1
|
Choi JY, Rhee CK, Kim SH, Jo YS. Muscle Mass Index Decline as a Predictor of Lung Function Reduction in the General Population. J Cachexia Sarcopenia Muscle 2025; 16:e13663. [PMID: 39686869 DOI: 10.1002/jcsm.13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND This study explores the link between muscle mass decline and lung function deterioration, which can worsen respiratory health by reducing exercise capacity and quality of life. The relationship between muscle mass index (MMI) changes and lung function in the general population remains unclear, especially as muscle mass fluctuates with aging. We aimed to clarify this dynamic relationship by examining how changes in muscle mass impact pulmonary function and the development of respiratory symptoms. METHODS We utilized the Ansan and Ansung Cohort Study of the Korean Genome and Epidemiology Study (KoGES) database, a large-scale prospective cohort, enrolling participants aged 40 to 69 years with lung function and body composition measurements. Over 12 years, data were collected biannually. The study assessed associations between changes in MMI and lung function trends, with cT1-T3 calculated using the linear regression coefficient and stratified by tertile. Survival analysis was then performed to examine differences in time to first airflow obstruction (AFO) and exacerbation among the tertiles. RESULTS A total of 2956 participants were enrolled in this study. At baseline, participants with higher MMI tended to be younger, had fewer co-morbidities and exhibited better lung function. Those with a steeper MMI decline rate exhibited a more rapid forced expiratory volume in 1 s (FEV1) decline over a 12-year follow-up (cT1: 43.3 mL/year, cT2: 38.4 mL/year, cT3: 33.2 mL/year, p < 0.001). Forced vital capacity (FVC) decline were more pronounced in groups with greater MMI decline rates (cT1: 38.5 mL/year, cT2: 32.8 mL/year, cT3: 26.0 mL/year, p < 0.001). Although, the time to first AFO did not differ significantly among T1-T3 groups, the time to first exacerbation related to wheezing event was significantly lower in cT3 group than in cT1 group (HR: 0.786, 95% CI: 0.629, 0.982). CONCLUSIONS A faster decline in MMI was associated with more rapid decline of both FEV1 and FVC and a higher risk of developing exacerbations of respiratory symptom. Although AFO was not associated with changes in MMI, further research is needed to explore the long-term relationships between muscle mass and the effects of preventive interventions aimed at maintaining muscle mass and respiratory health.
Collapse
Affiliation(s)
- Joon Young Choi
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, College of Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chin Kook Rhee
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Hyuk Kim
- Department of Internal Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Dongguk University Gyeongju Hospital, Dongguk University College of Medicine, Gyeongju, Republic of Korea
| | - Yong Suk Jo
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
2
|
Zhang F, Du T, Huang L, Li M, Li M, Zhang X, Wang J. Overall and subgroup prevalence of self-reported asthma in US adults: a nationally representative cross-sectional study. J Asthma 2025; 62:36-44. [PMID: 39082805 DOI: 10.1080/02770903.2024.2385985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND The purpose of this study is to determine the variations in the prevalence of self-reported asthma among the adult population in the United States of America (USA), analyzing demographic characteristics, physical indicators, living habits, and sarcopenia. METHODS 10,566 participants from the 2009 to 2018 National Health and Nutrition Examination Survey (NHANES) of the USA who were 20 years of age or older and not pregnant were included in the study. RESULTS The prevalence of patients with asthma varies by age, gender, and race. The weighted prevalence is 15.5%, estimated to represent 19.36 million people in the USA (95% CI, 14.5% to 16.6%). The prevalence of self-reported asthma decreases with age, with the highest prevalence among young adults aged 20-25 for both males and females. Females were also more susceptible to asthma compared to males. The increase in asthma prevalence attributed to smoking was most pronounced among African American and Caucasian participants (p < 0.05), while its effect on Mexican American and Asian participants was relatively minor. Notably, the prevalence of asthma was significantly higher in African American and Caucasian participants with sarcopenia compared to those without sarcopenia. CONCLUSIONS The prevalence of asthma is associated to varying degrees with factors such as age, gender, smoking, and the presence of sarcopenia. The elevated prevalence of asthma among young people and females warrants attention. Intensifying efforts toward smoking cessation and the scientific management of sarcopenia could be instrumental in reducing the incidence of asthma.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Family Medicine, ShengJing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Tianming Du
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning Province, China
| | - Letian Huang
- Department of Family Medicine, ShengJing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Department of Oncology, ShengJing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Maomao Li
- Department of General Practice, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Minglin Li
- Department of Family Medicine, ShengJing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xinglong Zhang
- Department of Hematology, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jiahe Wang
- Department of Family Medicine, ShengJing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
3
|
Chiba Y, Yamane Y, Sato T, Suto W, Hanazaki M, Sakai H. Extracellular acidification attenuates bronchial contraction via an autocrine activation of EP 2 receptor: Its diminishment in murine experimental asthma. Respir Physiol Neurobiol 2024; 324:104251. [PMID: 38492830 DOI: 10.1016/j.resp.2024.104251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
PURPOSE Extracellular acidification is a major component of tissue inflammation, including airway inflammation in asthmatics. However, its physiological/pathophysiological significance in bronchial function is not fully understood. Currently, the functional role of extracellular acidification on bronchial contraction was explored. METHODS Left main bronchi were isolated from male BALB/c mice. Epithelium-removed tissues were exposed to acidic pH under submaximal contraction induced by 10-5 M acetylcholine in the presence or absence of a COX inhibitor indomethacin (10-6 M). Effects of AH6809 (10-6 M, an EP2 receptor antagonist), BW A868C (10-7 M, a DP receptor antagonist) and CAY10441 (3×10-6 M, an IP receptor antagonist) on the acidification-induced change in tension were determined. The release of prostaglandin E2 (PGE2) from epithelium-denuded tissues in response to acidic pH was assessed using an ELISA. RESULTS In the bronchi stimulated with acetylcholine, change in the extracellular pH from 7.4 to 6.8 caused a transient augmentation of contraction followed by a sustained relaxing response. The latter inhibitory response was abolished by indomethacin and AH6809 but not by BW A868C or CAY10441. Both indomethacin and AH6809 significantly increased potency and efficacy of acetylcholine at pH 6.8. Stimulation with low pH caused an increase in PGE2 release from epithelium-denuded bronchi. Interestingly, the acidic pH-induced bronchial relaxation was significantly reduced in a murine asthma model that had a bronchial hyperresponsiveness to acetylcholine. CONCLUSION Taken together, extracellular acidification could inhibit the bronchial contraction via autocrine activation of EP2 receptors. The diminished acidic pH-mediated inhibition of bronchial tone may contribute to excessive bronchoconstriction in inflamed airways such as asthma.
Collapse
Affiliation(s)
| | - Yamato Yamane
- Laboratory of Molecular Biology and Physiology, Japan
| | - Tsubasa Sato
- Laboratory of Molecular Biology and Physiology, Japan
| | - Wataru Suto
- Laboratory of Molecular Biology and Physiology, Japan
| | - Motohiko Hanazaki
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Hiroyasu Sakai
- Laboratory of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
4
|
Goyal RK, Rattan S. Role of mechanoregulation in mast cell-mediated immune inflammation of the smooth muscle in the pathophysiology of esophageal motility disorders. Am J Physiol Gastrointest Liver Physiol 2024; 326:G398-G410. [PMID: 38290993 PMCID: PMC11213482 DOI: 10.1152/ajpgi.00258.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
Major esophageal disorders involve obstructive transport of bolus to the stomach, causing symptoms of dysphagia and impaired clearing of the refluxed gastric contents. These may occur due to mechanical constriction of the esophageal lumen or loss of relaxation associated with deglutitive inhibition, as in achalasia-like disorders. Recently, immune inflammation has been identified as an important cause of esophageal strictures and the loss of inhibitory neurotransmission. These disorders are also associated with smooth muscle hypertrophy and hypercontractility, whose cause is unknown. This review investigated immune inflammation in the causation of smooth muscle changes in obstructive esophageal bolus transport. Findings suggest that smooth muscle hypertrophy occurs above the obstruction and is due to mechanical stress on the smooth muscles. The mechanostressed smooth muscles release cytokines and other molecules that may recruit and microlocalize mast cells to smooth muscle bundles, so that their products may have a close bidirectional effect on each other. Acting in a paracrine fashion, the inflammatory cytokines induce genetic and epigenetic changes in the smooth muscles, leading to smooth muscle hypercontractility, hypertrophy, and impaired relaxation. These changes may worsen difficulty in the esophageal transport. Immune processes differ in the first phase of obstructive bolus transport, and the second phase of muscle hypertrophy and hypercontractility. Moreover, changes in the type of mechanical stress may change immune response and effect on smooth muscles. Understanding immune signaling in causes of obstructive bolus transport, type of mechanical stress, and associated smooth muscle changes may help pathophysiology-based prevention and targeted treatment of esophageal motility disorders.NEW & NOTEWORTHY Esophageal disorders such as esophageal stricture or achalasia, and diffuse esophageal spasm are associated with smooth muscle hypertrophy and hypercontractility, above the obstruction, yet the cause of such changes is unknown. This review suggests that smooth muscle obstructive disorders may cause mechanical stress on smooth muscle, which then secretes chemicals that recruit, microlocalize, and activate mast cells to initiate immune inflammation, producing functional and structural changes in smooth muscles. Understanding the immune signaling in these changes may help pathophysiology-based prevention and targeted treatment of esophageal motility disorders.
Collapse
Affiliation(s)
- Raj K Goyal
- Division of Gastroenterology, Department of Medicine, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts, United States
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts, United States
| | - Satish Rattan
- Department of Medicine, Division of Gastroenterology and Hepatology, Sidney Kummel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
5
|
Chiba Y, Ito M, Ando Y, Ueda C, Yamashita M, Suto W, Ishizaka S, Torizuka A, Watanabe C, Takenoya F, Hanazaki M, Sakai H. Altered renin-angiotensin system gene expression in airways of antigen-challenged mice: ACE2 downregulation and unexpected increase in angiotensin 1-7. Respir Physiol Neurobiol 2023; 316:104137. [PMID: 37595771 DOI: 10.1016/j.resp.2023.104137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE Evidence suggest that the renin-angiotensin system (RAS) is activated in people with asthma, although its pathophysiological role is unclear. Angiotensin-converting enzyme 2 (ACE2) is the major enzyme that converts angiotensin II to angiotensin 1-7 (Ang-1-7), and is also known as a receptor of SARS-CoV-2. The current study was conducted to identify the change in RAS-related gene expression in airways of a murine asthma model. METHODS The ovalbumin (OA)-sensitized mice were repeatedly challenged with aerosolized OA to induce asthmatic reaction. Twenty-four hours after the last antigen challenge, the main bronchial smooth muscle (BSM) tissues were isolated. RESULTS The KEGG pathway analysis of differentially expressed genes in our published microarray data revealed a significant change in the RAS pathway in the antigen-challenged mice. Quantitative RT-PCR analyses showed significant increases in the angiotensin II-generating enzymes (Klk1, Klk1b3 and Klk1b8) and a significant decrease in Ace2. Surprisingly, ELISA analyses revealed a significant increase in Ang-1-7 levels in bronchoalveolar lavage (BAL) fluids of the antigen-challenged animals, while no significant change in angiotensin II was observed. Application of Ang-1-7 to the isolated BSMs had no effect on their isometrical tension. CONCLUSION The expression of Ace2 was downregulated in the BSMs of OA-challenged mice, while Klk1, Klk1b3 and Klk1b8 were upregulated. Despite the downregulation of ACE2, the level of its enzymatic product, Ang-1-7, was increased in the inflamed airways, suggesting the existence of an unknown ACE2-independent pathway for Ang-1-7 production. The functional role of Ang-1-7 in the airways remains unclear.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan.
