1
|
Cyr-Depauw C, Mižik I, Cook DP, Lesage F, Vadivel A, Renesme L, Deng Y, Zhong S, Bardin P, Xu L, Möbius MA, Marzahn J, Freund D, Stewart DJ, Vanderhyden BC, Rüdiger M, Thébaud B. Single-Cell RNA Sequencing to Guide Autologous Preterm Cord Mesenchymal Stromal Cell Therapy. Am J Respir Crit Care Med 2025; 211:391-406. [PMID: 39586004 DOI: 10.1164/rccm.202403-0569oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024] Open
Abstract
Rationale: The chronic lung disease bronchopulmonary dysplasia (BPD) remains the most common complication of extreme prematurity (<28 wk of gestation). Umbilical cord-derived mesenchymal stromal cells (UC-MSCs) represent an opportunity for autologous cell therapy, as UC-MSCs have been shown to improve lung function and structure in experimental BPD. However, characterization and repair capacity of UC-MSCs derived from donors with pregnancy-related complications associated with prematurity remain unexplored. Objectives: To characterize UC-MSCs' transcriptome and determine if pregnancy-related complications (preeclampsia and chorioamnionitis) alter their therapeutic potential. Methods: Single-cell RNA sequencing was used to compare the transcriptome of UC-MSCs derived from 5 term donors, 16 preterm donors, and human neonatal dermal fibroblasts (control cells of mesenchymal origin) and correlated with their therapeutic potential in experimental BPD. Using publicly available neonatal lung single-nucleus RNA sequencing data, we also determined putative communication networks between UC-MSCs and resident lung cell populations. Measurements and Main Results: Most UC-MSCs displayed a similar transcriptome despite their pregnancy-related conditions and mitigated hyperoxia-induced lung injury in newborn rats. Conversely, human neonatal dermal fibroblasts and one term and two preterm with preeclampsia UC-MSC donors exhibited a distinct transcriptome enriched in genes related to fibroblast function and senescence and were devoid of therapeutic benefit in hyperoxia-induced BPD. Conversely, therapeutic UC-MSCs displayed a unique transcriptome active in cell proliferation and distinct cell-cell interactions with neonatal lung cell populations, including NEGR (neuronal growth regulator 1) and NRNX (neurexin) pathways. Conclusions: Term and preterm UC-MSCs are lung protective in experimental BPD. Single-cell RNA sequencing allows us to identify donors with a distinct UC-MSC transcriptome characteristic of reduced therapeutic potential.
Collapse
Affiliation(s)
- Chanèle Cyr-Depauw
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ivana Mižik
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Translational Pulmonology and Translational Lung Research Center Heidelberg, University Hospital Heidelberg, member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Flore Lesage
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Laurent Renesme
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Yupu Deng
- Sinclair Centre for Regenerative Medicine and
| | | | - Pauline Bardin
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Liqun Xu
- Sinclair Centre for Regenerative Medicine and
| | - Marius A Möbius
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, Universitätsklinikum Carl Gustav Carus, and
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Jenny Marzahn
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, Universitätsklinikum Carl Gustav Carus, and
| | - Daniel Freund
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Duncan J Stewart
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Ottawa/The Ottawa Hospital, Ottawa, Ontario, Canada; and
| | - Mario Rüdiger
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, Universitätsklinikum Carl Gustav Carus, and
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Smeets LC, Sengun E, Trayford C, van Cranenbroek B, de Jonge MI, Dallaglio K, Hütten MC, Schoberer M, Ophelders DRMG, Wolfs TGAM, van der Molen RG, van Rijt S. Gold Mesoporous Silica-Coated Nanoparticles for Quantifying and Qualifying Mesenchymal Stem Cell Distribution; a Proof-of-Concept Study in Large Animals. ACS APPLIED BIO MATERIALS 2025; 8:1511-1523. [PMID: 39900538 PMCID: PMC11836931 DOI: 10.1021/acsabm.4c01714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/05/2025]
Abstract
Mesenchymal stem cells (MSCs) have demonstrated promising therapeutic potential across a wide range of diseases including (multi) organ injury in neonates. Despite the reported preclinical successes of MSC therapy, a major challenge in their clinical translation is a limited understanding of their biodistribution after administration. This knowledge gap needs to be addressed to allow clinical implementation. Accordingly, in this study, we propose that silica-coated gold nanoparticles (AuMS) are a promising tool for in vivo MSC tracing. This study explores the use of AuMS for both qualitative and quantitative MSC tracking in vivo after intravenous (I.V.) administration in a translational ovine model of preterm birth. Additionally, we assess the impact of AuMS labeling on the immunomodulatory functions of MSC, which play an important role in the therapeutic potency of these cells. Quantitative and qualitative assessment of AuMS-labeled MSC was performed in vivo using fluorescent microscopy and inductively coupled plasma mass spectrometry (ICP-MS), respectively. AuMS localization in the liver, spleen, and lung was demonstrated. In vitro studies showed that AuMS cellular uptake occurs within 6 h and remains internalized up to 72 h. Labeled MSC maintained their immune phenotype and did not alter their immunomodulatory capacity and proliferation abilities. Overall, we demonstrate that AuMS is a promising, biocompatible nanoprobe for MSC tracing up to 72 h post-I.V. administration.
Collapse
Affiliation(s)
- Lotte
C. C. Smeets
- MERLN
Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
- Department
of Pediatrics, Maastricht University Medical
Center+, MosaKids Children’s Hospital, Maastricht 6200 MD, The Netherlands
- GROW
Research Institute for Oncology and Reproduction, Maastricht University, Maastricht 6200 MD, The Netherlands
| | - Ezgi Sengun
- Department
of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Nijmegen 6500 HB, The Netherlands
| | - Chloe Trayford
- MERLN
Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Bram van Cranenbroek
- Department
of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Nijmegen 6500 HB, The Netherlands
| | - Marien I. de Jonge
- Department
of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Nijmegen 6500 HB, The Netherlands
| | | | - Matthias C. Hütten
- Department
of Pediatrics, Maastricht University Medical
Center+, MosaKids Children’s Hospital, Maastricht 6200 MD, The Netherlands
- GROW
Research Institute for Oncology and Reproduction, Maastricht University, Maastricht 6200 MD, The Netherlands
| | - Mark Schoberer
- Division
of Neonatology, Department of Pediatrics, University Hospital RWTH Aachen, Aachen 52074, Germany
| | - Daan R. M. G. Ophelders
- Department
of Pediatrics, Maastricht University Medical
Center+, MosaKids Children’s Hospital, Maastricht 6200 MD, The Netherlands
- GROW
Research Institute for Oncology and Reproduction, Maastricht University, Maastricht 6200 MD, The Netherlands
| | - Tim G. A. M. Wolfs
- Department
of Pediatrics, Maastricht University Medical
Center+, MosaKids Children’s Hospital, Maastricht 6200 MD, The Netherlands
- GROW
Research Institute for Oncology and Reproduction, Maastricht University, Maastricht 6200 MD, The Netherlands
| | - Renate G. van der Molen
- Department
of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Nijmegen 6500 HB, The Netherlands
| | - Sabine van Rijt
- MERLN
Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| |
Collapse
|
3
|
Maltais-Bilodeau C, Henckel E, Deguise MO, Lesage F, Cobey KD, Ahmadzai N, Skidmore B, Ferretti E, Thébaud B. Cell-based therapies in preclinical models of necrotizing enterocolitis: a systematic review and meta-analysis. Stem Cells Transl Med 2025; 14:szae102. [PMID: 40036304 PMCID: PMC11878585 DOI: 10.1093/stcltm/szae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/18/2024] [Indexed: 03/06/2025] Open
Abstract
Necrotizing enterocolitis (NEC) remains an incurable gut complication of prematurity with significant morbidity and mortality. Cell therapies, including mesenchymal stromal cells (MSCs), may be a promising treatment given their anti-inflammatory and regenerative potential. We assessed the effect of MSCs and other cell therapies (not classified as MSCs) on incidence, severity, and mortality in preclinical models of NEC. Bibliographic and gray literature searches yielded 17 371 records with 107 full-text articles assessed and ultimately 16 studies were included. These studies featured only rodents NEC models via combination of hyperosmolar feeds, hypoxia, hypothermia, or lipopolysaccharides. Ten studies used interventions with MSCs. Only 2 met the minimal criteria to define MSCs proposed by the International Society for Cell & Gene Therapy (ISCT). The overall risk of bias was assessed as high partly due to paucity of data with important gaps in reporting, reinforcing the importance of rigorous research framework, appropriate cell-therapy and outcome reporting in preclinical research. A reduction in the incidence of NEC (odds ratio [OR] 0.32, 95% CI [0.17, 0.62]), severe NEC (OR 0.30, 95% CI [0.18, 0.50]), and mortality (OR 0.30, 95% CI [0.16, 0.55]) was noted with MSCs treatment, seemingly more pronounced for ISCT-defined (ISCT+) MSCs. Amniotic fluid stem cells, neural stem cells, and placenta stem cells also showed a reduction in these measures. Given their accessibility (ie, umbilical cord) and proven safety profile in extremely preterm infants, our analysis provides a foundation for considering MSCs as promising candidate that requires further evaluation for the treatment of NEC.
Collapse
Affiliation(s)
- Camille Maltais-Bilodeau
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
- Department of Obstetrics, Gynecology and Newborn Care, The Ottawa Hospital, General Campus, Ottawa, ON K1H 8L6, Canada
| | - Ewa Henckel
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm 171 77, Sweden
- Department of Neonatology, Karolinska University Hospital, Stockholm 171 77, Sweden
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Marc-Olivier Deguise
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
- Department of Obstetrics, Gynecology and Newborn Care, The Ottawa Hospital, General Campus, Ottawa, ON K1H 8L6, Canada
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Flore Lesage
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Kelly D Cobey
- Meta Research and Open Science Program, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nadera Ahmadzai
- Independent Information Specialist, Ottawa, ON K1T 3Z2, Canada
| | - Becky Skidmore
- Independent Information Specialist, Ottawa, ON K1T 3Z2, Canada
| | - Emanuela Ferretti
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
- Department of Obstetrics, Gynecology and Newborn Care, The Ottawa Hospital, General Campus, Ottawa, ON K1H 8L6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bernard Thébaud
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
- Department of Obstetrics, Gynecology and Newborn Care, The Ottawa Hospital, General Campus, Ottawa, ON K1H 8L6, Canada
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
4
|
Saneh H, Wanczyk H, Walker J, Finck C. Stem cell-derived extracellular vesicles: a potential intervention for Bronchopulmonary Dysplasia. Pediatr Res 2025; 97:497-509. [PMID: 39251881 PMCID: PMC12014501 DOI: 10.1038/s41390-024-03471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/06/2024] [Accepted: 07/16/2024] [Indexed: 09/11/2024]
Abstract
Despite advances in neonatal care, the incidence of Bronchopulmonary Dysplasia (BPD) remains high among extreme preterm infants. The pathogenesis of BPD is multifactorial, with inflammation playing a central role. There is strong evidence that stem cell therapy reduces inflammatory changes and restores normal lung morphology in animal models of hyperoxia-induced lung injury. These therapeutic effects occur without significant engraftment of the stem cells in the host lung, suggesting more of a paracrine mechanism mediated by their secretome. In addition, there are multiple concerns with stem cell therapy which may be alleviated by administering only the effective vesicles instead of the cells themselves. Extracellular vesicles (EVs) are cell-derived components secreted by most eukaryotic cells. They can deliver their bioactive cargo (mRNAs, microRNAs, proteins, growth factors) to recipient cells, which makes them a potential therapeutic vehicle in many diseases, including BPD. The following review will highlight recent studies that investigate the effectiveness of EVs derived from stem cells in preventing or repairing injury in the preterm lung, and the potential mechanisms of action that have been proposed. Current limitations will also be discussed as well as suggestions for advancing the field and easing the transition towards clinical translation in evolving or established BPD. IMPACT: Extracellular vesicles (EVs) derived from stem cells are a potential intervention for neonatal lung diseases. Their use might alleviate the safety concerns associated with stem cell therapy. This review highlights recent studies that investigate the effectiveness of stem cell-derived EVs in preclinical models of bronchopulmonary dysplasia. It adds to the existing literature by elaborating on the challenges associated with EV research. It also provides suggestions to advance the field and ease the transition towards clinical applications. Optimizing EV research could ultimately improve the quality of life of extreme preterm infants born at vulnerable stages of lung development.
Collapse
Affiliation(s)
- Hala Saneh
- Department of Neonatal Medicine, Connecticut Children's Medical Center, Hartford, CT, USA.
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA.
| | - Heather Wanczyk
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
| | - Joanne Walker
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
| | - Christine Finck
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
- Department of Pediatric Surgery, Connecticut Children's Medical Center, Hartford, CT, USA
| |
Collapse
|
5
|
Forbes LM, Bauer N, Bhadra A, Bogaard HJ, Choudhary G, Goss KN, Gräf S, Heresi GA, Hopper RK, Jose A, Kim Y, Klouda T, Lahm T, Lawrie A, Leary PJ, Leopold JA, Oliveira SD, Prisco SZ, Rafikov R, Rhodes CJ, Stewart DJ, Vanderpool RR, Yuan K, Zimmer A, Hemnes AR, de Jesus Perez VA, Wilkins MR. Precision Medicine for Pulmonary Vascular Disease: The Future Is Now (2023 Grover Conference Series). Pulm Circ 2025; 15:e70027. [PMID: 39749110 PMCID: PMC11693987 DOI: 10.1002/pul2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Pulmonary vascular disease is not a single condition; rather it can accompany a variety of pathologies that impact the pulmonary vasculature. Applying precision medicine strategies to better phenotype, diagnose, monitor, and treat pulmonary vascular disease is increasingly possible with the growing accessibility of powerful clinical and research tools. Nevertheless, challenges exist in implementing these tools to optimal effect. The 2023 Grover Conference Series reviewed the research landscape to summarize the current state of the art and provide a better understanding of the application of precision medicine to managing pulmonary vascular disease. In particular, the following aspects were discussed: (1) Clinical phenotypes, (2) genetics, (3) epigenetics, (4) biomarker discovery, (5) application of precision biology to clinical trials, (6) the right ventricle (RV), and (7) integrating precision medicine to clinical care. The present review summarizes the content of these discussions and the prospects for the future.
