Therefore, inhibition of DPP4 may reduce the severity of NTHi-induced lung inflammation in COPD.
Collapse
|
14
|
Morissette M, Godbout K, Côté A, Boulet LP. Asthma COPD overlap: Insights into cellular and molecular mechanisms. Mol Aspects Med 2021; 85:101021. [PMID: 34521557 DOI: 10.1016/j.mam.2021.101021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022]
Abstract
Although there is still no consensus on the definition of Asthma-COPD Overlap (ACO), it is generally accepted that some patients with airway disease have features of both asthma and COPD. Just as its constituents, ACO consists of different phenotypes, possibly depending on the predominance of the underlying asthma or COPD-associated pathophysiological mechanisms. The clinical picture is influenced by the development of airway inflammatory processes either eosinophilic, neutrophilic or mixed, in addition to glandular changes leading to mucus hypersecretion and a variety of other airway structural changes. Although animal models have exposed how smoking-related changes can interact with those observed in asthma, much remains to be known about their interactions in humans and the additional modulating effects of environmental exposures. There is currently no solid evidence to establish the optimal treatment of ACO but it should understandably include an avoidance of environmental triggers such as smoking and relevant allergens. The recognition and targeting of "treatable traits" following phenotyping is a pragmatic approach to select the optimal pharmacological treatment for ACO, although an association of inhaled corticosteroids and bronchodilators is always required in these patients. This association acts both as an anti-inflammatory treatment for the asthma component and as a functional antagonist for the airway remodeling features. Research should be promoted on well phenotyped subgroups of ACO patients to determine their optimal management.
Collapse
Affiliation(s)
- Mathieu Morissette
- Quebec Heart and Lung Institute - Université Laval, Canada; Department of Medicine, Université Laval, Québec, Canada.
| | - Krystelle Godbout
- Quebec Heart and Lung Institute - Université Laval, Canada; Department of Medicine, Université Laval, Québec, Canada
| | - Andréanne Côté
- Quebec Heart and Lung Institute - Université Laval, Canada; Department of Medicine, Université Laval, Québec, Canada
| | - Louis-Philippe Boulet
- Quebec Heart and Lung Institute - Université Laval, Canada; Department of Medicine, Université Laval, Québec, Canada.
| |
Collapse
|
15
|
Kotlyarov S, Kotlyarova A. Molecular Mechanisms of Lipid Metabolism Disorders in Infectious Exacerbations of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:7634. [PMID: 34299266 PMCID: PMC8308003 DOI: 10.3390/ijms22147634] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Exacerbations largely determine the character of the progression and prognosis of chronic obstructive pulmonary disease (COPD). Exacerbations are connected with changes in the microbiological landscape in the bronchi due to a violation of their immune homeostasis. Many metabolic and immune processes involved in COPD progression are associated with bacterial colonization of the bronchi. The objective of this review is the analysis of the molecular mechanisms of lipid metabolism and immune response disorders in the lungs in COPD exacerbations. The complex role of lipid metabolism disorders in the pathogenesis of some infections is only beginning to be understood, however, there are already fewer and fewer doubts even now about its significance both in the pathogenesis of infectious exacerbations of COPD and in general in the progression of the disease. It is shown that the lipid rafts of the plasma membranes of cells are involved in many processes related to the detection of pathogens, signal transduction, the penetration of pathogens into the cell. Smoking disrupts the normally proceeded processes of lipid metabolism in the lungs, which is a part of the COPD pathogenesis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
16
|
Lung macrophages drive mucus production and steroid-resistant inflammation in chronic bronchitis. Respir Res 2021; 22:172. [PMID: 34098956 PMCID: PMC8186034 DOI: 10.1186/s12931-021-01762-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/27/2021] [Indexed: 11/10/2022] Open
Abstract
Background Patients with chronic obstructive pulmonary disease (COPD) frequently suffer from chronic bronchitis (CB) and display steroid-resistant inflammation with increased sputum neutrophils and macrophages. Recently, a causal link between mucus hyper-concentration and disease progression of CB has been suggested. Methods In this study, we have evaluated the steroid sensitivity of purified, patient-derived sputum and alveolar macrophages and used a novel mechanistic cross-talk assay to examine how macrophages and bronchial epithelial cells cross-talk to regulate MUC5B production. Results We demonstrate that sputum plug macrophages isolated from COPD patients with chronic bronchitis (COPD/CB) are chronically activated and only partially respond to ex vivo corticosteroid treatment compared to alveolar macrophages isolated from lung resections. Further, we show that pseudo-stratified bronchial epithelial cells grown in air–liquid-interface are inert to direct bacterial lipopolysaccharide stimulation and that macrophages are able to relay this signal and activate the CREB/AP-1 transcription factor complex and subsequent MUC5B expression in epithelial cells through a soluble mediator. Using recombinant protein and neutralizing antibodies, we identified a key role for TNFα in this cross-talk. Conclusions For the first time, we describe ex vivo pharmacology in purified human sputum macrophages isolated from chronic bronchitis COPD patients and identify a possible basis for the steroid resistance frequently seen in this population. Our data pinpoint a critical role for chronically activated sputum macrophages in perpetuating TNFα-dependent signals driving mucus hyper-production. Targeting the chronically activated mucus plug macrophage phenotype and interfering with aberrant macrophage-epithelial cross-talk may provide a novel strategy to resolve chronic inflammatory lung disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-021-01762-4.
Collapse
|
17
|
Polverino F, Kheradmand F. COVID-19, COPD, and AECOPD: Immunological, Epidemiological, and Clinical Aspects. Front Med (Lausanne) 2021; 7:627278. [PMID: 33537336 PMCID: PMC7847987 DOI: 10.3389/fmed.2020.627278] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
The newly identified severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) causes several heterogeneous clinical conditions collectively known as Coronavirus disease-19 (COVID-19). Older patients with significant cardiovascular conditions and chronic obstructive pulmonary disease (COPD) are predisposed to a more severe disease complicated with acute respiratory distress syndrome (ARDS), which is associated with high morbidity and mortality. COPD is associated with increased susceptibility to respiratory infections, and viruses are among the top causes of acute exacerbations of COPD (AECOPD). Thus, COVID-19 could represent the ultimate cause of AECOPD. This review will examine the pathobiological processes underlying SARS-CoV-2 infection, including the effects of cigarette smoke and COPD on the immune system and vascular endothelium, and the known effects of cigarette smoke on the onset and progression of COVID-19. We will also review the epidemiological data on COVID-19 prevalence and outcome in patients with COPD and analyze the pathobiological and clinical features of SARS-CoV-2 infection in the context of other known viral causes of AECOPD. Overall, SARS-CoV-2 shares common pathobiological and clinical features with other viral agents responsible for increased morbidity, thus representing a novel cause of AECOPD with the potential for a more long-term adverse impact. Longitudinal studies aimed at COPD patients surviving COVID-19 are needed to identify therapeutic targets for SARS-CoV2 and prevent the disease's burden in this vulnerable population.
Collapse
Affiliation(s)
- Francesca Polverino
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | | |
Collapse
|
18
|
Ritchie AI, Wedzicha JA. Definition, Causes, Pathogenesis, and Consequences of Chronic Obstructive Pulmonary Disease Exacerbations. Clin Chest Med 2020; 41:421-438. [PMID: 32800196 PMCID: PMC7423341 DOI: 10.1016/j.ccm.2020.06.007] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Andrew I Ritchie
- National Heart and Lung Institute, Guy Scadding Building, Imperial College London, Dovehouse Street, London SW3 6JY, United Kingdom
| | - Jadwiga A Wedzicha
- National Heart and Lung Institute, Guy Scadding Building, Imperial College London, Dovehouse Street, London SW3 6JY, United Kingdom.
| |
Collapse
|
19
|
Olloquequi J. COVID-19 Susceptibility in chronic obstructive pulmonary disease. Eur J Clin Invest 2020; 50:e13382. [PMID: 32780415 PMCID: PMC7435530 DOI: 10.1111/eci.13382] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
Abstract
In barely nine months, the pandemic known as COVID-19 has spread over 200 countries, affecting more than 22 million people and causing over than 786 000 deaths. Elderly people and patients with previous comorbidities such as hypertension and diabetes are at an increased risk to suffer a poor prognosis after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although the same could be expected from patients with chronic obstructive pulmonary disease (COPD), current epidemiological data are conflicting. This could lead to a reduction of precautionary measures in these patients, in the context of a particularly complex global health crisis. Most COPD patients have a long history of smoking or exposure to other harmful particles or gases, capable of impairing pulmonary defences even years after the absence of exposure. Moreover, COPD is characterized by an ongoing immune dysfunction, which affects both pulmonary and systemic cellular and molecular inflammatory mediators. Consequently, increased susceptibility to viral respiratory infections have been reported in COPD, often worsened by bacterial co-infections and leading to serious clinical outcomes. The present paper is an up-to-date review that discusses the available research regarding the implications of coronavirus infection in COPD. Although validation in large studies is still needed, COPD likely increases SARS-CoV-2 susceptibility and increases COVID-19 severity. Hence, specific mechanisms to monitor and assess COPD patients should be addressed in the current pandemic.
Collapse
Affiliation(s)
- Jordi Olloquequi
- Laboratory of Cellular and Molecular PathologyFacultad de Ciencias de la SaludInstituto de Ciencias BiomédicasUniversidad Autónoma de ChileTalcaChile
| |
Collapse
|
20
|
Lee KH, Woo J, Kim J, Lee CH, Yoo CG. Cigarette smoke extract decreased basal and lipopolysaccharide-induced expression of MARCO via degradation of p300. Respirology 2020; 26:102-111. [PMID: 32512637 DOI: 10.1111/resp.13867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/15/2020] [Accepted: 04/30/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Alveolar macrophages of patients with COPD display impaired cytokine release and diminished phagocytosis. COPD exacerbations exhibit immune dysfunction towards the respiratory pathogens. CS and CSE were reported to aggravate bacterial infections in COPD patients. METHODS MARCO is highly expressed in lungs and is involved in pathogen clearance. We investigated the effect of CSE on MARCO expression and its regulatory mechanisms. After relevant siRNA transfection and treatment with CSE and/or LPS, we measured the levels of MARCO by q-RT PCR, immunoblotting and flow cytometry. Immunofluorescence staining and immunoprecipitation were used to evaluate the mechanism. RESULTS CSE decreased LPS-induced expression of MARCO mRNA and protein. Upregulation of MARCO by LPS was Nrf2-dependent. Nrf2 knockdown significantly suppressed LPS-induced increase in MARCO transcripts. CSE did not block nuclear translocation of Nrf2 in LPS-treated cells, but rather CSE itself strongly accumulated Nrf2 in the nucleus through the degradation of its cytoplasmic inhibitor, KEAP1. However, CSE markedly suppressed LPS-induced Nrf2 acetylation. Histone acetyltransferase p300/CBP directly acetylates Nrf2, which augments promoter-specific DNA binding of Nrf2. Our results reveal CSE-induced polyubiquitinylation and subsequent degradation of p300 via the proteasome. Pretreatment with proteasome inhibitors completely blocked CSE-induced degradation of p300 and suppression of MARCO expression. CONCLUSION These findings suggest that CSE decreases MARCO expression via the proteasomal degradation of p300 in macrophages, which may be in part responsible for impaired bacterial phagocytosis.
