1
|
Derman ID, Alioglu MA, Moses JC, Chroneos ZC, Yilmaz YO, Banerjee D, Koff J, Rizvi SHA, Klunk DN, Celik N, Pochareddy S, Umstead TM, Namli I, Holton SE, Mikacenic C, Thompson JL, Castaneda DC, Hickey DR, Nagamine M, Warang P, Schotsaert M, Chen P, Peeples ME, Palucka K, Ozbolat IT. A ventilated perfused lung model platform to dissect the response of the lungs to viral infection. Trends Biotechnol 2025:S0167-7799(25)00115-5. [PMID: 40280814 DOI: 10.1016/j.tibtech.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025]
Abstract
In this study, we developed a 3D lung model that incorporated alveolar and vascular components, allowing for the investigation of lung physiology and responses to infection. We investigated the role of ventilation in formation of the alveolar epithelial layer and its response to viral infections. We subjected our perfused model to a continuous respiratory cycle at the air-liquid interface (ALI) for up to 10 days. The results revealed that ventilation increased tight-junction formation with better epithelial barrier function over time. Two viruses, influenza and respiratory syncytial virus (RSV), were tested, where ventilation enhanced infectivity with an increased progression of viral spread over time while sensitizing the epithelium for viral recognition. Ventilation also attenuated the production of key proinflammatory chemokines. Our findings represent a critical step forward in advancing our understanding of lung-specific viral responses and respiratory infections in response to ventilation, shedding light on vital aspects of pulmonary physiology and pathobiology.
Collapse
Affiliation(s)
- I Deniz Derman
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Mecit Altan Alioglu
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Joseph Christakiran Moses
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Zissis C Chroneos
- Department of Pediatrics, Penn State University College of Medicine, Hershey, PA 17033, USA; Department of Cell and Biological Systems, Penn State University College of Medicine, Hershey, PA, USA
| | - Yasar Ozer Yilmaz
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of Life Sciences, Penn State University, University Park, PA 16802, USA; Department of Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul, Turkey
| | - Dishary Banerjee
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of Life Sciences, Penn State University, University Park, PA 16802, USA; Department of Cardiology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jonathan Koff
- Department of Medicine, Yale University, New Haven, CT 06520, USA
| | - Syed Hasan Askari Rizvi
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Danielle Nicole Klunk
- Biomedical Engineering Department, Penn State University, University Park, PA 16802, USA
| | - Nazmiye Celik
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Sirisha Pochareddy
- Genome Sciences Core, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Todd M Umstead
- Department of Pediatrics, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Ilayda Namli
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Sarah E Holton
- Translational Immunology Department, Benaroya Research Institute, Seattle, WA 98101, USA; Department of Pulmonary, Critical Care, & Sleep Medicine, University of Washington, Seattle, WA 98195, USA
| | - Carmen Mikacenic
- Translational Immunology Department, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Jessica L Thompson
- Chemistry Department, Penn State University, University Park, PA 16802, USA
| | | | - Danielle Reifsnyder Hickey
- Chemistry Department, Penn State University, University Park, PA 16802, USA; Department of Materials Science and Engineering, Penn State University, University Park, PA 16802, USA; Materials Research Institute, Penn State University, University Park, PA 16802, USA
| | - Momoka Nagamine
- The Huck Institutes of Life Sciences, Penn State University, University Park, PA 16802, USA; Chemistry Department, Penn State University, University Park, PA 16802, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Phylip Chen
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Mark E Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Karolina Palucka
- The Jackson laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of Life Sciences, Penn State University, University Park, PA 16802, USA; Biomedical Engineering Department, Penn State University, University Park, PA 16802, USA; Materials Research Institute, Penn State University, University Park, PA 16802, USA; Cancer Institute, Penn State University, University Park, PA 16802, USA; Neurosurgery Department, Penn State University, University Park, PA 16802, USA.
| |
Collapse
|
2
|
Asbjarnarson A, Joelsson JP, Gardarsson FR, Sigurdsson S, Parnham MJ, Kricker JA, Gudjonsson T. The Non-Antibacterial Effects of Azithromycin and Other Macrolides on the Bronchial Epithelial Barrier and Cellular Differentiation. Int J Mol Sci 2025; 26:2287. [PMID: 40076911 PMCID: PMC11900332 DOI: 10.3390/ijms26052287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
The respiratory epithelium maintains the barrier against inhaled harmful agents. When barrier failure occurs, as in several respiratory diseases, acute or chronic inflammation leading to destructive effects and exacerbations can occur. Macrolides are used to treat a spectrum of infections but are also known for off-label use. Some macrolides, particularly azithromycin (AZM), reduce exacerbations in chronic obstructive pulmonary disease (COPD), whereby its efficacy is thought to be due to its effects on inflammation and oxidative stress. In vitro data indicate that AZM reduces epithelial barrier failure, evidenced by increased transepithelial electrical resistance (TEER). Here, we compared the effects of macrolides on differentiation and barrier integrity in VA10 cells, a bronchial epithelial cell line for 14 and 21 days. Erythromycin, clarithromycin, roxithromycin, AZM, solithromycin, and tobramycin (an aminoglycoside) were analyzed using RNA sequencing, barrier integrity assays, and immunostaining to evaluate effects on the epithelium. All macrolides affected the gene expression of pathways involved in epithelial-to-mesenchymal transition, metabolism, and immunomodulation. Treatment with AZM, clarithromycin, and erythromycin raised TEER and induced phospholipid retention. AZM treatment was distinct in terms of enhancement of the epithelial barrier, retention of phospholipids, vesicle build-up, and its effect on gene sets related to keratinocyte differentiation and establishment of skin barrier.
Collapse
Affiliation(s)
- Arni Asbjarnarson
- School of Health Sciences, University of Iceland, 101 Reykjavík, Iceland
| | - Jon Petur Joelsson
- School of Health Sciences, University of Iceland, 101 Reykjavík, Iceland
| | | | - Snaevar Sigurdsson
- School of Health Sciences, University of Iceland, 101 Reykjavík, Iceland
| | | | | | - Thorarinn Gudjonsson
- School of Health Sciences, University of Iceland, 101 Reykjavík, Iceland
- Department of Laboratory Hematology, Landspítali-University Hospital, 101 Reykjavík, Iceland
| |
Collapse
|
3
|
Gambadauro A, Galletta F, Andrenacci B, Foti Randazzese S, Patria MF, Manti S. Impact of E-Cigarettes on Fetal and Neonatal Lung Development: The Influence of Oxidative Stress and Inflammation. Antioxidants (Basel) 2025; 14:262. [PMID: 40227218 PMCID: PMC11939789 DOI: 10.3390/antiox14030262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 04/15/2025] Open
Abstract
Electronic cigarettes (e-cigs) recently increased their popularity as "safer" alternatives to traditional tobacco smoking, including among pregnant women. However, the effect of e-cig exposure on fetal and neonatal developing lungs remains poorly investigated. In this review, we analysed the impact of e-cig aerosol components (e.g., nicotine, solvents, and flavouring agents) on respiratory system development. We particularly emphasized the role of e-cig-related oxidative stress and inflammation on lung impairment. Nicotine contained in e-cigs can impair lung development at anatomical and molecular levels. Solvents and flavours induce inflammation and oxidative stress and contribute to compromising neonatal lung function. Studies suggest that prenatal e-cig aerosol exposure may increase the risk of future development of respiratory diseases in offspring, such as asthma and chronic obstructive pulmonary disease (COPD). Preventive strategies, such as smoking cessation programs and antioxidant supplementation, may be essential for safeguarding respiratory health. There is an urgent need to explore the safety profile and potential risks of e-cigs, especially considering the limited studies in humans. This review highlights the necessity of regulating e-cig use during pregnancy and promoting awareness of its potential consequences on fetal and neonatal development.
Collapse
Affiliation(s)
- Antonella Gambadauro
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98124 Messina, Italy; (F.G.); (S.M.)
| | - Francesca Galletta
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98124 Messina, Italy; (F.G.); (S.M.)
| | - Beatrice Andrenacci
- S.C. Pneumoinfettivologia Pediatrica, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.A.); (M.F.P.)
| | - Simone Foti Randazzese
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98124 Messina, Italy; (F.G.); (S.M.)
| | - Maria Francesca Patria
- S.C. Pneumoinfettivologia Pediatrica, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.A.); (M.F.P.)
| | - Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98124 Messina, Italy; (F.G.); (S.M.)
| |
Collapse
|
4
|
Panda K, Santiago MJ, Rahman MS, Ghorai S, Black SM, Rahman I, Unwalla HJ, Chinnapaiyan S. HIV-1 Tat Protein and Cigarette Smoke Mediated ADAM17 Upregulation Can Lead to Impaired Mucociliary Clearance. Cells 2024; 13:2009. [PMID: 39682757 PMCID: PMC11640087 DOI: 10.3390/cells13232009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) associated comorbidities account for the majority of poor health outcomes in people living with HIV (PLWH) in the era of antiretroviral therapy. Lung-related comorbidities such as chronic obstructive pulmonary disease (COPD) and bacterial pneumonia are primarily responsible for increased morbidity and mortality in PLWH, even when compensated for smoking. Smokers and COPD patients demonstrate cilia shortening, attenuated ciliary beat frequency (CBF), dysfunctional ciliated cells along with goblet cell hyperplasia, and mucus hypersecretion. This is exacerbated by the fact that almost 60% of PLWH smoke tobacco, which can exacerbate inflammation and mucociliary clearance (MCC) dysfunction. This study shows that HIV Tat alters the microRNAome in airway epithelial cells and upregulates miR-34a-5p with consequent suppression of its target, Sirtuin 1 (SIRT1). SIRT1 is known to suppress Metalloproteinase 17 (ADAM17), a protease activating Notch signaling. HIV and cigarette smoke (CS) upregulate ADAM17. ADAM17 upregulation followed by SIRT1 suppression can lead to decreased ciliation, mucus hypersecretion, and attenuated MCC, a hallmark of chronic bronchitis in smokers and COPD. It is, therefore, essential to understand the pathophysiological mechanism resulting in acquired Notch dysregulation and its downstream impact on HIV-infected smokers.
Collapse
Affiliation(s)
- Kingshuk Panda
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (K.P.); (M.J.S.); (M.S.R.); (S.G.); (S.M.B.)
| | - Maria J. Santiago
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (K.P.); (M.J.S.); (M.S.R.); (S.G.); (S.M.B.)
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Md. Sohanur Rahman
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (K.P.); (M.J.S.); (M.S.R.); (S.G.); (S.M.B.)
| | - Suvankar Ghorai
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (K.P.); (M.J.S.); (M.S.R.); (S.G.); (S.M.B.)
| | - Stephen M. Black
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (K.P.); (M.J.S.); (M.S.R.); (S.G.); (S.M.B.)
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA;
| | - Hoshang J. Unwalla
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (K.P.); (M.J.S.); (M.S.R.); (S.G.); (S.M.B.)
| | - Srinivasan Chinnapaiyan
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (K.P.); (M.J.S.); (M.S.R.); (S.G.); (S.M.B.)
| |
Collapse
|
5
|
Xu Y, Li M, Bai L. Pulmonary Epithelium Cell Fate Determination: Chronic Obstructive Pulmonary Disease, Lung Cancer, or Both. Am J Respir Cell Mol Biol 2024; 71:632-645. [PMID: 39078237 DOI: 10.1165/rcmb.2023-0448tr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/30/2024] [Indexed: 07/31/2024] Open
Abstract
The concurrence of chronic obstructive pulmonary disease (COPD) and lung cancer has been widely reported and extensively addressed by pulmonologists and oncologists. However, most studies have focused on shared risk factors, DNA damage pathways, immune microenvironments, inflammation, and imbalanced proteases/antiproteases. In the present review, we explore the association between COPD and lung cancer in terms of airway pluripotent cell fate determination and discuss the various cell types and signaling pathways involved in the maintenance of lung epithelium homeostasis and their involvement in the pathogenesis of co-occurring COPD and lung cancer.
