1
|
Antoniu S, Rascu S. Protein phosphatase 2A activators under investigation for smoking-related chronic obstructive pulmonary disease and related disorders. Expert Opin Investig Drugs 2024; 33:1135-1142. [PMID: 39394816 DOI: 10.1080/13543784.2024.2416982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/14/2024]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is characterized by progressive inflammation during therapy. Cystic fibrosis (CF), alpha-one antitrypsin deficiency (AATD), and non-CF bronchiectasis are also chronic respiratory disorders with inflammation and progression that share many similarities with COPD. Therefore, various anti-inflammatory approaches are currently being investigated, and protein phosphatase 2A (PP2A) activators may represent one such approach. AREAS COVERED Systematic review of papers published from 2000-to date on the anti-inflammatory role of endogenous PP2A, the consequences of its inhibition by smoking, and the beneficial effects of its activation in COPD. EXPERT OPINION PP2A activation is a plausible therapeutic approach in COPD and related disorders, such as CF, AATD, and non-CF bronchiectasis, although the available evidence is still mostly experimental. Metformin repurposing and consideration of inhalation for some of the molecules discussed in this study are promising approaches.
Collapse
Affiliation(s)
- Sabina Antoniu
- Department Medicine II/Nursing, University of Medicine and Pharmacy, Grigore T Popa Iasi, Iasi, Romania
| | - Setfan Rascu
- Faculty of Medicine, 3rd Department, University of Medicine and Pharmacy, Carol Davila Bucuresti, Bucuresti, Romania
| |
Collapse
|
2
|
Chen X, Lu T, Ding M, Cai Y, Yu Z, Zhou X, Wang X. Targeting YTHDF2 inhibits tumorigenesis of diffuse large B-cell lymphoma through ACER2-mediated ceramide catabolism. J Adv Res 2024; 63:17-33. [PMID: 37865189 PMCID: PMC11379987 DOI: 10.1016/j.jare.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023] Open
Abstract
INTRODUCTION Epigenetic alterations play crucial roles in diffuse large B-cell lymphoma (DLBCL). Disturbances in lipid metabolism contribute to tumor progression. However, studies in epigenetics, especially its critical regulator YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), on lipid metabolism regulation in DLBCL are unidentified. OBJECTIVES Elucidate the prognostic value and biological functions of YTHDF2 in DLBCL and illuminate the underlying epigenetic regulation mechanism of lipid metabolism by YTHDF2 in DLBCL development. METHODS The expression and clinical value of YTHDF2 in DLBCL were performed in public databases and clinical specimens. The biological functions of YTHDF2 in DLBCL were determined in vivo and in vitro through overexpression and CRISPR/Cas9-mediated knockout of YTHDF2. RNA sequencing, lipidomics, methylated RNA immunoprecipitation sequencing, RNA immunoprecipitation-qPCR, luciferase activity assay, and RNA stability experiments were used to explore the potential mechanism by which YTHDF2 contributed to DLBCL progression. RESULTS YTHDF2 was highly expressed in DLBCL, and related to poor prognosis. YTHDF2 overexpression exerted a tumor-promoting effect in DLBCL, and knockdown of YTHDF2 restricted DLBCL cell proliferation, arrested cell cycle in the G2/M phase, facilitated apoptosis, and enhanced drug sensitivity to ibrutinib and venetoclax. In addition, YTHDF2 knockout drastically suppressed tumor growth in xenograft DLBCL models. Furthermore, a regulatory role of YTHDF2 in ceramide metabolism was identified in DLBCL cells. Exogenous ceramide effectively inhibited the malignant phenotype of DLBCL cells in vitro. The binding of YTHDF2 to m6A sites on alkaline ceramidase 2 (ACER2) mRNA promoted its stability and expression. Enhanced ACER2 expression hydrolyzed ceramides, disrupting the balance between ceramide and sphingosine-1-phosphate (S1P), activating the ERK and PI3K/AKT pathways, and leading to DLBCL tumorigenesis. CONCLUSION This study demonstrated that YTHDF2 contributed to the progression of DLBCL by regulating ACER2-mediated ceramide metabolism in an m6A-dependent manner, providing novel insights into targeted therapies.
Collapse
Affiliation(s)
- Xiaomin Chen
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Tiange Lu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Mengfei Ding
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Yiqing Cai
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Zhuoya Yu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong 250021, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 251006, China.
| |
Collapse
|
3
|
Tang Z, Liang D, Deubler EL, Sarnat JA, Chow SS, Diver WR, Wang Y. Lung cancer metabolomics: a pooled analysis in the Cancer Prevention Studies. BMC Med 2024; 22:262. [PMID: 38915026 PMCID: PMC11197282 DOI: 10.1186/s12916-024-03473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND A better understanding of lung cancer etiology and the development of screening biomarkers have important implications for lung cancer prevention. METHODS We included 623 matched case-control pairs from the Cancer Prevention Study (CPS) cohorts. Pre-diagnosis blood samples were collected between 1998 and 2001 in the CPS-II Nutrition cohort and 2006 and 2013 in the CPS-3 cohort and were sent for metabolomics profiling simultaneously. Cancer-free controls at the time of case diagnosis were 1:1 matched to cases on date of birth, blood draw date, sex, and race/ethnicity. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using conditional logistic regression, controlling for confounders. The Benjamini-Hochberg method was used to correct for multiple comparisons. RESULTS Sphingomyelin (d18:0/22:0) (OR: 1.32; 95% CI: 1.15, 1.53, FDR = 0.15) and taurodeoxycholic acid 3-sulfate (OR: 1.33; 95% CI: 1.14, 1.55, FDR = 0.15) were positively associated with lung cancer risk. Participants diagnosed within 3 years of blood draw had a 55% and 48% higher risk of lung cancer per standard deviation increase in natural log-transformed sphingomyelin (d18:0/22:0) and taurodeoxycholic acid 3-sulfate level, while 26% and 28% higher risk for those diagnosed beyond 3 years, compared to matched controls. Lipid and amino acid metabolism accounted for 47% to 80% of lung cancer-associated metabolites at P < 0.05 across all participants and subgroups. Notably, ever-smokers exhibited a higher proportion of lung cancer-associated metabolites (P < 0.05) in xenobiotic- and lipid-associated pathways, whereas never-smokers showed a more pronounced involvement of amino acid- and lipid-associated metabolic pathways. CONCLUSIONS This is the largest prospective study examining untargeted metabolic profiles regarding lung cancer risk. Sphingomyelin (d18:0/22:0), a sphingolipid, and taurodeoxycholic acid 3-sulfate, a bile salt, may be risk factors and potential screening biomarkers for lung cancer. Lipid and amino acid metabolism may contribute significantly to lung cancer etiology which varied by smoking status.
Collapse
Affiliation(s)
- Ziyin Tang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Emily L Deubler
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Jeremy A Sarnat
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Sabrina S Chow
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - W Ryan Diver
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ying Wang
- Department of Population Science, American Cancer Society, Atlanta, GA, USA.
| |
Collapse
|
4
|
Burg N, Malpass R, Alex L, Tran M, Englebrecht E, Kuo A, Pannelini T, Minett M, Athukorala K, Worgall T, Faust HJ, Goodman S, Mehta B, Brenner M, Vestweber D, Wei K, Blobel C, Hla T, Salmon JE. Endothelial cell sphingosine 1-phosphate receptor 1 restrains VE-cadherin cleavage and attenuates experimental inflammatory arthritis. JCI Insight 2024; 9:e171467. [PMID: 38855867 PMCID: PMC11382883 DOI: 10.1172/jci.insight.171467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 05/01/2024] [Indexed: 06/11/2024] Open
Abstract
In rheumatoid arthritis, inflammatory mediators extravasate from blood into joints via gaps between endothelial cells (ECs), but the contribution of ECs is not known. Sphingosine 1-phosphate receptor 1 (S1PR1), widely expressed on ECs, maintains the vascular barrier. Here, we assessed the contribution of vascular integrity and EC S1PR1 signaling to joint damage in mice exposed to serum-induced arthritis (SIA). EC-specific deletion of S1PR1 or pharmacological blockade of S1PR1 promoted vascular leak and amplified SIA, whereas overexpression of EC S1PR1 or treatment with an S1PR1 agonist delayed SIA. Blockade of EC S1PR1 induced membrane metalloproteinase-dependent cleavage of vascular endothelial cadherin (VE-cadherin), a principal adhesion molecule that maintains EC junctional integrity. We identified a disintegrin and a metalloproteinase domain 10 (ADAM10) as the principal VE-cadherin "sheddase." Mice expressing a stabilized VE-cadherin construct had decreased extravascular VE-cadherin and vascular leakage in response to S1PR1 blockade, and they were protected from SIA. Importantly, patients with active rheumatoid arthritis had decreased circulating S1P and microvascular expression of S1PR1, suggesting a dysregulated S1P/S1PR1 axis favoring vascular permeability and vulnerability. We present a model in which EC S1PR1 signaling maintains homeostatic vascular barrier function by limiting VE-cadherin shedding mediated by ADAM10 and suggest this signaling axis as a therapeutic target in inflammatory arthritis.
Collapse
Affiliation(s)
- Nathalie Burg
- Hospital for Special Surgery, New York, New York, USA
| | - Ryan Malpass
- Hospital for Special Surgery, New York, New York, USA
| | - Linda Alex
- Hospital for Special Surgery, New York, New York, USA
| | - Miles Tran
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eric Englebrecht
- School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Andrew Kuo
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Tilla Worgall
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Heather J. Faust
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Goodman
- Hospital for Special Surgery, New York, New York, USA
| | - Bella Mehta
- Hospital for Special Surgery, New York, New York, USA
| | - Michael Brenner
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Carl Blobel
- Hospital for Special Surgery, New York, New York, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
5
|
Jain A, Ralta A, Batra G, Joshi R, Garg N, Bhatia A, Medhi B, Chakrabarti A, Prakash A. SEW2871 reduces seizures via the sphingosine 1-phosphate receptor-1 pathway in the pentylenetetrazol and phenobarbitone kindling model of drug-refractory epilepsy. Clin Exp Pharmacol Physiol 2024; 51:e13839. [PMID: 38302080 DOI: 10.1111/1440-1681.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
Epilepsy is a prevalent neurological disorder characterized by neuronal hypersynchronous discharge in the brain, leading to central nervous system (CNS) dysfunction. Despite the availability of anti-epileptic drugs (AEDs), resistance to AEDs is the greatest challenge in treating epilepsy. The role of sphingosine-1-phosphate-receptor 1 (S1PR1) in drug-resistant epilepsy is unexplored. This study investigated the effects of SEW2871, a potent S1PR1 agonist, on a phenobarbitone (PHB)-resistant pentylenetetrazol (PTZ)-kindled Wistar rat model. We measured the messenger ribonucleic acid (mRNA) expression of multi-drug resistance 1 (MDR1) and multi-drug resistance protein 5 (MRP5) as indicators for drug resistance. Rats received PHB + PTZ for 62 days to develop a drug-resistant epilepsy model. From day 48, SEW2871 (0.25, 0.5, 0.75 mg/kg, intraperitoneally [i.p.]) was administered for 14 days. Seizure scoring, behaviour, oxidative markers like reduced glutathione, catalase, superoxide dismutase, inflammatory markers like interleukin 1 beta tumour necrosis factor alpha, interferon gamma and mRNA expression (MDR1 and MRP5) were assessed, and histopathological assessments were conducted. SEW2871 demonstrated dose-dependent improvements in seizure scoring and neurobehavioral parameters with a reduction in oxidative and inflammation-induced neuronal damage. The S1PR1 agonist also downregulated MDR1 and MRP5 gene expression and significantly decreased the number of dark-stained pyknotic nuclei and increased cell density with neuronal rearrangement in the rat brain hippocampus. These findings suggest that SEW2871 might ameliorate epileptic symptoms by modulating drug resistance through downregulation of MDR1 and MRP5 gene expression.