Collapse
Affiliation(s)
- Kyoung-Hee Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jisu Woo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jiyeon Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Chang-Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Chul-Gyu Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
21
|
Wang Y, Hu X, Su MC, Wang YW, Che GW. Postoperative Elevations of Neutrophil-to-lymphocyte and Platelet-to-lymphocyte Ratios Predict Postoperative Pulmonary Complications in Non-small Cell Lung Cancer Patients: A Retrospective Cohort Study. Curr Med Sci 2020; 40:339-347. [PMID: 32337695 DOI: 10.1007/s11596-020-2189-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 12/06/2019] [Indexed: 02/05/2023]
Abstract
The neutrophil-to-lymphocyte ratio (NLR) and the platelet-to-lymphocyte ratio (PLR) are found to increase in patients who develop postoperative complications (PCs). The aim of the present study was to explore the association of the perioperative changes of NLR (ΔNLR) and PLR (ΔPLR) with PCs in non-small cell lung cancer (NSCLC). Clinical data of 509 patients, who were diagnosed with NSCLC and underwent thoracoscopic radical resection between January 1, 2014 and July 31, 2016 at the Department of Thoracic Surgery, West China Hospital, were reviewed. Patients were divided into PC and non-PC groups, and clinical characteristics including ΔNLR and ΔPLR were compared between them. The optimal cut-off values of ΔNLR and ΔPLR were determined by receiver operating characteristics (ROC) curves and patients were assigned to high ΔNLR/ΔPLR and low ΔNLR/ΔPLR groups in terms of the cut-off values. Clinicopathologic characteristics and the incidence of different PCs were compared between the dichotomized groups. Univariate and multivariate logistic regression analyses were performed to identify the independent risk factors for PCs. The results showed that the ΔNLR and ΔPLR in the PC group were signifcantly higher than those in the non-PC group (P<0.001 for both). The optimal cutoff values of ΔNLR and ΔPLR were 6.6 and 49, respectively. Patients with ΔNLR>6.6 or ΔPLR>49 were more likely to experience postoperative pulmonary complications (PPCs) (P<0.001 for both). Multivariate logistic regression analysis demonstrated that smoking [odds ratio (OR): 2.450, 95% confdence interval (95% CI): 1.084-5.535, P=0.031)], tumor size (OR: 1.225, 95% CI: 1.047-1.433, P=0.011), ΔNLR>6.6 (OR: 2.453, 95% CI: 1.224-4.914, P=0.011) and ΔPLR>49 (OR: 2.231, 95% CI: 1.182-4.212, P=0.013) were predictive of PPCs. In conclusion, the ΔNLR and ΔPLR may act as novel predictors for PPCs in NSCLC patients undergoing thoracoscopic radical lung resection, and patients with ΔNLR>6.6 or ΔPLR>49 should be treated more actively to prevent or reduce PPCs.
Collapse
Affiliation(s)
- Yan Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xu Hu
- West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Meng-Chan Su
- West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Yan-Wen Wang
- West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Guo-Wei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
22
|
Finney LJ, Belchamber KBR, Fenwick PS, Kemp SV, Edwards MR, Mallia P, Donaldson G, Johnston SL, Donnelly LE, Wedzicha JA. Human Rhinovirus Impairs the Innate Immune Response to Bacteria in Alveolar Macrophages in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2020; 199:1496-1507. [PMID: 30562053 DOI: 10.1164/rccm.201806-1095oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rationale: Human rhinovirus (HRV) is a common cause of chronic obstructive pulmonary disease (COPD) exacerbations. Secondary bacterial infection is associated with more severe symptoms and delayed recovery. Alveolar macrophages clear bacteria from the lung and maintain lung homeostasis through cytokine secretion. These processes are defective in COPD. The effect of HRV on macrophage function is unknown. Objectives: To investigate the effect of HRV on phagocytosis and cytokine response to bacteria by alveolar macrophages and monocyte-derived macrophages (MDM) in COPD and healthy control subjects. Methods: Alveolar macrophages were obtained by bronchoscopy and MDM by adherence. Macrophages were exposed to HRV16 (multiplicity of infection 5), polyinosinic:polycytidylic acid (poly I:C) 30 μg/ml, IFN-β 10 μg/ml, IFN-γ 10 μg/ml, or medium control for 24 hours. Phagocytosis of fluorescently labeled Haemophilus influenzae or Streptococcus pneumoniae was assessed by fluorimetry. CXCL8 (IL-8), IL-6, TNF-α (tumor necrosis factor-α), and IL-10 release was measured by ELISA. Measurements and Main Results: HRV significantly impaired phagocytosis of H. influenzae by 23% in MDM (n = 37; P = 0.004) and 18% in alveolar macrophages (n = 20; P < 0.0001) in COPD. HRV also significantly reduced phagocytosis of S. pneumoniae by 33% in COPD MDM (n = 20; P = 0.0192). There was no effect in healthy control subjects. Phagocytosis of H. influenzae was also impaired by poly I:C but not IFN-β or IFN-γ in COPD MDM. HRV significantly reduced cytokine responses to H. influenzae. The IL-10 response to H. influenzae was significantly impaired by poly I:C, IFN-β, and IFN-γ in COPD cells. Conclusions: HRV impairs phagocytosis of bacteria in COPD, which may lead to an outgrowth of bacteria. HRV also impairs cytokine responses to bacteria via the TLR3/IFN pathway, which may prevent resolution of inflammation leading to prolonged exacerbations in COPD.
Collapse
Affiliation(s)
- Lydia J Finney
- 1 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Kylie B R Belchamber
- 1 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Peter S Fenwick
- 1 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Samuel V Kemp
- 1 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and.,2 Royal Brompton Hospital, London, United Kingdom
| | - Michael R Edwards
- 1 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Patrick Mallia
- 1 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Gavin Donaldson
- 1 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Sebastian L Johnston
- 1 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Louise E Donnelly
- 1 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Jadwiga A Wedzicha
- 1 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| |
Collapse
|
23
|
Jiang S, Mohammadtursun N, Qiu J, Li Q, Sun J, Dong J. Recent advances on animal models related to chronic obstructive pulmonary disease. TRADITIONAL MEDICINE AND MODERN MEDICINE 2019. [DOI: 10.1142/s2575900019300017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) has become an important public health problem in the world. According to reports, COPD ranks fourth in the global cause of death, causing a serious economic burden on society. The pathogenesis of COPD is complex, making it difficult to simulate the pathological changes and clinical features of COPD. Moreover, the COPD animal model has an irreplaceable role in the study of etiology, pathology and treatment. It is worth noting that the risk factors for chronic obstructive pulmonary disease persist, and the economic burden of global chronic obstructive pulmonary disease is expected to continue to increase in the coming decades. Establishing a standardized, a clinically realistic COPD animal model has always been a research direction that scholars are keen on. Therefore, it is essential to establish an economical animal model. The establishment of a suitable animal model can accurately simulate the pathological features of human chronic obstructive pulmonary disease and help to develop effective interventions and treatments in a short period of time. This review integrates the experimental animal species selected in the animal models used in COPD studies. Subsequently, different methods and mechanisms for establishing animal models were summarized according to different modeling factors. Finally, the criteria for evaluating existing animal models are discussed. It is hoped that the summary of this paper will guide the establishment of relevant animal models for future COPD research.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Nabjian Mohammadtursun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
- College of Xinjiang Uyghur Medicine, Hotan, Xinjiang, P. R. China
| | - Jian Qiu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Qiuping Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| |
Collapse
|
24
|
New therapeutic targets for the prevention of infectious acute exacerbations of COPD: role of epithelial adhesion molecules and inflammatory pathways. Clin Sci (Lond) 2019; 133:1663-1703. [PMID: 31346069 DOI: 10.1042/cs20181009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022]
Abstract
Chronic respiratory diseases are among the leading causes of mortality worldwide, with the major contributor, chronic obstructive pulmonary disease (COPD) accounting for approximately 3 million deaths annually. Frequent acute exacerbations (AEs) of COPD (AECOPD) drive clinical and functional decline in COPD and are associated with accelerated loss of lung function, increased mortality, decreased health-related quality of life and significant economic costs. Infections with a small subgroup of pathogens precipitate the majority of AEs and consequently constitute a significant comorbidity in COPD. However, current pharmacological interventions are ineffective in preventing infectious exacerbations and their treatment is compromised by the rapid development of antibiotic resistance. Thus, alternative preventative therapies need to be considered. Pathogen adherence to the pulmonary epithelium through host receptors is the prerequisite step for invasion and subsequent infection of surrounding structures. Thus, disruption of bacterial-host cell interactions with receptor antagonists or modulation of the ensuing inflammatory profile present attractive avenues for therapeutic development. This review explores key mediators of pathogen-host interactions that may offer new therapeutic targets with the potential to prevent viral/bacterial-mediated AECOPD. There are several conceptual and methodological hurdles hampering the development of new therapies that require further research and resolution.
