1
|
Xu N, Fan L, Li L, Guo Y. Exploring the pathogenicity of Mycoplasma pneumoniae: Focus on community-acquired respiratory distress syndrome toxins. Microb Pathog 2024; 195:106865. [PMID: 39153578 DOI: 10.1016/j.micpath.2024.106865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Community-Acquired Respiratory Distress Syndrome Toxin (CARDS TX) is a unique exotoxin produced by Mycoplasma pneumoniae (MP) and has been confirmed to possess ADP-ribosyltransferase (ART) and vacuolating activities. CARDS TX binds to receptors on the surfaces of mammalian cells followed by entry into the cells through clathrin-mediated endocytosis, and exerts cytotoxic effects by undergoing retrograde transport and finally cleavage on endosomes and cellular organelles. In addition, CARDS TX can trigger severe inflammatory reactions resulting in airway dysfunction, producing allergic inflammation and asthma-like conditions. As a newly discovered virulence factor of MP, CARDS TX has been extensively studied in recent years. As resistance to macrolide drugs has increased significantly in recent years and there is no vaccine against MP, the development of a vaccine targeting CARDS TX is considered a potential preventive measure. This review focuses on recent studies and insights into this toxin, providing directions for a better understanding of MP pathogenesis and treatment. IMPORTANCE: A serious hazard to worldwide public health in recent years, Mycoplasma pneumoniae (MP) is a prominent bacterium that causes community-acquired pneumonia (CAP) in hospitalized children. Due to their high prevalence and fatality rates, MP infections often cause both respiratory illnesses and extensive extrapulmonary symptoms. It has recently been shown that MP produces a distinct exotoxin known as Community-Acquired Respiratory Distress Syndrome Toxin (CARDS TX). Mycoplasma pneumoniae pneumonia (MPP)-like tissue injury is caused by this toxin because it has both ADP-ribosyltransferase and vacuolating properties. A better knowledge of MP etiology and therapy is provided by this review, which focuses on latest research and insights into this toxin.
Collapse
Affiliation(s)
- Nuo Xu
- Department of Respiratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Children's Hospital, Wuxi, 214000, China
| | - Lu Fan
- Department of Respiratory Medicine & Clinical Allergy Center, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, 214000, China
| | - Ling Li
- Department of Respiratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Children's Hospital, Wuxi, 214000, China; Department of Respiratory Medicine & Clinical Allergy Center, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, 214000, China.
| | - Yun Guo
- Department of Respiratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Children's Hospital, Wuxi, 214000, China; Department of Respiratory Medicine & Clinical Allergy Center, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, 214000, China.
| |
Collapse
|
2
|
Song Z, Han C, Luo G, Jia G, Wang X, Zhang B. Yinqin Qingfei granules alleviate Mycoplasma pneumoniae pneumonia via inhibiting NLRP3 inflammasome-mediated macrophage pyroptosis. Front Pharmacol 2024; 15:1437475. [PMID: 39257401 PMCID: PMC11383775 DOI: 10.3389/fphar.2024.1437475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Mycoplasma pneumoniae pneumonia (MPP) is a prevalent respiratory infectious disease in children. Given the increasing resistance of M. pneumoniae (MP) to macrolide antibiotics, the identification of new therapeutic agents is critical. Yinqin Qingfei granules (YQQFG), a Chinese patent medicine formulated specifically for pediatric MPP, lacks a clear explanation of its mechanism. METHODS The primary components of YQQFG were identified using LC-MS/MS. In vitro, RAW264.7 cells infected with MP underwent morphological examination via scanning electron microscopy. Drug-containing serum was prepared, and its intervention concentration was determined using the CCK-8 assay. The active components of YQQFG were molecularly docked with NLRP3 protein using Autodock Vina software. A RAW264.7 cell line overexpressing NLRP3 was created using lentivirus to pinpoint the target of YQQFG. In vivo, MPP model mice were established via nasal instillation of MP. Lung damage was assessed by lung index and H&E staining. Pyroptosis-associated protein levels in cells and lung tissue were measured by western blot, while interleukin (IL)-1β and IL-18 levels in cell supernatants and mouse serum were quantified using ELISA. Immunofluorescence double staining of lung tissue sections was conducted to assess the correlation between NLRP3 protein expression and macrophages. The expression of the community-acquired respiratory distress syndrome toxin (CARDS TX) was evaluated by qPCR. RESULTS 25 effective components with favorable oral bioavailability were identified in YQQFG. Both in vitro and in vivo studies demonstrated that YQQFG substantially reduced the expression of the NLRP3/Caspase-1/GSDMD pathway, decreasing the release of IL-1β and IL-18, and inhibited MP exotoxin. Molecular docking indicated strong affinity between most YQQFG components and NLRP3 protein. Lentivirus transfection and immunofluorescence double staining confirmed that YQQFG significantly suppressed NLRP3 expression in macrophages, outperforming azithromycin (AZM). The combination of YQQFG and AZM yielded the optimal therapeutic effect for MPP. CONCLUSION YQQFG mitigates inflammatory responses by suppressing NLRP3 inflammasome-mediated macrophage pyroptosis, thereby ameliorating MP-induced acute lung injury. YQQFG serves as an effective adjunct and alternative medication for pediatric MPP treatment.