| | - Mana Ito
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Yusuke Ando
- Laboratory of Clinical Pathology, Faculty of Pharmacy, Josai University, Saitama, Japan
| | - Chihiro Ueda
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Michio Yamashita
- Laboratory of Sports Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Wataru Suto
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Shota Ishizaka
- Laboratory of Clinical Pathology, Faculty of Pharmacy, Josai University, Saitama, Japan
| | - Ai Torizuka
- Laboratory of Clinical Pathology, Faculty of Pharmacy, Josai University, Saitama, Japan
| | - Chie Watanabe
- Laboratory of Clinical Pathology, Faculty of Pharmacy, Josai University, Saitama, Japan
| | - Fumiko Takenoya
- Laboratory of Sports Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Motohiko Hanazaki
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan; Department of Anesthesiology and Intensive Care Medicine, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Hiroyasu Sakai
- Laboratory of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
6
|
Wang H, Qiu H, Gu X, Zhang Y, Wang S. The association between sarcopenia and incident chronic lung disease in the general population: A longitudinal study based on CHARLS data. Exp Gerontol 2023; 180:112257. [PMID: 37467900 DOI: 10.1016/j.exger.2023.112257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Data regarding the association of sarcopenia with chronic lung disease (CLD) has led to inconclusive results. The main goal of this research was to investigate the association between sarcopenia and CLD in middle-aged and elderly individuals in China. METHODS The study sample consisted of 11,077 individuals without CLD at baseline chosen from the China Health and Retirement Longitudinal Study (CHARLS) data from 2015, followed up until 2018. Sarcopenia was identified utilizing the criteria set by the Asian Working Group on Sarcopenia (AWGS 2019) in 2019. Individuals were categorized into no-sarcopenia, possible-sarcopenia, and sarcopenia groups. The outcome of the study was considered to be incident CLD, which included chronic bronchitis, emphysema, pulmonary heart disease, and asthma. The association between sarcopenia and the risk of CLD was also examined by employing weighted Cox proportional hazard regression models. RESULTS A total of 356 (3.20 %) participants developed CLD during the 3.6-year follow-up period. The cumulative incidence of CLD in the no-sarcopenia, possible-sarcopenia, and sarcopenia groups was 2.80 % (230/8222), 4.37 % (55/1260), and 4.45 % (71/1595), respectively. Individuals with possible sarcopenia {hazard ratio [HR] [95 % confidence interval (CI)]: 1.48 [1.04-2.09]} and sarcopenia [HR (95 % CI): 1.68 (1.12-2.51)] demonstrated a considerably high risk of developing CLD compared to individuals in the no-sarcopenia group. Moreover, individuals diagnosed with sarcopenia, as per the criteria established by the European Working Group on Sarcopenia in Older People (EWGSOP) 2018, were at considerably high risk for developing CLD compared to those in the no-sarcopenia group. CONCLUSION This research involving adult Chinese individuals demonstrated a significant association between, possible sarcopenia and sarcopenia with an elevated risk of incident CLD, thereby emphasizing the importance of monitoring respiratory health in this population. KEY POINTS Question: Whether muscle mass and sarcopenia are associated with the development of chronic lung disease (CLD) in Asian middle-aged and elderly individuals. FINDINGS This longitudinal study encompassing 11,077 adults aged ≥45 years from the China Health and Retirement Longitudinal Study (CHARLS) data with 3.6 years of follow-up revealed a positive association between sarcopenia at baseline and incidence of CLD. Meaning: The findings suggest that possible sarcopenia and sarcopenia are linked to the development of CLD. Consequently, middle-aged and elderly individuals with possible sarcopenia and sarcopenia can be considered vulnerable regarding the primary prevention strategies for CLD.
Collapse
Affiliation(s)
- Hongxiang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jiamusi University, Jiamusi, China
| | - Hongbin Qiu
- Department of Epidemiology and Biostatistics, School of Public Health, Jiamusi University, Jiamusi, China
| | - Xia Gu
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Yiying Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jiamusi University, Jiamusi, China.
| | - Shanjie Wang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.
| |
Collapse
|
7
|
Xiao B, Li L, Yao D, Mo B. Noncoding RNAs in asthmatic airway smooth muscle cells. Eur Respir Rev 2023; 32:32/168/220184. [PMID: 37076176 PMCID: PMC10113956 DOI: 10.1183/16000617.0184-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/07/2023] [Indexed: 04/21/2023] Open
Abstract
Asthma is a complex and heterogeneous airway disease caused by genetic, environmental and epigenetic factors treated with hormones and biologics. Irreversible pathological changes to airway smooth muscle cells (ASMCs) such as hyperplasia and hypertrophy can occur in asthmatic patients. Determining the mechanisms responsible is vital for preventing such changes. In recent years, noncoding RNAs (ncRNAs), especially microRNAs, long noncoding RNAs and circular RNAs, have been found to be associated with abnormalities of the ASMCs. This review highlights recent ncRNA research into ASMC pathologies. We present a schematic that illustrates the role of ncRNAs in pathophysiological changes to ASMCs that may be useful in future research in diagnostic and treatment strategies for patients with asthma.
Collapse
Affiliation(s)
- Bo Xiao
- Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Respiratory Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- These authors contributed equally to this work
| | - Liangxian Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- These authors contributed equally to this work
| | - Dong Yao
- Key Laboratory of Respiratory Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- These authors contributed equally to this work
| | - Biwen Mo
- Key Laboratory of Respiratory Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Glucose and Lipid Metabolism Disorders, Guangxi Health Commission, Guilin, China
| |
Collapse
|
8
|
Yang Q, Miao Q, Chen H, Li D, Luo Y, Chiu J, Wang HJ, Chuvanjyan M, Parmacek MS, Shi W. Myocd regulates airway smooth muscle cell remodeling in response to chronic asthmatic injury. J Pathol 2023; 259:331-341. [PMID: 36484734 PMCID: PMC10107741 DOI: 10.1002/path.6044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/13/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Abnormal growth of airway smooth muscle cells is one of the key features in asthmatic airway remodeling, which is associated with asthma severity. The mechanisms underlying inappropriate airway smooth muscle cell growth in asthma remain largely unknown. Myocd has been reported to act as a key transcriptional coactivator in promoting airway-specific smooth muscle development in fetal lungs. Whether Myocd controls airway smooth muscle remodeling in asthma has not been investigated. Mice with lung mesenchyme-specific deletion of Myocd after lung development were generated, and a chronic asthma model was established by sensitizing and challenging the mice with ovalbumin for a prolonged period. Comparison of the asthmatic pathology between the Myocd knockout mice and the wild-type controls revealed that abrogation of Myocd mitigated airway smooth muscle cell hypertrophy and hyperplasia, accompanied by reduced peri-airway inflammation, decreased fibrillar collagen deposition on airway walls, and attenuation of abnormal mucin production in airway epithelial cells. Our study indicates that Myocd is a key transcriptional coactivator involved in asthma airway remodeling. Inhibition of Myocd in asthmatic airways may be an effective approach to breaking the vicious cycle of asthmatic progression, providing a novel strategy in treating severe and persistent asthma. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Qin Yang
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, PR China
| | - Qing Miao
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hui Chen
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Duo Li
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yongfeng Luo
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joanne Chiu
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hong-Jun Wang
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael Chuvanjyan
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael S Parmacek
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Shi
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
9
|
Huang YF, Ou GC, Ma SH, Liu MW, Deng W. Effect of icariin on the H 2O 2-induced proliferation of mouse airway smooth muscle cells through miR-138-5p regulating SIRT1/AMPK/PGC-1α axis. Int J Immunopathol Pharmacol 2023; 37:3946320231151515. [PMID: 36772811 PMCID: PMC9926010 DOI: 10.1177/03946320231151515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Icariin exerts antioxidative and anti-inflammatory effects and is used in the treatment of bronchial asthma. However, the specific modes of action are uncertain. In this study, we investigated whether icariin could modulate the silencing information regulator 2-related enzyme 1 (SIRT1)/adenosine monophosphate-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) axis by regulating miR-138-5p during H2O2-induced proliferation of mouse airway smooth muscle cells (ASMCs). Primary BALB/c mouse ASMCs were cultured using the tissue block adherence method and were induced with hydrogen peroxide (H2O2; 200 μmol/L) to establish a bronchial asthma ASMC proliferation model. With the aid of Western Blot and quantitative real-time polymerase chain reaction (qRT-PCR) in H2O2-induced ASMCs, the expression of miR-138-5p, SIRT1, AMPK, PGC-1α, α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), collagen I, and collagen III protein and mRNA were investigated. The proliferation rate and activities of superoxide dismutase1 (SOD1), reduced glutathione (GSH), malonaldehyde (MDA), and reactive oxygen species (ROS) in ASMCs were determined. The results suggest Compared with the H2O2-induced group, icariin inhibited the miR-138-5p expression; enhanced SIRT1, p-AMPK, and PGC-1α expression; attenuated MDA activity and ROS level; lowered TGF-β1, collagen I, and collagen III expression levels; and decreased the proliferation of ASMCs induced by H2O2. The dual-luciferase reporter gene assay results showed that SIRT1 is a regulatory target of miR-138-5p.The results suggest that Icariin could improve the H2O2-induced proliferation of ASMCs. The mechanism may be related to the increase of activation of SIRT1/AMPK/PGC-1α axis by suppressing the expression of miR-138-5p. Thus, SIRT1 is the regulatory target of miR-138-5p.
Collapse
Affiliation(s)
- Yu-fang Huang
- Department of Respiratory and
Critical Care, Suining
Central Hospital, Suining, China
| | - Guo-chun Ou
- Department of Respiratory and
Critical Care, Suining
Central Hospital, Suining, China
| | - Shou-hong Ma
- Medical Services Division,
Sixth
Affiliated Hospital of Kunming Medical
University, Yuxi, China
| | - Ming-wei Liu
- Department of Emergency,
First
Affiliated Hospital of Kunming Medical
University, Kunming, China,Ming-wei Liu, Department of Emergency,
First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wu
Hua District, Kunming 650051, China.
| | - Wen Deng
- Department of Emergency,
Suining
Central Hospital, Suining, China,Ming-wei Liu, Department of Emergency,
First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wu
Hua District, Kunming 650051, China.
| |
Collapse
|
10
|
Chiba Y, Adachi Y, Ando Y, Fujii S, Suto W, Sakai H. A lncRNA MALAT1 is a positive regulator of RhoA protein expression in bronchial smooth muscle cells. Life Sci 2023; 313:121289. [PMID: 36529281 DOI: 10.1016/j.lfs.2022.121289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
AIMS Augmented smooth muscle contractility of the airways associated with an increased expression of RhoA, a monomeric GTPase responsible for Ca2+ sensitization of contraction, is one of the causes of airway hyperresponsiveness. However, the mechanism of the altered properties of airway smooth muscle cells, including the RhoA upregulation, is not fully understood. This study aims to define functional role of a long non-coding RNA MALAT1 in the RhoA expression and development of bronchial smooth muscle (BSM) hyper-contractility. MAIN METHODS Cultured human BSM cells were transfected with MALAT1 antisense oligonucleotide (AS), miR-133a-3p mimic, and/or inhibitor, and then stimulated with interleukin-13 (IL-13). In animal experiments, the ovalbumin (OA)-sensitized mice were repeatedly challenged with aerosolized OA to induce asthmatic reaction. KEY FINDINGS Treatment of the cells with IL-13 induced an increase in RhoA protein. Either MALAT1 AS or miR-133a-3p mimic transfection inhibited the IL-13-induced upregulation of RhoA. The inhibitory effect of MALAT1 AS was abolished by co-transfection with miR-133a-3p inhibitor. In BSMs of the murine asthma model, upregulations of Malat1 and RhoA protein were observed concomitantly with downregulation of miR-133a-3p. SIGNIFICANCE These findings suggest that MALAT1 positively regulates RhoA protein expression by inhibiting miR-133a-3p in BSM cells, and that its upregulation causes the RhoA upregulation, resulting in an augmented BSM contractility.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan.
| | - Yukika Adachi
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Yusuke Ando
- Laboratory of Clinical Pathology, Faculty of Pharmacy, Josai University, Saitama, Japan
| | - Shigeki Fujii
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Wataru Suto
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Hiroyasu Sakai
- Laboratory of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
11
|
Farooq S, Khatri S. Life Course of Asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:43-76. [PMID: 37464116 DOI: 10.1007/978-3-031-32259-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Asthma is a heterogeneous chronic airway disease that can vary over a lifetime. Although broad categories of asthma by severity and type have been constructed, there remains a tremendous opportunity to discover an approach to managing asthma with additional factors in mind. Many in the field have suggested and are pursuing a novel paradigm shift in how asthma might be better managed, considering the life course of exposures, management priorities, and predicted trajectory of lung function growth. This approach will require a more holistic view of prenatal, postnatal, adolescence, hormonal and gender aspects, and the aging process. In addition, the environment, externally and internally, including in one's genetic code and epigenetic changes, are factors that affect how asthma progresses or becomes more stable in individuals. This chapter focuses on the various influences that may, to differing degrees, affect people with asthma, which can develop at any time in their lives. Shifting the paradigm of thought and strategies for care and advocating for public policies and health delivery that focus on this philosophy is paramount to advance asthma care for all.