Collapse
|
25
|
Provost KA, Smith M, Miller-Larsson A, Gudleski GD, Sethi S. Bacterial regulation of macrophage bacterial recognition receptors in COPD are differentially modified by budesonide and fluticasone propionate. PLoS One 2019; 14:e0207675. [PMID: 30677037 PMCID: PMC6345465 DOI: 10.1371/journal.pone.0207675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/05/2018] [Indexed: 11/18/2022] Open
Abstract
Rationale Patients with COPD have an increased risk for community-acquired pneumonia, which is further increased by inhaled corticosteroids. Objective To assess effects of the corticosteroids, budesonide and fluticasone propionate, on macrophage bacterial responses in COPD. Methods Monocyte-derived macrophages (MDMs) generated from blood monocytes from 10 non-smoker controls (NoS), 20 smokers without COPD (Sm), and 40 subjects with moderate to severe COPD (21 ex-smokers (COPD-ES) and 19 current smokers (COPD-S)) were pre-treated with budesonide or fluticasone (10 nM—1 μM) and challenged with live non-typeable Haemophilus influenzae (NTHI) or Streptococcus pneumoniae (SP). Cell surface bacterial recognition receptor expression (flow cytometry) and cytokine release (bead array) were analyzed. Results NTHI and SP reduced bacterial recognition receptor expression on MDMs from COPD and Sm, but not NoS (except TLR4). SR-AI and MARCO were reduced by both NTHI and SP, whereas other receptors by either NTHI or SP. Among COPD subjects, COPD-ES demonstrated a greater number of reductions as compared to COPD-S. NTHI reduced SR-AI, MARCO, CD11b, CD35 and CD206 in COPD-ES while only SR-AI and CD11b in COPD-S. SP reduced SRA-1, CD1d, TLR2 and TLR4 in both COPD-ES and COPD-S, and reduced MARCO and CD93 only in COPD-ES. All receptors reduced in COPD by NTHI and most by SP, were also reduced in Sm. Budesonide counteracted the receptor reductions induced by both NTHI (CD206 p = 0.03, MARCO p = 0.08) and SP (SR-AI p = 0.02) in COPD-ES. Fluticasone counteracted only SP-induced reductions in TLR2 (p = 0.008 COPD-ES and p = 0.04 COPD-S) and TLR4 (p = 0.02 COPD-ES). Cytokine release was equivalently reduced by both corticosteroids. Conclusions Reduction in macrophage bacterial recognition receptors during bacterial exposure could provide a mechanism for the increased pneumonia risk in COPD. Differential effects of budesonide and fluticasone propionate on macrophage bacterial recognition receptor expression may contribute to the higher pneumonia incidence reported with fluticasone propionate.
Collapse
Affiliation(s)
- Karin A. Provost
- Veterans Health Administration, Veterans Affairs Western New York Healthcare System at Buffalo, Division of Pulmonary, Critical Care and Sleep Medicine, Buffalo, New York, United States of America
- University at Buffalo, State University of New York, Jacobs School of Medicine and Biomedical Sciences, Division of Pulmonary, Critical Care and Sleep Medicine, Buffalo, New York, United States of America
- * E-mail:
| | - Miyuki Smith
- Veterans Health Administration, Veterans Affairs Western New York Healthcare System at Buffalo, Division of Pulmonary, Critical Care and Sleep Medicine, Buffalo, New York, United States of America
| | | | - Gregory D. Gudleski
- University at Buffalo, State University of New York, Jacobs School of Medicine and Biomedical Sciences, Department of Medicine, Buffalo, New York, United States of America
| | - Sanjay Sethi
- Veterans Health Administration, Veterans Affairs Western New York Healthcare System at Buffalo, Division of Pulmonary, Critical Care and Sleep Medicine, Buffalo, New York, United States of America
- University at Buffalo, State University of New York, Jacobs School of Medicine and Biomedical Sciences, Division of Pulmonary, Critical Care and Sleep Medicine, Buffalo, New York, United States of America
| |
Collapse
|
26
|
Sidhaye VK, Holbrook JT, Burke A, Sudini KR, Sethi S, Criner GJ, Fahey JW, Berenson CS, Jacobs MR, Thimmulappa R, Wise RA, Biswal S. Compartmentalization of anti-oxidant and anti-inflammatory gene expression in current and former smokers with COPD. Respir Res 2019; 20:190. [PMID: 31429757 PMCID: PMC6700818 DOI: 10.1186/s12931-019-1164-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Patients with chronic obstructive pulmonary disease (COPD) have high oxidative stress associated with the severity of the disease. Nuclear factor erythroid-2 related factor 2 (Nrf2)-directed stress response plays a critical role in the protection of lung cells to oxidative stress by upregulating antioxidant genes in response to tobacco smoke. There is a critical gap in our knowledge about Nrf-2 regulated genes in active smokers and former-smokers with COPD in different cell types from of lungs and surrogate peripheral tissues. METHODS We compared the expression of Nrf2 and six of its target genes in alveolar macrophages, nasal, and bronchial epithelium and peripheral blood mononuclear cells (PBMCs) in current and former smokers with COPD. We compared cell-type specific of Nrf2 and its target genes as well as markers of oxidative and inflammatory stress. RESULTS We enrolled 89 patients; expression all Nrf2 target gene measured were significantly higher in the bronchial epithelium from smokers compared to non-smokers. None were elevated in alveolar macrophages and only one was elevated in each of the other compartments. CONCLUSION Bronchial epithelium is the most responsive tissue for transcriptional activation of Nrf2 target genes in active smokers compared to former-smokers with COPD that correlated with oxidative stress and inflammatory markers. There were no consistent trends in gene expression in other cell types tested. TRIAL REGISTRATION Clinicaltrials.gov : NCT01335971.
Collapse
Affiliation(s)
- Venkataramana K. Sidhaye
- 0000 0001 2171 9311grid.21107.35School of Medicine, Johns Hopkins University, 615 N. Wolfe St., E7622, Baltimore, MD 21205 USA ,0000 0001 2171 9311grid.21107.35Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., E7622, Baltimore, MD 21205 USA
| | - Janet T. Holbrook
- 0000 0001 2171 9311grid.21107.35Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., E7622, Baltimore, MD 21205 USA
| | - Alyce Burke
- 0000 0001 2171 9311grid.21107.35Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., E7622, Baltimore, MD 21205 USA
| | - Kuladeep R. Sudini
- 0000 0001 2171 9311grid.21107.35Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., E7622, Baltimore, MD 21205 USA
| | - Sanjay Sethi
- 0000 0004 1936 9887grid.273335.3University at Buffalo, SUNY, and VA WNY Healthcare System, Buffalo, NY USA
| | - Gerard J. Criner
- 0000 0001 2248 3398grid.264727.2Lewis Katz School of Medicine at Temple University, Philadelphia, PA USA
| | - Jed W. Fahey
- 0000 0001 2171 9311grid.21107.35School of Medicine, Johns Hopkins University, 615 N. Wolfe St., E7622, Baltimore, MD 21205 USA ,0000 0001 2171 9311grid.21107.35Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., E7622, Baltimore, MD 21205 USA
| | - Charles S. Berenson
- 0000 0004 1936 9887grid.273335.3University at Buffalo, SUNY, and VA WNY Healthcare System, Buffalo, NY USA
| | - Michael R. Jacobs
- 0000 0001 2248 3398grid.264727.2Lewis Katz School of Medicine at Temple University, Philadelphia, PA USA
| | - Rajesh Thimmulappa
- 0000 0004 1765 9514grid.414778.9JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, India
| | - Robert A. Wise
- 0000 0001 2171 9311grid.21107.35School of Medicine, Johns Hopkins University, 615 N. Wolfe St., E7622, Baltimore, MD 21205 USA
| | - Shyam Biswal
- 0000 0001 2171 9311grid.21107.35Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., E7622, Baltimore, MD 21205 USA
| |
Collapse
|
27
|
de Groot LES, van der Veen TA, Martinez FO, Hamann J, Lutter R, Melgert BN. Oxidative stress and macrophages: driving forces behind exacerbations of asthma and chronic obstructive pulmonary disease? Am J Physiol Lung Cell Mol Physiol 2018; 316:L369-L384. [PMID: 30520687 DOI: 10.1152/ajplung.00456.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress is a common feature of obstructive airway diseases like asthma and chronic obstructive pulmonary disease (COPD). Lung macrophages are key innate immune cells that can generate oxidants and are known to display aberrant polarization patterns and defective phagocytic responses in these diseases. Whether these characteristics are linked in one way or another and whether they contribute to the onset and severity of exacerbations in asthma and COPD remain poorly understood. Insight into oxidative stress, macrophages, and their interactions may be important in fully understanding acute worsening of lung disease. This review therefore highlights the current state of the art regarding the role of oxidative stress and macrophages in exacerbations of asthma and COPD. It shows that oxidative stress can attenuate macrophage function, which may result in impaired responses toward exacerbating triggers and may contribute to exaggerated inflammation in the airways.
Collapse
Affiliation(s)
- Linsey E S de Groot
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam , Amsterdam , The Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam , Amsterdam , The Netherlands
| | - T Anienke van der Veen
- Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute for Pharmacy, University of Groningen , Groningen , The Netherlands.,Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease, University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Fernando O Martinez
- Department of Biochemical Sciences, University of Surrey , Guildford , United Kingdom
| | - Jörg Hamann
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam , Amsterdam , The Netherlands
| | - René Lutter
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam , Amsterdam , The Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam , Amsterdam , The Netherlands
| | - Barbro N Melgert
- Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute for Pharmacy, University of Groningen , Groningen , The Netherlands.,Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease, University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
28
|
Su YC, Jalalvand F, Thegerström J, Riesbeck K. The Interplay Between Immune Response and Bacterial Infection in COPD: Focus Upon Non-typeable Haemophilus influenzae. Front Immunol 2018; 9:2530. [PMID: 30455693 PMCID: PMC6230626 DOI: 10.3389/fimmu.2018.02530] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating respiratory disease and one of the leading causes of morbidity and mortality worldwide. It is characterized by persistent respiratory symptoms and airflow limitation due to abnormalities in the lower airway following consistent exposure to noxious particles or gases. Acute exacerbations of COPD (AECOPD) are characterized by increased cough, purulent sputum production, and dyspnea. The AECOPD is mostly associated with infection caused by common cold viruses or bacteria, or co-infections. Chronic and persistent infection by non-typeable Haemophilus influenzae (NTHi), a Gram-negative coccobacillus, contributes to almost half of the infective exacerbations caused by bacteria. This is supported by reports that NTHi is commonly isolated in the sputum from COPD patients during exacerbations. Persistent colonization of NTHi in the lower airway requires a plethora of phenotypic adaptation and virulent mechanisms that are developed over time to cope with changing environmental pressures in the airway such as host immuno-inflammatory response. Chronic inhalation of noxious irritants in COPD causes a changed balance in the lung microbiome, abnormal inflammatory response, and an impaired airway immune system. These conditions significantly provide an opportunistic platform for NTHi colonization and infection resulting in a "vicious circle." Episodes of large inflammation as the consequences of multiple interactions between airway immune cells and NTHi, accumulatively contribute to COPD exacerbations and may result in worsening of the clinical status. In this review, we discuss in detail the interplay and crosstalk between airway immune residents and NTHi, and their effect in AECOPD for better understanding of NTHi pathogenesis in COPD patients.