Collapse
Affiliation(s)
- Yu Xu
- Department of Clinical Oncology, Army Medical Center, and
| | - Mengxia Li
- Department of Clinical Oncology, Army Medical Center, and
| | - Li Bai
- Department of Respiratory and Critical Medicine, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Cao Z, Zhao S, Hu S, Wu T, Sun F, Shi LI. Screening COPD-Related Biomarkers and Traditional Chinese Medicine Prediction Based on Bioinformatics and Machine Learning. Int J Chron Obstruct Pulmon Dis 2024; 19:2073-2095. [PMID: 39346628 PMCID: PMC11438478 DOI: 10.2147/copd.s476808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose To employ bioinformatics and machine learning to predict the characteristics of immune cells and genes associated with the inflammatory response and ferroptosis in chronic obstructive pulmonary disease (COPD) patients and to aid in the development of targeted traditional Chinese medicine (TCM). Mendelian randomization analysis elucidates the causal relationships among immune cells, genes, and COPD, offering novel insights for the early diagnosis, prevention, and treatment of COPD. This approach also provides a fresh perspective on the use of traditional Chinese medicine for treating COPD. Methods R software was used to extract COPD-related data from the Gene Expression Omnibus (GEO) database, differentially expressed genes were identified for enrichment analysis, and WGCNA was used to pinpoint genes within relevant modules associated with COPD. This analysis included determining genes linked to the inflammatory response in COPD patients and analyzing their correlation with ferroptosis. Further steps involved filtering core genes, constructing TF-miRNA‒mRNA network diagrams, and employing three types of machine learning to predict the core miRNAs, key immune cells, and characteristic genes of COPD patients. This process also delves into their correlations, single-gene GSEA, and diagnostic model predictions. Reverse inference complemented by molecular docking was used to predict compounds and traditional Chinese medicines for treating COPD; Mendelian randomization was applied to explore the causal relationships among immune cells, genes, and COPD. Results We identified 2443 differential genes associated with COPD through the GEO database, along with 8435 genes relevant to WGCNA and 1226 inflammation-related genes. A total of 141 genes related to the inflammatory response in COPD patients were identified, and 37 core genes related to ferroptosis were selected for further enrichment analysis and analysis. The core miRNAs predicted for COPD include hsa-miR-543, hsa-miR-181c, and hsa-miR-200a, among others. The key immune cells identified were plasma cells, activated memory CD4 T cells, gamma delta T cells, activated NK cells, M2 macrophages, and eosinophils. Characteristic genes included EGF, PLG, PTPN22, and NR4A1. A total of 78 compounds and 437 traditional Chinese medicines were predicted. Mendelian randomization analysis revealed a causal relationship between 36 types of immune cells and COPD, whereas no causal relationship was found between the core genes and COPD. Conclusion A definitive causal relationship exists between immune cells and COPD, while the prediction of core miRNAs, key immune cells, characteristic genes, and targeted traditional Chinese medicines offers novel insights for the early diagnosis, prevention, and treatment of COPD.
Collapse
Affiliation(s)
- Zhenghua Cao
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Shengkun Zhao
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Shaodan Hu
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Tong Wu
- Geriatric Department, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, People's Republic of China
| | - Feng Sun
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - L I Shi
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, People's Republic of China
| |
Collapse
|
7
|
Casas-Recasens S, Cassim R, Mendoza N, Agusti A, Lodge C, Li S, Bui D, Martino D, Dharmage SC, Faner R. Epigenome-Wide Association Studies of Chronic Obstructive Pulmonary Disease and Lung Function: A Systematic Review. Am J Respir Crit Care Med 2024; 210:766-778. [PMID: 38422471 DOI: 10.1164/rccm.202302-0231oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/29/2024] [Indexed: 03/02/2024] Open
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) results from gene-environment interactions over the lifetime. These interactions are captured by epigenetic changes, such as DNA methylation. Objectives: To systematically review the evidence form epigenome-wide association studies related to COPD and lung function. Methods: A systematic literature search performed on PubMed, Embase, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) databases identified 1,947 articles that investigated epigenetic changes associated with COPD and/or lung function; 17 of them met our eligibility criteria, from which data were manually extracted. Differentially methylated positions (DMPs) and/or annotated genes were considered replicated if identified by two or more studies with a P < 1 × 10-4. Measurements and Main Results: Ten studies profiled DNA methylation changes in blood and seven in respiratory samples, including surgically resected lung tissue (n = 3), small airway epithelial brushings (n = 2), BAL (n = 1), and sputum (n = 1). Main results showed: 1) high variability in study design, covariates, and effect sizes, which prevented a formal meta-analysis; 2) in blood samples, 51 DMPs were replicated in relation to lung function and 12 related to COPD; 3) in respiratory samples, 42 DMPs were replicated in relation to COPD but none in relation to lung function; and 4) in COPD versus control studies, 123 genes (2.6% of total) were shared between one or more blood and one or more respiratory samples and associated with chronic inflammation, ion transport, and coagulation. Conclusions: There is high heterogeneity across published COPD and/or lung function epigenome-wide association studies. A few genes (n = 123; 2.6%) were replicated in blood and respiratory samples, suggesting that blood can recapitulate some changes in respiratory tissues. These findings have implications for future research. Systematic Review [protocol] registered with Open Science Framework (OSF).
Collapse
Affiliation(s)
- Sandra Casas-Recasens
- Fundació Clinic Recerca Biomedica-Institut d'Investigacions Biomediques August Pi i Sunyer (FCRB-IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | - Núria Mendoza
- Fundació Clinic Recerca Biomedica-Institut d'Investigacions Biomediques August Pi i Sunyer (FCRB-IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Alvar Agusti
- Fundació Clinic Recerca Biomedica-Institut d'Investigacions Biomediques August Pi i Sunyer (FCRB-IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Respiratory Institute, Hospital Clinic, Barcelona, Spain
- Catedra Salud Respiratoria and
| | | | - Shuai Li
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Dinh Bui
- Allergy and Lung Health Unit and
| | - David Martino
- Walyun Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia; and
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Rosa Faner
- Fundació Clinic Recerca Biomedica-Institut d'Investigacions Biomediques August Pi i Sunyer (FCRB-IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Catedra Salud Respiratoria and
- Biomedicine Department, University of Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Agraval H, Kandhari K, Yadav UCS. MMPs as potential molecular targets in epithelial-to-mesenchymal transition driven COPD progression. Life Sci 2024; 352:122874. [PMID: 38942362 DOI: 10.1016/j.lfs.2024.122874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of mortality globally and the risk of developing lung cancer is six times greater in individuals with COPD who smoke compared to those who do not smoke. Matrix metalloproteinases (MMPs) play a crucial role in the pathophysiology of respiratory diseases by promoting inflammation and tissue degradation. Furthermore, MMPs are involved in key processes like epithelial-to-mesenchymal transition (EMT), metastasis, and invasion in lung cancer. While EMT has traditionally been associated with the progression of lung cancer, recent research highlights its active involvement in individuals with COPD. Current evidence underscores its role in orchestrating airway remodeling, fostering airway fibrosis, and contributing to the potential for malignant transformation in the complex pathophysiology of COPD. The precise regulatory roles of diverse MMPs in steering EMT during COPD progression needs to be elucidated. Additionally, the less-understood aspect involves how these MMPs bi-directionally activate or regulate various EMT-associated signaling cascades during COPD progression. This review article explores recent advancements in understanding MMPs' role in EMT during COPD progression and various pharmacological approaches to target MMPs. It also delves into the limitations of current MMP inhibitors and explores novel, advanced strategies for inhibiting MMPs, potentially offering new avenues for treating respiratory diseases.
Collapse
Affiliation(s)
- Hina Agraval
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Umesh C S Yadav
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
9
|
Antar SA, ElMahdy MK, Darwish AG. Examining the contribution of Notch signaling to lung disease development. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6337-6349. [PMID: 38652281 DOI: 10.1007/s00210-024-03105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Notch pathway is a widely observed signaling system that holds pivotal functions in regulating various developmental cellular functions and operations. The Notch signaling mechanism is crucial for lung homeostasis, damage, and restoration. Based on increasing evidence, the Notch pathway has been identified, as critical for fibrosis and subsequently, the development of chronic fibroproliferative conditions in various organs and tissues. Recent research indicates that deregulation of Notch signaling correlates with the pathogenesis of significant pulmonary conditions, particularly chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, asthma, pulmonary arterial hypertension (PAH), lung carcinoma, and pulmonary abnormalities in some hereditary disorders. In various cellular and tissue environments, and across both physiological and pathological conditions, multiple consequences of Notch activation have been observed. Studies have ascertained that the Notch signaling cascade exhibits close associations with various other signaling systems. This study provides an updated overview of Notch signaling's role, especially its link to fibrosis and its potential therapeutic implications. This study sheds light on the latest findings regarding the mechanisms and outcomes of irregular or lacking Notch activity in the onset and development of pulmonary diseases. As our insight into this signaling mechanism suggests that modulating Notch signaling might hold potential as a valuable additional therapeutic approach in upcoming research.
Collapse
Affiliation(s)
- Samar A Antar
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, 24016, USA.
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt.
| | - Mohamed Kh ElMahdy
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Ahmed G Darwish
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, 32308, USA
| |
Collapse
|
10
|
Shu HM, Lin CQ, He B, Wang W, Wang L, Wu T, He HJ, Wang HJ, Zhou HP, Ding GZ. Pyroptosis-Related Genes as Diagnostic Markers in Chronic Obstructive Pulmonary Disease and Its Correlation with Immune Infiltration. Int J Chron Obstruct Pulmon Dis 2024; 19:1491-1513. [PMID: 38957709 PMCID: PMC11217143 DOI: 10.2147/copd.s438686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) stands as a predominant cause of global morbidity and mortality. This study aims to elucidate the relationship between pyroptosis-related genes (PRGs) and COPD diagnosis in the context of immune infiltration, ultimately proposing a PRG-based diagnostic model for predicting COPD outcomes. Methods Clinical data and PRGs of COPD patients were sourced from the GEO database. The "ConsensusClusterPlus" package was employed to generate molecular subtypes derived from PRGs that were identified through differential expression analysis and LASSO Cox analysis. A diagnostic signature including eight genes (CASP4, CASP5, ELANE, GPX4, NLRP1, GSDME, NOD1and IL18) was also constructed. Immune cell infiltration calculated by the ESTIMATE score, Stroma scores and Immune scores were also compared on the basis of pyroptosis-related molecular subtypes and the risk signature. We finally used qRT - PCR to detect the expression levels of eight genes in COPD patient and normal. Results The diagnostic model, anchored on eight PRGs, underwent validation with an independent experimental cohort. The area under the receiver operating characteristic (ROC) curves (AUC) for the diagnostic model showcased values of 0.809, 0.765, and 0.956 for the GSE76925, GSE8545, and GSE5058 datasets, respectively. Distinct expression patterns and clinical attributes of PRGs were observed between the comparative groups, with functional analysis underscoring a disparity in immune-related functions between them. Conclusion In this study, we developed a potential as diagnostic biomarkers for COPD and have a significant role in modulating the immune response. Such insights pave the way for novel diagnostic and therapeutic strategies for COPD.
Collapse
Affiliation(s)
- Hong-Mei Shu
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - Chang-Qing Lin
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - Bei He
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - Wang Wang
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - Ling Wang
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - Ting Wu
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - Hai-Juan He
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - Hui-Juan Wang
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - He-Ping Zhou
- Neurosurgery Department, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - Guo-Zheng Ding
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| |
Collapse
|
11
|
Kopa-Stojak PN, Pawliczak R. Comparison of the effects of active and passive smoking of tobacco cigarettes, electronic nicotine delivery systems and tobacco heating products on the expression and secretion of oxidative stress and inflammatory response markers. A systematic review. Inhal Toxicol 2024; 36:75-89. [PMID: 38394073 DOI: 10.1080/08958378.2024.2319315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVES This work attempts to summarize current knowledge on the effects of active and passive smoking of cigarettes, electronic nicotine delivery systems and tobacco heating products on the expression and secretion of oxidative stress and inflammatory response mediators, and on their possible impact on chronic obstructive pulmonary disease development. MATERIALS AND METHODS The literature was searched by the terms: 'smoking', 'active smoking', 'passive smoking', 'main-stream smoke', 'side-stream smoke', 'secondhand smoke', 'cigarette' 'THP', 'tobacco heating product', 'ENDS', 'electronic nicotine delivery system', 'e-cigarette', 'electronic cigarette', oxidative stress', inflammatory response' and 'gene expression'. RESULTS Cigarette smoking (active and passive) induces oxidative stress and inflammatory response in the airways. We present the effect of active smoking of e-cigarettes (EC) and heat-not-burn (HnB) products on the increased expression and secretion of oxidative stress and inflammatory response markers. However, there is only a limited number of studies on the effect of their second-hand smoking, and those available mainly describe aerosol composition. DISCUSSION The literature provides data which confirm that active and passive cigarette smoking induces oxidative stress and inflammatory response in the airways and is a key risk factor of COPD development. Currently, there is a limited number of data about ENDS and THP active and passive smoking effects on the health of smokers and never-smokers. It is particularly important to assess the effect of such products during long-term use by never-smokers who choose them as the first type of cigarettes, and for never-smokers who are passively exposed to their aerosol.