Collapse
Affiliation(s)
- Zhe Song
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengen Han
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangzhi Luo
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangyuan Jia
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Wang
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baoqing Zhang
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Yang L, Zhang C, Liu Y, Bao H, Wang Z. The Therapeutic Potential of Neutrophil Extracellular Traps and NLRP3 Inflammasomes in Mycoplasma pneumoniae Pneumonia. Immunol Invest 2024; 53:975-988. [PMID: 38874911 DOI: 10.1080/08820139.2024.2364796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
INTRODUCTION Mycoplasma pneumoniae (MP) is the most common pathogen of community-acquired pneumonia in children. However, the role of neutrophil extracellular traps (NETs) in the pathogenesis of MP is unclear. METHODS Both the level of NETs were detected between the 60 MP pneumonia patients and 20 healthy controls, whose the clinical characteristics were compared. Additionally, NETs formation induced by community-acquired respiratory distress syndrome (CARDS) toxin was also analyzed through transcriptome sequencing. RESULTS The levels of cell-free DNA, Cit-H3, and MPO-DNA complexes were significantly increased in the patients with MP pneumonia. Importantly, both cell-free DNA and LDH were higher in hospitalized patients with severity than those without severity. In addition, CARDS toxin induced the NETs formation in vitro and in vivo. Transcriptomics GO and KEGG pathway analysis indicate that NOD like receptor signaling pathway and Toll-like receptor signaling pathway are significantly enriched. Finally, we found that DNase I significantly attenuated the higher levels of Cit-H3, and up-regulation of interleukin-1β (IL-1β) and interleukin-18 (IL-18) by down-regulating the expression of NLRP3 and Caspase1(p20) in the lung tissues. DISCUSSION These results indicate that inhibiting excessive activation of NLRP3 inflammasomes, and NETs formation may alleviate MP pneumonia.
Collapse
Affiliation(s)
- Lei Yang
- Institute of Acute Abdominal Diseases, Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin, China
| | - Cen Zhang
- Department of Respiratory Critical Care, Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin, China
| | - Yan Liu
- Department of Pediatrics, Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin, China
| | - Huijing Bao
- Integrative Medical Diagnosis Laboratory, Tianjin Nankai Hospital, Tianjin, China
| | - Zhihua Wang
- Department of Pediatrics, Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin, China
- Nankai Clinical School, Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Radaelli M, Keller CPTL, Franca H, Mehrotra K. Mycoplasma myocarditis presenting with sustained SVT and acute heart failure without signs of myocardiocytolysis and extra-cardiac disease. Clin Case Rep 2024; 12:e8851. [PMID: 38721564 PMCID: PMC11077204 DOI: 10.1002/ccr3.8851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/18/2024] [Accepted: 04/16/2024] [Indexed: 01/06/2025] Open
Abstract
Key Clinical Message Mycoplasma myocarditis is a rare but potentially serious condition that can cause inflammation of the heart muscle, leading to arrhythmia and heart failure. It is important to consider this condition in the differential diagnosis of young patients presenting with unexplained signs of heart failure and SVT, even in the absence of signs of myocardiocytolysis and extra-cardiac disease. Abstract Mycoplasma pneumoniae infections are often underdiagnosed as a great proportion of patients remain asymptomatic, pauci-symptomatic, or exhibit varying presentations. M. Pneumoniae manifestations can affect different systems, including the heart, with the potential to lead to high degree of morbidity and debilitating sequelae. Here we present an atypical case of M. Pneumoniae associated myocarditis which presented with sustained refractory SVT, symptoms of heart failure, and with no signs of myocardiocytolysis, pulmonary involvement, or systemic infection. Given the lack of signs of myocardial inflammation, the patient was initially misdiagnosed with tachycardia induced cardiomyopathy (TIC), but later correctly diagnosed after showing signs of pneumonia during the hospitalization. The patient received the appropriate antibiotic treatment in addition to corticosteroids, was discharged on the 15th day of hospitalization, and completely recovered after 1 month with no arrhythmia recurrence and normalization of ventricular function.
