1
|
Sinha I, Bitzer Z, Barnett S, Reinhart L, Umstead TM, Chroneos ZC, Lanza M, Sun D, Zhu J, Richie JP, Sinha R. Short-Term and Long-Term Effects of Electronic Cigarettes on Mouse Lungs Following Nose-Only Exposures. Chem Res Toxicol 2025. [PMID: 40401807 DOI: 10.1021/acs.chemrestox.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Health effects of electronic cigarettes (ECs) remain unknown, despite their popularity. We have determined that ECs produce highly reactive free radicals that could potentially cause damage in exposed tissues, mainly lungs. Goal for this study was to investigate the short- and long-term effects of ECs in mouse lungs. We focused on evaluating lung functions, oxidative stress related markers, and lung injury following nose-only exposures in male and female mice after 4- and 12-week periods. The EC exposure was modeled in vivo using nose-only exposures to C57BL/6 mice. For all studies, E-liquid (60:40; PG:VG) aerosols were compared to sham (compressed air) and to very low non-nicotine cigarette smoke (CS) controls in both sexes. Oxidative stress biomarkers (GSH, 8-Isoprostane, REDD1, and pGSK3β) and their selected downstream (RPS6) as well as upstream (AKT) target proteins in addition to pH2AX were measured by Western blot analysis. Lung function in mice was assessed by flexiVent and the injury scores were calculated following lung histology. Changes in cytology were also observed in cytospins from bronchoalveolar lavage (BALF). The lung injury (LI) score following 12-week exposures was significantly higher with EC and CS in female mice. Higher cell counts in BALF were mainly observed in CS exposed males and females at 4 and 12 weeks. 8-Isoprostane levels were significantly higher in EC and CS exposed males at 12 weeks. pGSK3β/GSK3β was low in males and higher in female mice at 4 weeks, and this difference was more pronounced at 12 weeks in CS exposed mice. Some mice exposed to EC and CS also showed DNA damage, as measured by pH2AX/H2AX expression. Based on the LI score, ECs were placed in between compressed air and CS. Our results showed the differentially expressed inflammation and oxidative stress/damage-related pathways from in vivo exposures to EC aerosols vs CS that could be an effective strategy for identifying EC relevant biomarkers of exposure and potential harm.
Collapse
Affiliation(s)
- Indu Sinha
- Department of Molecular and Precision Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Zachary Bitzer
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Stephanie Barnett
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Lisa Reinhart
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Todd M Umstead
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Zissis C Chroneos
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Matthew Lanza
- Department of Comparative Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Dongxiao Sun
- Mass Spectrometry Core Facility (small molecule), Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Junjia Zhu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - John P Richie
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Raghu Sinha
- Department of Molecular and Precision Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
2
|
Werder RB, Zhou X, Cho MH, Wilson AA. Breathing new life into the study of COPD with genes identified from genome-wide association studies. Eur Respir Rev 2024; 33:240019. [PMID: 38811034 PMCID: PMC11134200 DOI: 10.1183/16000617.0019-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 05/31/2024] Open
Abstract
COPD is a major cause of morbidity and mortality globally. While the significance of environmental exposures in disease pathogenesis is well established, the functional contribution of genetic factors has only in recent years drawn attention. Notably, many genes associated with COPD risk are also linked with lung function. Because reduced lung function precedes COPD onset, this association is consistent with the possibility that derangements leading to COPD could arise during lung development. In this review, we summarise the role of leading genes (HHIP, FAM13A, DSP, AGER and TGFB2) identified by genome-wide association studies in lung development and COPD. Because many COPD genome-wide association study genes are enriched in lung epithelial cells, we focus on the role of these genes in the lung epithelium in development, homeostasis and injury.
Collapse
Affiliation(s)
- Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, Australia
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
3
|
Truong LN, Wilson Santos E, Zheng YM, Wang YX. Rieske Iron-Sulfur Protein Mediates Pulmonary Hypertension Following Nicotine/Hypoxia Coexposure. Am J Respir Cell Mol Biol 2024; 70:193-202. [PMID: 38029303 PMCID: PMC10914767 DOI: 10.1165/rcmb.2023-0181oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023] Open
Abstract
The high mortality rate in patients with chronic obstructive pulmonary disease (COPD) may be due to pulmonary hypertension (PH). These diseases are highly associated with cigarette smoke and its key component nicotine. Here, we created a novel animal model of PH using coexposure to nicotine (or cigarette smoke) and hypoxia. This heretofore unreported model showed significant early-onset pulmonary vasoremodeling and PH. Using newly generated mice with complementary smooth muscle-specific Rieske iron-sulfur protein (RISP) gene knockout and overexpression, we demonstrate that RISP is critically involved in promoting pulmonary vasoremodeling and PH, which are implemented by oxidative ataxia telangiectasia-mutated-mediated DNA damage and NF-κB-dependent inflammation in a reciprocal positive mechanism. Together, our findings establish for the first time an animal model of hypoxia-induced early-onset PH in which mitochondrial RISP-dependent DNA damage and NF-κB inflammation play critical roles in vasoremodeling. Specific therapeutic targets for RISP and related oxidative stress-associated signaling pathways may create unique and effective treatments for PH, chronic obstructive pulmonary disease, and their complications.
Collapse
Affiliation(s)
- Lillian N Truong
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Ed Wilson Santos
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
4
|
Simpson SJ, Du Berry C, Evans DJ, Gibbons JTD, Vollsæter M, Halvorsen T, Gruber K, Lombardi E, Stanojevic S, Hurst JR, Um-Bergström P, Hallberg J, Doyle LW, Kotecha S. Unravelling the respiratory health path across the lifespan for survivors of preterm birth. THE LANCET. RESPIRATORY MEDICINE 2024; 12:167-180. [PMID: 37972623 DOI: 10.1016/s2213-2600(23)00272-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 07/19/2023] [Indexed: 11/19/2023]
Abstract
Many survivors of preterm birth will have abnormal lung development, reduced peak lung function and, potentially, an increased rate of physiological lung function decline, each of which places them at increased risk of chronic obstructive pulmonary disease across the lifespan. Current rates of preterm birth indicate that by the year 2040, around 50 years since the introduction of surfactant therapy, more than 700 million individuals will have been born prematurely-a number that will continue to increase by about 15 million annually. In this Personal View, we describe current understanding of the impact of preterm birth on lung function through the life course, with the aim of putting this emerging health crisis on the radar for the respiratory community. We detail the potential underlying mechanisms of prematurity-associated lung disease and review current approaches to prevention and management. Furthermore, we propose a novel way of considering lung disease after preterm birth, using a multidimensional model to determine individual phenotypes of lung disease-a first step towards optimising management approaches for prematurity-associated lung disease.
Collapse
Affiliation(s)
- Shannon J Simpson
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia; Curtin School of Allied Health, Curtin University, Perth, WA, Australia.
| | - Cassidy Du Berry
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Respiratory Group, Infection, Immunity and Global Health, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Respiratory and Sleep Medicine, The Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Denby J Evans
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia; Curtin School of Population Health, Curtin University, Perth, WA, Australia
| | - James T D Gibbons
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia; Curtin School of Allied Health, Curtin University, Perth, WA, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Perth, WA, Australia
| | - Maria Vollsæter
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Paediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | - Thomas Halvorsen
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Paediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | - Karl Gruber
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Enrico Lombardi
- Pediatric Pulmonary Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Sanja Stanojevic
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, NS, Canada
| | | | - Petra Um-Bergström
- Department of Clinical Sciences and Education, Karolinska Institutet, Stockholm, Sweden; Lung and Allergy Unit, Sachs' Children and Youth Hospital, Stockholm, Sweden
| | - Jenny Hallberg
- Department of Clinical Sciences and Education, Karolinska Institutet, Stockholm, Sweden; Lung and Allergy Unit, Sachs' Children and Youth Hospital, Stockholm, Sweden
| | - Lex W Doyle
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia; Clinical Sciences, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Newborn Services, The Royal Women's Hospital, Melbourne, VIC, Australia
| | - Sailesh Kotecha
- Department of Child Health, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
5
|
Choi YJ, Lee MJ, Byun MK, Park S, Park J, Park D, Kim SH, Kim Y, Lim SY, Yoo KH, Jung KS, Park HJ. Roles of Inflammatory Biomarkers in Exhaled Breath Condensates in Respiratory Clinical Fields. Tuberc Respir Dis (Seoul) 2024; 87:65-79. [PMID: 37822233 PMCID: PMC10758305 DOI: 10.4046/trd.2023.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/12/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Exhaled condensates contain inflammatory biomarkers; however, their roles in the clinical field have been under-investigated. METHODS We prospectively enrolled subjects admitted to pulmonology clinics. We collected exhaled breath condensates (EBC) and analysed the levels of six and 12 biomarkers using conventional and multiplex enzyme-linked immunosorbent assay, respectively. RESULTS Among the 123 subjects, healthy controls constituted the largest group (81 participants; 65.9%), followed by the preserved ratio impaired spirometry group (21 patients; 17.1%) and the chronic obstructive pulmonary disease (COPD) group (21 patients; 17.1%). In COPD patients, platelet derived growth factor-AA exhibited strong positive correlations with COPD assessment test (ρ=0.5926, p=0.0423) and COPD-specific version of St. George's Respiratory Questionnaire (SGRQ-C) score (total, ρ=0.6725, p=0.0166; activity, ρ=0.7176, p=0.0086; and impacts, ρ=0.6151, p=0.0333). Granzyme B showed strong positive correlations with SGRQ-C score (symptoms, ρ=0.6078, p=0.0360; and impacts, ρ=0.6007, p=0.0389). Interleukin 6 exhibited a strong positive correlation with SGRQ-C score (activity, ρ=0.4671, p=0.0378). The absolute serum eosinophil and basophil counts showed positive correlations with pro-collagen I alpha 1 (ρ=0.6735, p=0.0164 and ρ=0.6295, p=0.0283, respectively). In healthy subjects, forced expiratory volume in 1 second (FEV1)/forced vital capacity demonstrated significant correlation with CC chemokine ligand 3 (CCL3)/macrophage inflammatory protein 1 alpha (ρ=0.3897 and p=0.0068). FEV1 exhibited significant correlation with CCL11/eotaxin (ρ=0.4445 and p=0.0017). CONCLUSION Inflammatory biomarkers in EBC might be useful to predict quality of life concerning respiratory symptoms and serologic markers. Further studies are needed.
Collapse
Affiliation(s)
- Yong Jun Choi
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Jae Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Kwang Byun
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sangho Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jimyung Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dongil Park
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sang-Hoon Kim
- Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Republic of Korea
| | - Youngsam Kim
- Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong Yong Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kwang Ha Yoo
- Division of Pulmonary and Allergy, Department of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Ki Suck Jung
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, Republic of Korea
| | - Hye Jung Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Pezzuto A, Ricci A, D’Ascanio M, Moretta A, Tonini G, Calabrò N, Minoia V, Pacini A, De Paolis G, Chichi E, Carico E, Tammaro A. Short-Term Benefits of Smoking Cessation Improve Respiratory Function and Metabolism in Smokers. Int J Chron Obstruct Pulmon Dis 2023; 18:2861-2865. [PMID: 38059013 PMCID: PMC10697086 DOI: 10.2147/copd.s423148] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/30/2023] [Indexed: 12/08/2023] Open
Abstract
Background Cigarette smoke exposure is the main preventable cause of chronic obstructive pulmonary disease (COPD). Airflow limitation is closely associated with smoking exposure. Smoking could also interfere with lipid metabolism. Aim To determine the respiratory functional and metabolic changes after smoking cessation in smokers in the short term. Methods All patients were current smokers. They were assessed by spirometry and questionnaires such as COPD assessment test(CAT), modified Medical Research Council (mMRC) test for dyspnea, Fagestrom's test for nicotine dependence. Exhaled CO was detected in order to evaluate smoking exposure and smoking cessation (normal value<7 ppm). A blood sampling was eventually taken for vitamin D and cholesterol assay. All patients underwent therapy with counselling and varenicline as first-line treatment according to its schedule. Detection time: at baseline and one month after smoking cessation. Results All patients quit smoking during treatment. The mean age was 62 with a prevalence of males. The analysis revealed the following mean values at baseline: CAT mean score was 15, pack-years 35.5, Fagestrom's Test mean score 5.0. The West's value was 8.5, whereas Body mass index (BMI) was 25.5.Cigarette daily consumption mean value was 22.5. The comparison before and at follow up one month after smoking cessation about functional and metabolic parameters, show us the following results: FEV 1 was increased by 200 mL (p<0.02), FEF 25/75 was improved as well as mMRC test. The eCO was dropped to as low as 8 ppM. Interestingly the vitamin D level was increased from 25 to 28 ng/mL without any support therapy. The cholesterol total level was reduced and CAT value and DLCO were also significantly improved. Conclusion Quit smoking is useful to improve symptoms, respiratory function and metabolic parameters in the short term.