Collapse
Affiliation(s)
- Lindsay M. Forbes
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Natalie Bauer
- Department of PharmacologyCollege of Medicine, University of South AlabamaMobileAlabamaUSA
- Department of Physiology and Cell BiologyUniversity of South AlabamaMobileAlabamaUSA
| | - Aritra Bhadra
- Department of PharmacologyCollege of Medicine, University of South AlabamaMobileAlabamaUSA
- Center for Lung BiologyCollege of Medicine, University of South AlabamaMobileAlabamaUSA
| | - Harm J. Bogaard
- Department of Pulmonary MedicineAmsterdam UMCAmsterdamNetherlands
| | - Gaurav Choudhary
- Division of CardiologyWarren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
- Lifespan Cardiovascular InstituteRhode Island and Miriam HospitalsProvidenceRhode IslandUSA
- Department of CardiologyProvidence VA Medical CenterProvidenceRhode IslandUSA
| | - Kara N. Goss
- Department of Medicine and PediatricsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Stefan Gräf
- Division of Computational Genomics and Genomic Medicine, Department of MedicineUniversity of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research InstituteCambridgeUK
| | | | - Rachel K. Hopper
- Department of PediatricsStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Arun Jose
- Division of Pulmonary, Critical Care, and Sleep MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Yunhye Kim
- Division of Pulmonary MedicineBoston Children's HospitalBostonMAUSA
| | - Timothy Klouda
- Division of Pulmonary MedicineBoston Children's HospitalBostonMAUSA
| | - Tim Lahm
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of ColoradoAuroraColoradoUSA
- Division of Pulmonary, Critical Care, and Sleep MedicineNational Jewish HealthDenverColoradoUSA
- Pulmonary and Critical Care SectionRocky Mountain Regional VA Medical CenterDenverColoradoUSA
| | - Allan Lawrie
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Peter J. Leary
- Departments of Medicine and EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Jane A. Leopold
- Division of Cardiovascular MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Suellen D. Oliveira
- Department of Anesthesiology, Department of Physiology and BiophysicsUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Sasha Z. Prisco
- Division of CardiovascularLillehei Heart Institute, University of MinnesotaMinneapolisMinnesotaUSA
| | - Ruslan Rafikov
- Department of MedicineIndiana UniversityIndianapolisIndianaUSA
| | | | - Duncan J. Stewart
- Ottawa Hospital Research InstituteFaculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | | | - Ke Yuan
- Division of Pulmonary MedicineBoston Children's HospitalBostonMAUSA
| | - Alexsandra Zimmer
- Department of MedicineBrown UniversityProvidenceRhode IslandUSA
- Lifespan Cardiovascular InstituteRhode Island HospitalProvidenceRhode IslandUSA
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Vinicio A. de Jesus Perez
- Division of Pulmonary and Critical Care MedicineStanford University Medical CenterStanfordCaliforniaUSA
| | | |
Collapse
|
6
|
Pierro M, Thébaud B. Cell-based strategies for the treatment of injury to the developing lung. THE LUNG 2025:403-426. [DOI: 10.1016/b978-0-323-91824-4.00020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Aisanjiang M, Dai W, Wu L, Yuan Y, Liu S, Liao G, Li L, Tong X, Zhang H, Chen Y, Liu J, Cheng J, Wang C, Lu Y. Ameliorating lung fibrosis and pulmonary function in diabetic mice: Therapeutic potential of mesenchymal stem cell. Biochem Biophys Res Commun 2024; 737:150495. [PMID: 39126861 DOI: 10.1016/j.bbrc.2024.150495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
This study aimed to investigate the potential of mesenchymal stem cells (MSCs) in alleviating diabetic lung injury by decreasing inflammation, fibrosis and recovering tissue macrophage homeostasis. To induce pulmonary injuries in an in vivo murine model, we utilized a streptozotocin (STZ), and high-fat diet (HFD) induced diabetic C57 mouse model. Subsequently, human umbilical cord-derived MSCs (hUC-MSCs) were administered through the tail vein on a weekly basis for a duration of 4 weeks. In addition, in vitro experiments involved co-culturing of isolated primary abdominal macrophages from diabetic mice and high glucose-stimulated MLE-12 cells with hUC-MSCs. The objective was to evaluate if hUC-MSCs co-culturing could effectively mitigate cell inflammation and fibrosis. Following hUC-MSCs injection, diabetic mice displayed enhanced pulmonary functional parameters, reduced pulmonary fibrosis, and diminished inflammation. Notably, the dynamic equilibrium of lung macrophages shifted from the M1 phenotype to the M2 phenotype, accompanied by a notable reduction in various indicators associated with inflammation and fibrosis. Results from cell co-culturing experiments further supported this trend, demonstrating a reduction in inflammatory and fibrotic indicators. In conclusion, our findings suggest that hUC-MSCs treatment holds promise in mitigating diabetic pulmonary injury by significantly reducing inflammation, fibrosis and maintain tissue macrophage homeostasis within the lungs. This study sheds light on the therapeutic potential of hUC-MSCs in managing diabetic complications affecting the pulmonary system.
Collapse
Affiliation(s)
- Maikeliya Aisanjiang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wenshu Dai
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Luna Wu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Yuan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyun Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Guangneng Liao
- Animal experimental center of West China hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Tong
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Heteng Zhang
- Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, China
| | - Younan Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Chengshi Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China.
| | - Yanrong Lu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Chang YS, Yang M, Ahn SY, Sung SI, Park WS. Improving the future of clinical trials and translation of mesenchymal stromal cell therapies for neonatal disorders. Stem Cells Transl Med 2024; 13:941-948. [PMID: 39120439 PMCID: PMC11465171 DOI: 10.1093/stcltm/szae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/23/2024] [Indexed: 08/10/2024] Open
Abstract
Despite recent advances in neonatal intensive care medicine, neonatal disorders such as (bronchopulmonary dysplasia [BPD], intraventricular hemorrhage [IVH], and hypoxic ischemic encephalopathy [HIE]) remain major causes of death and morbidity in survivors, with few effective treatments being available. Recent preclinical studies have demonstrated the pleiotropic host injury-responsive paracrine protective effects of cell therapy especially with mesenchymal stromal cells (MSCs) against BPD, IVH, and HIE. These findings suggest that MSCs therapy might emerge as a novel therapeutic modality for these currently devastating neonatal disorders with complex multifactorial etiologies. Although early-phase clinical trials suggest their safety and feasibility, their clinical therapeutic benefits have not yet been proven. Therefore, based on currently available preclinical research and clinical trial data, we focus on critical issues that need to be addressed for future successful clinical trials and eventual clinical translation such as selecting the right patient and optimal cell type, route, dose, and timing of MSCs therapy for neonatal disorders such as BPD, HIE, and IVH.
Collapse
Affiliation(s)
- Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
| | - Misun Yang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
| | - So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
| | - Won Soon Park
- Department of Pediatrics, Gangnam Cha Hospital, Cha University, Seoul, Korea
| |
Collapse
|
9
|
Cyr-Depauw C, Cook DP, Mižik I, Lesage F, Vadivel A, Renesme L, Deng Y, Zhong S, Bardin P, Xu L, Möbius MA, Marzahn J, Freund D, Stewart DJ, Vanderhyden BC, Rüdiger M, Thébaud B. Single-Cell RNA Sequencing Reveals Repair Features of Human Umbilical Cord Mesenchymal Stromal Cells. Am J Respir Crit Care Med 2024; 210:814-827. [PMID: 38564376 DOI: 10.1164/rccm.202310-1975oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/01/2024] [Indexed: 04/04/2024] Open
Abstract
Rationale: The chronic lung disease bronchopulmonary dysplasia (BPD) is the most severe complication of extreme prematurity. BPD results in impaired lung alveolar and vascular development and long-term respiratory morbidity, for which only supportive therapies exist. Umbilical cord-derived mesenchymal stromal cells (UC-MSCs) improve lung structure and function in experimental BPD. Results of clinical trials with MSCs for many disorders do not yet match the promising preclinical studies. A lack of specific criteria to define functionally distinct MSCs persists. Objectives: To determine and correlate single-cell UC-MSC transcriptomic profiles with therapeutic potential. Methods: UC-MSCs from five term donors and human neonatal dermal fibroblasts (HNDFs; control cells of mesenchymal origin) transcriptomes were investigated using single-cell RNA sequencing (scRNA-seq) analysis. The lung-protective effect of UC-MSCs with a distinct transcriptome and control HNDFs was tested in vivo in hyperoxia-induced neonatal lung injury in rats. Measurements and Main Results: UC-MSCs showed limited transcriptomic heterogeneity but were different from HNDFs. Gene Ontology enrichment analysis revealed distinct (progenitor-like and fibroblast-like) UC-MSC subpopulations. Only treatment with progenitor-like UC-MSCs improved lung function and structure and attenuated pulmonary hypertension in hyperoxia-exposed rat pups. Moreover, scRNA-seq identified major histocompatibility complex class I as a molecular marker of nontherapeutic cells and associated with decreased lung retention. Conclusions: UC-MSCs with a progenitor-like transcriptome, but not with a fibroblast-like transcriptome, provide lung protection in experimental BPD. High expression of major histocompatibility complex class I is associated with reduced therapeutic benefit. scRNA-seq may be useful to identify subsets of MSCs with superior repair capacity for clinical application.
Collapse
Affiliation(s)
- Chanèle Cyr-Depauw
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ivana Mižik
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Flore Lesage
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Laurent Renesme
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Yupu Deng
- Sinclair Centre for Regenerative Medicine and
| | | | - Pauline Bardin
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Liqun Xu
- Sinclair Centre for Regenerative Medicine and
| | - Marius A Möbius
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, University Hospital Carl Gustav Carus, and
- Research Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Jenny Marzahn
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, University Hospital Carl Gustav Carus, and
| | - Daniel Freund
- Research Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Duncan J Stewart
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Ottawa/The Ottawa Hospital, Ottawa, Ontario, Canada; and
| | - Mario Rüdiger
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, University Hospital Carl Gustav Carus, and
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Durlak W, Thébaud B. BPD: Latest Strategies of Prevention and Treatment. Neonatology 2024; 121:596-607. [PMID: 39053447 DOI: 10.1159/000540002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is the most common long-term complication of extreme preterm birth. It is associated with lifelong multisystemic consequences. Advances in neonatal care have not reduced the incidence of BPD and no new breakthrough therapy has been successfully translated into the clinic in recent decades. SUMMARY Current evidence demonstrates benefit of new modalities of first-line noninvasive positive pressure ventilation, selected strategies of postnatal corticosteroid administration, alternative surfactant delivery methods, and caffeine. Promising emerging therapies that are being translated from bench to bedside include mesenchymal stromal cells (MSCs), insulin-like growth factor 1/binding protein-3 (IGF-1/IGFBP-3), and interleukin 1 receptor (IL-1R) antagonist (anakinra). Strong preclinical data support efficacy of MSCs in attenuating neonatal lung injury. Early-phase clinical trials have already demonstrated safety and feasibility in preterm infants. Phase II studies that aimed at demonstrating efficacy are currently underway. Both IGF-1/IGFBP-3 and IL-1R antagonist present with biological plausibility and animal data of efficacy. Phase I/II clinical trials are currently recruiting patients. KEY MESSAGES Early noninvasive respiratory support, late systemic dexamethasone, less invasive surfactant administration, and caffeine are proven strategies in reducing the risk of BPD. Potentially disruptive therapies - MSCs, IGF-1/IGFBP-3, and anakinra - are being advanced to clinical trials and their efficacy in remains to be demonstrated. Continued research efforts are needed in the growing population of extremely preterm infants at risk of developing BPD.