Collapse
Affiliation(s)
- Sobia Farooq
- National Heart, Lung, and Blood Institute, CMO Division of Lung Diseases, Bethesda, MD, USA
| | - Sumita Khatri
- National Heart, Lung, and Blood Institute, CMO Division of Lung Diseases, Bethesda, MD, USA.
| |
Collapse
|
12
|
A current overview of RhoA, RhoB, and RhoC functions in vascular biology and pathology. Biochem Pharmacol 2022; 206:115321. [DOI: 10.1016/j.bcp.2022.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022]
|
13
|
Xiang LL, Wan QQ, Wang YM, He SJ, Xu WJ, Ding M, Zhang JJ, Sun YL, Dong X, Zhou Y, Cui YB, Gao YD. IL-13 Regulates Orai1 Expression in Human Bronchial Smooth Muscle Cells and Airway Remodeling in Asthma Mice Model via LncRNA H19. J Asthma Allergy 2022; 15:1245-1261. [PMID: 36101840 PMCID: PMC9464454 DOI: 10.2147/jaa.s360381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022] Open
Abstract
Background Increased proliferation and hypertrophy of airway smooth muscle cells (ASMCs) contribute substantially to airway remodeling in asthma. Interleukin (IL)-13 regulates ASMC proliferation by increasing Orai1 expression, the pore-forming subunit of store-operated Ca2+ entry (SOCE). The underlying mechanisms of this effect are not fully understood. Methods Bioinformatic analysis identified an interaction between microRNA 93-5p (miR-93-5p) and long non-coding RNA (lncRNA) H19, and between miR-93-5p and Orai1. RNA interference was used to investigate H19 knockdown on IL-13-induced proliferation and migration of in vitro cultured human bronchial smooth muscle cells (hBSMCs). Functional relevance of H19 in airway inflammation and airway remodeling was investigated in murine models of acute and chronic asthma. Results IL-13 concentration-dependently increased the expression of H19 and Orai1 and decreased the expression of miR-93-5p in hBSMCs. H19 knockdown partly reversed the effects of IL-13 on the expression of miR-93-5p and Orai1 and attenuated the proliferation and migration of hBSMCs promoted by IL-13. IL-13-promoted expression of Orai1 was attenuated by miR-93-5p mimic and increased by miR-93-5p inhibitor. IL-13-promoted proliferation of hBSMCs was increased by miR-93-5p inhibitor but not affected by miR-93-5p mimic, whereas IL-13-promoted migration of hBSMCs was increased by miR-93-5p inhibitor and attenuated by miR-93-5p mimic. The inhibiting effect of H19 knockdown on IL-13-induced Orai1 expression and the proliferation and migration of hBSMCs was counteracted by miR-93-5p inhibitor but only marginally or not impacted by miR-93-5p mimic. The expression of H19 and Orai1 was higher in the lungs of asthmatic mice than in control mice. In asthmatic mice, H19 siRNA reduced Orai1 expression, inflammatory cell infiltration, goblet cell hyperplasia, collagen deposition and smooth muscle mass in the lungs. Conclusion H19 may mediate the effects of IL-13 on Orai1 expression by inhibition of miR-93-5p in hBSMCs. H19 may be a therapeutic target for airway inflammation and airway remodeling.
Collapse
Affiliation(s)
- Lin-Li Xiang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Qian-Qian Wan
- Department of Rheumatology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yi-Min Wang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Shao-Jun He
- Department of Respiratory and Critical Care Medicine Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Wen-Juan Xu
- Department of Respiratory and Critical Care Medicine Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Mei Ding
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, People's Republic of China
| | - Jin-Jin Zhang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, People's Republic of China
| | - Yuan-Li Sun
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, People's Republic of China
| | - Xiang Dong
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, People's Republic of China
| | - Ying Zhou
- Department of Pediatrics Laboratory, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Yu-Bao Cui
- Department of Clinical Laboratory, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Ya-Dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
14
|
Jakwerth CA, Kitzberger H, Pogorelov D, Müller A, Blank S, Schmidt-Weber CB, Zissler UM. Role of microRNAs in type 2 diseases and allergen-specific immunotherapy. FRONTIERS IN ALLERGY 2022; 3:993937. [PMID: 36172292 PMCID: PMC9512106 DOI: 10.3389/falgy.2022.993937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 12/07/2022] Open
Abstract
MicroRNAs (miRs) have gained scientific attention due to their importance in the pathophysiology of allergic diseases as well as their potential as biomarkers in allergen-specific treatment options. Their function as post-transcriptional regulators, controlling various cellular processes, is of high importance since any single miR can target multiple mRNAs, often within the same signalling pathway. MiRs can alter dysregulated expression of certain cellular responses and contribute to or cause, but in some cases prevent or repress, the development of various diseases. In this review article, we describe current research on the role of specific miRs in regulating immune responses in epithelial cells and specialized immune cells in response to various stimuli, in allergic diseases, and regulation in the therapeutic approach of allergen-specific immunotherapy (AIT). Despite the fact that AIT has been used successfully as a causative treatment option since more than a century, very little is known about the mechanisms of regulation and its connections with microRNAs. In order to fill this gap, this review aims to provide an overview of the current knowledge.
Collapse
|
15
|
Hu Z, Tian Y, Song X, Zeng F, Yang A. Associations between sarcopenia with asthmatic prevalence, lung function and comorbidity. BMC Geriatr 2022; 22:703. [PMID: 36002808 PMCID: PMC9404581 DOI: 10.1186/s12877-022-03394-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Sarcopenia is listed as a treatment trait in behavioral/risk factors for severe asthma, but studies on asthma and sarcopenia are lacking. This study aimed to determine the associations between sarcopenia with asthmatic prevalence, symptoms, lung function and comorbidities. METHODS Fifteen thousand four hundred four individuals from the China Health and Retirement Longitudinal Study(CHARLS) and 10,263 individuals from the Study on global AGEing and adult health(SAGE) in China were included in this study. Four components of this study were used to assess the bidirectional association in the prevalence between sarcopenia with asthma, and estimate the relationships between sarcopenia with asthmatic symptoms, lung function and comorbidities via generalized additive models. The 10-item Center for Epidemiological Studies-Depression Scale ≥ 12 scores was classified as depression. RESULTS In the CHARLS and SAGE, the prevalence of sarcopenia in asthmatics was higher than those without asthma. Asthmatics with sarcopenia had a significantly increased prevalence of severe shortness of breath(sarcopenia yes vs. no, adjusted OR = 3.71, 95%CI: 1.43-9.60) and airway obstruction in the SAGE(sarcopenia yes vs. no, adjusted OR = 6.82, 95%CI: 2.54-18.34) and an obvious reduction of PEF in the CHARLS and SAGE(sarcopenia yes vs. no, adjusted RR = 0.86, 95%CI: 0.82-0.91) compared to asthmatics without sarcopenia. The presence of sarcopenia was positively associated with the prevalence of chronic obstructive pulmonary disease(sarcopenia yes vs no, adjusted OR = 5.76, 95%CI:2.01-16.5) and depression(sarcopenia yes vs no, adjusted OR = 1.87, 95%CI:1.11-3.14) in asthmatics. CONCLUSIONS Our findings indicated that sarcopenia partakes in the development of asthma by affecting lung function and comorbidities and maybe considered a treatable trait of asthma management.
Collapse
Affiliation(s)
- Zhigang Hu
- Department of Respiratory and Critical Care Medicine, The First College of Clinical Medicine Science, China Three Gorges University, Yichang, 443003 People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Yichang Central People’s Hospital at Zhijiang, NO. 183 Yiling Road, Zhijiang, 443003 People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Yichang Central People’s Hospital, Yichang, 443003 People’s Republic of China
| | - Yufeng Tian
- Department of Academic Management, Clinical Research Center, China Three Gorges University, NO. 183 Yiling Road, Yichang, 443003 People’s Republic of China
| | - Xinyu Song
- Department of Respiratory and Critical Care Medicine, The First College of Clinical Medicine Science, China Three Gorges University, Yichang, 443003 People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Yichang Central People’s Hospital, Yichang, 443003 People’s Republic of China
| | - Fanjun Zeng
- Department of Respiratory and Critical Care Medicine, The First College of Clinical Medicine Science, China Three Gorges University, Yichang, 443003 People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Yichang Central People’s Hospital, Yichang, 443003 People’s Republic of China
| | - Ailan Yang
- Department of Respiratory and Critical Care Medicine, Yichang Central People’s Hospital at Zhijiang, NO. 183 Yiling Road, Zhijiang, 443003 People’s Republic of China
| |
Collapse
|
16
|
Chiba Y, Yamane Y, Sato T, Suto W, Hanazaki M, Sakai H. Hyperresponsiveness to Extracellular Acidification-Mediated Contraction in Isolated Bronchial Smooth Muscles of Murine Experimental Asthma. Lung 2022; 200:591-599. [PMID: 35930050 DOI: 10.1007/s00408-022-00558-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Extracellular acidification is a major component of tissue inflammation, including airway inflammation. The extracellular proton-sensing mechanisms are inherent in various cells including airway structural cells, although their physiological and pathophysiological roles in bronchial smooth muscles (BSMs) are not fully understood. In the present study, to explore the functional role of extracellular acidification on the BSM contraction, the isolated mouse BSMs were exposed to acidic pH under contractile stimulation. METHODS AND RESULTS The RT-PCR analyses revealed that the proton-sensing G protein-coupled receptors were expressed both in mouse BSMs and cultured human BSM cells. In the mouse BSMs, change in the extracellular pH from 8.0 to 6.8 caused an augmentation of contraction induced by acetylcholine. Interestingly, the acidic pH-induced BSM hyper-contraction was further augmented in the mice that were sensitized and repeatedly challenged with ovalbumin antigen. In this animal model of asthma, upregulations of G protein-coupled receptor 68 (GPR68) and GPR65, that were believed to be coupled with Gq and Gs proteins respectively, were observed, indicating that the acidic pH could cause hyper-contraction probably via an activation of GPR68. However, psychosine, a putative antagonist for GPR68, failed to block the acidic pH-induced responses. CONCLUSION These findings suggest that extracellular acidification contributes to the airway hyperresponsiveness, a characteristic feature of bronchial asthma. Further studies are required to identify the receptor(s) responsible for sensing extracellular protons in BSM cells.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Yamato Yamane
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tsubasa Sato
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Wataru Suto
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Motohiko Hanazaki
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Hiroyasu Sakai
- Laboratory of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
17
|
Liang J, Liu XH, Chen XM, Song XL, Li W, Huang Y. Emerging Roles of Non-Coding RNAs in Childhood Asthma. Front Pharmacol 2022; 13:856104. [PMID: 35656293 PMCID: PMC9152219 DOI: 10.3389/fphar.2022.856104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease in children characterized by airway inflammation, airway hyperresponsiveness and airway remodeling. Childhood asthma is usually associated with allergy and atopy, unlike adult asthma, which is commonly associated with obesity, smoking, etc. The pathogenesis and diagnosis of childhood asthma also remains more challenging than adult asthma, such as many diseases showing similar symptoms may coexist and be confused with asthma. In terms of the treatment, although most childhood asthma can potentially be self-managed and controlled with drugs, approximately 5-10% of children suffer from severe uncontrolled asthma, which carries significant health and socioeconomic burdens. Therefore, it is necessary to explore the pathogenesis of childhood asthma from a new perspective. Studies have revealed that non-coding RNAs (ncRNAs) are involved in the regulation of respiratory diseases. In addition, altered expression of ncRNAs in blood, and in condensate of sputum or exhalation affects the progression of asthma via regulating immune response. In this review, we outline the regulation and pathogenesis of asthma and summarize the role of ncRNAs in childhood asthma. We also hold promise that ncRNAs may be used for the development of biomarkers and support a new therapeutic strategy for childhood asthma.