Collapse
Affiliation(s)
- Ashish Jain
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
| | - Arti Ralta
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
| | - Gitika Batra
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
- Department of Neurology, PGIMER, Chandigarh, India
| | - Rupa Joshi
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
- Department of Pharmacology, Maharishi Markandeshwar Institute of Medical Science and Research, Ambala, India
| | - Nitika Garg
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - Bikash Medhi
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
| | - Amitava Chakrabarti
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
| | - Ajay Prakash
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
| |
Collapse
|
6
|
Isago H, Uranbileg B, Mitani A, Kurano M. Understanding the modulations of glycero-lysophospholipids in an elastase-induced murine emphysema model. Biochem Biophys Res Commun 2024; 694:149419. [PMID: 38145597 DOI: 10.1016/j.bbrc.2023.149419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Increasing evidence indicates that bioactive lipid mediators are involved in chronic obstructive pulmonary disease (COPD) pathogenesis. Recently, glycero-lysophospholipids, such as lysophosphatidic acid (LysoPA) and lysophosphatidylserine (LysoPS), have been recognized as significant inflammation-related lipid mediators. However, their association with COPD remains unclear. METHODS We used an elastase-induced murine emphysema model to analyze the levels of lysophospholipids and diacyl-phospholipids in the lungs. Additionally, we assessed the expression of LysoPS-related genes and published data on smokers. RESULTS In the early phase of an elastase-induced murine emphysema model, the levels of LysoPS and its precursor (phosphatidylserine [PS]) were significantly reduced, without significant modulations in other glycero-lysophospholipids. Additionally, there was an upregulation in the expression of lysoPS receptors, specifically GPR34, observed in the lungs of a cigarette smoke-exposed mouse model and the alveolar macrophages of human smokers. Elastase stimulation induces GPR34 expression in a human macrophage cell line in vitro. CONCLUSIONS Elastase-induced lung emphysema affects the LysoPS/PS-GPR34 axis, and cigarette smoking or elastase upregulates GPR34 expression in alveolar macrophages. This novel association may serve as a potential pharmacological target for COPD treatment.
Collapse
Affiliation(s)
- Hideaki Isago
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan; Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo, Japan.
| | - Baasanjav Uranbileg
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Akihisa Mitani
- Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
7
|
Kleuser B, Schumacher F, Gulbins E. New Therapeutic Options in Pulmonal Diseases: Sphingolipids and Modulation of Sphingolipid Metabolism. Handb Exp Pharmacol 2024; 284:289-312. [PMID: 37922034 DOI: 10.1007/164_2023_700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Sphingolipids are crucial molecules in the respiratory airways. As in most other tissues and organs, in the lung sphingolipids play an essential role as structural constituents as they regulate barrier function and fluidity of cell membranes. A lung-specific feature is the occurrence of sphingolipids as minor structural components in the surfactant. However, sphingolipids are also key signaling molecules involved in airway cell signaling and their dynamical formation and metabolism are important for normal lung physiology. Dysregulation of sphingolipid metabolism and signaling is involved in altering lung tissue and initiates inflammatory processes promoting the pathogenesis of pulmonal diseases including cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), and asthma.In the present review, the important role of specific sphingolipid species in pulmonal diseases will be discussed. Only such an understanding opens up the possibility of developing new therapeutic strategies with the aim of correcting the imbalance in sphingolipid metabolism and signaling. Such delivery strategies have already been studied in animal models of these lung diseases, demonstrating that targeting the sphingolipid profile represents new therapeutic opportunities for lung disorders.
Collapse
Affiliation(s)
- Burkhard Kleuser
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany.
| | - Fabian Schumacher
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
8
|
Wu J, Liang Y, Fu P, Feng A, Lu Q, Unwalla HJ, Marciano DP, Black SM, Wang T. Sphingosine-1-Phosphate Receptor 3 Induces Endothelial Barrier Loss via ADAM10-Mediated Vascular Endothelial-Cadherin Cleavage. Int J Mol Sci 2023; 24:16083. [PMID: 38003272 PMCID: PMC10671260 DOI: 10.3390/ijms242216083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Mechanical ventilation (MV) is a life-supporting strategy employed in the Intensive Care Unit (ICU). However, MV-associated mechanical stress exacerbates existing lung inflammation in ICU patients, resulting in limited improvement in mortality and a condition known as Ventilator-Induced Lung Injury (VILI). Sphingosine-1-phosphate (S1P) is a circulating bioactive lipid that maintains endothelial integrity primarily through S1P receptor 1 (S1PR1). During VILI, mechanical stress upregulates endothelial S1PR3 levels. Unlike S1PR1, S1PR3 mediates endothelial barrier disruption through Rho-dependent pathways. However, the specific impact of elevated S1PR3 on lung endothelial function, apart from Rho activation, remains poorly understood. In this study, we investigated the effects of S1PR3 in endothelial pathobiology during VILI using an S1PR3 overexpression adenovirus. S1PR3 overexpression caused cytoskeleton rearrangement, formation of paracellular gaps, and a modified endothelial response towards S1P. It resulted in a shift from S1PR1-dependent barrier enhancement to S1PR3-dependent barrier disruption. Moreover, S1PR3 overexpression induced an ADAM10-dependent cleavage of Vascular Endothelial (VE)-cadherin, which hindered endothelial barrier recovery. S1PR3-induced cleavage of VE-cadherin was at least partially regulated by S1PR3-mediated NFκB activation. Additionally, we employed an S1PR3 inhibitor TY-52156 in a murine model of VILI. TY-52156 effectively attenuated VILI-induced increases in bronchoalveolar lavage cell counts and protein concentration, suppressed the release of pro-inflammatory cytokines, and inhibited lung inflammation as assessed via a histological evaluation. These findings confirm that mechanical stress associated with VILI increases S1PR3 levels, thereby altering the pulmonary endothelial response towards S1P and impairing barrier recovery. Inhibiting S1PR3 is validated as an effective therapeutic strategy for VILI.
Collapse
Affiliation(s)
- Jialin Wu
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Ying Liang
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Panfeng Fu
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Anlin Feng
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Qing Lu
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Hoshang J. Unwalla
- Department of Immunology and Nanomedicine, Florida International University, Miami, FL 33199, USA
| | - David P. Marciano
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Cellular Biology and Pharmacology, Florida International University, Miami, FL 33199, USA
| | - Stephen M. Black
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
- Department of Cellular Biology and Pharmacology, Florida International University, Miami, FL 33199, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
- Department of Cellular Biology and Pharmacology, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
9
|
Curtis JL. Understanding COPD Etiology, Pathophysiology, and Definition. Respir Care 2023; 68:859-870. [PMID: 37353333 PMCID: PMC10289621 DOI: 10.4187/respcare.10873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
COPD, one of the leading worldwide health problems, currently lacks truly disease-modifying medical therapies applicable to most patients. Developing such novel therapies has been hampered by the marked heterogeneity of phenotypes between individuals with COPD. Such heterogeneity suggests that, rather than a single cause (particularly just direct inhalation of tobacco products), development and progression of COPD likely involve both complex gene-by-environment interactions to multiple inhalational exposures and a variety of molecular pathways. However, there has been considerable recent progress toward understanding how specific pathological processes can lead to discrete COPD phenotypes, particularly that of small airways disease. Advances in imaging techniques that correlate to specific types of histological damage, and in the immunological mechanisms of lung damage in COPD, hold promise for development of personalized therapies. At the same time, there is growing recognition that the current diagnostic criteria for COPD, based solely on spirometry, exclude large numbers of individuals with very similar disease manifestations. This concise review summarizes current understanding of the etiology and pathophysiology of COPD and provides background explaining the increasing calls to expand the diagnostic criteria used to diagnose COPD and some challenges in doing so.
Collapse
Affiliation(s)
- Jeffrey L Curtis
- Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan; Division of Pulmonary and Critical Care Medicine, Michigan Medicine, Ann Arbor, Michigan; and Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
10
|
Baweja S, Kumari A, Negi P, Tomar A, Tripathi DM, Mourya AK, Rastogi A, Subudhi PD, Thangariyal S, Kumar G, Kumar J, Reddy GS, Sood AK, Vashistha C, Sarohi V, Bihari C, Maiwall R, Sarin SK. Hepatopulmonary syndrome is associated with low sphingosine-1-phosphate levels and can be ameliorated by the functional agonist fingolimod. J Hepatol 2023; 79:167-180. [PMID: 36996943 DOI: 10.1016/j.jhep.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND & AIMS Hepatopulmonary syndrome (HPS) is characterised by a defect in arterial oxygenation induced by pulmonary vascular dilatation in patients with liver disease. Fingolimod, a sphingosine-1-phosphate (S1P) receptor modulator, suppresses vasodilation by reducing nitric oxide (NO) production. We investigated the role of S1P in patients with HPS and the role of fingolimod as a therapeutic option in an experimental model of HPS. METHODS Patients with cirrhosis with HPS (n = 44) and without HPS (n = 89) and 25 healthy controls were studied. Plasma levels of S1P, NO, and markers of systemic inflammation were studied. In a murine model of common bile duct ligation (CBDL), variations in pulmonary vasculature, arterial oxygenation, liver fibrosis, and inflammation were estimated before and after administration of S1P and fingolimod. RESULTS Log of plasma S1P levels was significantly lower in patients with HPS than in those without HPS (3.1 ± 1.4 vs. 4.6 ± 0.2; p <0.001) and more so in severe intrapulmonary shunting than in mild and moderate intrapulmonary shunting (p <0.001). Plasma tumour necrosis factor-α (76.5 [30.3-91.6] vs. 52.9 [25.2-82.8]; p = 0.02) and NO (152.9 ± 41.2 vs. 79.2 ± 29.2; p = 0.001) levels were higher in patients with HPS than in those without HPS. An increase in Th17 (p <0.001) and T regulatory cells (p <0.001) was observed; the latter inversely correlated with plasma S1P levels. In the CBDL HPS model, fingolimod restored pulmonary vascular injury by increasing the arterial blood gas exchange and reducing systemic and pulmonary inflammation, resulting in improved survival (p = 0.02). Compared with vehicle treatment, fingolimod reduced portal pressure (p <0.05) and hepatic fibrosis and improved hepatocyte proliferation. It also induced apoptotic death in hepatic stellate cells and reduced collagen formation. CONCLUSIONS Plasma S1P levels are low in patients with HPS and even more so in severe cases. Fingolimod, by improving pulmonary vascular tone and oxygenation, improves survival in a murine CBDL HPS model. IMPACT AND IMPLICATIONS A low level of plasma sphingosine-1-phosphate (S1P) is associated with severe pulmonary vascular shunting, and hence, it can serve as a marker of disease severity in patients with hepatopulmonary syndrome (HPS). Fingolimod, a functional agonist of S1P, reduces hepatic inflammation, improves vascular tone, and thus retards the progression of fibrosis in a preclinical animal model of HPS. Fingolimod is being proposed as a potential novel therapy for management of patients with HPS.
Collapse
Affiliation(s)
- Sukriti Baweja
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Anupama Kumari
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Preeti Negi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Arvind Tomar
- Department of Pulmonary Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Dinesh Mani Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Akash Kumar Mourya
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Aayushi Rastogi
- Department of Epidemiology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - P Debishree Subudhi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Swati Thangariyal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Guresh Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Jitendra Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - G Srinivasa Reddy
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Arun Kumar Sood
- Department of Cardiology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Chitranshu Vashistha
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | | | - Chhagan Bihari
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India; Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| |
Collapse
|
11
|
Ren L, Li F, Tan X, Fan Y, Ke B, Zhang Y, Jiang H, Jia L, Wang Y, Du J. Abnormal plasma ceramides refine high-risk patients with worsening heart failure. Front Cardiovasc Med 2023; 10:1185595. [PMID: 37456812 PMCID: PMC10339027 DOI: 10.3389/fcvm.2023.1185595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Background Worsening heart failure (WHF) is a heterogeneous clinical syndrome with poor prognosis. More effective risk stratification tools are required to identify high-risk patients. Evidence suggest that aberrant ceramide accumulation can be affected by heart failure risk factors and as a driver of tissue damage. We hypothesized that specific ceramide lengths and ratios serve as biomarkers for risk stratification in WHF patients by reflecting pathological changes of distinct organ dysfunctions. Medthods We measured seven plasma ceramides using liquid chromatography-mass spectrometry (LC-MS) in 1,558 patients, including 1,262 participants in retrospective discovery set and 296 WHF patients in prospective validation set in BIOMS-HF study (Registry Study of Biomarkers in Heart Failure). Univariable and multivariable logistic regression models were constructed to identify associations of ceramides with organ dysfunctions. Results We constructed three ceramide-based scores linked independently to heart, liver, and kidney dysfunction, with ceramides and ratios included in each score specifying systemic inflammation, chronic metabolic disorder, and water-sodium retention. The combined ceramide heart failure score (CHFS) was independently associated with adverse outcomes [Hazard Ratio, 2.80 (95% CI: 1.78-4.40; P < 0.001); 2.68 995% CI: 1.12-6.46; P = 0.028)] and improved the predictive value of Acute Decompensated Heart Failure National Registry score and BNP [net reclassification index, 0.34 (95% confidence interval, CI: 0.19-0.50); 0.42 (95% CI: 0.13-0.70)] in the discovery and validation set, respectively. Lower BNP levels, but higher CHFS had the highest hazard of future adverse events in WHF patients. Conclusion Abnormal plasma ceramides, associated with heart and peripheral organ dysfunctions, provide incremental prognostic information over the ADHERE score and brain natriuretic peptide concentration for risk stratification in WHF patients. This may facilitate the reclassification of high-risk patients in need of aggressive therapeutic interventions.