Collapse
Affiliation(s)
- Marco Radaelli
- Department of Internal MedicineMedStar Georgetown/Washington Hospital CenterWashingtonDistric of ColumbiaUSA
| | - C. P. T. Leah Keller
- Department of Internal MedicineWilliam Beaumont Army Medical CenterFort BlissTexasUSA
| | - Hudson Franca
- Department of Internal MedicineLarkin Community Hospital—Palm Springs CampusHialeahFloridaUSA
| | - Kshitij Mehrotra
- Department of Internal MedicineLarkin Community Hospital—Palm Springs CampusHialeahFloridaUSA
| |
Collapse
|
5
|
Shin S, Koo S, Yang YJ, Lim HJ. Characteristics of the Mycoplasma pneumoniae Epidemic from 2019 to 2020 in Korea: Macrolide Resistance and Co-Infection Trends. Antibiotics (Basel) 2023; 12:1623. [PMID: 37998825 PMCID: PMC10669541 DOI: 10.3390/antibiotics12111623] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023] Open
Abstract
Mycoplasma pneumoniae, a major etiological agent of community-acquired pneumonia, exhibits distinct cyclic epidemic patterns recurring every three to five years. Several cases of co-infection with severe acute respiratory syndrome coronavirus 2 have been reported globally, resulting in unfavorable clinical manifestations. This study investigated the epidemiological features of the recent M. pneumoniae outbreak (May 2019-April 2020) using retrospective data from the last five years. Molecular test data for macrolide resistance and co-infection were obtained from the Seegene Medical Foundation. National medical expenditure and hospitalization rates were analyzed using data from The Health Insurance Review and Assessment Service of Korea. The macrolide resistance rate was 69.67%, peaking at 71.30% during the epidemic period, which was considerably higher than the 60.89% rate during non-epidemic periods. The co-infection rate with other respiratory pathogens was 88.49%; macrolide-resistant M. pneumoniae strains showed a 2.33% higher co-infection rate than the susceptible strains. The epidemic period had 15.43% higher hospitalization and 78.27% higher medical budget expenditure per patient than non-epidemic periods. The increased rates of macrolide resistance and co-infection observed in macrolide-resistant M. pneumoniae during the epidemic period highlight the importance of monitoring future outbreaks, especially considering macrolide resistance and the risk of co-infection with other pathogens.
Collapse
Affiliation(s)
- Soyoun Shin
- Daejeon & Chungcheong Reference Lab., Seegene Medical Foundation, Daejeon 35203, Republic of Korea;
| | - Sunhoe Koo
- Daejeon & Chungcheong Reference Lab., Seegene Medical Foundation, Daejeon 35203, Republic of Korea;
| | - Yong-Jin Yang
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (Y.-J.Y.); (H.-J.L.)
| | - Ho-Jae Lim
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (Y.-J.Y.); (H.-J.L.)
| |
Collapse
|
6
|
The Association between Mycoplasma pneumoniae Genotype and Cutaneous Disease. Microorganisms 2023; 11:microorganisms11010205. [PMID: 36677497 PMCID: PMC9860771 DOI: 10.3390/microorganisms11010205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Mycoplasma pneumoniae (Mp) can cause several extrapulmonary manifestations, most frequently dermatological ones. It is largely unknown whether Mp genotype determines Mp-induced cutaneous disease. The aim of our study was to assess the association between Mp genotype and this clinical outcome. We performed a retrospective study of children referred with signs of acute Mp infection from 1 January 2014 to 31 December 2014. We compared the characteristics of children presenting as cutaneous disease, upper (URTI) and lower respiratory tract infection (LRTI). In addition, we separately analyzed the data of patients presenting with Mp-induced cutaneous disease. We evaluated data from 435 patients (mean age 7.3 years, SD 3.4 years; 52.0% boys) who had Mp PCR-positive pharyngeal swab, P1 genotype and/or multilocus variable-number tandem-repeat analysis (MLVA) genotype defined and no viral co-detection, presenting as cutaneous disease (38/435), URTI (46/435) or LRTI (351/435). The majority of patients had urticarial (55%, 21/38) or maculopapular eruptions (37%, 14/38). We found no association between Mp genotype and clinical outcome of cutaneous disease, nor any specific dermatological presentation. In the group with cutaneous disease, 18% (7/38) required hospital admission because of rash. We found that infection with MLVA-3,6,6,2 strains was more common in admitted patients than in outpatients (40% vs. 4%, p = 0.017) and significantly affected the likelihood of hospital admission in a logistic regression model. The results of our cohort study suggest that Mp genotype does not determine Mp-induced cutaneous disease or a specific dermatological presentation. Nevertheless, infections with certain MLVA strains could induce more severe cutaneous disease requiring hospitalization.