Collapse
Affiliation(s)
- Juan Liang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xiao-Hua Liu
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xue-Mei Chen
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xiu-Ling Song
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Wen Li
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuge Huang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
18
|
Chiba Y, Ando Y, Kato Y, Hanazaki M, Sakai H. Down-regulation of miR-140-3p is a cause of the interlukin-13-induced up-regulation of RhoA protein in bronchial smooth muscle cells. Small GTPases 2022; 13:1-6. [PMID: 33427568 PMCID: PMC9707530 DOI: 10.1080/21541248.2021.1872318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The current study aimed to determine the role of a microRNA (miRNA), miR-140-3p, in the control of RhoA expression in bronchial smooth muscle cells (BSMCs). In cultured human BSMCs, incubation with interleukin-13 (IL-13) caused an up-regulation of RhoA protein concurrently with a down-regulation of miR-140-3p. Transfection of the cells with a miR-140-3p inhibitor caused an increase in basal RhoA protein level. Although a mimic of miR-140-3p had little effect on the basal RhoA level, its treatment inhibited the IL-13-induced up-regulation of RhoA. These findings suggest that RhoA expression is negatively regulated by miR-140-3p, and that the negative regulation is inhibited by IL-13 to cause an up-regulation of RhoA protein in BSMCs.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Laboratory of Molecular Biology and Physiology, School of Pharmacy, Hoshi University, Tokyo, Japan,CONTACT Yoshihiko Chiba Laboratory of Molecular Biology and Physiology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo142-8501, Japan
| | - Yusuke Ando
- Laboratory of Clinical Pathology, Faculty of Pharmacy, Josai University, Saitama, Japan
| | - Yasuna Kato
- Laboratory of Molecular Biology and Physiology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Motohiko Hanazaki
- Laboratory of Molecular Biology and Physiology, School of Pharmacy, Hoshi University, Tokyo, Japan,Department of Anesthesiology and Intensive Care Medicine, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Hiroyasu Sakai
- Laboratory of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| |
Collapse
|
19
|
The role of microRNAs in COVID-19 with a focus on miR-200c. J Circ Biomark 2022; 11:14-23. [PMID: 35356072 PMCID: PMC8939267 DOI: 10.33393/jcb.2022.2356] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/22/2022] [Indexed: 12/11/2022] Open
Abstract
Objective: Epigenetics is a quickly spreading scientific field, and the study of epigenetic regulation in various diseases such as infectious diseases is emerging. The microribonucleic acids (miRNAs) as one of the types of epigenetic processes bind to their target messenger RNAs (mRNAs) and regulate their stability and/or translation. This study aims to evaluate non-coding RNAs (ncRNAs) with a focus on miR-200c in COVID-19. In this review, we first define the epigenetics and miRNAs, and then the role of miRNAs in diseases focusing on lung diseases is explained. Finally, in this study, we will investigate the role and position of miRNAs with a focus on miR-200c in viral and severe acute respiratory syndrome–related coronavirus (SARS-CoV2) infections. Methods: Systematic search of MEDLINE, PubMed, Web of Science, Embase, and Cochrane Library was conducted for all relative papers from 2000 to 2021 with the limitations of the English language. Finally, we selected 128 articles which fit the best to our objective of study, among which 5 articles focused on the impact of miR-200c. Results: Due to the therapeutic results of various drugs in different races and populations, epigenetic processes, especially miRNAs, are important. The overall results showed that different types of miRNAs can be effective on the process of various lung diseases through different target pathways and genes. It is likely that amplified levels of miR-200c may lead to decreased angiotensin-converting enzyme-2 (ACE2) expression, which in turn may increase the potential of infection, inflammation, and the complications of coronavirus disease. Conclusion: miR-200c and its correlation with ACE2 can be used as early prognostic and diagnostic markers.
Collapse
|
20
|
Aslani M, Mortazavi-Jahromi SS, Mirshafiey A. Cytokine storm in the pathophysiology of COVID-19: Possible functional disturbances of miRNAs. Int Immunopharmacol 2021; 101:108172. [PMID: 34601331 PMCID: PMC8452524 DOI: 10.1016/j.intimp.2021.108172] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2, as the causative agent of COVID-19, is an enveloped positives-sense single-stranded RNA virus that belongs to the Beta-CoVs sub-family. A sophisticated hyper-inflammatory reaction named cytokine storm is occurred in patients with severe/critical COVID-19, following an imbalance in immune-inflammatory processes and inhibition of antiviral responses by SARS-CoV-2, which leads to pulmonary failure, ARDS, and death. The miRNAs are small non-coding RNAs with an average length of 22 nucleotides which play various roles as one of the main modulators of genes expression and maintenance of immune system homeostasis. Recent evidence has shown that Homo sapiens (hsa)-miRNAs have the potential to work in three pivotal areas including targeting the virus genome, regulating the inflammatory signaling pathways, and reinforcing the production/signaling of IFNs-I. However, it seems that several SARS-CoV-2-induced interfering agents such as viral (v)-miRNAs, cytokine content, competing endogenous RNAs (ceRNAs), etc. preclude efficient function of hsa-miRNAs in severe/critical COVID-19. This subsequently leads to increased virus replication, intense inflammatory processes, and secondary complications development. In this review article, we provide an overview of hsa-miRNAs roles in viral genome targeting, inflammatory pathways modulation, and IFNs responses amplification in severe/critical COVID-19 accompanied by probable interventional factors and their function. Identification and monitoring of these interventional elements can help us in designing the miRNAs-based therapy for the reduction of complications/mortality rate in patients with severe/critical forms of the disease.
Collapse
Affiliation(s)
- Mona Aslani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Rodrigo-Muñoz JM, Cañas JA, Sastre B, Gil-Martínez M, García Latorre R, Sastre J, Del Pozo V. Role of miR-185-5p as modulator of periostin synthesis and smooth muscle contraction in asthma. J Cell Physiol 2021; 237:1498-1508. [PMID: 34698372 PMCID: PMC9298424 DOI: 10.1002/jcp.30620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 11/11/2022]
Abstract
Asthma is a chronic respiratory disease produced by an aberrant immune response that originates with breathing difficulties and cough, through airway remodeling. The above pathophysiological events of asthma emerge the regulators of effectors, like epigenetics, which include microRNAs (miRNAs) who perform post‐transcriptional regulation, controlling diverse pathways in respiratory diseases. The objective of the study was to determine how miR‐185‐5p regulates the secretion of periostin by airway structural cells, and smooth muscle cells contraction, both related to airway remodeling in asthma. We used miR‐185‐5p mimic and inhibitors in bronchial smooth muscle cells (BSMCs) and small airway epithelial cells (SAECs) from healthy subjects. Gene expression and protein levels of periostin (POSTN), CDC42, and RHOA were analyzed by RT‐PCR and ELISA/Western blot, respectively. BSMC contractility was analyzed using cell‐embedded collagen gels and measurement of intracellular calcium was performed using Fura‐2. Additionally, miR‐185‐5p and periostin expression were evaluated in sputum from healthy and asthmatics. From these experiments, we observed that miR‐185‐5p modulation regulates periostin mRNA and protein in BSMCs and SAECs. A tendency for diminished miR‐185‐5p expression and higher periostin levels was seen in sputum cells from asthmatics compared to healthy, with an inverse correlation observed between POSTN and miR‐185‐5p. Inhibition of miR‐185‐5p produced higher BSMCs contraction induced by histamine. Calcium mobilization was not modified by miR‐185‐5p, showing that miR‐185‐5p role in BSMC contractility is performed by regulating CDC42 and RhoA pro‐contractile factors instead. In conclusion, miR‐185‐5p is a modulator of periostin secretion by airway structural cells and of smooth muscle contraction, which can be related to asthma pathophysiology, and thus, might be a promising therapeutic target.
Collapse
Affiliation(s)
- José M Rodrigo-Muñoz
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - José A Cañas
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Beatriz Sastre
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | | | - Joaquín Sastre
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Allergy, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Victoria Del Pozo
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
22
|
Ribeiro AO, de Oliveira AC, Costa JM, Nachtigall PG, Herkenhoff ME, Campos VF, Delella FK, Pinhal D. MicroRNA roles in regeneration: Multiple lessons from zebrafish. Dev Dyn 2021; 251:556-576. [PMID: 34547148 DOI: 10.1002/dvdy.421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs with pivotal roles in the control of gene expression. By comparing the miRNA profiles of uninjured vs. regenerating tissues and structures, several studies have found that miRNAs are potentially involved in the regenerative process. By inducing miRNA overexpression or inhibition, elegant experiments have directed regenerative responses validating relevant miRNA-to-target interactions. The zebrafish (Danio rerio) has been the epicenter of regenerative research because of its exceptional capability to self-repair damaged tissues and body structures. In this review, we discuss recent discoveries that have improved our understanding of the impact of gene regulation mediated by miRNAs in the context of the regeneration of fins, heart, retina, and nervous tissue in zebrafish. We compiled what is known about the miRNA control of regeneration in these tissues and investigated the links among up-regulated and down-regulated miRNAs, their putative or validated targets, and the regenerative process. Finally, we briefly discuss the forthcoming prospects, highlighting directions and the potential for further development of this field.
Collapse
Affiliation(s)
- Amanda Oliveira Ribeiro
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Arthur Casulli de Oliveira
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Juliana Mara Costa
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Pedro Gabriel Nachtigall
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil.,Laboratório Especial de Toxicologia Aplicada (LETA), CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | - Marcos Edgar Herkenhoff
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil.,Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Flávia Karina Delella
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Danillo Pinhal
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
23
|
Verma AK, Goyal Y, Bhatt D, Dev K, Beg MMA. MicroRNA: Biogenesis and potential role as biomarkers in lung diseases. Meta Gene 2021; 29:100920. [DOI: 10.1016/j.mgene.2021.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
24
|
m6A modification promotes miR-133a repression during cardiac development and hypertrophy via IGF2BP2. Cell Death Discov 2021; 7:157. [PMID: 34226535 PMCID: PMC8257704 DOI: 10.1038/s41420-021-00552-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/09/2021] [Accepted: 06/03/2021] [Indexed: 12/31/2022] Open
Abstract
Both N6-methyladenosine (m6A) RNA modification and microRNAs (miRNAs) are common regulatory mechanisms for gene post-transcription by modulating mRNA stability and translation. They also share the same 3′-untranslated regions (UTRs) regions for their target gene. However, little is known about their potential interaction in cell development and biology. Here, we aimed to investigate how m6A regulates the specific miRNA repression during cardiac development and hypertrophy. Our multiple lines of bioinformatic and molecular biological evidence have shown that m6A modification on cardiac miR-133a target sequence promotes miR-133a repressive effect via AGO2-IGF2BP2 (Argonaute 2—Insulin-like growth factor 2 mRNA binding protein 2) complex. Among 139 cardiac miRNAs, only the seed sequence of miR-133a was inversely complement to m6A consensus motif “GGACH” by sequence alignment analysis. Immunofluorescence staining, luciferase reporter, and m6A-RIP (RNA immunoprecipitation) assays revealed that m6A modification facilitated miR-133a binding to and repressing their targets. The inhibition of the miR-133a on cardiac proliferation and hypertrophy could be prevented by silencing of Fto (FTO alpha-ketoglutarate dependent dioxygenase) which induced m6A modification. IGF2BP2, an m6A binding protein, physically interacted with AGO2 and increased more miR-133a accumulation on its target site, which was modified by m6A. In conclusion, our study revealed a novel and precise regulatory mechanism that the m6A modification promoted the repression of specific miRNA during heart development and hypertrophy. Targeting m6A modification might provide a strategy to repair hypertrophic gene expression induced by miR-133a.