Collapse
Affiliation(s)
- Lu Ren
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing lnstitute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Fengjuan Li
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing lnstitute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xin Tan
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing lnstitute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yangkai Fan
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing lnstitute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Bingbing Ke
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yixin Zhang
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universitat Munchen (LMU), Munich, Germany
| | - Hongfeng Jiang
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing lnstitute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lixin Jia
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing lnstitute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yuan Wang
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing lnstitute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jie Du
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing lnstitute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Shichijo K, Takatsuji T. Pathological observation of the effects of exposure to radioactive microparticles on experimental animals. JOURNAL OF RADIATION RESEARCH 2022; 63:i26-i37. [PMID: 35968993 PMCID: PMC9377041 DOI: 10.1093/jrr/rrac045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/22/2022] [Indexed: 06/01/2023]
Abstract
Internal radiation exposure from neutron-induced radioisotopes that were environmentally activated following an atomic bombing or nuclear accident should be considered for a complete picture of the pathologic effects on survivors. Inhaled hot particles expose neighboring tissues to very high doses of particle beams, which can cause local tissue damage. Experimentally, a few μm of 55MnO2 powder was irradiated with neutrons at a nuclear reactor in order to generate 56MnO2 that emits β-rays. Rats were irradiated via inhalation. Pathological changes in various rat tissues were examined. In addition, the 56Mn β energy spectrum around the particles was calculated to determine the local dose rate and the cumulative dose. This review focuses on our latest pathological findings in lungs with internal radiation injury and discusses the pathological changes of early event damage caused by localized, very high-dose internal radiation exposure, including apoptosis, elastin stigma, emphysema, hemorrhage and severe inflammation. The pathological findings of lung tissue due to internal radiation exposure of 0.1 Gy were severe, with no pathological changes observed due to external exposure to γ radiation at a dose of 2.0 Gy. Therefore, it is suggested that new pathological analysis methods for internal exposure due to radioactive microparticles are required.
Collapse
Affiliation(s)
- Kazuko Shichijo
- Corresponding author. Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, 112-4 Sakamoto, Nagasaki 852-8523, Japan. Tel.: +81-95-819-7107; Fax: +81-95-819-7108; E-mail:
| | - Toshihiro Takatsuji
- Faculty of Environmental Studies, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| |
Collapse
|
13
|
Goel K, Schweitzer KS, Serban KA, Bittman R, Petrache I. Pharmacological sphingosine-1 phosphate receptor 1 targeting in cigarette smoke-induced emphysema in mice. Am J Physiol Lung Cell Mol Physiol 2022; 322:L794-L803. [PMID: 35412858 PMCID: PMC9109793 DOI: 10.1152/ajplung.00017.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/22/2022] Open
Abstract
Primarily caused by chronic cigarette smoking (CS), emphysema is characterized by loss of alveolar cells comprising lung units involved in gas exchange and inflammation that culminate in airspace enlargement. Dysregulation of sphingolipid metabolism with increases of ceramide relative to sphingosine-1 phosphate (S1P) signaling has been shown to cause lung cell apoptosis and is emerging as a potential therapeutic target in emphysema. We sought to determine the impact of augmenting S1P signaling via S1P receptor 1 (S1P1) in a mouse model of CS-induced emphysema. DBA2 mice were exposed to CS for 4 or 6 mo and treated with pharmacological agonists of S1P1: phosphonated FTY720 (FTY720-1S and 2S analogs; 0.01-1.0 mg/kg) or GSK183303A (10 mg/kg). Pharmacological S1P1 agonists ameliorated CS-induced lung parenchymal apoptosis and airspace enlargement as well as loss of body weight. S1P1 agonists had modest inhibitory effects on CS-induced airspace inflammation and lung functional changes measured by Flexivent, improving lung tissue resistance. S1P1 abundance was reduced in chronic CS-conditions and remained decreased after CS-cessation or treatment with FTY720-1S. These results support an important role for S1P-S1P1 axis in maintaining the structural integrity of alveoli during chronic CS exposure and suggest that increasing both S1P1 signaling and abundance may be beneficial to counteract the effects of chronic CS exposure.
Collapse
Affiliation(s)
- Khushboo Goel
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado
| | - Kelly S Schweitzer
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado
- Department of Medicine, Division of Pulmonary and Critical Care, Indiana University, Indianapolis, Indiana
| | - Karina A Serban
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado
- Department of Medicine, Division of Pulmonary and Critical Care, Indiana University, Indianapolis, Indiana
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College City University of New York, Queens, New York
| | - Irina Petrache
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado
- Department of Medicine, Division of Pulmonary and Critical Care, Indiana University, Indianapolis, Indiana
| |
Collapse
|
14
|
Lin CR, Bahmed K, Kosmider B. Dysregulated Cell Signaling in Pulmonary Emphysema. Front Med (Lausanne) 2022; 8:762878. [PMID: 35047522 PMCID: PMC8762198 DOI: 10.3389/fmed.2021.762878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/06/2021] [Indexed: 01/19/2023] Open
Abstract
Pulmonary emphysema is characterized by the destruction of alveolar septa and irreversible airflow limitation. Cigarette smoking is the primary cause of this disease development. It induces oxidative stress and disturbs lung physiology and tissue homeostasis. Alveolar type II (ATII) cells have stem cell potential and can repair the denuded epithelium after injury; however, their dysfunction is evident in emphysema. There is no effective treatment available for this disease. Challenges in this field involve the large complexity of lung pathophysiological processes and gaps in our knowledge on the mechanisms of emphysema progression. It implicates dysregulation of various signaling pathways, including aberrant inflammatory and oxidative responses, defective antioxidant defense system, surfactant dysfunction, altered proteostasis, disrupted circadian rhythms, mitochondrial damage, increased cell senescence, apoptosis, and abnormal proliferation and differentiation. Also, genetic predispositions are involved in this disease development. Here, we comprehensively review studies regarding dysregulated cell signaling, especially in ATII cells, and their contribution to alveolar wall destruction in emphysema. Relevant preclinical and clinical interventions are also described.
Collapse
Affiliation(s)
- Chih-Ru Lin
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA, United States.,Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States
| | - Karim Bahmed
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States.,Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, United States
| | - Beata Kosmider
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA, United States.,Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States
| |
Collapse
|
15
|
Goel K, Beatman EL, Egersdorf N, Scruggs A, Cao D, Berdyshev EV, Schweitzer KS, Petrache I. Sphingosine 1 Phosphate (S1P) Receptor 1 Is Decreased in Human Lung Microvascular Endothelial Cells of Smokers and Mediates S1P Effect on Autophagy. Cells 2021; 10:cells10051200. [PMID: 34068927 PMCID: PMC8156252 DOI: 10.3390/cells10051200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 01/26/2023] Open
Abstract
Destruction of alveoli by apoptosis induced by cigarette smoke (CS) is a major driver of emphysema pathogenesis. However, when compared to cells isolated from non-smokers, primary human lung microvascular endothelial cells (HLMVECs) isolated from chronic smokers are more resilient when exposed to apoptosis-inducing ceramide. Whether this adaptation restores homeostasis is unknown. To better understand the phenotype of HLMVEC in smokers, we interrogated a major pro-survival pathway supported by sphingosine-1-phosphate (S1P) signaling via S1P receptor 1 (S1P1). Primary HLMVECs from lungs of non-smoker or smoker donors were isolated and studied in culture for up to five passages. S1P1 mRNA and protein abundance were significantly decreased in HLMVECs from smokers compared to non-smokers. S1P1 was also decreased in situ in lungs of mice chronically exposed to CS. Levels of S1P1 expression tended to correlate with those of autophagy markers, and increasing S1P (via S1P lyase knockdown with siRNA) stimulated baseline macroautophagy with lysosomal degradation. In turn, loss of S1P1 (siRNA) inhibited these effects of S1P on HLMVECs autophagy. These findings suggest that the anti-apoptotic phenotype of HLMVECs from smokers may be maladaptive, since it is associated with decreased S1P1 expression that may impair their autophagic response to S1P.
Collapse
Affiliation(s)
- Khushboo Goel
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA;
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO 80206, USA; (E.L.B.); (N.E.); (A.S.); (D.C.); (E.V.B.); (K.S.S.)
| | - Erica L. Beatman
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO 80206, USA; (E.L.B.); (N.E.); (A.S.); (D.C.); (E.V.B.); (K.S.S.)
| | - Nicholas Egersdorf
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO 80206, USA; (E.L.B.); (N.E.); (A.S.); (D.C.); (E.V.B.); (K.S.S.)
| | - April Scruggs
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO 80206, USA; (E.L.B.); (N.E.); (A.S.); (D.C.); (E.V.B.); (K.S.S.)
| | - Danting Cao
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO 80206, USA; (E.L.B.); (N.E.); (A.S.); (D.C.); (E.V.B.); (K.S.S.)
| | - Evgeny V. Berdyshev
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO 80206, USA; (E.L.B.); (N.E.); (A.S.); (D.C.); (E.V.B.); (K.S.S.)
| | - Kelly S. Schweitzer
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO 80206, USA; (E.L.B.); (N.E.); (A.S.); (D.C.); (E.V.B.); (K.S.S.)
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Irina Petrache
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO 80206, USA; (E.L.B.); (N.E.); (A.S.); (D.C.); (E.V.B.); (K.S.S.)
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: ; Tel.: +1-303-398-1355
| |
Collapse
|
16
|
Lysophospholipids in Lung Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:373-391. [PMID: 33788203 DOI: 10.1007/978-3-030-63046-1_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The lysophospholipids (LPLs) belong to a group of bioactive lipids that play pivotal roles in several physiological and pathological processes. LPLs are derivatives of phospholipids and consist of a single hydrophobic fatty acid chain, a hydrophilic head, and a phosphate group with or without a large molecule attached. Among the LPLs, lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are the simplest, and have been shown to be involved in lung inflammatory symptoms and diseases such as acute lung injury, asthma, and chronic obstructive pulmonary diseases. G protein-coupled receptors (GPCRs) mediate LPA and S1P signaling. In this chapter, we will discuss on the role of LPA, S1P, their metabolizing enzymes, inhibitors or agonists of their receptors, and their GPCR-mediated signaling in lung inflammatory symptoms and diseases, focusing specially on acute respiratory distress syndrome, asthma, and chronic obstructive pulmonary disease.
Collapse
|
17
|
Wendt TS, Li YJ, Gonzales RJ. Ozanimod, an S1PR 1 ligand, attenuates hypoxia plus glucose deprivation-induced autophagic flux and phenotypic switching in human brain VSM cells. Am J Physiol Cell Physiol 2021; 320:C1055-C1073. [PMID: 33788630 DOI: 10.1152/ajpcell.00044.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vascular smooth muscle (VSM) cell phenotypic expression and autophagic state are dynamic responses to stress. Vascular pathologies, such as hypoxemia and ischemic injury, induce a synthetic VSM phenotype and autophagic flux resulting in a loss of vascular integrity and VSM cell death respectfully. Both clinical pilot and experimental stroke studies demonstrate that sphingosine-1-phosphate receptor (S1PR) modulation improves stroke outcome; however, specific mechanisms associated with a beneficial outcome at the level of the cerebrovasculature have not been clearly elucidated. We hypothesized that ozanimod, a selective S1PR type 1 ligand, will attenuate VSM synthetic phenotypic expression and autophagic flux in primary human brain VSM cells following acute hypoxia plus glucose deprivation (HGD; in vitro ischemic-like injury) exposure. Cells were treated with ozanimod and exposed to normoxia or HGD. Crystal violet staining, standard immunoblotting, and immunocytochemical labeling techniques assessed cellular morphology, vacuolization, phenotype, and autophagic state. We observed that HGD temporally decreased VSM cell viability and concomitantly increased vacuolization, both of which ozanimod reversed. HGD induced a simultaneous elevation and reduction in levels of pro- and antiautophagic proteins respectfully, and ozanimod attenuated this response. Protein levels of VSM phenotypic biomarkers, smoothelin and SM22, were decreased following HGD. Furthermore, we observed an HGD-induced epithelioid and synthetic morphological appearance accompanied by disorganized cytoskeletal filaments, which was rescued by ozanimod. Thus, we conclude that ozanimod, a selective S1PR1 ligand, protects against acute HGD-induced phenotypic switching and promotes cell survival, in part, by attenuating HGD-induced autophagic flux thus improving vascular patency in response to acute ischemia-like injury.