Collapse
Affiliation(s)
- Paulina Natalia Kopa-Stojak
- Department of Immunopathology, Division of Biomedical Science, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Rafal Pawliczak
- Department of Immunopathology, Division of Biomedical Science, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
12
|
Liu G, Haw TJ, Starkey MR, Philp AM, Pavlidis S, Nalkurthi C, Nair PM, Gomez HM, Hanish I, Hsu AC, Hortle E, Pickles S, Rojas-Quintero J, Estepar RSJ, Marshall JE, Kim RY, Collison AM, Mattes J, Idrees S, Faiz A, Hansbro NG, Fukui R, Murakami Y, Cheng HS, Tan NS, Chotirmall SH, Horvat JC, Foster PS, Oliver BG, Polverino F, Ieni A, Monaco F, Caramori G, Sohal SS, Bracke KR, Wark PA, Adcock IM, Miyake K, Sin DD, Hansbro PM. TLR7 promotes smoke-induced experimental lung damage through the activity of mast cell tryptase. Nat Commun 2023; 14:7349. [PMID: 37963864 PMCID: PMC10646046 DOI: 10.1038/s41467-023-42913-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Toll-like receptor 7 (TLR7) is known for eliciting immunity against single-stranded RNA viruses, and is increased in both human and cigarette smoke (CS)-induced, experimental chronic obstructive pulmonary disease (COPD). Here we show that the severity of CS-induced emphysema and COPD is reduced in TLR7-deficient mice, while inhalation of imiquimod, a TLR7-agonist, induces emphysema without CS exposure. This imiquimod-induced emphysema is reduced in mice deficient in mast cell protease-6, or when wild-type mice are treated with the mast cell stabilizer, cromolyn. Furthermore, therapeutic treatment with anti-TLR7 monoclonal antibody suppresses CS-induced emphysema, experimental COPD and accumulation of pulmonary mast cells in mice. Lastly, TLR7 mRNA is increased in pre-existing datasets from patients with COPD, while TLR7+ mast cells are increased in COPD lungs and associated with severity of COPD. Our results thus support roles for TLR7 in mediating emphysema and COPD through mast cell activity, and may implicate TLR7 as a potential therapeutic target.
Collapse
Affiliation(s)
- Gang Liu
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Tatt Jhong Haw
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Malcolm R Starkey
- Depatrment of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Ashleigh M Philp
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Healthcare clinical campus, UNSW, Sydney, Australia
| | - Stelios Pavlidis
- The Airways Disease Section, National Heart & Lung Institute, Imperial College London, London, UK
| | - Christina Nalkurthi
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Prema M Nair
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Henry M Gomez
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Irwan Hanish
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Alan Cy Hsu
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Elinor Hortle
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Sophie Pickles
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | | | - Raul San Jose Estepar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Jacqueline E Marshall
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Richard Y Kim
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Adam M Collison
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Joerg Mattes
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Sobia Idrees
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Alen Faiz
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Ryutaro Fukui
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minatoku, Tokyo, Japan
| | - Yusuke Murakami
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Musashino University, Nishitokyo-shi, Tokyo, Japan
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Jay C Horvat
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Paul S Foster
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Brian Gg Oliver
- Woolcock Institute of Medical Research, University of Sydney & School of Life Sciences, University of Technology, Sydney, Australia
| | | | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology, Università di Messina, Messina, Italy
| | - Francesco Monaco
- Thoracic Surgery, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento BIOMORF and Dipartimento di Medicina e Chirurgia, Universities of Messina and Parma, Messina, Italy
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Peter A Wark
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Ian M Adcock
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Healthcare clinical campus, UNSW, Sydney, Australia
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minatoku, Tokyo, Japan
| | - Don D Sin
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital & Respiratory Division, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia.
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
13
|
Ozekin YH, Saal ML, Pineda RH, Moehn K, Ordonez-Erives MA, Delgado Figueroa MF, Frazier C, Korth KM, Königshoff M, Bates EA, Vladar EK. Intrauterine exposure to nicotine through maternal vaping disrupts embryonic lung and skeletal development via the Kcnj2 potassium channel. Dev Biol 2023; 501:111-123. [PMID: 37353105 PMCID: PMC10445547 DOI: 10.1016/j.ydbio.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/25/2023]
Abstract
Smoking cigarettes during pregnancy is associated with adverse effects on infants including low birth weight, defective lung development, and skeletal abnormalities. Pregnant women are increasingly turning to vaping [use of electronic (e)-cigarettes] as a perceived safer alternative to cigarettes. However, nicotine disrupts fetal development, suggesting that like cigarette smoking, nicotine vaping may be detrimental to the fetus. To test the impact of maternal vaping on fetal lung and skeletal development in mice, pregnant dams were exposed to e-cigarette vapor throughout gestation. At embryonic day (E)18.5, vape exposed litter sizes were reduced, and some embryos exhibited growth restriction compared to air exposed controls. Fetal lungs were collected for histology and whole transcriptome sequencing. Maternally nicotine vaped embryos exhibited histological and transcriptional changes consistent with impaired distal lung development. Embryonic lung gene expression changes mimicked transcriptional changes observed in adult mouse lungs exposed to cigarette smoke, suggesting that the developmental defects may be due to direct nicotine exposure. Fetal skeletons were analyzed for craniofacial and long bone lengths. Nicotine directly binds and inhibits the Kcnj2 potassium channel which is important for bone development. The length of the maxilla, palatal shelves, humerus, and femur were reduced in vaped embryos, which was further exacerbated by loss of one copy of the Kcnj2 gene. Nicotine vapor exposed Kcnj2KO/+ embryos also had significantly lower birth weights than unexposed animals of either genotype. Kcnj2 mutants had severely defective lungs with and without vape exposure, suggesting that potassium channels may be broadly involved in mediating the detrimental developmental effects of nicotine vaping. These data indicate that intrauterine nicotine exposure disrupts fetal lung and skeletal development likely through inhibition of Kcnj2.
Collapse
Affiliation(s)
- Yunus H Ozekin
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Maxwell L Saal
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ricardo H Pineda
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kayla Moehn
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Madison A Ordonez-Erives
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Maria F Delgado Figueroa
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Caleb Frazier
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kamryn M Korth
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Melanie Königshoff
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily A Bates
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Eszter K Vladar
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
14
|
Douglas LEJ, Reihill JA, Montgomery BM, Martin SL. Furin as a therapeutic target in cystic fibrosis airways disease. Eur Respir Rev 2023; 32:32/168/220256. [PMID: 37137509 PMCID: PMC10155048 DOI: 10.1183/16000617.0256-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/22/2023] [Indexed: 05/05/2023] Open
Abstract
Clinical management of cystic fibrosis (CF) has been greatly improved by the development of small molecule modulators of the CF transmembrane conductance regulator (CFTR). These drugs help to address some of the basic genetic defects of CFTR; however, no suitable CFTR modulators exist for 10% of people with CF (PWCF). An alternative, mutation-agnostic therapeutic approach is therefore still required. In CF airways, elevated levels of the proprotein convertase furin contribute to the dysregulation of key processes that drive disease pathogenesis. Furin plays a critical role in the proteolytic activation of the epithelial sodium channel; hyperactivity of which causes airways dehydration and loss of effective mucociliary clearance. Furin is also responsible for the processing of transforming growth factor-β, which is increased in bronchoalveolar lavage fluid from PWCF and is associated with neutrophilic inflammation and reduced pulmonary function. Pathogenic substrates of furin include Pseudomonas exotoxin A, a major toxic product associated with Pseudomonas aeruginosa infection and the spike glycoprotein of severe acute respiratory syndrome coronavirus 2, the causative pathogen for coronavirus disease 2019. In this review we discuss the importance of furin substrates in the progression of CF airways disease and highlight selective furin inhibition as a therapeutic strategy to provide clinical benefit to all PWCF.
Collapse
Affiliation(s)
- Lisa E J Douglas
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - James A Reihill
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | | - S Lorraine Martin
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
15
|
Wang X, Hou X, Zhao Y, Zhao R, Dai J, Dai H, Wang C. The early and late intervention effects of collagen-binding FGF2 on elastase-induced lung injury. Biomed Pharmacother 2023; 158:114147. [PMID: 36584430 DOI: 10.1016/j.biopha.2022.114147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) has high morbidity and mortality, with no effective treatment at present. Emphysema, a major component of COPD, is a leading cause of human death worldwide. Fibroblast growth factor 2 (FGF2) is implicated in the pathogenesis of pulmonary emphysema and may play an important role in the lung repair process after injury, but concerns remain with respect to its effectiveness. OBJECTIVE In the present work, we sought to determine how the timing (early and late intervention) of sustained-release FGF2 system administration impacted its effectiveness on a porcine pancreatic elastase (PPE)-induced lung injury mouse model. METHODS To examine the early intervention efficiency of collagen-binding FGF2 (CBD-FGF2), mice received intratracheally nebulized CBD-FGF2 with concurrent intratracheal injection of PPE. To explore the late intervention effect, CBD-FGF2 was intratracheally aerosolized after PPE administration, and lungs were collected after CBD-FGF2 treatment for subsequent analysis. RESULT In response to PPE, mice had significantly increased alveolar diameter, collagen deposition and expression of inflammatory factors and decreased lung function indices and expression of alveolar epithelium markers. Our results indicate that CBD-FGF2 administration was able to prevent and repair elastase-induced lung injury partly through the suppression of the inflammatory response and recovery of the alveolar epithelium. The early use of CBD-FGF2 for the prevention of PPE-induced emphysema showed better results than late therapeutic administration against established emphysema. CONCLUSION These data provide insight regarding the prospective role of a drug-based option (CBD-FGF2) for preventing and curing emphysema.
Collapse
Affiliation(s)
- Xin Wang
- Beijing University of Chinese Medicine, Beijing 100029, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing 100029, China
| | - Xianglin Hou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruiming Zhao
- Beijing University of Chinese Medicine, Beijing 100029, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing 100029, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing 100029, China; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China.
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing 100029, China; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China.
| |
Collapse
|
16
|
The establishment of COPD organoids to study host-pathogen interaction reveals enhanced viral fitness of SARS-CoV-2 in bronchi. Nat Commun 2022; 13:7635. [PMID: 36496442 PMCID: PMC9735280 DOI: 10.1038/s41467-022-35253-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterised by airflow limitation and infective exacerbations, however, in-vitro model systems for the study of host-pathogen interaction at the individual level are lacking. Here, we describe the establishment of nasopharyngeal and bronchial organoids from healthy individuals and COPD that recapitulate disease at the individual level. In contrast to healthy organoids, goblet cell hyperplasia and reduced ciliary beat frequency were observed in COPD organoids, hallmark features of the disease. Single-cell transcriptomics uncovered evidence for altered cellular differentiation trajectories in COPD organoids. SARS-CoV-2 infection of COPD organoids revealed more productive replication in bronchi, the key site of infection in severe COVID-19. Viral and bacterial exposure of organoids induced greater pro-inflammatory responses in COPD organoids. In summary, we present an organoid model that recapitulates the in vivo physiological lung microenvironment at the individual level and is amenable to the study of host-pathogen interaction and emerging infectious disease.
