1
|
Zaher A, Petronek MS, Allen BG, Mapuskar KA. Balanced Duality: H 2O 2-Based Therapy in Cancer and Its Protective Effects on Non-Malignant Tissues. Int J Mol Sci 2024; 25:8885. [PMID: 39201571 PMCID: PMC11354297 DOI: 10.3390/ijms25168885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Conventional cancer therapy strategies, although centered around killing tumor cells, often lead to severe side effects on surrounding normal tissues, thus compromising the chronic quality of life in cancer survivors. Hydrogen peroxide (H2O2) is a secondary signaling molecule that has an array of functions in both tumor and normal cells, including the promotion of cell survival pathways and immune cell modulation in the tumor microenvironment. H2O2 is a reactive oxygen species (ROS) crucial in cellular homeostasis and signaling (at concentrations maintained under nM levels), with increased steady-state levels in tumors relative to their normal tissue counterparts. Increased steady-state levels of H2O2 in tumor cells, make them vulnerable to oxidative stress and ultimately, cell death. Recently, H2O2-producing therapies-namely, pharmacological ascorbate and superoxide dismutase mimetics-have emerged as compelling complementary treatment strategies in cancer. Both pharmacological ascorbate and superoxide dismutase mimetics can generate excess H2O2 to overwhelm the impaired H2O2 removal capacity of cancer cells. This review presents an overview of H2O2 metabolism in the physiological and malignant states, in addition to discussing the anti-tumor and normal tissue-sparing mechanism(s) of, and clinical evidence for, two H2O2-based therapies, pharmacological ascorbate and superoxide dismutase mimetics.
Collapse
Affiliation(s)
| | | | | | - Kranti A. Mapuskar
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; (A.Z.); (M.S.P.); (B.G.A.)
| |
Collapse
|
2
|
Wang B, Xu Y, Yao Q, Song L, Liang M, Cao H, Gao C. Prolonged resident nanoparticles effectively treat acute lung injury via the selective upregulation of intracellular hydrogen peroxide. NANO TODAY 2024; 56:102278. [DOI: 10.1016/j.nantod.2024.102278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
|
3
|
Bhuia MS, Chowdhury R, Ara I, Mamun M, Rouf R, Khan MA, Uddin SJ, Shakil MAK, Habtemariam S, Ferdous J, Calina D, Sharifi-Rad J, Islam MT. Bioactivities of morroniside: A comprehensive review of pharmacological properties and molecular mechanisms. Fitoterapia 2024; 175:105896. [PMID: 38471574 DOI: 10.1016/j.fitote.2024.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Morroniside (MOR) is an iridoid glycoside and the main active principle of the medicinal plant, Cornus officinalis Sieb. This phytochemical is associated with numerous health benefits due to its antioxidant properties. The primary objective of the present study was to assess the pharmacological effects and underlying mechanisms of MOR, utilizing published data obtained from literature databases. Data collection involved accessing various sources, including PubMed/Medline, Scopus, Science Direct, Google Scholar, Web of Science, and SpringerLink. Our findings demonstrate that MOR can be utilized for the treatment of several diseases and disorders, as numerous studies have revealed its significant therapeutic activities. These activities encompass anti-inflammatory, antidiabetic, lipid-lowering capability, anticancer, trichogenic, hepatoprotective, gastroprotective, osteoprotective, renoprotective, and cardioprotective effects. MOR has also shown promising benefits against various neurological ailments, including Alzheimer's disease, Parkinson's disease, spinal cord injury, cerebral ischemia, and neuropathic pain. Considering these therapeutic features, MOR holds promise as a lead compound for the treatment of various ailments and disorders. However, further comprehensive preclinical and clinical trials are required to establish MOR as an effective and reliable therapeutic agent.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Iffat Ara
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Mamun
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Razina Rouf
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Muahmmad Ali Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | | | - Md Abdul Kader Shakil
- Research Center, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
4
|
Chen L, Shao Z, Zhang Z, Teng W, Mou H, Jin X, Wei S, Wang Z, Eloy Y, Zhang W, Zhou H, Yao M, Zhao S, Chai X, Wang F, Xu K, Xu J, Ye Z. An On-Demand Collaborative Innate-Adaptive Immune Response to Infection Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304774. [PMID: 37523329 DOI: 10.1002/adma.202304774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Deep tissue infection is a common clinical issue and therapeutic difficulty caused by the disruption of the host antibacterial immune function, resulting in treatment failure and infection relapse. Intracellular pathogens are refractory to elimination and can manipulate host cell biology even after appropriate treatment, resulting in a locoregional immunosuppressive state that leads to an inadequate response to conventional anti-infective therapies. Here, a novel antibacterial strategy involving autogenous immunity using a biomimetic nanoparticle (NP)-based regulating system is reported to induce in situ collaborative innate-adaptive immune responses. It is observed that a macrophage membrane coating facilitates NP enrichment at the infection site, followed by active NP accumulation in macrophages in a mannose-dependent manner. These NP-armed macrophages exhibit considerably improved innate capabilities, including more efficient intracellular ROS generation and pro-inflammatory factor secretion, M1 phenotype promotion, and effective eradication of invasive bacteria. Furthermore, the reprogrammed macrophages direct T cell activation at infectious sites, resulting in a robust adaptive antimicrobial immune response to ultimately achieve bacterial clearance and prevent infection relapse. Overall, these results provide a conceptual framework for a novel macrophage-based strategy for infection treatment via the regulation of autogenous immunity.
Collapse
Affiliation(s)
- Liang Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Zhenxuan Shao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Zengjie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Wangsiyuan Teng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Xiaoqiang Jin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Shenyu Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Yinwang Eloy
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Hao Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Minjun Yao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Shenzhi Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Xupeng Chai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Kaiwang Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Jianbin Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| |
Collapse
|
5
|
Kroon EE, Correa-Macedo W, Evans R, Seeger A, Engelbrecht L, Kriel JA, Loos B, Okugbeni N, Orlova M, Cassart P, Kinnear CJ, Tromp GC, Möller M, Wilkinson RJ, Coussens AK, Schurr E, Hoal EG. Neutrophil extracellular trap formation and gene programs distinguish TST/IGRA sensitization outcomes among Mycobacterium tuberculosis exposed persons living with HIV. PLoS Genet 2023; 19:e1010888. [PMID: 37616312 PMCID: PMC10470897 DOI: 10.1371/journal.pgen.1010888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/31/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Persons living with HIV (PLWH) have an increased risk for tuberculosis (TB). After prolonged and repeated exposure, some PLWH never develop TB and show no evidence of immune sensitization to Mycobacterium tuberculosis (Mtb) as defined by persistently negative tuberculin skin tests (TST) and interferon gamma release assays (IGRA). This group has been identified and defined as HIV+ persistently TB, tuberculin and IGRA negative (HITTIN). To investigate potential innate mechanisms unique to individuals with the HITTIN phenotype we compared their neutrophil Mtb infection response to that of PLWH, with no TB history, but who test persistently IGRA positive, and tuberculin positive (HIT). Neutrophil samples from 17 HITTIN (PMNHITTIN) and 11 HIT (PMNHIT) were isolated and infected with Mtb H37Rv for 1h and 6h. RNA was extracted and used for RNAseq analysis. Since there was no significant differential transcriptional response at 1h between infected PMNHITTIN and PMNHIT, we focused on the 6h timepoint. When compared to uninfected PMN, PMNHITTIN displayed 3106 significantly upregulated and 3548 significantly downregulated differentially expressed genes (DEGs) (absolute cutoff of a log2FC of 0.2, FDR < 0.05) whereas PMNHIT demonstrated 3816 significantly upregulated and 3794 significantly downregulated DEGs following 6h Mtb infection. Contrasting the log2FC 6h infection response to Mtb from PMNHITTIN against PMNHIT, 2285 genes showed significant differential response between the two groups. Overall PMNHITTIN had a lower fold change response to Mtb infection compared to PMNHIT. According to pathway enrichment, Apoptosis and NETosis were differentially regulated between HITTIN and HIT PMN responses after 6h Mtb infection. To corroborate the blunted NETosis transcriptional response measured among HITTIN, fluorescence microscopy revealed relatively lower neutrophil extracellular trap formation and cell loss in PMNHITTIN compared to PMNHIT, showing that PMNHITTIN have a distinct response to Mtb.
Collapse
Affiliation(s)
- Elouise E. Kroon
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Wilian Correa-Macedo
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, McGill University, Montréal, Canada
- Department of Biochemistry, McGill University, Montréal, Canada
| | - Rachel Evans
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department Medical Biology (WEHI), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Allison Seeger
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, South Africa
| | - Lize Engelbrecht
- Central Analytical Facilities, Microscopy Unit, Stellenbosch University, Cape Town, South Africa
| | - Jurgen A. Kriel
- Central Analytical Facilities, Microscopy Unit, Stellenbosch University, Cape Town, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Naomi Okugbeni
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Genomics Platform, Tygerberg, South Africa
| | - Marianna Orlova
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, McGill University, Montréal, Canada
- Department of Biochemistry, McGill University, Montréal, Canada
| | - Pauline Cassart
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, McGill University, Montréal, Canada
| | - Craig J. Kinnear
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Genomics Platform, Tygerberg, South Africa
| | - Gerard C. Tromp
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, University of Stellenbosch, Cape Town, South Africa
- SAMRC-SHIP South African Tuberculosis Bioinformatics Initiative (SATBBI), Center for Bioinformatics and Computational Biology, Cape Town, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, University of Stellenbosch, Cape Town, South Africa
| | - Robert J. Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, South Africa
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Anna K. Coussens
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department Medical Biology (WEHI), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, South Africa
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, McGill University, Montréal, Canada
- Department of Biochemistry, McGill University, Montréal, Canada
| | - Eileen G. Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
6
|
Mohammed T, Bowe M, Plant A, Perez M, Alvarez CA, Mortensen EM. Metformin Use Is Associated With Lower Mortality in Veterans With Diabetes Hospitalized With Pneumonia. Clin Infect Dis 2023; 76:1237-1244. [PMID: 36575139 PMCID: PMC10319762 DOI: 10.1093/cid/ciac900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Recent studies suggest that metformin use may be associated with improved infectious disease-related outcomes, whereas other papers suggest potentially worse outcomes in serious bacterial infections. Our purpose was to examine the association of prior outpatient prescription of metformin on 30- and 90-day mortality for older veterans with pre-existing diabetes hospitalized with pneumonia. METHODS We conducted a retrospective cohort study using national Department of Veterans Affairs data of patients ≥65 years with a prior history of diabetes who were hospitalized with pneumonia over a 10-year period (fiscal years 2002-2012.) For our primary analysis, we created a propensity score and matched metformin users to nonusers 1:1. RESULTS We identified 34 759 patients who met the inclusion criteria, 20.3% of whom were prescribed metformin. Unadjusted 30-day mortality was 9.6% for those who received metformin versus 13.9% in nonusers (P < .003), and 90-day mortality was 15.8% for those who received metformin versus 23.0% for nonusers (P < .0001). For the propensity score model, we matched 6899 metformin users to 6899 nonusers. After propensity matching, both 30-day (relative risk [RR]: .86; 95% confidence interval [CI]: .78-.95) and 90-day (RR: .85; 95% CI: .79-.92) mortality was significantly lower for metformin users. CONCLUSIONS Prior receipt of metformin was associated with significantly lower mortality after adjusting for potential confounders. Additional research is needed to examine the safety and potential benefits of metformin use in patients with respiratory infections.