Collapse
Affiliation(s)
- Trevor S Wendt
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Yu Jing Li
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Rayna J Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| |
Collapse
|
18
|
Berdyshev EV, Serban KA, Schweitzer KS, Bronova IA, Mikosz A, Petrache I. Ceramide and sphingosine-1 phosphate in COPD lungs. Thorax 2021; 76:thoraxjnl-2020-215892. [PMID: 33514670 PMCID: PMC9004347 DOI: 10.1136/thoraxjnl-2020-215892] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/17/2020] [Accepted: 01/07/2021] [Indexed: 11/04/2022]
Abstract
Studies of chronic obstructive pulmonary disease (COPD) using animal models and patient plasma indicate dysregulation of sphingolipid metabolism, but data in COPD lungs are sparse. Mass spectrometric and immunostaining measurements of lungs from 69 COPD, 16 smokers without COPD and 13 subjects with interstitial lung disease identified decoupling of lung ceramide and sphingosine-1 phosphate (S1P) levels and decreased sphingosine kinase-1 (SphK1) activity in COPD. The correlation of ceramide abundance in distal COPD lungs with apoptosis and the inverse correlation between SphK1 activity and presence of emphysema suggest that disruption of ceramide-to-S1P metabolism is an important determinant of emphysema phenotype in COPD.
Collapse
Affiliation(s)
- Evgeny V Berdyshev
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Karina A Serban
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- School of Medicine, Indiana University, Indianapolis, Indiana, USA
- School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Kelly S Schweitzer
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Irina A Bronova
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Andrew Mikosz
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Irina Petrache
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- School of Medicine, Indiana University, Indianapolis, Indiana, USA
- School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
19
|
Leuti A, Fazio D, Fava M, Piccoli A, Oddi S, Maccarrone M. Bioactive lipids, inflammation and chronic diseases. Adv Drug Deliv Rev 2020; 159:133-169. [PMID: 32628989 DOI: 10.1016/j.addr.2020.06.028] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Endogenous bioactive lipids are part of a complex network that modulates a plethora of cellular and molecular processes involved in health and disease, of which inflammation represents one of the most prominent examples. Inflammation serves as a well-conserved defence mechanism, triggered in the event of chemical, mechanical or microbial damage, that is meant to eradicate the source of damage and restore tissue function. However, excessive inflammatory signals, or impairment of pro-resolving/anti-inflammatory pathways leads to chronic inflammation, which is a hallmark of chronic pathologies. All main classes of endogenous bioactive lipids - namely eicosanoids, specialized pro-resolving lipid mediators, lysoglycerophopsholipids and endocannabinoids - have been consistently involved in the chronic inflammation that characterises pathologies such as cancer, diabetes, atherosclerosis, asthma, as well as autoimmune and neurodegenerative disorders and inflammatory bowel diseases. This review gathers the current knowledge concerning the involvement of endogenous bioactive lipids in the pathogenic processes of chronic inflammatory pathologies.
Collapse
|
20
|
Impact of Local High Doses of Radiation by Neutron Activated Mn Dioxide Powder in Rat Lungs: Protracted Pathologic Damage Initiated by Internal Exposure. Biomedicines 2020; 8:biomedicines8060171. [PMID: 32586004 PMCID: PMC7345208 DOI: 10.3390/biomedicines8060171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 11/24/2022] Open
Abstract
Internal radiation exposure from neutron-induced radioisotopes environmentally activated following atomic bombing or nuclear accidents should be considered for a complete picture of pathologic effects on survivors. Inhaled hot particles expose neighboring tissues to locally ultra-high doses of β-rays and can cause pathologic damage. 55MnO2 powder was activated by a nuclear reactor to make 56MnO2 which emits β-rays. Internal exposures were compared with external γ-rays. Male Wistar rats were administered activated powder by inhalation. Lung samples were observed by histological staining at six hours, three days, 14 days, two months, six months and eight months after the exposure. Synchrotron radiation—X-ray fluorescence—X-ray absorption near-edge structure (SR–XRF–XANES) was utilized for the chemical analysis of the activated 56Mn embedded in lung tissues. 56Mn beta energy spectrum around the particles was calculated to assess the local dose rate and accumulated dose. Hot particles located in the bronchiole and in damaged alveolar tissue were identified as accumulations of Mn and iron. Histological changes showed evidence of emphysema, hemorrhage and severe inflammation from six hours through eight months. Apoptosis was observed in the bronchiole epithelium. Our study shows early event damage from the locally ultra-high internal dose leads to pathogenesis. The trigger of emphysema and hemorrhage was likely early event damage to blood vessels integral to alveolar walls.
Collapse
|
21
|
Henkel M, Partyka J, Gregory AD, Forno E, Cho MH, Eddens T, Tout AR, Salamacha N, Horne W, Rao KS, Wu Y, Alcorn JF, Kostka D, Hirsch R, Celedón JC, Shapiro SD, Kolls JK, Campfield BT. FSTL-1 Attenuation Causes Spontaneous Smoke-Resistant Pulmonary Emphysema. Am J Respir Crit Care Med 2020; 201:934-945. [PMID: 31834999 PMCID: PMC7159415 DOI: 10.1164/rccm.201905-0973oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
Rationale: The role of FSTL-1 (follistatin-like 1) in lung homeostasis is unknown.Objectives: We aimed to define the impact of FSTL-1 attenuation on lung structure and function and to identify FSTL-1-regulated transcriptional pathways in the lung. Further, we aimed to analyze the association of FSTL-1 SNPs with lung disease.Methods: FSTL-1 hypomorphic (FSTL-1 Hypo) mice underwent lung morphometry, pulmonary function testing, and micro-computed tomography. Fstl1 expression was determined in wild-type lung cell populations from three independent research groups. RNA sequencing of wild-type and FSTL-1 Hypo mice identified FSTL-1-regulated gene expression, followed by validation and mechanistic in vitro examination. FSTL1 SNP analysis was performed in the COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease) cohort.Measurements and Main Results: FSTL-1 Hypo mice developed spontaneous emphysema, independent of smoke exposure. Fstl1 is highly expressed in the lung by mesenchymal and endothelial cells but not immune cells. RNA sequencing of whole lung identified 33 FSTL-1-regulated genes, including Nr4a1, an orphan nuclear hormone receptor that negatively regulates NF-κB (nuclear factor-κB) signaling. In vitro, recombinant FSTL-1 treatment of macrophages attenuated NF-κB p65 phosphorylation in an Nr4a1-dependent manner. Within the COPDGene cohort, several SNPs in the FSTL1 region corresponded to chronic obstructive pulmonary disease and lung function.Conclusions: This work identifies a novel role for FSTL-1 protecting against emphysema development independent of smoke exposure. This FSTL-1-deficient emphysema implicates regulation of immune tolerance in lung macrophages through Nr4a1. Further study of the mechanisms involving FSTL-1 in lung homeostasis, immune regulation, and NF-κB signaling may provide additional insight into the pathophysiology of emphysema and inflammatory lung diseases.
Collapse
Affiliation(s)
- Matthew Henkel
- Division of Pediatric Infectious Diseases
- University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jessica Partyka
- Division of Pediatric Infectious Diseases
- University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alyssa D. Gregory
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Erick Forno
- Division of Pediatric Pulmonary Medicine
- Richard K. Mellon Institute for Pediatric Research, and
- University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael H. Cho
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts; and
| | - Taylor Eddens
- Division of Pediatric Infectious Diseases
- University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Nathan Salamacha
- Department of Developmental Biology
- University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - William Horne
- Richard K. Mellon Institute for Pediatric Research, and
- University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Yijen Wu
- Department of Developmental Biology
- University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - John F. Alcorn
- Division of Pediatric Pulmonary Medicine
- University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dennis Kostka
- Department of Developmental Biology
- Department of Computational and Systems Biology, and
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Raphael Hirsch
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine
- University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Steven D. Shapiro
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Jay K. Kolls
- Richard K. Mellon Institute for Pediatric Research, and
- University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian T. Campfield
- Division of Pediatric Infectious Diseases
- Richard K. Mellon Institute for Pediatric Research, and
- University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Gredic M, Blanco I, Kovacs G, Helyes Z, Ferdinandy P, Olschewski H, Barberà JA, Weissmann N. Pulmonary hypertension in chronic obstructive pulmonary disease. Br J Pharmacol 2020; 178:132-151. [PMID: 31976545 DOI: 10.1111/bph.14979] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/29/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
Even mild pulmonary hypertension (PH) is associated with increased mortality and morbidity in patients with chronic obstructive pulmonary disease (COPD). However, the underlying mechanisms remain elusive; therefore, specific and efficient treatment options are not available. Therapeutic approaches tested in the clinical setting, including long-term oxygen administration and systemic vasodilators, gave disappointing results and might be only beneficial for specific subgroups of patients. Preclinical studies identified several therapeutic approaches for the treatment of PH in COPD. Further research should provide deeper insight into the complex pathophysiological mechanisms driving vascular alterations in COPD, especially as such vascular (molecular) alterations have been previously suggested to affect COPD development. This review summarizes the current understanding of the pathophysiology of PH in COPD and gives an overview of the available treatment options and recent advances in preclinical studies. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Marija Gredic
- Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & János Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,PharmInVivo Ltd, Pécs, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Norbert Weissmann
- Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
23
|
Iron and Sphingolipids as Common Players of (Mal)Adaptation to Hypoxia in Pulmonary Diseases. Int J Mol Sci 2020; 21:ijms21010307. [PMID: 31906427 PMCID: PMC6981703 DOI: 10.3390/ijms21010307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022] Open
Abstract
Hypoxia, or lack of oxygen, can occur in both physiological (high altitude) and pathological conditions (respiratory diseases). In this narrative review, we introduce high altitude pulmonary edema (HAPE), acute respiratory distress syndrome (ARDS), Chronic Obstructive Pulmonary Disease (COPD), and Cystic Fibrosis (CF) as examples of maladaptation to hypoxia, and highlight some of the potential mechanisms influencing the prognosis of the affected patients. Among the specific pathways modulated in response to hypoxia, iron metabolism has been widely explored in recent years. Recent evidence emphasizes hepcidin as highly involved in the compensatory response to hypoxia in healthy subjects. A less investigated field in the adaptation to hypoxia is the sphingolipid (SPL) metabolism, especially through Ceramide and sphingosine 1 phosphate. Both individually and in concert, iron and SPL are active players of the (mal)adaptation to physiological hypoxia, which can result in the pathological HAPE. Our aim is to identify some pathways and/or markers involved in the physiological adaptation to low atmospheric pressures (high altitudes) that could be involved in pathological adaptation to hypoxia as it occurs in pulmonary inflammatory diseases. Hepcidin, Cer, S1P, and their interplay in hypoxia are raising growing interest both as prognostic factors and therapeutical targets.
Collapse
|
24
|
Abstract
A better understanding of the pathogenesis of distinct chronic obstructive pulmonary disease (COPD) phenotypes will improve diagnostic and therapeutic options for this common disease. We present evidence that sphingolipids such as ceramides are involved in the emphysema pathogenesis. Whereas distinct ceramide species cause cell death by apoptosis and necroptosis, cell adaptation leads to accumulation of other sphingolipid metabolites that extend cell survival by triggering autophagy. Cigarette smoke-released sphingolipids have been involved in both the initiation and persistence of lung injury via intracellular signaling and paracrine effects mediated via exosomes and plasma membrane-bound microparticles. Strategies to control sphingolipid metabolite production may promote cellular repair and maintenance to treat COPD.
Collapse
|
25
|
Koike K, Berdyshev EV, Mikosz AM, Bronova IA, Bronoff AS, Jung JP, Beatman EL, Ni K, Cao D, Scruggs AK, Serban KA, Petrache I. Role of Glucosylceramide in Lung Endothelial Cell Fate and Emphysema. Am J Respir Crit Care Med 2019; 200:1113-1125. [PMID: 31265321 PMCID: PMC6888657 DOI: 10.1164/rccm.201812-2311oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
Rationale: The loss of pulmonary endothelial cells in emphysema is associated with increased lung ceramide. Ceramide perturbations may cause adaptive alterations in other bioactive sphingolipids, with pathogenic implications. We previously reported a negative correlation between emphysema and circulating glycosphingolipids (GSLs). Glucosylceramide (GlcCer), the initial GSL synthesized from ceramide by GCS (GlcCer synthase), is required for embryonic survival, but its role in the lung is unknown.Objectives: To determine if cigarette smoke (CS) alters lung GlcCer and to elucidate the role of GCS in lung endothelial cell fate.Methods: GlcCer was measured by tandem mass spectrometry in BAL fluid of CS- or elastase-exposed mice, and GCS was detected by Western blotting in chronic obstructive pulmonary disease lungs and CS extract-exposed primary human lung microvascular endothelial cells (HLMVECs). The role of GlcCer and GCS on mTOR (mammalian target of rapamycin) signaling, autophagy, lysosomal function, and cell death were studied in HLMVECs with or without CS exposure.Measurements and Main Results: Mice exposed to chronic CS or to elastase, and patients with chronic obstructive pulmonary disease, exhibited significantly decreased lung GlcCer and GCS. In mice, lung GlcCer levels were negatively correlated with airspace size. GCS inhibition in HLMVEC increased lysosomal pH, suppressed mTOR signaling, and triggered autophagy with impaired lysosomal degradation and apoptosis, recapitulating CS effects. In turn, increasing GlcCer by GCS overexpression in HLMVEC improved autophagic flux and attenuated CS-induced apoptosis.Conclusions: Decreased GSL production in response to CS may be involved in emphysema pathogenesis, associated with autophagy with impaired lysosomal degradation and lung endothelial cell apoptosis.