Collapse
|
25
|
Li S, Zhi F, Hu M, Xue X, Mo Y. MiR-133a is a potential target for arterial calcification in patients with end-stage renal disease. Int Urol Nephrol 2021; 54:217-224. [PMID: 34115259 DOI: 10.1007/s11255-021-02906-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/30/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Arterial calcification is an important risk factor for patients with end-stage renal disease. Despite substantial research efforts, the detailed mechanisms of the process of arterial calcification in end-stage renal disease remain unclear. METHODS miR-133a expression in radial artery samples was detected by FISH and Alizarin Red Staining. The expressions of miR-133a and RUNX2 in A7r5 cells with BMP2 induction were detected by qRT-PCR. In addition, qRT-PCR, Western blot, and ELISA assay were performed to detect changes in miR-133a levels in A7R5 cells after different treatments. RESULTS Alizarin Red staining showed that red crystal deposition occurred in the tunica media. FISH analysis indicated that miR-133a was upregulated in the tunica media of the radial artery samples without calcification when compared with those with calcification. We also found that expression of RUNX2 in A7r5 cells increased at day 7 and day 14 after BMP2 induction and decreased miR-133a expression decreased at day 14. In addition, RUNX2 protein and OCN expression were upregulated in A7r5 cells during BMP2-induced calcification. When miR-133a expression was suppressed, cell calcification aggravated, which led to upregulation of RUNX2 and OCN. When miR-133a was overexpressed, calcification of cells was inhibited, resulting in downregulation of RUNX2 and OCN. CONCLUSION The present study reveals that miR-133a could indirectly regulate cell calcification through the RUNX2 gene expression. Our findings provide insight into the potential use of miR-133a as a molecular target for diagnosing vascular calcification in end-stage renal disease.
Collapse
Affiliation(s)
- Sha Li
- Nephrology Department, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Jinglongjianshe Road, Longhua District, Shenzhen, 518109, China
| | - Fan Zhi
- Urology Department, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518109, China
| | - Mingliang Hu
- Nephrology Department, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Jinglongjianshe Road, Longhua District, Shenzhen, 518109, China.
| | - Xingkui Xue
- Central Laboratory, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518109, China
| | - Yihao Mo
- Nephrology Department, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Jinglongjianshe Road, Longhua District, Shenzhen, 518109, China
| |
Collapse
|
26
|
Yang Q, Shi W. Rho/ROCK-MYOCD in regulating airway smooth muscle growth and remodeling. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1-L5. [PMID: 33909498 DOI: 10.1152/ajplung.00034.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abnormal airway remodeling is a common pathological change seen in chronic respiratory diseases. Altered proliferation and differentiation of airway smooth muscle cells (ASMCs) are the major components of airway remodeling, and the resultant structural abnormalities are difficult to restore. Understanding of airway smooth muscle regulation is urgently needed to identify potential intervention targets. MYOCD (or myocardin) and myocardin-related transcription factors (MRTFs) are key cotranscription factors in muscle growth, which have not been extensively investigated in airway smooth muscle cells. In addition, the RhoA/ROCK signaling pathway is known to play an important role in airway remodeling partly through regulating the proliferation and differentiation of ASMCs, which may be connected with MYOCD/MRTF cotranscription factors [Kumawat et al. (Am J Physiol Lung Cell Mol Physiol 311: L529-L537, 2016); Lagna et al. (J Biol Chem 282: 37244-37255, 2007)]. This review focuses on this newly recognized and potentially important RhoA/ROCK-MYOCD/MRTFs pathway in controlling airway smooth muscle growth and remodeling.
Collapse
Affiliation(s)
- Qin Yang
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Wei Shi
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
27
|
MicroRNA Targets for Asthma Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:89-105. [PMID: 33788189 DOI: 10.1007/978-3-030-63046-1_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Asthma is a chronic inflammatory obstructive lung disease that is stratified into endotypes. Th2 high asthma is due to an imbalance of Th1/Th2 signaling leading to abnormally high levels of Th2 cytokines, IL-4, IL-5, and IL-13 and in some cases a reduction in type I interferons. Some asthmatics express Th2 low, Th1/Th17 high phenotypes with or without eosinophilia. Most asthmatics with Th2 high phenotype respond to beta-adrenergic agonists, muscarinic antagonists, and inhaled corticosteroids. However, 5-10% of asthmatics are not well controlled by these therapies despite significant advances in lung immunology and the pathogenesis of severe asthma. This problem is being addressed by developing novel classes of anti-inflammatory agents. Numerous studies have established efficacy of targeting pro-inflammatory microRNAs in mouse models of mild/moderate and severe asthma. Current approaches employ microRNA mimics and antagonists designed for use in vivo. Chemically modified oligonucleotides have enhanced stability in blood, increased cell permeability, and optimized target specificity. Delivery to lung tissue limits clinical applications, but it is a tractable problem. Future studies need to define the most effective microRNA targets and effective delivery systems. Successful oligonucleotide drug candidates must have adequate lung cell uptake, high target specificity, and efficacy with tolerable off-target effects.
Collapse
|
28
|
Chiba Y, Okumura K, Tamaki S, Yasuhara Y, Suto W, Hanazaki M, Sakai H. Increased Gene expression of CCL2/CCR2 axis in bronchial smooth muscles of allergen-challenged mice. Respir Physiol Neurobiol 2021; 289:103669. [PMID: 33813049 DOI: 10.1016/j.resp.2021.103669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Augmented bronchial smooth muscle (BSM) contraction is a cause of airway hyperresponsiveness (AHR) in asthma. Increasing evidence suggest that C-C motif chemokine 2 (CCL2) modulates smooth muscle contractility by activating its binding partner C-C chemokine receptor type 2 (CCR2). In the present study, changes in the gene expression of CCL2/CCR2 axis were determined in the BSMs of a murine model of allergic asthma. MATERIALS AND METHODS The ovalbumin (OA)-sensitized mice were repeatedly challenged with aerosolized OA to induce asthmatic reaction. Twenty-four hours after the last antigen challenge, total RNAs of the main BSM tissues and bronchoalveolar lavage fluids (BALFs) were obtained. RESULTS Our published microarray data (GEO accession No. GSE116504) detected changes in gene expression associated with the chemokine signaling pathway (KEGG Map ID: 04062) in BSMs of mice with AHR induced by antigen exposure. Among them, quantitative RT-PCR analyses showed significant increase in mRNA expression of Ccl2 and Ccr2. Analysis of BALFs also revealed a significant increase in Ccl2 protein in the airways of the diseased animals. CONCLUSION It is thus possible that, in association with the AHR, the CCL2/CCR2 axis is enhanced in the airways of allergic bronchial asthma.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Japan.
| | - Kaori Okumura
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Japan
| | - Sayuri Tamaki
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Japan
| | - Yurika Yasuhara
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Japan
| | - Wataru Suto
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Japan
| | - Motohiko Hanazaki
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine, International University of Health and Welfare, Japan
| | - Hiroyasu Sakai
- Laboratory of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Japan
| |
Collapse
|
29
|
Ntontsi P, Photiades A, Zervas E, Xanthou G, Samitas K. Genetics and Epigenetics in Asthma. Int J Mol Sci 2021; 22:ijms22052412. [PMID: 33673725 PMCID: PMC7957649 DOI: 10.3390/ijms22052412] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Asthma is one of the most common respiratory disease that affects both children and adults worldwide, with diverse phenotypes and underlying pathogenetic mechanisms poorly understood. As technology in genome sequencing progressed, scientific efforts were made to explain and predict asthma’s complexity and heterogeneity, and genome-wide association studies (GWAS) quickly became the preferred study method. Several gene markers and loci associated with asthma susceptibility, atopic and childhood-onset asthma were identified during the last few decades. Markers near the ORMDL3/GSDMB genes were associated with childhood-onset asthma, interleukin (IL)33 and IL1RL1 SNPs were associated with atopic asthma, and the Thymic Stromal Lymphopoietin (TSLP) gene was identified as protective against the risk to TH2-asthma. The latest efforts and advances in identifying and decoding asthma susceptibility are focused on epigenetics, heritable characteristics that affect gene expression without altering DNA sequence, with DNA methylation being the most described mechanism. Other less studied epigenetic mechanisms include histone modifications and alterations of miR expression. Recent findings suggest that the DNA methylation pattern is tissue and cell-specific. Several studies attempt to describe DNA methylation of different types of cells and tissues of asthmatic patients that regulate airway remodeling, phagocytosis, and other lung functions in asthma. In this review, we attempt to briefly present the latest advancements in the field of genetics and mainly epigenetics concerning asthma susceptibility.
Collapse
Affiliation(s)
- Polyxeni Ntontsi
- 7th Respiratory Medicine Department and Asthma Center, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece; (P.N.); (A.P.); (E.Z.)
| | - Andreas Photiades
- 7th Respiratory Medicine Department and Asthma Center, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece; (P.N.); (A.P.); (E.Z.)
| | - Eleftherios Zervas
- 7th Respiratory Medicine Department and Asthma Center, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece; (P.N.); (A.P.); (E.Z.)
| | - Georgina Xanthou
- Cellular Immunology Laboratory, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Konstantinos Samitas
- 7th Respiratory Medicine Department and Asthma Center, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece; (P.N.); (A.P.); (E.Z.)
- Cellular Immunology Laboratory, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
- Correspondence: ; Tel.: +30-210-778-1720
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW MicroRNAs (miRNAs) are small noncoding RNA molecules that are considered one of the fundamental regulatory mechanisms of gene expression. They are involved in many biologic processes, such as signal transduction, cell proliferation and differentiation, apoptosis and stress responses. The purpose of this review is to present recent knowledge about the role of miRNAs in asthma and outline possible applications of miRNAs. RECENT FINDINGS A core set of miRNAs involved in asthma includes downregulated let-7 family, miR-193b, miR-375 as well as upregulated miR-21, miR-223, miR-146a, miR-142-5p, miR-142-3p, miR-146b and miR-155. Recently it has been shown that most of the involved miRNAs increase secretion of Th2 cytokines, decrease secretion of Th1 cytokines, promote differentiation of T cells towards Th2 or play a role in hyperplasia and hypertrophy of bronchial smooth muscle cells. The profiles of miRNAs correlate with clinical characteristics, including lung function, phenotype and severity of asthma. SUMMARY Recent publications confirmed crucial regulatory role of miRNAs in the pathomechanism of asthma. Some single miRNAs or their sets hold the promise for their use as asthma biomarkers facilitating diagnosis or prediction of treatment outcomes. They are also possible target of future therapies. The studies in this field are lacking though.
Collapse
|
31
|
Chiba Y, Ando Y, Fujii S, Miyakawa Y, Suto W, Kamei J, Sakai H, Hanazaki M. Downregulation of miR-140-3p Is a Cause of Upregulation of RhoA Protein in Bronchial Smooth Muscle of Murine Experimental Asthma. Am J Respir Cell Mol Biol 2021; 64:138-140. [PMID: 33385215 DOI: 10.1165/rcmb.2020-0292le] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
| | - Yusuke Ando
- Hoshi University School of Pharmacy Tokyo, Japan and
| | - Shigeki Fujii
- Hoshi University School of Pharmacy Tokyo, Japan and
| | - Yui Miyakawa
- Hoshi University School of Pharmacy Tokyo, Japan and
| | - Wataru Suto
- Hoshi University School of Pharmacy Tokyo, Japan and
| | - Junzo Kamei
- Hoshi University School of Pharmacy Tokyo, Japan and
| | | | - Motohiko Hanazaki
- Hoshi University School of Pharmacy Tokyo, Japan and.,International University of Health and Welfare Chiba, Japan
| |
Collapse
|
32
|
Bao L, Chau CS, Lei Z, Hu H, Chan AG, Amber KT, Maienschein-Cline M, Tsoukas MM. Dysregulated microRNA expression in IL-4 transgenic mice, an animal model of atopic dermatitis. Arch Dermatol Res 2021; 313:837-846. [PMID: 33433718 DOI: 10.1007/s00403-020-02176-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022]
Abstract
IL-4 plays an important role in the pathogenesis of atopic dermatitis (AD). Previously we showed that the expression of genes in chemotaxis, angiogenesis, inflammation and barrier functions is dysregulated in IL-4 transgenic (Tg) mice, a well-characterized AD mouse model. In this study, we aim to study differential expression of microRNAs in IL-4 Tg mice. As compared with wild-type mice, we found that 10 and 79 microRNAs are dysregulated in the skin of IL-4 mice before and after the onset of skin lesions, respectively. Bioinformatic analysis and previous reports show that these dysregulated microRNAs may be involved in the NF-κB, TLRs, IL-4/IL-13, MAPK and other pathways. We also found that miR-139-5p and miR-196b-3p are significantly up-regulated in the peripheral blood of IL-4 Tg mice. Taken together, our data have identified many dysregulated microRNAs in IL-4 Tg mice, which may play important roles in AD pathogenesis and pathophysiology.