Collapse
Affiliation(s)
- Turab Mohammed
- Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Michael Bowe
- Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Alexandria Plant
- Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Mario Perez
- Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Carlos A Alvarez
- Department of Medicine, VA North Texas Health Care System, Dallas, Texas, USA
- Department of Medicine, Texas Tech University Health Sciences Centre, Jerry H. Hodge School of Pharmacy, Dallas, Texas, USA
| | - Eric M Mortensen
- Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Department of Medicine, VA North Texas Health Care System, Dallas, Texas, USA
| |
Collapse
|
7
|
Di Cara F, Savary S, Kovacs WJ, Kim P, Rachubinski RA. The peroxisome: an up-and-coming organelle in immunometabolism. Trends Cell Biol 2023; 33:70-86. [PMID: 35788297 DOI: 10.1016/j.tcb.2022.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/27/2022]
Abstract
Peroxisomes are essential metabolic organelles, well known for their roles in the metabolism of complex lipids and reactive ionic species. In the past 10 years, peroxisomes have also been cast as central regulators of immunity. Lipid metabolites of peroxisomes, such as polyunsaturated fatty acids (PUFAs), are precursors for important immune mediators, including leukotrienes (LTs) and resolvins. Peroxisomal redox metabolism modulates cellular immune signaling such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. Additionally, peroxisomal β-oxidation and ether lipid synthesis control the development and aspects of the activation of both innate and adaptive immune cells. Finally, peroxisome number and metabolic activity have been linked to inflammatory diseases. These discoveries have opened avenues of investigation aimed at targeting peroxisomes for therapeutic intervention in immune disorders, inflammation, and cancer.
Collapse
Affiliation(s)
- Francesca Di Cara
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada.
| | - Stéphane Savary
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Werner J Kovacs
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology in Zurich (ETH Zürich), Zurich, Switzerland
| | - Peter Kim
- Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | | |
Collapse
|
8
|
Pei J, Pan X, Wei G, Hua Y. Research progress of glutathione peroxidase family (GPX) in redoxidation. Front Pharmacol 2023; 14:1147414. [PMID: 36937839 PMCID: PMC10017475 DOI: 10.3389/fphar.2023.1147414] [Citation(s) in RCA: 201] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Maintaining the balance of a cell's redox function is key to determining cell fate. In the critical redox system of mammalian cells, glutathione peroxidase (GPX) is the most prominent family of proteins with a multifaceted function that affects almost all cellular processes. A total of eight members of the GPX family are currently found, namely GPX1-GPX8. They have long been used as antioxidant enzymes to play an important role in combating oxidative stress and maintaining redox balance. However, each member of the GPX family has a different mechanism of action and site of action in maintaining redox balance. GPX1-4 and GPX6 use selenocysteine as the active center to catalyze the reduction of H2O2 or organic hydroperoxides to water or corresponding alcohols, thereby reducing their toxicity and maintaining redox balance. In addition to reducing H2O2 and small molecule hydroperoxides, GPX4 is also capable of reducing complex lipid compounds. It is the only enzyme in the GPX family that directly reduces and destroys lipid hydroperoxides. The active sites of GPX5 and GPX7-GPX8 do not contain selenium cysteine (Secys), but instead, have cysteine residues (Cys) as their active sites. GPX5 is mainly expressed in epididymal tissue and plays a role in protecting sperm from oxidative stress. Both enzymes, GPX7 and GPX8, are located in the endoplasmic reticulum and are necessary enzymes involved in the oxidative folding of endoplasmic reticulum proteins, and GPX8 also plays an important role in the regulation of Ca2+ in the endoplasmic reticulum. With an in-depth understanding of the role of the GPX family members in health and disease development, redox balance has become the functional core of GPX family, in order to further clarify the expression and regulatory mechanism of each member in the redox process, we reviewed GPX family members separately.
Collapse
Affiliation(s)
- Jun Pei
- Department of Urology, Children’s Hospital Affiliated to Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Xingyu Pan
- Department of Pediatric Surgrey, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Guanghui Wei
- Department of Urology, Children’s Hospital Affiliated to Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Yi Hua
- Department of Urology, Children’s Hospital Affiliated to Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- *Correspondence: Yi Hua,
| |
Collapse
|
9
|
Chen L, Ma Q, Zhang G, Lei Y, Wang W, Zhang Y, Li T, Zhong W, Ming Y, Song G. Protective effect and mechanism of loganin and morroniside on acute lung injury and pulmonary fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154030. [PMID: 35279615 DOI: 10.1016/j.phymed.2022.154030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 02/10/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Loganin and morroniside are two iridoid glycosides with anti-inflammatory, antioxidant and anti-tumor effects. Whether they have effect on acute lung injury and pulmonary fibrosis are still unknown. PURPOSE To explore the potential effects of loganin and morroniside against acute lung cancer and pulmonary fibrosis, and the underlying molecular mechanism. STUDY DESIGN AND METHODS Cell and animal models of acute lung injury were established by the induction of LPS. After intervention with loganin and morroniside, the pathological symptom of lung tissue was assessed, pro-inflammatory factors in cells and lung tissues were detected, NF- κB/STAT3 signaling pathway related proteins were detected by western blotting. Mice pulmonary fibrosis model was induced by bleomycin, pathological symptom was assessed by HE and Masson staining. Fibrosis related indicators were detected by qPCR or western blot. CD4+/CD8+ was detected by flow cytometry. RESULTS Loganin and morroniside relieved the pathological symptom of lung tissue in acute lung injury, pro-inflammatory factors such as IL-6, IL-1β, TNF-α mRNA were inhibited. Expression of p-p65 and STAT3 in lung tissues were also downregulated. In addition, loganin and morroniside downregulated the expression of collagen fiber, hydroxyproline and TGF-β1, collagen I and α-SMA mRNA in lung tissues of pulmonary fibrosis model. This study proved that loganin and morroniside have protective effect on acute lung injury and pulmonary fibrosis, and may provide theoretical basis for the development of new clinical drugs.
Collapse
Affiliation(s)
- Lianghua Chen
- Key Laboratory of Fujian Province for physiology and Biochemistry of Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen, Fujian 361006, China
| | - Qiujuan Ma
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Gongye Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yongbin Lei
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Weiwei Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yuqi Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Tingting Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Wei Zhong
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yanlin Ming
- Key Laboratory of Fujian Province for physiology and Biochemistry of Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen, Fujian 361006, China
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
10
|
Cao Y, Zhao Q, Geng Y, Li Y, Huang J, Tian S, Ning P. Interfacial interaction between benzo[a]pyrene and pulmonary surfactant: Adverse effects on lung health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117669. [PMID: 34426389 DOI: 10.1016/j.envpol.2021.117669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/04/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Inhaled polycyclic aromatic hydrocarbons (PAHs) can directly interact with the lung surfactant (PS) lining of alveoli, thereby affecting the normal physiological functions of PS, which is a serious threat to lung health. In spite of the extensive study of benzo[a]pyrene (BaP, a representative of PAHs), its potential biophysical influence on the natural PS is still largely unknown. In this study, the interfacial interaction between PS (extracted from porcine lungs) and BaP is investigated in vitro. The results showed that the surface tension, phase behavior, and interfacial structure of the PS monolayers were obviously altered in the presence of BaP. A solubilization test manifested that PS and its major components (dipalmitoyl phosphatidylcholine, DPPC; bovine serum albumin, BSA) could in turn accelerate the dissolution of BaP, which followed the order: PS > DPPC > BSA, and mixed phospholipids were significantly responsible for the solubilization of BaP by PS. In addition, solubilization of BaP also enhanced the consumption of hydroxyl radicals (·OH) in the simulated lung fluid, which could disturb the balance between oxidation and antioxidation.
Collapse
Affiliation(s)
- Yan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Yingxue Geng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Jianhong Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
11
|
Yuan Q, Basit A, Liang W, Qu R, Luan Y, Ren C, Li A, Xu X, Liu X, Yang C, Kuo A, Pierce R, Zhang L, Turk B, Hu X, Li F, Cui W, Li R, Huang D, Mo L, Sessa WC, Lee PJ, Kluger Y, Su B, Tang W, He J, Wu D. Pazopanib ameliorates acute lung injuries via inhibition of MAP3K2 and MAP3K3. Sci Transl Med 2021; 13:13/591/eabc2499. [PMID: 33910977 DOI: 10.1126/scitranslmed.abc2499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/30/2020] [Accepted: 01/04/2021] [Indexed: 11/02/2022]
Abstract
Acute lung injury (ALI) causes high mortality and lacks any pharmacological intervention. Here, we found that pazopanib ameliorated ALI manifestations and reduced mortality in mouse ALI models and reduced edema in human lung transplantation recipients. Pazopanib inhibits mitogen-activated protein kinase kinase kinase 2 (MAP3K2)- and MAP3K3-mediated phosphorylation of NADPH oxidase 2 subunit p47phox at Ser208 to increase reactive oxygen species (ROS) formation in myeloid cells. Genetic inactivation of MAP3K2 and MAP3K3 in myeloid cells or hematopoietic mutation of p47phox Ser208 to alanine attenuated ALI manifestations and abrogates anti-ALI effects of pazopanib. This myeloid MAP3K2/MAP3K3-p47phox pathway acted via paracrine H2O2 to enhance pulmonary vasculature integrity and promote lung epithelial cell survival and proliferation, leading to increased pulmonary barrier function and resistance to ALI. Thus, pazopanib has the potential to be effective for treating ALI.