Collapse
|
7
|
Edelstein IA. Mycoplasma pneumoniae – modern data on the structure, molecular biology and epidemiology of the pathogen. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2023; 25:332-349. [DOI: 10.36488/cmac.2023.4.332-349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Mycoplasma pneumoniae is a common etiologic agent of respiratory tract infections and community-acquired pneumonia (CAP) in children and adults. Recently, much new data on this pathogen, its molecular biology, cytoadherence and epidemiology have been accumulated. This review describes in detail the features of the microorganism and the pathogenesis of the diseases caused, clinical manifestations, provides data on the epidemiology of the incidence of respiratory mycoplasmosis and CAP caused by this microorganism in the world, discusses the issues of asymptomatic carriage, considers the problems of laboratory diagnosis, antibiotic therapy and antibiotic resistance of the pathogen.
Collapse
|
8
|
Yoshikawa E, Tamiya S, Inoue Y, Suzuki K, Yoshioka Y. Vaccine using community-acquired respiratory distress syndrome toxin as an antigen against Mycoplasma pneumoniae in mice. Biochem Biophys Res Commun 2022; 594:81-87. [PMID: 35078111 DOI: 10.1016/j.bbrc.2022.01.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 11/02/2022]
Abstract
Mycoplasma pneumoniae (Mp) is one of the most common causes of bacterial community-acquired pneumonia in humans. Because of the frequent epidemics and the emergence of antibiotic-resistant Mp, vaccines for Mp are urgently needed to ameliorate the pneumonia and secondary complications. The community-acquired respiratory distress syndrome (CARDS) toxin produced by Mp is a pathogenic factor that induces severe inflammatory responses in lung. Although blocking CARDS toxin is expected to mitigate the severity of Mp pneumonia, the potential of CARDS toxin as a vaccine antigen has not been assessed. Here, we examined the effectiveness of vaccine using recombinant CARDS toxin (rCARDS toxin) as an antigen in mice. Immunization with rCARDS toxin induced both rCARDS toxin- and Mp-specific antibody responses, indicating that CARDS toxin is located on the surface of Mp. In addition, immunization with rCARDS toxin decreased not only lung injury, neutrophil infiltration, and the production of inflammatory cytokines but also the persistence of Mp in lung after Mp challenge. Furthermore, we elucidated that the CARDS toxin on the surface of Mp facilitates the adherence of Mp to epithelial cells. In conclusion, we have demonstrated the potential of rCARDS toxin as a vaccine antigen to ameliorate Mp pneumonia by suppressing the inflammatory responses induced by Mp and the persistence of Mp in lung. These data support the development of novel vaccines for Mp pneumonia.
Collapse
Affiliation(s)
- Eisuke Yoshikawa
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeyuki Tamiya
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Inoue
- The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koichiro Suzuki
- The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
9
|
Neutrophil-Mediated Lung Injury Both via TLR2-Dependent Production of IL-1α and IL-12 p40, and TLR2-Independent CARDS Toxin after Mycoplasma pneumoniae Infection in Mice. Microbiol Spectr 2021; 9:e0158821. [PMID: 34937175 PMCID: PMC8694186 DOI: 10.1128/spectrum.01588-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mycoplasma pneumoniae (Mp) residing extracellularly in the respiratory tract is the primary cause of bacterial community-acquired pneumonia in humans. However, the detailed pathological mechanism of Mp infection, especially inflammation in the lung, remains unclear. This study examined the role of the neutrophils in the inflammation of Mp-induced pneumonia in mice and the mechanism of neutrophil infiltration into the lungs in the Mp-induced pneumonia. We observed massive infiltration of neutrophils in the bronchoalveolar lavage fluid (BALF) and lung injury after the Mp challenge. The neutrophils were shown to contribute to lung injury in Mp pneumonia but were not involved in eliminating Mp, suggesting that neutrophils are detrimental to the host in Mp pneumonia. Mp also induced the production of inflammatory cytokines and chemokines in the BALF in a toll-like receptor 2 (TLR2)-dependent manner. Particularly, both interleukin (IL)-1α and IL-12 p40 played a crucial role in neutrophil infiltration into the BALF in a coordinated manner. Both IL-1α and IL-12 p40 were released from the alveolar macrophages depending on the TLR2 and reactive oxygen species. In addition, the community-acquired respiratory distress syndrome (CARDS) toxin from Mp were found to induce neutrophil infiltration into BALF in a TLR2-independent and IL-1α-dependent manner. Collectively, the TLR2-dependent production of both IL-1α and IL-12 p40, and CARDS toxin have been elucidated to play an important role in neutrophil infiltration into the lungs subsequently leading to the lung injury upon Mp infection in mice. These data will aid in the development of therapeutics and vaccines for Mp pneumonia. IMPORTANCE Although Mp-induced pneumonia is usually a self-limiting disease, refractory life-threatening pneumonia is often induced. In addition, the development of alternative therapeutic strategies for Mp is expected because of the emergence of antibiotic-resistant Mp. However, the lack of knowledge regarding the pathogenesis of Mp-induced pneumonia, especially inflammation upon the Mp infection, makes it tedious to design novel therapeutics and vaccines. For example, although neutrophil infiltration is widely recognized as one of the characteristics of Mp-induced pneumonia, the precise role of neutrophils in the aggravation of Mp pneumonia remains unclear. This study showed that the infiltration of neutrophils in the lungs is detrimental to the host in Mp-induced pneumonia in mice. Furthermore, the TLR2-dependent IL-1α and IL-12 p40 production, and CARDS toxin play important roles in neutrophil infiltration into the lung, following lung injury. Our findings apply to the rational design of novel therapeutics and vaccines against Mp.