Collapse
|
17
|
Liu G, Jarnicki AG, Paudel KR, Lu W, Wadhwa R, Philp AM, Van Eeckhoutte H, Marshall JE, Malyla V, Katsifis A, Fricker M, Hansbro NG, Dua K, Kermani NZ, Eapen MS, Tiotiu A, Chung KF, Caramori G, Bracke K, Adcock IM, Sohal SS, Wark PA, Oliver BG, Hansbro PM. Adverse roles of mast cell chymase-1 in COPD. Eur Respir J 2022; 60:2101431. [PMID: 35777766 DOI: 10.1183/13993003.01431-2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/08/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND COPD is the third leading cause of death worldwide. Cigarette smoke (CS)-induced chronic inflammation inducing airway remodelling, emphysema and impaired lung function is the primary cause. Effective therapies are urgently needed. Human chymase (hCMA)1 and its orthologue mCMA1/mouse mast cell protease (mMCP)5 are exocytosed from activated mast cells and have adverse roles in numerous disorders, but their role in COPD is unknown. METHODS We evaluated hCMA1 levels in lung tissues of COPD patients. We used mmcp5-deficient (-/-) mice to evaluate this protease's role and potential for therapeutic targeting in CS-induced experimental COPD. In addition, we used ex vivo/in vitro studies to define mechanisms. RESULTS The levels of hCMA1 mRNA and CMA1+ mast cells were increased in lung tissues from severe compared to early/mild COPD patients, non-COPD smokers and healthy controls. Degranulated mast cell numbers and mMCP5 protein were increased in lung tissues of wild-type mice with experimental COPD. mmcp5 -/- mice were protected against CS-induced inflammation and macrophage accumulation, airway remodelling, emphysema and impaired lung function in experimental COPD. CS extract challenge of co-cultures of mast cells from wild-type, but not mmcp5 -/- mice with wild-type lung macrophages increased in tumour necrosis factor (TNF)-α release. It also caused the release of CMA1 from human mast cells, and recombinant hCMA-1 induced TNF-α release from human macrophages. Treatment with CMA1 inhibitor potently suppressed these hallmark features of experimental COPD. CONCLUSION CMA1/mMCP5 promotes the pathogenesis of COPD, in part, by inducing TNF-α expression and release from lung macrophages. Inhibiting hCMA1 may be a novel treatment for COPD.
Collapse
Affiliation(s)
- Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Andrew G Jarnicki
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Keshav R Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Ashleigh M Philp
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
- St Vincent's Medical School, University of New South Wales Medicine, University of New South Wales, Sydney, Australia
| | - Hannelore Van Eeckhoutte
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jacqueline E Marshall
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Vamshikrishna Malyla
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Angelica Katsifis
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| | - Nazanin Z Kermani
- Data Science Institute, Department of Computing, Imperial College London, London, UK
| | - Mathew S Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Angelica Tiotiu
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Pulmonology, University Hospital of Nancy, Nancy, France
| | - K Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Gaetano Caramori
- UOC di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Ken Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| | - Brian G Oliver
- Woolcock Institute and School of Life Science, Faculty of Science Life Science, University of Technology Sydney, Sydney, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| |
Collapse
|
18
|
Cigarette Smoke Impairs Airway Epithelial Wound Repair: Role of Modulation of Epithelial-Mesenchymal Transition Processes and Notch-1 Signaling. Antioxidants (Basel) 2022; 11:antiox11102018. [PMID: 36290742 PMCID: PMC9598207 DOI: 10.3390/antiox11102018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
Cigarette smoke (CS) induces oxidative stress and chronic inflammation in airway epithelium. It is a major risk factor for respiratory diseases, characterized by epithelial injury. The impact of CS on airway epithelial repair, which involves epithelial-mesenchymal transition (EMT) and the Notch-1 pathway, is incompletely understood. In this study, we used primary bronchial epithelial cells (PBECs) to evaluate the effect of CS on epithelial repair and these mechanisms. The effect of CS and/or TGF-beta1 on wound repair, various EMT and Notch-1 pathway markers and epithelial cell markers (TP63, SCGB1A) was assessed in PBECs cultured submerged, at the air–liquid interface (ALI) alone and in co-culture with fibroblasts. TGF-beta1 increased epithelial wound repair, activated EMT (shown by decrease in E-cadherin, and increases in vimentin, SNAIL1/SNAIL2/ZEB1), and increased Notch-1 pathway markers (NOTCH1/JAGGED1/HES1), MMP9, TP63, SCGB1A1. In contrast, CS decreased wound repair and vimentin, NOTCH1/JAGGED1/HES1, MMP9, TP63, SCGB1A1, whereas it activated the initial steps of the EMT (decrease in E-cadherin and increases in SNAIL1/SNAIL2/ZEB1). Using combined exposures, we observed that CS counteracted the effects of TGF-beta1. Furthermore, Notch signaling inhibition decreased wound repair. These data suggest that CS inhibits the physiological epithelial wound repair by interfering with the normal EMT process and the Notch-1 pathway.
Collapse
|
19
|
Abstract
The mammalian respiratory system or lung is a tree-like branching structure, and the main site of gas exchange with the external environment. Structurally, the lung is broadly classified into the proximal (or conducting) airways and the distal alveolar region, where the gas exchange occurs. In parallel with the respiratory tree, the pulmonary vasculature starts with large pulmonary arteries that subdivide rapidly ending in capillaries adjacent to alveolar structures to enable gas exchange. The NOTCH signalling pathway plays an important role in lung development, differentiation and regeneration post-injury. Signalling via the NOTCH pathway is mediated through activation of four NOTCH receptors (NOTCH1-4), with each receptor capable of regulating unique biological processes. Dysregulation of the NOTCH pathway has been associated with development and pathophysiology of multiple adult acute and chronic lung diseases. This includes accumulating evidence that alteration of NOTCH3 signalling plays an important role in the development and pathogenesis of chronic obstructive pulmonary disease, lung cancer, asthma, idiopathic pulmonary fibrosis and pulmonary arterial hypertension. Herein, we provide a comprehensive summary of the role of NOTCH3 signalling in regulating repair/regeneration of the adult lung, its association with development of lung disease and potential therapeutic strategies to target its signalling activity.
Collapse
|
20
|
Markota Čagalj A, Marinović B, Bukvić Mokos Z. New and Emerging Targeted Therapies for Hidradenitis Suppurativa. Int J Mol Sci 2022; 23:3753. [PMID: 35409118 PMCID: PMC8998913 DOI: 10.3390/ijms23073753] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic, recurrent, inflammatory skin disease deriving from the hair follicles. The formation of inflammatory nodules, abscesses, fistulas, and sinus tracts is characterized by a large inflow of key pro-inflammatory mediators, such as IFN-γ, TNF-α, IL-1, IL-17, and IL-12/23. Adalimumab is currently the only Food and Drug Administration (FDA)- and European Medicines Agency (EMA)-approved biologic therapy for moderate to severe HS in adults and adolescents. However, the long-term effectiveness of this TNF-α inhibitor in HS patients has shown to be highly variable. This review aims to review the evidence for emerging therapies that target the main pro-inflammatory cytokines in HS pathogenesis. A review of the literature was conducted, using the PubMed and Google Scholar repositories, as well as Clinicaltrials.gov. Presently, the most promising biologics in phase III trials are anti-IL-17 antibodies, secukinumab, and bimekizumab. Furthermore, an anti-IL-1 biologic, bermekimab, is currently in phase II trials, and shows encouraging results. Overall, the clinical efficacies of all new targeted therapies published up to this point are limited. More studies need to be performed to clarify the precise molecular pathology, and assess the efficacy of biological therapies for HS.
Collapse
Affiliation(s)
- Adela Markota Čagalj
- Department of Dermatology and Venereology, University Hospital Centre Split, Spinčićeva 1, 21000 Split, Croatia;
- School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia
| | - Branka Marinović
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia;
- Department of Dermatology and Venereology, European Reference Network (ERN), Skin Reference Centre, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
| | - Zrinka Bukvić Mokos
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia;
- Department of Dermatology and Venereology, European Reference Network (ERN), Skin Reference Centre, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
| |
Collapse
|
21
|
Blaskovic S, Donati Y, Ruchonnet-Metrailler I, Avila Y, Schittny D, Schlepütz CM, Schittny JC, Barazzone-Argiroffo C. Early life exposure to nicotine modifies lung gene response after elastase-induced emphysema. Respir Res 2022; 23:44. [PMID: 35241086 PMCID: PMC8895880 DOI: 10.1186/s12931-022-01956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 02/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is among the top 5 causes of mortality in the world and can develop as a consequence of genetic and/or environmental factors. Current efforts are focused on identifying early life insults and how these contribute to COPD development. In line with this, our study focuses on the influence of early life nicotine exposure and its potential impact on (a) lung pulmonary functions, and (b) elastase-induced emphysema in adulthood.
Methods To address this hypothesis, we developed a model of 2 hits, delivered at different time points: mouse pups were first exposed to nicotine/placebo in utero and during lactation, and then subsequently received elastase/placebo at the age of 11 weeks. The effect of nicotine pretreatment and elastase instillation was assessed by (a) measurement of pulmonary function at post-elastase day (ped) 21, and (b) transcriptomic profiling at ped3 and 21, and complementary protein determination. Statistical significance was determined by 3- and 2-way ANOVA for pulmonary functions, and RNAseq results were analyzed using the R project.
Results We did not observe any impact of nicotine pre- and early post-natal exposure compared to control samples on lung pulmonary functions in adulthood, as measured by FLEXIVENT technology. After elastase instillation, substantial lung damage was detected by x-ray tomography and was accompanied by loss in body weight at ped3 as well as an increase in cell numbers, inflammatory markers in BAL and lung volume at ped21. Lung functions showed a decrease in elastance and an increase in deep inflation volume and pressure volume (pv) loop area in animals with emphysema at ped21. Nicotine had no effect on elastance and deep inflation volume, but did affect the pv loop area in animals with emphysema at ped21. Extensive transcriptomic changes were induced by elastase at ped3 both in the nicotine-pretreated and the control samples, with several pathways common to both groups, such as for cell cycle, DNA adhesion and DNA damage. Nicotine pretreatment affected the number of lymphocytes present in BAL after elastase instillation and some of the complement pathway related proteins, arguing for a slight modification of the immune response, as well as changes related to general body metabolism. The majority of elastase-induced transcriptomic changes detected at ped3 had disappeared at ped21. In addition, transcriptomic profiling singled out a common gene pool that was independently activated by nicotine and elastase. Conclusions Our study reports a broad spectrum of transient transcriptomic changes in mouse emphysema and identifies nicotine as influencing the emphysema-associated immune system response. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-01956-4.
Collapse
Affiliation(s)
- Sanja Blaskovic
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Yves Donati
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Isabelle Ruchonnet-Metrailler
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yannick Avila
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | | | - Constance Barazzone-Argiroffo
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland. .,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
22
|
Kotlyarov S. Analysis of differentially expressed genes and signaling pathways involved in atherosclerosis and chronic obstructive pulmonary disease. Biomol Concepts 2022; 13:34-54. [PMID: 35189051 DOI: 10.1515/bmc-2022-0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/02/2022] [Indexed: 11/15/2022] Open
Abstract
UNLABELLED Atherosclerosis is an important medical and social problem, and the keys to solving this problem are still largely unknown. A common situation in real clinical practice is the comorbid course of atherosclerosis with chronic obstructive pulmonary disease (COPD). Diseases share some common risk factors and may be closely linked pathogenetically. METHODS Bioinformatics analysis of datasets from Gene Expression Omnibus (GEO) was performed to examine the gene ontology (GO) of common differentially expressed genes (DEGs) in COPD and peripheral arterial atherosclerosis. DEGs were identified using the limma R package with the settings p < 0.05, corrected using the Benjamini & Hochberg algorithm and ǀlog 2FCǀ > 1.0. The GO, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and the protein-protein interaction (PPI) network analysis were performed with the detected DEGs. RESULTS The biological processes and signaling pathways involving common DEGs from airway epithelial datasets in COPD and tissue in peripheral atherosclerosis were identified. A total of 15 DEGs were identified, comprising 12 upregulated and 3 downregulated DEGs. The GO enrichment analysis demonstrated that the upregulated hub genes were mainly involved in the inflammatory response, reactive oxygen species metabolic process, cell adhesion, lipid metabolic process, regulation of angiogenesis, icosanoid biosynthetic process, and cellular response to a chemical stimulus. The KEGG pathway enrichment analysis demonstrated that the common pathways were Toll-like receptor signaling pathway, NF-kappa B signaling pathway, lipid and atherosclerosis, and cytokine-cytokine receptor interaction. CONCLUSIONS Biological processes and signaling pathways associated with the immune response may link the development and progression of COPD and atherosclerosis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026, Ryazan, Russian Federation
| |
Collapse
|
23
|
Walentek P. Signaling Control of Mucociliary Epithelia: Stem Cells, Cell Fates, and the Plasticity of Cell Identity in Development and Disease. Cells Tissues Organs 2022; 211:736-753. [PMID: 33902038 PMCID: PMC8546001 DOI: 10.1159/000514579] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/19/2021] [Indexed: 01/25/2023] Open
Abstract
Mucociliary epithelia are composed of multiciliated, secretory, and stem cells and line various organs in vertebrates such as the respiratory tract. By means of mucociliary clearance, those epithelia provide a first line of defense against inhaled particles and pathogens. Mucociliary clearance relies on the correct composition of cell types, that is, the proper balance of ciliated and secretory cells. A failure to generate and to maintain correct cell type composition and function results in impaired clearance and high risk to infections, such as in congenital diseases (e.g., ciliopathies) as well as in acquired diseases, including asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). While it remains incompletely resolved how precisely cell types are specified and maintained in development and disease, many studies have revealed important mechanisms regarding the signaling control in mucociliary cell types in various species. Those studies not only provided insights into the signaling contribution to organ development and regeneration but also highlighted the remarkable plasticity of cell identity encountered in mucociliary maintenance, including frequent trans-differentiation events during homeostasis and specifically in disease. This review will summarize major findings and provide perspectives regarding the future of mucociliary research and the treatment of chronic airway diseases associated with tissue remodeling.