Collapse
Affiliation(s)
- Qianying Yuan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Abdul Basit
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Wenhua Liang
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Rihao Qu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yi Luan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chunguang Ren
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ao Li
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xin Xu
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Xiaoqing Liu
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Chun Yang
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Andrew Kuo
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Richard Pierce
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Longbo Zhang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Benjamin Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xin Hu
- Department of Biostatistics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fangyong Li
- Department of Biostatistics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Weixue Cui
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Run Li
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Danxia Huang
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Lili Mo
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - William C Sessa
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Patty J Lee
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Bing Su
- Shanghai Institute of Immunology, Shanghai Jiaotong University, Shanghai 200025, China.
| | - Wenwen Tang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jianxing He
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China.
| | - Dianqing Wu
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
12
|
Jessop ZM, García-Gareta E, Zhang Y, Jovic TH, Badiei N, Sharma V, Whitaker IS, Kang N. Role of hydrogen peroxide in intra-operative wound preparation based on an in vitro fibrin clot degradation model. JPRAS Open 2021; 29:113-122. [PMID: 34195332 PMCID: PMC8237242 DOI: 10.1016/j.jpra.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Three per cent hydrogen peroxide (H2O2) is widely used to irrigate acute and chronic wounds in the surgical setting and clinical experience tells us that it is more effective at removing dried-on blood than normal saline alone. We hypothesise that this is due to the effect of H2O2 on fibrin clot architecture via fibrinolysis. We investigate the mechanisms and discuss the clinical implications using an in vitro model. Coagulation assays with normal saline (NaCl), 1% and 3% concentrations of H2O2 were performed to determine the effect on fibrin clot formation. These effects were confirmed by spectrophotometry. The effects of 1%, 3% and 10% H2O2 on the macroscopic and microscopic features of fibrin clots were assessed at set time intervals and compared to a NaCl control. Quantitative analysis of fibrin networks was undertaken to determine the fibre length, diameter, branch point density and pore size. Fibrin clots immersed in 1%, 3% and 10% H2O2 demonstrated volume losses of 0.09-0.25mm3/min, whereas those immersed in the normal saline gained in volume by 0.02±0.13 mm3/min. Quantitative analysis showed that H2O2 affects the structure of the fibrin clot in a concentration-dependent manner, with the increase in fibre length, diameter and consequently pore sizes. Our results support our hypothesis that the efficacy of H2O2 in cleaning blood from wounds is enhanced by its effects on fibrin clot architecture in a concentration- and time-dependent manner. The observed changes in fibre size and branch point density suggest that H2O2 is acting on the quaternary structure of the fibrin clot, most likely via its effect on cross-linking of the fibrin monomers and may therefore be of benefit for the removal of other fibrin-dependent structures such as wound slough.
Collapse
Affiliation(s)
- Zita M Jessop
- Reconstructive Surgery & Regenerative Medicine Research Group (ReconRegen), Institute of Life Science, Swansea University, United Kingdom.,The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom.,Regenerative Biomaterials Group, RAFT Institute, Mount Vernon Hospital, Northwood, United Kingdom
| | - Elena García-Gareta
- Regenerative Biomaterials Group, RAFT Institute, Mount Vernon Hospital, Northwood, United Kingdom
| | - Yadan Zhang
- Reconstructive Surgery & Regenerative Medicine Research Group (ReconRegen), Institute of Life Science, Swansea University, United Kingdom
| | - Thomas H Jovic
- Reconstructive Surgery & Regenerative Medicine Research Group (ReconRegen), Institute of Life Science, Swansea University, United Kingdom.,The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Nafiseh Badiei
- Centre for NanoHealth, Swansea University, United Kingdom
| | - Vaibhav Sharma
- Regenerative Biomaterials Group, RAFT Institute, Mount Vernon Hospital, Northwood, United Kingdom
| | - Iain S Whitaker
- Reconstructive Surgery & Regenerative Medicine Research Group (ReconRegen), Institute of Life Science, Swansea University, United Kingdom.,The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Norbert Kang
- Regenerative Biomaterials Group, RAFT Institute, Mount Vernon Hospital, Northwood, United Kingdom.,Department of Plastic and Reconstructive Surgery, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
13
|
Husain M, Becker EJ, Bone NB, Schmitt A, Pittet JF, Zmijewski JW. NOX2 decoy peptides disrupt trauma-mediated neutrophil immunosuppression and protect against lethal peritonitis. Redox Biol 2020; 36:101651. [PMID: 32771683 PMCID: PMC7415417 DOI: 10.1016/j.redox.2020.101651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/29/2022] Open
Abstract
Trauma and sepsis are frequent causes of immunosuppression and risk of secondary bacterial infections and mortality among critically ill patients. Reduced activity of neutrophil NADPH oxidase 2 (NOX2) and impaired bacterial killing are among the major indices of immunosuppression. We hypothesize that NOX2-decoy peptides disrupt the inhibition of neutrophil NOX2 by plasma of patients with severe trauma and immunosuppression, thereby preserving the neutrophil respiratory burst that is a central antimicrobial mechanism. We demonstrate that plasma from trauma/hemorrhage (T/H) patients, but not healthy donors (HD), significantly reduced the activity of neutrophil NOX2 and impaired bacterial killing. The inhibitory action of plasma was associated with an increase in bacterial infections among trauma survivors. High Mobility Group Box 1 (HMGB1) is a mediator of lethality in trauma and sepsis and our mechanistic studies revealed that disulfide and oxidized forms of HMGB1 bind to the gp91phox subunit of NOX2, and thus decrease the neutrophil respiratory burst and bacterial killing. NOX2 decoy Anti-Immunosuppression (Ai) Peptides 1 and 3 effectively disrupted the immunosuppressive action of T/H plasma. HMGB1 selectively binds to Ai-Peptide 3, supporting the possibility for direct interaction between HMGB1 and the third external loop of gp91phox. In vivo, Ai-Peptides improved survival of mice subjected to lethal peritonitis. Taken together, plasma-dependent inhibition of neutrophil NOX2 appeared to be a suitable indicator of immunosuppression in patients with severe trauma. Given that gp91phox decoys protected the neutrophil respiratory burst, selected Ai-Peptides have therapeutic potential to reduce bacterial infections and end-organ injury associated with sepsis/trauma-induced immunosuppression. Plasma-induced neutrophil dysfunction is linked to immunosuppression in trauma. HMGB1 are among relevant mediators of neutrophil immunosuppression. NOX2 decoy peptides improved survival of mice with intraperitoneal infections.
Collapse
Affiliation(s)
- Maroof Husain
- Department of Medicine, Birmingham, AL, 35294-0012, USA
| | | | | | - Amy Schmitt
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294-0012, USA
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294-0012, USA
| | | |
Collapse
|
14
|
Janciauskiene S. The Beneficial Effects of Antioxidants in Health And Diseases. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2020; 7:182-202. [PMID: 32558487 DOI: 10.15326/jcopdf.7.3.2019.0152] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reactive oxygen and nitrogen species can be generated endogenously (by mitochondria, peroxisomes, and phagocytic cells) and exogenously (by pollutions, UV exposure, xenobiotic compounds, and cigarette smoke). The negative effects of free radicals are neutralized by antioxidant molecules synthesized in our body, like glutathione, uric acid, or ubiquinone, and those obtained from the diet, such as vitamins C, E, and A, and flavonoids. Different microelements like selenium and zinc have no antioxidant action themselves but are required for the activity of many antioxidant enzymes. Furthermore, circulating blood proteins are suggested to account for more than 50% of the combined antioxidant effects of urate, ascorbate, and vitamin E. Antioxidants together constitute a mutually supportive defense against reactive oxygen and nitrogen species to maintain the oxidant/antioxidant balance. This article outlines the oxidative and anti-oxidative molecules involved in the pathogenesis of chronic obstructive lung disease. The role of albumin and alpha-1 antitrypsin in antioxidant defense is also discussed.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, Member of German Centre for Lung Research (DZL), Hannover, Germany; Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
15
|
Peroxisomal Hydrogen Peroxide Metabolism and Signaling in Health and Disease. Int J Mol Sci 2019; 20:ijms20153673. [PMID: 31357514 PMCID: PMC6695606 DOI: 10.3390/ijms20153673] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/29/2022] Open
Abstract
Hydrogen peroxide (H2O2), a non-radical reactive oxygen species generated during many (patho)physiological conditions, is currently universally recognized as an important mediator of redox-regulated processes. Depending on its spatiotemporal accumulation profile, this molecule may act as a signaling messenger or cause oxidative damage. The focus of this review is to comprehensively evaluate the evidence that peroxisomes, organelles best known for their role in cellular lipid metabolism, also serve as hubs in the H2O2 signaling network. We first briefly introduce the basic concepts of how H2O2 can drive cellular signaling events. Next, we outline the peroxisomal enzyme systems involved in H2O2 metabolism in mammals and reflect on how this oxidant can permeate across the organellar membrane. In addition, we provide an up-to-date overview of molecular targets and biological processes that can be affected by changes in peroxisomal H2O2 metabolism. Where possible, emphasis is placed on the molecular mechanisms and factors involved. From the data presented, it is clear that there are still numerous gaps in our knowledge. Therefore, gaining more insight into how peroxisomes are integrated in the cellular H2O2 signaling network is of key importance to unravel the precise role of peroxisomal H2O2 production and scavenging in normal and pathological conditions.