Collapse
Affiliation(s)
- Kengo Koike
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; and
| | - Evgeny V. Berdyshev
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; and
| | - Andrew M. Mikosz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; and
| | - Irina A. Bronova
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; and
| | - Anna S. Bronoff
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; and
| | - John P. Jung
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; and
| | - Erica L. Beatman
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; and
| | - Kevin Ni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; and
| | - Danting Cao
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; and
- Pharmacology Graduate Program and
| | - April K. Scruggs
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; and
| | - Karina A. Serban
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; and
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Irina Petrache
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; and
- Pharmacology Graduate Program and
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
26
|
Tuder RM. Bringing Light to Chronic Obstructive Pulmonary Disease Pathogenesis and Resilience. Ann Am Thorac Soc 2018; 15:S227-S233. [PMID: 30759011 PMCID: PMC6944393 DOI: 10.1513/annalsats.201808-583mg] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of chronic obstructive pulmonary disease remains elusive; investigators in the field have struggled to decipher the cellular and molecular processes underlying chronic bronchitis and emphysema. Studies in the past 20 years have underscored that the tissue destruction, notably in emphysema, involves a multitude of injurious stresses, with progressive engagement of endogenous destructive processes triggered by decades of exposure to cigarette smoke and/or pollutants. These lead to an aged lung, with evidence of macromolecular damage that is unlikely to repair. Here we discuss these key pathogenetic elements in the context of organismal evolution as this concept may best capture the challenges facing chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Rubin M Tuder
- Program in Translational Lung Research and Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
27
|
Asakura T, Ishii M, Namkoong H, Suzuki S, Kagawa S, Yagi K, Komiya T, Hashimoto T, Okamori S, Kamata H, Tasaka S, Kihara A, Hegab AE, Hasegawa N, Betsuyaku T. Sphingosine 1-phosphate receptor modulator ONO-4641 stimulates CD11b +Gr-1 + cell expansion and inhibits lymphocyte infiltration in the lungs to ameliorate murine pulmonary emphysema. Mucosal Immunol 2018; 11:1606-1620. [PMID: 30116000 DOI: 10.1038/s41385-018-0077-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 07/24/2018] [Accepted: 08/01/2018] [Indexed: 02/08/2023]
Abstract
Sphingolipids play a pivotal role in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, little is known about the precise roles of sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, and its receptor modulation in COPD. In this study, we demonstrated that the S1P receptor modulator ONO-4641 induced the expansion of lung CD11b+Gr-1+ cells and lymphocytopenia in naive mice. ONO-4641-expanded CD11b+Gr-1+ cells showed higher arginase-1 activity, decreased T cell proliferation, and lower IFN-γ production in CD3+ T cells, similar to the features of myeloid-derived suppressor cells. ONO-4641 treatment decreased airspace enlargement in elastase-induced and cigarette smoke-induced emphysema models and attenuated emphysema exacerbation induced by post-elastase pneumococcal infection, which was also associated with an increased number of lung CD11b+Gr-1+ cells. Adoptive transfer of ONO-4641-expanded CD11b+Gr-1+ cells protected against elastase-induced emphysema. Lymphocytopenia observed in these models likely contributed to beneficial ONO-4641 effects. Thus, ONO-4641 attenuated murine pulmonary emphysema by expanding lung CD11b+Gr-1+ cell populations and inducing lymphocytopenia. The S1P receptor might be a promising target for strategies aimed at ameliorating pulmonary emphysema progression.
Collapse
Affiliation(s)
- Takanori Asakura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.,Japan Society of Promotion of Science, Tokyo, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Ho Namkoong
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shoji Suzuki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.,Japan Society of Promotion of Science, Tokyo, Japan
| | - Shizuko Kagawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kazuma Yagi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takaki Komiya
- Department of Biology & Pharmacology, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Takafumi Hashimoto
- Exploratory Research Laboratories, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Satoshi Okamori
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hirofumi Kamata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Sadatomo Tasaka
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Ahmed E Hegab
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Hasegawa
- Center for Infectious Diseases and Infection Control, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Betsuyaku
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
An Official American Thoracic Society Workshop Report: Obesity and Metabolism. An Emerging Frontier in Lung Health and Disease. Ann Am Thorac Soc 2018; 14:1050-1059. [PMID: 28570148 DOI: 10.1513/annalsats.201703-263ws] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The world is in the midst of an unprecedented epidemic of obesity. This epidemic has changed the presentation and etiology of common diseases. For example, steatohepatitis, directly attributable to obesity, is now the most common cause of cirrhosis in the United States. Type 2 diabetes is increasingly being diagnosed in children. Pulmonary researchers and clinicians are just beginning to appreciate the impact of obesity and altered metabolism on common pulmonary diseases. Obesity has recently been identified as a major risk factor for the development of asthma and for acute respiratory distress syndrome. Obesity is associated with profound changes in pulmonary physiology, the development of pulmonary hypertension, sleep-disordered breathing, and altered susceptibility to pulmonary infection. In short, obesity is leading to dramatic changes in lung health and disease. Simultaneously, the rapidly developing field of metabolism, including mitochondrial function, is shifting the paradigms by which the pathophysiology of many pulmonary diseases is understood. Altered metabolism can lead to profound changes in both innate and adaptive immunity, as well as the function of structural cells. To address this emerging field, a 3-day meeting on obesity, metabolism, and lung disease was convened in October 2015 to discuss recent findings, foster research initiatives, and ultimately guide clinical care. The major findings arising from this meeting are reported in this document.
Collapse
|
29
|
Truong TM, Li H, Dhapare S, Desai UR, Voelkel NF, Sakagami M. Sulfated dehydropolymer of caffeic acid: In vitro anti-lung cell death activity and in vivo intervention in emphysema induced by VEGF receptor blockade. Pulm Pharmacol Ther 2017. [PMID: 28648907 DOI: 10.1016/j.pupt.2017.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Induced lung cell death and impaired hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) signaling are proposed as a pathobiologic mechanism for alveolar structural destruction and loss in emphysema. We hypothesized that our sulfated dehydropolymer of caffeic acid, CDSO3, exerts anti-cell death activities and therapeutic interventions in emphysema by virtue of Fe2+ chelation-based HIF-1α/VEGF stabilization and elevation. The Fe2+ chelating activity was determined in the chromogenic ferrozine-Fe2+ chelation inhibitory assay. The in vitro anti-cell death activities and their Fe2+ and HIF-1α dependence were assessed against a range of emphysematous insults in the lung endothelial (HMVEC-L) and epithelial (A549) cells. CDSO3 was spray-dosed to the lung for three weeks (day 1-21) in an in vivo rat model of apoptotic emphysema induced with a VEGF receptor antagonist SU5416. Post-treatment treadmill exercise endurance, airspace enlargement, and several lung biomarkers/proteins were measured. CDSO3 was a potent Fe2+ chelating molecule. At 10 μM, CDSO3 inhibited HMVEC-L and A549 cell death induced by histone deacetylase inhibition with trichostatin A, VEGF receptor blockade with SU5416, and cigarette smoke extract by 65-99%, which were all significantly opposed by addition of excess Fe2+ or HIF-1α inhibitors. As a potent elastase inhibitor and antioxidant, CDSO3 also inhibited elastase- and H2O2-induced cell death by 92 and 95%, respectively. In the rat model of SU5416-induced apoptotic emphysema, CDSO3 treatment at 60 μg/kg 1) produced 61-77% interventions against exercise endurance impairment, airspace enlargement [mean linear intercept] and oxidative lung damage [malondialdehyde activity]; 2) normalized the apoptotic marker [cleaved caspase-3]; 3) stimulated the VEGF signaling [VEGF receptor 2 phosphorylation] by 1.4-fold; and 4) elevated the HIF-1α and VEGF expression by 1.8- and 1.5-fold, respectively. All of these were consistent with CDSO3's Fe2+ chelation-based HIF-1α/VEGF stabilization and elevation against their pathobiologic deficiency, inhibiting lung cell death and development of apoptotic emphysema.
Collapse
Affiliation(s)
- Tien M Truong
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 N, 12th Street, P. O. Box 980533, Richmond, VA 23298, USA.
| | - Hua Li
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 N, 12th Street, P. O. Box 980533, Richmond, VA 23298, USA.
| | - Sneha Dhapare
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 N, 12th Street, P. O. Box 980533, Richmond, VA 23298, USA.
| | - Umesh R Desai
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery and Development, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23219, USA.
| | - Nobert F Voelkel
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 N, 12th Street, P. O. Box 980533, Richmond, VA 23298, USA.
| | - Masahiro Sakagami
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 N, 12th Street, P. O. Box 980533, Richmond, VA 23298, USA.
| |
Collapse
|
30
|
Navarrete A, Rupérez FJ, Mendes TO, Pérez-Rial S, Girón-Martínez A, Terrón-Expósito R, Díaz-Gil JJ, Peces-Barba G, Barbas C, García A. A metabolomic approach shows sphingosine 1-phosphate and lysophospholipids as mediators of the therapeutic effect of liver growth factor in emphysema. J Pharm Biomed Anal 2017; 139:238-246. [PMID: 28314215 DOI: 10.1016/j.jpba.2017.02.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/18/2017] [Accepted: 02/26/2017] [Indexed: 02/06/2023]
Abstract
Tobacco smoke exposure is the principal cause of lung tissue destruction, which in turn results in emphysema that leads into shortness of breath. Liver growth factor (LGF, a cell and tissue regenerating factor with therapeutic activity in several organs) has antifibrotic and antioxidant properties that could be useful to promote lung tissue regenerating capacity in damaged lungs. The current study has examined differences in metabolite profiles (fingerprints) of plasma from mice (strain C57BL/6J, susceptible to develop emphysema) exposed to tobacco smoke during six months. One group of mice received a treatment with Liver Growth Factor (LGF) after emphysema was established, whereas the other group did not receive the treatment. Age and sex-matched mice not exposed to smoke were also maintained with or without treatment as controls. Metabolic fingerprints (untargeted analysis) of plasma after protein precipitation were obtained by LC-QTOF-MS. The signals were processed and a large number of possible metabolites were found (23944). Multivariate data analysis provided models that highlighted the differences between control and smoke exposed mice in both conditions. Accurate masses of features (possible compounds) representing significant differences were searched using online public databases. Lipid mediators, related to intracellular signaling in inflammation, were found among the metabolites putatively identified as markers of the different conditions and among them, sphingosine, sphingosine 1-phosphate and lysophospholipids point at the relevance of such metabolites in the regulation of the processes related to tissue regeneration mediated by LGF. These results also suggest that metabolomic fingerprinting could potentially guide the characterization of relevant metabolites leading the regeneration of lungs in emphysema disease.
Collapse
Affiliation(s)
- A Navarrete
- CEMBIO (Center for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Boadilla del Monte, 28668, Madrid, Spain
| | - F J Rupérez
- CEMBIO (Center for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Boadilla del Monte, 28668, Madrid, Spain
| | - T O Mendes
- CEMBIO (Center for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Boadilla del Monte, 28668, Madrid, Spain
| | - S Pérez-Rial
- Pulmonology Experimental Lab., IIS-Fundación Jiménez Díaz-UAM-CIBERES, Avenida Reyes Católicos 2, 28040, Madrid, Spain
| | - A Girón-Martínez
- Pulmonology Experimental Lab., IIS-Fundación Jiménez Díaz-UAM-CIBERES, Avenida Reyes Católicos 2, 28040, Madrid, Spain
| | - R Terrón-Expósito
- Pulmonology Experimental Lab., IIS-Fundación Jiménez Díaz-UAM-CIBERES, Avenida Reyes Católicos 2, 28040, Madrid, Spain
| | - J J Díaz-Gil
- Pulmonology Experimental Lab., IIS-Fundación Jiménez Díaz-UAM-CIBERES, Avenida Reyes Católicos 2, 28040, Madrid, Spain
| | - G Peces-Barba
- Pulmonology Experimental Lab., IIS-Fundación Jiménez Díaz-UAM-CIBERES, Avenida Reyes Católicos 2, 28040, Madrid, Spain
| | - C Barbas
- CEMBIO (Center for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Boadilla del Monte, 28668, Madrid, Spain
| | - A García
- CEMBIO (Center for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Boadilla del Monte, 28668, Madrid, Spain.
| |
Collapse
|
31
|
Abstract
Sphingosine-1-phosphate (S1P), a simple, bioactive sphingolipid metabolite, plays a key role, both intracellularly and extracellularly, in various cellular processes such as proliferation, survival, migration, inflammation, angiogenesis, and endothelial barrier integrity. The cellular S1P level is low and is tightly regulated by its synthesis and degradation. Sphingosine Kinases (SphKs) 1 and 2, catalyze the ATP-dependent phosphorylation of sphingosine to S1P, while the degradation is mediated by the reversible dephosphorylation catalyzed by the S1P phosphatases and lipid phosphate phosphatases and the irreversible degradation to hexadecenal and ethanolamine phosphate by sphingosine-1-phosphate lyase (S1PL). As a ligand for specific G-protein-coupled receptors, S1P1-5, which are differentially expressed in different cell types, S1P generates downstream signals that play crucial role in developmental and disease related pathologies. In addition to acting extracellularly on receptors located on the plasma membrane, S1P can also act intracellularly, independently of S1P1-5, affecting calcium homeostasis and cell proliferation. The SphKs /S1P /S1PL metabolic pathway is implicated in numerous human pathologies including respiratory disorders, thereby raising the possibility that manipulating intracellular S1P levels could offer therapeutic potential in ameliorating lung diseases. This review focuses on the prospects of targeting S1P signaling and S1P metabolizing enzymes using small molecule inhibitors, receptor agonists, and antagonists in the treatment of lung diseases.