Collapse
Affiliation(s)
- Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
24
|
Tajbakhsh A, Gheibihayat SM, Mortazavi D, Medhati P, Rostami B, Savardashtaki A, Momtazi-Borojeni AA. The Effect of Cigarette Smoke Exposure on Efferocytosis in Chronic Obstructive Pulmonary Disease; Molecular Mechanisms and Treatment Opportunities. COPD 2021; 18:723-736. [PMID: 34865568 DOI: 10.1080/15412555.2021.1978419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cigarette smoking-related inflammation, cellular stresses, and tissue destruction play a key role in lung disease, such as chronic obstructive pulmonary disease (COPD). Notably, augmented apoptosis and impaired clearance of apoptotic cells, efferocytosis, contribute to the chronic inflammatory response and tissue destruction in patients with COPD. Of note, exposure to cigarette smoke can impair alveolar macrophages efferocytosis activity, which leads to secondary necrosis formation and tissue inflammation. A better understanding of the processes behind the effect of cigarette smoke on efferocytosis concerning lung disorders can help to design more efficient treatment approaches and also delay the development of lung disease, such as COPD. To this end, we aimed to seek mechanisms underlying the impairing effect of cigarette smoke on macrophages-mediated efferocytosis in COPD. Further, available therapeutic opportunities for restoring efferocytosis activity and ameliorating respiratory tract inflammation in smokers with COPD were also discussed.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Deniz Mortazavi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Pourya Medhati
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behrouz Rostami
- Health & Treatment Center of Rostam, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Iran's National Elites Foundation, Tehran, Iran
| |
Collapse
|
25
|
Ruysseveldt E, Martens K, Steelant B. Airway Basal Cells, Protectors of Epithelial Walls in Health and Respiratory Diseases. FRONTIERS IN ALLERGY 2021; 2:787128. [PMID: 35387001 PMCID: PMC8974818 DOI: 10.3389/falgy.2021.787128] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023] Open
Abstract
The airway epithelium provides a critical barrier to the outside environment. When its integrity is impaired, epithelial cells and residing immune cells collaborate to exclude pathogens and to heal tissue damage. Healing is achieved through tissue-specific stem cells: the airway basal cells. Positioned near the basal membrane, airway basal cells sense and respond to changes in tissue health by initiating a pro-inflammatory response and tissue repair via complex crosstalks with nearby fibroblasts and specialized immune cells. In addition, basal cells have the capacity to learn from previous encounters with the environment. Inflammation can indeed imprint a certain memory on basal cells by epigenetic changes so that sensitized tissues may respond differently to future assaults and the epithelium becomes better equipped to respond faster and more robustly to barrier defects. This memory can, however, be lost in diseased states. In this review, we discuss airway basal cells in respiratory diseases, the communication network between airway basal cells and tissue-resident and/or recruited immune cells, and how basal cell adaptation to environmental triggers occurs.
Collapse
Affiliation(s)
- Emma Ruysseveldt
- Allergy and Clinical Immunology Research Unit, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Katleen Martens
- Allergy and Clinical Immunology Research Unit, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Brecht Steelant
- Allergy and Clinical Immunology Research Unit, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Head and Neck Surgery, Department of Otorhinolaryngology, University of Crete School of Medicine, Heraklion, Greece
| |
Collapse
|
26
|
Kotlyarov S, Kotlyarova A. Bioinformatic Analysis of ABCA1 Gene Expression in Smoking and Chronic Obstructive Pulmonary Disease. MEMBRANES 2021; 11:674. [PMID: 34564491 PMCID: PMC8464760 DOI: 10.3390/membranes11090674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022]
Abstract
UNLABELLED Smoking is a key modifiable risk factor for developing the chronic obstructive pulmonary disease (COPD). When smoking, many processes, including the reverse transport of cholesterol mediated by the ATP binding cassette transporter A1 (ABCA1) protein are disrupted in the lungs. Changes in the cholesterol content in the lipid rafts of plasma membranes can modulate the function of transmembrane proteins localized in them. It is believed that this mechanism participates in increasing the inflammation in COPD. METHODS Bioinformatic analysis of datasets from Gene Expression Omnibus (GEO) was carried out. Gene expression data from datasets of alveolar macrophages and the epithelium of the respiratory tract in smokers and COPD patients compared with non-smokers were used for the analysis. To evaluate differentially expressed genes, bioinformatic analysis was performed in comparison groups using the limma package in R (v. 4.0.2), and the GEO2R and Phantasus tools (v. 1.11.0). RESULTS The conducted bioinformatic analysis showed changes in the expression of the ABCA1 gene associated with smoking. In the alveolar macrophages of smokers, the expression levels of ABCA1 were lower than in non-smokers. At the same time, in most of the airway epithelial datasets, gene expression did not show any difference between the groups of smokers and non-smokers. In addition, it was shown that the expression of ABCA1 in the epithelial cells of the trachea and large bronchi is higher than in small bronchi. CONCLUSIONS The conducted bioinformatic analysis showed that smoking can influence the expression of the ABCA1 gene, thereby modulating lipid transport processes in macrophages, which are part of the mechanisms of inflammation development.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
27
|
Yao Y, Chen X, Chen W, Han Y, Xue T, Wang J, Qiu X, Que C, Zheng M, Zhu T. Differences in transcriptome response to air pollution exposure between adult residents with and without chronic obstructive pulmonary disease in Beijing: A panel study. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125790. [PMID: 33862484 DOI: 10.1016/j.jhazmat.2021.125790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/28/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Ambient air pollution is a major risk factor for the prevalence and exacerbation of chronic obstructive pulmonary disease (COPD). Based on the COPDB (COPD in Beijing) panel study, whole-blood transcriptomes were repeatedly measured in 48 COPD patients and 62 healthy participants. Ambient mass concentrations of fine particulate matter (PM2.5), temperature, and relative humidity were continuously monitored at a monitoring station. The linear mixed-effects models were applied to estimate the associations between logarithmically transformed transcript levels and 1-day (d), 7-d, and 14-d average concentrations of PM2.5 before the start of follow-up visits. MetaCore™ was used to conduct the pathway enrichment analyses. Exposure to 1-, 7-, and 14-d average concentrations of PM2.5 was significantly associated with the transcriptome responses in both groups. The top 10, top 100, and top 1000 PM2.5-associated transcripts differed greatly between the two groups. Among COPD patients, role of alpha-6/beta-4 integrins in carcinoma progression, Notch signaling in breast cancer, and ubiquinone metabolism were the most significantly enriched PM2.5-associated biological pathways in the three time windows, respectively. In healthy participants, pro-opiomelanocortin processing was the most significant PM2.5-associated biological pathway in all three time windows. Our findings provide novel insights into the adverse health effects of air pollution exposure.
Collapse
Affiliation(s)
- Yuan Yao
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xi Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; GRiC, Shenzhen Institute of Building Research Co., Ltd., Shenzhen 518049, China
| | - Wu Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yiqun Han
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
| | - Tao Xue
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Junxia Wang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chengli Que
- Department of Respiratory Disease, Peking University First Hospital, Peking University, Beijing 100034, China
| | - Mei Zheng
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tong Zhu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
28
|
Yuan P, Wu WH, Gong SG, Jiang R, Zhao QH, Pudasaini B, Sun YY, Li JL, Liu JM, Wang L. Impact of circGSAP in Peripheral Blood Mononuclear Cells on Idiopathic Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2021; 203:1579-1583. [PMID: 33596393 DOI: 10.1164/rccm.202005-2052le] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Ping Yuan
- Shanghai Pulmonary Hospital Affiliated to Tongji University Shanghai, China
| | - Wen-Hui Wu
- Shanghai Pulmonary Hospital Affiliated to Tongji University Shanghai, China
| | - Su-Gang Gong
- Shanghai Pulmonary Hospital Affiliated to Tongji University Shanghai, China
| | - Rong Jiang
- Shanghai Pulmonary Hospital Affiliated to Tongji University Shanghai, China
| | - Qin-Hua Zhao
- Shanghai Pulmonary Hospital Affiliated to Tongji University Shanghai, China
| | | | - Yuan-Yuan Sun
- Shanghai Pulmonary Hospital Affiliated to Tongji University Shanghai, China
| | - Jin-Ling Li
- Shanghai Pulmonary Hospital Affiliated to Tongji University Shanghai, China
| | - Jin-Ming Liu
- Shanghai Pulmonary Hospital Affiliated to Tongji University Shanghai, China
| | - Lan Wang
- Shanghai Pulmonary Hospital Affiliated to Tongji University Shanghai, China
| |
Collapse
|
29
|
Abstract
Dietary intake and tissue levels of carotenoids have been associated with a reduced risk of several chronic diseases, including cardiovascular diseases, type 2 diabetes, obesity, brain-related diseases and some types of cancer. However, intervention trials with isolated carotenoid supplements have mostly failed to confirm the postulated health benefits. It has thereby been speculated that dosing, matrix and synergistic effects, as well as underlying health and the individual nutritional status plus genetic background do play a role. It appears that our knowledge on carotenoid-mediated health benefits may still be incomplete, as the underlying mechanisms of action are poorly understood in relation to human relevance. Antioxidant mechanisms - direct or via transcription factors such as NRF2 and NF-κB - and activation of nuclear hormone receptor pathways such as of RAR, RXR or also PPARs, via carotenoid metabolites, are the basic principles which we try to connect with carotenoid-transmitted health benefits as exemplified with described common diseases including obesity/diabetes and cancer. Depending on the targeted diseases, single or multiple mechanisms of actions may play a role. In this review and position paper, we try to highlight our present knowledge on carotenoid metabolism and mechanisms translatable into health benefits related to several chronic diseases.
Collapse
|
30
|
Lung Cancer Risk Among Patients with Asthma-Chronic Obstructive Pulmonary Disease Overlap. Ann Am Thorac Soc 2021; 18:1894-1900. [PMID: 34019783 DOI: 10.1513/annalsats.202010-1280oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) is a well-established independent risk factor for lung cancer, while the literature on the association between asthma and lung cancer is mixed. Whether Asthma COPD Overlap (ACO) is associated with lung cancer has not been studied. OBJECTIVES We aimed to compare lung cancer risk among patients with ACO vs. COPD and other conditions associated with airway obstruction. METHODS We studied 13,939 smokers from the National Lung Cancer Screening Trial who had baseline spirometry, and utilized spirometric indices and history of childhood asthma to categorize participants into 5 specific airway disease subgroups. We used Poisson regression to compare unadjusted and adjusted lung cancer risk. RESULTS The incidence rate of lung cancer per 1,000 person-years was: ACO, 13.2 (95% confidence interval [CI]: 8.1-21.5); COPD, 11.7 (95% CI: 10.5-13.1); asthmatic smokers, 1.8 (95% CI: 0.6-5.4); Global Initiative for Chronic Obstructive Lung Disease-Unclassified, 7.7 (95% CI: 6.4-9.2); and normal-spirometry smokers, 4.1 (95% CI: 3.5-4.8). ACO patients had increased adjusted risk of lung cancer compared to patients with asthma (incidence rate ratio [IRR]: 4.5, 95% CI: 1.3-15.8) and normal spirometry smokers (IRR: 2.3, 95% CI: 1.3-4.2) in models adjusting for other risk factors. Adjusted lung cancer incidence in patients with ACO and COPD were not found to be different (IRR: 1.2, 95% CI 0.7 - 2.1). CONCLUSIONS Risk of lung cancer among patients with ACO is similar to those with COPD and higher than other groups of smokers. These results provide further evidence that COPD, with or without a history of childhood asthma, is an independent risk factor for lung cancer.