Collapse
Affiliation(s)
- Lei Bao
- Department of Dermatology, UIC-Dermatology, RM 338, MC624, 808 S. Wood Street, Chicago, IL, 60612, USA.
| | - Cecilia S Chau
- Sequencing Core, Genome Research Division, Research Resources Center, Chicago, USA
| | - Zhengdeng Lei
- Research Informatics Core, Genome Research Division, Research Resources Center, University of Illinois, Chicago, USA
| | - Hong Hu
- Research Informatics Core, Genome Research Division, Research Resources Center, University of Illinois, Chicago, USA
| | - Angelina G Chan
- Department of Dermatology, UIC-Dermatology, RM 338, MC624, 808 S. Wood Street, Chicago, IL, 60612, USA
| | - Kyle T Amber
- Department of Dermatology, UIC-Dermatology, RM 338, MC624, 808 S. Wood Street, Chicago, IL, 60612, USA
| | - Mark Maienschein-Cline
- Research Informatics Core, Genome Research Division, Research Resources Center, University of Illinois, Chicago, USA
| | - Maria M Tsoukas
- Department of Dermatology, UIC-Dermatology, RM 338, MC624, 808 S. Wood Street, Chicago, IL, 60612, USA
| |
Collapse
|
33
|
Chiba Y. [Non-coding RNAs and bronchial smooth muscle hyperresponsiveness in allergic bronchial asthma]. Nihon Yakurigaku Zasshi 2020; 155:364-368. [PMID: 33132251 DOI: 10.1254/fpj.20053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play important roles in normal and diseased cell functions. A small GTPase RhoA is a key protein of bronchial smooth muscle (BSM) contraction, and an up-regulation of RhoA has been demonstrated in BSMs of experimental asthma. Our previous study also demonstrated that RhoA translation was controlled by a miRNA, miR-133a, in BSMs. In human BSM cells (hBSMCs), an up-regulation of RhoA was observed when the function of endogenous miR-133a was inhibited by its antagomir. Treatment of hBSMCs with interleukin-13 (IL-13) caused an up-regulation of RhoA and a down-regulation of miR-133a. In a murine experimental asthma, increased expression of IL-13 and RhoA and the BSM hyperresponsiveness were observed. Interestingly, the level of miR-133a was significantly decreased in BSMs of the diseased animals. These findings suggest that RhoA expression is negatively regulated by miR-133a in BSMs, and that the miR-133a down-regulation causes an up-regulation of RhoA, resulting in an augmentation of the contraction. Recent studies also revealed an inhibitory effect of lncRNA Malat1 on the miR-133a function. Thus, lncRNAs/miRNAs might be key regulators of BSM hyperresponsiveness, and provide us a new insight into the treatment of airway hyperresponsiveness in asthmatics.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| |
Collapse
|
34
|
Chiba Y, Matsumoto M, Hanazaki M, Sakai H. Downregulation of miR-140-3p Contributes to Upregulation of CD38 Protein in Bronchial Smooth Muscle Cells. Int J Mol Sci 2020; 21:E7982. [PMID: 33121100 PMCID: PMC7663226 DOI: 10.3390/ijms21217982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
In allergic bronchial asthma, an increased smooth muscle contractility of the airways is one of the causes of the airway hyperresponsiveness (AHR). Increasing evidence also suggests a possible involvement of microRNAs (miRNAs) in airway diseases, including asthma, although their roles in function and pathology largely unknown. The current study aimed to determine the role of a miRNA, miR-140-3p, in the control of protein expression of CD38, which is believed to regulate the contraction of smooth muscles, including the airways. In bronchial smooth muscles (BSMs) of the mice that were actively sensitized and repeatedly challenged with ovalbumin antigen, an upregulation of CD38 protein concurrently with a significant reduction of miR-140-3p was observed. In cultured human BSM cells (hBSMCs), transfection with a synthetic miR-140-3p inhibitor caused an increase in CD38 protein, indicating that its basal protein expression is regulated by endogenous miR-140-3p. Treatment of the hBSMCs with interleukin-13 (IL-13), an asthma-related cytokine, caused both an upregulation of CD38 protein and a downregulation of miR-140-3p. Transfection of the hBSMCs with miR-140-3p mimic inhibited the CD38 protein upregulation induced by IL-13. On the other hand, neither a CD38 product cyclic ADP-ribose (cADPR) nor its antagonist 8-bromo-cADPR had an effect on the BSM contraction even in the antigen-challenged mice. Taken together, the current findings suggest that the downregulation of miR-140-3p induced by IL-13 might cause an upregulation of CD38 protein in BSM cells of the disease, although functional and pathological roles of the upregulated CD38 are still unclear.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Laboratory of Molecular Biology and Physiology, School of Pharmacy, Hoshi University, Tokyo 142-8501, Japan; (M.M.); (M.H.)
| | - Mayumi Matsumoto
- Laboratory of Molecular Biology and Physiology, School of Pharmacy, Hoshi University, Tokyo 142-8501, Japan; (M.M.); (M.H.)
| | - Motohiko Hanazaki
- Laboratory of Molecular Biology and Physiology, School of Pharmacy, Hoshi University, Tokyo 142-8501, Japan; (M.M.); (M.H.)
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine, International University of Health and Welfare, Chiba 286-8686, Japan
| | - Hiroyasu Sakai
- Laboratory of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo 142-8501, Japan;
| |
Collapse
|
35
|
Nunes KP, Webb RC. New insights into RhoA/Rho-kinase signaling: a key regulator of vascular contraction. Small GTPases 2020; 12:458-469. [PMID: 32970516 DOI: 10.1080/21541248.2020.1822721] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
While Rho-signalling controlling vascular contraction is a canonical mechanism, with the modern approaches used in research, we are advancing our understanding and details into this pathway are often uncovered. RhoA-mediated Rho-kinase is the major regulator of vascular smooth muscle cells and a key player manoeuvring other functions in these cells. The discovery of new interactions, such as oxidative stress and hydrogen sulphide with Rho signalling are emerging addition not only in the physiology of the smooth muscle, but especially in the pathophysiology of vascular diseases. Likewise, the interplay between ageing and Rho-kinase in the vasculature has been recently considered. Importantly, in smooth muscle contraction, this pathway may also be affected by sex hormones, and consequently, sex-differences. This review provides an overview of Rho signalling mediating vascular contraction and focuses on recent topics discussed in the literature affecting this pathway such as ageing, sex differences and oxidative stress.
Collapse
Affiliation(s)
- Kenia Pedrosa Nunes
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - R Clinton Webb
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
36
|
Chiba Y, Ueda C, Kohno N, Yamashita M, Miyakawa Y, Ando Y, Suto W, Hirabayashi T, Takenoya F, Takasaki I, Kamei J, Sakai H, Shioda S. Attenuation of relaxing response induced by pituitary adenylate cyclase-activating polypeptide in bronchial smooth muscle of experimental asthma. Am J Physiol Lung Cell Mol Physiol 2020; 319:L786-L793. [PMID: 32877227 DOI: 10.1152/ajplung.00315.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bronchomotor tone is regulated by contraction and relaxation of airway smooth muscle (ASM). A weakened ASM relaxation might be a cause of airway hyperresponsiveness (AHR), a characteristic feature of bronchial asthma. Pituitary adenylyl cyclase-activating polypeptide (PACAP) is known as a mediator that causes ASM relaxation. To date, whether or not the PACAP responsiveness is changed in asthmatic ASM is unknown. The current study examined the hypothesis that relaxation induced by PACAP is reduced in bronchial smooth muscle (BSM) of allergic asthma. The ovalbumin (OA)-sensitized mice were repeatedly challenged with aerosolized OA to induce asthmatic reaction. Twenty-four hours after the last antigen challenge, the main bronchial smooth muscle (BSM) tissues were isolated. Tension study showed a BSM hyperresponsiveness to acetylcholine in the OA-challenged mice. Both quantitative RT-PCR and immunoblot analyses revealed a significant decrease in PAC1 receptor expression in BSMs of the diseased mice. Accordingly, in the antigen-challenged group, the PACAP-induced PAC1 receptor-mediated BSM relaxation was significantly attenuated, whereas the relaxation induced by vasoactive intestinal polypeptide was not changed. These findings suggest that the relaxation induced by PACAP is impaired in BSMs of experimental asthma due to a downregulation of its binding partner PAC1 receptor. Impaired BSM responsiveness to PACAP might contribute to the AHR in asthma.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Chihiro Ueda
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Naoko Kohno
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Michio Yamashita
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Yui Miyakawa
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Yusuke Ando
- Department of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Wataru Suto
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Takahiro Hirabayashi
- Peptide Drug Innovation Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Fumiko Takenoya
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Ichiro Takasaki
- Department of Pharmacology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Junzo Kamei
- Department of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Seiji Shioda
- Peptide Drug Innovation Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
37
|
Suto W, Sakai H, Chiba Y. Sustained exposure to prostaglandin D 2 augments the contraction induced by acetylcholine via a DP 1 receptor-mediated activation of p38 in bronchial smooth muscle of naive mice. J Smooth Muscle Res 2020; 55:1-13. [PMID: 30918168 PMCID: PMC6433600 DOI: 10.1540/jsmr.55.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Prostaglandin D2 (PGD2), one of the key lipid mediators of
allergic airway inflammation, is increased in the airways of asthmatics.
However, the role of PGD2 in the pathogenesis of asthma is not fully
understood. In the present study, effects of PGD2 on smooth muscle
contractility of the airways were determined to elucidate its role in the
development of airway hyperresponsiveness (AHR). In a murine model of allergic
asthma, antigen challenge to the sensitized animals caused a sustained increase
in PGD2 levels in bronchoalveolar lavage (BAL) fluids, indicating
that smooth muscle cells of the airways are continually exposed to
PGD2 after the antigen exposure. In bronchial smooth muscles
(BSMs) isolated from naive mice, a prolonged incubation with PGD2
(10−5 M, for 24 h) induced an augmentation of contraction induced
by acetylcholine (ACh): the ACh concentration-response curve was significantly
shifted upward by the 24-h incubation with PGD2. Application of
PGD2 caused phosphorylation of ERK1/2 and p38 in cultured BSM
cells: both of the PGD2-induced events were abolished by laropiprant
(a DP1 receptor antagonist) but not by fevipiprant (a DP2
receptor antagonist). In addition, the BSM hyperresponsiveness to ACh induced by
the 24-h incubation with PGD2 was significantly inhibited by
co-incubation with SB203580 (a p38 inhibitor), whereas U0126 (a ERK1/2
inhibitor) had no effect on it. These findings suggest that prolonged exposure
to PGD2 causes the BSM hyperresponsiveness via the DP1
receptor-mediated activation of p38. A sustained increase in PGD2 in
the airways might be a cause of the AHR in allergic asthmatics.
Collapse
Affiliation(s)
- Wataru Suto
- Department of Physiology and Molecular Sciences, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
38
|
Usui-Kawanishi F, Takahashi M, Sakai H, Suto W, Kai Y, Chiba Y, Hiraishi K, Kurahara LH, Hori M, Inoue R. Implications of immune-inflammatory responses in smooth muscle dysfunction and disease. J Smooth Muscle Res 2020; 55:81-107. [PMID: 32023567 PMCID: PMC6997890 DOI: 10.1540/jsmr.55.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the past few decades, solid evidence has been accumulated for the pivotal significance
of immunoinflammatory processes in the initiation, progression, and exacerbation of many
diseases and disorders. This groundbreaking view came from original works by Ross who
first described that excessive inflammatory-fibroproliferative response to various forms
of insult to the endothelium and smooth muscle of the artery wall is essential for the
pathogenesis of atherosclerosis (Ross, Nature 1993; 362(6423): 801–9). It is now widely
recognized that both innate and adaptive immune reactions are avidly involved in the
inflammation-related remodeling of many tissues and organs. When this state persists,
irreversible fibrogenic changes would occur often culminating in fatal insufficiencies of
many vital parenchymal organs such as liver, lung, heart, kidney and intestines. Thus,
inflammatory diseases are becoming the common life-threatening risk for and urgent concern
about the public health in developed countries (Wynn et al., Nature Medicine 2012; 18(7):
1028–40). Considering this timeliness, we organized a special symposium entitled
“Implications of immune/inflammatory responses in smooth muscle dysfunction and disease”
in the 58th annual meeting of the Japan Society of Smooth Muscle Research. This symposium
report will provide detailed synopses of topics presented in this symposium; (1) the role
of inflammasome in atherosclerosis and abdominal aortic aneurysms by Fumitake
Usui-Kawanishi and Masafumi Takahashi; (2) Mechanisms underlying the pathogenesis of
hyper-contractility of bronchial smooth muscle in allergic asthma by Hiroyasu Sakai,
Wataru Suto, Yuki Kai and Yoshihiko Chiba; (3) Vascular remodeling in pulmonary arterial
hypertension by Keizo Hiraishi, Lin Hai Kurahara and Ryuji Inoue.