Collapse
Affiliation(s)
- Wojciech Durlak
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Bernard Thébaud
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Cerro Marín MJD, Ormazábal IG, Gimeno-Navarro A, Álvarez-Fuente M, López-Ortego P, Avila-Alvarez A, Arruza Gómez L, González-Menchen C, Labrandero de Lera C, Lozano Balseiro M, Moreno Gutiérrez L, Melen Frajilich G, Ramírez Orellana M, Saldaña García N, Pavón Delgado A, Vento Torres M. Repeated intravenous doses of human umbilical cord-derived mesenchymal stromal cells for bronchopulmonary dysplasia: results of a phase 1 clinical trial with 2-year follow-up. Cytotherapy 2024; 26:632-640. [PMID: 38556960 DOI: 10.1016/j.jcyt.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/29/2023] [Accepted: 02/29/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Currently, there is a lack of effective treatments or preventive strategies for bronchopulmonary dysplasia (BPD). Pre-clinical studies with mesenchymal stromal cells (MSCs) have yielded encouraging results. The safety of administering repeated intravenous doses of umbilical cord tissue-derived mesenchymal stromal cells (UC-MSCs) has not yet been tested in extremely-low-gestational-age newborns (ELGANs). AIMS to test the safety and feasibility of administering three sequential intravenous doses of UC-MSCs every 7 days to ELGANs at risk of developing BPD. METHODS In this phase 1 clinical trial, we recruited ELGANs (birth weight ≤1250 g and ≤28 weeks in gestational age [GA]) who were on invasive mechanical ventilation (IMV) with FiO2 ≥ 0.3 at postnatal days 7-14. Three doses of 5 × 106/kg of UC-MSCs were intravenously administered at weekly intervals. Adverse effects and prematurity-related morbidities were recorded. RESULTS From April 2019 to July 2020, 10 patients were recruited with a mean GA of 25.2 ± 0.8 weeks and a mean birth weight of 659.8 ± 153.8 g. All patients received three intravenous UC-MSC doses. The first dose was administered at a mean of 16.6 ± 2.9 postnatal days. All patients were diagnosed with BPD. All patients were discharged from the hospital. No deaths or any serious adverse events related to the infusion of UC-MSCs were observed during administration, hospital stays or at 2-year follow-up. CONCLUSIONS The administration of repeated intravenous infusion of UC-MSCs in ELGANs at a high risk of developing BPD was feasible and safe in the short- and mid-term follow-up.
Collapse
Affiliation(s)
- Maria Jesús Del Cerro Marín
- Pediatric Cardiology, Hospital Universitario Ramón y Cajal, Madrid and Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Madrid, Spain.
| | - Itziar Garcia Ormazábal
- Pediatric Cardiology, Hospital Universitario Ramón y Cajal, Madrid and Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Madrid, Spain
| | - Ana Gimeno-Navarro
- Division of Neonatology, Hospital Universitari i Politècnic La Fe (HULAFE) and Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - María Álvarez-Fuente
- Pediatric Cardiology, Hospital Universitario Ramón y Cajal, Madrid and Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Madrid, Spain
| | | | - Alejandro Avila-Alvarez
- Neonatology Department, Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | - Luis Arruza Gómez
- Department of Neonatology, Instituto del Niño y del Adolescente, Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Cristina González-Menchen
- Department of Neonatology, Instituto del Niño y del Adolescente, Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | | | - María Lozano Balseiro
- Neonatology Department, Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | | | | | | | - Natalia Saldaña García
- Neonatology Department, Hospital Regional Universitario de Málaga and Biomedical Research Institute of Málaga, Málaga, Spain
| | | | - Máximo Vento Torres
- Division of Neonatology, Hospital Universitari i Politècnic La Fe (HULAFE) and Health Research Institute La Fe (IISLAFE), Valencia, Spain
| |
Collapse
|
12
|
Saneh H, Wanczyk H, Walker J, Finck C. Effectiveness of extracellular vesicles derived from hiPSCs in repairing hyperoxia-induced injury in a fetal murine lung explant model. Stem Cell Res Ther 2024; 15:80. [PMID: 38486338 PMCID: PMC10941466 DOI: 10.1186/s13287-024-03687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Despite advances in neonatal care, the incidence of Bronchopulmonary Dysplasia (BPD) remains high among preterm infants. Human induced pluripotent stem cells (hiPSCs) have shown promise in repairing injury in animal BPD models. Evidence suggests they exert their effects via paracrine mechanisms. We aim herein to assess the effectiveness of extracellular vesicles (EVs) derived from hiPSCs and their alveolar progenies (diPSCs) in attenuating hyperoxic injury in a preterm lung explant model. METHODS Murine lung lobes were harvested on embryonic day 17.5 and maintained in air-liquid interface. Following exposure to 95% O2 for 24 h, media was supplemented with 5 × 106 particles/mL of EVs isolated from hiPSCs or diPSCs by size-exclusion chromatography. On day 3, explants were assessed using Hematoxylin-Eosin staining with mean linear intercept (MLI) measurements, immunohistochemistry, VEGFa and antioxidant gene expression. Statistical analysis was conducted using one-way ANOVA and Multiple Comparison Test. EV proteomic profiling was performed, and annotations focused on alveolarization and angiogenesis signaling pathways, as well as anti-inflammatory, anti-oxidant, and regenerative pathways. RESULTS Exposure of fetal lung explants to hyperoxia induced airspace enlargement, increased MLI, upregulation of anti-oxidants Prdx5 and Nfe2l2 with decreased VEGFa expression. Treatment with hiPSC-EVs improved parenchymal histologic changes. No overt changes in vasculature structure were observed on immunohistochemistry in our in vitro model. However, VEGFa and anti-oxidant genes were upregulated with diPSC-EVs, suggesting a pro-angiogenic and cytoprotective potential. EV proteomic analysis provided new insights in regard to potential pathways influencing lung regeneration. CONCLUSION This proof-of-concept in vitro study reveals a potential role for hiPSC- and diPSC-EVs in attenuating lung changes associated with prematurity and oxygen exposure. Our findings pave the way for a novel cell free approach to prevent and/or treat BPD, and ultimately reduce the global burden of the disease.
Collapse
Affiliation(s)
- Hala Saneh
- Department of Neonatal Medicine, Connecticut Children's Medical Center, Hartford, CT, USA.
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA.
| | - Heather Wanczyk
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
| | - Joanne Walker
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
| | - Christine Finck
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
- Department of Pediatric Surgery, Connecticut Children's Medical Center, Hartford, CT, USA
| |
Collapse
|
13
|
Abe Y, Sato Y, Tanaka M, Ochiai D. Development of a new treatment for preterm birth complications using amniotic fluid stem cell therapy. Histol Histopathol 2023; 38:965-974. [PMID: 36971371 DOI: 10.14670/hh-18-607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
This paper describes the current status of studies and clinical trials on the use of mesenchymal stem cells (MSCs) and amniotic fluid stem cells (AFSCs) for complications of preterm birth (PTB), an urgent issue in the perinatal field. PTB is a serious challenge in clinical medicine that is increasing globally, and effective control of its complications is necessary for newborns' subsequent long life. Classical treatments are inadequate, and many patients have PTB complications. A growing body of evidence provided by translational medicine and others indicates that MSCs, and among them, the readily available AFSCs, may be useful in treating PTB complications. AFSCs are the only MSCs available prenatally and are known to be highly anti-inflammatory and tissue-protective and do not form tumors when transplanted. Furthermore, because they are derived from the amniotic fluid, a medical waste product, no ethical issues are involved. AFSCs are an ideal cell resource for MSC therapy in neonates. This paper targets the brain, lungs, and intestines, which are the vital organs most likely to be damaged by PTB complications. The evidence to date and future prospects with MSCs and AFSCs for these organs are described.
Collapse
Affiliation(s)
- Yushi Abe
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Yu Sato
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Daigo Ochiai
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Kanagawa, Japan.
| |
Collapse
|
14
|
Huang F, He Y, Zhang M, Luo K, Li J, Li J, Zhang X, Dong X, Tang J. Progress in Research on Stem Cells in Neonatal Refractory Diseases. J Pers Med 2023; 13:1281. [PMID: 37623531 PMCID: PMC10455340 DOI: 10.3390/jpm13081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
With the development and progress of medical technology, the survival rate of premature and low-birth-weight infants has increased, as has the incidence of a variety of neonatal diseases, such as hypoxic-ischemic encephalopathy, intraventricular hemorrhage, bronchopulmonary dysplasia, necrotizing enterocolitis, and retinopathy of prematurity. These diseases cause severe health conditions with poor prognoses, and existing control methods are ineffective for such diseases. Stem cells are a special type of cells with self-renewal and differentiation potential, and their mechanisms mainly include anti-inflammatory and anti-apoptotic properties, reducing oxidative stress, and boosting regeneration. Their paracrine effects can affect the microenvironment in which they survive, thereby affecting the biological characteristics of other cells. Due to their unique abilities, stem cells have been used in treating various diseases. Therefore, stem cell therapy may open up the possibility of treating such neonatal diseases. This review summarizes the research progress on stem cells and exosomes derived from stem cells in neonatal refractory diseases to provide new insights for most researchers and clinicians regarding future treatments. In addition, the current challenges and perspectives in stem cell therapy are discussed.
Collapse
Affiliation(s)
- Fangjun Huang
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Yang He
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Meng Zhang
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Keren Luo
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Jiawen Li
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Jiali Li
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Xinyu Zhang
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Xiaoyan Dong
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Jun Tang
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| |
Collapse
|
15
|
Zhang X, Xue M, Liu A, Qiu H, Guo F. Activation of Wnt/β‑Catenin‑p130/E2F4 promotes the differentiation of bone marrow‑derived mesenchymal stem cells into type II alveolar epithelial cells through cell cycle arrest. Exp Ther Med 2023; 26:330. [PMID: 37346406 PMCID: PMC10280314 DOI: 10.3892/etm.2023.12029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/18/2023] [Indexed: 06/23/2023] Open
Abstract
The results of our previous study demonstrated that activation of the Wnt/β-catenin pathway increased the differentiation of mesenchymal stem cells (MSCs) into type II alveolar epithelial (AT II) cells; however, the specific mechanisms remain unclear. The present study aimed to evaluate the role of Wnt/β-catenin-p130/E2F transcription factor 4 (E2F4) in regulating the differentiation of mouse MSCs (mMSCs) into AT II cells, and to determine the specific mechanisms. mMSCs with p130 or E2F4 overexpression were constructed using lentiviral vectors. Differentiation of mMSCs into AT II cells was promoted using a modified coculture system with murine lung epithelial-12 cells incubated in small airway growth medium for 7-14 days. The differentiation efficiency was detected using immunofluorescence, western blot analysis and transmission electron microscopy. To detect the association between the canonical Wnt pathway and p130/E2F4, 4 mmol/l lithium chloride (LiCl) or 200 ng/ml Dickkopf-related protein 1 (DKK-1) was also added to the coculture system. Following differentiation, the cell cycle of mMSCs was evaluated using flow cytometry. The results of the present study demonstrated that surfactant protein C (SP-C) protein expression was higher in the p130 overexpression (MSC-p130) and E2F4 overexpression (MSC-E2F4) groups compared with the normal control mMSCs group following differentiation into AT II cells. Similar results for SP-C protein expression and lamellar body-like structures were also observed using immunofluorescence analysis and electron microscopy. Following the addition of LiCl into the coculture system for activation of the Wnt/β-catenin signaling pathway, phosphorylated (p)-p130/p130 was slightly decreased at 7 days and E2F4 was increased both at 7 and 14 days in mMSCs. Furthermore, the p-p130/p130 ratio was significantly increased at 14 days and E2F4 was decreased both at 7 and 14 days following DKK-1-mediated inhibition of the Wnt pathway. The results of the present study demonstrated that the numbers of cells in G1 and S phases were increased following activation of the Wnt pathway and decreased following Wnt pathway inhibition. However, the number of cells in G1 phase was increased following the differentiation of mMSCs overexpressing p130 or E2F4. Therefore, the results of the present study revealed that the canonical Wnt signaling pathway may affect the differentiation of MSCs into AT II cells via regulation of downstream p130/E2F4. The specific mechanisms may be associated with G1 phase extension in the cell cycle of MSCs.
Collapse
Affiliation(s)
- Xiwen Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ming Xue
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Airan Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Fengmei Guo
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
16
|
Wu S, Benny M, Duara J, Williams K, Tan A, Schmidt A, Young KC. Extracellular vesicles: pathogenic messengers and potential therapy for neonatal lung diseases. Front Pediatr 2023; 11:1205882. [PMID: 37397144 PMCID: PMC10311919 DOI: 10.3389/fped.2023.1205882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of nano-sized membranous structures increasingly recognized as mediators of intercellular and inter-organ communication. EVs contain a cargo of proteins, lipids and nucleic acids, and their cargo composition is highly dependent on the biological function of the parental cells. Their cargo is protected from the extracellular environment by the phospholipid membrane, thus allowing for safe transport and delivery of their intact cargo to nearby or distant target cells, resulting in modification of the target cell's gene expression, signaling pathways and overall function. The highly selective, sophisticated network through which EVs facilitate cell signaling and modulate cellular processes make studying EVs a major focus of interest in understanding various biological functions and mechanisms of disease. Tracheal aspirate EV-miRNA profiling has been suggested as a potential biomarker for respiratory outcome in preterm infants and there is strong preclinical evidence showing that EVs released from stem cells protect the developing lung from the deleterious effects of hyperoxia and infection. This article will review the role of EVs as pathogenic messengers, biomarkers, and potential therapies for neonatal lung diseases.