Collapse
|
16
|
Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, Hohensinner P, Basílio J, Petzelbauer P, Assinger A, Schmid JA. Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Front Immunol 2019; 10:85. [PMID: 30778349 PMCID: PMC6369217 DOI: 10.3389/fimmu.2019.00085] [Citation(s) in RCA: 427] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor NF-κB is a central mediator of inflammation with multiple links to thrombotic processes. In this review, we focus on the role of NF-κB signaling in cell types within the vasculature and the circulation that are involved in thrombo-inflammatory processes. All these cells express NF-κB, which mediates important functions in cellular interactions, cell survival and differentiation, as well as expression of cytokines, chemokines, and coagulation factors. Even platelets, as anucleated cells, contain NF-κB family members and their corresponding signaling molecules, which are involved in platelet activation, as well as secondary feedback circuits. The response of endothelial cells to inflammation and NF-κB activation is characterized by the induction of adhesion molecules promoting binding and transmigration of leukocytes, while simultaneously increasing their thrombogenic potential. Paracrine signaling from endothelial cells activates NF-κB in vascular smooth muscle cells and causes a phenotypic switch to a “synthetic” state associated with a decrease in contractile proteins. Monocytes react to inflammatory situations with enforced expression of tissue factor and after differentiation to macrophages with altered polarization. Neutrophils respond with an extension of their life span—and upon full activation they can expel their DNA thereby forming so-called neutrophil extracellular traps (NETs), which exert antibacterial functions, but also induce a strong coagulatory response. This may cause formation of microthrombi that are important for the immobilization of pathogens, a process designated as immunothrombosis. However, deregulation of the complex cellular links between inflammation and thrombosis by unrestrained NET formation or the loss of the endothelial layer due to mechanical rupture or erosion can result in rapid activation and aggregation of platelets and the manifestation of thrombo-inflammatory diseases. Sepsis is an important example of such a disorder caused by a dysregulated host response to infection finally leading to severe coagulopathies. NF-κB is critically involved in these pathophysiological processes as it induces both inflammatory and thrombotic responses.
Collapse
Affiliation(s)
- Marion Mussbacher
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Manuel Salzmann
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria
| | - Bastian Hoesel
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | | | - Hannes Datler
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Philipp Hohensinner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - José Basílio
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelial Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Johannes A Schmid
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Busquets-Cortés C, Capó X, Argelich E, Ferrer MD, Mateos D, Bouzas C, Abbate M, Tur JA, Sureda A, Pons A. Effects of Millimolar Steady-State Hydrogen Peroxide Exposure on Inflammatory and Redox Gene Expression in Immune Cells from Humans with Metabolic Syndrome. Nutrients 2018; 10:nu10121920. [PMID: 30563042 PMCID: PMC6315942 DOI: 10.3390/nu10121920] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/28/2018] [Accepted: 12/01/2018] [Indexed: 12/19/2022] Open
Abstract
Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) can exert opposed effects depending on the dosage: low levels can be involved in signalling and adaptive processes, while higher levels can exert deleterious effects in cells and tissues. Our aim was to emulate a chronic ex vivo oxidative stress situation through a 2 h exposure of immune cells to sustained H2O2 produced by glucose oxidase (GOX), at high or low production rate, in order to determine dissimilar responses of peripheral blood mononuclear cells (PBMCs) and neutrophils on ROS and cytokine production, and mitochondrial dynamics-related proteins, pro/anti-inflammatory and anti-oxidant gene expression. Immune cells were obtained from subjects with metabolic syndrome. H2O2 at low concentrations can trigger a transient anti-inflammatory adiponectin secretion and reduced gene expression of toll-like receptors (TLRs) in PBMCs but may act as a stimulator of proinflammatory genes (IL6, IL8) and mitochondrial dynamics-related proteins (Mtf2, NRF2, Tfam). H2O2 at a high concentration enhances the expression of pro-inflammatory genes (TLR2 and IL1β) and diminishes the expression of mitochondrial dynamics-related proteins (Mtf1, Tfam) and antioxidant enzymes (Cu/Zn SOD) in PBMCs. The GOX treatments produce dissimilar changes in immune cells: Neutrophils were more resistant to H2O2 effects and exhibited a more constant response in terms of gene expression than PBMCs. We observe emerging roles of H2O2 in mitochondrial dynamics and redox and inflammation processes in immune cells.
Collapse
Affiliation(s)
- Carla Busquets-Cortés
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Xavier Capó
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Emma Argelich
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Miguel D Ferrer
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - David Mateos
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Cristina Bouzas
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Manuela Abbate
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Josep A Tur
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
- CIBER CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
- CIBER CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Antoni Pons
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
- CIBER CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| |
Collapse
|
18
|
Huber D, Tegl G, Mensah A, Beer B, Baumann M, Borth N, Sygmund C, Ludwig R, Guebitz GM. A Dual-Enzyme Hydrogen Peroxide Generation Machinery in Hydrogels Supports Antimicrobial Wound Treatment. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15307-15316. [PMID: 28429928 DOI: 10.1021/acsami.7b03296] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The aging population and accompanying diseases like diabetes resulted in an increased occurrence of chronic wounds. Topical wound treatment with antimicrobial agents to inhibit bacterial invasion and promote wound healing is often associated with difficulties. Here, we investigated the potential of succinyl chitosan (SC)-carboxymethyl cellulose (CMC) hydrogels which constantly release clinically relevant levels of hydrogen peroxide (H2O2). CMC hydrogel matrix was in situ converted by limited hydrolysis by a cellulase into substrates accepted by cellobiose dehydrogenase (CDH) for continuous production of H2O2 (30 μM over 24 h). This dual-enzyme catalyzed in situ H2O2 generation system proved its antimicrobial activity in a zone of inhibition (ZOI) assay best simulating the application as wound dressing and was found to be biocompatible toward mouse fibroblasts (95% viability). The hydrogels were thoroughly characterized regarding their rheological properties indicating fast gel formation (<3 min) and moderate cross-linking (1.5% strain, G' = 10 Pa). Cooling (fridge conditions) was found to be the simple on/off switch of the enzymatic machinery which is of great importance regarding storage and applicability of the bioactive hydrogel. This robust and bioactive antimicrobial hydrogel system overcomes dosing issues of common topical wound treatments and constitutes a promising wound healing approach for the future.
Collapse
Affiliation(s)
- Daniela Huber
- Institute of Environmental Biotechnology, BOKU-University of Natural Resources and Life Sciences , Konrad Lorenz Straße 20, 3430 Tulln an der Donau, Austria
| | - Gregor Tegl
- Institute of Environmental Biotechnology, BOKU-University of Natural Resources and Life Sciences , Konrad Lorenz Straße 20, 3430 Tulln an der Donau, Austria
| | - Anna Mensah
- Institute of Environmental Biotechnology, BOKU-University of Natural Resources and Life Sciences , Konrad Lorenz Straße 20, 3430 Tulln an der Donau, Austria
| | - Bianca Beer
- Institute of Environmental Biotechnology, BOKU-University of Natural Resources and Life Sciences , Konrad Lorenz Straße 20, 3430 Tulln an der Donau, Austria
| | - Martina Baumann
- ACIB-Austrian Centre of Industrial Biotechnology , Konrad Lorenz Straße 20, 3430 Tulln, Austria
| | - Nicole Borth
- ACIB-Austrian Centre of Industrial Biotechnology , Konrad Lorenz Straße 20, 3430 Tulln, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU) , Muthgasse 18, 1190 Vienna, Austria
| | - Christoph Sygmund
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences , Muthgasse 18, 1190 Vienna, Austria
| | - Roland Ludwig
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences , Muthgasse 18, 1190 Vienna, Austria
| | - Georg M Guebitz
- Institute of Environmental Biotechnology, BOKU-University of Natural Resources and Life Sciences , Konrad Lorenz Straße 20, 3430 Tulln an der Donau, Austria
- ACIB-Austrian Centre of Industrial Biotechnology , Konrad Lorenz Straße 20, 3430 Tulln, Austria
| |
Collapse
|
19
|
Park DW, Zmijewski JW. Mitochondrial Dysfunction and Immune Cell Metabolism in Sepsis. Infect Chemother 2017; 49:10-21. [PMID: 28378540 PMCID: PMC5382045 DOI: 10.3947/ic.2017.49.1.10] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Indexed: 12/23/2022] Open
Abstract
Sepsis is a life threatening condition mediated by systemic infection, but also triggered by hemorrhage and trauma. These are significant causes of organ injury implicated in morbidity and mortality, as well as post-sepsis complications associated with dysfunction of innate and adaptive immunity. The role of cellular bioenergetics and loss of metabolic plasticity of immune cells is increasingly emerging in the pathogenesis of sepsis. This review describes mitochondrial biology and metabolic alterations of immune cells due to sepsis, as well as indicates plausible therapeutic opportunities.
Collapse
Affiliation(s)
- Dae Won Park
- Division of Infectious Diseases, Korea University Ansan Hospital, Ansan, Korea
| | - Jaroslaw W Zmijewski
- Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
20
|
Reyes-Quiroz ME, Alba G, Sáenz J, Geniz I, Jiménez J, Martín-Nieto J, Santa-María C, Sobrino F. Platelet-activating factor and hydrogen peroxide exert a dual modulatory effect on the transcription of LXRα and its target genes in human neutrophils. Int Immunopharmacol 2016; 38:357-66. [DOI: 10.1016/j.intimp.2016.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 11/25/2022]
|
21
|
Abstract
SIGNIFICANCE Peroxisomes are organelles present in most eukaryotic cells. The organs with the highest density of peroxisomes are the liver and kidneys. Peroxisomes possess more than fifty enzymes and fulfill a multitude of biological tasks. They actively participate in apoptosis, innate immunity, and inflammation. In recent years, a considerable amount of evidence has been collected to support the involvement of peroxisomes in the pathogenesis of kidney injury. RECENT ADVANCES The nature of the two most important peroxisomal tasks, beta-oxidation of fatty acids and hydrogen peroxide turnover, functionally relates peroxisomes to mitochondria. Further support for their communication and cooperation is furnished by the evidence that both organelles share the components of their division machinery. Until recently, the majority of studies on the molecular mechanisms of kidney injury focused primarily on mitochondria and neglected peroxisomes. CRITICAL ISSUES The aim of this concise review is to introduce the reader to the field of peroxisome biology and to provide an overview of the evidence about the contribution of peroxisomes to the development and progression of kidney injury. The topics of renal ischemia-reperfusion injury, endotoxin-induced kidney injury, diabetic nephropathy, and tubulointerstitial fibrosis, as well as the potential therapeutic implications of peroxisome activation, are addressed in this review. FUTURE DIRECTIONS Despite recent progress, further studies are needed to elucidate the molecular mechanisms induced by dysfunctional peroxisomes and the role of the dysregulated mitochondria-peroxisome axis in the pathogenesis of renal injury. Antioxid. Redox Signal. 25, 217-231.