Collapse
|
31
|
Bodas M, Moore AR, Subramaniyan B, Georgescu C, Wren JD, Freeman WM, Brown BR, Metcalf JP, Walters MS. Cigarette Smoke Activates NOTCH3 to Promote Goblet Cell Differentiation in Human Airway Epithelial Cells. Am J Respir Cell Mol Biol 2021; 64:426-440. [PMID: 33444514 PMCID: PMC8008804 DOI: 10.1165/rcmb.2020-0302oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the United States and is primarily caused by cigarette smoking. Increased numbers of mucus-producing secretory ("goblet") cells, defined as goblet cell metaplasia or hyperplasia (GCMH), contributes significantly to COPD pathophysiology. The objective of this study was to determine whether NOTCH signaling regulates goblet cell differentiation in response to cigarette smoke. Primary human bronchial epithelial cells (HBECs) from nonsmokers and smokers with COPD were differentiated in vitro on air-liquid interface and exposed to cigarette smoke extract (CSE) for 7 days. NOTCH signaling activity was modulated using 1) the NOTCH/γ-secretase inhibitor dibenzazepine (DBZ), 2) lentiviral overexpression of the NICD3 (NOTCH3-intracellular domain), or 3) NOTCH3-specific siRNA. Cell differentiation and response to CSE were evaluated by quantitative PCR, Western blotting, immunostaining, and RNA sequencing. We found that CSE exposure of nonsmoker airway epithelium induced goblet cell differentiation characteristic of GCMH. Treatment with DBZ suppressed CSE-dependent induction of goblet cell differentiation. Furthermore, CSE induced NOTCH3 activation, as revealed by increased NOTCH3 nuclear localization and elevated NICD3 protein levels. Overexpression of NICD3 increased the expression of goblet cell-associated genes SPDEF and MUC5AC, whereas NOTCH3 knockdown suppressed CSE-mediated induction of SPDEF and MUC5AC. Finally, CSE exposure of COPD airway epithelium induced goblet cell differentiation in a NOTCH3-dependent manner. These results identify NOTCH3 activation as one of the important mechanisms by which cigarette smoke induces goblet cell differentiation, thus providing a novel potential strategy to control GCMH-related pathologies in smokers and patients with COPD.
Collapse
Affiliation(s)
- Manish Bodas
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Andrew R. Moore
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Bharathiraja Subramaniyan
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Constantin Georgescu
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Jonathan D. Wren
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Willard M. Freeman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Brent R. Brown
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Jordan P. Metcalf
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Matthew S. Walters
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| |
Collapse
|
32
|
α1,3-Fucosyltransferase-IX, an enzyme of pulmonary endogenous lung stem cell marker SSEA-1, alleviates experimental bronchopulmonary dysplasia. Pediatr Res 2021; 89:1126-1135. [PMID: 32303051 DOI: 10.1038/s41390-020-0891-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 02/19/2020] [Accepted: 03/19/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Endogenous pulmonary stem cells (PSCs) play an important role in lung development and repair; however, little is known about their role in bronchopulmonary dysplasia (BPD). We hypothesize that an endogenous PSC marker stage-specific embryonic antigen-1 (SSEA-1) and its enzyme, α1,3-fucosyltransferase IX (FUT9) play an important role in decreasing inflammation and restoring lung structure in experimental BPD. METHODS We studied the expression of SSEA-1, and its enzyme FUT9, in wild-type (WT) C57BL/6 mice, in room air and hyperoxia. Effects of intraperitoneal administration of recombinant human FUT9 (rhFUT9) on lung airway and parenchymal inflammation, alveolarization, and apoptosis were evaluated. RESULTS On hyperoxia exposure, SSEA-1 significantly decreased at postnatal day 14 in hyperoxia-exposed BPD mice, accompanied by a decrease in FUT9. BPD and respiratory distress syndrome (RDS) in human lungs showed decreased expression of SSEA-1 as compared to their term controls. Importantly, intraperitoneal administration of FUT9 in the neonatal BPD mouse model resulted in significant decrease in pulmonary airway (but not lung parenchymal) inflammation, alveolar-capillary leakage, alveolar simplification, and cell death in the hyperoxia-exposed BPD mice. CONCLUSIONS An important role of endogenous PSC marker SSEA-1 and its enzyme FUT9 is demonstrated, indicating early systemic intervention with FUT9 as a potential therapeutic option for BPD. IMPACT Administration of rhFUT9, an enzyme of endogenous stem cell marker SSEA-1, reduces pulmonary airway (but not lung parenchymal) inflammation, alveolar-capillary leak and cell death in the BPD mouse model. SSEA-1 is reported for the first time in experimental BPD models, and in human RDS and BPD. rhFUT9 treatment ameliorates hyperoxia-induced lung injury in a developmentally appropriate BPD mouse model. Our results have translational potential as a therapeutic modality for BPD in the developing lung.
Collapse
|
33
|
Kliment CR, Nguyen JMK, Kaltreider MJ, Lu Y, Claypool SM, Radder JE, Sciurba FC, Zhang Y, Gregory AD, Iglesias PA, Sidhaye VK, Robinson DN. Adenine nucleotide translocase regulates airway epithelial metabolism, surface hydration and ciliary function. J Cell Sci 2021; 134:jcs.257162. [PMID: 33526710 DOI: 10.1242/jcs.257162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/13/2021] [Indexed: 01/10/2023] Open
Abstract
Airway hydration and ciliary function are critical to airway homeostasis and dysregulated in chronic obstructive pulmonary disease (COPD), which is impacted by cigarette smoking and has no therapeutic options. We utilized a high-copy cDNA library genetic selection approach in the amoeba Dictyostelium discoideum to identify genetic protectors to cigarette smoke. Members of the mitochondrial ADP/ATP transporter family adenine nucleotide translocase (ANT) are protective against cigarette smoke in Dictyostelium and human bronchial epithelial cells. Gene expression of ANT2 is reduced in lung tissue from COPD patients and in a mouse smoking model, and overexpression of ANT1 and ANT2 resulted in enhanced oxidative respiration and ATP flux. In addition to the presence of ANT proteins in the mitochondria, they reside at the plasma membrane in airway epithelial cells and regulate airway homeostasis. ANT2 overexpression stimulates airway surface hydration by ATP and maintains ciliary beating after exposure to cigarette smoke, both of which are key functions of the airway. Our study highlights a potential for upregulation of ANT proteins and/or of their agonists in the protection from dysfunctional mitochondrial metabolism, airway hydration and ciliary motility in COPD.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Corrine R Kliment
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA .,Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jennifer M K Nguyen
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mary Jane Kaltreider
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - YaWen Lu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Josiah E Radder
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Frank C Sciurba
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yingze Zhang
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alyssa D Gregory
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Pablo A Iglesias
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Venkataramana K Sidhaye
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Environmental Health Sciences and Engineering, Johns Hopkins University School of Public Health, Baltimore, MD 21205, USA
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA .,Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
34
|
Fantauzzi MF, Aguiar JA, Tremblay BJM, Mansfield MJ, Yanagihara T, Chandiramohan A, Revill S, Ryu MH, Carlsten C, Ask K, Stämpfli M, Doxey AC, Hirota JA. Expression of endocannabinoid system components in human airway epithelial cells: impact of sex and chronic respiratory disease status. ERJ Open Res 2020; 6:00128-2020. [PMID: 33344628 PMCID: PMC7737429 DOI: 10.1183/23120541.00128-2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cannabis smoking is the dominant route of delivery, with the airway epithelium functioning as the site of first contact. The endocannabinoid system is responsible for mediating the physiological effects of inhaled phytocannabinoids. The expression of the endocannabinoid system in the airway epithelium and contribution to normal physiological responses remains to be defined. To begin to address this knowledge gap, a curated dataset of 1090 unique human bronchial brushing gene expression profiles was created. The dataset included 616 healthy subjects, 136 subjects with asthma, and 338 subjects with COPD. A 32-gene endocannabinoid signature was analysed across all samples with sex and disease-specific analyses performed. Immunohistochemistry and immunoblots were performed to probe in situ and in vitro protein expression. CB1, CB2, and TRPV1 protein signal is detectable in human airway epithelial cells in situ and in vitro, justifying examining the downstream endocannabinoid pathway. Sex status was associated with differential expression of 7 of 32 genes. In contrast, disease status was associated with differential expression of 21 of 32 genes in people with asthma and 26 of 32 genes in people with COPD. We confirm at the protein level that TRPV1, the most differentially expressed candidate in our analyses, was upregulated in airway epithelial cells from people with asthma relative to healthy subjects. Our data demonstrate that the endocannabinoid system is expressed in human airway epithelial cells with expression impacted by disease status and minimally by sex. The data suggest that cannabis consumers may have differential physiological responses in the respiratory mucosa.
Collapse
Affiliation(s)
- Matthew F Fantauzzi
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | | | | | - Michael J Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Toyoshi Yanagihara
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Abiram Chandiramohan
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Spencer Revill
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Min Hyung Ryu
- Division of Respiratory Medicine, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chris Carlsten
- Division of Respiratory Medicine, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Martin Stämpfli
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Andrew C Doxey
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada.,Dept of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Jeremy A Hirota
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.,Dept of Biology, University of Waterloo, Waterloo, ON, Canada.,Division of Respiratory Medicine, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
Canonical WNT pathway is activated in the airway epithelium in chronic obstructive pulmonary disease. EBioMedicine 2020; 61:103034. [PMID: 33045470 PMCID: PMC7559244 DOI: 10.1016/j.ebiom.2020.103034] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a devastating lung disease, mainly due to cigarette smoking, which represents the third cause of mortality worldwide. The mechanisms driving its epithelial salient features remain largely elusive. We aimed to evaluate the activation and the role of the canonical, β-catenin-dependant WNT pathway in the airway epithelium from COPD patients. METHODS The WNT/β-catenin pathway was first assessed by WNT-targeted RNA sequencing of the air/liquid interface-reconstituted bronchial epithelium from COPD and control patients. Airway expression of total and active β-catenin was assessed in lung sections, as well as WNT components in laser-microdissected airway epithelium. Finally, we evaluated the role of WNT at the bronchial epithelial level by modulating the pathway in the reconstituted COPD epithelium. FINDINGS We show that the WNT/β-catenin pathway is upregulated in the COPD airway epithelium as compared with that of non-smokers and control smokers, in targeted RNA-sequencing of in vitro reconstituted airway epithelium, and in situ in lung tissue and laser-microdissected epithelium. Extrinsic activation of this pathway in COPD-derived airway epithelium inhibited epithelial differentiation, polarity and barrier function, and induced TGF-β-related epithelial-to-mesenchymal transition (EMT). Conversely, canonical WNT inhibition increased ciliated cell numbers, epithelial polarity and barrier function, whilst inhibiting EMT, thus reversing COPD features. INTERPRETATION In conclusion, the aberrant reactivation of the canonical WNT pathway in the adult airway epithelium recapitulates the diseased phenotype observed in COPD patients, suggesting that this pathway or its downstream effectors could represent a future therapeutic target. FUNDING This study was supported by the Fondation Mont-Godinne, the FNRS and the WELBIO.
Collapse
|
36
|
Yang YY, Lin CJ, Wang CC, Chen CM, Kao WJ, Chen YH. Consecutive Hypoxia Decreases Expression of NOTCH3, HEY1, CC10, and FOXJ1 via NKX2-1 Downregulation and Intermittent Hypoxia-Reoxygenation Increases Expression of BMP4, NOTCH1, MKI67, OCT4, and MUC5AC via HIF1A Upregulation in Human Bronchial Epithelial Cells. Front Cell Dev Biol 2020; 8:572276. [PMID: 33015064 PMCID: PMC7500169 DOI: 10.3389/fcell.2020.572276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/17/2020] [Indexed: 01/11/2023] Open
Abstract
Previous studies have shown that the experimental models of hypoxia-reoxygenation (H/R) mimics the physiological conditions of ischemia-reperfusion and induce oxidative stress and injury in various types of organs, tissues, and cells, both in vivo and in vitro, including human lung adenocarcinoma epithelial cells. Nonetheless, it had not been reported whether H/R affected proliferation, apoptosis, and expression of stem/progenitor cell markers in the bronchial epithelial cells. In this study, we investigated differential effects of consecutive hypoxia and intermittent 24/24-h cycles of H/R on human bronchial epithelial (HBE) cells derived from the same-race and age-matched healthy subjects (i.e., NHBE) and subjects with chronic obstructive pulmonary disease (COPD) (i.e., DHBE). To analyze gene/protein expression during differentiation, both the NHBE and DHBE cells at the 2nd passage were cultured at the air-liquid interface (ALI) in the differentiation medium under normoxia for 3 days, followed by either culturing under hypoxia (1% O2) for consecutively 9 days and then returning to normoxia for another 9 days, or culturing under 24/24-h cycles of H/R (i.e., 24 h of 1% O2 followed by 24 h of 21% O2, repetitively) for 18 days in total, so that all differentiating HBE cells were exposed to hypoxia for a total of 9 days. In both the normal and diseased HBE cells, intermittent H/R significantly increased HIF1A, BMP4, NOTCH1, MKI67, OCT4, and MUC5AC expression, while consecutive hypoxia significantly decreased NKX2-1, NOTCH3, HEY1, CC10, and FOXJ1 expression. Inhibition of HIF1A or NKX2-1 expression by siRNA transfection respectively decreased BMP4/NOTCH1/MKI67/OCT4/MUC5AC and NOTCH3/HEY1/CC10/FOXJ1 expression in the HBE cells cultured under intermittent H/R to the same levels under normoxia. Overexpression of NKX2-1 via cDNA transfection caused more than 2.8-fold increases in NOTCH3, HEY1, and FOXJ1 mRNA levels in the HBE cells cultured under consecutive hypoxia compared to the levels under normoxia. Taken together, our results show for the first time that consecutive hypoxia decreased expression of the co-regulated gene module NOTCH3/HEY1/CC10 and the ciliogenesis-inducing transcription factor gene FOXJ1 via NKX2-1 mRNA downregulation, while intermittent H/R increased expression of the co-regulated gene module BMP4/NOTCH1/MKI67/OCT4 and the predominant airway mucin gene MUC5AC via HIF1A mRNA upregulation.