Collapse
Affiliation(s)
- Shu Wu
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Holtz Children’s Hospital, Jackson Memorial Medical Center, Miami, FL, United States
| | - Merline Benny
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Holtz Children’s Hospital, Jackson Memorial Medical Center, Miami, FL, United States
| | - Joanne Duara
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Holtz Children’s Hospital, Jackson Memorial Medical Center, Miami, FL, United States
| | - Kevin Williams
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Holtz Children’s Hospital, Jackson Memorial Medical Center, Miami, FL, United States
| | - April Tan
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Holtz Children’s Hospital, Jackson Memorial Medical Center, Miami, FL, United States
| | - Augusto Schmidt
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Holtz Children’s Hospital, Jackson Memorial Medical Center, Miami, FL, United States
| | - Karen C. Young
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Holtz Children’s Hospital, Jackson Memorial Medical Center, Miami, FL, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
17
|
Mižíková I, Thébaud B. Perinatal origins of bronchopulmonary dysplasia-deciphering normal and impaired lung development cell by cell. Mol Cell Pediatr 2023; 10:4. [PMID: 37072570 PMCID: PMC10113423 DOI: 10.1186/s40348-023-00158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/26/2023] [Indexed: 04/20/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a multifactorial disease occurring as a consequence of premature birth, as well as antenatal and postnatal injury to the developing lung. BPD morbidity and severity depend on a complex interplay between prenatal and postnatal inflammation, mechanical ventilation, and oxygen therapy as well as associated prematurity-related complications. These initial hits result in ill-explored aberrant immune and reparative response, activation of pro-fibrotic and anti-angiogenic factors, which further perpetuate the injury. Histologically, the disease presents primarily by impaired lung development and an arrest in lung microvascular maturation. Consequently, BPD leads to respiratory complications beyond the neonatal period and may result in premature aging of the lung. While the numerous prenatal and postnatal stimuli contributing to BPD pathogenesis are relatively well known, the specific cell populations driving the injury, as well as underlying mechanisms are still not well understood. Recently, an effort to gain a more detailed insight into the cellular composition of the developing lung and its progenitor populations has unfold. Here, we provide an overview of the current knowledge regarding perinatal origin of BPD and discuss underlying mechanisms, as well as novel approaches to study the perturbed lung development.
Collapse
Affiliation(s)
- I Mižíková
- Experimental Pulmonology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - B Thébaud
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
18
|
Tung S, Delavogia E, Fernandez-Gonzalez A, Mitsialis SA, Kourembanas S. Harnessing the therapeutic potential of the stem cell secretome in neonatal diseases. Semin Perinatol 2023; 47:151730. [PMID: 36990921 PMCID: PMC10133192 DOI: 10.1016/j.semperi.2023.151730] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Preterm birth and intrapartum related complications account for a substantial amount of mortality and morbidity in the neonatal period despite significant advancements in neonatal-perinatal care. Currently, there is a noticeable lack of curative or preventative therapies available for any of the most common complications of prematurity including bronchopulmonary dysplasia, necrotizing enterocolitis, intraventricular hemorrhage, periventricular leukomalacia and retinopathy of prematurity or hypoxic-ischemic encephalopathy, the main cause of perinatal brain injury in term infants. Mesenchymal stem/stromal cell-derived therapy has been an active area of investigation for the past decade and has demonstrated encouraging results in multiple experimental models of neonatal disease. It is now widely acknowledged that mesenchymal stem/stromal cells exert their therapeutic effects via their secretome, with the principal vector identified as extracellular vesicles. This review will focus on summarizing the current literature and investigations on mesenchymal stem/stromal cell-derived extracellular vesicles as a treatment for neonatal diseases and examine the considerations to their application in the clinical setting.
Collapse
Affiliation(s)
- Stephanie Tung
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Eleni Delavogia
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States; Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
19
|
Thébaud B. Stem cell therapies for neonatal lung diseases: Are we there yet? Semin Perinatol 2023; 47:151724. [PMID: 36967368 DOI: 10.1016/j.semperi.2023.151724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Lung diseases are a main cause of mortality and morbidity in neonates. Despite major breakthroughs, therapies remain supportive and, in some instances, contribute to lung injury. Because the neonatal lung is still developing, the ideal therapy should be capable of preventing/repairing lung injury while at the same time, promoting lung growth. Cell-based therapies hold high hopes based on laboratory experiments in animal models of neonatal lung injury. Mesenchymal stromal cells and amnion epithelial cells are now in early phase clinical trials to test the feasibility, safety and early signs of efficacy in preterm infants at risk of developing bronchopulmonary dysplasia. Other cell-based therapies are being explored in experimental models of congenital diaphragmatic hernia and alveolar capillary dysplasia. This review will summarize current evidence that has lead to the clinical translation of cell-based therapies and highlights controversies and the numerous questions that remain to be addressed to harness the putative repair potential of cell-based therapies.
Collapse
Affiliation(s)
- Bernard Thébaud
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, Ontario, Canada.; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.; Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
20
|
Damianos A, Sammour I. Barriers in translating stem cell therapies for neonatal diseases. Semin Perinatol 2023; 47:151731. [PMID: 36990922 DOI: 10.1016/j.semperi.2023.151731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Over the last 20 years, stem cells of varying origin and their associated secretome have been investigated as a therapeutic option for a myriad of neonatal models of disease, with very promising results. Despite the devastating nature of some of these disorders, translation of the preclinical evidence to the bedside has been slow. In this review, we explore the existing clinical evidence for stem cell therapies in neonates, highlight the barriers faced by researchers and suggest potential solutions to move the field forward.
Collapse
Affiliation(s)
- Andreas Damianos
- Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio
| | - Ibrahim Sammour
- Riley Hospital for Children, Indiana University, Indianapolis, USA.
| |
Collapse
|
21
|
Allogeneic Mesenchymal Stromal Cells as a Global Pediatric Prospective Approach in the Treatment of Respiratory Failure Associated with Surfactant Protein C Dysfunction. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10010162. [PMID: 36670712 PMCID: PMC9857592 DOI: 10.3390/children10010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/02/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Mesenchymal stromal cells (MSCs) have been proposed as a new therapeutic strategy to treat congenital and acquired respiratory system diseases. We describe a case report of an 18-month-old male patient with progressive chronic respiratory failure, associated with mutations of the surfactant protein C gene (SFTPC) due to c.289G > T variant p.Gly97Ser (rs927644577) and c.176A > G variant (p.His59Arg), submitted to repeated intravenous infusions of allogeneic bone marrow (BM) MSCs. The clinical condition of the patient was monitored. Immunologic studies before and during MSC treatment were performed. No adverse events related to the MSC infusions were recorded. Throughout the MSC treatment period, the patient showed a growth recovery. Starting the second infusion, the patient experienced an improvement in his respiratory condition, with progressive adaptation to mechanical ventilation. After the third infusion, five hours/die of spontaneous breathing was shown, and after infusion IV, spontaneous ventilation for 24/24 h was recorded. A gradual decrease of lymphocytes and cell subpopulations was observed. No variations in the in vitro T cell response to PHA were determined by MSC treatment as well as for the in vitro B cell response. A decrease in IFN-γ, TNF-α, and IL-10 levels was also detected. Even though we cannot exclude an improvement of pulmonary function due to the physiological maturation, the well-known action of MSCs in the repair of lung tissue, together with the sequence of events observed in our patient, may support the therapeutic role of MSCs in this clinical condition. However, further investigations are necessary to confirm the result and long-term follow-up will be mandatory to confirm the benefits on the pulmonary condition.
Collapse
|
22
|
Delavogia E, Ntentakis DP, Cortinas JA, Fernandez-Gonzalez A, Alex Mitsialis S, Kourembanas S. Mesenchymal Stromal/Stem Cell Extracellular Vesicles and Perinatal Injury: One Formula for Many Diseases. Stem Cells 2022; 40:991-1007. [PMID: 36044737 PMCID: PMC9707037 DOI: 10.1093/stmcls/sxac062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022]
Abstract
Over the past decades, substantial advances in neonatal medical care have increased the survival of extremely premature infants. However, there continues to be significant morbidity associated with preterm birth with common complications including bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), neuronal injury such as intraventricular hemorrhage (IVH) or hypoxic ischemic encephalopathy (HIE), as well as retinopathy of prematurity (ROP). Common developmental immune and inflammatory pathways underlie the pathophysiology of such complications providing the opportunity for multisystem therapeutic approaches. To date, no single therapy has proven to be effective enough to prevent or treat the sequelae of prematurity. In the past decade mesenchymal stem/stromal cell (MSC)-based therapeutic approaches have shown promising results in numerous experimental models of neonatal diseases. It is now accepted that the therapeutic potential of MSCs is comprised of their secretome, and several studies have recognized the small extracellular vesicles (sEVs) as the paracrine vector. Herein, we review the current literature on the MSC-EVs as potential therapeutic agents in neonatal diseases and comment on the progress and challenges of their translation to the clinical setting.
Collapse
Affiliation(s)
- Eleni Delavogia
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Dimitrios P Ntentakis
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - John A Cortinas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Ting AE, Baker EK, Champagne J, Desai TJ, Dos Santos CC, Heijink IH, Itescu S, Le Blanc K, Matthay MA, McAuley DF, McIntyre L, Mei SHJ, Parekkadan B, Rocco PRM, Sheridan J, Thébaud B, Weiss DJ. Proceedings of the ISCT scientific signature series symposium, "Advances in cell and gene therapies for lung diseases and critical illnesses": International Society for Cell & Gene Therapy, Burlington VT, US, July 16, 2021. Cytotherapy 2022; 24:774-788. [PMID: 35613962 DOI: 10.1016/j.jcyt.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022]
Abstract
The ISCT Scientific Signature Series Symposium "Advances in Cell and Gene Therapies for Lung Diseases and Critical Illnesses" was held as an independent symposium in conjunction with the biennial meeting, "Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases," which took place July 12-15, 2021, at the University of Vermont. This is the third Respiratory System-based Signature Series event; the first 2, "Tracheal Bioengineering, the Next Steps" and "Cellular Therapies for Pulmonary Diseases and Critical Illnesses: State of the Art of European Science," took place in 2014 and 2015, respectively. Cell- and gene-based therapies for respiratory diseases and critical illnesses continue to be a source of great promise and opportunity. This reflects ongoing advancements in understanding of the mechanisms by which cell-based therapies, particularly those using mesenchymal stromal cells (MSCs), can mitigate different lung injuries and the increasing sophistication with which preclinical data is translated into clinical investigations. This also reflects continuing evolution in gene transfer vectors, including those designed for in situ gene editing in parallel with those targeting gene or cell replacement. Therefore, this symposium convened global thought leaders in a forum designed to catalyze communication and collaboration to bring the greatest possible innovation and value of cell- and gene-based therapies for patients with respiratory diseases and critical illnesses.
Collapse
Affiliation(s)
| | - Elizabeth K Baker
- Newborn Research Centre, Royal Women's Hospital, Melbourne, Victoria, Australia
| | | | - Tushar J Desai
- Stanford University School of Medicine, Stanford, California, USA
| | - Claudia C Dos Santos
- Interdepartmental Division of Critical Care, Department of Medicine and the Keenan Center for Biomedical Research, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Irene H Heijink
- Medical Center Groningen, Department of Pathology and Medical Biology, University of Groningen, Groningen, the Netherlands
| | | | - Katarina Le Blanc
- Department of Laboratory Medicine, Karolinska Institutet, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - Michael A Matthay
- University of San Francisco, San Francisco, California, United States
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, NI, UK
| | | | - Shirley H J Mei
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Biju Parekkadan
- Sentien Biotechnologies, Lexington, Massachusetts, USA; Rutgers University, Piscataway, New Jersey, USA
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Daniel J Weiss
- University of Vermont College of Medicine, Burlington, Vermont, USA.
| |
Collapse
|
24
|
Sharma M, Bellio MA, Benny M, Kulandavelu S, Chen P, Janjindamai C, Han C, Chang L, Sterling S, Williams K, Damianos A, Batlahally S, Kelly K, Aguilar-Caballero D, Zambrano R, Chen S, Huang J, Wu S, Hare JM, Schmidt A, Khan A, Young K. Mesenchymal Stem Cell-derived Extracellular Vesicles Prevent Experimental Bronchopulmonary Dysplasia Complicated By Pulmonary Hypertension. Stem Cells Transl Med 2022; 11:828-840. [PMID: 35758326 PMCID: PMC9397655 DOI: 10.1093/stcltm/szac041] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 04/18/2022] [Indexed: 11/12/2022] Open
Abstract
Mesenchymal stem cell (MSC) extracellular vesicles (EVs) have beneficial effects in preclinical bronchopulmonary dysplasia and pulmonary hypertension (BPD-PH) models. The optimal source, dosing, route, and duration of effects are however unknown. The objectives of this study were to (a) compare the efficacy of GMP-grade EVs obtained from Wharton’s Jelly MSCs (WJ-MSCs) and bone marrow (BM-MSCs), (b) determine the optimal dosing and route of administration, (c) evaluate its long-term effects, and (d) determine how MSC EVs alter the lung transcriptome. Newborn rats exposed to normoxia or hyperoxia (85% O2) from postnatal day (P)1-P14 were given (a) intra-tracheal (IT) BM or WJ-MSC EVs or placebo, (b) varying doses of IT WJ-MSC EVs, or (c) IT or intravenous (IV) WJ-MSC EVs on P3. Rats were evaluated at P14 or 3 months. Early administration of IT BM-MSC or WJ-MSC EVs had similar beneficial effects on lung structure and PH in hyperoxia-exposed rats. WJ-MSC EVs however had superior effects on cardiac remodeling. Low, medium, and high dose WJ-MSC EVs had similar cardiopulmonary regenerative effects. IT and IV WJ-MSC EVs similarly improved vascular density and reduced PH in hyperoxic rats. Gene-set enrichment analysis of transcripts differentially expressed in WJ-MSC EV-treated rats showed that induced transcripts were associated with angiogenesis. Long-term studies demonstrated that a single early MSC EV dose has pulmonary vascular protective effects 3 months after administration. Together, our findings have significant translational implications as it provides critical insight into the optimal source, dosing, route, mechanisms of action, and duration of effects of MSC-EVs for BPD-PH.