Collapse
Affiliation(s)
- Radovan Vasko
- Department of Nephrology and Rheumatology, University Medical Center Göttingen , Göttingen, Germany
| |
Collapse
|
22
|
Nandi A, Bishayi B. Intracellularly survived Staphylococcus aureus after phagocytosis are more virulent in inducing cytotoxicity in fresh murine peritoneal macrophages utilizing TLR-2 as a possible target. Microb Pathog 2016; 97:131-47. [DOI: 10.1016/j.micpath.2016.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 01/27/2023]
|
23
|
Kong G, Huang X, Wang L, Li Y, Sun T, Han S, Zhu W, Ma M, Xu H, Li J, Zhang X, Liu X, Wang X. Astilbin alleviates LPS-induced ARDS by suppressing MAPK signaling pathway and protecting pulmonary endothelial glycocalyx. Int Immunopharmacol 2016; 36:51-58. [PMID: 27111514 DOI: 10.1016/j.intimp.2016.03.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 01/19/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating disorder that is characterized by increased vascular endothelial permeability and inflammation. Unfortunately, no effective treatment beyond supportive care is available for ARDS. Astilbin, a flavonoid compound isolated from Rhizoma Smilacis Glabrae, has been used for anti-hepatic, anti-arthritic, and anti-renal injury treatments. This study examined the effects of Astilbin on pulmonary inflammatory activation and endothelial cell barrier dysfunction caused by Gram-negative bacterial endotoxin lipopolysaccharide (LPS). Endothelial cells from human umbilical veins or male Kunming mice were pretreated with Astilbin 24h before LPS stimulation. Results showed that Astilbin significantly attenuated the pulmonary histopathological changes and neutrophil infiltration 6h after the LPS challenge. Astilbin suppressed the activities of myeloperoxidase and malondialdehyde, as well as the expression of tumor necrosis factor-α and interleukin-6 in vivo and in vitro. As indices of pulmonary edema, lung wet-to-dry weight ratios, were markedly decreased by Astilbin pretreatment. Western blot analysis also showed that Astilbin inhibited LPS-induced activation of mitogen-activated protein kinase (MAPK) pathways in lung tissues. Furthermore, Astilbin significantly inhibited the activity of heparanase and reduced the production of heparan sulfate in the blood serum as determined by ELISA. These findings indicated that Astilbin can alleviate LPS-induced ARDS, which potentially contributed to the suppression of MAPK pathway activation and the degradation of endothelial glycocalyx.
Collapse
Affiliation(s)
- Guiqing Kong
- Department of Intensive Care Unit Affiliated Hospital of Binzhou Medical University, Binzhou 256603, Shandong Province, China; Department of Biotechnology, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Xiao Huang
- Department of Intensive Care Unit Affiliated Hospital of Binzhou Medical University, Binzhou 256603, Shandong Province, China
| | - Lipeng Wang
- Department of Intensive Care Unit Affiliated Hospital of Binzhou Medical University, Binzhou 256603, Shandong Province, China
| | - Yan Li
- Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou 256603, Shandong Province, China
| | - Ting Sun
- Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou 256603, Shandong Province, China
| | - Shasha Han
- Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou 256603, Shandong Province, China
| | - Weiwei Zhu
- Department of Intensive Care Unit Affiliated Hospital of Binzhou Medical University, Binzhou 256603, Shandong Province, China
| | - Mingming Ma
- Department of Intensive Care Unit, Hulunbeier People's Hospital, Hulunbeier 021000, Inner Mongolia Autonomous Region, China
| | - Haixiao Xu
- Department of Intensive Care Unit Affiliated Hospital of Binzhou Medical University, Binzhou 256603, Shandong Province, China
| | - Jiankui Li
- Department of Intensive Care Unit Affiliated Hospital of Binzhou Medical University, Binzhou 256603, Shandong Province, China
| | - Xiaohua Zhang
- Department of Biotechnology, Binzhou Medical University, Yantai 264003, Shandong Province, China.
| | - Xiangyong Liu
- Department of Cell Biology, Binzhou Medical University, Yantai 264003, Shandong Province, China.
| | - Xiaozhi Wang
- Department of Intensive Care Unit Affiliated Hospital of Binzhou Medical University, Binzhou 256603, Shandong Province, China.
| |
Collapse
|
24
|
Zientara-Rytter K, Subramani S. Autophagic degradation of peroxisomes in mammals. Biochem Soc Trans 2016; 44:431-40. [PMID: 27068951 PMCID: PMC4958620 DOI: 10.1042/bst20150268] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 12/21/2022]
Abstract
Peroxisomes are essential organelles required for proper cell function in all eukaryotic organisms. They participate in a wide range of cellular processes including the metabolism of lipids and generation, as well as detoxification, of hydrogen peroxide (H2O2). Therefore, peroxisome homoeostasis, manifested by the precise and efficient control of peroxisome number and functionality, must be tightly regulated in response to environmental changes. Due to the existence of many physiological disorders and diseases associated with peroxisome homoeostasis imbalance, the dynamics of peroxisomes have been widely examined. The increasing volume of reports demonstrating significant involvement of the autophagy machinery in peroxisome removal leads us to summarize current knowledge of peroxisome degradation in mammalian cells. In this review we present current models of peroxisome degradation. We particularly focus on pexophagy-the selective clearance of peroxisomes through autophagy. We also critically discuss concepts of peroxisome recognition for pexophagy, including signalling and selectivity factors. Finally, we present examples of the pathological effects of pexophagy dysfunction and suggest promising future directions.
Collapse
Affiliation(s)
- Katarzyna Zientara-Rytter
- Section of Molecular Biology, Division of Biological Sciences, University California, San Diego, CA 92093-0322, U.S.A
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University California, San Diego, CA 92093-0322, U.S.A.
| |
Collapse
|
25
|
Liu Z, Bone N, Jiang S, Park DW, Tadie JM, Deshane J, Rodriguez CA, Pittet JF, Abraham E, Zmijewski JW. AMP-Activated Protein Kinase and Glycogen Synthase Kinase 3β Modulate the Severity of Sepsis-Induced Lung Injury. Mol Med 2016; 21:937-950. [PMID: 26650187 PMCID: PMC4818252 DOI: 10.2119/molmed.2015.00198] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/27/2015] [Indexed: 12/29/2022] Open
Abstract
Alterations in metabolic and bioenergetic homeostasis contribute to sepsis-mediated organ injury. However, how AMP-activated protein kinase (AMPK), a major sensor and regulator of energy expenditure and production, affects development of organ injury and loss of innate capacity during polymicrobial sepsis remains unclear. In the present experiments, we found that cross-talk between the AMPK and GSK3β signaling pathways controls chemotaxis and the ability of neutrophils and macrophages to kill bacteria ex vivo. In mice with polymicrobial abdominal sepsis or more severe sepsis induced by the combination of hemorrhage and intraabdominal infection, administration of the AMPK activator metformin or the GSK3β inhibitor SB216763 reduced the severity of acute lung injury (ALI). Improved survival in metformin-treated septic mice was correlated with preservation of mitochondrial complex V (ATP synthase) function and increased amounts of ETC complex III and IV. Although immunosuppression is a consequence of sepsis, metformin effectively increased innate immune capacity to eradicate P. aeruginosa in the lungs of septic mice. We also found that AMPK activation diminished accumulation of the immunosuppressive transcriptional factor HIF-1α as well as the development of endotoxin tolerance in LPS-treated macrophages. Furthermore, AMPK-dependent preservation of mitochondrial membrane potential also prevented LPS-mediated dysfunction of neutrophil chemotaxis. These results indicate that AMPK activation reduces the severity of polymicrobial sepsis-induced lung injury and prevents the development of sepsis-associated immunosuppression.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nathaniel Bone
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shaoning Jiang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Dae Won Park
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jean-Marc Tadie
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jessy Deshane
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Cilina Ann Rodriguez
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jean-Francois Pittet
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Edward Abraham
- Office of the Dean, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Jaroslaw W Zmijewski
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
26
|
Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, Holmgren A, Arnér ESJ. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications. Physiol Rev 2016; 96:307-64. [PMID: 26681794 DOI: 10.1152/physrev.00010.2014] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways.
Collapse
Affiliation(s)
- Xin Gen Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jian-Hong Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wen-Hsing Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yongping Bao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ye-Shih Ho
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Amit R Reddi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Arne Holmgren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Kim HJ, Kim CH, Kim MJ, Ryu JH, Seong SY, Kim S, Lim SJ, Holtzman MJ, Yoon JH. The Induction of Pattern-Recognition Receptor Expression against Influenza A Virus through Duox2-Derived Reactive Oxygen Species in Nasal Mucosa. Am J Respir Cell Mol Biol 2015; 53:525-35. [PMID: 25751630 DOI: 10.1165/rcmb.2014-0334oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We studied the relative roles of Duox2-derived reactive oxygen species (ROS) in host defense against influenza A virus (IAV) infection in normal human nasal epithelial cells and mouse nasal mucosa. We found that Duox2 primarily generated ROS rapidly after IAV infection in normal human nasal epithelial cells and that knockdown of Duox2 aggravated IAV infection. In addition, Duox2-derived ROS enhancement significantly suppressed IAV infection in nasal epithelium. In particular, Duox2-derived ROS were required for the induction of retinoic acid-inducible gene (RIG)-I and melanoma differentiation-associated protein 5 (MDA5) transcription. After intranasal IAV inoculation into mice, viral infection was significantly aggravated from 3 days postinoculation (dpi) in the nasal mucosa, and the IAV viral titer was highest at 7 dpi. Both RIG-I and MDA5 messenger RNA levels increased dominantly in mouse nasal mucosa from 3 dpi; consistent with this, RIG-I and MDA5 proteins were also induced after IAV infection. RIG-I and MDA5 messenger RNA levels were induced to a lower extent in the nasal mucosa of the mice that were inoculated with Duox2 short hairpin RNA, and the IAV viral titer was significantly higher in nasal lavage. Taken together, Duox2-derived ROS are necessary for the innate immune response and trigger the induction of RIG-I and MDA5 to resist IAV infection in human nasal epithelium and mouse nasal mucosa.