Collapse
Affiliation(s)
- Fumitake Usui-Kawanishi
- Division of Biopharmaceutical Engineering, Department of Pharmaceutical Engineering, Toyoma Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama 939-0398, Japan.,Division of Inflammation Research, Center of Molecular Medicine, Jichi Medical University, 3311-159 Yakushiji, Shimono-shi, Tochigi 329-0498, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center of Molecular Medicine, Jichi Medical University, 3311-159 Yakushiji, Shimono-shi, Tochigi 329-0498, Japan
| | - Hiroyasu Sakai
- Department of Analytical Pathophysiology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Wataru Suto
- Department of Physiology and Molecular Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuki Kai
- Department of Analytical Pathophysiology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Keizo Hiraishi
- Department of Physiology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Lin Hai Kurahara
- Department of Physiology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.,Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ido, Miki-machi, Kida-gun, Kagawa 761-0793, Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryuji Inoue
- Department of Physiology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
39
|
Uray K, Major E, Lontay B. MicroRNA Regulatory Pathways in the Control of the Actin-Myosin Cytoskeleton. Cells 2020; 9:E1649. [PMID: 32660059 PMCID: PMC7408560 DOI: 10.3390/cells9071649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are key modulators of post-transcriptional gene regulation in a plethora of processes, including actin-myosin cytoskeleton dynamics. Recent evidence points to the widespread effects of miRNAs on actin-myosin cytoskeleton dynamics, either directly on the expression of actin and myosin genes or indirectly on the diverse signaling cascades modulating cytoskeletal arrangement. Furthermore, studies from various human models indicate that miRNAs contribute to the development of various human disorders. The potentially huge impact of miRNA-based mechanisms on cytoskeletal elements is just starting to be recognized. In this review, we summarize recent knowledge about the importance of microRNA modulation of the actin-myosin cytoskeleton affecting physiological processes, including cardiovascular function, hematopoiesis, podocyte physiology, and osteogenesis.
Collapse
Affiliation(s)
- Karen Uray
- Correspondence: (K.U.); (B.L.); Tel.: +36-52-412345 (K.U. & B.L.)
| | | | - Beata Lontay
- Correspondence: (K.U.); (B.L.); Tel.: +36-52-412345 (K.U. & B.L.)
| |
Collapse
|
40
|
Gomez JL, Chen A, Diaz MP, Zirn N, Gupta A, Britto C, Sauler M, Yan X, Stewart E, Santerian K, Grant N, Liu Q, Fry R, Rager J, Cohn L, Alexis N, Chupp GL. A Network of Sputum MicroRNAs Is Associated with Neutrophilic Airway Inflammation in Asthma. Am J Respir Crit Care Med 2020; 202:51-64. [PMID: 32255668 PMCID: PMC7328332 DOI: 10.1164/rccm.201912-2360oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/06/2020] [Indexed: 01/06/2023] Open
Abstract
Rationale: MicroRNAs are potent regulators of biologic systems that are critical to tissue homeostasis. Individual microRNAs have been identified in airway samples. However, a systems analysis of the microRNA-mRNA networks present in the sputum that contribute to airway inflammation in asthma has not been published.Objectives: Identify microRNA and mRNA networks in the sputum of patients with asthma.Methods: We conducted a genome-wide analysis of microRNA and mRNA in the sputum from patients with asthma and correlated expression with clinical phenotypes. Weighted gene correlation network analysis was implemented to identify microRNA networks (modules) that significantly correlate with clinical features of asthma and mRNA expression networks. MicroRNA expression in peripheral blood neutrophils and lymphocytes and in situ hybridization of the sputum were used to identify the cellular sources of microRNAs. MicroRNA expression obtained before and after ozone exposure was also used to identify changes associated with neutrophil counts in the airway.Measurements and Main Results: Six microRNA modules were associated with clinical features of asthma. A single module (nely) was associated with a history of hospitalizations, lung function impairment, and numbers of neutrophils and lymphocytes in the sputum. Of the 12 microRNAs in the nely module, hsa-miR-223-3p was the highest expressed microRNA in neutrophils and was associated with increased neutrophil counts in the sputum in response to ozone exposure. Multiple microRNAs in the nely module correlated with two mRNA modules enriched for TLR (Toll-like receptor) and T-helper cell type 17 (Th17) signaling and endoplasmic reticulum stress. hsa-miR-223-3p was a key regulator of the TLR and Th17 pathways in the sputum of subjects with asthma.Conclusions: This study of sputum microRNA and mRNA expression from patients with asthma demonstrates the existence of microRNA networks and genes that are associated with features of asthma severity. Among these, hsa-miR-223-3p, a neutrophil-derived microRNA, regulates TLR/Th17 signaling and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Jose L. Gomez
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Ailu Chen
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Maria Paula Diaz
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Nicholas Zirn
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Amolika Gupta
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Clemente Britto
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Xiting Yan
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Emma Stewart
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Kyle Santerian
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Nicole Grant
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Qing Liu
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Rebecca Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina; and
| | - Julia Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina; and
| | - Lauren Cohn
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Neil Alexis
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina
| | - Geoffrey L. Chupp
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
41
|
Tan BWQ, Sim WL, Cheong JK, Kuan WS, Tran T, Lim HF. MicroRNAs in chronic airway diseases: Clinical correlation and translational applications. Pharmacol Res 2020; 160:105045. [PMID: 32590100 DOI: 10.1016/j.phrs.2020.105045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are short single-stranded RNAs that have pivotal roles in disease pathophysiology through transcriptional and translational modulation of important genes. It has been implicated in the development of many diseases, such as stroke, cardiovascular conditions, cancers and inflammatory airway diseases. There is recent evidence that miRNAs play important roles in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD), and could help to distinguish between T2-low (non-eosinophilic, steroid-insensitive) versus T2-high (eosinophilic, steroid-sensitive) disease endotypes. As these are the two most prevalent chronic respiratory diseases globally, with rising disease burden, miRNA research might lead to the development of new diagnostic and therapeutic targets. Research involving miRNAs in airway disease is challenging because: (i) asthma and COPD are heterogeneous inflammatory airway diseases; there are overlapping but distinct inter- and intra-disease differences in the immunological pathophysiology, (ii) there exists more than 2000 known miRNAs and a single miRNA can regulate multiple targets, (iii) differential effects of miRNAs could be present in different cellular subtypes and tissues, and (iv) dysregulated miRNA expression might be a direct consequence of an indirect effect of airway disease onset or progression. As miRNAs are actively secreted in fluids and remain relatively stable, they have the potential for biomarker development and therapeutic targets. In this review, we summarize the preclinical data on potential miRNA biomarkers that mediate different pathophysiological mechanisms in airway disease. We discuss the framework for biomarker development using miRNA and highlight the need for careful patient characterization and endotyping in the screening and validation cohorts, profiling both airway and blood samples to determine the biological fluids of choice in different disease states or severity, and adopting an untargeted approach. Collaboration between the various stakeholders - pharmaceutical companies, laboratory professionals and clinician-scientists is crucial to reduce the difficulties and cost required to bring miRNA research into the translational stage for airway diseases.
Collapse
Affiliation(s)
- Bryce W Q Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei Liang Sim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jit Kong Cheong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Win Sen Kuan
- Department of Emergency Medicine, National University Hospital, National University Health System, Singapore
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hui Fang Lim
- Division of Respiratory & Critical Care Medicine, Department of Medicine, National University Hospital, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
42
|
Zhang Y, Saradna A, Ratan R, Ke X, Tu W, Do DC, Hu C, Gao P. RhoA/Rho-kinases in asthma: from pathogenesis to therapeutic targets. Clin Transl Immunology 2020; 9:e01134. [PMID: 32355562 PMCID: PMC7190398 DOI: 10.1002/cti2.1134] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Asthma is a chronic and heterogeneous disease characterised by airway inflammation and intermittent airway narrowing. The key obstacle in the prevention and treatment of asthma has been our incomplete understanding of its aetiology and biological mechanisms. The ras homolog family member A (RhoA) of the Rho family GTPases has been considered to be one of the most promising and novel therapeutic targets for asthma. It is well known that RhoA/Rho-kinases play an important role in the pathophysiology of asthma, including airway smooth muscle contraction, airway hyper-responsiveness, β-adrenergic desensitisation and airway remodelling. However, recent advances have suggested novel roles for RhoA in regulating allergic airway inflammation. Specifically, RhoA has been shown to regulate allergic airway inflammation through controlling Th2 or Th17 cell differentiation and to regulate airway remodelling through regulating mesenchymal stem cell (MSC) differentiation. In this review, we evaluate the literature regarding the recent advances in the activation of RhoA/Rho-kinase, cytokine and epigenetic regulation of RhoA/Rho-kinase, and the role of RhoA/Rho-kinase in regulating major features of asthma, such as airway hyper-responsiveness, remodelling and inflammation. We also discuss the importance of the newly identified role of RhoA/Rho-kinase signalling in MSC differentiation and bronchial epithelial barrier dysfunction. These findings indicate the functional significance of the RhoA/Rho-kinase pathway in the pathophysiology of asthma and suggest that RhoA/Rho-kinase signalling may be a promising therapeutic target for the treatment of asthma.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Allergy and Clinical ImmunologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of Respiratory MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Arjun Saradna
- Division of Allergy and Clinical ImmunologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- Division of PulmonaryCritical Care and Sleep MedicineState University of New York at BuffaloBuffaloNYUSA
| | - Rhea Ratan
- Division of Allergy and Clinical ImmunologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Xia Ke
- Division of Allergy and Clinical ImmunologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of OtorhinolaryngologyFirst Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Wei Tu
- Division of Allergy and Clinical ImmunologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of Respirology and AllergyThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Danh C Do
- Division of Allergy and Clinical ImmunologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Chengping Hu
- Department of Respiratory MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Peisong Gao
- Division of Allergy and Clinical ImmunologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
43
|
Baskara-Yhuellou I, Tost J. The impact of microRNAs on alterations of gene regulatory networks in allergic diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:237-312. [PMID: 32085883 DOI: 10.1016/bs.apcsb.2019.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Allergic diseases including asthma are worldwide on the rise and contribute significantly to health expenditures. Allergic diseases are prototypic diseases with a strong gene by environment interaction component and epigenetic mechanisms might mediate the effects of the environment on the disease phenotype. MicroRNAs, small non-coding RNAs (miRNAs), regulate gene expression post-transcriptionally. Functional single-stranded miRNAs are generated in multiple steps of enzymatic processing from their precursors and mature miRNAs are included into the RNA-induced silencing complex (RISC). They imperfectly base-pair with the 3'UTR region of targeted genes leading to translational repression or mRNA decay. The cellular context and microenvironment as well the isoform of the mRNA control the dynamics and complexity of the regulatory circuits induced by miRNAs that regulate cell fate decisions and function. MiR-21, miR-146a/b and miR-155 are among the best understood miRNAs of the immune system and implicated in different diseases including allergic diseases. MiRNAs are implicated in the induction of the allergy reinforcing the Th2 phenotype (miR-19a, miR-24, miR-27), while other miRNAs promote regulatory T cells associated with allergen tolerance or unresponsiveness. In the current chapter we describe in detail the biogenesis and regulatory function of miRNAs and summarize current knowledge on miRNAs in allergic diseases and allergy relevant cell fate decisions focusing mainly on immune cells. Furthermore, we evoke the principles of regulatory loops and feedback mechanisms involving miRNAs on examples with relevance for allergic diseases. Finally, we show the potential of miRNAs and exosomes containing miRNAs present in several biological fluids that can be exploited with non-invasive procedures for diagnostic and potentially therapeutic purposes.