Collapse
Affiliation(s)
- Mayank Sharma
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael A Bellio
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Merline Benny
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shathiyah Kulandavelu
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pingping Chen
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chawisa Janjindamai
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chenxu Han
- Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Liming Chang
- Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shanique Sterling
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kevin Williams
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andreas Damianos
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sunil Batlahally
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kaitlyn Kelly
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniela Aguilar-Caballero
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ronald Zambrano
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shaoyi Chen
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jian Huang
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shu Wu
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Augusto Schmidt
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Karen Young
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
25
|
Omar SA, Abdul-Hafez A, Ibrahim S, Pillai N, Abdulmageed M, Thiruvenkataramani RP, Mohamed T, Madhukar BV, Uhal BD. Stem-Cell Therapy for Bronchopulmonary Dysplasia (BPD) in Newborns. Cells 2022; 11:cells11081275. [PMID: 35455954 PMCID: PMC9025385 DOI: 10.3390/cells11081275] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Premature newborns are at a higher risk for the development of respiratory distress syndrome (RDS), acute lung injury (ALI) associated with lung inflammation, disruption of alveolar structure, impaired alveolar growth, lung fibrosis, impaired lung angiogenesis, and development of bronchopulmonary dysplasia (BPD) with severe long-term developmental adverse effects. The current therapy for BPD is limited to supportive care including high-oxygen therapy and pharmacotherapy. Recognizing more feasible treatment options to improve lung health and reduce complications associated with BPD is essential for improving the overall quality of life of premature infants. There is a reduction in the resident stem cells in lungs of premature infants with BPD, which strongly suggests a critical role of stem cells in BPD pathogenesis; this warrants the exploration of the potential therapeutic use of stem-cell therapy. Stem-cell-based therapies have shown promise for the treatment of many pathological conditions including acute lung injury and BPD. Mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (EVs) including exosomes are promising and effective therapeutic modalities for the treatment of BPD. Treatment with MSCs and EVs may help to reduce lung inflammation, improve pulmonary architecture, attenuate pulmonary fibrosis, and increase the survival rate.
Collapse
Affiliation(s)
- Said A. Omar
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
- Regional Neonatal Intensive Care Unit, Sparrow Health System, Lansing, MI 48912, USA
- Correspondence: ; Tel.: +1-517-364-2948
| | - Amal Abdul-Hafez
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
| | - Sherif Ibrahim
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
| | - Natasha Pillai
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
| | - Mohammed Abdulmageed
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
- Regional Neonatal Intensive Care Unit, Sparrow Health System, Lansing, MI 48912, USA
| | - Ranga Prasanth Thiruvenkataramani
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
- Regional Neonatal Intensive Care Unit, Sparrow Health System, Lansing, MI 48912, USA
| | - Tarek Mohamed
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
- Regional Neonatal Intensive Care Unit, Sparrow Health System, Lansing, MI 48912, USA
| | - Burra V. Madhukar
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
| | - Bruce D. Uhal
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
26
|
Lithopoulos MA, Strueby L, O'Reilly M, Zhong S, Möbius MA, Eaton F, Fung M, Hurskainen M, Cyr-Depauw C, Suen C, Xu L, Collins JJP, Vadivel A, Stewart DJ, Burger D, Thébaud B. Pulmonary and Neurologic Effects of Mesenchymal Stromal Cell Extracellular Vesicles in a Multifactorial Lung Injury Model. Am J Respir Crit Care Med 2022; 205:1186-1201. [PMID: 35286238 DOI: 10.1164/rccm.202012-4520oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Bronchopulmonary dysplasia, a chronic respiratory condition originating from preterm birth, is associated with abnormal neurodevelopment. Currently, there is an absence of effective therapies for bronchopulmonary dysplasia and its associated brain injury. In preclinical trials mesenchymal stromal cell therapies demonstrate promise as a therapeutic for bronchopulmonary dysplasia. OBJECTIVES To investigate whether a multifactorial neonatal mouse model of lung injury perturbs neural progenitor cell function and to assess the ability of human umbilical cord-derived mesenchymal stromal cell extracellular vesicles to mitigate pulmonary and neurologic injury. METHODS Mice at postnatal day 7/8 were injected intraperitoneally with lipopolysaccharide and ventilated with 40% oxygen at postnatal day 9/10 for 8 hours. Treated animals received umbilical cord-mesenchymal stromal cell-derived extracellular vesicles intratracheally preceding ventilation. Lung morphology, vascularity, and inflammation were quantified. Neural progenitor cells were isolated from the subventricular zone/hippocampus and assessed for self-renewal, in vitro differentiation ability, and transcriptional profiles. MEASUREMENTS AND MAIN RESULTS The multifactorial lung injury model produced alveolar and vascular rarefaction mimicking bronchopulmonary dysplasia. Neural progenitor cells from lung injury mice showed reduced neurosphere and oligodendrocyte formation, as well as inflammatory transcriptional signatures. Mice treated with mesenchymal stromal cell extracellular vesicles showed significant improvement in lung architecture, vessel formation, and inflammatory modulation. Additionally, we observed significantly increased in vitro neurosphere formation and altered neural progenitor cell transcriptional signatures. CONCLUSIONS Our multifactorial lung injury model impairs neural progenitor cell function. Observed pulmonary and neurologic alterations are mitigated by intratracheal treatment with mesenchymal stromal cell-derived extracellular vesicles.
Collapse
Affiliation(s)
- Marissa A Lithopoulos
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada.,University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Lannae Strueby
- University of Saskatchewan, 7235, Department of Pediatrics, Saskatoon, Saskatchewan, Canada
| | - Megan O'Reilly
- University of Alberta, 3158, Department of Pediatrics, Edmonton, Alberta, Canada
| | - Shumei Zhong
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | - Marius A Möbius
- Universitätsklinikum Carl Gustav Carus, 39063, Department of Neonatalogy and Pediatric Critical Care Medicine, Dresden, Germany
| | - Farah Eaton
- University of Alberta, 3158, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, Alberta, Canada
| | - Moses Fung
- University of Alberta, 3158, Department of Pediatrics, Edmonton, Alberta, Canada
| | - Maria Hurskainen
- Helsinki University Central Hospital, 159841, Department of Pediatric Cardiology, Helsinki, Finland.,University of Helsinki, 3835, Pediatric Research Center, Helsinki, Finland
| | - Chanèle Cyr-Depauw
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada.,University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Colin Suen
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Canada.,University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Liqun Xu
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | - Jennifer J P Collins
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada.,University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Arul Vadivel
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | - Duncan J Stewart
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada.,University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Dylan Burger
- University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada.,Ottawa Hospital Research Institute, 10055, Kidney Research Centre, Chronic Disease Program, Ottawa, Ontario, Canada
| | - Bernard Thébaud
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada.,University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada.,Children's Hospital of Eastern Ontario Research Institute, 274065, Ottawa, Ontario, Canada;
| |
Collapse
|
27
|
Sakaria RP, Dhanireddy R. Pharmacotherapy in Bronchopulmonary Dysplasia: What Is the Evidence? Front Pediatr 2022; 10:820259. [PMID: 35356441 PMCID: PMC8959440 DOI: 10.3389/fped.2022.820259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Bronchopulmonary Dysplasia (BPD) is a multifactorial disease affecting over 35% of extremely preterm infants born each year. Despite the advances made in understanding the pathogenesis of this disease over the last five decades, BPD remains one of the major causes of morbidity and mortality in this population, and the incidence of the disease increases with decreasing gestational age. As inflammation is one of the key drivers in the pathogenesis, it has been targeted by majority of pharmacological and non-pharmacological methods to prevent BPD. Most extremely premature infants receive a myriad of medications during their stay in the neonatal intensive care unit in an effort to prevent or manage BPD, with corticosteroids, caffeine, and diuretics being the most commonly used medications. However, there is no consensus regarding their use and benefits in this population. This review summarizes the available literature regarding these medications and aims to provide neonatologists and neonatal providers with evidence-based recommendations.
Collapse
Affiliation(s)
- Rishika P. Sakaria
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ramasubbareddy Dhanireddy
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
28
|
Perinatal Hyperoxia and Developmental Consequences on the Lung-Brain Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5784146. [PMID: 35251477 PMCID: PMC8894035 DOI: 10.1155/2022/5784146] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
Approximately 11.1% of all newborns worldwide are born preterm. Improved neonatal intensive care significantly increased survival rates over the last decades but failed to reduce the risk for the development of chronic lung disease (i.e., bronchopulmonary dysplasia (BPD)) and impaired neurodevelopment (i.e., encephalopathy of prematurity (EoP)), two major long-term sequelae of prematurity. Premature infants are exposed to relative hyperoxia, when compared to physiological in-utero conditions and, if needed to additional therapeutic oxygen supplementation. Both are associated with an increased risk for impaired organ development. Since the detrimental effects of hyperoxia on the immature retina are known for many years, lung and brain have come into focus in the last decade. Hyperoxia-induced excessive production of reactive oxygen species leading to oxidative stress and inflammation contribute to pulmonary growth restriction and abnormal neurodevelopment, including myelination deficits. Despite a large body of studies, which unraveled important pathophysiological mechanisms for both organs at risk, the majority focused exclusively either on lung or on brain injury. However, considering that preterm infants suffering from BPD are at higher risk for poor neurodevelopmental outcome, an interaction between both organs seems plausible. This review summarizes recent findings regarding mechanisms of hyperoxia-induced neonatal lung and brain injury. We will discuss common pathophysiological pathways, which potentially link both injured organ systems. Furthermore, promises and needs of currently suggested therapies, including pharmacological and regenerative cell-based treatments for BPD and EoP, will be emphasized. Limited therapeutic approaches highlight the urgent need for a better understanding of the mechanisms underlying detrimental effects of hyperoxia on the lung-brain axis in order to pave the way for the development of novel multimodal therapies, ideally targeting both severe preterm birth-associated complications.
Collapse
|
29
|
Chew BC, Liew FF, Tan HW, Chung I. Chemical Advances in Therapeutic Application of Exosomes and Liposomes. Curr Med Chem 2022; 29:4445-4473. [PMID: 35189798 DOI: 10.2174/0929867329666220221094044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
Exosomes and liposomes are vesicular nanoparticles that can encapsulate functional cargo. The chemical similarities between naturally occurring exosomes and synthetic liposomes have accelerated the development of exosome mimetics as a therapeutic drug delivery platform under physiological and pathological environments. To maximise the applications of exosomes and liposomes in the clinical setting, it is essential to look into their basic chemical properties and utilise these characteristics to optimise the preparation, loading, modification and hybridisation. This review summarises the chemical and biological properties of both exosomal and liposomal systems as well as some of the challenges related to their production and application. This article concludes with a discussion on potential perspectives for the integration of exosomal and liposomal technologies in mapping better approaches for their biomedical use, especially in therapeutics.
Collapse
Affiliation(s)
- Boon Cheng Chew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Jalan Universiti, 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Fong Fong Liew
- Department of Oral Biology and Biomedical Science, Faculty of Dentistry, MAHSA University, Jalan SP2, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia
| | - Hsiao Wei Tan
- Institute of Research Management and Services, Research and Innovation Management Complex, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Jalan Universiti, 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| |
Collapse
|
30
|
Chaubey S, Bhandari V. Stem cells in neonatal diseases: An overview. Semin Fetal Neonatal Med 2022; 27:101325. [PMID: 35367186 DOI: 10.1016/j.siny.2022.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Preterm birth and its common complications are major causes of infant mortality and long-term morbidity. Despite great advances in understanding the pathogenesis of neonatal diseases and improvements in neonatal intensive care, effective therapies for the prevention or treatment for these conditions are still lacking. Stem cell (SC) therapy is rapidly emerging as a novel therapeutic tool for several diseases of the newborn with encouraging pre-clinical results that hold promise for translation to the bedside. The utility of different types of SCs in neonatal diseases is being explored. SC therapeutic efficacy is closely associated with its secretome-conditioned media and SC-derived extracellular vesicles, and a subsequent paracrine action in response to tissue injuries. In the current review, we summarize the pre-clinical and clinical studies of SCs and its secretome in diverse preterm and term birth-related diseases, thereby providing new insights for future therapies in neonatal medicine.
Collapse
Affiliation(s)
- Sushma Chaubey
- Department of Biomedical Engineering, Widener University, Chester, PA, 19013, USA.
| | - Vineet Bhandari
- Neonatology Research Laboratory, Department of Pediatrics, The Children's Regional Hospital at Cooper, Cooper Medical School of Rowan University, Suite Dorrance 755, One Cooper Plaza, Camden, NJ, 08103, USA.
| |
Collapse
|
31
|
Abele AN, Taglauer ES, Almeda M, Wilson N, Abikoye A, Seedorf GJ, Mitsialis SA, Kourembanas S, Abman SH. Antenatal mesenchymal stromal cell extracellular vesicle treatment preserves lung development in a model of bronchopulmonary dysplasia due to chorioamnionitis. Am J Physiol Lung Cell Mol Physiol 2022; 322:L179-L190. [PMID: 34878940 PMCID: PMC8782653 DOI: 10.1152/ajplung.00329.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 02/03/2023] Open
Abstract
Antenatal stressors such as chorioamnionitis (CA) increase the risk for bronchopulmonary dysplasia (BPD). Studies have shown that experimental BPD can be ameliorated by postnatal treatment with mesenchymal stromal cell-derived extracellular vesicles (MEx). However, the antenatal efficacy of MEx to prevent BPD is unknown. To determine whether antenatal MEx therapy attenuates intrauterine inflammation and preserves lung growth in a rat model of CA-induced BPD. At embryonic day (E)20, rat litters were treated with intra-amniotic injections of saline, endotoxin (ETX) to model chorioamnionitis, MEx, or ETX plus MEx followed by cesarean section delivery with placental harvest at E22. Placental and lung evaluations were conducted at day 0 and day 14, respectively. To assess the effects of ETX and MEx on lung growth in vitro, E15 lung explants were imaged for distal branching. Placental tissues from ETX-exposed pregnancies showed increased expression of inflammatory markers NLRP-3 and IL-1ß and altered spiral artery morphology. In addition, infant rats exposed to intrauterine ETX had reduced alveolarization and pulmonary vessel density (PVD), increased right ventricular hypertrophy (RVH), and decreased lung mechanics. Intrauterine MEx therapy of ETX-exposed pups reduced inflammatory cytokines, normalized spiral artery architecture, and preserved distal lung growth and mechanics. In vitro studies showed that MEx treatment enhanced distal lung branching and increased VEGF and SPC gene expression. Antenatal MEx treatment preserved distal lung growth and reduced intrauterine inflammation in a model of CA-induced BPD. We speculate that MEx may provide a novel therapeutic strategy to prevent BPD due to antenatal inflammation.