Collapse
|
10
|
Su X, You X, Luo H, Liang K, Chen L, Tian W, Ye Z, He J. Community-Acquired Respiratory Distress Syndrome Toxin: Unique Exotoxin for M. pneumoniae. Front Microbiol 2021; 12:766591. [PMID: 34867898 PMCID: PMC8640204 DOI: 10.3389/fmicb.2021.766591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Mycoplasma pneumoniae infection often causes respiratory diseases in humans, particularly in children and adults with atypical pneumonia and community-acquired pneumonia (CAP), and is often exacerbated by co-infection with other lung diseases, such as asthma, bronchitis, and chronic obstructive pulmonary disorder. Community-acquired respiratory distress syndrome toxin (CARDS TX) is the only exotoxin produced by M. pneumoniae and has been extensively studied for its ADP-ribosyltransferase (ADPRT) activity and cellular vacuolization properties. Additionally, CARDS TX induces inflammatory responses, resulting in cell swelling, nuclear lysis, mucus proliferation, and cell vacuolization. CARDS TX enters host cells by binding to the host receptor and is then reverse transported to the endoplasmic reticulum to exert its pathogenic effects. In this review, we focus on the structural characteristics, functional activity, distribution and receptors, mechanism of cell entry, and inflammatory response of CARDS TX was examined. Overall, the findings of this review provide a theoretical basis for further investigation of the mechanism of M. pneumoniae infection and the development of clinical diagnosis and vaccines.
Collapse
Affiliation(s)
- Xiaoling Su
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Haodang Luo
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Keying Liang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Li Chen
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Wei Tian
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Zufeng Ye
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun He
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
11
|
Mycoplasma pneumoniae P1 Genotype Indicates Severity of Lower Respiratory Tract Infections in Children. J Clin Microbiol 2021; 59:e0022021. [PMID: 33980654 DOI: 10.1128/jcm.00220-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mycoplasma pneumoniae strains can be classified into two major genetic groups, P1 type 1 (P1-1) and P1 type 2 (P1-2). It remains unknown if clinical manifestations of lower respiratory tract infections (LRTI) in children differ between the two genotypes. We aimed to determine if the M. pneumoniae P1 genotype is associated with severity of LRTI in children. Medical charts of 420 children (≤15 years old) with signs of acute LRTI who were PCR positive for M. pneumoniae from pharyngeal swabs in a recent M. pneumoniae epidemic were analyzed. We used a culture and pyrosequencing approach for genotyping PCR-positive samples. We compared epidemiological and clinical data of children with either P1-1 or P1-2 LRTI. P1-2-infected children presented with a significantly higher median baseline C-reactive protein level and were admitted to the hospital more often. The P1 genotype had a significant predictive value in a multiple linear regression model predicting C-reactive protein levels in our study sample. Moreover, the P1 genotype significantly affected the likelihood of hospital admission in a logistic regression model. Our modeling results were also confirmed on an additional independent sample of children with M. pneumoniae LRTI. Results from our large patient group indicate that the two M. pneumoniae P1 genotypes may have different pathogenic potential and that LRTI with P1-2 strains may have a more severe disease course than those with P1-1 strains in children. P1 genotyping is not routinely performed but could be used as a predictor of M. pneumoniae LRTI severity, enabling patient-tailored treatments.