Collapse
Affiliation(s)
- Aldo Pezzuto
- Department of Cardiovascular and Respiratory Sciences, S Andrea Hospital, Sapienza University, Rome, Italy
| | - Alberto Ricci
- Department of Cardiovascular and Respiratory Sciences, S Andrea Hospital, Sapienza University, Rome, Italy
| | - Michela D’Ascanio
- Department of Cardiovascular and Respiratory Sciences, S Andrea Hospital, Sapienza University, Rome, Italy
| | - Alba Moretta
- Department of Cardiovascular and Respiratory Sciences, S Andrea Hospital, Sapienza University, Rome, Italy
| | - Giuseppe Tonini
- Oncology Department, Campus Bio-Medico University, Rome, Italy
| | - Noemi Calabrò
- Department of Cardiovascular and Respiratory Sciences, S Andrea Hospital, Sapienza University, Rome, Italy
| | - Valeria Minoia
- Department of Cardiovascular and Respiratory Sciences, S Andrea Hospital, Sapienza University, Rome, Italy
| | - Alessia Pacini
- Department of Cardiovascular and Respiratory Sciences, S Andrea Hospital, Sapienza University, Rome, Italy
| | - Giuliana De Paolis
- Department of Cardiovascular and Respiratory Sciences, S Andrea Hospital, Sapienza University, Rome, Italy
| | - Eleonora Chichi
- Department of Cardiovascular and Respiratory Sciences, S Andrea Hospital, Sapienza University, Rome, Italy
| | - Elisabetta Carico
- Clinical and Molecular Medicine Department, S Andrea Hospital, Sapienza University, Rome, Italy
| | - Antonella Tammaro
- Department of Neuroscience- NESMOS, S.Andrea Hospital, Sapienza University, Rome, Italy
| |
Collapse
|
7
|
Agraval H, Crue T, Schaunaman N, Numata M, Day BJ, Chu HW. Electronic Cigarette Exposure Increases the Severity of Influenza a Virus Infection via TRAIL Dysregulation in Human Precision-Cut Lung Slices. Int J Mol Sci 2023; 24:ijms24054295. [PMID: 36901724 PMCID: PMC10002047 DOI: 10.3390/ijms24054295] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
The use of electronic nicotine dispensing systems (ENDS), also known as electronic cigarettes (ECs), is common among adolescents and young adults with limited knowledge about the detrimental effects on lung health such as respiratory viral infections and underlying mechanisms. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a protein of the TNF family involved in cell apoptosis, is upregulated in COPD patients and during influenza A virus (IAV) infections, but its role in viral infection during EC exposures remains unclear. This study was aimed to investigate the effect of ECs on viral infection and TRAIL release in a human lung precision-cut lung slices (PCLS) model, and the role of TRAIL in regulating IAV infection. PCLS prepared from lungs of nonsmoker healthy human donors were exposed to EC juice (E-juice) and IAV for up to 3 days during which viral load, TRAIL, lactate dehydrogenase (LDH), and TNF-α in the tissue and supernatants were determined. TRAIL neutralizing antibody and recombinant TRAIL were utilized to determine the contribution of TRAIL to viral infection during EC exposures. E-juice increased viral load, TRAIL, TNF-α release and cytotoxicity in IAV-infected PCLS. TRAIL neutralizing antibody increased tissue viral load but reduced viral release into supernatants. Conversely, recombinant TRAIL decreased tissue viral load but increased viral release into supernatants. Further, recombinant TRAIL enhanced the expression of interferon-β and interferon-λ induced by E-juice exposure in IAV-infected PCLS. Our results suggest that EC exposure in human distal lungs amplifies viral infection and TRAIL release, and that TRAIL may serve as a mechanism to regulate viral infection. Appropriate levels of TRAIL may be important to control IAV infection in EC users.
Collapse
Affiliation(s)
- Hina Agraval
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Taylor Crue
- School of Medicine, University of Colorado, 12700 E 19th Ave, Aurora, CO 80045, USA
| | - Niccolette Schaunaman
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Mari Numata
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Brian J. Day
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
- Correspondence: ; Tel.: +1-303-398-1689
| |
Collapse
|
8
|
Lin H, Li H. How does cigarette smoking affect airway remodeling in asthmatics? Tob Induc Dis 2023; 21:13. [PMID: 36741543 PMCID: PMC9881586 DOI: 10.18332/tid/156047] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/07/2022] [Accepted: 10/25/2022] [Indexed: 01/30/2023] Open
Abstract
Asthma is a prevalent chronic airway inflammatory disease involving multiple cells, and the prolonged course of the disease can cause airway remodeling, resulting in irreversible or partial irreversible airflow limitation and persistent airway hyperresponsiveness (AHR) in asthmatics. Therefore, we must ascertain the factors that affect the occurrence and development of airway remodeling in asthmatics. Smokers are not uncommon in asthmatics. However, there is no systematic description of how smoking promotes airway remodeling in asthmatics. This narrative review summarizes the effects of smoking on airway remodeling in asthmatics, and the progress of the methods for evaluating airway remodeling.
Collapse
Affiliation(s)
- Huihui Lin
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Zhejiang, China
| | - Hequan Li
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
9
|
Tiendrébéogo AJF, Soumagne T, Pellegrin F, Dagouassat M, Tran Van Nhieu J, Caramelle P, Paul EN, Even B, Zysman M, Julé Y, Samb A, Boczkowski J, Lanone S, Schlemmer F. The telomerase activator TA-65 protects from cigarette smoke-induced small airway remodeling in mice through extra-telomeric effects. Sci Rep 2023; 13:25. [PMID: 36646720 PMCID: PMC9842758 DOI: 10.1038/s41598-022-25993-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/07/2022] [Indexed: 01/18/2023] Open
Abstract
Small airway remodeling (SAR) is a key phenomenon of airflow obstruction in smokers, leading to chronic obstructive pulmonary disease (COPD). SAR results in an increased thickness of small airway walls, with a combination of peribronchiolar fibrosis with increased fibrous tissue and accumulation of mesenchymal and epithelial cells. SAR pathogenesis is still unclear but recent data suggest that alterations in telomerase activity could represent a possible underlying mechanism of SAR. Our study was dedicated to identify a potential protective role of TA-65, a pharmacological telomerase activator, in a cigarette smoke (CS) model of SAR in mice, and to further precise if extra-telomeric effects of telomerase, involving oxidative stress modulation, could explain it. C57BL/6J mice were daily exposed to air or CS during 4 weeks with or without a concomitant administration of TA-65 starting 7 days before CS exposure. Morphological analyses were performed, and mucus production, myofibroblast differentiation, collagen deposition, as well as transforming growth factor-β1 (TGF-β1) expression in the small airway walls were examined. In addition, the effects of TA-65 treatment on TGF-β expression, fibroblast-to-myofibroblast differentiation, reactive oxygen species (ROS) production and catalase expression and activity were evaluated in primary cultures of pulmonary fibroblasts and/or mouse embryonic fibroblasts in vitro. Exposure to CS during 4 weeks induced SAR in mice, characterized by small airway walls thickening and peribronchiolar fibrosis (increased deposition of collagen, expression of α-SMA in small airway walls), without mucus overproduction. Treatment of mice with TA-65 protected them from CS-induced SAR. This effect was associated with the prevention of CS-induced TGF-β expression in vivo, the blockade of TGF-β-induced myofibroblast differentiation, and the reduction of TGF-β-induced ROS production that correlates with an increase of catalase expression and activity. Our findings demonstrate that telomerase is a critical player of SAR, probably through extra-telomeric anti-oxidant effects, and therefore provide new insights in the understanding and treatment of COPD pathogenesis.
Collapse
Affiliation(s)
- Arnaud Jean Florent Tiendrébéogo
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France ,Laboratoire de physiologie et d’explorations fonctionnelles physiologiques, Université Cheik Anta Diop, Dakar, Senegal
| | - Thibaud Soumagne
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - François Pellegrin
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - Maylis Dagouassat
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - Jeanne Tran Van Nhieu
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France ,grid.412116.10000 0004 1799 3934Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Département de Pathologie, 94000 Créteil, France
| | - Philippe Caramelle
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - Emmanuel N. Paul
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - Benjamin Even
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - Maeva Zysman
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | | | - Abdoulaye Samb
- Laboratoire de physiologie et d’explorations fonctionnelles physiologiques, Université Cheik Anta Diop, Dakar, Senegal
| | - Jorge Boczkowski
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France ,grid.412116.10000 0004 1799 3934Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Service d’explorations fonctionnelles respiratoires, DHU A-TVB, FHU Senec, 94000 Créteil, France
| | - Sophie Lanone
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - Frédéric Schlemmer
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France ,grid.412116.10000 0004 1799 3934Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Unité de Pneumologie, DHU A-TVB, FHU Senec, 94000 Créteil, France
| |
Collapse
|
10
|
Ding K, Jiang W, Zhan W, Xiong C, Chen J, Wang Y, Jia H, Lei M. The therapeutic potential of quercetin for cigarette smoking-induced chronic obstructive pulmonary disease: a narrative review. Ther Adv Respir Dis 2023; 17:17534666231170800. [PMID: 37154390 PMCID: PMC10170608 DOI: 10.1177/17534666231170800] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Quercetin is a flavonoid with antioxidant and anti-inflammatory properties. Quercetin has potentially beneficial therapeutic effects for several diseases, including cigarette smoking-induced chronic obstructive pulmonary disease (CS-COPD). Many studies have shown that quercetin's antioxidant and anti-inflammatory properties have positive therapeutic potential for CS-COPD. In addition, quercetin's immunomodulatory, anti-cellular senescence, mitochondrial autophagy-modulating, and gut microbiota-modulating effects may also have therapeutic value for CS-COPD. However, there appears to be no review of the possible mechanisms of quercetin for treating CS-COPD. Moreover, the combination of quercetin with common therapeutic drugs for CS-COPD needs further refinement. Therefore, in this article, after introducing the definition and metabolism of quercetin, and its safety, we comprehensively presented the pathogenesis of CS-COPD related to oxidative stress, inflammation, immunity, cellular senescence, mitochondrial autophagy, and gut microbiota. We then reviewed quercetin's anti-CS-COPD effects, performed by influencing these mechanisms. Finally, we explored the possibility of using quercetin with commonly used drugs for treating CS-COPD, providing a basis for future screening of excellent drug combinations for treating CS-COPD. This review has provided meaningful information on quercetin's mechanisms and clinical use in treating CS-COPD.
Collapse
Affiliation(s)
- Kaixi Ding
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenling Zhan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunping Xiong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jieling Chen
- Shehong Hospital of Traditional Chinese Medicine, Shehong, China
| | - Yu Wang
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Huanan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Ming Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
11
|
Calzetta L, Pistocchini E, Ritondo BL, Cavalli F, Camardelli F, Rogliani P. Muscarinic receptor antagonists and airway inflammation: A systematic review on pharmacological models. Heliyon 2022; 8:e09760. [PMID: 35785239 PMCID: PMC9240991 DOI: 10.1016/j.heliyon.2022.e09760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022] Open
Abstract
Airway inflammation is crucial in the pathogenesis of many respiratory diseases, including chronic obstructive pulmonary disease (COPD) and asthma. Current evidence supports the beneficial impact of muscarinic receptor antagonists against airway inflammation from bench-to-bedside. Considering the numerous sampling approaches and the ethical implications required to study inflammation in vivo in patients, the use of pre-clinical models is inevitable. Starting from our recently published systematic review concerning the impact of muscarinic antagonists, we have systematically assessed the current pharmacological models of airway inflammation and provided an overview on the advances in in vitro and ex vivo approaches. The purpose of in vitro models is to recapitulate selected pathophysiological parameters or processes that are crucial to the development of new drugs within a controlled environment. Nevertheless, immortalized cell lines or primary airway cells present major limitations, including the inability to fully replicate the conditions of the corresponding cell types within a whole organism. Induced animal models are extensively used in research in the attempt to replicate a respiratory condition reflective of a human pathological state, although considering animal models with spontaneously occurring respiratory diseases may be more appropriate since most of the clinical features are accompanied by lung pathology resembling that of the human condition. In recent years, three-dimensional organoids have become an alternative to animal experiments, also because animal models are unable to fully mimic the complexity of human pulmonary diseases. Ex vivo studies performed on human isolated airways have a superior translational value compared to in vitro and animal models, as they retain the morphology and the microenvironment of the lung in vivo. In the foreseeable future, greater effort should be undertaken to rely on more physiologically relevant models, that provide translational value into clinic and have a direct impact on patient outcomes.
Collapse
Affiliation(s)
- Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
- Corresponding author.
| | - Elena Pistocchini
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Beatrice Ludovica Ritondo
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Francesco Cavalli
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Francesca Camardelli
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
12
|
Truong L, Zheng YM, Wang YX. The Potential Important Role of Mitochondrial Rieske Iron-Sulfur Protein as a Novel Therapeutic Target for Pulmonary Hypertension in Chronic Obstructive Pulmonary Disease. Biomedicines 2022; 10:957. [PMID: 35625694 PMCID: PMC9138741 DOI: 10.3390/biomedicines10050957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, which is often due to pulmonary hypertension (PH). The underlying molecular mechanisms are poorly understood, and current medications are neither specific nor always effective. In this review, we highlight the recent findings on the roles of altered mitochondrial bioenergetics in PH in COPD. We also discuss the central role of mitochondrial reactive oxygen species (ROS) generation mediated by Rieske iron-sulfur protein (RISP) and review the contributions of RISP-dependent DNA damage and NF-κB-associated inflammatory signaling. Finally, the potential importance of mitochondrial RISP and its associated molecules as novel therapeutic targets for PH in COPD are meticulously discussed.