Collapse
Affiliation(s)
- Alison N Abele
- University of Colorado School of Medicine, Aurora, Colorado
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Elizabeth S Taglauer
- Division of Newborn Medicine, Department of Pediatrics, Boston Medical Center, University School of Medicine Medical Center, Boston, Massachusetts
| | | | - Noah Wilson
- University of Notre Dame, Notre Dame, Indiana
| | | | - Gregory J Seedorf
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Steven H Abman
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
32
|
Hurskainen M, Cyr-Depauw C, Thébaud B. Insights into the mechanisms of alveolarization - Implications for lung regeneration and cell therapies. Semin Fetal Neonatal Med 2022; 27:101243. [PMID: 33962890 DOI: 10.1016/j.siny.2021.101243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the lung has extensive regenerative capacity, some diseases affecting the distal lung result in irreversible loss of pulmonary alveoli. Hitherto, treatments are supportive and do not specifically target tissue repair. Regenerative medicine offers prospects to promote lung repair and regeneration. The neonatal lung may be particularly receptive, because of its growth potential, compared to the adult lung. Based on our current understanding of neonatal lung injury, the ideal therapeutic approach includes mitigation of inflammation and fibrosis, and induction of regenerative signals. Cell-based therapies have shown potential to prevent and reverse impaired lung development. Their mechanisms of action suggest effects on both, mitigating the pathophysiological processes and promoting lung growth. Here, we review our current understanding of normal and impaired alveolarization, provide some rationale for the use of cell-based therapies and summarize current evidence for the therapeutic potential of cell-based therapies for pulmonary regeneration in preterm infants.
Collapse
Affiliation(s)
- Maria Hurskainen
- Division of Pediatric Cardiology, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Pediatric Research Center, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Chanèle Cyr-Depauw
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
33
|
Mižíková I, Lesage F, Cyr-Depauw C, Cook DP, Hurskainen M, Hänninen SM, Vadivel A, Bardin P, Zhong S, Carpén O, Vanderhyden BC, Thébaud B. Single-Cell RNA Sequencing-Based Characterization of Resident Lung Mesenchymal Stromal Cells in Bronchopulmonary Dysplasia. Stem Cells 2022; 40:479-492. [PMID: 35445270 PMCID: PMC9199848 DOI: 10.1093/stmcls/sxab023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/09/2021] [Indexed: 01/26/2023]
Abstract
Late lung development is a period of alveolar and microvascular formation, which is pivotal in ensuring sufficient and effective gas exchange. Defects in late lung development manifest in premature infants as a chronic lung disease named bronchopulmonary dysplasia (BPD). Numerous studies demonstrated the therapeutic properties of exogenous bone marrow and umbilical cord-derived mesenchymal stromal cells (MSCs) in experimental BPD. However, very little is known regarding the regenerative capacity of resident lung MSCs (L-MSCs) during normal development and in BPD. In this study we aimed to characterize the L-MSC population in homeostasis and upon injury. We used single-cell RNA sequencing (scRNA-seq) to profile in situ Ly6a+ L-MSCs in the lungs of normal and O2-exposed neonatal mice (a well-established model to mimic BPD) at 3 developmental timepoints (postnatal days 3, 7, and 14). Hyperoxia exposure increased the number and altered the expression profile of L-MSCs, particularly by increasing the expression of multiple pro-inflammatory, pro-fibrotic, and anti-angiogenic genes. In order to identify potential changes induced in the L-MSCs transcriptome by storage and culture, we profiled 15 000 Ly6a+ L-MSCs after in vitro culture. We observed great differences in expression profiles of in situ and cultured L-MSCs, particularly those derived from healthy lungs. Additionally, we have identified the location of Ly6a+/Col14a1+ L-MSCs in the developing lung and propose Serpinf1 as a novel, culture-stable marker of L-MSCs. Finally, cell communication analysis suggests inflammatory signals from immune and endothelial cells as main drivers of hyperoxia-induced changes in L-MSCs transcriptome.
Collapse
Affiliation(s)
- Ivana Mižíková
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Flore Lesage
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Chanele Cyr-Depauw
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Maria Hurskainen
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada,Division of Pediatric Cardiology, New Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland,Pediatric Research Center, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Satu M Hänninen
- Precision Cancer Pathology, Department of Pathology and Research Program in Systems Oncology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Arul Vadivel
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Pauline Bardin
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Shumei Zhong
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Olli Carpén
- Precision Cancer Pathology, Department of Pathology and Research Program in Systems Oncology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Barbara C Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Obstetrics and Gynecology, University of Ottawa/The Ottawa Hospital, Ottawa, ON, Canada
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada,Department of Pediatrics, Children’s Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada,Corresponding author: Bernard Thébaud, Ottawa Hospital Research Institute, 501 Smyth Box 511, Ottawa, ON K1H 8L6.
| |
Collapse
|
34
|
Hosseini NF, Dalirfardouei R, Aliramaei MR, Najafi R. Stem cells or their exosomes: which is preferred in COVID-19 treatment? Biotechnol Lett 2022; 44:159-177. [PMID: 35043287 PMCID: PMC8765836 DOI: 10.1007/s10529-021-03209-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
It only took 8 months for the pneumonia caused by a previously unknown coronavirus to turn into a global pandemic of unprecedentedly far-reaching implications. Failure of the already discovered treatment measures opened up a new opportunity to evaluate the potentials of mesenchymal stem cells and their extracellular vesicles (EVs), exosomes in particular. Eventually, the initial success experienced after the use of MSCs in treating the new pneumonia by Lnge and his team backed up the idea of MSC-based therapies and pushed them closer to becoming a reality. However, MSC-related concerns regarding safety such as abnormal differentiation, spontaneous malignant and the formation of ectopic tissues have triggered the replacement of MSCs by their secreted exosomes. The issue has been further strengthened by the fact that the exosomes leave similar treatment impacts when compared to their parental cells. In recent years, much attention has been paid to the use of MSC-derived exosomes in the treatment of a variety of diseases. With a primary focus on COVID-19 and its current treatment methods, the present review looks into the potentials of MSCs and MSC-derived exosomes in battling the ongoing pandemic. Finally, the research will draw an analogy between exosomes and their parental cells, when it comes to the progresses and challenges in using exosomes as a large-scale treatment method.
Collapse
Affiliation(s)
- Nashmin Fayazi Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Dalirfardouei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
35
|
Benny M, Courchia B, Shrager S, Sharma M, Chen P, Duara J, Valasaki K, Bellio MA, Damianos A, Huang J, Zambrano R, Schmidt A, Wu S, Velazquez OC, Hare JM, Khan A, Young KC. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:189-199. [PMID: 35298658 PMCID: PMC8929420 DOI: 10.1093/stcltm/szab011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/17/2021] [Indexed: 11/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a life-threatening condition in preterm infants with few effective therapies. Mesenchymal stem or stromal cells (MSCs) are a promising therapeutic strategy for BPD. The ideal MSC source for BPD prevention is however unknown. The objective of this study was to compare the regenerative effects of MSC obtained from bone marrow (BM) and umbilical cord tissue (UCT) in an experimental BPD model. In vitro, UCT-MSC demonstrated greater proliferation and expression of anti-inflammatory cytokines as compared to BM-MSC. Lung epithelial cells incubated with UCT-MSC conditioned media (CM) had better-wound healing following scratch injury. UCT-MSC CM and BM-MSC CM had similar pro-angiogenic effects on hyperoxia-exposed pulmonary microvascular endothelial cells. In vivo, newborn rats exposed to normoxia or hyperoxia (85% O2) from postnatal day (P) 1 to 21 were given intra-tracheal (IT) BM or UCT-MSC (1 × 106 cells/50 μL), or placebo (PL) on P3. Hyperoxia PL-treated rats had marked alveolar simplification, reduced lung vascular density, pulmonary vascular remodeling, and lung inflammation. In contrast, administration of both BM-MSC and UCT-MSC significantly improved alveolar structure, lung angiogenesis, pulmonary vascular remodeling, and lung inflammation. UCT-MSC hyperoxia-exposed rats however had greater improvement in some morphometric measures of alveolarization and less lung macrophage infiltration as compared to the BM-MSC-treated group. Together, these findings suggest that BM-MSC and UCT-MSC have significant lung regenerative effects in experimental BPD but UCT-MSC suppresses lung macrophage infiltration and promotes lung epithelial cell healing to a greater degree.
Collapse
Affiliation(s)
- Merline Benny
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Benjamin Courchia
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sebastian Shrager
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mayank Sharma
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pingping Chen
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joanne Duara
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Krystalenia Valasaki
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael A Bellio
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andreas Damianos
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jian Huang
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ronald Zambrano
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Augusto Schmidt
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shu Wu
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omaida C Velazquez
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua M Hare
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aisha Khan
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Karen C Young
- Corresponding author: Karen C. Young, MD, Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue, RM-345, Miami, FL 33136, USA. Tel: 305-243-4531;
| |
Collapse
|
36
|
Tsikis ST, Hirsch TI, Fligor SC, Quigley M, Puder M. Targeting the lung endothelial niche to promote angiogenesis and regeneration: A review of applications. Front Mol Biosci 2022; 9:1093369. [PMID: 36601582 PMCID: PMC9807216 DOI: 10.3389/fmolb.2022.1093369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Lung endothelial cells comprise the pulmonary vascular bed and account for the majority of cells in the lungs. Beyond their role in gas exchange, lung ECs form a specialized microenvironment, or niche, with important roles in health and disease. In early development, progenitor ECs direct alveolar development through angiogenesis. Following birth, lung ECs are thought to maintain their regenerative capacity despite the aging process. As such, harnessing the power of the EC niche, specifically to promote angiogenesis and alveolar regeneration has potential clinical applications. Here, we focus on translational research with applications related to developmental lung diseases including pulmonary hypoplasia and bronchopulmonary dysplasia. An overview of studies examining the role of ECs in lung regeneration following acute lung injury is also provided. These diseases are all characterized by significant morbidity and mortality with limited existing therapeutics, affecting both young children and adults.
Collapse
Affiliation(s)
- Savas T Tsikis
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas I Hirsch
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Scott C Fligor
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Mikayla Quigley
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Mark Puder
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
37
|
Ai D, Shen J, Sun J, Zhu Z, Gao R, Du Y, Yuan L, Chen C, Zhou J. Mesenchymal stem cell-derived extracellular vesicles suppress hyperoxia-induced transdifferentiation of rat alveolar type 2 epithelial cells. Stem Cells Dev 2021; 31:53-66. [PMID: 34913742 DOI: 10.1089/scd.2021.0256] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains the most important respiratory morbidity of preterm infants with few effective preventive strategies. Administration of mesenchymal stem cells (MSC) was considered effective to prevent BPD via paracrine extracellular vesicles (EVs), while appropriate regimens of MSC-EVs and the mechanism remain unclear. Therefore, we established a hyperoxia-induced rat BPD model, and examined the effect of early intraperitoneal MSC-EVs with different doses on BPD. We found that MSC-EVs ameliorated hyperoxia-induced lung injury in a dose-dependent manner, and high dose MSC-EVs ameliorated alveolar simplification and fibrosis. Also, MSC-EVs showed its beneficial effects on vascular growth and pulmonary hypertension. Primary AT2 cells were observed to transdifferentiate into AT1 cells when exposure to hyperoxia in vitro. Administration of MSC-EVs at the first-day culture significantly delayed the transdifferentiation of AT2 cells induced by hyperoxia. We further found that exposure to hyperoxia led to elevated expression of WNT5a mRNA and protein, a key agent in AT2 transdifferentiation, while MSC-EVs administration decreased it. Further study is warranted that MSC-EVs may delay the transdifferentiation of AT2 cells via WNT5a. These studies provide key preclinical evidence of MSC-EVs therapeutics on BPD and highlight the effect of MSC-EVs on suppressing the transdifferentiation of AT2 cells and its possible mechanism through downregulation of WNT5a.