Collapse
|
12
|
Ramasamy K, Balasubramanian S, Kirkpatrick A, Szabo D, Pandranki L, Baseman JB, Kannan TR. Mycoplasma pneumoniae CARDS toxin exploits host cell endosomal acidic pH and vacuolar ATPase proton pump to execute its biological activities. Sci Rep 2021; 11:11571. [PMID: 34078958 PMCID: PMC8172646 DOI: 10.1038/s41598-021-90948-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/19/2021] [Indexed: 11/09/2022] Open
Abstract
Mycoplasma pneumoniae is the leading cause of bacterial community-acquired pneumonia among hospitalized children in the United States. It is also responsible for a spectrum of other respiratory tract disorders and extrapulmonary manifestations in children and adults. The main virulence factor of M. pneumoniae is a 591 amino acid multifunctional protein called Community Acquired Respiratory Distress Syndrome (CARDS) toxin. The amino terminal region of CARDS toxin (N-CARDS) retains ADP-ribosylating activity and the carboxy region (C-CARDS) contains the receptor binding and vacuolating activities. After internalization, CARDS toxin is transported in a retrograde manner from endosome through the Golgi complex into the endoplasmic reticulum. However, the mechanisms and criteria by which internalized CARDS toxin is transported and activated to execute its cytotoxic effects remain unknown. In this study, we used full-length CARDS toxin and its mutant and truncated derivatives to analyze how pharmacological drugs that alter pH of intracellular vesicles and electrical potential across vesicular membranes affect translocation of CARDS toxin in mammalian cells. Our results indicate that an acidic environment is essential for CARDS toxin retrograde transport to endoplasmic reticulum. Moreover, retrograde transport facilitates toxin clipping and is required to induce vacuole formation. Additionally, toxin-mediated cell vacuolation is strictly dependent on the function of vacuolar type-ATPase.
Collapse
Affiliation(s)
- Kumaraguruparan Ramasamy
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Sowmya Balasubramanian
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Alejandra Kirkpatrick
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Daniel Szabo
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Lavanya Pandranki
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Joel B Baseman
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - T R Kannan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
13
|
Xue G, Zhao H, Yan C, Li S, Cui J, Feng Y, Xie X, Yuan J. Evaluation of the CARDS toxin and its fragment for the serodiagnosis of Mycoplasma pneumoniae infections. Eur J Clin Microbiol Infect Dis 2021; 40:1705-1711. [PMID: 33733396 DOI: 10.1007/s10096-021-04209-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/22/2021] [Indexed: 10/21/2022]
Abstract
Mycoplasma pneumoniae (M. pneumoniae) is an important pathogen in community-acquired pneumonia. The community-acquired respiratory distress syndrome (CARDS) toxin is the only known virulence factor of M. pneumoniae. It is worth exploring whether this toxin can be used as a candidate antigen for the serodiagnosis of M. pneumoniae. In this study, the full-length, N-terminal, and C-terminal regions of the CARDS toxin were expressed and purified, and serological reactions were evaluated using ELISA. A total of 184 serum samples were collected and tested using a commercialized test kit. Eighty-seven samples were positive, and 97 samples were negative for infection. The purified recombinant proteins were used as antigens to test the serum via indirect ELISA. The sensitivity of the CARDS toxin, the N-terminal region, and the C-terminal region were 90.8%, 90.8%, and 92.0%, respectively. The specificity of the CARDS toxin, the N-terminal region, and the C-terminal region were 85.6%, 73.2%, and 93.8%, respectively. All three CARDS toxin proteins exhibited good reactivity, of which the C-terminal region had a good discrimination ability in human sera. This may have a potential diagnostic value for M. pneumoniae infections.
Collapse
Affiliation(s)
- Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, No. 2 Yabao Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Hanqing Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, No. 2 Yabao Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, No. 2 Yabao Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Shaoli Li
- Department of Bacteriology, Capital Institute of Pediatrics, No. 2 Yabao Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, No. 2 Yabao Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics, No. 2 Yabao Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Xianghui Xie
- Department of Urinary Surgery, Capital Institute of Pediatrics, No. 2 Yabao Road, Chaoyang District, Beijing, 100020, People's Republic of China.
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, No. 2 Yabao Road, Chaoyang District, Beijing, 100020, People's Republic of China.
| |
Collapse
|
14
|
Yiwen C, Yueyue W, Lianmei Q, Cuiming Z, Xiaoxing Y. Infection strategies of mycoplasmas: Unraveling the panoply of virulence factors. Virulence 2021; 12:788-817. [PMID: 33704021 PMCID: PMC7954426 DOI: 10.1080/21505594.2021.1889813] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mycoplasmas, the smallest bacteria lacking a cell wall, can cause various diseases in both humans and animals. Mycoplasmas harbor a variety of virulence factors that enable them to overcome numerous barriers of entry into the host; using accessory proteins, mycoplasma adhesins can bind to the receptors or extracellular matrix of the host cell. Although the host immune system can eradicate the invading mycoplasma in most cases, a few sagacious mycoplasmas employ a series of invasion and immune escape strategies to ensure their continued survival within their hosts. For instance, capsular polysaccharides are crucial for anti-phagocytosis and immunomodulation. Invasive enzymes degrade reactive oxygen species, neutrophil extracellular traps, and immunoglobulins. Biofilm formation is important for establishing a persistent infection. During proliferation, successfully surviving mycoplasmas generate numerous metabolites, including hydrogen peroxide, ammonia and hydrogen sulfide; or secrete various exotoxins, such as community-acquired respiratory distress syndrome toxin, and hemolysins; and express various pathogenic enzymes, all of which have potent toxic effects on host cells. Furthermore, some inherent components of mycoplasmas, such as lipids, membrane lipoproteins, and even mycoplasma-generated superantigens, can exert a significant pathogenic impact on the host cells or the immune system. In this review, we describe the proposed virulence factors in the toolkit of notorious mycoplasmas to better understand the pathogenic features of these bacteria, along with their pathogenic mechanisms.