Collapse
Affiliation(s)
| | | | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (L.T.); (Y.-M.Z.)
| |
Collapse
|
13
|
Chen J, Mir SM, Pinezich MR, O'Neill JD, Guenthart BA, Bacchetta M, Vunjak-Novakovic G, Huang SXL, Kim J. Homogeneous Distribution of Exogenous Cells onto De-epithelialized Rat Trachea via Instillation of Cell-Loaded Hydrogel. ACS Biomater Sci Eng 2022; 8:82-88. [PMID: 34874712 PMCID: PMC9195637 DOI: 10.1021/acsbiomaterials.1c01031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Injured or diseased airway epithelium due to repeated environmental insults or genetic mutations can lead to a functional decline of the lung and incurable lung diseases. Bioengineered airway tissue constructs can facilitate in vitro investigation of human lung diseases and accelerate the development of effective therapeutics. Here, we report robust tissue manipulation modalities that allow: (i) selective removal of the endogenous epithelium of in vitro cultured airway tissues and (ii) spatially uniform distribution and prolonged cultivation of exogenous cells that are implanted topically onto the denuded airway lumen. Results obtained highlight that our approach to airway tissue manipulation can facilitate controlled removal of the airway epithelium and subsequent homogeneous distribution of newly implanted cells. This study can contribute to the creation of innovative tissue engineering methodologies that can facilitate the treatment of lung diseases, such as cystic fibrosis, primary ciliary dyskinesia, and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07302, United States
| | - Seyed Mohammad Mir
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07302, United States
| | - Meghan R Pinezich
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, United States
| | - John D O'Neill
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, United States
| | - Brandon A Guenthart
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California 94305, United States
| | - Matthew Bacchetta
- Department of Thoracic Surgery, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, United States
| | - Sarah X L Huang
- Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Jinho Kim
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07302, United States
| |
Collapse
|
14
|
Ghio AJ, Pavlisko EN, Roggli VL, Todd NW, Sangani RG. Cigarette Smoke Particle-Induced Lung Injury and Iron Homeostasis. Int J Chron Obstruct Pulmon Dis 2022; 17:117-140. [PMID: 35046648 PMCID: PMC8763205 DOI: 10.2147/copd.s337354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
It is proposed that the mechanistic basis for non-neoplastic lung injury with cigarette smoking is a disruption of iron homeostasis in cells after exposure to cigarette smoke particle (CSP). Following the complexation and sequestration of intracellular iron by CSP, the host response (eg, inflammation, mucus production, and fibrosis) attempts to reverse a functional metal deficiency. Clinical manifestations of this response can present as respiratory bronchiolitis, desquamative interstitial pneumonitis, pulmonary Langerhans’ cell histiocytosis, asthma, pulmonary hypertension, chronic bronchitis, and pulmonary fibrosis. If the response is unsuccessful, the functional deficiency of iron progresses to irreversible cell death evident in emphysema and bronchiectasis. The subsequent clinical and pathological presentation is a continuum of lung injuries, which overlap and coexist with one another. Designating these non-neoplastic lung injuries after smoking as distinct disease processes fails to recognize shared relationships to each other and ultimately to CSP, as well as the common mechanistic pathway (ie, disruption of iron homeostasis).
Collapse
Affiliation(s)
- Andrew J Ghio
- Human Studies Facility, US Environmental Protection Agency, Chapel Hill, NC, 27514, USA
- Correspondence: Andrew J Ghio Human Studies Facility, US Environmental Protection Agency, 104 Mason Farm Road, Chapel Hill, NC, USA Email
| | | | | | - Nevins W Todd
- Department of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Rahul G Sangani
- Department of Medicine, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
15
|
Peng J, Wu F, Tian H, Yang H, Zheng Y, Deng Z, Wang Z, Xiao S, Wen X, Huang P, Lu L, Dai C, Zhao N, Huang S, Ran P, Zhou Y. Clinical characteristics of and risk factors for small airway dysfunction detected by impulse oscillometry. Respir Med 2021; 190:106681. [PMID: 34784563 DOI: 10.1016/j.rmed.2021.106681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/14/2021] [Accepted: 11/07/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Small airway dysfunction (SAD) is an early lesion of chronic respiratory disease that is best detected using impulse oscillometry (IOS). Few studies have investigated risk factors for IOS-defined SAD (IOS-SAD) in a large population. We aimed to explore the clinical features of and risk factors for IOS-SAD in a community-based population. METHODS We divided subjects into IOS-SAD and non-SAD groups based on a cutoff of >0.07 kPa/L/s in the difference between the resistance at 5 Hz versus the resistance at 20 Hz (R5-R20). All participants underwent spirometry, IOS, and completed a questionnaire; some participants underwent computed tomography (CT). We analyzed the risk factors for SAD based on binary logistic regression. RESULTS The total cohort comprised 1327 subjects. The prevalence of IOS-SAD was 32.9% (437/1327). Compared with the non-SAD group, the IOS-SAD group was older (64.0 ± 7.8 vs. 59.6 ± 7.8 years, p < 0.001), included less never-smokers (30.2% vs. 35.8%, p < 0.001), had greater airway resistance and worse lung function, indicated by a larger R5-R20 (0.15 ± 0.08 vs. 0.03 ± 0.02 kPa/L/s, p < 0.001) and smaller forced expiratory volume in 1 s to forced vital capacity after bronchodilation (60.2 ± 14.4% vs. 72.6 ± 10.0%, p < 0.001); on CT, the IOS-SAD group had higher prevalences of emphysema and gas trapping. Risk factors for SAD were older age, high BMI, smoking, childhood cough, and asthma. CONCLUSION Subjects with IOS-SAD had increased airway resistance and visible CT changes. Individuals with smoking exposure, advanced age, high BMI, childhood cough, and asthma were more prone to SAD. CLINICAL TRIAL REGISTRATION ChiCTR1900024643.
Collapse
Affiliation(s)
- Jieqi Peng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Wu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Heshen Tian
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huajing Yang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Youlan Zheng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhishan Deng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zihui Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shan Xiao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Wen
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peiyu Huang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lifei Lu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cuiqiong Dai
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ningning Zhao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Suyin Huang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pixin Ran
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yumin Zhou
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
16
|
Yoon YJ, Lee MS, Jang KW, Ahn JB, Hurh K, Park EC. Association between smoking cessation and obstructive spirometry pattern among Korean adults aged 40-79 years. Sci Rep 2021; 11:18667. [PMID: 34548552 PMCID: PMC8455662 DOI: 10.1038/s41598-021-98156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022] Open
Abstract
Smoking cessation aids in restoring lung function. However, whether long-term cessation can fully restore lung function has not been studied thoroughly, especially in Asian countries. This study aimed to evaluate the association between smoking cessation status and obstructive spirometry pattern among Koreans aged 40-79 years. In total, 6298 men and 8088 women aged 40-79 years from the Korea National Health and Nutrition Examination Survey (2015-2019) were analyzed for smoking cessation status, including the duration after quitting. Current-smokers showed a higher likelihood of having an obstructive spirometry pattern than never-smokers among both men (odds ratio [OR]: 3.15, 95% confidence interval [CI]: 2.32-4.29) and women (OR: 2.60, 95% CI: 1.59-4.23). In men, the effect tended to decrease with longer duration after cessation, but male ex-smokers who had quit smoking ≥ 20 years ago still showed a higher likelihood of having an obstructive spirometry pattern than male never-smokers (OR: 1.40, 95% CI: 1.05-1.89). In female ex-smokers, there was no significant association with the obstructive spirometry pattern, compared to that in female never-smokers. This study emphasizes the benefits of smoking cessation, possibility of long-lasting harm to lung function due to tobacco smoking, and importance of smoking prevention.
Collapse
Affiliation(s)
- Yeo Jun Yoon
- Premedical Course, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myung Soo Lee
- Premedical Course, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyu Won Jang
- Premedical Course, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Bum Ahn
- Department of Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyungduk Hurh
- Department of Preventive Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Institute of Health Services Research, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Eun-Cheol Park
- Department of Preventive Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Institute of Health Services Research, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
17
|
Su Y, Han W, Kovacs-Kasa A, Verin AD, Kovacs L. HDAC6 Activates ERK in Airway and Pulmonary Vascular Remodeling of COPD. Am J Respir Cell Mol Biol 2021; 65:603-614. [PMID: 34280336 DOI: 10.1165/rcmb.2020-0520oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a multisystemic respiratory disease which is associated with progressive airway and pulmonary vascular remodeling due to the increased proliferation of bronchial and pulmonary arterial smooth muscle cells (BSMCs and PASMCs) and overproduction of extracellular matrix (ECM), e.g., collagen. Cigarette smoke (CS) and several mediators such as PDGF and IL-6 play critical role in the COPD pathogenesis. Histone deacetylase 6 (HDAC6) has been shown to be implicated in vascular remodeling. However, the HDAC6 signaling in airway and pulmonary vascular remodeling of COPD and the underlying mechanisms remain undetermined. Here we show that HDAC6 expression is upregulated in lungs of COPD patients and animal model. We also found that cigarette smoke extract (CSE), PDGF and IL-6 increase the protein levels and activation of HDAC6 in BSMCs and PASMCs. Furthermore, CSE and these stimulants induced deacetylation and phosphorylation of ERK1/2 and increased collagen synthesis and proliferation of BSMCs and PASMCs which were prevented by HDAC6 inhibition. Inhibition of ERK1/2 also diminished the CSE, PDGF and IL-6-caused elevation in collagen levels and cell proliferation. Pharmacological HDAC6 inhibition by tubastatin A prevented the CS-stimulated increases in the thickness of the bronchial and pulmonary arterial wall, airway resistance, emphysema as well as right ventricular (RV) systolic pressure (RVSP) and RV hypertrophy in rat model of COPD. These data demonstrate that the upregulated HDAC6 governs the collagen synthesis and proliferation of BSMCs and PASMCs leading to airway and vascular remodeling in COPD.
Collapse
Affiliation(s)
- Yunchao Su
- Augusta University Medical College of Georgia, 160343, Department of Pharmacology, Augusta, Georgia, United States
| | - Weihong Han
- Augusta University, 1421, Augusta, Georgia, United States
| | | | | | - Laszlo Kovacs
- Augusta University, 1421, Augusta, Georgia, United States;
| |
Collapse
|
18
|
Truong L, Zheng YM, Kandhi S, Wang YX. Overview on Interactive Role of Inflammation, Reactive Oxygen Species, and Calcium Signaling in Asthma, COPD, and Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:147-164. [PMID: 34019268 DOI: 10.1007/978-3-030-68748-9_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Inflammatory signaling is a major component in the development and progression of many lung diseases, including asthma, chronic obstructive pulmonary disorder (COPD), and pulmonary hypertension (PH). This chapter will provide a brief overview of asthma, COPD, and PH and how inflammation plays a vital role in these diseases. Specifically, we will discuss the role of reactive oxygen species (ROS) and Ca2+ signaling in inflammatory cellular responses and how these interactive signaling pathways mediate the development of asthma, COPD, and PH. We will also deliberate the key cellular responses of pulmonary arterial (PA) smooth muscle cells (SMCs) and airway SMCs (ASMCs) in these devastating lung diseases. The analysis of the importance of inflammation will shed light on the key questions remaining in this field and highlight molecular targets that are worth exploring. The crucial findings will not only demonstrate the novel roles of essential signaling molecules such as Rieske iron-sulfur protein and ryanodine receptor in the development and progress of asthma, COPD, and PH but also offer advanced insight for creating more effective and new therapeutic targets for these devastating inflammatory lung diseases.
Collapse
Affiliation(s)
- Lillian Truong
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Sharath Kandhi
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
19
|
Li Y, Zhang L, Polverino F, Guo F, Hao Y, Lao T, Xu S, Li L, Pham B, Owen CA, Zhou X. Hedgehog interacting protein (HHIP) represses airway remodeling and metabolic reprogramming in COPD-derived airway smooth muscle cells. Sci Rep 2021; 11:9074. [PMID: 33907231 PMCID: PMC8079715 DOI: 10.1038/s41598-021-88434-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/07/2021] [Indexed: 02/05/2023] Open
Abstract
Although HHIP locus has been consistently associated with the susceptibility to COPD including airway remodeling and emphysema in genome-wide association studies, the molecular mechanism underlying this genetic association remains incompletely understood. By utilizing Hhip+/- mice and primary human airway smooth muscle cells (ASMCs), here we aim to determine whether HHIP haploinsufficiency increases airway smooth muscle mass by reprogramming glucose metabolism, thus contributing to airway remodeling in COPD pathogenesis. The mRNA levels of HHIP were compared in normal and COPD-derived ASMCs. Mitochondrial oxygen consumption rate and lactate levels in the medium were measured in COPD-derived ASMCs with or without HHIP overexpression as readouts of glucose oxidative phosphorylation and aerobic glycolysis rates. The proliferation rate was measured in healthy and COPD-derived ASMCs treated with or without 2-DG. Smooth muscle mass around airways was measured by immunofluorescence staining for α-smooth muscle actin (α-SMA) in lung sections from Hhip+/- mice and their wild type littermates, Hhip+/+ mice. Airway remodeling was assessed in Hhip+/- and Hhip+/- mice exposed to 6 months of cigarette smoke. Our results show HHIP inhibited aerobic glycolysis and represses cell proliferation in COPD-derived ASMCs. Notably, knockdown of HHIP in normal ASMCs increased PKM2 activity. Importantly, Hhip+/- mice demonstrated increased airway remodeling and increased intensity of α-SMA staining around airways compared to Hhip+/+ mice. In conclusion, our findings suggest that HHIP represses aerobic glycolysis and ASMCs hyperplasia, which may contribute to the increased airway remodeling in Hhip+/- mice.
Collapse
Affiliation(s)
- Yan Li
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, China.
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, China.
| | - Li Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Francesca Polverino
- Asthma and Airway Disease Research Center, University of Arizona, Medicine, Tucson, AZ, 85724, USA
| | - Feng Guo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yuan Hao
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Taotao Lao
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Shuang Xu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Lijia Li
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Betty Pham
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
20
|
Li L, Yang DC, Chen CH. Metabolic reprogramming: A driver of cigarette smoke-induced inflammatory lung diseases. Free Radic Biol Med 2021; 163:392-401. [PMID: 33387604 PMCID: PMC7870291 DOI: 10.1016/j.freeradbiomed.2020.12.438] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/23/2022]
Abstract
Cigarette smoking is a well-known risk factor for pulmonary diseases, including chronic obstructive pulmonary disease (COPD), asthma and pulmonary fibrosis. Despite major progress in dissecting the mechanisms associated with disease development and progression, findings only represent one aspect of multifaceted disease. A crucial consequence of this approach is that many therapeutic treatments often fail to improve or reverse the disease state as other conditions and variables are insufficiently considered. To expand our understanding of pulmonary diseases, omics approaches, particularly metabolomics, has been emerging in the field. This strategy has been applied to identify putative biomarkers and novel mechanistic insights. In this review, we discuss metabolic profiles of patients with COPD, asthma, and idiopathic pulmonary fibrosis (IPF) with a focus on the direct effects of cigarette smoking in altering metabolic regulation. We next present cell- and animal-based experiments and point out the therapeutic potential of targeting metabolic reprogramming in inflammatory lung diseases. In addition, the obstacles in translating these findings into clinical practice, including potential adverse effects and limited pharmacological efficacy, are also addressed.