Collapse
Affiliation(s)
- Yung-Yu Yang
- Department of General Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chao-Ju Lin
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chin Wang
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan.,Section of Respiratory Therapy, Rueifang Miner Hospital, New Taipei City, Taiwan
| | - Chieh-Min Chen
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Jen Kao
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Hui Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
37
|
Uniyal S, Tyagi AK, Muyal JP. All Trans Retinoic Acid (ATRA) progresses alveolar epithelium regeneration by involving diverse signalling pathways in emphysematous rat. Biomed Pharmacother 2020; 131:110725. [PMID: 32927254 DOI: 10.1016/j.biopha.2020.110725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Pulmonary emphysema is characterized by destruction of alveoli leading to inadequate oxygenation, disability and frequently death. This destruction was understood so far as irreversible. Published data has shown that ATRA (All Trans Retinoic Acid) reverses elastase-induced emphysema in rats. However, the molecular mechanisms governing regeneration process are so far unknown. OBJECTIVE To examine the therapeutic potential of ATRA on various molecular pathways and their coordination towards governance of alveolar epithelial regeneration in emphysematous rats. METHODS Emphysema was induced by elastase versus saline in Sprague-Dawley rats. On days 26-37, rats received daily intraperitoneal injections with ATRA (500 μg/kg b.w.) versus olive-oil. Lungs were removed at day 38 for histopathology and investigation of relative mRNA and protein expressions. RESULTS Histopathological analysis has shown that losses of alveoli were recovered in therapy (EA) group. Moreover, expressions of markers genes for alveolar cell proliferation, differentiation and EMT events at mRNA and protein levels were significantly increased in EA group than emphysema group (ES). Upon validation at genomics level, expressions of components of Notch, Hedgehog, Wnt, BMP and TGFβ pathways were significantly attenuated in EA group when compared with ES and were well comparable with the healthy group. CONCLUSION Therapeutic supplementation of ATRA rectifies the deregulated Notch, Hedgehog, Wnt, BMP and TGFβ pathways in emphysema condition, resulting in alveolar epithelium regeneration. Hence, ATRA may prove to be a potential drug in the treatment of emphysema. Nevertheless, elaborated studies are to be conducted.
Collapse
Affiliation(s)
- Swati Uniyal
- Department of Biotechnology, School of Biotechnology, Gautam Buddha University, Greater Noida, 201308, Uttar Pradesh, India.
| | - Amit Kumar Tyagi
- Division of Nuclear Medicine, Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India.
| | - Jai Prakash Muyal
- Department of Biotechnology, School of Biotechnology, Gautam Buddha University, Greater Noida, 201308, Uttar Pradesh, India.
| |
Collapse
|
38
|
Luo J, Li L, Hu D, Zhang X. LINC00612/miR-31-5p/Notch1 Axis Regulates Apoptosis, Inflammation, and Oxidative Stress in Human Pulmonary Microvascular Endothelial Cells Induced by Cigarette Smoke Extract. Int J Chron Obstruct Pulmon Dis 2020; 15:2049-2060. [PMID: 32921999 PMCID: PMC7457876 DOI: 10.2147/copd.s255696] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been reported as key regulators in chronic obstructive pulmonary disease (COPD). However, the precise role of LINC00612 remains unclear. Methods The real-time quantitative polymerase chain reaction (RT-qPCR) was used to quantify the expression levels of LINC00612, miR-31-5p, and Notch homolog 1 (Notch1) in lung tissues and cells. Under a cigarette smoke extract (CSE) stimulation condition, the apoptosis was analyzed by flow cytometry assay. Caspase-3 activity was examined with a caspase-3 activity assay kit; besides, inflammation and oxidative stress were assessed by measuring interleukin-6, tumor necrosis factor-α, glutathione/oxidized glutathione, reactive oxygen species, malondialdehyde, and superoxide dismutase activity. The interaction relationship between miR-31-5p and LINC00612 or Notch1 was predicted by bioinformatics databases, while dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays were performed to confirm prediction. Eventually, the related protein expression was estimated with western blot assay. Results LINC00612 was downregulated in COPD tissues when compared with controls. Consistently, CSE inhibited LINC00612 expression in HPMECs with a dose/time-dependent method. Gain-of-function experiments indicated that the upregulation of LINC00612 could repress cell apoptosis, inflammation, and oxidative stress in HPMECs induced by CSE. In addition, miR-31-5p was negatively regulated by LINC00612 in HPMECs treated with CSE. The overexpression of miR-31-5p could abolish LINC00612-induced effects on HPMECs exposed to CSE. Importantly, LINC00612 could weaken CSE-induced cell apoptosis, inflammation, and oxidative stress in HPMECs by regulating the miR-31-5p/Notch1 signaling pathway. Conclusion Current findings suggest that CSE-mediated cell apoptosis, inflammation, and oxidative stress in HPMECs were abolished by upregulation of LINC00612. Furthermore, the LINC00612/miR-31-5p/Notch1 axis may represent a novel regulator of apoptosis, inflammation, and oxidative stress of HPMECs, which may be a potential therapeutic target for COPD in the future.
Collapse
Affiliation(s)
- Jun Luo
- Department of Laboratory Medicine, Chengdu Second People's Hospital, Chengdu 610000, Sichuan, People's Republic of China
| | - Li Li
- Department of Respiratory and Critical Care Medicine, Dujiangyan People's Hospital, Dujiangyan 611830, Sichuan, People's Republic of China
| | - Die Hu
- Department of Respiratory and Critical Care Medicine, Dujiangyan People's Hospital, Dujiangyan 611830, Sichuan, People's Republic of China
| | - Xian Zhang
- Department of Laboratory Medicine, Chengdu Second People's Hospital, Chengdu 610000, Sichuan, People's Republic of China
| |
Collapse
|
39
|
Meisel CT, Porcheri C, Mitsiadis TA. Cancer Stem Cells, Quo Vadis? The Notch Signaling Pathway in Tumor Initiation and Progression. Cells 2020; 9:cells9081879. [PMID: 32796631 PMCID: PMC7463613 DOI: 10.3390/cells9081879] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
The Notch signaling pathway regulates cell proliferation, cytodifferentiation and cell fate decisions in both embryonic and adult life. Several aspects of stem cell maintenance are dependent from the functionality and fine tuning of the Notch pathway. In cancer, Notch is specifically involved in preserving self-renewal and amplification of cancer stem cells, supporting the formation, spread and recurrence of the tumor. As the function of Notch signaling is context dependent, we here provide an overview of its activity in a variety of tumors, focusing mostly on its role in the maintenance of the undifferentiated subset of cancer cells. Finally, we analyze the potential of molecules of the Notch pathway as diagnostic and therapeutic tools against the various cancers.
Collapse
|
40
|
Wu A, Song H. Regulation of alveolar type 2 stem/progenitor cells in lung injury and regeneration. Acta Biochim Biophys Sin (Shanghai) 2020; 52:716-722. [PMID: 32445469 DOI: 10.1093/abbs/gmaa052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Indexed: 01/02/2023] Open
Abstract
The renewal of lung epithelial cells is normally slow unless the lung is injured. The resident epithelial stem cells rapidly proliferate and differentiate to maintain lung structure and function when the lung is damaged. The alveolar epithelium is characterized by alveolar type 1 (AT1) and alveolar type 2 (AT2) cells. AT2 cells are the stem cells for alveoli, as they can both self-renew and generate AT1 cells. Abnormal proliferation and regulation of AT2 cells will lead to serious lung diseases including cancers. In this review, we focused on the alveolar stem/progenitor cells, the key physiological function of AT2 cells in lung homeostasis and the complicated regulation of AT2 cells in the repairing processes after lung injury.
Collapse
Affiliation(s)
- Ailing Wu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Hai Song
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Thoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
41
|
Jespersen K, Liu Z, Li C, Harding P, Sestak K, Batra R, Stephenson CA, Foley RT, Greene H, Meisinger T, Baxter BT, Xiong W. Enhanced Notch3 signaling contributes to pulmonary emphysema in a Murine Model of Marfan syndrome. Sci Rep 2020; 10:10949. [PMID: 32616814 PMCID: PMC7331498 DOI: 10.1038/s41598-020-67941-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/03/2020] [Indexed: 11/09/2022] Open
Abstract
Marfan syndrome (MFS) is a heritable disorder of connective tissue, caused by mutations in the fibrillin-1 gene. Pulmonary functional abnormalities, such as emphysema and restrictive lung diseases, are frequently observed in patients with MFS. However, the pathogenesis and molecular mechanism of pulmonary involvement in MFS patients are underexplored. Notch signaling is essential for lung development and the airway epithelium regeneration and repair. Therefore, we investigated whether Notch3 signaling plays a role in pulmonary emphysema in MFS. By using a murine model of MFS, fibrillin-1 hypomorphic mgR mice, we found pulmonary emphysematous-appearing alveolar patterns in the lungs of mgR mice. The septation in terminal alveoli of lungs in mgR mice was reduced compared to wild type controls in the early lung development. These changes were associated with increased Notch3 activation. To confirm that the increased Notch3 signaling in mgR mice was responsible for structure alterations in the lungs, mice were treated with N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglucine t-butyl ester (DAPT), a γ-secretase inhibitor, which inhibits Notch signaling. DAPT treatment reduced lung cell apoptosis and attenuated pulmonary alteration in mice with MFS. This study indicates that Notch3 signaling contributes to pulmonary emphysema in mgR mice. Our results may have the potential to lead to novel strategies to prevent and treat pulmonary manifestations in patients with MFS.
Collapse
Affiliation(s)
- Kathryn Jespersen
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-790, USA
| | - Zhibo Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Chenxin Li
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-790, USA
| | - Paul Harding
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-790, USA
| | - Kylie Sestak
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-790, USA
| | - Rishi Batra
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-790, USA
| | - Christopher A Stephenson
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-790, USA
| | - Ryan T Foley
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-790, USA
| | - Harrison Greene
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-790, USA
| | - Trevor Meisinger
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-790, USA
| | - B Timothy Baxter
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-790, USA
| | - Wanfen Xiong
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-790, USA.
| |
Collapse
|
42
|
Cai G, Bossé Y, Xiao F, Kheradmand F, Amos CI. Tobacco Smoking Increases the Lung Gene Expression of ACE2, the Receptor of SARS-CoV-2. Am J Respir Crit Care Med 2020; 201:1557-1559. [PMID: 32329629 PMCID: PMC7301735 DOI: 10.1164/rccm.202003-0693le] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Guoshuai Cai
- University of South CarolinaColumbia, South Carolina
| | | | - Feifei Xiao
- University of South CarolinaColumbia, South Carolina
| | | | | |
Collapse
|
43
|
Di Sano C, D'Anna C, Ferraro M, Chiappara G, Sangiorgi C, Di Vincenzo S, Bertani A, Vitulo P, Bruno A, Dino P, Pace E. Impaired activation of Notch-1 signaling hinders repair processes of bronchial epithelial cells exposed to cigarette smoke. Toxicol Lett 2020; 326:61-69. [DOI: 10.1016/j.toxlet.2020.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 01/25/2023]
|
44
|
Rathnayake SNH, Hoesein FAAM, Galban CJ, Ten Hacken NHT, Oliver BGG, van den Berge M, Faiz A. Gene expression profiling of bronchial brushes is associated with the level of emphysema measured by computed tomography-based parametric response mapping. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1222-L1228. [PMID: 32320267 DOI: 10.1152/ajplung.00051.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Parametric response mapping (PRM) is a computed tomography (CT)-based method to phenotype patients with chronic obstructive pulmonary disease (COPD). It is capable of differentiating emphysema-related air trapping with nonemphysematous air trapping (small airway disease), which helps to identify the extent and localization of the disease. Most studies evaluating the gene expression in smokers and COPD patients related this to spirometric measurements, but none have investigated the relationship with CT-based measurements of lung structure. The current study aimed to examine gene expression profiles of brushed bronchial epithelial cells in association with the PRM-defined CT-based measurements of emphysema (PRMEmph) and small airway disease (PRMfSAD). Using the Top Institute Pharma (TIP) study cohort (COPD = 12 and asymptomatic smokers = 32), we identified a gene expression signature of bronchial brushings, which was associated with PRMEmph in the lungs. One hundred thirty-three genes were identified to be associated with PRMEmph. Among the most significantly associated genes, CXCL11 is a potent chemokine involved with CD8+ T cell activation during inflammation in COPD, indicating that it may play an essential role in the development of emphysema. The PRMEmph signature was then replicated in two independent data sets. Pathway analysis showed that the PRMEmph signature is associated with proinflammatory and notch signaling pathways. Together these findings indicate that airway epithelium may play a role in the development of emphysema and/or may act as a biomarker for the presence of emphysema. In contrast, its role in relation to functional small airways disease is less clear.