Collapse
Affiliation(s)
- Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Farshid Jalalvand
- Department of Biology, Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - John Thegerström
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
29
|
Acute Lung Injury in Response to Intratracheal Instillation of Lipopolysaccharide in an Animal Model of Emphysema Induced by Elastase. Inflammation 2018; 41:174-182. [PMID: 28975419 DOI: 10.1007/s10753-017-0675-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The response of lungs with emphysema to an acute lung injury (ALI) remains unclear. This study compared the lung response to intratracheal instillation of lipopolysaccharide (LPS) in rats with and without emphysema. Twenty-four Wistar rats were randomized to four groups: control group (C-G), ALI group (ALI-G), emphysema group (E-G), emphysema and ALI group (E-ALI-G). Euthanasia and the following analysis were performed 24 h after ALI induction: lung histology, bronchoalveolar lavage (BAL), mRNA expression of inflammatory mediators, and blood gas measures. The histological analysis showed that animals of ALI-G (0.55 ± 0.15) and E-ALI-G (0.69 ± 0.08) had a higher ALI score compared to C-G (0.12 ± 0.04) and E-G (0.16 ± 0.04) (p < 0.05). The analysis of each component of the score demonstrated that ALI-G and E-ALI-G had greater alveolar and interstitial neutrophil infiltration, as well as greater amount of alveolar proteinaceous debris. Comparing the two groups that received LPS, there was a trend of higher ALI in the E-ALI-G, specially due to a higher neutrophil infiltration in the alveolar spaces and a higher septal thickening. Total cell count (E-G = 3.09 ± 0.83; ALI-G = 4.45 ± 1.9; E-ALI-G = 5.9 ± 2.1; C-G = 0.73 ± 0.37 × 105) and neutrophil count (E-G = 0.69 ± 0.35; ALI-G = 2.53 ± 1.09; E-ALI-G = 3.86 ± 1.4; C-G = 0.09 ± 0.07 × 105) in the BAL were higher in the groups E-G, ALI-G, and E-ALI-G when compared to C-G (p < 0.05). The IL-6, TNF-α, and CXCL2 mRNA expressions were higher in the animals that received LPS (ALI-G and E-ALI-G) compared to the C-G and E-G (p < 0.05). No statistically significant difference was observed in the BAL cellularity and in the expression of inflammatory mediators between the ALI-G and the E-ALI-G. The severity of ALI in response to intratracheal instillation of LPS did not show difference in rats with and without intratracheal-induced emphysema.
Collapse
|
30
|
Bewley MA, Budd RC, Ryan E, Cole J, Collini P, Marshall J, Kolsum U, Beech G, Emes RD, Tcherniaeva I, Berbers GAM, Walmsley SR, Donaldson G, Wedzicha JA, Kilty I, Rumsey W, Sanchez Y, Brightling CE, Donnelly LE, Barnes PJ, Singh D, Whyte MKB, Dockrell DH. Opsonic Phagocytosis in Chronic Obstructive Pulmonary Disease Is Enhanced by Nrf2 Agonists. Am J Respir Crit Care Med 2018; 198:739-750. [PMID: 29547002 PMCID: PMC6222469 DOI: 10.1164/rccm.201705-0903oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 03/14/2018] [Indexed: 01/01/2023] Open
Abstract
RATIONALE Previous studies have identified defects in bacterial phagocytosis by alveolar macrophages (AMs) in patients with chronic obstructive pulmonary disease (COPD), but the mechanisms and clinical consequences remain incompletely defined. OBJECTIVES To examine the effect of COPD on AM phagocytic responses and identify the mechanisms, clinical consequences, and potential for therapeutic manipulation of these defects. METHODS We isolated AMs and monocyte-derived macrophages (MDMs) from a cohort of patients with COPD and control subjects within the Medical Research Council COPDMAP consortium and measured phagocytosis of bacteria in relation to opsonic conditions and clinical features. MEASUREMENTS AND MAIN RESULTS COPD AMs and MDMs have impaired phagocytosis of Streptococcus pneumoniae. COPD AMs have a selective defect in uptake of opsonized bacteria, despite the presence of antipneumococcal antibodies in BAL, not observed in MDMs or healthy donor AMs. AM defects in phagocytosis in COPD are significantly associated with exacerbation frequency, isolation of pathogenic bacteria, and health-related quality-of-life scores. Bacterial binding and initial intracellular killing of opsonized bacteria in COPD AMs was not reduced. COPD AMs have reduced transcriptional responses to opsonized bacteria, such as cellular stress responses that include transcriptional modules involving antioxidant defenses and Nrf2 (nuclear factor erythroid 2-related factor 2)-regulated genes. Agonists of the cytoprotective transcription factor Nrf2 (sulforaphane and compound 7) reverse defects in phagocytosis of S. pneumoniae and nontypeable Haemophilus influenzae by COPD AMs. CONCLUSIONS Patients with COPD have clinically relevant defects in opsonic phagocytosis by AMs, associated with impaired transcriptional responses to cellular stress, which are reversed by therapeutic targeting with Nrf2 agonists.
Collapse
Affiliation(s)
- Martin A Bewley
- 1 Department of Infection, Immunity and Cardiovascular Disease and
- 2 The Florey Institute for Host-Pathogen Interactions, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Richard C Budd
- 1 Department of Infection, Immunity and Cardiovascular Disease and
- 2 The Florey Institute for Host-Pathogen Interactions, University of Sheffield Medical School, Sheffield, United Kingdom
- 3 Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Eilise Ryan
- 4 Department of Respiratory Medicine
- 5 MRC Centre for Inflammation Research, and
| | - Joby Cole
- 1 Department of Infection, Immunity and Cardiovascular Disease and
- 2 The Florey Institute for Host-Pathogen Interactions, University of Sheffield Medical School, Sheffield, United Kingdom
- 3 Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Paul Collini
- 1 Department of Infection, Immunity and Cardiovascular Disease and
- 2 The Florey Institute for Host-Pathogen Interactions, University of Sheffield Medical School, Sheffield, United Kingdom
- 3 Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Jennifer Marshall
- 5 MRC Centre for Inflammation Research, and
- 6 Department of Infection Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Umme Kolsum
- 7 Medicines Evaluation Unit, University of Manchester, Manchester, United Kingdom
- 8 University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Gussie Beech
- 7 Medicines Evaluation Unit, University of Manchester, Manchester, United Kingdom
- 8 University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Richard D Emes
- 9 School of Veterinary Medicine and Science and
- 10 Advanced Data Analysis Centre, University of Nottingham, United Kingdom
| | - Irina Tcherniaeva
- 11 Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Utrecht, the Netherlands
| | - Guy A M Berbers
- 11 Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Utrecht, the Netherlands
| | - Sarah R Walmsley
- 4 Department of Respiratory Medicine
- 5 MRC Centre for Inflammation Research, and
| | - Gavin Donaldson
- 12 National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jadwiga A Wedzicha
- 12 National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Iain Kilty
- 13 Pfizer Inc., Cambridge, Massachusetts
| | - William Rumsey
- 14 Stress and Repair Discovery Performance Unit, Respiratory Therapy Area, GSK, King of Prussia, Pennsylvania; and
| | - Yolanda Sanchez
- 14 Stress and Repair Discovery Performance Unit, Respiratory Therapy Area, GSK, King of Prussia, Pennsylvania; and
| | | | - Louise E Donnelly
- 12 National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Peter J Barnes
- 12 National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Dave Singh
- 7 Medicines Evaluation Unit, University of Manchester, Manchester, United Kingdom
- 8 University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Moira K B Whyte
- 4 Department of Respiratory Medicine
- 5 MRC Centre for Inflammation Research, and
| | - David H Dockrell
- 5 MRC Centre for Inflammation Research, and
- 6 Department of Infection Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
31
|
Sidhaye VK, Biswal S. Chronic Obstructive Pulmonary Disease: Abandoning the "Streetlight Effect". Am J Respir Crit Care Med 2018; 198:697-698. [PMID: 29648881 PMCID: PMC6222464 DOI: 10.1164/rccm.201803-0531ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
32
|
Estirado C, Ceccato A, Guerrero M, Huerta A, Cilloniz C, Vilaró O, Gabarrús A, Gea J, Crisafulli E, Soler N, Torres A. Microorganisms resistant to conventional antimicrobials in acute exacerbations of chronic obstructive pulmonary disease. Respir Res 2018; 19:119. [PMID: 29907113 PMCID: PMC6003174 DOI: 10.1186/s12931-018-0820-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/31/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Antimicrobial treatment for acute exacerbations of chronic obstructive pulmonary disease (AECOPD) remains controversial. In some cases AECOPD are caused by microorganisms that are resistant to treatments recommended by guidelines. Our aims were: 1) identify the risk factors associated with infection by microorganisms resistant to conventional treatment (MRCT), 2) Compare the clinical characteristics and outcomes of patients with AECOPD resulting from MRCT against those with AECOPD from other causes. METHODS We prospective analysed a cohort of patients admitted with severe AECOPD (2009 to 2015) who were assigned to three groups: patients with MRCT (those patients with germs resistant to antibiotics recommended in guidelines), patients with microorganisms sensitive to conventional antimicrobial treatment (MSCT), and patients with negative microbiology results who had not previously received antibiotics. Multinomial logistic regression analyses were used to examine the associations between microbial aetiology groups and risk factors. The association between LOS and risk factors was also tested in simple and multiple analyses, and similar inclusion criteria were applied for the linear regression analysis. RESULTS Of the 451 patients admitted, 195 patients (43%) were included. Respiratory cultures were positive in 86(44%) and negative in 109(56%). MRCT were isolated in 34 cases (40%) and MSCT in 52 (60%). Patients with MRCT had more AECOPD in the previous year, received more antibiotic treatment in the previous three months, had more severe disease, higher dyspnoea and a positive respiratory culture in the previous year (mainly for Pseudomonas aeruginosa). The following conditions were independent factors for MRCT isolation: non-current smoker (odds ratio [OR] 4.19 [95% confidence interval [CI] 1.29-13.67], p = 0.017), ≥ 2 AECOPD or ≥ 1 admission for AECOPD in the previous year (OR 4.13 [95% CI 1.52-11.17], p = 0.005), C-reactive protein < 5 mg/dL; (OR 3.58 [95% CI 1.41-9.07], p = 0.007). Mortality rates were comparable at 30-days, one year and 3 years; however, patients in the MRCT group had longer hospital stays. CONCLUSION In conclusion, there are risk factors for resistant germs in AECOPD; however, the presence of these germs does not increase mortality. Patients with isolation of MRCT had longer length of stay.