Collapse
Affiliation(s)
- Linhui Li
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine and Center for Comparative Respiratory Biology and Medicine, University of California Davis, Davis, CA, USA; Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - David C Yang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine and Center for Comparative Respiratory Biology and Medicine, University of California Davis, Davis, CA, USA
| | - Ching-Hsien Chen
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine and Center for Comparative Respiratory Biology and Medicine, University of California Davis, Davis, CA, USA; Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, USA.
| |
Collapse
|
21
|
Tiew PY, Ko FWS, Narayana JK, Poh ME, Xu H, Neo HY, Loh LC, Ong CK, Mac Aogáin M, Tan JHY, Kamaruddin NH, Sim GJH, Lapperre TS, Koh MS, Hui DSC, Abisheganaden JA, Tee A, Tsaneva-Atanasova K, Chotirmall SH. "High-Risk" Clinical and Inflammatory Clusters in COPD of Chinese Descent. Chest 2020; 158:145-156. [PMID: 32092320 PMCID: PMC7339237 DOI: 10.1016/j.chest.2020.01.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/10/2019] [Accepted: 01/12/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND COPD is a heterogeneous disease demonstrating inter-individual variation. A high COPD prevalence in Chinese populations is described, but little is known about disease clusters and prognostic outcomes in the Chinese population across Southeast Asia. We aim to determine if clusters of Chinese patients with COPD exist and their association with systemic inflammation and clinical outcomes. RESEARCH QUESTION We aim to determine if clusters of Chinese patients with COPD exist and their association with clinical outcomes and inflammation. STUDY DESIGN AND METHODS Chinese patients with stable COPD were prospectively recruited into two cohorts (derivation and validation) from six hospitals across three Southeast Asian countries (Singapore, Malaysia, and Hong Kong; n = 1,480). Each patient was followed more than 2 years. Clinical data (including co-morbidities) were employed in unsupervised hierarchical clustering (followed by validation) to determine the existence of patient clusters and their prognostic outcome. Accompanying systemic cytokine assessments were performed in a subset (n = 336) of patients with COPD to determine if inflammatory patterns and associated networks characterized the derived clusters. RESULTS Five patient clusters were identified including: (1) ex-TB, (2) diabetic, (3) low comorbidity: low-risk, (4) low comorbidity: high-risk, and (5) cardiovascular. The cardiovascular and ex-TB clusters demonstrate highest mortality (independent of Global Initiative for Chronic Obstructive Lung Disease assessment) and illustrate diverse cytokine patterns with complex inflammatory networks. INTERPRETATION We describe clusters of Chinese patients with COPD, two of which represent high-risk clusters. The cardiovascular and ex-TB patient clusters exhibit high mortality, significant inflammation, and complex cytokine networks. Clinical and inflammatory risk stratification of Chinese patients with COPD should be considered for targeted intervention to improve disease outcomes.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore
| | - Fanny Wai San Ko
- Department of Medicine and Therapeutics The Chinese University of Hong Kong, Hong Kong
| | - Jayanth Kumar Narayana
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Indian Institute of Science Education and Research, Pune, India
| | - Mau Ern Poh
- Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Huiying Xu
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | - Han Yee Neo
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | - Li-Cher Loh
- Department of Medicine, RCSI-UCD Malaysia Campus, Georgetown, Penang, Malaysia
| | - Choo Khoon Ong
- Department of Medicine, RCSI-UCD Malaysia Campus, Georgetown, Penang, Malaysia
| | - Micheál Mac Aogáin
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | | | - Gerald Jiong Hui Sim
- Department of Respiratory and Critical Care Medicine, Changi General Hospital, Singapore
| | - Therese S Lapperre
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore; Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Mariko Siyue Koh
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore
| | - David Shu Cheong Hui
- Department of Medicine and Therapeutics The Chinese University of Hong Kong, Hong Kong
| | | | - Augustine Tee
- Department of Respiratory and Critical Care Medicine, Changi General Hospital, Singapore
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute and Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK; PSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, UK
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|
22
|
Matsumura K, Kurachi T, Ishikawa S, Kitamura N, Ito S. Regional differences in airway susceptibility to cigarette smoke: An investigational case study of epithelial function and gene alterations in in vitroairway epithelial three-dimensional cultures. TOXICOLOGY RESEARCH AND APPLICATION 2020. [DOI: 10.1177/2397847320911629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cigarette smoke (CS) is a risk factor contributing to lung remodeling in chronic obstructive pulmonary disease (COPD). COPD is a heterogeneous disease because many factors contribute in varying degrees to the resulting airflow limitations in different regions of the respiratory tract. This heterogeneity makes it difficult to understand mechanisms behind COPD development. In the current study, we investigate the regional heterogeneity of the acute response to CS exposure between large and small airways using in vitro three-dimensional (3D) cultures. We used two in vitro 3D human airway epithelial tissues from large and small airway epithelial cells, namely, MucilAir™ and SmallAir™, respectively, which were derived from the same single healthy donor to eliminate donor differences. Impaired epithelial functions and altered gene expression were observed in SmallAir™ exposed to CS at the lower dose and earlier period following the last exposure compared with MucilAir™. In addition, severe damage in SmallAir™ was retained for a longer duration than MucilAir™. Transcriptomic analysis showed that although well-known CS-inducible biological processes (i.e. inflammation, cell fate, and metabolism) were disturbed with consistent activity in both tissues exposed to CS, we elucidated distinctively regulated genes in only MucilAir™ and SmallAir™, which were mostly related to catalytic and transporter activities. Our findings suggest that CS exposure elicited epithelial dysfunction through almost the same perturbed pathways in both airways; however, they expressed different genes related to metabolic and transporter activities in response to CS exposure which may contribute to cytotoxic heterogeneity to the response to CS in the respiratory tract.
Collapse
Affiliation(s)
- Kazushi Matsumura
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Yokohama, Kanagawa, Japan
| | - Takeshi Kurachi
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Yokohama, Kanagawa, Japan
| | - Shinkichi Ishikawa
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Yokohama, Kanagawa, Japan
| | - Nobumasa Kitamura
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Yokohama, Kanagawa, Japan
| | - Shigeaki Ito
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Yokohama, Kanagawa, Japan
| |
Collapse
|
23
|
Wang L, Meng J, Wang C, Yang C, Wang Y, Li Y, Li Y. Hydrogen sulfide alleviates cigarette smoke-induced COPD through inhibition of the TGF- β1/smad pathway. Exp Biol Med (Maywood) 2020; 245:190-200. [PMID: 32008357 DOI: 10.1177/1535370220904342] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Smoking has become a major cause of chronic obstructive pulmonary disease through weakening of the respiratory mucus-ciliary transport system, impairing cough reflex sensitivity, and inducing inflammation. Recent researches have indicated that hydrogen sulfide is essential in the development of various lung diseases. However, the effect and mechanism of hydrogen sulfide on cigarette smoke-induced chronic obstructive pulmonary disease have not been reported. In this study, rats were treated with cigarette smoke to create a chronic obstructive pulmonary disease model followed by treatment with a low concentration of hydrogen sulfide. Pulmonary function, histopathological appearance, lung edema, permeability, airway remodeling indicators, oxidative products/antioxidases levels, inflammatory factors in lung, cell classification in bronchoalveolar lavage fluid were measured to examine the effect of hydrogen sulfide on chronic obstructive pulmonary disease model. The results showed that hydrogen sulfide effectively improved pulmonary function and reduced histopathological changes, lung edema, and permeability. Airway remodeling, oxidative stress, and inflammation were also reduced by hydrogen sulfide treatment. To understand the mechanisms, we measured the expression of TGF-β1, TGF-βIand TGF-βII receptors and Smad7 and phosphorylation of Smad2/Smad3. The results indicated that the TGF-β1 and Smad were activated in cigarette smoke-induced chronic obstructive pulmonary disease model, but inhibited by hydrogen sulfide. In conclusion, this study showed that hydrogen sulfide treatment alleviated cigarette smoke-induced chronic obstructive pulmonary disease through inhibition of the TGF-β1/Smad pathway. Impact statement COPD has become a severe public health issue in the world and smoking has become a major cause of COPD. As a result, it is a demandingly needed to explore new potential therapy for cigarette smoke-associated COPD. The present study suggested that H2S treatment improved pulmonary function and reduced histopathological changes, lung edema, permeability, inflammation, airway remodeling and oxidative injury in a COPD model induced by cigarette smoke. Although additional studies are required to elucidate the pharmacodynamics, pharmacokinetics, and pharmacology of H2S in the cigarette smoke-associated COPD, our findings provide an experimental basis for the potential clinical application of H2S in COPD treatment.
Collapse
Affiliation(s)
- Liang Wang
- Department of Respiratory and Critical Care, Hebei Chest Hospital, Hebei 050048, China
| | - Jing Meng
- Department of Respiratory and Critical Care, Hebei Chest Hospital, Hebei 050048, China
| | - Caicai Wang
- Department of Respiratory and Critical Care, Hebei Chest Hospital, Hebei 050048, China
| | - Chao Yang
- Department of Gynecology, Shijiazhuang Second Hospital, Shijiazhuang 050048, China
| | - Yuan Wang
- Department of Respiratory and Critical Care, Hebei Chest Hospital, Hebei 050048, China
| | - Yamei Li
- Department of Respiratory and Critical Care, Hebei Chest Hospital, Hebei 050048, China
| | - Yujing Li
- Department of Laboratory, Hebei Chest Hospital, Hebei 050048, China
| |
Collapse
|
24
|
Stockley RA. Alpha-1 Antitrypsin Deficiency: Have We Got the Right Proteinase? CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2020; 7:163-171. [PMID: 32396717 DOI: 10.15326/jcopdf.7.3.2019.0151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alpha-1 antitrypsin deficiency (AATD) has traditionally been associated with the development of early onset panlobular emphysema thought to reflect the direct interstitial damage caused by neutrophil elastase. Since this enzyme is highly sensitive to irreversible inhibition by alpha-1 antitrypsin (AAT), the logic of intravenous augmentation therapy has remained unquestioned and efficacy is supported by both observational studies and formal clinical trials. However, evidence suggests that although AAT augmentation modulates the progression of emphysema, it only slows it down. This raises the issue of whether our long-held beliefs of the cause of the susceptibility to develop emphysema in deficient individuals are correct. There are several aspects of our understanding of the disease that might benefit from a radical departure from traditional thought. This review addresses these concepts and alternative pathways that may be central to progression of emphysema.
Collapse
Affiliation(s)
- Robert A Stockley
- Lung Investigation Unit, University Hospitals, Birmingham National Health Service Foundation Trust, Queen Elizabeth Hospital, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
25
|
Capron T, Bourdin A, Perez T, Chanez P. COPD beyond proximal bronchial obstruction: phenotyping and related tools at the bedside. Eur Respir Rev 2019; 28:28/152/190010. [PMID: 31285287 DOI: 10.1183/16000617.0010-2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/04/2019] [Indexed: 11/05/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterised by nonreversible proximal bronchial obstruction leading to major respiratory disability. However, patient phenotypes better capture the heterogeneously reported complaints and symptoms of COPD. Recent studies provided evidence that classical bronchial obstruction does not properly reflect respiratory disability, and symptoms now form the new paradigm for assessment of disease severity and guidance of therapeutic strategies. The aim of this review was to explore pathways addressing COPD pathogenesis beyond proximal bronchial obstruction and to highlight innovative and promising tools for phenotyping and bedside assessment. Distal small airways imaging allows quantitative characterisation of emphysema and functional air trapping. Micro-computed tomography and parametric response mapping suggest small airways disease precedes emphysema destruction. Small airways can be assessed functionally using nitrogen washout, probing ventilation at conductive or acinar levels, and forced oscillation technique. These tests may better correlate with respiratory symptoms and may well capture bronchodilation effects beyond proximal obstruction.Knowledge of inflammation-based processes has not provided well-identified targets so far, and eosinophils probably play a minor role. Adaptative immunity or specific small airways secretory protein may provide new therapeutic targets. Pulmonary vasculature is involved in emphysema through capillary loss, microvascular lesions or hypoxia-induced remodelling, thereby impacting respiratory disability.
Collapse
Affiliation(s)
- Thibaut Capron
- Clinique des Bronches, Allergies et Sommeil, Hôpital Nord, Assistance Publique des Hôpitaux de Marseille, Aix Marseille Université, Marseille, France
| | - Arnaud Bourdin
- Université de Montpellier, PhyMedExp, INSERM, CNRS, CHU de Montpellier, Dept of Respiratory Diseases, Montpellier, France
| | - Thierry Perez
- Dept of Respiratory Diseases, CHU Lille, Center for Infection and Immunity of Lille, INSERM U1019 - CNRS UMR 8204, Université Lille Nord de France, Lille, France
| | - Pascal Chanez
- Clinique des Bronches, Allergies et Sommeil, Hôpital Nord, Assistance Publique des Hôpitaux de Marseille, Aix Marseille Université, Marseille, France .,Aix Marseille Université, INSERM, INRA, CV2N, Marseille, France
| |
Collapse
|
26
|
Schrumpf JA, Ninaber DK, van der Does AM, Hiemstra PS. TGF-β1 Impairs Vitamin D-Induced and Constitutive Airway Epithelial Host Defense Mechanisms. J Innate Immun 2019; 12:74-89. [PMID: 30970352 DOI: 10.1159/000497415] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
Airway epithelium is an important site for local vitamin D (VD) metabolism; this can be negatively affected by inflammatory mediators. VD is an important regulator of respiratory host defense, for example, by increasing the expression of hCAP18/LL-37. TGF-β1 is increased in chronic obstructive pulmonary disease (COPD), and known to decrease the expression of constitutive host defense mediators such as secretory leukocyte protease inhibitor (SLPI) and polymeric immunoglobulin receptor (pIgR). VD has been shown to affect TGF-β1-signaling by inhibiting TGF-β1-induced epithelial-to-mesenchymal transition. However, interactions between VD and TGF-β1, relevant for the understanding host defense in COPD, are incompletely understood. Therefore, the aim of the present study was to investigate the combined effects of VD and TGF-β1 on airway epithelial cell host defense mechanisms. Exposure to TGF-β1 reduced both baseline and VD-induced expression of hCAP18/LL-37, partly by increasing the expression of the VD-degrading enzyme CYP24A1. TGF-β1 alone decreased the number of secretory club and goblet cells and reduced the expression of constitutive host defense mediators SLPI, s/lPLUNC and pIgR, effects that were not modulated by VD. These results suggest that TGF-β1 may decrease the respiratory host defense both directly by reducing the expression of host defense mediators, and indirectly by affecting VD-mediated effects such as expression of hCAP18/LL-37.