Collapse
Affiliation(s)
- Danyang Ai
- Children's Hospital of Fudan University, 145601, Neonatology, 399 Wanyuan Road, Minhang District, Shanghai, Shanghai, Shanghai, China, 201102;
| | - Jieru Shen
- Children's Hospital of Fudan University, 145601, Neonatology, Shanghai, Shanghai, China;
| | - Jiali Sun
- Children's Hospital of Fudan University, 145601, Neonatology, Shanghai, Shanghai, China;
| | - Zhicheng Zhu
- Children's Hospital of Fudan University, 145601, Neonatology, Shanghai, Shanghai, China;
| | - Ruiwei Gao
- Children's Hospital of Fudan University, 145601, Neonatology, Shanghai, Shanghai, China;
| | - Yang Du
- Children's Hospital of Fudan University, 145601, Neonatology, Shanghai, Shanghai, China;
| | - Lin Yuan
- Children's Hospital of Fudan University, 145601, Neonatology, Shanghai, Shanghai, China;
| | - Chao Chen
- Children's Hospital of Fudan University, 145601, Neonatology, Shanghai, Shanghai, China;
| | - Jianguo Zhou
- Children's Hospital of Fudan University, 145601, Neonatology, Shanghai, Shanghai, China;
| |
Collapse
|
38
|
Willis GR, Reis M, Gheinani AH, Fernandez-Gonzalez A, Taglauer ES, Yeung V, Liu X, Ericsson M, Haas E, Mitsialis SA, Kourembanas S. Extracellular Vesicles Protect the Neonatal Lung from Hyperoxic Injury through the Epigenetic and Transcriptomic Reprogramming of Myeloid Cells. Am J Respir Crit Care Med 2021; 204:1418-1432. [PMID: 34699335 PMCID: PMC8865710 DOI: 10.1164/rccm.202102-0329oc] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Rationale: Mesenchymal stem/stromal cell (MSC)-small extracellular vesicle (MEx) treatment has shown promise in experimental models of neonatal lung injury. The molecular mechanisms by which MEx afford beneficial effects remain incompletely understood. Objectives: To investigate the therapeutic mechanism of action through assessment of MEx biodistribution and impact on immune cell phenotypic heterogeneity. Methods: MEx were isolated from the conditioned medium of human umbilical cord Wharton's jelly-derived MSCs. Newborn mice were exposed to hyperoxia (HYRX, 75% O2) from birth and returned to room air at Postnatal Day 14 (PN14). Mice received either a bolus intravenous MEx dose at PN4 or bone marrow-derived myeloid cells (BMDMy) pretreated with MEx. Animals were killed at PN4, PN7, PN14, or PN28 to characterize MEx biodistribution or for assessment of pulmonary parameters. The therapeutic role of MEx-educated BMDMy was determined in vitro and in vivo. Measurements and Main Results: MEx therapy ameliorated core histological features of HYRX-induced neonatal lung injury. Biodistribution and mass cytometry studies demonstrated that MEx localize in the lung and interact with myeloid cells. MEx restored the apportion of alveolar macrophages in the HYRX-injured lung and concomitantly suppressed inflammatory cytokine production. In vitro and ex vivo studies revealed that MEx promoted an immunosuppressive BMDMy phenotype. Functional assays demonstrated that the immunosuppressive actions of BMDMy are driven by phenotypically and epigenetically reprogrammed monocytes. Adoptive transfer of MEx-educated BMDMy, but not naive BMDMy, restored alveolar architecture, blunted fibrosis and pulmonary vascular remodeling, and improved exercise capacity. Conclusions: MEx ameliorate hyperoxia-induced neonatal lung injury though epigenetic and phenotypic reprogramming of myeloid cells.
Collapse
Affiliation(s)
- Gareth R. Willis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Monica Reis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Ali Hashemi Gheinani
- Department of Urology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Surgery, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth S. Taglauer
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Vincent Yeung
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Xianlan Liu
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
| | - Maria Ericsson
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts; and
| | - Eric Haas
- Mass Cytometry Core, Dana Farber Cancer Institute, Boston, Massachusetts
| | - S. Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
39
|
Horie S, Gonzalez H, Brady J, Devaney J, Scully M, O’Toole D, Laffey JG. Fresh and Cryopreserved Human Umbilical-Cord-Derived Mesenchymal Stromal Cells Attenuate Injury and Enhance Resolution and Repair following Ventilation-Induced Lung Injury. Int J Mol Sci 2021; 22:ijms222312842. [PMID: 34884645 PMCID: PMC8657992 DOI: 10.3390/ijms222312842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Ventilator-induced lung injury (VILI) frequently worsens acute respiratory distress syndrome (ARDS) severity. Human mesenchymal stem/stromal cells (MSCs) offer considerable therapeutic promise, but the key impediments of clinical translation stem from limitations due to cell source and availability, and concerns regarding the loss of efficacy following cryopreservation. These experiments compared the efficacy of umbilical-cord-derived MSCs (UC-MSCs), a readily available and homogenous tissue source, to the previously more widely utilised bone-marrow-derived MSCs (BM-MSCs). We assessed their capacity to limit inflammation, resolve injury and enhance repair in relevant lung mechanical stretch models, and the impact of cryopreservation on therapeutic efficacy. Methods: In series 1, confluent alveolar epithelial layers were subjected to cyclic mechanical stretch (22% equibiaxial strain) and wound injury, and the potential of the secretome from BM- and UC-derived MSCs to attenuate epithelial inflammation and cell death, and enhance wound repair was determined. In series 2, anesthetized rats underwent VILI, and later received, in a randomised manner, 1 × 107 MSCs/kg intravenously, that were: (i) fresh BM-MSCs, (ii) fresh UC-MSCs or (iii) cryopreserved UC-MSCs. Control animals received a vehicle (PBS). The extent of the resolution of inflammation and injury, and repair was measured at 24 h. Results: Conditioned medium from BM-MSCs and UC-MSCs comparably decreased stretch-induced pulmonary epithelial inflammation and cell death. BM-MSCs and UC-MSCs comparably enhanced wound resolution. In animals subjected to VILI, both fresh BM-MSCs and UC-MSCs enhanced injury resolution and repair, while cryopreserved UC-MSCs comparably retained their efficacy. Conclusions: Cryopreserved UC-MSCs can reduce stretch-induced inflammation and cell death, enhance wound resolution, and enhance injury resolution and repair following VILI. Cryopreserved UC-MSCs represent a more abundant, cost-efficient, less variable and equally efficacious source of therapeutic MSC product.
Collapse
Affiliation(s)
- Shahd Horie
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland; (S.H.); (H.G.); (J.B.); (J.D.); (M.S.)
- Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Biomedical Sciences Building, H91 TK33 Galway, Ireland
| | - Hector Gonzalez
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland; (S.H.); (H.G.); (J.B.); (J.D.); (M.S.)
- Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Biomedical Sciences Building, H91 TK33 Galway, Ireland
| | - Jack Brady
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland; (S.H.); (H.G.); (J.B.); (J.D.); (M.S.)
- Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Biomedical Sciences Building, H91 TK33 Galway, Ireland
| | - James Devaney
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland; (S.H.); (H.G.); (J.B.); (J.D.); (M.S.)
- Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Biomedical Sciences Building, H91 TK33 Galway, Ireland
| | - Michael Scully
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland; (S.H.); (H.G.); (J.B.); (J.D.); (M.S.)
- Medicine, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland
| | - Daniel O’Toole
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland; (S.H.); (H.G.); (J.B.); (J.D.); (M.S.)
- Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Biomedical Sciences Building, H91 TK33 Galway, Ireland
- Correspondence: (D.O.); (J.G.L.)
| | - John G. Laffey
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland; (S.H.); (H.G.); (J.B.); (J.D.); (M.S.)
- Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Biomedical Sciences Building, H91 TK33 Galway, Ireland
- Medicine, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland
- Department of Anaesthesia, Galway University Hospitals, SAOLTA University Health Group, H91 YR71 Galway, Ireland
- Correspondence: (D.O.); (J.G.L.)
| |
Collapse
|
40
|
Pelizzo G, Silvestro S, Avanzini MA, Zuccotti G, Mazzon E, Calcaterra V. Mesenchymal Stromal Cells for the Treatment of Interstitial Lung Disease in Children: A Look from Pediatric and Pediatric Surgeon Viewpoints. Cells 2021; 10:3270. [PMID: 34943779 PMCID: PMC8699409 DOI: 10.3390/cells10123270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/11/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have been proposed as a potential therapy to treat congenital and acquired lung diseases. Due to their tissue-regenerative, anti-fibrotic, and immunomodulatory properties, MSCs combined with other therapy or alone could be considered as a new approach for repair and regeneration of the lung during disease progression and/or after post- surgical injury. Children interstitial lung disease (chILD) represent highly heterogeneous rare respiratory diseases, with a wild range of age of onset and disease expression. The chILD is characterized by inflammatory and fibrotic changes of the pulmonary parenchyma, leading to gas exchange impairment and chronic respiratory failure associated with high morbidity and mortality. The therapeutic strategy is mainly based on the use of corticosteroids, hydroxychloroquine, azithromycin, and supportive care; however, the efficacy is variable, and their long-term use is associated with severe toxicity. The role of MSCs as treatment has been proposed in clinical and pre-clinical studies. In this narrative review, we report on the currently available on MSCs treatment as therapeutical strategy in chILD. The progress into the therapy of respiratory disease in children is mandatory to ameliorate the prognosis and to prevent the progression in adult age. Cell therapy may be a future therapy from both a pediatric and pediatric surgeon's point of view.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Department, Children’s Hospital “Vittore Buzzi”, 20154 Milano, Italy
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy;
| | - Serena Silvestro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (E.M.)
| | - Maria Antonietta Avanzini
- Cell Factory, Pediatric Hematology Oncology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Gianvincenzo Zuccotti
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy;
- Department of Pediatrics, Children’s Hospital “Vittore Buzzi”, 20154 Milano, Italy;
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (E.M.)
| | - Valeria Calcaterra
- Department of Pediatrics, Children’s Hospital “Vittore Buzzi”, 20154 Milano, Italy;
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
41
|
Liao G, Liao Y, Li D, Fu Z, Wu S, Cheng D, Ouyang Q, Tang Z, Zeng G, Liang X, Xu S, Hu J, Liu M. Human Platelet Lysate Maintains Stemness of Umbilical Cord-Derived Mesenchymal Stromal Cells and Promote Lung Repair in Rat Bronchopulmonary Dysplasia. Front Cell Dev Biol 2021; 9:722953. [PMID: 34858970 PMCID: PMC8631747 DOI: 10.3389/fcell.2021.722953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/05/2021] [Indexed: 11/23/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) show potential for treating preclinical models of newborn bronchopulmonary dysplasia (BPD), but studies of their therapeutic effectiveness have had mixed results, in part due to the use of different media supplements for MSCs expansion in vitro. The current study sought to identify an optimal culture supplement of umbilical cord-derived MSCs (UC-MSCs) for BPD therapy. In this study, we found that UC-MSCs cultured with human platelet lysate (hPL-UCMSCs) were maintained a small size from Passage 1 (P1) to P10, while UC-MSCs cultured with fetal bovine serum (FBS-UCMSCs) became wide and flat. Furthermore, hPL was associated with lower levels of senescence in UC-MSCs during in vitro expansion compared with FBS, as indicated by the results of β-galactosidase staining and measures of senescence-related genes (CDKN2A, CDKN1A, and mTOR). In addition, hPL enhanced the proliferation and cell viability of the UC-MSCs and reduced their doubling time in vitro. Compared with FBS-UCMSCs, hPL-UCMSCs have a greater potential to differentiate into osteocytes and chondrocytes. Moreover, using hPL resulted in greater expression of Nestin and specific paracrine factors (VEGF, TGF-β1, FGF2, IL-8, and IL-6) in UC-MSCs compared to using FBS. Critically, we also found that hPL-UCMSCs are more effective than FBS-UCMSCs for the treatment of BPD in a rat model, with hPL leading to improvements in survival rate, lung architecture and fibrosis, and lung capillary density. Finally, qPCR of rat lung mRNA demonstrated that hPL-UCMSCs had lower expression levels of inflammatory factors (TNF-α and IL-1β) and a key chemokine (MCP-1) at postnatal day 10, and there was significant reduction of CD68+ macrophages in lung tissue after hPL-UCMSCs transplantation. Altogether, our findings suggest that hPL is an optimal culture supplement for UC-MSCs expansion in vitro, and that hPL-UCMSCs promote lung repair in rat BPD disease.