Collapse
Affiliation(s)
- Chen Yiwen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Wu Yueyue
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Qin Lianmei
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Zhu Cuiming
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - You Xiaoxing
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| |
Collapse
|
15
|
Wang Z, Bao H, Liu Y, Wang Y, Qin J, Yang L. Interleukin-23 derived from CD16 + monocytes drives IL-17 secretion by TLR4 pathway in children with mycoplasma pneumoniae pneumonia. Life Sci 2020; 258:118149. [PMID: 32726660 DOI: 10.1016/j.lfs.2020.118149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
AIMS The study aimed to investigate whether IL-23 is amplified in monocyte subsets of MP pneumonia and to determine its relevant pathway. MATERIALS AND METHODS We firstly analyze the IL-23p19 expression in monocyte subgroups in MP pneumonia patients and healthy controls subjects by using flow cytometry. Then, we also analyzed the percentage of IL-17+γδT cells and Th17 cells in patients with MP pneumonia and controls subjects. At the same time, the relation between IL-23 and IL-17 were also assessed. Furthermore, we constructed the recombinant community-acquired respiratory distress syndrome (CARDS) toxin and intend to stimulate peripheral blood mononuclear cells and RAW264.7 cells in vitro. IL-23p19 was detected by flow cytometry and the mRNA levels were measured by real-time PCR. Finally, TLR4 pathway was also investigated by TAK242 inhibitor. KEY FINDINGS It turned out that the expression of IL-23p19 was increased in CD14brightCD16+ monocyte of MP pneumonia patients than controls subjects. The patients with MP pneumonia had significantly higher the percentage of IL-17+γδT cells and Th17 cells than controls subjects. Interestingly, the levels of IL-23 were positively related to IL-17 in MP pneumonia patients. CD16+ monocytes and RAW264.7 cells, respectively can be induced by CARDS toxin to secrete IL-23 by TLR4 pathway in vitro. SIGNIFICANCE These results indicated that IL-23-IL-17+γδT/Th17 axis may play a role in the pathogenesis of MP pneumonia, whereas IL-23 derived from CD16+ monocytes was expanded in MP pneumonia by TLR4 pathway.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Pediatrics, Tianjin Nankai Hospital, Tianjin, China; Nankai Clinical School, Tianjin Medical University, Tianjin, China
| | - Huijing Bao
- Integrative Medical Diagnosis Laboratory, Tianjin Nankai Hospital, Tianjin, China
| | - Yan Liu
- Department of Pediatrics, Tianjin Nankai Hospital, Tianjin, China; Nankai Clinical School, Tianjin Medical University, Tianjin, China
| | - Yushui Wang
- Department of Pediatrics, Tianjin Nankai Hospital, Tianjin, China; Nankai Clinical School, Tianjin Medical University, Tianjin, China
| | - Junfang Qin
- Medical School of Nankai University, Nankai University, Tianjin, China
| | - Lei Yang
- Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China.
| |
Collapse
|
16
|
Mi YM, Qi Q, Zhang L, Wang XF, Chen ZM, Hua CZ. Assessment of serum sialic acid correlated with C3 in children with Mycoplasma pneumoniae pneumonia. J Clin Lab Anal 2020; 34:e23078. [PMID: 31907994 PMCID: PMC7083476 DOI: 10.1002/jcla.23078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/23/2019] [Accepted: 07/14/2019] [Indexed: 11/25/2022] Open
Abstract
Background Different from the diagnosis of bacterial infections, Mycoplasma pneumoniae pneumonia (MPP) is still lacking of convenient non‐specific laboratory parameters. Method A total of 125 children with MPP were included in the MPP group and 89 children with Mycoplasma‐negative pneumonia were included in the control group, and the sera were collected from the children at both the acute and recovery stages in the two groups. Results The sialic acid and C3 in the MPP group were significantly higher than those in the control group both at the acute and at the recovery stage. On the other hand, the sialic acid and C3 at the acute stage were significantly higher than those at the recovery stage in the MPP group. However, in the control group, the sialic acid and C3 demonstrated IgG exhibited no significant change between the acute stage and the recovery stage. Lastly, positive correlations between sialic acid level and C3 level were identified in the MPP group at both acute and recovery stages. Conclusion Our study demonstrated that the serum sialic acid correlated with C3 specifically increased in children with MPP, indicating that it might be the important non‐specific parameters in the diagnosis of MPP.