Collapse
Affiliation(s)
- Senani N H Rathnayake
- Respiratory Bioinformatics and Molecular Biology, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Firdaus A A Mohamed Hoesein
- Division of Heart and Lungs, Department of Respiratory Medicine, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Craig J Galban
- Department of Radiology, The University of Michigan, Ann Arbor, Michigan
| | - Nick H T Ten Hacken
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, The University of Groningen, Groningen, The Netherlands.,Department of Pulmonary Diseases, University Medical Center Groningen, The University of Groningen, Groningen, The Netherlands
| | - Brian G G Oliver
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, The University of Groningen, Groningen, The Netherlands.,Department of Pulmonary Diseases, University Medical Center Groningen, The University of Groningen, Groningen, The Netherlands
| | - Alen Faiz
- Respiratory Bioinformatics and Molecular Biology, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, The University of Groningen, Groningen, The Netherlands.,Department of Pulmonary Diseases, University Medical Center Groningen, The University of Groningen, Groningen, The Netherlands.,Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
45
|
Cubillos-Angulo JM, Fukutani ER, Cruz LAB, Arriaga MB, Lima JV, Andrade BB, Queiroz ATL, Fukutani KF. Systems biology analysis of publicly available transcriptomic data reveals a critical link between AKR1B10 gene expression, smoking and occurrence of lung cancer. PLoS One 2020; 15:e0222552. [PMID: 32097409 PMCID: PMC7041805 DOI: 10.1371/journal.pone.0222552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
Background Cigarette smoking is associated with an increased risk of developing respiratory diseases and various types of cancer. Early identification of such unfavorable outcomes in patients who smoke is critical for optimizing personalized medical care. Methods Here, we perform a comprehensive analysis using Systems Biology tools of publicly available data from a total of 6 transcriptomic studies, which examined different specimens of lung tissue and/or cells of smokers and nonsmokers to identify potential markers associated with lung cancer. Results Expression level of 22 genes was capable of classifying smokers from non-smokers. A machine learning algorithm revealed that AKR1B10 was the most informative gene among the 22 differentially expressed genes (DEGs) accounting for the classification of the clinical groups. AKR1B10 expression was higher in smokers compared to non-smokers in datasets examining small and large airway epithelia, but not in the data from a study of sorted alveolar macrophages. Moreover, AKR1B10 expression was relatively higher in lung cancer specimens compared to matched healthy tissue obtained from nonsmoking individuals. Although the overall accuracy of AKR1B10 expression level in distinction between cancer and healthy lung tissue was 76%, with a specificity of 98%, our results indicated that such marker exhibited low sensitivity, hampering its use for cancer screening such specific setting. Conclusion The systematic analysis of transcriptomic studies performed here revealed a potential critical link between AKR1B10 expression, smoking and occurrence of lung cancer.
Collapse
Affiliation(s)
- Juan M. Cubillos-Angulo
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Bahia, Brazil
| | | | - Luís A. B. Cruz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Bahia, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências, Salvador, Bahia, Brazil
| | - María B. Arriaga
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Bahia, Brazil
| | - João Victor Lima
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Bruno B. Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Bahia, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências, Salvador, Bahia, Brazil
- Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Bahia, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Bahia, Brazil
- * E-mail: (BBA); (ATLQ); (KFF)
| | - Artur T. L. Queiroz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- * E-mail: (BBA); (ATLQ); (KFF)
| | - Kiyoshi F. Fukutani
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Bahia, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências, Salvador, Bahia, Brazil
- * E-mail: (BBA); (ATLQ); (KFF)
| |
Collapse
|
46
|
Ticagrelor Increases SIRT1 and HES1 mRNA Levels in Peripheral Blood Cells from Patients with Stable Coronary Artery Disease and Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2020; 21:ijms21051576. [PMID: 32106619 PMCID: PMC7084534 DOI: 10.3390/ijms21051576] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/13/2022] Open
Abstract
Ticagrelor is a powerful P2Y12 inhibitor with pleiotropic effects in the cardiovascular system. Consistently, we have reported that in patients with stable coronary artery disease (CAD) and concomitant chronic obstructive pulmonary disease (COPD) who underwent percutaneous coronary intervention (PCI), 1-month treatment with ticagrelor was superior in improving biological markers of endothelial function, compared with clopidogrel. The objective of this study was to investigate the mechanisms underlying these beneficial effects of ticagrelor by conducting molecular analyses of RNA isolated from peripheral blood cells of these patients. We determined mRNAs levels of markers of inflammation and oxidative stress, such as RORγt (T helper 17 cells marker), FoxP3 (regulatory T cells marker), NLRP3, ICAM1, SIRT1, Notch ligands JAG1 and DLL4, and HES1, a Notch target gene. We found that 1-month treatment with ticagrelor, but not clopidogrel, led to increased levels of SIRT1 and HES1 mRNAs. In patients treated with ticagrelor or clopidogrel, we observed a negative correlation among changes in both SIRT1 and HES1 mRNA and serum levels of Epidermal Growth Factor (EGF), a marker of endothelial dysfunction found to be reduced by ticagrelor treatment in our previous study. In conclusion, we report that in stable CAD/COPD patients ticagrelor positively regulates HES1 and SIRT1, two genes playing a protective role in the context of inflammation and oxidative stress. Our observations confirm and expand previous studies showing that the beneficial effects of ticagrelor in stable CAD/COPD patients may be, at least in part, mediated by its capacity to reduce systemic inflammation and oxidative stress.
Collapse
|
47
|
Noël A, Hansen S, Zaman A, Perveen Z, Pinkston R, Hossain E, Xiao R, Penn A. In utero exposures to electronic-cigarette aerosols impair the Wnt signaling during mouse lung development. Am J Physiol Lung Cell Mol Physiol 2020; 318:L705-L722. [PMID: 32083945 DOI: 10.1152/ajplung.00408.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Currently, more than 9 million American adults, including women of childbearing age, use electronic-cigarettes (e-cigs). Further, the prevalence of maternal vaping now approaching 10% is similar to that of maternal smoking. Little, however, is known about the effects of fetal exposures to nicotine-rich e-cig aerosols on lung development. In this study, we assessed whether in utero exposures to e-cig aerosols compromised lung development in mice. A third-generation e-cig device was used to expose pregnant BALB/c mice by inhalation to 36 mg/mL of nicotine cinnamon-flavored e-cig aerosols for 14-31 days. This included exposures for either 12 days before mating plus during gestation (preconception groups) or only during gestation (prenatal groups). Respective control mice were exposed to filtered air. Subgroups of offspring were euthanized at birth or at 4 wk of age. Compared with respective air-exposed controls, both preconception and prenatal exposures to e-cig aerosols significantly decreased the offspring birth weight and body length. In the preconception group, 7 inflammation-related genes were downregulated, including 4 genes common to both dams and fetuses, denoting an e-cig immunosuppressive effect. Lung morphometry assessments of preconception e-cig-exposed offspring showed a significantly increased tissue fraction at birth. This result was supported by the downregulation of 75 lung genes involved in the Wnt signaling, which is essential to lung organogenesis. Thus, our data indicate that maternal vaping impairs pregnancy outcomes, alters fetal lung structure, and dysregulates the Wnt signaling. This study provides experimental evidence for future regulations of e-cig products for pregnant women and developmentally vulnerable populations.
Collapse
Affiliation(s)
- Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Shannon Hansen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Anusha Zaman
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Zakia Perveen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Rakeysha Pinkston
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana.,Health Research Center, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, Louisiana
| | - Ekhtear Hossain
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Rui Xiao
- Department of Anesthesiology, Columbia University Medical Center, New York, New York
| | - Arthur Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
48
|
Hadzic S, Wu CY, Avdeev S, Weissmann N, Schermuly RT, Kosanovic D. Lung epithelium damage in COPD - An unstoppable pathological event? Cell Signal 2020; 68:109540. [PMID: 31953012 DOI: 10.1016/j.cellsig.2020.109540] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/11/2020] [Accepted: 01/11/2020] [Indexed: 10/25/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common term for alveolar septal wall destruction resulting in emphysema, and chronic bronchitis accompanied by conductive airway remodelling. In general, this disease is characterized by a disbalance of proteolytic/anti-proteolytic activity, augmented inflammatory response, increased oxidative/nitrosative stress, rise in number of apoptotic cells and decreased proliferation. As the first responder to the various environmental stimuli, epithelium occupies an important position in different lung pathologies, including COPD. Epithelium sequentially transitions from the upper airways in the direction of the gas exchange surface in the alveoli, and every cell type possesses a distinct role in the maintenance of the homeostasis. Basically, a thick ciliated structure of the airway epithelium has a major function in mucus secretion, whereas, alveolar epithelium which forms a thin barrier covered by surfactant has a function in gas exchange. Following this line, we will try to reveal whether or not the chronic bronchitis and emphysema, being two pathological phenotypes in COPD, could originate in two different types of epithelium. In addition, this review focuses on the role of lung epithelium in COPD pathology, and summarises underlying mechanisms and potential therapeutics.
Collapse
Affiliation(s)
- Stefan Hadzic
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Cheng-Yu Wu
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Sergey Avdeev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Norbert Weissmann
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Djuro Kosanovic
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany; Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
49
|
Pietras CM, Power L, Slonim DK. aTEMPO: Pathway-Specific Temporal Anomalies for Precision Therapeutics. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2020; 25:683-694. [PMID: 31797638 PMCID: PMC7664835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dynamic processes are inherently important in disease, and identifying disease-related disruptions of normal dynamic processes can provide information about individual patients. We have previously characterized individuals' disease states via pathway-based anomalies in expression data, and we have identified disease-correlated disruption of predictable dynamic patterns by modeling a virtual time series in static data. Here we combine the two approaches, using an anomaly detection model and virtual time series to identify anomalous temporal processes in specific disease states. We demonstrate that this approach can informatively characterize individual patients, suggesting personalized therapeutic approaches.
Collapse
|
50
|
Application of pharmacogenomics and bioinformatics to exemplify the utility of human ex vivo organoculture models in the field of precision medicine. PLoS One 2019; 14:e0226564. [PMID: 31860681 PMCID: PMC6924641 DOI: 10.1371/journal.pone.0226564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/28/2019] [Indexed: 01/01/2023] Open
Abstract
Here we describe a collaboration between industry, the National Health Service (NHS) and academia that sought to demonstrate how early understanding of both pharmacology and genomics can improve strategies for the development of precision medicines. Diseased tissue ethically acquired from patients suffering from chronic obstructive pulmonary disease (COPD), was used to investigate inter-patient variability in drug efficacy using ex vivo organocultures of fresh lung tissue as the test system. The reduction in inflammatory cytokines in the presence of various test drugs was used as the measure of drug efficacy and the individual patient responses were then matched against genotype and microRNA profiles in an attempt to identify unique predictors of drug responsiveness. Our findings suggest that genetic variation in CYP2E1 and SMAD3 genes may partly explain the observed variation in drug response.
Collapse
|