Collapse
Affiliation(s)
- Cristina Estirado
- Pulmonology Department, Hospital del Mar-IMIM. CEXS, Universitat Pompeu Fabra, CIBERES, ISCiii, Barcelona, Spain
| | - Adrian Ceccato
- Pneumology Department, Respiratory Institute (ICR), Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), SGR 911- Ciber de Enfermedades Respiratorias (CIBERES), ICREA Academia, Barcelona, Spain
| | - Monica Guerrero
- Pneumology Department, Respiratory Institute (ICR), Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), SGR 911- Ciber de Enfermedades Respiratorias (CIBERES), ICREA Academia, Barcelona, Spain
| | - Arturo Huerta
- Pneumology Department, Respiratory Institute (ICR), Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), SGR 911- Ciber de Enfermedades Respiratorias (CIBERES), ICREA Academia, Barcelona, Spain
| | - Catia Cilloniz
- Pneumology Department, Respiratory Institute (ICR), Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), SGR 911- Ciber de Enfermedades Respiratorias (CIBERES), ICREA Academia, Barcelona, Spain
| | - Olivia Vilaró
- Pneumology Department, Respiratory Institute (ICR), Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), SGR 911- Ciber de Enfermedades Respiratorias (CIBERES), ICREA Academia, Barcelona, Spain
| | - Albert Gabarrús
- Pneumology Department, Respiratory Institute (ICR), Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), SGR 911- Ciber de Enfermedades Respiratorias (CIBERES), ICREA Academia, Barcelona, Spain
| | - Joaquim Gea
- Pulmonology Department, Hospital del Mar-IMIM. CEXS, Universitat Pompeu Fabra, CIBERES, ISCiii, Barcelona, Spain
| | - Ernesto Crisafulli
- Respiratory and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Nestor Soler
- Pneumology Department, Respiratory Institute (ICR), Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), SGR 911- Ciber de Enfermedades Respiratorias (CIBERES), ICREA Academia, Barcelona, Spain
| | - Antoni Torres
- Pneumology Department, Respiratory Institute (ICR), Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), SGR 911- Ciber de Enfermedades Respiratorias (CIBERES), ICREA Academia, Barcelona, Spain. .,Department of Pneumology, Hospital Clinic of Barcelona, Villarroel 140, 08036, Barcelona, Spain.
| |
Collapse
|
33
|
Di Padova F, Quesniaux VFJ, Ryffel B. MyD88 as a therapeutic target for inflammatory lung diseases. Expert Opin Ther Targets 2018; 22:401-408. [PMID: 29658361 DOI: 10.1080/14728222.2018.1464139] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Myeloid differentiation primary response protein 88 (MyD88) is a critical adaptor protein involved in Toll-like and IL-1 receptor family signaling controlling innate immune responses and inflammation. Genetic deletion of MyD88 function results in profound suppression of inflammation and reduced resistance of the host to pathogens indicating non-redundant roles of MyD88. The TIR domain is critical for MyD88 dimerization and signaling for TLR and IL-1R family receptor. Areas covered: Emerging evidence suggests that chemical disruption of the TIR domain attenuates cell activation and inhibits in vivo MyD88-dependent inflammation. We review the development of MyD88 dimerization disruptors as a novel therapeutic approach of respiratory diseases with a focus on COPD. Expert opinion: There is a proof of concept that therapeutic targeting of MyD88 is feasible and first preclinical data are highly promising. This opens a great opportunity to treat exacerbations of COPD and other chronic respiratory diseases. However, extensive preclinical investigations and risk analyses are required with carefully evaluation of reduced host resistance and opportunistic infections.
Collapse
Affiliation(s)
| | - Valerie F J Quesniaux
- b Laboratory of experimental and molecular immunology and neurogenetics (INEM) , UMR 7355 CNRS-University of Orleans , Orleans , France
| | - Bernhard Ryffel
- b Laboratory of experimental and molecular immunology and neurogenetics (INEM) , UMR 7355 CNRS-University of Orleans , Orleans , France.,c IDM, Institute of Infectious Disease and Molecular Medicine , University of Cape Town , Cape Town , RSA
| |
Collapse
|
34
|
De Rose V, Molloy K, Gohy S, Pilette C, Greene CM. Airway Epithelium Dysfunction in Cystic Fibrosis and COPD. Mediators Inflamm 2018; 2018:1309746. [PMID: 29849481 PMCID: PMC5911336 DOI: 10.1155/2018/1309746] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/15/2018] [Accepted: 02/01/2018] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis is a genetic disease caused by mutations in the CFTR gene, whereas chronic obstructive pulmonary disease (COPD) is mainly caused by environmental factors (mostly cigarette smoking) on a genetically susceptible background. Although the etiology and pathogenesis of these diseases are different, both are associated with progressive airflow obstruction, airway neutrophilic inflammation, and recurrent exacerbations, suggesting common mechanisms. The airway epithelium plays a crucial role in maintaining normal airway functions. Major molecular and morphologic changes occur in the airway epithelium in both CF and COPD, and growing evidence suggests that airway epithelial dysfunction is involved in disease initiation and progression in both diseases. Structural and functional abnormalities in both airway and alveolar epithelium have a relevant impact on alteration of host defences, immune/inflammatory response, and the repair process leading to progressive lung damage and impaired lung function. In this review, we address the evidence for a critical role of dysfunctional airway epithelial cells in chronic airway inflammation and remodelling in CF and COPD, highlighting the common mechanisms involved in the epithelial dysfunction as well as the similarities and differences of the two diseases.
Collapse
Affiliation(s)
- Virginia De Rose
- Department of Clinical and Biological Sciences, University of Torino, A.O.U. S. Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Kevin Molloy
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Dublin, Ireland
| | - Sophie Gohy
- Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Université Catholique de Louvain (UCL), Brussels, Belgium
- Department of Pneumology, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Charles Pilette
- Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Université Catholique de Louvain (UCL), Brussels, Belgium
- Department of Pneumology, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Catherine M. Greene
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Dublin, Ireland
| |
Collapse
|
35
|
Bewley MA, Preston JA, Mohasin M, Marriott HM, Budd RC, Swales J, Collini P, Greaves DR, Craig RW, Brightling CE, Donnelly LE, Barnes PJ, Singh D, Shapiro SD, Whyte MKB, Dockrell DH. Impaired Mitochondrial Microbicidal Responses in Chronic Obstructive Pulmonary Disease Macrophages. Am J Respir Crit Care Med 2017; 196:845-855. [PMID: 28557543 DOI: 10.1164/rccm.201608-1714oc] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) is characterized by impaired clearance of pulmonary bacteria. OBJECTIVES The effect of COPD on alveolar macrophage (AM) microbicidal responses was investigated. METHODS AMs were obtained from bronchoalveolar lavage from healthy donors or patients with COPD and challenged with opsonized serotype 14 Streptococcus pneumoniae. Cells were assessed for apoptosis, bactericidal activity, and mitochondrial reactive oxygen species (mROS) production. A transgenic mouse line in which the CD68 promoter ensures macrophage-specific expression of human induced myeloid leukemia cell differentiation protein Mcl-1 (CD68.hMcl-1) was used to model the molecular aspects of COPD. MEASUREMENTS AND MAIN RESULTS COPD AMs had elevated levels of Mcl-1, an antiapoptotic B-cell lymphoma 2 family member, with selective reduction of delayed intracellular bacterial killing. CD68.hMcl-1 AMs phenocopied the microbicidal defect because transgenic mice demonstrated impaired clearance of pulmonary bacteria and increased neutrophilic inflammation. Murine bone marrow-derived macrophages and human monocyte-derived macrophages generated mROS in response to pneumococci, which colocalized with bacteria and phagolysosomes to enhance bacterial killing. The Mcl-1 transgene increased oxygen consumption rates and mROS expression in mock-infected bone marrow-derived macrophages but reduced caspase-dependent mROS production after pneumococcal challenge. COPD AMs also increased basal mROS expression, but they failed to increase production after pneumococcal challenge, in keeping with reduced intracellular bacterial killing. The defect in COPD AM intracellular killing was associated with a reduced ratio of mROS/superoxide dismutase 2. CONCLUSIONS Up-regulation of Mcl-1 and chronic adaption to oxidative stress alter mitochondrial metabolism and microbicidal function, reducing the delayed phase of intracellular bacterial clearance in COPD.