Collapse
Affiliation(s)
- Hyun Jik Kim
- 1 Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Korea.,2 The Airway Mucus Institute
| | - Chang-Hoon Kim
- 3 Department of Otorhinolaryngology.,2 The Airway Mucus Institute
| | - Min-Ji Kim
- 4 Research Center for Natural Human Defense System, Yonsei University College of Medicine, Seoul, Korea
| | - Ji-Hwan Ryu
- 4 Research Center for Natural Human Defense System, Yonsei University College of Medicine, Seoul, Korea
| | | | - Sujin Kim
- 4 Research Center for Natural Human Defense System, Yonsei University College of Medicine, Seoul, Korea
| | - Su Jin Lim
- 1 Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Korea
| | - Michael J Holtzman
- 5 Department of Medicine, Drug Discovery Program, Pulmonary and Critical Care Medicine, and.,6 Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Joo-Heon Yoon
- 3 Department of Otorhinolaryngology.,2 The Airway Mucus Institute.,7 BK 21 Project for Medical Science, and.,4 Research Center for Natural Human Defense System, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
LU HUIXIA, WU QI, YANG HUIJUN. DUOX2 promotes the elimination of the Klebsiella pneumoniae strain K5 from T24 cells through the reactive oxygen species pathway. Int J Mol Med 2015; 36:551-8. [DOI: 10.3892/ijmm.2015.2234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/25/2015] [Indexed: 11/06/2022] Open
|
29
|
Aminotriazole alleviates acetaminophen poisoning via downregulating P450 2E1 and suppressing inflammation. PLoS One 2015; 10:e0122781. [PMID: 25884831 PMCID: PMC4401561 DOI: 10.1371/journal.pone.0122781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/14/2015] [Indexed: 12/13/2022] Open
Abstract
Aminotriazole (ATZ) is commonly used as a catalase (CAT) inhibitor. We previously found ATZ attenuated oxidative liver injury, but the underlying mechanisms remain unknown. Acetaminophen (APAP) overdose frequently induces life-threatening oxidative hepatitis. In the present study, the potential hepatoprotective effects of ATZ on oxidative liver injury and the underlying mechanisms were further investigated in a mouse model with APAP poisoning. The experimental data indicated that pretreatment with ATZ dose- and time-dependently suppressed the elevation of plasma aminotransferases in APAP exposed mice, these effects were accompanied with alleviated histological abnormality and improved survival rate of APAP-challenged mice. In mice exposed to APAP, ATZ pretreatment decreased the CAT activities, hydrogen peroxide (H2O2) levels, malondialdehyde (MDA) contents, myeloperoxidase (MPO) levels in liver and reduced TNF-α levels in plasma. Pretreatment with ATZ also downregulated APAP-induced cytochrome P450 2E1 (CYP2E1) expression and JNK phosphorylation. In addition, posttreatment with ATZ after APAP challenge decreased the levels of plasma aminotransferases and increased the survival rate of experimental animals. Posttreatment with ATZ had no effects on CYP2E1 expression or JNK phosphorylation, but it significantly decreased the levels of plasma TNF-α. Our data indicated that the LD50 of ATZ in mice was 5367.4 mg/kg body weight, which is much higher than the therapeutic dose of ATZ in the present study. These data suggested that ATZ might be effective and safe in protect mice against APAP-induced hepatotoxicity, the beneficial effects might resulted from downregulation of CYP2E1 and inhibiton of inflammation.
Collapse
|
30
|
Endogeous sulfur dioxide protects against oleic acid-induced acute lung injury in association with inhibition of oxidative stress in rats. J Transl Med 2015; 95:142-56. [PMID: 25581610 DOI: 10.1038/labinvest.2014.147] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 10/04/2014] [Accepted: 10/21/2014] [Indexed: 01/03/2023] Open
Abstract
The role of endogenous sulfur dioxide (SO2), an efficient gasotransmitter maintaining homeostasis, in the development of acute lung injury (ALI) remains unidentified. We aimed to investigate the role of endogenous SO2 in the pathogenesis of ALI. An oleic acid (OA)-induced ALI rat model was established. Endogenous SO2 levels, lung injury, oxidative stress markers and apoptosis were examined. OA-induced ALI rats showed a markedly downregulated endogenous SO2/aspartate aminotransferase 1 (AAT1)/AAT2 pathway and severe lung injury. Chemical colorimetry assays demonstrated upregulated reactive oxygen species generation and downregulated antioxidant capacity in OA-induced ALI rats. However, SO2 increased endogenous SO2 levels, protected against oxidative stress and alleviated ALI. Moreover, compared with OA-treated cells, in human alveolar epithelial cells SO2 downregulated O2(-) and OH(-) generation. In contrast, L-aspartic acid-β-hydroxamate (HDX, Sigma-Aldrich Corporation), an inhibitor of endogenous SO2 generating enzyme, promoted free radical generation, upregulated poly (ADP-ribose) polymerase expression, activated caspase-3, as well as promoted cell apoptosis. Importantly, apoptosis could be inhibited by the free radical scavengers glutathione (GSH) and N-acetyl-L-cysteine (NAC). The results suggest that SO2/AAT1/AAT2 pathway might protect against the development of OA-induced ALI by inhibiting oxidative stress.
Collapse
|
31
|
Park DW, Jiang S, Liu Y, Siegal GP, Inoki K, Abraham E, Zmijewski JW. GSK3β-dependent inhibition of AMPK potentiates activation of neutrophils and macrophages and enhances severity of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2014; 307:L735-45. [PMID: 25239914 PMCID: PMC4233296 DOI: 10.1152/ajplung.00165.2014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although AMP-activated protein kinase (AMPK) is involved in regulating carbohydrate and lipid metabolism, activated AMPK also plays an anti-inflammatory role in many cell populations. However, despite the ability of AMPK activation to diminish the severity of inflammatory responses, previous studies have found that AMPK activity is diminished in LPS-treated neutrophils and also in lungs of mice with LPS-induced acute lung injury (ALI). Since GSK3β participates in regulating AMPK activity, we examined potential roles for GSK3β in modulating LPS-induced activation of neutrophils and macrophages and in influencing severity of ALI. We found that GSK3β-dependent phosphorylation of T479-AMPK was associated with pT172 dephosphorylation and inactivation of AMPK following TLR4 engagement. GSK3β inhibitors BIO (6-bromoindirubin-3'-oxime), SB216763, or siRNA knockdown of GSK3β, but not the PI3K/AKT inhibitor LY294002, prevented Thr172-AMPK dephosphorylation. Exposure to LPS resulted in rapid binding between IKKβ and AMPKα, and phosphorylation of S485-AMPK by IKKβ. These results suggest that IKKβ-dependent phosphorylation of S485-AMPK was an essential step in subsequent phosphorylation and inactivation AMPK by GSK3β. Inhibition of GSK3β activity delayed IκBα degradation and diminished expression of the proinflammatory TNF-α in LPS-stimulated neutrophils and macrophages. In vivo, inhibition of GSK3β decreased the severity of LPS-induced lung injury as assessed by development of pulmonary edema, production of TNF-α and MIP-2, and release of the alarmins HMGB1 and histone 3 in the lungs. These results show that inhibition of AMPK by GSK3β plays an important contributory role in enhancing LPS-induced inflammatory responses, including worsening the severity of ALI.
Collapse
Affiliation(s)
- Dae Won Park
- 1Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; ,2Division of Infectious Diseases, Korea University Ansan Hospital, Ansan, Korea;
| | - Shaoning Jiang
- 1Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
| | - Yanping Liu
- 1Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
| | - Gene P. Siegal
- 3Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama;
| | - Ken Inoki
- 4University of Michigan Medical School, Ann Arbor, Michigan; and
| | - Edward Abraham
- 5Office of the Dean, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | |
Collapse
|
32
|
Yu JL, Zhang XS, Xue X, Wang RM. Patchouli alcohol protects against lipopolysaccharide-induced acute lung injury in mice. J Surg Res 2014; 194:537-543. [PMID: 25519986 DOI: 10.1016/j.jss.2014.10.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/09/2014] [Accepted: 10/17/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Patchouli alcohol (PA), a natural compound isolated from Pogostemon cablin, has been reported to possess anti-inflammatory activity. However, the effects of PA on lipopolysaccharide (LPS)-induced acute lung injury (ALI) have not yet been studied. In the present study, we investigated in vivo the effect of PA on ALI induced by LPS. METHODS Mice were administrated intranasally with LPS to induce lung injury. PA was administrated intraperitoneally 1 h before or after the LPS challenge. RESULTS The results showed that PA significantly decreased the wet-to-dry weight ratio of lungs and the number of total cells, neutrophils, and macrophages in bronchoalveolar lavage fluid at 7 h after the LPS challenge. In addition, PA also suppressed the production of inflammatory cytokines, such as tumor necrosis factor-α, interleukin-1β, and interleukin-6 in bronchoalveolar lavage fluid. Furthermore, Western blot analysis showed that PA inhibited the phosphorylation of IκB-α and p65 nuclear factor κB (NF-κB) induced by LPS. CONCLUSIONS Our results suggest that the anti-inflammatory effects of PA against LPS-induced ALI may be due to its ability to inhibit NF-κB signaling pathways.
Collapse
Affiliation(s)
- Jin-Long Yu
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Xiao-Shi Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xia Xue
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Rong-Mei Wang
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
33
|
|
34
|
Chen HW, Yang TS, Chen MJ, Chang YC, Wang EIC, Ho CL, Lai YJ, Yu CC, Chou JC, Chao LKP, Liao PC. Purification and immunomodulating activity of C-phycocyanin from Spirulina platensis cultured using power plant flue gas. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Ran X, Chao S, Jun-Gang Z, Yun H, Kuan-Bing C, Wen-Jun S. Protective effect of veratric acid on lipopolysaccharide-induced acute lung injury in mice. Eur J Pharmacol 2014; 740:227-32. [PMID: 25034806 DOI: 10.1016/j.ejphar.2014.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/03/2014] [Accepted: 07/04/2014] [Indexed: 12/26/2022]
Abstract
Veratric acid, a simple benzoic acid derived from plants and fruits, has been reported to exhibit antibacterial, anti-inflammatory and other important therapeutic activities. The aim of this study was to detect the effects of veratric acid on LPS-induced acute lung injury and to investigate the effects of veratric acid on NF-κB signaling pathway. Male BALB/c mice were pretreated with dexamethasone or veratric acid 1h before intranasal instillation of LPS. 7h after LPS administration, the myeloperoxidase in lung tissues, lung wet/dry weight ratio and inflammatory cells in the bronchoalveolar lavage fluid (BALF) were determined. The effects of veratric acid on pro-inflammatory cytokines and signal pathways were analyzed by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The results showed that veratric acid inhibited LPS-induced TNF-α, IL-6 and IL-1β production in a dose dependent manner. It was also observed that veratric acid attenuated lung histopathologic changes. The wet/dry weight ratio of lungs and the number of total cells, neutrophils, macrophages in the BALF were all decreased. Furthermore, veratric acid inhibited the phosphorylation of NF-κB p65 and IκB. These results indicate that veratric acid inhibits NF-κB signaling pathways to attenuate inflammatory injury induced by LPS. Veratric acid may be a potential therapeutic reagent for acute lung injury treatment.