Collapse
Affiliation(s)
- David L Ebenezer
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL, USA
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago, IL, USA
| | - Viswanathan Natarajan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, IL, USA; Department of Medicine, University of Illinois at Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, IL, USA.
| |
Collapse
|
32
|
Role of Sphingolipids in the Pathobiology of Lung Inflammation. Mediators Inflamm 2015; 2015:487508. [PMID: 26770018 PMCID: PMC4681829 DOI: 10.1155/2015/487508] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/24/2015] [Accepted: 10/27/2015] [Indexed: 12/31/2022] Open
Abstract
Sphingolipid bioactivities in the respiratory airways and the roles of the proteins that handle them have been extensively investigated. Gas or inhaled particles or microorganisms come into contact with mucus components, epithelial cells, blood barrier, and immune surveillance within the airways. Lung structure and functionality rely on a complex interplay of polar and hydrophobic structures forming the surfactant layer and governing external-internal exchanges, such as glycerol-phospholipids sphingolipids and proteins. Sphingolipids act as important signaling mediators involved in the control of cell survival and stress response, as well as secreted molecules endowed with inflammation-regulatory activities. Most successful respiratory infection and injuries evolve in the alveolar compartment, the critical lung functional unit involved in gas exchange. Sphingolipid altered metabolism in this compartment is closely related to inflammatory reaction and ceramide increase, in particular, favors the switch to pathological hyperinflammation. This short review explores a few mechanisms underlying sphingolipid involvement in the healthy lung (surfactant production and endothelial barrier maintenance) and in a selection of lung pathologies in which the impact of sphingolipid synthesis and metabolism is most apparent, such as acute lung injury, or chronic pathologies such as cystic fibrosis and chronic obstructive pulmonary disease.
Collapse
|
33
|
Petrache I, Berdyshev EV. Ceramide Signaling and Metabolism in Pathophysiological States of the Lung. Annu Rev Physiol 2015; 78:463-80. [PMID: 26667073 DOI: 10.1146/annurev-physiol-021115-105221] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Following the discovery of ceramide as the central signaling and metabolic relay among sphingolipids, studies of its involvement in lung health and pathophysiology have exponentially increased. In this review, we highlight key studies in the context of recent progress in metabolomics and translational research methodologies. Evidence points toward an important role for the ceramide/sphingosine-1-phosphate rheostat in maintaining lung cell survival, vascular barrier function, and proper host response to airway microbial infections. Sphingosine kinase 1 has emerged as an important determinant of sphingosine-1-phosphate lung levels, which, when aberrantly high, contribute to lung fibrosis, maladaptive vascular remodeling, and allergic asthma. New sphingolipid metabolites have been discovered as potential biomarkers of several lung diseases. Although multiple acute and chronic lung pathological conditions involve perturbations in sphingolipid signaling and metabolism, there are specific patterns, unique sphingolipid species, enzymes, metabolites, and receptors, which have emerged that deepen our understanding of lung pathophysiology and inform the development of new therapies for lung diseases.
Collapse
Affiliation(s)
- Irina Petrache
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, National Jewish Health, Denver, Colorado 80206; ,
| | - Evgeny V Berdyshev
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, National Jewish Health, Denver, Colorado 80206; ,
| |
Collapse
|
34
|
Schweitzer KS, Chen SX, Law S, Van Demark M, Poirier C, Justice MJ, Hubbard WC, Kim ES, Lai X, Wang M, Kranz WD, Carroll CJ, Ray BD, Bittman R, Goodpaster J, Petrache I. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures. Am J Physiol Lung Cell Mol Physiol 2015; 309:L175-87. [PMID: 25979079 DOI: 10.1152/ajplung.00411.2014] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 05/04/2015] [Indexed: 11/22/2022] Open
Abstract
The increased use of inhaled nicotine via e-cigarettes has unknown risks to lung health. Having previously shown that cigarette smoke (CS) extract disrupts the lung microvasculature barrier function by endothelial cell activation and cytoskeletal rearrangement, we investigated the contribution of nicotine in CS or e-cigarettes (e-Cig) to lung endothelial injury. Primary lung microvascular endothelial cells were exposed to nicotine, e-Cig solution, or condensed e-Cig vapor (1-20 mM nicotine) or to nicotine-free CS extract or e-Cig solutions. Compared with nicotine-containing extract, nicotine free-CS extract (10-20%) caused significantly less endothelial permeability as measured with electric cell-substrate impedance sensing. Nicotine exposures triggered dose-dependent loss of endothelial barrier in cultured cell monolayers and rapidly increased lung inflammation and oxidative stress in mice. The endothelial barrier disruptive effects were associated with increased intracellular ceramides, p38 MAPK activation, and myosin light chain (MLC) phosphorylation, and was critically mediated by Rho-activated kinase via inhibition of MLC-phosphatase unit MYPT1. Although nicotine at sufficient concentrations to cause endothelial barrier loss did not trigger cell necrosis, it markedly inhibited cell proliferation. Augmentation of sphingosine-1-phosphate (S1P) signaling via S1P1 improved both endothelial cell proliferation and barrier function during nicotine exposures. Nicotine-independent effects of e-Cig solutions were noted, which may be attributable to acrolein, detected along with propylene glycol, glycerol, and nicotine by NMR, mass spectrometry, and gas chromatography, in both e-Cig solutions and vapor. These results suggest that soluble components of e-Cig, including nicotine, cause dose-dependent loss of lung endothelial barrier function, which is associated with oxidative stress and brisk inflammation.
Collapse
Affiliation(s)
- Kelly S Schweitzer
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Steven X Chen
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sarah Law
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mary Van Demark
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Christophe Poirier
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Matthew J Justice
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Walter C Hubbard
- Department of Clinical Pharmacology, The Johns Hopkins University, Baltimore, Maryland
| | - Elena S Kim
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xianyin Lai
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mu Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - William D Kranz
- Department of Chemistry and Chemical Biology; Indiana University-Purdue University, Indianapolis, Indiana
| | - Clinton J Carroll
- Department of Chemistry and Chemical Biology; Indiana University-Purdue University, Indianapolis, Indiana
| | - Bruce D Ray
- Department of Physics, Indiana University-Purdue University, Indianapolis, Indiana
| | - Robert Bittman
- Queens College, City University of New York, Flushing, New York; and
| | - John Goodpaster
- Department of Chemistry and Chemical Biology; Indiana University-Purdue University, Indianapolis, Indiana
| | - Irina Petrache
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana; Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
35
|
Mirzaie M, Kheradmand F. Bioactive lipids in emphysema. Decoding fat to reveal COPD phenotypes. Am J Respir Crit Care Med 2015; 191:241-3. [PMID: 25635483 DOI: 10.1164/rccm.201412-2264ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Mehdi Mirzaie
- Department of Computational Biology, Faculty of High Technologies, Tarbiat Modares University, Tehran, Iran; School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | | |
Collapse
|
36
|
Bowler RP, Jacobson S, Cruickshank C, Hughes GJ, Siska C, Ory DS, Petrache I, Schaffer JE, Reisdorph N, Kechris K. Plasma sphingolipids associated with chronic obstructive pulmonary disease phenotypes. Am J Respir Crit Care Med 2015; 191:275-84. [PMID: 25494452 DOI: 10.1164/rccm.201410-1771oc] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) occurs in a minority of smokers and is characterized by intermittent exacerbations and clinical subphenotypes such as emphysema and chronic bronchitis. Although sphingolipids as a class are implicated in the pathogenesis of COPD, the particular sphingolipid species associated with COPD subphenotypes remain unknown. OBJECTIVES To use mass spectrometry to determine which plasma sphingolipids are associated with subphenotypes of COPD. METHODS One hundred twenty-nine current and former smokers from the COPDGene cohort had 69 distinct sphingolipid species detected in plasma by targeted mass spectrometry. Of these, 23 were also measured in 131 plasma samples (117 independent subjects) using an untargeted platform in an independent laboratory. Regression analysis with adjustment for clinical covariates, correction for false discovery rate, and metaanalysis were used to test associations between COPD subphenotypes and sphingolipids. Peripheral blood mononuclear cells were used to test associations between sphingolipid gene expression and plasma sphingolipids. MEASUREMENTS AND MAIN RESULTS Of the measured plasma sphingolipids, five sphingomyelins were associated with emphysema; four trihexosylceramides and three dihexosylceramides were associated with COPD exacerbations. Three sphingolipids were strongly associated with sphingolipid gene expression, and 15 sphingolipid gene/metabolite pairs were differentially regulated between COPD cases and control subjects. CONCLUSIONS There is evidence of systemic dysregulation of sphingolipid metabolism in patients with COPD. Subphenotyping suggests that sphingomyelins are strongly associated with emphysema and glycosphingolipids are associated with COPD exacerbations.
Collapse
|
37
|
Sphingosine-1-phosphate and ceramide are associated with health and atresia of bovine ovarian antral follicles. Animal 2015; 9:308-12. [DOI: 10.1017/s1751731114002341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
38
|
Christofidou-Solomidou M, Pietrofesa RA, Arguiri E, Schweitzer KS, Berdyshev EV, McCarthy M, Corbitt A, Alwood JS, Yu Y, Globus RK, Solomides CC, Ullrich RL, Petrache I. Space radiation-associated lung injury in a murine model. Am J Physiol Lung Cell Mol Physiol 2014; 308:L416-28. [PMID: 25526737 DOI: 10.1152/ajplung.00260.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to (137)Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u (56)Fe ions, or 350 MeV/u (28)Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy (56)Fe or (28)Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions.
Collapse
Affiliation(s)
- Melpo Christofidou-Solomidou
- Department of Medicine, Pulmonary Allergy and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania;
| | - Ralph A Pietrofesa
- Department of Medicine, Pulmonary Allergy and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Evguenia Arguiri
- Department of Medicine, Pulmonary Allergy and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kelly S Schweitzer
- Department of Medicine, Pulmonary and Critical Care Division, Indiana University School of Medicine, Indianapolis, Indiana
| | - Evgeny V Berdyshev
- Department of Medicine University of Illinois at Chicago, Chicago, Illinois
| | | | - Astrid Corbitt
- University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Joshua S Alwood
- Oak Ridge Associated Universities, NASA Postdoctoral Program, Moffett Field, California
| | - Yongjia Yu
- University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Ruth K Globus
- NASA Ames Research Center, Moffett Field, California
| | | | | | - Irina Petrache
- Department of Medicine, Pulmonary and Critical Care Division, Indiana University School of Medicine, Indianapolis, Indiana; Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
39
|
Moreno JA, Ortega-Gomez A, Rubio-Navarro A, Louedec L, Ho-Tin-Noé B, Caligiuri G, Nicoletti A, Levoye A, Plantier L, Meilhac O. High-density lipoproteins potentiate α1-antitrypsin therapy in elastase-induced pulmonary emphysema. Am J Respir Cell Mol Biol 2014; 51:536-49. [PMID: 24787644 DOI: 10.1165/rcmb.2013-0103oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Several studies report that high-density lipoproteins (HDLs) can carry α1-antitrypsin (AAT; an elastase inhibitor). We aimed to determine whether injection of exogenous HDL, enriched or not in AAT, may have protective effects against pulmonary emphysema. After tracheal instillation of saline or elastase, mice were randomly treated intravenously with saline, human plasma HDL (75 mg apolipoprotein A1/kg), HDL-AAT (75 mg apolipoprotein A1-3.75 mg AAT/kg), or AAT alone (3.75 mg/kg) at 2, 24, 48, and 72 hours. We have shown that HDL-AAT reached the lung and prevented the development of pulmonary emphysema by 59.3% at 3 weeks (alveoli mean chord length, 22.9 ± 2.8 μm versus 30.7 ± 4.5 μm; P < 0.001), whereas injection of HDL or AAT alone only showed a moderate, nonsignificant protective effect (28.2 ± 4.2 μm versus 30.7 ± 5 μm [P = 0.23] and 27.3 ± 5.66 μm versus 30.71 ± 4.96 μm [P = 0.18], respectively). Indeed, protection by HDL-AAT was significantly higher than that observed with HDL or AAT (P = 0.006 and P = 0.048, respectively). This protective effect was associated (at 6, 24, and 72 h) with: (1) a reduction in neutrophil and macrophage number in the bronchoalveolar lavage fluid; (2) decreased concentrations of IL-6, monocyte chemoattractant protein-1, and TNF-α in both bronchoalveolar lavage fluid and plasma; (3) a reduction in matrix metalloproteinase-2 and matrix metalloproteinase-9 activities; and (4) a reduction in the degradation of fibronectin, a marker of tissue damage. In addition, HDL-AAT reduced acute cigarette smoke-induced inflammatory response. Intravenous HDL-AAT treatment afforded a better protection against elastase-induced pulmonary emphysema than AAT alone, and may represent a significant development for the management of emphysema associated with AAT deficiency.