Collapse
Affiliation(s)
- Martin A Bewley
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Julie A Preston
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Mohammed Mohasin
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Helen M Marriott
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Richard C Budd
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom.,3 Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Julie Swales
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Paul Collini
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom.,3 Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - David R Greaves
- 4 Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Ruth W Craig
- 5 Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | | | - Louise E Donnelly
- 7 Airway Disease National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Peter J Barnes
- 7 Airway Disease National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Dave Singh
- 8 Centre for Respiratory and Allergy, University of Manchester, Manchester, United Kingdom.,9 Medicines Evaluation Unit, Manchester, United Kingdom.,10 University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Steven D Shapiro
- 11 Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; and
| | - Moira K B Whyte
- 12 Department of Respiratory Medicine.,13 MRC Centre for Inflammation Research, and
| | - David H Dockrell
- 13 MRC Centre for Inflammation Research, and.,14 Department of Infection Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
36
|
Rupani H, Martinez-Nunez RT, Dennison P, Lau LCK, Jayasekera N, Havelock T, Francisco-Garcia AS, Grainge C, Howarth PH, Sanchez-Elsner T. Toll-like Receptor 7 Is Reduced in Severe Asthma and Linked to an Altered MicroRNA Profile. Am J Respir Crit Care Med 2017; 194:26-37. [PMID: 26815632 DOI: 10.1164/rccm.201502-0280oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RATIONALE Asthma is one of the most common chronic diseases worldwide, and individuals with severe asthma experience recurrent exacerbations. Exacerbations are predominantly viral associated and have been linked to defective airway IFN responses. Ascertaining the molecular mechanisms underlying this deficiency is a major research goal to identify new therapeutic targets. OBJECTIVES We investigated the hypothesis that reduced Toll-like receptor 7 (TLR7)-derived signaling drove the impaired IFN responses to rhinovirus by asthmatic alveolar macrophages (AMs); the molecular mechanisms underlying this deficiency were explored. METHODS AMs were recovered from bronchoalveolar lavage from healthy subjects and patients with severe asthma. Expression of pattern-recognition receptors and microRNAs was evaluated by quantitative polymerase chain reaction and Western blotting. A TLR7-luciferase reporter construct was created to evaluate binding of microRNAs to the 3' untranslated region of TLR7. IFN production was measured by quantitative polymerase chain reaction and ELISA. MEASUREMENTS AND MAIN RESULTS The expression of TLR7 was significantly reduced in severe asthma AMs and was associated with reduced rhinovirus and imiquimod-induced IFN responses by these cells compared with healthy AMs. Severe asthma AMs also expressed increased levels of three microRNAs, which we showed were able to directly reduce TLR7 expression. Ex vivo knockdown of these microRNAs restored TLR7 expression with concomitant augmentation of virus-induced IFN production. CONCLUSIONS In severe asthma, TLR7 deficiency drives impaired innate immune responses to virus by AMs. Blocking a group of microRNAs that are up-regulated in these cells can restore antiviral innate responses, providing a novel approach for therapy in asthma.
Collapse
Affiliation(s)
- Hitasha Rupani
- 1 Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Rocio T Martinez-Nunez
- 1 Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Patrick Dennison
- 1 Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Laurie C K Lau
- 1 Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Nivenka Jayasekera
- 1 Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Tom Havelock
- 1 Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Ana S Francisco-Garcia
- 1 Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Christopher Grainge
- 2 Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia; and
| | - Peter H Howarth
- 1 Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton General Hospital, Southampton, United Kingdom.,3 NIHR Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - Tilman Sanchez-Elsner
- 1 Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
37
|
Leung JM, Tiew PY, Mac Aogáin M, Budden KF, Yong VFL, Thomas SS, Pethe K, Hansbro PM, Chotirmall SH. The role of acute and chronic respiratory colonization and infections in the pathogenesis of COPD. Respirology 2017; 22:634-650. [PMID: 28342288 PMCID: PMC7169176 DOI: 10.1111/resp.13032] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 12/16/2022]
Abstract
COPD is a major global concern, increasingly so in the context of ageing populations. The role of infections in disease pathogenesis and progression is known to be important, yet the mechanisms involved remain to be fully elucidated. While COPD pathogens such as Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae are strongly associated with acute exacerbations of COPD (AECOPD), the clinical relevance of these pathogens in stable COPD patients remains unclear. Immune responses in stable and colonized COPD patients are comparable to those detected in AECOPD, supporting a role for chronic colonization in COPD pathogenesis through perpetuation of deleterious immune responses. Advances in molecular diagnostics and metagenomics now allow the assessment of microbe-COPD interactions with unprecedented personalization and precision, revealing changes in microbiota associated with the COPD disease state. As microbial changes associated with AECOPD, disease severity and therapeutic intervention become apparent, a renewed focus has been placed on the microbiology of COPD and the characterization of the lung microbiome in both its acute and chronic states. Characterization of bacterial, viral and fungal microbiota as part of the lung microbiome has the potential to reveal previously unrecognized prognostic markers of COPD that predict disease outcome or infection susceptibility. Addressing such knowledge gaps will ultimately lead to a more complete understanding of the microbe-host interplay in COPD. This will permit clearer distinctions between acute and chronic infections and more granular patient stratification that will enable better management of these features and of COPD.
Collapse
Affiliation(s)
- Janice M. Leung
- Centre for Heart Lung InnovationVancouverBritish ColumbiaCanada
- Division of Respiratory Medicine, St Paul's HospitalUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Pei Yee Tiew
- Department of Respiratory and Critical Care MedicineSingapore General HospitalSingapore
| | - Micheál Mac Aogáin
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore
| | - Kurtis F. Budden
- Priority Research Centre for Healthy LungsUniversity of NewcastleNewcastleNew South WalesAustralia
- Hunter Medical Research InstituteNewcastleNew South WalesAustralia
| | | | - Sangeeta S. Thomas
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore
| | - Kevin Pethe
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore
| | - Philip M. Hansbro
- Priority Research Centre for Healthy LungsUniversity of NewcastleNewcastleNew South WalesAustralia
- Hunter Medical Research InstituteNewcastleNew South WalesAustralia
| | | |
Collapse
|
38
|
Liang S, Jiang R, Lu HW, Mao B, Li MH, Li CW, Gu SY, Bai JW, Xu JF. Immunity status of invasive pulmonary aspergillosis patients with structural lung diseases in Chinese adults. J Thorac Dis 2017; 9:247-253. [PMID: 28275471 DOI: 10.21037/jtd.2017.02.49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Invasive pulmonary aspergillosis (IPA) is a fungal infection frequently observed in patients with immune dysfunction, such as those suffering from structural lung diseases. Nevertheless, studies assessing IPA combined with other common respiratory diseases remain scarce, particularly those regarding the immune status of its patients. Different structural lung diseases are known to differently affect patient immune status; however, the mechanisms by which this is conferred have yet to be determined. Thus, our study aims to compare the immune status of IPA patients with the structural lung diseases chronic obstructive pulmonary diseases (COPD), interstitial lung disease (ILD) and non-cystic fibrosis bronchiectasis (NCFB). METHODS This study was performed retrospectively with data collected over the years 2004 to 2013 at Shanghai Pulmonary Hospital, Tongji University, and included 77 patients whose lower respiratory tract (LRT) samples tested positive for. Our analysis considered blood examinations of CD3+, CD4+, CD8+, CD4+/CD8+, IgG, IgA and IgM levels. RESULTS CD4+/CD8+ double positive cells, representing cell-mediated immunity, were less abundant in IPA patients with COPD than those with ILD and NCFB (0.81±0.09 vs. 1.39±0.25 and 0.81±0.09 vs. 1.57±0.06, respectively, P<0.001). In agreement with this result, corticosteroid and broad-spectrum antibiotic use were most common in individuals with COPD (57%). IgA levels, which indicate humoral immunity, were lower in IPA patients with NCFB than those with COPD or ILD (0.95±0.28 vs. 1.64±0.40 g/L and 0.95±0.28 vs. 3.16±0.83 g/L, respectively, P<0.001). CONCLUSIONS Immunity status differs between IPA patients with different structural lung diseases. Among IPA patients with COPD, ILD and NCFB, those with COPD have the lowest cell-mediated immunity, while those with NCFB have the lowest humoral immunity.
Collapse
Affiliation(s)
- Shuo Liang
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Rong Jiang
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Hai-Wen Lu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Bei Mao
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Man-Hui Li
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Cheng-Wei Li
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Shu-Yi Gu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jiu-Wu Bai
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jin-Fu Xu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
39
|
Gill SK, Yao Y, Kay LJ, Bewley MA, Marriott HM, Peachell PT. The anti-inflammatory effects of PGE 2 on human lung macrophages are mediated by the EP 4 receptor. Br J Pharmacol 2016; 173:3099-3109. [PMID: 27460634 DOI: 10.1111/bph.13565] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE PGE2 inhibits cytokine generation from human lung macrophages. However, the EP receptor that mediates this beneficial anti-inflammatory effect of PGE2 has not been defined. The aim of this study was to identify the EP receptor by which PGE2 inhibits cytokine generation from human lung macrophages. This was determined by using recently developed EP receptor ligands. EXPERIMENTAL APPROACH The effects of PGE2 and EP-selective agonists on LPS-induced generation of TNF-α and IL-6 from macrophages were evaluated. The effects of EP2 -selective (PF-04852946, PF-04418948) and EP4 -selective (L-161,982, CJ-042794) receptor antagonists on PGE2 responses were studied. The expression of EP receptor subtypes by human lung macrophages was determined by RT-PCR. KEY RESULTS PGE2 inhibited LPS-induced and Streptococcus pneumoniae-induced cytokine generation from human lung macrophages. Analysis of mRNA levels indicated that macrophages expressed EP2 and EP4 receptors. L-902,688 (EP4 receptor-selective agonist) was considerably more potent than butaprost (EP2 receptor-selective agonist) as an inhibitor of TNF-α generation from macrophages. EP2 receptor-selective antagonists had marginal effects on the PGE2 inhibition of TNF-α generation, whereas EP4 receptor-selective antagonists caused rightward shifts in the PGE2 concentration-response curves. CONCLUSIONS AND IMPLICATIONS These studies demonstrate that the EP4 receptor is the principal receptor that mediates the anti-inflammatory effects of PGE2 on human lung macrophages. This suggests that EP4 receptor agonists could be effective anti-inflammatory agents in human lung disease.