Collapse
Affiliation(s)
- Jasmijn A Schrumpf
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands,
| | - Dennis K Ninaber
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne M van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
27
|
Laucho‐Contreras ME, Polverino F, Rojas‐Quintero J, Wang X, Owen CA. Club cell protein 16 (Cc16) deficiency increases inflamm-aging in the lungs of mice. Physiol Rep 2018; 6:e13797. [PMID: 30084231 PMCID: PMC6079172 DOI: 10.14814/phy2.13797] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022] Open
Abstract
Low serum CC16 levels are associated with accelerated lung function decline in human population studies, but it is not known whether low serum CC16 levels contribute to lung function decline, or are an epiphenomenon. We tested the hypothesis that unchallenged Cc16-/- mice develop accelerated rates of pulmonary function test abnormalities and pulmonary pathologies over time compared with unchallenged WT mice. Respiratory mechanics, airspace enlargement, and small airway fibrosis were measured in unchallenged wild-type (WT) versus Cc16-/- mice over 6-18 months of age. Lung leukocyte counts and lung levels of metalloproteinases (Mmps), cytokines, oxidative stress, cellular senescence markers (p19 and p21), and lung cell apoptosis, and serum C-reactive protein (CRP) levels were measured in age-matched WT versus Cc16-/- mice. Unchallenged Cc16-/- mice developed greater increases in lung compliance, airspace enlargement, and small airway fibrosis than age-matched WT mice over 6-18 months of age. Cc16-/- mice had greater: (1) lung leukocyte counts; (2) lung levels of Ccl2, Ccl-5, interleukin-10, Mmp-2, and Mmp-9; (3) pulmonary oxidative stress levels, (4) alveolar septal cell apoptosis and staining for p16 and p21; and (5) serum CRP levels. Unchallenged Cc16-/- mice had greater nuclear factor-κB (NF-κB) activation in their lungs than age-matched WT mice, but similar lung levels of secretory phospholipase-A2 activity. Cc16 deficiency in mice leads spontaneously to an accelerated lung aging phenotype with exaggerated pulmonary inflammation and COPD-like lung pathologies associated with increased activation of NF- κB in the lung. CC16 augmentation strategies may reduce lung aging in CC16-deficient individuals.
Collapse
Affiliation(s)
- Maria E. Laucho‐Contreras
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
| | - Francesca Polverino
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
- The Lovelace Respiratory Research InstituteAlbuquerqueNew Mexico
| | - Joselyn Rojas‐Quintero
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
| | - Xiaoyun Wang
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
- The Lovelace Respiratory Research InstituteAlbuquerqueNew Mexico
| |
Collapse
|
28
|
De Cunto G, Bartalesi B, Cavarra E, Balzano E, Lungarella G, Lucattelli M. Ongoing Lung Inflammation and Disease Progression in Mice after Smoking Cessation: Beneficial Effects of Formyl-Peptide Receptor Blockade. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2195-2206. [PMID: 30031729 DOI: 10.1016/j.ajpath.2018.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/04/2018] [Accepted: 06/18/2018] [Indexed: 01/24/2023]
Abstract
The most important risk factor for chronic obstructive pulmonary disease (COPD) is cigarette smoking. Until now, smoking cessation (SC) is the only treatment effective in slowing down the progression of the disease. However, in many cases SC may only relieve the airflow obstruction and inflammatory response. Consequently, a persistent lung inflammation in ex-smokers is associated with progressive deterioration of respiratory functions. This is an increasingly important clinical problem whose mechanistic basis remains poorly understood. Available therapies do not adequately suppress inflammation and are not able to stop the vicious cycle that is at the basis of persistent inflammation. In addition, in mice after SC an ongoing inflammation and progressive lung deterioration is observed. After 4 months of smoke exposure mice show mild emphysematous changes. Lung inflammation is still present after SC, and emphysema progresses during the next 6-month period of observation. Destruction of alveolar walls is associated with airways remodeling (goblet cell metaplasia and peribronchiolar fibrosis). Modulation of formyl-peptide receptor signaling with antagonists mitigates inflammation and prevents deterioration of lung structures. This study suggests an important role for N-formylated peptides in the progression and exacerbation of COPD. Modulating formyl-peptide receptor signal should be explored as a potential new therapy for COPD.
Collapse
Affiliation(s)
- Giovanna De Cunto
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Barbara Bartalesi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Eleonora Cavarra
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emilia Balzano
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Lungarella
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Monica Lucattelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| |
Collapse
|
29
|
Wang X, Polverino F, Rojas-Quintero J, Zhang D, Sánchez J, Yambayev I, Lindqvist E, Virtala R, Djukanovic R, Davies DE, Wilson S, O'Donnell R, Cunoosamy D, Hazon P, Higham A, Singh D, Olsson H, Owen CA. A Disintegrin and A Metalloproteinase-9 (ADAM9): A Novel Proteinase Culprit with Multifarious Contributions to COPD. Am J Respir Crit Care Med 2018; 198:1500-1518. [PMID: 29864380 PMCID: PMC6298633 DOI: 10.1164/rccm.201711-2300oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/04/2018] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Proteinases with a disintegrin and a metalloproteinase domain (ADAMs) have not been well studied in COPD. We investigated whether ADAM9 is linked to COPD in humans and mice. METHODS ADAM9 blood and lung levels were measured in COPD patients versus controls, and air- versus cigarette smoke (CS)-exposed wild-type (WT) mice. WT and Adam9-/- mice were exposed to air or CS for 1-6 months, and COPD-like lung pathologies were measured. RESULTS ADAM9 staining was increased in lung epithelial cells and macrophages in smokers and even more so in COPD patients and correlated directly with pack-year smoking history and inversely with airflow obstruction and/or FEV1 % predicted. Bronchial epithelial cell ADAM9 mRNA levels were higher in COPD patients than controls and correlated directly with pack-year smoking history. Plasma, BALF and sputum ADAM9 levels were similar in COPD patients and controls. CS exposure increased Adam9 levels in WT murine lungs. Adam9-/- mice were protected from emphysema development, small airway fibrosis, and airway mucus metaplasia. CS-exposed Adam9-/- mice had reduced lung macrophage counts, alveolar septal cell apoptosis, lung elastin degradation, and shedding of VEGFR2 and EGFR in BALF samples. Recombinant ADAM9 sheds EGF and VEGF receptors from epithelial cells to reduce activation of the Akt pro-survival pathway and increase cellular apoptosis. CONCLUSIONS ADAM9 levels are increased in COPD lungs and linked to key clinical variables. Adam9 promotes emphysema development, and large and small airway disease in mice. Inhibition of ADAM9 could be a therapeutic approach for multiple COPD phenotypes.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Brigham and Women's Hospital, 1861, Boston, Massachusetts, United States
| | - Francesca Polverino
- Brigham and Women's Hospital, Harvard Medical School, Medicine, Boston, Massachusetts, United States
| | - Joselyn Rojas-Quintero
- Brigham and Women's Hospital, Harvard Medical School, Medicine, Boston, Massachusetts, United States
| | - Duo Zhang
- Boston University, 1846, Boston, Massachusetts, United States
| | - José Sánchez
- AstraZeneca R&D, Quantitative Biology, Discovery Sciences, Gothenburgh, Sweden
| | - Ilyas Yambayev
- Brigham and Women's Hospital, 1861, Boston, Massachusetts, United States
| | - Eva Lindqvist
- AstraZeneca R&D , Department of Translational Biology, Respiratory, Inflammation & Autoimmunity IMED, Gothenburg, Sweden
| | - Robert Virtala
- AstraZeneca R&D , Department of Translational Biology, Respiratory, Inflammation & Autoimmunity IMED, Gothenburg, Sweden
| | - Ratko Djukanovic
- Southampton University, Clinical and Experimental Sciences and Southampton NIHR Respiratory Biomedical Research Unit, Southampton, United Kingdom of Great Britain and Northern Ireland
| | - Donna E Davies
- Brooke Laboratory, Infection, Inflammation & Repair, Southampton, Hampshire, United Kingdom of Great Britain and Northern Ireland
| | - Susan Wilson
- University of Southampton, 7423, Southampton, United Kingdom of Great Britain and Northern Ireland
| | | | - Danen Cunoosamy
- AstraZeneca, Respiratory, Inflammation and Autoimmune iMed, Molndal, Sweden
| | - Petra Hazon
- AstraZeneca R&D , Department of Translational Biology, Respiratory, Inflammation & Autoimmunity IMED, Gothenburg, Sweden
| | - Andrew Higham
- University of South Manchester NHS Foundation Trust, Medicines Evaluation Unit, Manchester, United Kingdom of Great Britain and Northern Ireland
| | - Dave Singh
- North West Lung Research Centre, Manchester, United Kingdom of Great Britain and Northern Ireland
| | - Henric Olsson
- AstraZeneca R&D , Department of Translational Biology, Respiratory, Inflammation & Autoimmunity IMED, Gothenburg, Sweden
| | - Caroline A Owen
- Brigham and Women's Hospital, Boston, Massachusetts, United States ;
| |
Collapse
|
30
|
Chinnapaiyan S, Dutta R, Bala J, Parira T, Agudelo M, Nair M, Unwalla HJ. Cigarette smoke promotes HIV infection of primary bronchial epithelium and additively suppresses CFTR function. Sci Rep 2018; 8:7984. [PMID: 29789655 PMCID: PMC5964097 DOI: 10.1038/s41598-018-26095-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/04/2018] [Indexed: 02/07/2023] Open
Abstract
Recurrent lung infections are a common cause of morbidity and mortality in people living with HIV and this is exacerbated in smokers even when administered combination antiretroviral therapy (cART). The incidence of pneumonia is increased with smoking and treatment interruption and is directly dependent on viral load in patients when adjusted for CD4 counts. CFTR dysfunction plays an important role in aberrant airway innate immunity as it is pivotal in regulating mucociliary clearance (MCC) rates and other antibacterial mechanisms of the airway. In our earlier work, we have demonstrated that bronchial epithelium expresses canonical HIV receptors CD4, CCR5 and CXCR4 and can be infected with HIV. HIV Tat suppresses CFTR mRNA and function via TGF-β signaling. In the present study, we demonstrate that cigarette smoke (CS) potentiates HIV infection of bronchial epithelial cells by upregulating CD4 and CCR5 expression. HIV and CS individually and additively suppress CFTR biogenesis and function, possibly explaining the increased incidence of lung infections in HIV patients and its exacerbation in HIV smokers.
Collapse
Affiliation(s)
- S Chinnapaiyan
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - R Dutta
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - J Bala
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - T Parira
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - M Agudelo
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - M Nair
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - H J Unwalla
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| |
Collapse
|
31
|
Xu F, Lin J, Cui W, Kong Q, Li Q, Li L, Wei Y, Dong J. Scutellaria baicalensis Attenuates Airway Remodeling via PI3K/Akt/NF- κB Pathway in Cigarette Smoke Mediated-COPD Rats Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:1281420. [PMID: 29861765 PMCID: PMC5971322 DOI: 10.1155/2018/1281420] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/27/2018] [Accepted: 02/11/2018] [Indexed: 11/29/2022]
Abstract
Background. Scutellaria baicalensis (SB) is commonly used in traditional Chinese medicine for chronic inflammatory diseases. This study aims to investigate the effects of the early intervention with SB on airway remodeling in a well-established rat model of COPD induced by cigarette smoking. Methods. COPD model in Sprague Dawley (SD) rats were established by exposing them to smoke for 6 days/week, for 12 weeks, 24 weeks, or 36 weeks. Meanwhile, rats were randomly divided into normal control group, model group, Budesonide (BUD) group, and the SB (low, middle, and high) dose groups with 8 rats in each group and 3 stages (12 weeks, 24 weeks, and 36 weeks). After treatment, the pulmonary function was evaluated by BUXCO system and the morphology changes of the lungs were observed with HE and Masson staining. The serum IL-6, IL-8, and IL-10 and TNF-α, TGF-beta (TGF-β1), MMP-2, MMP-9, and TIMP-1 levels in BALF were detected by ELISA-kit assay. The protein expression levels of AKT and NF-κB (p65) were determined by western blot (WB). Results. The oral of SB significantly improved pulmonary function (PF) and ameliorated the pathological damage and attenuated inflammatory cytokines infiltration into the lungs. Meanwhile, the levels of TGF-β, MMP-2, MMP-9, and TIMP-1 were partially significantly decreased. The levels of PI3K/AKT/NF-κB pathway were also markedly suppressed by SB. Conclusions. SB could significantly improve the condition of airway remodeling by inhibiting airway inflammation and partially quenching TGF-β and MMPs via PI3K/AKT/NF-κB pathway.