Collapse
Affiliation(s)
- Guilian Liao
- Obstetrics and Gynecology, Maternal and Child Health Hospital of Longgang District, Shenzhen, China
| | - Yan Liao
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, China
| | - Duanduan Li
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, China
| | - Zeqin Fu
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, China
| | - Shiduo Wu
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, China
| | - Danling Cheng
- Obstetrics and Gynecology, Maternal and Child Health Hospital of Longgang District, Shenzhen, China
| | - Qiuxing Ouyang
- Neurological Rehabilitation for Children, Maternal and Child Health Hospital of Luohu District, Shenzhen, China
| | - Zan Tang
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, China
| | - Guifang Zeng
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, China
| | - Xiao Liang
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, China
| | - Shaokun Xu
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, China
| | - Junyuan Hu
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, China
| | - Muyun Liu
- National-Local Associated Engineering Laboratory for Personalized Cell Therapy, Shenzhen, China
| |
Collapse
|
42
|
Thébaud B, Matthay MA. Cell Therapy with the Cell or Without the Cell for Premature Infants? Time Will Tell. Am J Respir Crit Care Med 2021; 204:1359-1361. [PMID: 34752727 PMCID: PMC8865724 DOI: 10.1164/rccm.202109-2070ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Bernard Thébaud
- Ottawa Hospital Research Institute & CHEO Research Institute, Pediatrics, Ottawa, Ontario, Canada;
| | - Michael A Matthay
- Cardiovascular Research Institute (CVRI), University of San Francisco, Medicine and Anesthesia, San Francisco, California, United States
| |
Collapse
|
43
|
Affiliation(s)
- Bernard Thébaud
- Ottawa Hospital Research Institute & CHEO Research Institute, Pediatrics, Ottawa, Ontario, Canada;
| |
Collapse
|
44
|
Miao J, Ren Z, Zhong Z, Yan L, Xia X, Wang J, Yang J. Mesenchymal Stem Cells: Potential Therapeutic Prospect of Paracrine Pathways in Neonatal Infection. J Interferon Cytokine Res 2021; 41:365-374. [PMID: 34672801 DOI: 10.1089/jir.2021.0094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Infection is the leading cause of admission and mortality in neonatal intensive care units. Immature immune function and antibiotic resistance make the treatment more difficult. However, there is no effective prevention for it. Recently, more and more researches are focusing on stem cell therapy, especially mesenchymal stem cells (MSCs); their potential paracrine effect confer MSCs with a major advantage to treat the immune and inflammatory disorders associated with neonatal infection. In this review, we summarize the basal properties and preclinical evidence of MSCs and explore the potential mechanisms of paracrine factors of MSCs for neonatal infection.
Collapse
Affiliation(s)
- Jiayu Miao
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhuxiao Ren
- Department of Neonatology, and Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhicheng Zhong
- Department of Prenatal Diagnosis Center, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Longli Yan
- Department of Neonatology, and Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xin Xia
- Department of Neonatology, and Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jianlan Wang
- Department of Neonatology, and Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jie Yang
- Department of Neonatology, and Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
45
|
Mesenchymal Stem Cells in the Treatment of COVID-19, a Promising Future. Cells 2021; 10:cells10102588. [PMID: 34685567 PMCID: PMC8533906 DOI: 10.3390/cells10102588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/11/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent adult stem cells present in virtually all tissues; they have a potent self-renewal capacity and can differentiate into multiple cell types. They also affect the ambient tissue by the paracrine secretion of numerous factors in vivo, including the induction of other stem cells’ differentiation. In vitro, the culture media supernatant is named secretome and contains soluble molecules and extracellular vesicles that retain potent biological function in tissue regeneration. MSCs are considered safe for human treatment; their use does not involve ethical issues, as embryonic stem cells do not require genetic manipulation as induced pluripotent stem cells, and after intravenous injection, they are mainly found in the lugs. Therefore, these cells are currently being tested in various preclinical and clinical trials for several diseases, including COVID-19. Several affected COVID-19 patients develop induced acute respiratory distress syndrome (ARDS) associated with an uncontrolled inflammatory response. This condition causes extensive damage to the lungs and may leave serious post-COVID-19 sequelae. As the disease may cause systemic alterations, such as thromboembolism and compromised renal and cardiac function, the intravenous injection of MSCs may be a therapeutic alternative against multiple pathological manifestations. In this work, we reviewed the literature about MSCs biology, focusing on their function in pulmonary regeneration and their use in COVID-19 treatment.
Collapse
|
46
|
Laube M, Pietsch S, Pannicke T, Thome UH, Fabian C. Development and Functional Characterization of Fetal Lung Organoids. Front Med (Lausanne) 2021; 8:678438. [PMID: 34552939 PMCID: PMC8450364 DOI: 10.3389/fmed.2021.678438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/16/2021] [Indexed: 11/21/2022] Open
Abstract
Preterm infants frequently suffer from pulmonary complications due to a physiological and structural lung immaturity resulting in significant morbidity and mortality. Novel in vitro and in vivo models are required to study the underlying mechanisms of late lung maturation and to facilitate the development of new therapeutic strategies. Organoids recapitulate essential aspects of structural organization and possibly organ function, and can be used to model developmental and disease processes. We aimed at generating fetal lung organoids (LOs) and to functionally characterize this in vitro model in comparison to primary lung epithelial cells and lung explants ex vivo. LOs were generated with alveolar and endothelial cells from fetal rat lung tissue, using a Matrigel-gradient and air-liquid-interface culture conditions. Immunocytochemical analysis showed that the LOs consisted of polarized epithelial cell adhesion molecule (EpCAM)-positive cells with the apical membrane compartment facing the organoid lumen. Expression of the alveolar type 2 cell marker, RT2-70, and the Club cell marker, CC-10, were observed. Na+ transporter and surfactant protein mRNA expression were detected in the LOs. First time patch clamp analyses demonstrated the presence of several ion channels with specific electrophysiological properties, comparable to vital lung slices. Furthermore, the responsiveness of LOs to glucocorticoids was demonstrated. Finally, maturation of LOs induced by mesenchymal stem cells confirmed the convenience of the model to test and establish novel therapeutic strategies. The results showed that fetal LOs replicate key biological lung functions essential for lung maturation and therefore constitute a suitable in vitro model system to study lung development and related diseases.
Collapse
Affiliation(s)
- Mandy Laube
- Division of Neonatology, Department of Paediatrics, Center for Paediatric Research Leipzig, University of Leipzig, Leipzig, Germany
| | - Soeren Pietsch
- Division of Neonatology, Department of Paediatrics, Center for Paediatric Research Leipzig, University of Leipzig, Leipzig, Germany
| | - Thomas Pannicke
- Division of Neonatology, Department of Paediatrics, Center for Paediatric Research Leipzig, University of Leipzig, Leipzig, Germany
| | - Ulrich H Thome
- Division of Neonatology, Department of Paediatrics, Center for Paediatric Research Leipzig, University of Leipzig, Leipzig, Germany
| | - Claire Fabian
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
47
|
Wickramasinghe LC, van Wijngaarden P, Tsantikos E, Hibbs ML. The immunological link between neonatal lung and eye disease. Clin Transl Immunology 2021; 10:e1322. [PMID: 34466225 PMCID: PMC8387470 DOI: 10.1002/cti2.1322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/02/2021] [Accepted: 07/13/2021] [Indexed: 01/02/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) and retinopathy of prematurity (ROP) are two neonatal diseases of major clinical importance, arising in large part as a consequence of supplemental oxygen therapy used to promote the survival of preterm infants. The presence of coincident inflammation in the lungs and eyes of neonates receiving oxygen therapy indicates that a dysregulated immune response serves as a potential common pathogenic factor for both diseases. This review examines the current state of knowledge of immunological dysregulation in BPD and ROP, identifying similarities in the cellular subsets and inflammatory cytokines that are found in the alveoli and retina during the active phase of these diseases, indicating possible mechanistic overlap. In addition, we highlight gaps in the understanding of whether these responses emerge independently in the lung and retina as a consequence of oxygen exposure or arise because of inflammatory spill-over from the lung. As BPD and ROP are anatomically distinct, they are often considered discreet disease entities and are therefore treated separately. We propose that an improved understanding of the relationship between BPD and ROP is key to the identification of novel therapeutic targets to treat or prevent both conditions simultaneously.
Collapse
Affiliation(s)
- Lakshanie C Wickramasinghe
- Leukocyte Signalling LaboratoryDepartment of Immunology and PathologyCentral Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Peter van Wijngaarden
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVICAustralia
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalEast MelbourneVICAustralia
| | - Evelyn Tsantikos
- Leukocyte Signalling LaboratoryDepartment of Immunology and PathologyCentral Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Margaret L Hibbs
- Leukocyte Signalling LaboratoryDepartment of Immunology and PathologyCentral Clinical SchoolMonash UniversityMelbourneVICAustralia
| |
Collapse
|
48
|
Brennan LC, O’Sullivan A, MacLoughlin R. Cellular Therapy for the Treatment of Paediatric Respiratory Disease. Int J Mol Sci 2021; 22:ijms22168906. [PMID: 34445609 PMCID: PMC8396271 DOI: 10.3390/ijms22168906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Respiratory disease is the leading cause of death in children under the age of 5 years old. Currently available treatments for paediatric respiratory diseases including bronchopulmonary dysplasia, asthma, cystic fibrosis and interstitial lung disease may ameliorate symptoms but do not offer a cure. Cellular therapy may offer a potential cure for these diseases, preventing disease progression into adulthood. Induced pluripotent stem cells, mesenchymal stromal cells and their secretome have shown great potential in preclinical models of lung disease, targeting the major pathological features of the disease. Current research and clinical trials are focused on the adult population. For cellular therapies to progress from preclinical studies to use in the clinic, optimal cell type dosage and delivery methods need to be established and confirmed. Direct delivery of these therapies to the lung as aerosols would allow for lower doses with a higher target efficiency whilst avoiding potential effect of systemic delivery. There is a clear need for research to progress into the clinic for the treatment of paediatric respiratory disease. Whilst research in the adult population forms a basis for the paediatric population, varying disease pathology and anatomical differences in paediatric patients means a paediatric-centric approach must be taken.
Collapse
Affiliation(s)
- Laura C. Brennan
- College of Medicine, Nursing & Health Sciences, National University of Ireland, H91 TK33 Galway, Ireland;
| | - Andrew O’Sullivan
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland;
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland;
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- Correspondence:
| |
Collapse
|
49
|
Xie Y, Chen F, Jia L, Chen R, Zhang VW, Zhong X, Wang D. Mesenchymal stem cells from different sources show distinct therapeutic effects in hyperoxia-induced bronchopulmonary dysplasia in rats. J Cell Mol Med 2021; 25:8558-8566. [PMID: 34322990 PMCID: PMC8419191 DOI: 10.1111/jcmm.16817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been shown as an effective medicinal means to treat bronchopulmonary dysplasia (BPD). The widely used MSCs were from Wharton's jelly of umbilical cord (UC-MSCs) and bone marrow (BM-MSCs). Amniotic fluid MSCs (AF-MSCs) may be produced before an individual is born to treat foetal diseases by autoplastic transplantation. We evaluated intratracheal (IT) MSCs as an approach to treat an hyperoxia-induced BPD animal model and compared the therapeutic effects between AF-, UC- and BM-MSCs. A BPD animal model was generated by exposing newborn rats to 95% O2 . The continued stress lasted 21 days, and the treatment of IT MSCs was conducted for 4 days. The therapeutic effects were analysed, including lung histology, level of inflammatory cytokines, cell death ratio and state of angiogenesis, by sacrificing the experimental animal at day 21. The lasting hyperoxia stress induced BPD similar to the biological phenotype. The treatment of IT MSCs was safe without deaths and normal organ histopathology. Specifically, the treatment was effective by inhibiting the alveolar dilatation, reducing inflammatory cytokines, inducing angiogenesis and lowering the cell death ratio. AF-MSCs had better therapeutic effects compared with UC-MSCs in relieving the pulmonary alveoli histological changes and promoting neovascularization, and UC-MSCs had the best immunosuppressive effect in plasma and lung lysis compared with AF-MSCs and BM-MSCs. This study demonstrated the therapeutic effects of AF-, UC- and BM-MSCs in BPD model. Superior treatment effect was provided by antenatal MSCs compared to BM-MSC in a statistical comparison.
Collapse
Affiliation(s)
- Yingjun Xie
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fei Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Jia
- Reproductive Medicine Research Center, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Rui Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Xinqi Zhong
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ding Wang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
50
|
Kolesnichenko OA, Whitsett JA, Kalin TV, Kalinichenko VV. Therapeutic Potential of Endothelial Progenitor Cells in Pulmonary Diseases. Am J Respir Cell Mol Biol 2021; 65:473-488. [PMID: 34293272 DOI: 10.1165/rcmb.2021-0152tr] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Compromised alveolar development and pulmonary vascular remodeling are hallmarks of pediatric lung diseases such as bronchopulmonary dysplasia (BPD) and alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Although advances in surfactant therapy, corticosteroids, and anti-inflammatory drugs have improved clinical management of preterm infants, still those who suffer with severe vascular complications lack viable treatment options. Paucity of the alveolar capillary network in ACDMPV causes respiratory distress and leads to mortality in a vast majority of ACDMPV infants. The discovery of endothelial progenitor cells (EPCs) in 1997 brought forth the paradigm of postnatal vasculogenesis and hope for promoting vascularization in fragile patient populations, such as those with BPD and ACDMPV. The identification of diverse EPC populations, both hematopoietic and nonhematopoietic in origin, provided a need to identify progenitor cell selective markers which are linked to progenitor properties needed to develop cell-based therapies. Focusing to the future potential of EPCs for regenerative medicine, this review will discuss various aspects of EPC biology, beginning with the identification of hematopoietic, nonhematopoietic, and tissue-resident EPC populations. We will review knowledge related to cell surface markers, signature gene expression, key transcriptional regulators, and will explore the translational potential of EPCs for cell-based therapy for BPD and ACDMPV. The ability to produce pulmonary EPCs from patient-derived induced pluripotent stem cells (iPSCs) in vitro, holds promise for restoring vascular growth and function in the lungs of patients with pediatric pulmonary disorders.
Collapse
Affiliation(s)
- Olena A Kolesnichenko
- Cincinnati Children's Hospital Medical Center, 2518, Cincinnati, Ohio, United States
| | - Jeffrey A Whitsett
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Tanya V Kalin
- Cincinnati Children\'s Hospital Medical Center, 2518, Pediatrics, Cincinnati, Ohio, United States
| | - Vladimir V Kalinichenko
- Cincinnati Children's Hospital Medical Center, Pediatrics, Division of Pulmonary Biology, Cincinnati, Ohio, United States;
| |
Collapse
|