Collapse
Affiliation(s)
- Juan-Antonio Moreno
- 1 Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1148, DHU FIRE (Département Hospitalo-Universitaire Fibrosis, Inflammation, REmodeling in cardiovascular, respiratory and renal diseases), Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Girón-Martínez Á, Pérez-Rial S, Terrón-Expósito R, Díaz-Gil JJ, González-Mangado N, Peces-Barba G. Proliferative activity of liver growth factor is associated with an improvement of cigarette smoke-induced emphysema in mice. PLoS One 2014; 9:e112995. [PMID: 25401951 PMCID: PMC4234533 DOI: 10.1371/journal.pone.0112995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/17/2014] [Indexed: 01/06/2023] Open
Abstract
Cigarette smoke (CS)-induced emphysema is a major component of chronic obstructive pulmonary disease (COPD). COPD treatment is based on the administration of bronchodilators and corticosteroids to control symptoms and exacerbations, however, to date, there are no effective therapies to reverse disease progression. Liver growth factor (LGF) is an albumin-bilirubin complex with mitogenic properties, whose therapeutic effects have previously been reported in a model of emphysema and several rodent models of human disease. To approach the therapeutic effect of LGF in a model of previously established emphysema, morphometric and lung function parameters, matrix metalloproteinase (MMP) activity and the expression of several markers, such as VEGF, PCNA, 3NT and Nrf2, were assessed in air-exposed and CS-exposed C57BL/6J male mice with and without intraperitoneal (i.p.) injection of LGF. CS-exposed mice presented a significant enlargement of alveolar spaces, higher alveolar internal area and loss of lung function that correlated with higher MMP activity, higher expression of 3NT and lower expression of VEGF. CS-exposed mice injected with LGF, showed an amelioration of emphysema and improved lung function, which correlated with lower MMP activity and 3NT expression and higher levels of VEGF, PCNA and Nrf2. Taken together, this study suggests that LGF administration ameliorates CS-induced emphysema, highlights the ability of LGF to promote alveolar cell proliferation and may be a promising strategy to revert COPD progression.
Collapse
Affiliation(s)
- Álvaro Girón-Martínez
- Respiratory Research Group, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - CIBERES, Universidad Autónoma de Madrid (IIS-FJD-CIBERES-UAM), Madrid, Spain
- * E-mail:
| | - Sandra Pérez-Rial
- Respiratory Research Group, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - CIBERES, Universidad Autónoma de Madrid (IIS-FJD-CIBERES-UAM), Madrid, Spain
| | - Raúl Terrón-Expósito
- Respiratory Research Group, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - CIBERES, Universidad Autónoma de Madrid (IIS-FJD-CIBERES-UAM), Madrid, Spain
| | - Juan José Díaz-Gil
- Respiratory Research Group, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - CIBERES, Universidad Autónoma de Madrid (IIS-FJD-CIBERES-UAM), Madrid, Spain
| | - Nicolás González-Mangado
- Respiratory Research Group, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - CIBERES, Universidad Autónoma de Madrid (IIS-FJD-CIBERES-UAM), Madrid, Spain
| | - Germán Peces-Barba
- Respiratory Research Group, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - CIBERES, Universidad Autónoma de Madrid (IIS-FJD-CIBERES-UAM), Madrid, Spain
| |
Collapse
|
41
|
Cruickshank-Quinn CI, Mahaffey S, Justice MJ, Hughes G, Armstrong M, Bowler RP, Reisdorph R, Petrache I, Reisdorph N. Transient and persistent metabolomic changes in plasma following chronic cigarette smoke exposure in a mouse model. PLoS One 2014; 9:e101855. [PMID: 25007263 PMCID: PMC4090193 DOI: 10.1371/journal.pone.0101855] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 06/12/2014] [Indexed: 12/16/2022] Open
Abstract
Cigarette smoke exposure is linked to the development of a variety of chronic lung and systemic diseases in susceptible individuals. Metabolomics approaches may aid in defining disease phenotypes, may help predict responses to treatment, and could identify biomarkers of risk for developing disease. Using a mouse model of chronic cigarette smoke exposure sufficient to cause mild emphysema, we investigated whether cigarette smoke induces distinct metabolic profiles and determined their persistence following smoking cessation. Metabolites were extracted from plasma and fractionated based on chemical class using liquid-liquid and solid-phase extraction prior to performing liquid chromatography mass spectrometry-based metabolomics. Metabolites were evaluated for statistically significant differences among group means (p-value≤0.05) and fold change ≥1.5). Cigarette smoke exposure was associated with significant differences in amino acid, purine, lipid, fatty acid, and steroid metabolite levels compared to air exposed animals. Whereas 60% of the metabolite changes were reversible, 40% of metabolites remained persistently altered even following 2 months of smoking cessation, including nicotine metabolites. Validation of metabolite species and translation of these findings to human plasma metabolite signatures induced by cigarette smoking may lead to the discovery of biomarkers or pathogenic pathways of smoking-induced disease.
Collapse
Affiliation(s)
- Charmion I. Cruickshank-Quinn
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Spencer Mahaffey
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Matthew J. Justice
- Departments of Medicine and of Biochemistry and Molecular Biology, Indiana University, Indianapolis, Indiana, United States of America
| | - Grant Hughes
- Department of Biostatistics and Informatics, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Michael Armstrong
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Russell P. Bowler
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Richard Reisdorph
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
| | - Irina Petrache
- Departments of Medicine and of Biochemistry and Molecular Biology, Indiana University, Indianapolis, Indiana, United States of America
- Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, United States of America
- * E-mail: (NR); (IP)
| | - Nichole Reisdorph
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
- * E-mail: (NR); (IP)
| |
Collapse
|
42
|
Burkart KM, Manichaikul A, Wilk JB, Ahmed FS, Burke GL, Enright P, Hansel NN, Haynes D, Heckbert SR, Hoffman EA, Kaufman JD, Kurai J, Loehr L, London SJ, Meng Y, O’Connor GT, Oelsner E, Petrini M, Pottinger TD, Powell CA, Redline S, Rotter JI, Smith LJ, Artigas MS, Tobin MD, Tsai MY, Watson K, White W, Young TR, Rich SS, Barr RG. APOM and high-density lipoprotein cholesterol are associated with lung function and per cent emphysema. Eur Respir J 2014; 43:1003-17. [PMID: 23900982 PMCID: PMC4041087 DOI: 10.1183/09031936.00147612] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is linked to cardiovascular disease; however, there are few studies on the associations of cardiovascular genes with COPD. We assessed the association of lung function with 2100 genes selected for cardiovascular diseases among 20 077 European-Americans and 6900 African-Americans. We performed replication of significant loci in the other racial group and an independent consortium of Europeans, tested the associations of significant loci with per cent emphysema and examined gene expression in an independent sample. We then tested the association of a related lipid biomarker with forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) ratio and per cent emphysema. We identified one new polymorphism for FEV1/FVC (rs805301) in European-Americans (p=1.3×10(-6)) and a second (rs707974) in the combined European-American and African-American analysis (p=1.38×10(-7)). Both single-nucleotide polymorphisms (SNPs) flank the gene for apolipoprotein M (APOM), a component of high-density lipoprotein (HDL) cholesterol. Both were replicated in an independent cohort. SNPs in a second gene related to apolipoprotein M and HDL, PCSK9, were associated with FEV1/FVC ratio among African-Americans. rs707974 was associated with per cent emphysema among European-Americans and African-Americans and APOM expression was related to FEV1/FVC ratio and per cent emphysema. Higher HDL levels were associated with lower FEV1/FVC ratio and greater per cent emphysema. These findings suggest a novel role for the apolipoprotein M/HDL pathway in the pathogenesis of COPD and emphysema.
Collapse
Affiliation(s)
- Kristin M Burkart
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA
| | - Jemma B Wilk
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Firas S Ahmed
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Radiology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Gregory L Burke
- Department of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Paul Enright
- Department of Medicine, University of Arizona, Tucson, AZ
| | - Nadia N Hansel
- Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Demondes Haynes
- Department of Medicine, University of Mississippi, Jackson, MS
| | - Susan R Heckbert
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
| | - Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, IA
| | - Joel D Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine, and Epidemiology, University of Washington Seattle, WA
| | - Jun Kurai
- Department of Medicine, Mount Sinai Hospital, New York, NY
| | - Laura Loehr
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health and Human Services, Research Triangle Park, NC
| | - Yang Meng
- The Broad Institute of MIT and Harvard, Cambridge MA
| | - George T O’Connor
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA and NHLBI Framingham Heart Study, Framingham, MA
| | - Elizabeth Oelsner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Marcy Petrini
- Department of Medicine, University of Mississippi, Jackson, MS
| | - Tess D Pottinger
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | | | - Susan Redline
- Department of Medicine, Brigham and Women’s Hospital, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Jerome I Rotter
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Lewis J Smith
- Department of Medicine, Northwestern University, Chicago, IL
| | - María Soler Artigas
- Department of Health Sciences, Genetic Epidemiology Group, University of Leicester, Leicester, UK
| | - Martin D Tobin
- Department of Health Sciences, Genetic Epidemiology Group, University of Leicester, Leicester, UK
- National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Michael Y Tsai
- Department of Laboratory Medical Pathology, University of Minnesota, Minneapolis, MN
| | - Karol Watson
- Department of Medicine, University of California, Los Angeles, Los Angeles
| | - Wendy White
- Jackson Heart Study, Tougaloo College, Tougaloo, MS
| | - Taylor R Young
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health and Human Services, Research Triangle Park, NC
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA
| | - R Graham Barr
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| |
Collapse
|
43
|
Tibboel J, Reiss I, de Jongste JC, Post M. Sphingolipids in lung growth and repair. Chest 2014; 145:120-128. [PMID: 24394822 DOI: 10.1378/chest.13-0967] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sphingolipids comprise a class of bioactive lipids that are involved in a variety of pathophysiologic processes, including cell death and survival. Ceramide and sphingosine-1-phosphate (S1P) form the center of sphingolipid metabolism and determine proapoptotic and antiapoptotic balance. Findings in animal models suggest a possible pathophysiologic role of ceramide and S1P in COPD, cystic fibrosis, and asthma. Sphingolipid research is now focusing on the role of ceramides during lung inflammation and its regulation by sphingomyelinases. Recently, sphingolipids have been shown to play a role in the pathogenesis of bronchopulmonary dysplasia (BPD). Ceramide upregulation was linked with vascular endothelial growth factor suppression and decreased surfactant protein B levels, pathways important for the development of BPD. In a murine model of BPD, intervention with an S1P analog had a favorable effect on histologic abnormalities and ceramide levels. Ceramides and S1P also regulate endothelial permeability through cortical actin cytoskeletal rearrangement, which is relevant for the pathogenesis of ARDS. On the basis of these observations, the feasibility of pharmacologic intervention in the sphingolipid pathway to influence disease development and progression is presently explored, with promising early results. The prospect of new strategies to prevent and repair lung disease by interfering with sphingolipid metabolism is exciting and could potentially reduce morbidity and mortality in patients with severe lung disorders.