Collapse
Affiliation(s)
- Xu Ran
- Department of Thoracic Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning, China
| | - Shang Chao
- Department of Neurobiology, Basic Medical College, China Medical University, Shenyang 110004, Liaoning, China
| | - Zhao Jun-Gang
- Department of Thoracic Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning, China
| | - Han Yun
- Department of Thoracic Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning, China
| | - Chen Kuan-Bing
- Department of Thoracic Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning, China
| | - Shi Wen-Jun
- Department of Thoracic Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
36
|
Peng J, Wei D, Fu Z, Li D, Tan Y, Xu T, Zhou J, Zhang T. Punicalagin Ameliorates Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome in Mice. Inflammation 2014; 38:493-9. [DOI: 10.1007/s10753-014-9955-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Bernard K, Hecker L, Luckhardt TR, Cheng G, Thannickal VJ. NADPH oxidases in lung health and disease. Antioxid Redox Signal 2014; 20:2838-53. [PMID: 24093231 PMCID: PMC4026303 DOI: 10.1089/ars.2013.5608] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE The evolution of the lungs and circulatory systems in vertebrates ensured the availability of molecular oxygen (O2; dioxygen) for aerobic cellular metabolism of internal organs in large animals. O2 serves as the physiologic terminal acceptor of mitochondrial electron transfer and of the NADPH oxidase (Nox) family of oxidoreductases to generate primarily water and reactive oxygen species (ROS), respectively. RECENT ADVANCES The purposeful generation of ROS by Nox family enzymes suggests important roles in normal physiology and adaptation, most notably in host defense against invading pathogens and in cellular signaling. CRITICAL ISSUES However, there is emerging evidence that, in the context of chronic stress and/or aging, Nox enzymes contribute to the pathogenesis of a number of lung diseases. FUTURE DIRECTIONS Here, we review evolving functions of Nox enzymes in normal lung physiology and emerging pathophysiologic roles in lung disease.
Collapse
Affiliation(s)
- Karen Bernard
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | | | | | | | | |
Collapse
|
38
|
Involvement of catalase in the protective benefits of metformin in mice with oxidative liver injury. Chem Biol Interact 2014; 216:34-42. [DOI: 10.1016/j.cbi.2014.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/17/2014] [Accepted: 03/31/2014] [Indexed: 01/09/2023]
|
39
|
Kalyan S, Chandrasekaran V, Quabius ES, Lindhorst TK, Kabelitz D. Neutrophil uptake of nitrogen-bisphosphonates leads to the suppression of human peripheral blood γδ T cells. Cell Mol Life Sci 2014; 71:2335-46. [PMID: 24162933 PMCID: PMC11114071 DOI: 10.1007/s00018-013-1495-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/23/2013] [Accepted: 10/08/2013] [Indexed: 12/13/2022]
Abstract
Nitrogen-bisphosphonates (n-BP), such as zoledronate, are the main class of drugs used for the prevention of osteoporotic fractures and the management of cancer-associated bone disease. However, long-term or high-dose use has been associated with certain adverse drug effects, such as osteonecrosis of the jaw and the loss of peripheral of blood Vγ9Vδ2 T cells, which appear to be linked to drug-induced immune dysfunction. In this report we show that neutrophils present in human peripheral blood readily take up zoledronate, and this phenomenon is associated with the potent immune suppression of human peripheral blood Vγ9Vδ2 T cells. Furthermore, we found this zoledronate-mediated inhibition by neutrophils could be overcome to fully reconstitute Vγ9Vδ2 T cell proliferation by concomitantly targeting neutrophil-derived hydrogen peroxide, serine proteases, and arginase I activity. These findings will enable the development of targeted strategies to mitigate some of the adverse effects of n-BP treatment on immune homeostasis and to improve the success of immunotherapy trials based on harnessing the anticancer potential of peripheral blood γδ T cells in the context of n-BP treatment.
Collapse
Affiliation(s)
- Shirin Kalyan
- Institute of Immunology, Christian-Albrechts University Kiel, Arnold-Heller Strasse 3, Haus 17, 24105 Kiel, Germany
| | | | - Elgar S. Quabius
- Institute of Immunology, Christian-Albrechts University Kiel, Arnold-Heller Strasse 3, Haus 17, 24105 Kiel, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Schleswig–Holstein, Campus Kiel, Kiel, Germany
| | - Thisbe K. Lindhorst
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts University Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University Kiel, Arnold-Heller Strasse 3, Haus 17, 24105 Kiel, Germany
| |
Collapse
|
40
|
Jiang S, Park DW, Tadie JM, Gregoire M, Deshane J, Pittet JF, Abraham E, Zmijewski JW. Human resistin promotes neutrophil proinflammatory activation and neutrophil extracellular trap formation and increases severity of acute lung injury. THE JOURNAL OF IMMUNOLOGY 2014; 192:4795-803. [PMID: 24719460 DOI: 10.4049/jimmunol.1302764] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although resistin was recently found to modulate insulin resistance in preclinical models of type II diabetes and obesity, recent studies also suggested that resistin has proinflammatory properties. We examined whether the human-specific variant of resistin affects neutrophil activation and the severity of LPS-induced acute lung injury. Because human and mouse resistin have distinct patterns of tissue distribution, experiments were performed using humanized resistin mice that exclusively express human resistin (hRTN(+/-)(/-)) but are deficient in mouse resistin. Enhanced production of TNF-α or MIP-2 was found in LPS-treated hRtn(+/-/-) neutrophils compared with control Rtn(-/-/-) neutrophils. Expression of human resistin inhibited the activation of AMP-activated protein kinase, a major sensor and regulator of cellular bioenergetics that also is implicated in inhibiting inflammatory activity of neutrophils and macrophages. In addition to the ability of resistin to sensitize neutrophils to LPS stimulation, human resistin enhanced neutrophil extracellular trap formation. In LPS-induced acute lung injury, humanized resistin mice demonstrated enhanced production of proinflammatory cytokines, more severe pulmonary edema, increased neutrophil extracellular trap formation, and elevated concentration of the alarmins HMGB1 and histone 3 in the lungs. Our results suggest that human resistin may play an important contributory role in enhancing TLR4-induced inflammatory responses, and it may be a target for future therapies aimed at reducing the severity of acute lung injury and other inflammatory situations in which neutrophils play a major role.
Collapse
Affiliation(s)
- Shaoning Jiang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Bekeschus S, Kolata J, Winterbourn C, Kramer A, Turner R, Weltmann KD, Bröker B, Masur K. Hydrogen peroxide: A central player in physical plasma-induced oxidative stress in human blood cells. Free Radic Res 2014; 48:542-9. [DOI: 10.3109/10715762.2014.892937] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
42
|
Nordgren M, Fransen M. Peroxisomal metabolism and oxidative stress. Biochimie 2014; 98:56-62. [DOI: 10.1016/j.biochi.2013.07.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/25/2013] [Indexed: 12/25/2022]
|
43
|
Tang Y, Chen Y, Chu Z, Yan B, Xu L. Protective effect of cryptotanshinone on lipopolysaccharide-induced acute lung injury in mice. Eur J Pharmacol 2014; 723:494-500. [DOI: 10.1016/j.ejphar.2013.10.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 10/08/2013] [Accepted: 10/16/2013] [Indexed: 11/30/2022]
|
44
|
Kim HJ, Kim CH, Ryu JH, Kim MJ, Park CY, Lee JM, Holtzman MJ, Yoon JH. Reactive oxygen species induce antiviral innate immune response through IFN-λ regulation in human nasal epithelial cells. Am J Respir Cell Mol Biol 2013; 49:855-65. [PMID: 23786562 DOI: 10.1165/rcmb.2013-0003oc] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study sought to explore the role of the IFN-related innate immune responses (IFN-β and IFN-λ) and of reactive oxygen species (ROS) after influenza A virus (IAV) infection for antiviral innate immune activity in normal human nasal epithelial (NHNE) cells that are highly exposed to IAV. Passage-2 NHNE cells were inoculated with the IAV WSN/33 for 1, 2, and 3 days to assess the capacity of IFN and the relationship between ROS generation and IFN-λ secretion for controlling IAV infection. Viral titers and IAV mRNA levels increased after infection. In concert with viral titers, we found that the generation of IFNs, such as IFN-β, IFN-λ1, and IFN-λ2/3, was induced after IAV infection until 3 days after infection. The induction of IFN-λ gene expression and protein secretion may be predominant after IAV infection. Similarly, we observed that intracellular ROS generation increased 60 minutes after IAV infection. Viral titers and mRNA levels of IAV were significantly higher in cases with scavenging ROS, in cases with an induced IFN-λ mRNA level, or where the secreted protein concentration of IFN-λ was attenuated after the suppression of ROS generation. Both mitochondrial and dual oxidase (Doux)2-generated ROS were correlated with IAV mRNA and viral titers. The inhibition of mitochondrial ROS generation and the knockdown of Duox2 gene expression highly increased IAV viral titers and decreased IFN-λ secretion. Our findings suggest that the production of ROS may be responsible for IFN-λ secretion to control IAV infection. Both mitochondria and Duox2 are possible sources of ROS generation, which is required to initiate an innate immune response in NHNE cells.