Collapse
Affiliation(s)
- Sharonjit K Gill
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, The Medical School (Floor L), University of Sheffield, Sheffield, UK
| | - Yiwen Yao
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, The Medical School (Floor L), University of Sheffield, Sheffield, UK
| | - Linda J Kay
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, The Medical School (Floor L), University of Sheffield, Sheffield, UK
| | - Martin A Bewley
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, The Medical School (Floor L), University of Sheffield, Sheffield, UK
| | - Helen M Marriott
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, The Medical School (Floor L), University of Sheffield, Sheffield, UK
| | - Peter T Peachell
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, The Medical School (Floor L), University of Sheffield, Sheffield, UK.
| |
Collapse
|
40
|
Zhao L, Xia J, Li T, Zhou H, Ouyang W, Hong Z, Ke Y, Qian J, Xu F. Shp2 Deficiency Impairs the Inflammatory Response Against Haemophilus influenzae by Regulating Macrophage Polarization. J Infect Dis 2016; 214:625-33. [PMID: 27330052 DOI: 10.1093/infdis/jiw205] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/10/2016] [Indexed: 11/13/2022] Open
Abstract
Macrophages can polarize and differentiate to regulate initiation, development, and cessation of inflammation during pulmonary infection with nontypeable Haemophilus influenzae (NTHi). However, the underlying molecular mechanisms driving macrophage phenotypic differentiation are largely unclear. Our study investigated the role of Shp2, a Src homology 2 domain-containing phosphatase, in the regulation of pulmonary inflammation and bacterial clearance. Shp2 levels were increased upon NTHi stimulation. Selective inhibition of Shp2 in mice led to an attenuated inflammatory response by skewing macrophages toward alternatively activated macrophage (M2) polarization. Upon pulmonary NTHi infection, Shp2(-/-) mice, in which the gene encoding Shp2 in monocytes/macrophages was deleted, showed an impaired inflammatory response and decreased antibacterial ability, compared with wild-type controls. In vitro data demonstrated that Shp2 regulated activated macrophage (M1) gene expression via activation of p65-nuclear factor-κB signaling, independent of p38 and extracellular regulated kinase-mitogen-activated proteins kinase signaling pathways. Taken together, our study indicates that Shp2 is required to orchestrate macrophage function and regulate host innate immunity against pulmonary bacterial infection.
Collapse
Affiliation(s)
| | - Jingyan Xia
- Department of Oncology Radiation, Second Affiliated Hospital
| | | | - Hui Zhou
- Department of Infectious Diseases Experimental Medical Class 1102, Chu Kochen Honor College, Zhejiang University
| | | | - Zhuping Hong
- Department of Infectious Diseases College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology Program in Molecular Cell Biology, Zhejiang University School of Medicine
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences
| | - Feng Xu
- Department of Infectious Diseases
| |
Collapse
|
41
|
Bhat TA, Panzica L, Kalathil SG, Thanavala Y. Immune Dysfunction in Patients with Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc 2015; 12 Suppl 2:S169-75. [PMID: 26595735 PMCID: PMC4722840 DOI: 10.1513/annalsats.201503-126aw] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/27/2015] [Indexed: 01/09/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex chronic disease. Chronic inflammation is the hallmark of COPD, involving the interplay of a wide variety of cells in the lung microenvironment. Cigarette smoke (CS) induces chronic lung inflammation and is considered a key etiological factor in the development and pathogenesis of COPD. Structural and inflammatory cells in the lung respond to CS exposure by releasing proinflammatory mediators that recruit additional inflammatory immune cells, which collectively contribute to the establishment of a chronic inflammatory microenvironment. Chronic inflammation contributes to lung damage, compromises innate and adaptive immune responses, and facilitates the recurrent episodes of respiratory infection that punctuate and further contribute to the pathological manifestations of the stable disease. A number of studies support the conclusion that immune dysfunction leads to exacerbations and disease severity in COPD. Our group has clearly demonstrated that CS exacerbates lung inflammation and compromises immunity to respiratory pathogens in a mouse model of COPD. We have also investigated the phenotype of immune cells in patients with COPD compared with healthy control subjects and found extensive immune dysfunction due to the presence and functional activity of T regulatory cells, CD4(+)PD-1(+) exhausted effector T cells and myeloid-derived suppressor cells. Manipulation of these immunosuppressive networks in COPD could provide a rational strategy to restore functional immune responses, reduce exacerbations, and improve lung function. In this review, we discuss the role of immune dysfunction in COPD that may contribute to recurrent respiratory infections and disease severity.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Louis Panzica
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | | | - Yasmin Thanavala
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
42
|
Impaired Innate COPD Alveolar Macrophage Responses and Toll-Like Receptor-9 Polymorphisms. PLoS One 2015; 10:e0134209. [PMID: 26361369 PMCID: PMC4567310 DOI: 10.1371/journal.pone.0134209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
Background Dysfunctional innate responses of alveolar macrophages to nontypeable Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae contribute to morbidity in chronic obstructive pulmonary disease (COPD). Our earlier studies discovered impaired COPD alveolar macrophage responses to Toll-like receptor (TLR) ligands of nontypeable H. influenzae and provide rationale for further evaluation of TLR signaling. While the role of TLR single nucleotide polymorphisms is increasingly recognized in inflammatory diseases, TLR single nucleotide polymorphisms in COPD have only recently been explored. We hypothesized that specific TLR polymorphisms are associated with dysfunctional innate immune COPD alveolar macrophage responses and investigated polymorphisms of TLR2(Arg753Gln), TLR4(Thr399Ile; Asp299Gly), and TLR9(T1486C; T1237C). Methods DNA was purified from cells of 1) healthy nonsmokers (n = 20); 2) COPD ex-smokers (n = 83); 3) COPD active smokers (n = 93). DNA amplifications (polymerase chain reaction) were performed for each SNP. Alveolar macrophages from each group were incubated with nontypeable H. influenzae, M. catarrhalis and S. pneumoniae. Cytokine induction of macrophage supernatants was measured and the association with TLR single nucleotide polymorphism expression was determined. Results No significant inter-group differences in frequency of any TLR SNP existed. However both TLR9 single nucleotide polymorphisms were expressed in high frequency. Among COPD ex-smokers, diminished IL-8 responsiveness to nontypeable H. influenzae, M. catarrhalis and S. pneumoniae was strongly associated with carriage of TLR9(T1237C) (p = 0.02; p = 0.008; p = 0.02), but not TLR9(T1486C). Carriage of TLR9(T1237C), but not TLR9(T1486C), correlated with diminished FEV1%predicted (p = 0.037). Conclusion Our results demonstrate a notable association of TLR9(T1237C) expression with dysfunctional innate alveolar macrophage responses to respiratory pathogens and with severity of COPD.
Collapse
|
43
|
Morphological and Functional Alterations of Alveolar Macrophages in a Murine Model of Chronic Inflammatory Lung Disease. Lung 2015; 193:947-53. [PMID: 26319657 PMCID: PMC4651980 DOI: 10.1007/s00408-015-9797-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/21/2015] [Indexed: 12/13/2022]
Abstract
Purpose Chronic lung inflammation commonly induces a multitude of structural and functional adaptations within the lung tissue and airspaces. Yet the impact of a persistent inflammatory environment on alveolar macrophages is still incompletely understood. Here, we examined morphology and function of alveolar macrophages in a transgenic mouse model of chronic lung disease. Methods Imaging flow cytometry, flow cytometry, and microscopic evaluation of alveolar macrophages isolated from healthy and inflamed lungs were performed. Gene expression of polarization markers was compared by quantitative real-time RT-PCR. The pro-inflammatory immune response of alveolar macrophages toward bacterial ligands was assessed in in vivo clodronate-liposome depletion studies. Results Chronic lung inflammation is associated with a substantially altered, activated alveolar macrophage morphology, and blunted TNF-α response by these cells following stimulation with ligands derived from the respiratory pathogen Streptococcus pneumoniae. Conclusions These results demonstrate pleiotropic effects of pulmonary inflammation on alveolar macrophage phenotype and function and suggest a functional impairment of these cells during infection with airborne pathogens.
Collapse
|
44
|
Provost KA, Smith M, Arold SP, Hava DL, Sethi S. Calcium Restores the Macrophage Response to NontypeableHaemophilus influenzaein Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2015; 52:728-37. [DOI: 10.1165/rcmb.2014-0172oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
45
|
King PT, Sharma R. The Lung Immune Response to Nontypeable Haemophilus influenzae (Lung Immunity to NTHi). J Immunol Res 2015; 2015:706376. [PMID: 26114124 PMCID: PMC4465770 DOI: 10.1155/2015/706376] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 11/18/2022] Open
Abstract
Haemophilus influenzae is divided into typeable or nontypeable strains based on the presence or absence of a polysaccharide capsule. The typeable strains (such as type b) are an important cause of systemic infection, whilst the nontypeable strains (designated as NTHi) are predominantly respiratory mucosal pathogens. NTHi is present as part of the normal microbiome in the nasopharynx, from where it may spread down to the lower respiratory tract. In this context it is no longer a commensal and becomes an important respiratory pathogen associated with a range of common conditions including bronchitis, bronchiectasis, pneumonia, and particularly chronic obstructive pulmonary disease. NTHi induces a strong inflammatory response in the respiratory tract with activation of immune responses, which often fail to clear the bacteria from the lung. This results in recurrent/persistent infection and chronic inflammation with consequent lung pathology. This review will summarise the current literature about the lung immune response to nontypeable Haemophilus influenzae, a topic that has important implications for patient management.
Collapse
Affiliation(s)
- Paul T. King
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, VIC 3168, Australia
- Monash University Department of Medicine, Monash Medical Centre, Melbourne, VIC 3168, Australia
| | - Roleen Sharma
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, VIC 3168, Australia
- Monash University Department of Medicine, Monash Medical Centre, Melbourne, VIC 3168, Australia
| |
Collapse
|
46
|
Voss M, Wonnenberg B, Honecker A, Kamyschnikow A, Herr C, Bischoff M, Tschernig T, Bals R, Beisswenger C. Cigarette smoke-promoted acquisition of bacterial pathogens in the upper respiratory tract leads to enhanced inflammation in mice. Respir Res 2015; 16:41. [PMID: 25890119 PMCID: PMC4395896 DOI: 10.1186/s12931-015-0204-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/09/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Bacterial colonization and recurrent infections of the respiratory tract contribute to the progression of chronic obstructive pulmonary disease (COPD). There is evidence that exacerbations of COPD are provoked by new bacterial strains acquired from the environment. Using a murine model of colonization, we examined whether chronic exposure to cigarette smoke (CS) promotes nasopharyngeal colonization with typical lung pathogens and whether colonization is linked to inflammation in the respiratory tract. METHODS C57BL/6 N mice were chronically exposed to CS. The upper airways of mice were colonized with nontypeable Haemophilus influenzae (NTHi) or Streptococcus pneumoniae. Bacterial colonization was determined in the upper respiratory tract and lung tissue. Inflammatory cells and cytokines were determined in lavage fluids. RT-PCR was performed for inflammatory mediators. RESULTS Chronic CS exposure resulted in significantly increased numbers of viable NTHi in the upper airways, whereas NTHi only marginally colonized air-exposed mice. Colonization with S. pneumoniae was enhanced in the upper respiratory tract of CS-exposed mice and was accompanied by increased translocation of S. pneumoniae into the lung. Bacterial colonization levels were associated with increased concentrations of inflammatory mediators and the number of immune cells in lavage fluids of the upper respiratory tract and the lung. Phagocytosis activity was reduced in whole blood granulocytes and monocytes of CS-exposed mice. CONCLUSIONS These findings demonstrate that exposure to CS impacts the ability of the host to control bacterial colonization of the upper airways, resulting in enhanced inflammation and susceptibility of the host to pathogens migrating into the lung.