Collapse
Affiliation(s)
- Jeroen Tibboel
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Irwin Reiss
- Department of Pediatrics, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Johan C de Jongste
- Department of Pediatrics, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Martin Post
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
44
|
McLoughlin P, Keane MP. Physiological and pathological angiogenesis in the adult pulmonary circulation. Compr Physiol 2013; 1:1473-508. [PMID: 23733650 DOI: 10.1002/cphy.c100034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Angiogenesis occurs during growth and physiological adaptation in many systemic organs, for example, exercise-induced skeletal and cardiac muscle hypertrophy, ovulation, and tissue repair. Disordered angiogenesis contributes to chronic inflammatory disease processes and to tumor growth and metastasis. Although it was previously thought that the adult pulmonary circulation was incapable of supporting new vessel growth, over that past 10 years new data have shown that angiogenesis within this circulation occurs both during physiological adaptive processes and as part of the pathogenic mechanisms of lung diseases. Here we review the expression of vascular growth factors in the adult lung, their essential role in pulmonary vascular homeostasis and the changes in their expression that occur in response to physiological challenges and in disease. We consider the evidence for adaptive neovascularization in the pulmonary circulation in response to alveolar hypoxia and during lung growth following pneumonectomy in the adult lung. In addition, we review the role of disordered angiogenesis in specific lung diseases including idiopathic pulmonary fibrosis, acute adult distress syndrome and both primary and metastatic tumors of the lung. Finally, we examine recent experimental data showing that therapeutic enhancement of pulmonary angiogenesis has the potential to treat lung diseases characterized by vessel loss.
Collapse
Affiliation(s)
- Paul McLoughlin
- University College Dublin, School of Medicine and Medical Sciences, Conway Institute, and St. Vincent's University Hospital, Dublin, Ireland.
| | | |
Collapse
|
45
|
Abstract
Acute lung injury is a life-threatening disease that is characterized by pulmonary inflammation, loss of barrier functions, and hypoxemia. Sphingolipids are critically involved in the disease process that they can both expedite and extenuate: They expedite inflammation by promoting chemotaxis (neutral sphingomyelinase), increased endothelial permeability (acid sphingomyelinase, S1P3-receptors), increased epithelial permeability (S1P2- and S1P3-receptors), and delaying neutrophil apoptosis (neutral sphingomyelinase, S1P1-receptors). They extenuate inflammation by attenuating chemotaxis (S1P) and by stabilizing the endothelial and the epithelial barrier (S1P1-receptor). This chapter discusses the multiple roles and therapeutic options that sphingolipids offer with respect to acute lung injury.
Collapse
Affiliation(s)
- Stefan Uhlig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany.
| | | |
Collapse
|
46
|
Gorshkova IA, Wang H, Orbelyan GA, Goya J, Natarajan V, Beiser DG, Vanden Hoek TL, Berdyshev EV. Inhibition of sphingosine-1-phosphate lyase rescues sphingosine kinase-1-knockout phenotype following murine cardiac arrest. Life Sci 2013; 93:359-66. [PMID: 23892195 DOI: 10.1016/j.lfs.2013.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/09/2013] [Accepted: 07/12/2013] [Indexed: 01/24/2023]
Abstract
AIMS To test the role of sphingosine-1-phosphate (S1P) signaling system in the in vivo setting of resuscitation and survival after cardiac arrest. MAIN METHODS A mouse model of potassium-induced cardiac arrest and resuscitation was used to test the importance of S1P homeostasis in resuscitation and survival. C57BL/6 and sphingosine kinase-1 knockout (SphK1-KO) female mice were arrested for 8 min then subjected to 5 minute CPR with epinephrine bolus given at 90s after the beginning of CPR. Animal survival was monitored for 4h post-resuscitation. Upregulation of tissue and circulatory S1P levels were achieved via inhibition of S1P lyase by 2-acetyl-5-tetrahydroxybutyl imidazole (THI). Plasma and heart tissue S1P and ceramide levels were quantified by targeted ESI-LC/MS/MS. KEY FINDINGS Lack of SphK1 and low tissue/circulatory S1P levels in SphK1-KO mice led to poor animal resuscitation after cardiac arrest and to impaired survival post-resuscitation. Inhibition of S1P lyase in SphK1-KO mice drastically improved animal resuscitation and survival. Improved resuscitation and survival of THI-treated SphK1-KO mice were better correlated with cardiac dihydro-S1P (DHS1P) than S1P levels. The lack of SphK1 and the inhibition of S1P lyase by THI were accompanied by modulation in cardiac S1PR1 and S1PR2 expression and by selective changes in plasma N-palmitoyl- and N-behenoyl-ceramide levels. SIGNIFICANCE Our data provide evidence for the crucial role for SphK1 and S1P signaling system in resuscitation and survival after cardiac arrest, which may form the basis for development of novel therapeutic strategy to support resuscitation and long-term survival of cardiac arrest patients.
Collapse
Affiliation(s)
- Irina A Gorshkova
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | | | | | | | | | | | | | | |
Collapse
|
47
|
The involvement of sphingolipids in chronic obstructive pulmonary diseases. Handb Exp Pharmacol 2013:247-64. [PMID: 23563660 DOI: 10.1007/978-3-7091-1511-4_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) includes a spectrum of conditions that have in common varying degrees of airflow obstruction, such as chronic bronchitis and emphysema. There is an increasing evidence of involvement of sphingolipids as key molecular mediators or biomarkers of disease in emphysema, chronic bronchitis, and more recently in asthma, another disease characterized by (reversible) airflow obstruction. Given the recognized central role of oxidative stress and inflammatory stimuli along with involvement of immune responses, apoptosis, and tissue remodeling in the development of chronic obstructive lung diseases, it is not surprising that sphingolipids have been shown to play important role in their pathobiology. In particular the pro-apoptotic effects of ceramide were suspected as events in the lung destruction that occurs as a result of apoptotic loss of structural cells comprising the alveolar walls, such as microvascular endothelial cells and alveolar epithelial cells. In addition, the role of ceramide was investigated in models of larger airway epithelial cell stress responses to cigarette smoke, in the context of ensuing airway remodeling and inflammation. This chapter discusses current evidence of sphingolipid perturbations in experimental models of COPD and relevant links to human disease based on translational and epidemiological data.
Collapse
|
48
|
Asle-Rousta M, Oryan S, Ahmadiani A, Rahnema M. Activation of sphingosine 1-phosphate receptor-1 by SEW2871 improves cognitive function in Alzheimer's disease model rats. EXCLI JOURNAL 2013; 12:449-61. [PMID: 26417237 PMCID: PMC4566907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 11/26/2022]
Abstract
Sphingosine-1 phosphate (S1P) is involved in a variety of cellular processes via activation of S1P receptors (S1PRs; S1PR1 to S1PR5) that are highly expressed in the brain. It has been shown that the level of S1P is reduced in the brain of Alzheimer's disease (AD) patients. However, there is no study designed to evaluate the expression of S1PRs in AD brains. The objectives of the present work are (1) to examine the expression of S1PR1-3 in the hippocampus of beta amyloid (Aβ) 1-42 injected rats and (2) to clarify the effects of chronic S1PR1 activation on S1PR1-3 levels, spatial memory deficit and hippocampal damage in AD rats. SEW2871, the S1PR1 selective agonist, repeatedly was injected intraperitoneally during a period of two weeks. Upon Western Blot data bilateral intrahippocampal injection of Aβ1-42 decreased the expression of S1PR1 while increased S1PR2 level and did not affect that of S1PR3. We found that chronic administration of SEW2871 inhibited the reduction of S1PR1 expression and ameliorated spatial memory impairment in the Morris water maze task in rats. In addition, SEW2871 attenuated the Aβ1-42-induced hippocampal neuronal loss according to Nissl staining findings. Data in the current study highlights the importance of S1PR1 signaling pathway deregulation in AD development and suggests that activation of S1PR1 may represent a potential approach for developing new therapeutics to manage memory deficit and apoptosis associated with neurodegenerative disorders such as AD.
Collapse
Affiliation(s)
- Masoumeh Asle-Rousta
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran,*To whom correspondence should be addressed: Masoumeh Asle-Rousta, Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran; Tel: +98 9125606327, Fax: +98 2644231404, E-mail:
| | - Shahrbanoo Oryan
- Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mehdi Rahnema
- Department of Biology, Faculty of Basic and Medical Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
49
|
Yasuo M, Mizuno S, Allegood J, Kraskauskas D, Bogaard HJ, Spiegel S, Voelkel NF. Fenretinide causes emphysema, which is prevented by sphingosine 1-phoshate. PLoS One 2013; 8:e53927. [PMID: 23326540 PMCID: PMC3543313 DOI: 10.1371/journal.pone.0053927] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 12/07/2012] [Indexed: 01/08/2023] Open
Abstract
Sphingolipids play a role in the development of emphysema and ceramide levels are increased in experimental models of emphysema; however, the mechanisms of ceramide-related pulmonary emphysema are not fully understood. Here we examine mechanisms of ceramide-induced pulmonary emphysema. Male Sprague-Dawley rats were treated with fenretinide (20 mg/kg BW), a synthetic derivative of retinoic acid that causes the formation of ceramide, and we postulated that the effects of fenretinide could be offset by administering sphingosine 1-phosphate (S1P) (100 µg/kg BW). Lung tissues were analyzed and mean alveolar airspace area, total length of the alveolar perimeter and the number of caspase-3 positive cells were measured. Hypoxia-inducible factor alpha (HIF-1α), vascular endothelial growth factor (VEGF) and other related proteins were analyzed by Western blot analysis. Immunohistochemical analysis of HIF-1α was also performed. Ceramide, dihydroceramide, S1P, and dihydro-S1P were measured by mass spectrometer. Chronic intraperitoneal injection of fenretinide increased the alveolar airspace surface area and increased the number of caspase-3 positive cells in rat lungs. Fenretinide also suppressed HIF-1α and VEGF protein expression in rat lungs. Concomitant injection of S1P prevented the decrease in the expression of HIF-1α, VEGF, histone deacetylase 2 (HDAC2), and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) protein expression in the lungs. S1P injection also increased phosphorylated sphingosine kinase 1. Dihydroceramide was significantly increased by fenretinide injection and S1P treatment prevented the increase in dihydroceramide levels in rat lungs. These data support the concept that increased de novo ceramide production causes alveolar septal cell apoptosis and causes emphysema via suppressing HIF-1α. Concomitant treatment with S1P normalizes the ceramide-S1P balance in the rat lungs and increases HIF-1α protein expression via activation of sphingosine kinase 1; as a consequence, S1P salvages fenretinide induced emphysema in rat lungs.
Collapse
Affiliation(s)
- Masanori Yasuo
- Pulmonary and Critical Care Medicine Division and Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, Virginia, United States of America
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shiro Mizuno
- Pulmonary and Critical Care Medicine Division and Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jeremy Allegood
- Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Donatas Kraskauskas
- Pulmonary and Critical Care Medicine Division and Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Harm J. Bogaard
- Pulmonary and Critical Care Medicine Division and Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sarah Spiegel
- Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Norbert F. Voelkel
- Pulmonary and Critical Care Medicine Division and Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
50
|
Kamocki K, Van Demark M, Fisher A, Rush NI, Presson RG, Hubbard W, Berdyshev EV, Adamsky S, Feinstein E, Gandjeva A, Tuder RM, Petrache I. RTP801 is required for ceramide-induced cell-specific death in the murine lung. Am J Respir Cell Mol Biol 2012; 48:87-93. [PMID: 23024063 DOI: 10.1165/rcmb.2012-0254oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Key host responses to the stress induced by environmental exposure to cigarette smoke (CS) are responsible for initiating pathogenic effects that may culminate in emphysema development. CS increases lung ceramides, sphingolipids involved in oxidative stress, structural alveolar cell apoptosis, and inhibition of apoptotic cell clearance by alveolar macrophages, leading to the development of emphysema-like pathology. RTP801, a hypoxia and oxidative stress sensor, is also increased by CS, and has been recently implicated in both apoptosis and inflammation. We investigated whether inductions of ceramide and RTP801 are mechanistically linked, and evaluated their relative importance in lung cell apoptosis and airspace enlargement in vivo. As reported, direct lung instillation of either RTP801 expression plasmid or ceramides in mice triggered alveolar cell apoptosis and oxidative stress. RTP801 overexpression up-regulated lung ceramide levels 2.6-fold. In turn, instillation of lung ceramides doubled the lung content of RTP801. Cell sorting after lung tissue dissociation into single-cell suspension showed that ceramide triggers both endothelial and epithelial cell apoptosis in vivo. Interestingly, mice lacking rtp801 were protected against ceramide-induced apoptosis of epithelial type II cells, but not type I or endothelial cells. Furthermore, rtp801-null mice were protected from ceramide-induced alveolar enlargement, and exhibited improved static lung compliance compared with wild-type mice. In conclusion, ceramide and RTP801 participate in alveolar cell apoptosis through a process of mutual up-regulation, which may result in self-amplification loops, leading to alveolar damage.
Collapse
Affiliation(s)
- Krzysztof Kamocki
- Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|