Collapse
Affiliation(s)
- Hyun Jik Kim
- 1 Department of Otolaryngology and Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Republic of South Korea
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Acute lung injury (ALI) and its more severe form of clinical manifestation, the acute respiratory distress syndrome is associated with significant dysfunction in air exchange due to inflammation of the lung parenchyma. Several factors contribute to the inflammatory process, including hypoxia (inadequate oxygen), hyperoxia (higher than normal partial pressure of oxygen), inflammatory mediators (such as cytokines), infections (viral and bacterial), and environmental conditions (such as cigarette smoke or noxious gases). However, studies over the past several decades suggest that oxidants formed in the various cells of the lung including endothelial, alveolar, and epithelial cells as well as lung macrophages and neutrophils in response to the factors mentioned above mediate the pathogenesis of ALI. Oxidants modify cellular proteins, lipids, carbohydrates, and DNA to cause their aberrant function. For example, oxidation of lipids changes membrane permeability. Interestingly, recent studies also suggest that spatially and temporally regulated production of oxidants plays an important role antimicrobial defense and immunomodulatory function (such as transcription factor activation). To counteract the oxidants an arsenal of antioxidants exists in the lung to maintain the redox status, but when overwhelmed tissue injury and exacerbation of inflammation occurs. We present below the current understanding of the pathogenesis of oxidant-mediated ALI.
Collapse
Affiliation(s)
- J Vidya Sarma
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
46
|
Park DW, Jiang S, Tadie JM, Stigler WS, Gao Y, Deshane J, Abraham E, Zmijewski JW. Activation of AMPK enhances neutrophil chemotaxis and bacterial killing. Mol Med 2013; 19:387-98. [PMID: 24091934 DOI: 10.2119/molmed.2013.00065] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/20/2013] [Indexed: 01/04/2023] Open
Abstract
An inability of neutrophils to eliminate invading microorganisms is frequently associated with severe infection and may contribute to the high mortality rates associated with sepsis. In the present studies, we examined whether metformin and other 5' adenosine monophosphate-activated protein kinase (AMPK) activators affect neutrophil motility, phagocytosis and bacterial killing. We found that activation of AMPK enhanced neutrophil chemotaxis in vitro and in vivo, and also counteracted the inhibition of chemotaxis induced by exposure of neutrophils to lipopolysaccharide (LPS). In contrast, small interfering RNA (siRNA)-mediated knockdown of AMPKα1 or blockade of AMPK activation through treatment of neutrophils with the AMPK inhibitor compound C diminished neutrophil chemotaxis. In addition to their effects on chemotaxis, treatment of neutrophils with metformin or aminoimidazole carboxamide ribonucleotide (AICAR) improved phagocytosis and bacterial killing, including more efficient eradication of bacteria in a mouse model of peritonitis-induced sepsis. Immunocytochemistry showed that, in contrast to LPS, metformin or AICAR induced robust actin polymerization and distinct formation of neutrophil leading edges. Although LPS diminished AMPK phosphorylation, metformin or AICAR was able to partially decrease the effects of LPS/toll-like receptor 4 (TLR4) engagement on downstream signaling events, particularly LPS-induced IκBα degradation. The IκB kinase (IKK) inhibitor PS-1145 diminished IκBα degradation and also prevented LPS-induced inhibition of chemotaxis. These results suggest that AMPK activation with clinically approved agents, such as metformin, may facilitate bacterial eradication in sepsis and other inflammatory conditions associated with inhibition of neutrophil activation and chemotaxis.
Collapse
Affiliation(s)
- Dae Won Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America Division of Infectious Diseases, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Shaoning Jiang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jean-Marc Tadie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America Service des Maladies Infectieuses et Réanimation Médicale, Centre Hospitalier Universitaire, Rennes, France
| | - William S Stigler
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yong Gao
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jessy Deshane
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Edward Abraham
- Office of the Dean, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Jaroslaw W Zmijewski
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
47
|
Pretorius E, Bester J, Vermeulen N, Lipinski B. Oxidation inhibits iron-induced blood coagulation. Curr Drug Targets 2013; 14:13-9. [PMID: 23170793 PMCID: PMC3580830 DOI: 10.2174/1389450111314010003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 06/15/2012] [Accepted: 11/16/2012] [Indexed: 11/22/2022]
Abstract
Blood coagulation under physiological conditions is activated by thrombin, which converts soluble plasma fibrinogen (FBG) into an insoluble clot. The structure of the enzymatically-generated clot is very characteristic being composed of thick fibrin fibers susceptible to the fibrinolytic degradation. However, in chronic degenerative diseases, such as atherosclerosis, diabetes mellitus, cancer, and neurological disorders, fibrin clots are very different forming dense matted deposits (DMD) that are not effectively removed and thus create a condition known as thrombosis. We have recently shown that trivalent iron (ferric ions) generates hydroxyl radicals, which subsequently convert FBG into abnormal fibrin clots in the form of DMDs. A characteristic feature of DMDs is their remarkable and permanent resistance to the enzymatic degradation. Therefore, in order to prevent thrombotic incidences in the degenerative diseases it is essential to inhibit the iron-induced generation of hydroxyl radicals. This can be achieved by the pretreatment with a direct free radical scavenger (e.g. salicylate), and as shown in this paper by the treatment with oxidizing agents such as hydrogen peroxide, methylene blue, and sodium selenite. Although the actual mechanism of this phenomenon is not yet known, it is possible that hydroxyl radicals are neutralized by their conversion to the molecular oxygen and water, thus inhibiting the formation of dense matted fibrin deposits in human blood.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia 0007, South Africa.
| | | | | | | |
Collapse
|
48
|
Sauchinone, a lignan from Saururus chinensis, attenuates neutrophil pro-inflammatory activity and acute lung injury. Int Immunopharmacol 2013; 17:471-7. [PMID: 23928505 DOI: 10.1016/j.intimp.2013.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 11/21/2022]
Abstract
Previous studies have shown that sauchinone modulates the expression of inflammatory mediators through mitogen-activated protein kinase (MAPK) pathways in various cell types. However, little information exists about the effect of sauchinone on neutrophils, which play a crucial role in inflammatory process such as acute lung injury (ALI). We found that sauchinone decreased the phosphorylation of p38 MAPK in lipopolysaccharide (LPS)-stimulated murine bone marrow neutrophils, but not ERK1/2 and JNK. Exposure of LPS-stimulated neutrophils to sauchinone or SB203580, a p38 inhibitor, diminished production of tumor necrosis factor (TNF)-α and macrophage inflammatory protein (MIP)-2 compared to neutrophils cultured with LPS. Treatment with sauchinone decreased the level of phosphorylated ribosomal protein S6 (rpS6) in LPS-stimulated neutrophils. Systemic administration of sauchinone to mice led to reduced levels of phosphorylation of p38 and rpS6 in mice lungs given LPS, decreased TNF-α and MIP-2 production in bronchoalveolar lavage fluid, and also diminished the severity of LPS-induced lung injury, as determined by reduced neutrophil accumulation in the lungs, wet/dry weight ratio, and histological analysis. These results suggest that sauchinone diminishes LPS-induced neutrophil activation and ALI.
Collapse
|
49
|
Nordgren M, Wang B, Apanasets O, Fransen M. Peroxisome degradation in mammals: mechanisms of action, recent advances, and perspectives. Front Physiol 2013; 4:145. [PMID: 23785334 PMCID: PMC3682127 DOI: 10.3389/fphys.2013.00145] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 05/30/2013] [Indexed: 12/18/2022] Open
Abstract
Peroxisomes are remarkably dynamic organelles that participate in a diverse array of cellular processes, including the metabolism of lipids and reactive oxygen species. In order to regulate peroxisome function in response to changing nutritional and environmental stimuli, new organelles need to be formed and superfluous and dysfunctional organelles have to be selectively removed. Disturbances in any of these processes have been associated with the etiology and progression of various congenital neurodegenerative and age-related human disorders. The aim of this review is to critically explore our current knowledge of how peroxisomes are degraded in mammalian cells and how defects in this process may contribute to human disease. Some of the key issues highlighted include the current concepts of peroxisome removal, the peroxisome quality control mechanisms, the initial triggers for peroxisome degradation, the factors for dysfunctional peroxisome recognition, and the regulation of peroxisome homeostasis. We also dissect the functional and mechanistic relationship between different forms of selective organelle degradation and consider how lysosomal dysfunction may lead to defects in peroxisome turnover. In addition, we draw lessons from studies on other organisms and extrapolate this knowledge to mammals. Finally, we discuss the potential pathological implications of dysfunctional peroxisome degradation for human health.
Collapse
Affiliation(s)
- Marcus Nordgren
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven Leuven, Vlaams-Brabant, Belgium
| | | | | | | |
Collapse
|
50
|
Chiou SY, Lee YS, Jeng MJ, Tsao PC, Soong WJ. Moderate hypothermia attenuates oxidative stress injuries in alveolar epithelial A549 cells. Exp Lung Res 2013; 39:217-28. [PMID: 23647088 DOI: 10.3109/01902148.2013.792881] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Reactive oxygen species (ROS) are generally involved in lung inflammation and acute lung injury. We investigated the effects of hypothermia on ROS-induced cell damage in human alveolar type II cells. A549 cells were exposed to H2O2 and cultured at different temperatures, namely, normthermia (37°C), mild hypothermia (34°C), or moderate hypothermia (32°C). Cell damage was measured using various assays. The biochemical studies demonstrated a significant increase in apoptosis and intracellular ROS at 32°C in uninjured A549 cells. After exposure to H2O2, a marked decrease in cell viability (<50%) was demonstrated, and this was significantly ameliorated upon culture at 32°C. Significantly intracellular damage was found to affect the 24-hour H2O2-exposed cells in 37°C (P < .05), including an increase in apoptosis and necrosis, intracellular ROS, caspase-3 activity, HMGB1 protein expression, and some alterations to the cell cycle. On hypothermic treatment, the 24-hour H2O2-induced caspase-3 activation was significantly suppressed in cells cultured at both 32°C and 34°C (P < .05 versus 37°C). The cell cycle changes in 24-hour H2O2-exposed cells were significantly diminished when the cells were cultured in 32°C (P < .05 versus 37°C). However, these intracellular alterations were not seen in 6-hour H2O2-exposed cells. We concluded that moderate hypothermia (32°C) of alveolar epithelial A549 cells seems to provide protection against H2O2-induced 24-hour oxidative stress by attenuating cell death and intracellular damage. However, moderate hypothermia might cause minor damage to uninjured cells, so the use of hypothermic treatment needs to be judiciously applied.
Collapse
Affiliation(s)
- Shr-Yun Chiou
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|