Collapse
Affiliation(s)
- Meike Voss
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421, Homburg/Saar, Germany.
| | - Bodo Wonnenberg
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421, Homburg/Saar, Germany.
| | - Anja Honecker
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421, Homburg/Saar, Germany.
| | - Andreas Kamyschnikow
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421, Homburg/Saar, Germany.
| | - Christian Herr
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421, Homburg/Saar, Germany.
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg/Saar, Germany.
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, 66421, Homburg/Saar, Germany.
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421, Homburg/Saar, Germany.
| | - Christoph Beisswenger
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421, Homburg/Saar, Germany.
| |
Collapse
|
47
|
Barker BL, Haldar K, Patel H, Pavord ID, Barer MR, Brightling CE, Bafadhel M. Association between pathogens detected using quantitative polymerase chain reaction with airway inflammation in COPD at stable state and exacerbations. Chest 2015; 147:46-55. [PMID: 25103335 PMCID: PMC4285081 DOI: 10.1378/chest.14-0764] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND: Relationships between airway inflammation and respiratory potentially pathogenic microorganisms (PPMs) quantified using quantitative polymerase chain reaction (qPCR) in subjects with COPD are unclear. Our aim was to evaluate mediators of airway inflammation and their association with PPMs in subjects with COPD at stable state and during exacerbations. METHODS: Sputum from 120 stable subjects with COPD was analyzed for bacteriology (colony-forming units; total 16S; and qPCR targeting Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae), differential cell counts, and inflammatory mediators using the Meso-Scale Discovery Platform. Subjects were classified as colonized if any PPM was identified above the threshold of detection by qPCR. Symptoms were quantified using the visual analog scale. RESULTS: At stable state, 60% of subjects were qPCR positive for H influenzae, 48% for M catarrhalis, and 28% for S pneumoniae. Elevated sputum concentrations of IL-1β, IL-10, and tumor necrosis factor (TNF)-α were detected in samples qPCR positive for either H influenzae or M catarrhalis. Bacterial loads of H influenzae positively correlated with IL-1β, IL-8, IL-10, TNF-α, and symptoms; and M catarrhalis correlated with IL-10 and TNF-α. H influenzae qPCR bacterial load was an independent predictor of sputum TNF-α and IL-1β. In 55 subjects with paired exacerbation data, qPCR bacterial load fold change at exacerbation in M catarrhalis but not H influenzae correlated to changes in sputum TNF-α and IL-1β concentrations. CONCLUSIONS: At stable state, H influenzae is associated with increased airway inflammation in COPD. The relationship between bacterial load changes of specific pathogens and airway inflammation at exacerbation and recovery warrants further investigation.
Collapse
Affiliation(s)
- Bethan L Barker
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, and the Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester
| | - Koirobi Haldar
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, and the Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester
| | - Hemu Patel
- Department of Clinical Microbiology, University Hospitals of Leicester National Health Service Trust, Leicester
| | - Ian D Pavord
- Respiratory Medicine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, England
| | - Michael R Barer
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, and the Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester; Department of Clinical Microbiology, University Hospitals of Leicester National Health Service Trust, Leicester
| | - Christopher E Brightling
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, and the Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester
| | - Mona Bafadhel
- Respiratory Medicine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, England.
| |
Collapse
|
48
|
Relationship between azithromycin susceptibility and administration efficacy for nontypeable Haemophilus influenzae respiratory infection. Antimicrob Agents Chemother 2015; 59:2700-12. [PMID: 25712355 DOI: 10.1128/aac.04447-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/14/2015] [Indexed: 12/21/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHI) is an opportunistic pathogen that is an important cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). COPD is an inflammatory disease of the airways, and exacerbations are acute inflammatory events superimposed on this background of chronic inflammation. Azithromycin (AZM) is a macrolide antibiotic with antibacterial and anti-inflammatory properties and a clinically proven potential for AECOPD prevention and management. Relationships between AZM efficacy and resistance by NTHI and between bactericidal and immunomodulatory effects on NTHI respiratory infection have not been addressed. In this study, we employed two pathogenic NTHI strains with different AZM susceptibilities (NTHI 375 [AZM susceptible] and NTHI 353 [AZM resistant]) to evaluate the prophylactic and therapeutic effects of AZM on the NTHI-host interplay. At the cellular level, AZM was bactericidal toward intracellular NTHI inside alveolar and bronchial epithelia and alveolar macrophages, and it enhanced NTHI phagocytosis by the latter cell type. These effects correlated with the strain MIC of AZM and the antibiotic dose. Additionally, the effect of AZM on NTHI infection was assessed in a mouse model of pulmonary infection. AZM showed both preventive and therapeutic efficacies by lowering NTHI 375 bacterial counts in lungs and bronchoalveolar lavage fluid (BALF) and by reducing histopathological inflammatory lesions in the upper and lower airways of mice. Conversely, AZM did not reduce bacterial loads in animals infected with NTHI 353, in which case a milder anti-inflammatory effect was also observed. Together, the results of this work link the bactericidal and anti-inflammatory effects of AZM and frame the efficacy of this antibiotic against NTHI respiratory infection.
Collapse
|
49
|
Kathania M, Zeng M, Yadav VN, Moghaddam SJ, Yang B, Venuprasad K. Ndfip1 regulates itch ligase activity and airway inflammation via UbcH7. THE JOURNAL OF IMMUNOLOGY 2015; 194:2160-7. [PMID: 25632008 DOI: 10.4049/jimmunol.1402742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ubiquitin-ligating enzyme (E3) Itch plays a crucial role in the regulation of inflammation, and Itch deficiency leads to severe airway inflammation. However, the molecular mechanisms by which Itch function is regulated remain elusive. In this study, we found that nontypeable Haemophilus influenzae induces the association of Itch with Ndfip1. Both Itch(-/-) and Ndfip1(-/-) mice exhibited severe airway inflammation in response to nontypeable Haemophilus influenza, which was associated with elevated expression of proinflammatory cytokines. Ndfip1 enhanced Itch ligase activity and facilitated Itch-mediated Tak1 ubiquitination. Mechanistically, Ndfip1 facilitated recruitment of ubiquitin-conjugating enzyme (E2) UbcH7 to Itch. The N-terminal region of Ndfip1 binds to UbcH7, whereas the PY motif binds to Itch. Hence, Ndfip1 acts as an adaptor for UbcH7 and Itch. Reconstitution of full-length Ndfip1 but not the mutants that fail to interact with either UbcH7 or Itch, restored the defect in Tak1 ubiquitination and inhibited elevated proinflammatory cytokine expression by Ndfip1(-/-) cells. These results provide new mechanistic insights into how Itch function is regulated during inflammatory signaling, which could be exploited therapeutically in inflammatory diseases.
Collapse
Affiliation(s)
- Mahesh Kathania
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75204
| | - Minghui Zeng
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75204
| | - Viveka Nand Yadav
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Seyed Javad Moghaddam
- Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030; and
| | - Baoli Yang
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - K Venuprasad
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75204;
| |
Collapse
|
50
|
Prattes J, Flick H, Prüller F, Koidl C, Raggam RB, Palfner M, Eigl S, Buzina W, Zollner-Schwetz I, Thornton CR, Krause R, Hoenigl M. Novel tests for diagnosis of invasive aspergillosis in patients with underlying respiratory diseases. Am J Respir Crit Care Med 2014; 190:922-9. [PMID: 25203869 DOI: 10.1164/rccm.201407-1275oc] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Invasive pulmonary aspergillosis has been increasingly reported in nonneutropenic patients, including those with underlying respiratory diseases. OBJECTIVES We compared the diagnostic performances of galactomannan, 1,3-β-D-glucan, and Aspergillus-specific lateral-flow device tests with that of conventional culture by using bronchoalveolar lavage fluid samples from patients with underlying respiratory diseases. METHODS We analyzed 268 bronchoalveolar lavage samples from 221 patients with underlying respiratory diseases (and without hematologic malignancy or previous solid organ transplantation) that were collected for routine microbiological workup between February 2012 and May 2014 at the University Hospital of Graz, Austria. Invasive pulmonary aspergillosis was defined according to European Organization of Research and Treatment of Cancer/Mycoses Study Group criteria modified for patients with respiratory diseases. MEASUREMENTS AND MAIN RESULTS Thirty-one patients (14%) had probable or proven, 25 possible, and the remaining 165 patients no invasive pulmonary aspergillosis. Probable/proven aspergillosis was associated with a significantly higher (P = 0.034) 30-day mortality rate of 32%. Sensitivities, specificities, and diagnostic odd ratios differed markedly between galactomannan (cut-off 0.5: optical density index, 0.97, 0.81, 124.4; cut-off 1.0: 0.97, 0.93, 422.1; cut-off 3.0: 0.61, 0.99, 109.8), β-D-glucan (cut-off 80 pg/ml: 0.90, 0.42, 6.57; cut-off 200 pg/ml: 0.70, 0.61, 3.7), lateral-flow device tests (0.77, 0.92, 41.8), and mycological culture (0.29, 0.97, 14). CONCLUSIONS Probable or proven invasive pulmonary aspergillosis was diagnosed in 14% of our study population and associated with significantly higher 30-day mortality rates. Although the performance of β-D-glucan was limited by low specificity and that of mycological culture by low sensitivity, the Aspergillus lateral-flow device seems to be a promising alternative to galactomannan testing, which remains the diagnostic gold standard for aspergillosis. Clinical trial registered with www.clinicaltrials.gov (NCT 02058316).
Collapse
|