Collapse
Affiliation(s)
- Fei Xu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jinpei Lin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wenqiang Cui
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture Research, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qing Kong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Qiuping Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Lulu Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Yang L, Jiao X, Wu J, Zhao J, Liu T, Xu J, Ma X, Cao L, Liu L, Liu Y, Chi J, Zou M, Li S, Xu J, Dong L. Cordyceps sinensis inhibits airway remodeling in rats with chronic obstructive pulmonary disease. Exp Ther Med 2018; 15:2731-2738. [PMID: 29456676 PMCID: PMC5795554 DOI: 10.3892/etm.2018.5777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/09/2017] [Indexed: 12/19/2022] Open
Abstract
Cordyceps sinensis is a traditional Chinese herbal medicine that has been used for centuries in Asia as a tonic to soothe the lung for the treatment of respiratory diseases. The aim of the present study was to determine the effects of C. sinensis on airway remodeling in chronic obstructive pulmonary disease (COPD) and investigate the underlying molecular mechanisms. Rats with COPD were orally administered C. sinensis at low, moderate or high doses (2.5, 5 or 7.5 g/kg/day, respectively) for 12 weeks. Airway tissue histopathology, lung inflammation and airway remodeling were evaluated. C. sinensis treatment significantly ameliorated airway wall thickening, involving collagen deposition, airway wall fibrosis, smooth muscle hypertrophy and epithelial hyperplasia in model rats with COPD. Additionally, C. sinensis administration in rats with COPD reduced inflammatory cell accumulation and decreased inflammatory cytokine production, including tumor necrosis factor-α, interleukin-8 and transforming growth factor (TGF)-β1 in bronchoalveolar lavage fluid. Meanwhile, the increased levels of α-smooth muscle actin and collagen I in the COPD group were also markedly decreased by C. sinensis treatment. Furthermore, compared with untreated rats with COPD, C. sinensis reduced the expression level of phosphorylated (p)-Smad2, p-Smad3, TGF-β1 and its receptors, with the concomitant increased expression of Smad7 in the lungs of rats with COPD. These results indicated that treatment with C. sinensis may be a useful approach for COPD therapy.
Collapse
Affiliation(s)
- Lei Yang
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Tuberculosis, Shandong Provincial Chest Hospital, Jinan, Shandong 250013, P.R. China
| | - Xingai Jiao
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jinxiang Wu
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jiping Zhao
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Tian Liu
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jianfeng Xu
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Pulmonary Medicine, Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Xiaohui Ma
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Tuberculosis, Shandong Provincial Chest Hospital, Jinan, Shandong 250013, P.R. China
| | - Liuzao Cao
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lin Liu
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yahui Liu
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jingyu Chi
- Department of Tuberculosis, Shandong Provincial Chest Hospital, Jinan, Shandong 250013, P.R. China
| | - Minfang Zou
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shuo Li
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jiawei Xu
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Liang Dong
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
33
|
Microrna-26b attenuates monocrotaline-induced pulmonary vascular remodeling via targeting connective tissue growth factor (CTGF) and cyclin D1 (CCND1). Oncotarget 2018; 7:72746-72757. [PMID: 27322082 PMCID: PMC5341941 DOI: 10.18632/oncotarget.10125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 05/17/2016] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs are involved in the control of cell growth, and deregulated pulmonary artery smooth muscle cell proliferation plays an essential role in the development of pulmonary hypertension. The objective of this study was to identify differentially expressed microRNA(s) and explore its therapeutic role in treatment of the disease. MicroRNA expression profile analysis showed microRNA-26b was differentially expressed in pulmonary artery smooth muscle cells harvested from monocrotaline-treated rats, and we validated microRNA-26b targets, in vitro and in vivo, CTGF and CCND1, both of which have been shown, in our previous work, to be involved in the pathogenesis of pulmonary hypertension. In vivo experiments demonstrated monocrotaline-induced pulmonary artery remodeling could be almost completely abolished by administration of microRNA-26b, while CTGF or CCND1 shRNA significantly, but only partially, attenuated the remodeling by silencing the designed target. Additionally, exogenous expression of the microRNA-26b substantially downregulated CTGF and CCND1 in human pulmonary artery smooth muscle cells. MicroRNA-26b might be a potent therapeutic tool to treat pulmonary hypertension.
Collapse
|
34
|
Safer approaches to therapeutic modulation of TGF-β signaling for respiratory disease. Pharmacol Ther 2018; 187:98-113. [PMID: 29462659 DOI: 10.1016/j.pharmthera.2018.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The transforming growth factor (TGF)-β cytokines play a central role in development and progression of chronic respiratory diseases. TGF-β overexpression in chronic inflammation, remodeling, fibrotic process and susceptibility to viral infection is established in the most prevalent chronic respiratory diseases including asthma, COPD, lung cancer and idiopathic pulmonary fibrosis. Despite the overwhelming burden of respiratory diseases in the world, new pharmacological therapies have been limited in impact. Although TGF-β inhibition as a therapeutic strategy carries great expectations, the constraints in avoiding compromising the beneficial pleiotropic effects of TGF-β, including the anti-proliferative and immune suppressive effects, have limited the development of effective pharmacological modulators. In this review, we focus on the pathways subserving deleterious and beneficial TGF-β effects to identify strategies for selective modulation of more distal signaling pathways that may result in agents with improved safety/efficacy profiles. Adverse effects of TGF-β inhibitors in respiratory clinical trials are comprehensively reviewed, including those of the marketed TGF-β modulators, pirfenidone and nintedanib. Precise modulation of TGF-β signaling may result in new safer therapies for chronic respiratory diseases.
Collapse
|
35
|
Torre O, Elia D, Caminati A, Harari S. New insights in lymphangioleiomyomatosis and pulmonary Langerhans cell histiocytosis. Eur Respir Rev 2017; 26:26/145/170042. [PMID: 28954765 PMCID: PMC9488980 DOI: 10.1183/16000617.0042-2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) and pulmonary Langerhans cell histiocytosis (PLCH) are rare diseases that lead to progressive cystic destruction of the lungs. Despite their distinctive characteristics, these diseases share several features. Patients affected by LAM or PLCH have similar radiological cystic patterns, a similar age of onset, and the possibility of extrapulmonary involvement. In this review, the recent advances in the understanding of the molecular pathogenesis, as well as the current and most promising biomarkers and therapeutic approaches, are described. Understanding of LAM/PLCH pathogenesis has improved over the past years, leading to new therapeutic approacheshttp://ow.ly/7wjR30erSJY
Collapse
Affiliation(s)
- Olga Torre
- U.O. di Pneumologia e Terapia Semi-Intensiva Respiratoria, Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe, MultiMedica IRCCS, Milan, Italy
| | - Davide Elia
- U.O. di Pneumologia e Terapia Semi-Intensiva Respiratoria, Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe, MultiMedica IRCCS, Milan, Italy
| | - Antonella Caminati
- U.O. di Pneumologia e Terapia Semi-Intensiva Respiratoria, Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe, MultiMedica IRCCS, Milan, Italy
| | - Sergio Harari
- U.O. di Pneumologia e Terapia Semi-Intensiva Respiratoria, Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe, MultiMedica IRCCS, Milan, Italy
| |
Collapse
|
36
|
He X, Shen H, Chen Z, Rong C, Ren M, Hou L, Wu C, Mao L, Lu Q, Su B. Element-based prognostics of occupational pneumoconiosis using micro-proton-induced X-ray emission analysis. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1154-L1163. [PMID: 28912379 DOI: 10.1152/ajplung.00009.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 11/22/2022] Open
Abstract
Pneumoconiosis is an occupational disease accompanied by long-term lung impairment, for which prediction of prognosis is poorly understood because of the complexity of the inhaled particles. Micro-proton-induced X-ray emission (micro-PIXE) analysis, which is advantageous for high-sensitivity, two-dimensional element mapping of lung tissues, was used to investigate element-based predictive factors of prognosis in Chinese patients with welder's and coal miner's pneumoconiosis. Chest radiographs and lung function tests showed that most of the coal miners deteriorated, whereas symptoms in some welders were alleviated after 5 yr, as determined by comparing percent vital capacity (%VC) and forced expiratory volume in the 1st second over forced vital capacity (FEV1.0/FVC) to values taken at the initial diagnosis. Micro-PIXE analysis suggested that the most abundant particulates in welder's pneumoconiosis were Fe, Mn, and Ti (metallic oxide),which were accompanied by particulates containing Si, Al, and Ca (aluminum silicate) or only Si (SiO2); the most abundant particulates in coal miner's pneumoconiosis were composed of C, Si, Al, K, and Ti, which were accompanied by particulates containing Ca or Fe. Particulates containing Al, Si, S, K, Ca, and Ti (orthoclase and anorthite) were correlated with severity of fibrosis. Multivariable linear regression suggested that long-term FEV1.0/FVC decrease was independently associated with Si and smoking index, whereas %VC decrease was associated with Si and Ti. A risk index comprised of these factors was developed to predict the prognosis of pneumoconiosis. Micro-PIXE analysis is feasible for the evaluation of elemental composition and dust exposure, especially for patients whose exposure is mixed or uncertain.
Collapse
Affiliation(s)
- Xiaodong He
- Key Laboratory of Applied Ion Beam Physics, Institute of Modern Physics, Fudan University, Shanghai, China.,Department of Pneumoconiosis, Occupational Disease Clinical Research Centre, Department of Radiotherapy, Central Laboratory, Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Shen
- Key Laboratory of Applied Ion Beam Physics, Institute of Modern Physics, Fudan University, Shanghai, China
| | - Zidan Chen
- Department of Pneumoconiosis, Occupational Disease Clinical Research Centre, Department of Radiotherapy, Central Laboratory, Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Caicai Rong
- Key Laboratory of Applied Ion Beam Physics, Institute of Modern Physics, Fudan University, Shanghai, China
| | - Minqin Ren
- Center for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore; and
| | - Likun Hou
- Department of Pneumoconiosis, Occupational Disease Clinical Research Centre, Department of Radiotherapy, Central Laboratory, Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunyan Wu
- Department of Pneumoconiosis, Occupational Disease Clinical Research Centre, Department of Radiotherapy, Central Laboratory, Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ling Mao
- Department of Pneumoconiosis, Occupational Disease Clinical Research Centre, Department of Radiotherapy, Central Laboratory, Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Quan Lu
- Departments of Environmental Health, Genetics, and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Bo Su
- Department of Pneumoconiosis, Occupational Disease Clinical Research Centre, Department of Radiotherapy, Central Laboratory, Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China;
| |
Collapse
|
37
|
Vassallo R, Harari S, Tazi A. Current understanding and management of pulmonary Langerhans cell histiocytosis. Thorax 2017; 72:937-945. [PMID: 28689173 DOI: 10.1136/thoraxjnl-2017-210125] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/13/2022]
Abstract
Pulmonary Langerhans cell histiocytosis (PLCH) is a diffuse lung disease that usually affects young adult smokers. PLCH affects different lung compartments; bronchiolar, interstitial and pulmonary vascular dysfunction may coexist to varying extents, resulting in diverse phenotypes. Analyses of PLCH tissues have identified activating mutations of specific mitogen-activated protein kinases (BRAFV600E and others). The current consensus is that PLCH represents a myeloid neoplasm with inflammatory properties: the myeloid tumour cells exhibit surface CD1a expression and up to 50% of the cells harbour activating BRAF or other MAPK mutations. PLCH may be associated with multisystem disease. The detection of disease outside of the thorax is facilitated by whole body positron emission tomography. The natural history of PLCH is unpredictable. In some patients, disease may remit or stabilise following smoking cessation. Others develop progressive lung disease, often associated with evidence of airflow limitation and pulmonary vascular dysfunction. Due to the inability to accurately predict the natural history, it is important that all patients undergo longitudinal follow-up at least twice a year for the first few years following diagnosis. The treatment of PLCH is challenging and should be individualised. While there is no general consensus regarding the role of immunosuppression or chemotherapy in management, selected patients may experience improvement in lung function with therapy. Determination of BRAFV600E or other mutations may assist with the development of an individualised approach to therapy. Patients with progressive disease should be referred to specialised centres and considered for a trial of pharmacotherapy or evaluated for transplantation.
Collapse
Affiliation(s)
- Robert Vassallo
- Departments of Medicine, Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Sergio Harari
- U.O. di Pneumologia e Terapia Semi-Intensiva Respiratoria "Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe" Multimedica IRCCS, Milano, Italy
| | - Abdellatif Tazi
- Department of Pulmonary Medicine, Saint-Louis Hospital, National Reference Center for Langerhans Cell Histiocytosis, University Paris Diderot, Sorbonne Paris Cite, Inserm UMR-1153 (CRESS), Biostatistics and Clinical Epidemiology Research Team (ECSTRA), Paris, Ile-de-France, France
| |
Collapse
|
38
|
Pine bark extract (Pycnogenol®) suppresses cigarette smoke-induced fibrotic response via transforming growth factor-β1/Smad family member 2/3 signaling. Lab Anim Res 2017; 33:76-83. [PMID: 28747971 PMCID: PMC5527150 DOI: 10.5625/lar.2017.33.2.76] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/07/2017] [Accepted: 03/16/2017] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary diseases (COPD) is an important disease featured as intense inflammation, protease imbalance, and air flow limitation and mainly induced by cigarette smoke (CS). In present study, we explored the effects of Pycnogenol® (PYC, pine bark extract) on pulmonary fibrosis caused by CS+lipopolysaccharide (LPS) exposure. Mice were treated with LPS intranasally on day 12 and 26, followed by CS exposure for 1 h/day (8 cigarettes per day) for 4 weeks. One hour before CS exposure, 10 and 20 mg/kg of PYC were administered by oral gavage for 4 weeks. PYC effectively reduced the number of inflammatory cells and proinflammatory mediators caused by CS+LPS exposure in bronchoalveolar lavage fluid. PYC inhibited the collagen deposition on lung tissue caused by CS+LPS exposure, as evidenced by Masson's trichrome stain. Furthermore, transforming growth factor-β1 (TGF-β1) expression and Smad family member 2/3 (Smad 2/3) phosphorylation were effectively suppressed by PYC treatment. PYC markedly reduced the collagen deposition caused by CS+LPS exposure, which was closely involved in TGF-β1/Smad 2/3 signaling, which is associated with pulmonary fibrotic change. These findings suggest that treatment with PYC could be a therapeutic strategy for controlling COPD progression.