Collapse
Affiliation(s)
- Indoumady Baskara-Yhuellou
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| |
Collapse
|
44
|
Korde A, Ahangari F, Haslip M, Zhang X, Liu Q, Cohn L, Gomez JL, Chupp G, Pober JS, Gonzalez A, Takyar SS. An endothelial microRNA-1-regulated network controls eosinophil trafficking in asthma and chronic rhinosinusitis. J Allergy Clin Immunol 2020; 145:550-562. [PMID: 32035607 PMCID: PMC8440091 DOI: 10.1016/j.jaci.2019.10.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/25/2019] [Accepted: 10/16/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Airway eosinophilia is a prominent feature of asthma and chronic rhinosinusitis (CRS), and the endothelium plays a key role in eosinophil trafficking. To date, microRNA-1 (miR-1) is the only microRNA known to be regulated in the lung endothelium in asthma models. OBJECTIVE We sought to determine the role of endothelial miR-1 in allergic airway inflammation. METHODS We measured microRNA and mRNA expression using quantitative RT-PCR. We used ovalbumin and house dust mite models of asthma. Endothelium-specific overexpression of miR-1 was achieved through lentiviral vector delivery or induction of a transgene. Tissue eosinophilia was quantified by using Congo red and anti-eosinophil peroxidase staining. We measured eosinophil binding with a Sykes-Moore adhesion chamber. Target recruitment to RNA-induced silencing complex was assessed by using anti-Argonaute2 RNA immunoprecipitation. Surface P-selectin levels were measured by using flow cytometry. RESULTS Serum miR-1 levels had inverse correlations with sputum eosinophilia, airway obstruction, and number of hospitalizations in asthmatic patients and sinonasal tissue eosinophilia in patients with CRS. IL-13 stimulation decreased miR-1 levels in human lung endothelium. Endothelium-specific overexpression of miR-1 reduced airway eosinophilia and asthma phenotypes in murine models and inhibited IL-13-induced eosinophil binding to endothelial cells. miR-1 recruited P-selectin, thymic stromal lymphopoietin, eotaxin-3, and thrombopoietin receptor to the RNA-induced silencing complex; downregulated these genes in the lung endothelium; and reduced surface P-selectin levels in IL-13-stimulated endothelial cells. In our asthma and CRS cohorts, miR-1 levels correlated inversely with its target genes. CONCLUSION Endothelial miR-1 regulates eosinophil trafficking in the setting of allergic airway inflammation. miR-1 has therapeutic potential in asthmatic patients and patients with CRS.
Collapse
Affiliation(s)
- Asawari Korde
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Farida Ahangari
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Maria Haslip
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn; Yale School of Nursing, Orange, Conn
| | - Xuchen Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Conn
| | - Qing Liu
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Lauren Cohn
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Jose L Gomez
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Geoffrey Chupp
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Jordan S Pober
- Department of Immunobiology, Yale School of Medicine, New Haven, Conn
| | | | - Shervin S Takyar
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn.
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Numerous signaling pathways and inflammatory responses in cells and tissues are under microRNA (miRNA) control. In the present review, the role of miRNAs and exosomes in the pathogenesis of asthma will be discussed. RECENT FINDINGS MiRNAs differentially expressed with asthma, for example, miRNA-34/449, let-7, miRNA-19, miRNA-21, and miRNA-455, were identified in various cell types and tissues including epithelial cells, T cells, type 2 innate lymphoid cells, lung tissues, and smooth muscles. Current data suggest the involvement of these miRNAs in epithelial differentiation, mucus production, airway remodeling, inflammation, etc. However, it is often difficult to predict which genes are targeted by a specific miRNA. We recently combined genome-wide miRNA analyses together with transcriptome in bronchial biopsies, in relation to chronic mucus hypersecretion, then performed a genome-wide miRNA-mRNA network analysis and identified the key miRNA regulators for chronic mucus hypersecretion. SUMMARY There is now growing evidence suggesting that miRNAs play critically important roles in asthma. Several asthma-associated miRNAs have already been identified. Although miRNAs are attractive targets for therapeutic intervention, a safe and effective delivery to target tissues and cells in humans remains a challenge.
Collapse
|
46
|
Dutta RK, Chinnapaiyan S, Unwalla H. Aberrant MicroRNAomics in Pulmonary Complications: Implications in Lung Health and Diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:413-431. [PMID: 31655261 PMCID: PMC6831837 DOI: 10.1016/j.omtn.2019.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
Abstract
Over the last few decades, evolutionarily conserved molecular networks have emerged as important regulators in the expression and function of eukaryotic genomes. Recently, miRNAs (miRNAs), a large family of small, non-coding regulatory RNAs were identified in these networks as regulators of endogenous genes by exerting post-transcriptional gene regulation activity in a broad range of eukaryotic species. Dysregulation of miRNA expression correlates with aberrant gene expression and can play an essential role in human health and disease. In the context of the lung, miRNAs have been implicated in organogenesis programming, such as proliferation, differentiation, and morphogenesis. Gain- or loss-of-function studies revealed their pivotal roles as regulators of disease development, potential therapeutic candidates/targets, and clinical biomarkers. An altered microRNAome has been attributed to several pulmonary diseases, such as asthma, chronic pulmonary obstructive disease, cystic fibrosis, lung cancer, and idiopathic pulmonary fibrosis. Considering the relevant roles and functions of miRNAs under physiological and pathological conditions, they may lead to the invention of new diagnostic and therapeutic tools. This review will focus on recent advances in understanding the role of miRNAs in lung development, lung health, and diseases, while also exploring the progress and prospects of their application as therapeutic leads or as biomarkers.
Collapse
Affiliation(s)
- Rajib Kumar Dutta
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Srinivasan Chinnapaiyan
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Hoshang Unwalla
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Asthma is one of the most common chronic respiratory diseases linked with increased morbidity and healthcare utilization. The underlying pathophysiological processes and causal relationships of asthma with epigenetic mechanisms are partially understood. Here we review human studies of epigenetic mechanisms in asthma, with a special focus on DNA methylation. RECENT FINDINGS Epigenetic studies of childhood asthma have identified specific methylation signatures associated with allergic inflammation in the airway and immune cells, demonstrating a regulatory role for methylation in asthma pathogenesis. Despite these novel findings, additional research in the role of epigenetic mechanisms underlying asthma endotypes is needed. Similarly, studies of histone modifications are also lacking in asthma. Future studies of epigenetic mechanisms in asthma will benefit from data integration in well phenotyped cohorts. This review provides an overview of the current literature on epigenetic studies in human asthma, with special emphasis on methylation and childhood asthma.
Collapse
Affiliation(s)
- Jose L Gomez
- Pulmonary, Critical Care and Sleep, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
48
|
Athari SS. Targeting cell signaling in allergic asthma. Signal Transduct Target Ther 2019; 4:45. [PMID: 31637021 PMCID: PMC6799822 DOI: 10.1038/s41392-019-0079-0] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023] Open
Abstract
Asthma is chronic inflammation of the airways characterized by airway hyper-responsiveness, wheezing, cough, and dyspnea. Asthma affects >350 million people worldwide. The Th2 immune response is a major contributor to the pathophysiology of asthma. Targeted therapy modulating cell signaling pathways can be a powerful strategy to design new drugs to treat asthma. The potential molecular pathways that can be targeted include IL-4-IL-13-JAK-STAT-MAP kinases, adiponectin-iNOS-NF-κB, PGD2-CRTH2, IFNs-RIG, Wnt/β-catenin-FAM13A, FOXC1-miR-PI3K/AKT, JNK-Gal-7, Nrf2-ROS, Foxp3-RORγt, CysLTR, AMP, Fas-FasL, PTHrP/PPARγ, PAI-1, FcɛRI-LAT-SLP-76, Tim-3-Gal-9, TLRs-MyD88, PAR2, and Keap1/Nrf2/ARE. Therapeutic drugs can be designed to target one or more of these pathways to treat asthma.
Collapse
Affiliation(s)
- Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
49
|
Wei P, Xie Y, Abel PW, Huang Y, Ma Q, Li L, Hao J, Wolff DW, Wei T, Tu Y. Transforming growth factor (TGF)-β1-induced miR-133a inhibits myofibroblast differentiation and pulmonary fibrosis. Cell Death Dis 2019; 10:670. [PMID: 31511493 PMCID: PMC6739313 DOI: 10.1038/s41419-019-1873-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/15/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
Abstract
Transforming growth factor (TGF)-β1, a main profibrogenic cytokine in the progression of idiopathic pulmonary fibrosis (IPF), induces differentiation of pulmonary fibroblasts to myofibroblasts that produce high levels of collagen, leading to concomitantly loss of lung elasticity and function. Recent studies implicate the importance of microRNAs (miRNAs) in IPF but their regulation and individual pathological roles remain largely unknown. We used both RNA sequencing and quantitative RT-PCR strategies to systematically study TGF-β1-induced alternations of miRNAs in human lung fibroblasts (HFL). Our data show that miR-133a was significantly upregulated by TGF-β1 in a time- and concentration-dependent manner. Surprisingly, miR-133a inhibits TGF-β1-induced myofibroblast differentiation whereas miR-133a inhibitor enhances TGF-β1-induced myofibroblast differentiation. Interestingly, quantitative proteomics analysis indicates that miR-133a attenuates myofibroblast differentiation via targeting multiple components of TGF-β1 profibrogenic pathways. Western blot analysis confirmed that miR-133a down-regulates TGF-β1-induced expression of classic myofibroblast differentiation markers such as ɑ-smooth muscle actin (ɑ-SMA), connective tissue growth factor (CTGF) and collagens. miRNA Target Searcher analysis and luciferase reporter assays indicate that TGF-β receptor 1, CTGF and collagen type 1-alpha1 (Col1a1) are direct targets of miR-133a. More importantly, miR-133a gene transferred into lung tissues ameliorated bleomycin-induced pulmonary fibrosis in mice. Together, our study identified TGF-β1-induced miR-133a as an anti-fibrotic factor. It functions as a feed-back negative regulator of TGF-β1 profibrogenic pathways. Thus, manipulations of miR-133a expression may provide a new therapeutic strategy to halt and perhaps even partially reverse the progression of IPF.
Collapse
Affiliation(s)
- Peng Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, 68178, USA
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Xie
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Peter W Abel
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Yapei Huang
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Qin Ma
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Linghai Li
- Department of Anesthesiology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Junfeng Hao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dennis W Wolff
- Kansas City University of Medicine and Biosciences-Joplin, Joplin, MO, 64804, USA
| | - Taotao Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yaping Tu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, 68178, USA.
| |
Collapse
|
50
|
Murdaca G, Tonacci A, Negrini S, Greco M, Borro M, Puppo F, Gangemi S. Effects of AntagomiRs on Different Lung Diseases in Human, Cellular, and Animal Models. Int J Mol Sci 2019; 20:3938. [PMID: 31412612 PMCID: PMC6719072 DOI: 10.3390/ijms20163938] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/14/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION MiRNAs have been shown to play a crucial role among lung cancer, pulmonary fibrosis, tuberculosis (TBC) infection, and bronchial hypersensitivity, thus including chronic obstructive pulmonary disease (COPD) and asthma. The oncogenic effect of several miRNAs has been recently ruled out. In order to act on miRNAs turnover, antagomiRs have been developed. MATERIALS AND METHODS The systematic review was conducted under the PRISMA guidelines (registration number is: CRD42019134173). The PubMed database was searched between 1 January 2000 and 30 April 2019 under the following search strategy: (((antagomiR) OR (mirna antagonists) OR (mirna antagonist)) AND ((lung[MeSH Terms]) OR ("lung diseases"[MeSH Terms]))). We included original articles, published in English, whereas exclusion criteria included reviews, meta-analyses, single case reports, and studies published in a language other than English. RESULTS AND CONCLUSIONS A total of 68 articles matching the inclusion criteria were retrieved. Overall, the use of antagomiR was seen to be efficient in downregulating the specific miRNA they are conceived for. The usefulness of antagomiRs was demonstrated in humans, animal models, and cell lines. To our best knowledge, this is the first article to encompass evidence regarding miRNAs and their respective antagomiRs in the lung, in order to provide readers a comprehensive review upon major lung disorders.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
| | - Simone Negrini
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Monica Greco
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Matteo Borro
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Puppo
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|