Collapse
|
39
|
Brüggemann TR, Fernandes P, Oliveira LDM, Sato MN, Martins MDA, Arantes-Costa FM. Cigarette Smoke Increases CD8α + Dendritic Cells in an Ovalbumin-Induced Airway Inflammation. Front Immunol 2017; 8:718. [PMID: 28670318 PMCID: PMC5472682 DOI: 10.3389/fimmu.2017.00718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/02/2017] [Indexed: 12/22/2022] Open
Abstract
Asthma is an allergic lung disease and, when associated to cigarette smoke exposition, some patients show controversial signs about lung function and other inflammatory mediators. Epidemiologic and experimental studies have shown both increasing and decreasing inflammation in lungs of subjects with asthma and exposed to cigarette smoke. Therefore, in this study, we analyzed how cigarette smoke affects pro-inflammatory and anti-inflammatory mediators in a murine model of allergic pulmonary inflammation. We sensitized Balb/c mice to ovalbumin (OVA) with two intraperitoneal injections. After sensitization, the animals were exposed to cigarette smoke twice a day, 30 min per exposition, for 12 consecutive days. In order to drive the cell to the lungs, four aerosol challenges were performed every 48 h with the same allergen of sensitization. OVA sensitization and challenge developed pulmonary Th2 characteristic response with increased airway responsiveness, remodeling, increased levels of IgE, interleukin (IL)-4, and IL-13. Cigarette smoke, unexpectedly, reduced the levels of IL-4 and IL-13 and simultaneously decreased anti-inflammatory cytokines as IL-10 and transforming growth factor (TGF)-β in sensitized and challenged animals. OVA combined with cigarette smoke exposition decreased the number of eosinophils in bronchoalveolar lavage and increased the number of neutrophils in lung. The combination of cigarette smoke and lung allergy increased recruitment of lymphoid dendritic cells (DCs) into lymph nodes, which may be the leading cause to an increase in number and activation of CD8+ T cells in lungs. In addition, lung allergy and cigarette smoke exposure decreased an important regulatory subtype of DC such as plasmacytoid DC as well as its activation by expression of CD86, PDL2, and ICOSL, and it was sufficient to decrease T regs influx and anti-inflammatory cytokines release such as IL-10 and TGF-β but not enough to diminish the structural changes. In conclusion, we observed, in this model, that OVA sensitization and challenge combined with cigarette smoke exposure leads to mischaracterization of the Th2 response of asthma by decreasing the number of eosinophils, IL-4, and IL-13 and increasing number of neutrophils, which is related to the increased number of CD8ɑ+ DCs and CD8+ T cells as well as reduction of the regulatory cells and its released cytokines.
Collapse
Affiliation(s)
- Thayse Regina Brüggemann
- Laboratory of Experimental Therapeutics LIM20, Department of Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil.,Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Paula Fernandes
- Laboratory of Experimental Therapeutics LIM20, Department of Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Luana de Mendonça Oliveira
- Laboratory of Medical Investigation LIM56, School of Medicine, Division of Clinical Dermatology, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Notomi Sato
- Laboratory of Medical Investigation LIM56, School of Medicine, Division of Clinical Dermatology, University of Sao Paulo, Sao Paulo, Brazil
| | - Mílton de Arruda Martins
- Laboratory of Experimental Therapeutics LIM20, Department of Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernanda Magalhães Arantes-Costa
- Laboratory of Experimental Therapeutics LIM20, Department of Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
40
|
Bazett M, Biala A, Huff RD, Zeglinksi MR, Hansbro PM, Bosiljcic M, Gunn H, Kalyan S, Hirota JA. Attenuating immune pathology using a microbial-based intervention in a mouse model of cigarette smoke-induced lung inflammation. Respir Res 2017; 18:92. [PMID: 28506308 PMCID: PMC5433159 DOI: 10.1186/s12931-017-0577-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
Background Cigarette smoke exposure is the major risk factor for developing COPD. Presently, available COPD treatments focus on suppressing inflammation and providing bronchodilation. However, these options have varying efficacy in controlling symptoms and do not reverse or limit the progression of COPD. Treatments strategies using bacterial-derived products have shown promise in diseases characterized by inflammation and immune dysfunction. This study investigated for the first time whether a novel immunotherapy produced from inactivated Klebsiella (hereafter referred to as KB) containing all the major Klebsiella macromolecules, could attenuate cigarette smoke exposure-induced immune responses. We hypothesized that KB, by re-directing damaging immune responses, would attenuate cigarette smoke-induced lung inflammation and bronchoalveolar (BAL) cytokine and chemokine production. Methods KB was administered via a subcutaneous injection prophylactically before initiating a 3-week acute nose-only cigarette smoke exposure protocol. Control mice received placebo injection and room air. Total BAL and differential cell numbers were enumerated. BAL and serum were analysed for 31 cytokines, chemokines, and growth factors. Lung tissue and blood were analysed for Ly6CHI monocytes/macrophages and neutrophils. Body weight and clinical scores were recorded throughout the experiment. Results We demonstrate that KB treatment attenuated cigarette smoke-induced lung inflammation as shown by reductions in levels of BAL IFNγ, CXCL9, CXCL10, CCL5, IL-6, G-CSF, and IL-17. KB additionally attenuated the quantity of BAL lymphocytes and macrophages. In parallel to the attenuation of lung inflammation, KB induced a systemic immune activation with increases in Ly6CHI monocytes/macrophages and neutrophils. Conclusions This is the first demonstration that subcutaneous administration of a microbial-based immunotherapy can attenuate cigarette smoke-induced lung inflammation, and modulate BAL lymphocyte and macrophage levels, while inducing a systemic immune activation and mobilization. These data provide a foundation for future studies exploring how KB may be used to either reverse or prevent progression of established emphysema and small airways disease associated with chronic cigarette smoke exposure. The data suggest the intriguing possibility that KB, which stimulates rather than suppresses systemic immune responses, might be a novel means by which the course of COPD pathogenesis may be altered. Electronic supplementary material The online version of this article (doi:10.1186/s12931-017-0577-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark Bazett
- Qu Biologics Inc., Vancouver, BC, Canada, V5T 4T5
| | - Agnieszka Biala
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada, V6H 3Z6
| | - Ryan D Huff
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada, V6H 3Z6
| | - Matthew R Zeglinksi
- iCORD Research Centre, University of British Columbia, Vancouver, BC, Canada, V5Z 1M5
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | | | - Hal Gunn
- Qu Biologics Inc., Vancouver, BC, Canada, V5T 4T5
| | - Shirin Kalyan
- Qu Biologics Inc., Vancouver, BC, Canada, V5T 4T5.,Department of Medicine, Division of Endocrinology, CeMCOR, University of British Columbia, Vancouver, BC, Canada, V5Z 1M9
| | - Jeremy A Hirota
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada, V6H 3Z6. .,Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada, L8N 4A6.
| |
Collapse
|
41
|
Ghorani V, Boskabady MH, Khazdair MR, Kianmeher M. Experimental animal models for COPD: a methodological review. Tob Induc Dis 2017; 15:25. [PMID: 28469539 PMCID: PMC5414171 DOI: 10.1186/s12971-017-0130-2] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a progressive disorder that makes the breathing difficult and is characterized by pathological conditions ranging from chronic inflammation to tissue proteolysis. With regard to ethical issues related to the studies on patients with COPD, the use of animal models of COPD is inevitable. Animal models improve our knowledge about the basic mechanisms underlying COPD physiology, pathophysiology and treatment. Although these models are only able to mimic some of the features of the disease, they are valuable for further investigation of mechanisms involved in human COPD. METHODS We searched the literature available in Google Scholar, PubMed and ScienceDirect databases for English articles published until November 2015. For this purpose, we used 5 keywords for COPD, 3 for animal models, 4 for exposure methods, 3 for pathophysiological changes and 3 for biomarkers. One hundred and fifty-one studies were considered eligible for inclusion in this review. RESULTS According to the reviewed articles, animal models of COPD are mainly induced in mice, guinea pigs and rats. In most of the studies, this model was induced by exposure to cigarette smoke (CS), intra-tracheal lipopolysaccharide (LPS) and intranasal elastase. There were variations in time course and dose of inducers used in different studies. The main measured parameters were lung pathological data and lung inflammation (both inflammatory cells and inflammatory mediators) in most of the studies and tracheal responsiveness (TR) in only few studies. CONCLUSION The present review provides various methods used for induction of animal models of COPD, different animals used (mainly mice, guinea pigs and rats) and measured parameters. The information provided in this review is valuable for choosing appropriate animal, method of induction and selecting parameters to be measured in studies concerning COPD.
Collapse
Affiliation(s)
- Vahideh Ghorani
- Pharmaceutical Research Centre and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Neurogenic Inflammation Research Centre and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564 Iran
| | - Mohammad Reza Khazdair
- Pharmaceutical Research Centre and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Kianmeher
- Neurogenic Inflammation Research Centre and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564 Iran
| |
Collapse
|
42
|
Yablonskiy DA, Sukstanskii AL, Quirk JD. Diffusion lung imaging with hyperpolarized gas MRI. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3448. [PMID: 26676342 PMCID: PMC4911335 DOI: 10.1002/nbm.3448] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 05/28/2023]
Abstract
Lung imaging using conventional 1 H MRI presents great challenges because of the low density of lung tissue, lung motion and very fast lung tissue transverse relaxation (typical T2 * is about 1-2 ms). MRI with hyperpolarized gases (3 He and 129 Xe) provides a valuable alternative because of the very strong signal originating from inhaled gas residing in the lung airspaces and relatively slow gas T2 * relaxation (typical T2 * is about 20-30 ms). However, in vivo human experiments should be performed very rapidly - usually during a single breath-hold. In this review, we describe the recent developments in diffusion lung MRI with hyperpolarized gases. We show that a combination of the results of modeling of gas diffusion in lung airspaces and diffusion measurements with variable diffusion-sensitizing gradients allows the extraction of quantitative information on the lung microstructure at the alveolar level. From an MRI scan of less than 15 s, this approach, called in vivo lung morphometry, allows the provision of quantitative values and spatial distributions of the same physiological parameters as measured by means of 'standard' invasive stereology (mean linear intercept, surface-to-volume ratio, density of alveoli, etc.). In addition, the approach makes it possible to evaluate some advanced Weibel parameters characterizing lung microstructure: average radii of alveolar sacs and ducts, as well as the depth of their alveolar sleeves. Such measurements, providing in vivo information on the integrity of pulmonary acinar airways and their changes in different diseases, are of great importance and interest to a broad range of physiologists and clinicians. We also discuss a new type of experiment based on the in vivo lung morphometry technique combined with quantitative computed tomography measurements, as well as with gradient echo MRI measurements of hyperpolarized gas transverse relaxation in the lung airspaces. Such experiments provide additional information on the blood vessel volume fraction, specific gas volume and length of the acinar airways, and allow the evaluation of lung parenchymal and non-parenchymal tissue. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | | | - James D Quirk
- Department of Radiology, Washington University, St. Louis, MO, USA
| |
Collapse
|
43
|
Zarei S, Mirtar A, Morrow JD, Castaldi PJ, Belloni P, Hersh CP. Subtyping Chronic Obstructive Pulmonary Disease Using Peripheral Blood Proteomics. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2017; 4:97-108. [PMID: 28848918 DOI: 10.15326/jcopdf.4.2.2016.0147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disorder. COPD patients may have different clinical features, imaging characteristics and natural history. Multiple studies have investigated heterogeneity using statistical methods such as unsupervised clustering to define different subgroups of COPD based largely on clinical phenotypes. Some studies have performed clustering using genetic data or limited numbers of blood biomarkers. Our primary goal was to use proteomic data to find subtypes of COPD within clinically similar individuals. In the Treatment of Emphysema with a gamma-Selective Retinoid Agonist (TESRA) study, multiplex biomarker panels were run in serum samples collected prior to randomization. After implementing an algorithm to minimize missing values, the dataset included 396 COPD individuals and 87 biomarkers. Using hierarchical clustering, we identified 3 COPD subgroups, containing 267 (67.4%), 104 (26.3%), and 25 (6.3%) individuals, respectively. The third cluster had less emphysema on quantitative analysis of chest computed tomography scans (p=0.03) and worse disease-related quality of life based on the St. George's Respiratory Questionnaire (total score cluster 1: 45.6, cluster 2: 45.4, cluster 3: 56.6; p=0.01), despite similar levels of lung function impairment (forced expiratory volume in 1 second (49.2%, 49.2%, 48.2 % predicted, respectively). Enrichment analysis showed the biomarkers distinguishing cluster 3 mapped to platelet alpha granule and cell chemotaxis pathways. Thus, we identified a subgroup which has less emphysema but may have greater inflammation, which could be potentially targeted with anti-inflammatory therapies.
Collapse
Affiliation(s)
- Sara Zarei
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,San Juan Bautista School of Medicine, Caguas, Puerto Rico
| | | | - Jarrett D Morrow
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
44
|
Sharan R, Perez-Cruz M, Kervoaze G, Gosset P, Weynants V, Godfroid F, Hermand P, Trottein F, Pichavant M, Gosset P. Interleukin-22 protects against non-typeable Haemophilus influenzae infection: alteration during chronic obstructive pulmonary disease. Mucosal Immunol 2017; 10:139-149. [PMID: 27143304 DOI: 10.1038/mi.2016.40] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/24/2016] [Indexed: 02/04/2023]
Abstract
Chronic obstructive pulmonary disease is a major health problem becoming a leading cause of morbidity and mortality worldwide. A large part of these disorders is associated with acute exacerbations resulting from infection by bacteria, such as non-typeable Haemophilus influenzae (NTHi). Our understanding of the pathogenesis of these exacerbations is still elusive. We demonstrate herein that NTHi infection of mice chronically exposed to cigarette smoke (CS), an experimental model of chronic obstructive pulmonary disease (COPD), not only causes acute pulmonary inflammation but also impairs the production of interleukin (IL)-22, a cytokine with potential anti-bacterial activities. We also report that mice lacking IL-22, as well as mice exposed to CS, have a delayed clearance of NTHi bacteria and display enhanced alveolar wall thickening and airway remodeling compared with controls. Supplementation with IL-22 not only boosted bacterial clearance and the production of anti-microbial peptides but also limited lung damages induced by infection both in IL-22-/- and CS-exposed mice. In vitro exposure to CS extract altered the NTHi-induced IL-22 production by spleen cells. This study shows for the first time that a defect in IL-22 is involved in the acute exacerbation induced by NTHi infection during experimental COPD and opens the way to innovative therapeutic strategies.
Collapse
Affiliation(s)
- R Sharan
- Université Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- CNRS, UMR 8204, Lille, France
- Inserm, U1019, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - M Perez-Cruz
- Université Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- CNRS, UMR 8204, Lille, France
- Inserm, U1019, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - G Kervoaze
- Université Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- CNRS, UMR 8204, Lille, France
- Inserm, U1019, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Pierre Gosset
- Service d'Anatomo-pathologie, Hôpital Saint Vincent de Paul, Lille, France
| | | | | | | | - F Trottein
- Université Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- CNRS, UMR 8204, Lille, France
- Inserm, U1019, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - M Pichavant
- Université Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- CNRS, UMR 8204, Lille, France
- Inserm, U1019, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - P Gosset
- Université Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- CNRS, UMR 8204, Lille, France
- Inserm, U1019, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| |
Collapse
|
45
|
Barupal DK, Pinkerton KE, Hood C, Kind T, Fiehn O. Environmental Tobacco Smoke Alters Metabolic Systems in Adult Rats. Chem Res Toxicol 2016; 29:1818-1827. [PMID: 27788581 DOI: 10.1021/acs.chemrestox.6b00187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human exposure to environmental tobacco smoke (ETS) is associated with an increased incidence of pulmonary and cardiovascular disease and possibly lung cancer. Metabolomics can reveal changes in metabolic networks in organisms under different physio-pathological conditions. Our objective was to identify spatial and temporal metabolic alterations with acute and repeated subchronic ETS exposure to understand mechanisms by which ETS exposure may cause adverse physiological and structural changes in the pulmonary and cardiovascular systems. Established and validated metabolomics assays of the lungs, hearts. and blood of young adult male rats following 1, 3, 8, and 21 days of exposure to ETS along with day-matched sham control rats (n = 8) were performed using gas chromatography time-of-flight mass spectrometry, BinBase database processing, multivariate statistical modeling, and MetaMapp biochemical mapping. A total of 489 metabolites were measured in the lung, heart, and blood, of which 142 metabolites were identified using a standardized metabolite annotation pipeline. Acute and repeated subchronic exposure to ETS was associated with significant metabolic changes in the lung related to energy metabolism, defense against reactive oxygen species, substrate uptake and transport, nucleotide metabolism, and substrates for structural components of collagen and membrane lipids. Metabolic changes were least prevalent in heart tissues but abundant in blood under repeated subchronic ETS exposure. Our analyses revealed that ETS causes alterations in metabolic networks, especially those associated with lung structure and function and found as systemic signals in the blood. The metabolic changes suggest that ETS exposure may adversely affects the mitochondrial respiratory chain, lung elasticity, membrane integrity, redox states, cell cycle, and normal metabolic and physiological functions of the lungs, even after subchronic ETS exposure.
Collapse
Affiliation(s)
- Dinesh K Barupal
- West Coast Metabolomics Center, UC Davis Genome Center , Davis, California 95616, United States
| | - Kent E Pinkerton
- UC Davis Center for Health and the Environment , Davis, California 95616, United States
| | - Carol Hood
- UC Davis Center for Health and the Environment , Davis, California 95616, United States
| | - Tobias Kind
- West Coast Metabolomics Center, UC Davis Genome Center , Davis, California 95616, United States
| | - Oliver Fiehn
- West Coast Metabolomics Center, UC Davis Genome Center , Davis, California 95616, United States
| |
Collapse
|
46
|
Roden AC, Yi ES. Pulmonary Langerhans Cell Histiocytosis: An Update From the Pathologists' Perspective. Arch Pathol Lab Med 2016; 140:230-40. [PMID: 26927717 DOI: 10.5858/arpa.2015-0246-ra] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONTEXT Pulmonary Langerhans cell histiocytosis (PLCH) is a rare histiocytic disorder that almost exclusively affects the lungs of smokers. PLCH is characterized by bronchiolocentric nodules and/or cysts in an upper and mid lung distribution with sparing of the costophrenic angles. The diagnosis can be challenging and often requires transbronchial biopsy or surgical lung biopsy. Pulmonary hypertension is a relatively common and sometimes severe complication of PLCH. The pathogenesis of PLCH is still debated. Recently, BRAF V600E mutation and BRAF expression have been identified in some patients with PLCH, suggesting that at least a subset of PLCH has a clonal proliferation. While smoking cessation is the first-line treatment of PLCH, some patients might require additional treatment and eventually transplant. Given that the lesional cells of PLCH express BRAF in some patients, MAPKinase pathway-targeted treatment might be useful for therapy-resistant patients. OBJECTIVE To present the more recently recognized clinical and pathologic aspects of PLCH, including pulmonary hypertension in PLCH, pathogenesis, and treatment, as well as the basic diagnostic approach to PLCH. DATA SOURCES Authors' own research, and search of literature database (PubMed) and UpToDate. CONCLUSIONS Despite the recent progress, more studies are needed to elucidate the biology of PLCH for identification of prognostic factors and appropriate treatment options, especially for therapy-refractory PLCH cases.
Collapse
Affiliation(s)
- Anja C Roden
- From the Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Rochester, Minnesota
| | | |
Collapse
|
47
|
Boucherat O, Morissette MC, Provencher S, Bonnet S, Maltais F. Bridging Lung Development with Chronic Obstructive Pulmonary Disease. Relevance of Developmental Pathways in Chronic Obstructive Pulmonary Disease Pathogenesis. Am J Respir Crit Care Med 2016; 193:362-75. [PMID: 26681127 DOI: 10.1164/rccm.201508-1518pp] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic airflow limitation. This generic term encompasses emphysema and chronic bronchitis, two common conditions, each having distinct but also overlapping features. Recent epidemiological and experimental studies have challenged the traditional view that COPD is exclusively an adult disease occurring after years of inhalational insults to the lungs, pinpointing abnormalities or disruption of the pathways that control lung development as an important susceptibility factor for adult COPD. In addition, there is growing evidence that emphysema is not solely a destructive process because it is also characterized by a failure in cell and molecular maintenance programs necessary for proper lung development. This leads to the concept that tissue regeneration required stimulation of signaling pathways that normally operate during development. We undertook a review of the literature to outline the contribution of developmental insults and genes in the occurrence and pathogenesis of COPD, respectively.
Collapse
Affiliation(s)
- Olivier Boucherat
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Mathieu C Morissette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Steeve Provencher
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Sébastien Bonnet
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - François Maltais
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| |
Collapse
|
48
|
Sun Q, Liu L, Mandal J, Molino A, Stolz D, Tamm M, Lu S, Roth M. PDGF-BB induces PRMT1 expression through ERK1/2 dependent STAT1 activation and regulates remodeling in primary human lung fibroblasts. Cell Signal 2016; 28:307-15. [PMID: 26795953 DOI: 10.1016/j.cellsig.2016.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/11/2016] [Accepted: 01/15/2016] [Indexed: 12/16/2022]
Abstract
Tissue remodeling of sub-epithelial mesenchymal cells is a major pathology occurring in chronic obstructive pulmonary disease (COPD) and asthma. Fibroblasts, as a major source of interstitial connective tissue extracellular matrix, contribute to the fibrotic and inflammatory changes in these airways diseases. Previously, we described that protein arginine methyltransferase-1 (PRMT1) participates in airway remodeling in a rat model of pulmonary inflammation. In this study we investigated the mechanism by which PDGF-BB regulates PRMT1 in primary lung fibroblasts, isolated from human lung biopsies. Fibroblasts were stimulated with PDGF-BB for up-to 48h and the regulatory and activation of signaling pathways controlling PRMT1 expression were determined. PRMT1 was localized by immuno-histochemistry in human lung tissue sections and by immunofluorescence in isolated fibroblasts. PRMT1 activity was suppressed by the pan-PRMT inhibitor AMI1. ERK1/2 mitogen activated protein kinase (MAPK) was blocked by PD98059, p38 MAPK by SB203580, and STAT1 by small interference (si) RNA treatment. The results showed that PDGF-BB significantly increased PRMT1 expression after 1h lasting over 48h, through ERK1/2 MAPK and STAT1 signaling. The inhibition of ERK1/2 MAPK or of PRMT1 activity decreased PDGF-BB induced fibroblast proliferation, COX2 production, collagen-1A1 secretion, and fibronectin production. These findings suggest that PRMT1 is a central regulator of tissue remodeling and that the signaling sequence controlling its expression in primary human lung fibroblast is PDGF-ERK-STAT1. Therefore, PRMT1 presents a novel therapeutic and diagnostic target for the control of airway wall remodeling in chronic lung diseases.
Collapse
Affiliation(s)
- Qingzhu Sun
- Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Pneumology and Pulmonary Cell Research, Department of Biomedicine, University and University Hospital Basel, Basel 4031, Switzerland
| | - Li Liu
- Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Jyotshna Mandal
- Pneumology and Pulmonary Cell Research, Department of Biomedicine, University and University Hospital Basel, Basel 4031, Switzerland
| | - Antonio Molino
- Dept of Respiratory Diseases, University of Naples, Federico II, Naples, Italy
| | - Daiana Stolz
- Pneumology and Pulmonary Cell Research, Department of Biomedicine, University and University Hospital Basel, Basel 4031, Switzerland
| | - Michael Tamm
- Pneumology and Pulmonary Cell Research, Department of Biomedicine, University and University Hospital Basel, Basel 4031, Switzerland
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Michael Roth
- Pneumology and Pulmonary Cell Research, Department of Biomedicine, University and University Hospital Basel, Basel 4031, Switzerland.
| |
Collapse
|
49
|
Yablonskiy DA, Sukstanskii AL, Quirk JD, Woods JC, Conradi MS. Probing lung microstructure with hyperpolarized noble gas diffusion MRI: theoretical models and experimental results. Magn Reson Med 2016; 71:486-505. [PMID: 23554008 DOI: 10.1002/mrm.24729] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The introduction of hyperpolarized gases ((3)He and (129)Xe) has opened the door to applications for which gaseous agents are uniquely suited-lung MRI. One of the pulmonary applications, diffusion MRI, relies on measuring Brownian motion of inhaled hyperpolarized gas atoms diffusing in lung airspaces. In this article we provide an overview of the theoretical ideas behind hyperpolarized gas diffusion MRI and the results obtained over the decade-long research. We describe a simple technique based on measuring gas apparent diffusion coefficient (ADC) and an advanced technique, in vivo lung morphometry, that quantifies lung microstructure both in terms of Weibel parameters (acinar airways radii and alveolar depth) and standard metrics (mean linear intercept, surface-to-volume ratio, and alveolar density) that are widely used by lung researchers but were previously available only from invasive lung biopsy. This technique has the ability to provide unique three-dimensional tomographic information on lung microstructure from a less than 15 s MRI scan with results that are in good agreement with direct histological measurements. These safe and sensitive diffusion measurements improve our understanding of lung structure and functioning in health and disease, providing a platform for monitoring the efficacy of therapeutic interventions in clinical trials.
Collapse
|
50
|
High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells. Sci Rep 2016; 6:18815. [PMID: 26739898 PMCID: PMC4703978 DOI: 10.1038/srep18815] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/13/2015] [Indexed: 12/31/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is implicated in bronchial remodeling and loss of lung function in chronic inflammatory airway diseases. Previous studies showed the involvement of the high mobility group box 1 (HMGB1) protein in the pathology of chronic pulmonary inflammatory diseases. However, the role of HMGB1 in EMT of human airway epithelial cells is still unclear. In this study, we used RNA sequencing to show that HMGB1 treatment regulated EMT-related gene expression in human primary-airway epithelial cells. The top five upregulated genes were SNAI2, FGFBP1, VIM, SPARC (osteonectin), and SERPINE1, while the downregulated genes included OCLN, TJP1 (ZO-1), FZD7, CDH1 (E-cadherin), and LAMA5. We found that HMGB1 induced downregulation of E-cadherin and ZO-1, and upregulation of vimentin mRNA transcription and protein translation in a dose-dependent manner. Additionally, we observed that HMGB1 induced AKT phosphorylation, resulting in GSK3β inactivation, cytoplasmic accumulation, and nuclear translocation of β-catenin to induce EMT in human airway epithelial cells. Treatment with PI3K inhibitor (LY294006) and β-catenin shRNA reversed HMGB1-induced EMT. Moreover, HMGB1 induced expression of receptor for advanced glycation products (RAGE), but not that of Toll-like receptor (TLR) 2 or TLR4, and RAGE shRNA inhibited HMGB1-induced EMT in human airway epithelial cells. In conclusion, we found that HMGB1 induced EMT through RAGE and the PI3K/AKT/GSK3β/β-catenin signaling pathway.
Collapse
|