Collapse
Affiliation(s)
- Yu-Mei Mi
- Division of Infectious Disease, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Qi Qi
- Department of Infectious Disease, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China
| | - Li Zhang
- Division of Infectious Disease, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Xiao-Fang Wang
- Department of Pediatrics, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhi-Min Chen
- Division of Respiration, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chun-Zhen Hua
- Division of Infectious Disease, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Li N, Mu YP, Chen J, Li B. [Value of absolute counts of lymphocyte subsets in the early prediction of refractory Mycoplasma pneumoniae pneumonia in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:511-516. [PMID: 31208501 PMCID: PMC7389588 DOI: 10.7499/j.issn.1008-8830.2019.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To study the value of absolute counts of lymphocyte subsets in the early prediction of refractory Mycoplasma pneumoniae pneumonia (RMPP) in children. METHODS A retrospective analysis was performed for the clinical data of 244 children with Mycoplasma pneumoniae pneumonia (MPP). Among these children, 166 had MPP, and 58 had RMPP. The two groups were compared in terms of clinical features and laboratory markers such as lymphocyte subsets, lactate dehydrogenase, C-reactive protein, procalcitonin and immunoglobulin E (IgE). The receiver operating characteristic (ROC) curve was used to evaluate the specific indices for predicting RMMP. RESULTS There were significant differences between the two groups in the absolute counts of CD3+, CD4+, CD19+, and CD56+ lymphocytes and the serum levels of lactate dehydrogenase, C-reactive protein, and IgE (P<0.05). The ROC curve analysis showed that the absolute counts of CD3+, CD4+ and CD19+ lymphocytes had an area under the ROC curve (AUC) of 0.866, 0.900 and 0.842 respectively in the differential diagnosis of RMPP and MPP, with a sensitivity of 86%, 90% and 82% respectively and a specificity of 75%, 70% and 80% respectively. CONCLUSIONS The absolute counts of CD3+, CD4+ and CD19+ lymphocytes can be used to predict RMPP in children.
Collapse
Affiliation(s)
- Na Li
- Department of Pediatric Neurology & Rehabilitation Medicine, Shenyang Children's Hospital, Shenyang 110032, China.
| | | | | | | |
Collapse
|
18
|
Balasubramanian S, Pandranki L, Maupin S, Ramasamy K, Taylor AB, Hart PJ, Baseman JB, Kannan TR. Disulfide bond of Mycoplasma pneumoniae community-acquired respiratory distress syndrome toxin is essential to maintain the ADP-ribosylating and vacuolating activities. Cell Microbiol 2019; 21:e13032. [PMID: 30977272 DOI: 10.1111/cmi.13032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/19/2019] [Accepted: 04/03/2019] [Indexed: 01/13/2023]
Abstract
Mycoplasma pneumoniae is the leading cause of bacterial community-acquired pneumonia among hospitalised children in United States and worldwide. Community-acquired respiratory distress syndrome (CARDS) toxin is a key virulence determinant of M. pneumoniae. The N-terminus of CARDS toxin exhibits ADP-ribosyltransferase (ADPRT) activity, and the C-terminus possesses binding and vacuolating activities. Thiol-trapping experiments of wild-type (WT) and cysteine-to-serine-mutated CARDS toxins with alkylating agents identified disulfide bond formation at the amino terminal cysteine residues C230 and C247. Compared with WT and other mutant toxins, C247S was unstable and unusable for comparative studies. Although there were no significant variations in binding, entry, and retrograde trafficking patterns of WT and mutated toxins, C230S did not elicit vacuole formation in intoxicated cells. In addition, the ADPRT domain of C230S was more sensitive to all tested proteases when compared with WT toxin. Despite its in vitro ADPRT activity, the reduction of C230S CARDS toxin-mediated ADPRT activity-associated IL-1β production in U937 cells and the recovery of vacuolating activity in the protease-released carboxy region of C230S indicated that the disulfide bond was essential not only to maintain the conformational stability of CARDS toxin but also to properly execute its cytopathic effects.
Collapse
Affiliation(s)
- Sowmya Balasubramanian
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Lavanya Pandranki
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Suzanna Maupin
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Kumaraguruparan Ramasamy
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Alexander B Taylor
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX.,X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Peter John Hart
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX.,X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Joel B Baseman
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Thirumalai R Kannan
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
19
|
Clinical characteristics of infections caused by Mycoplasma pneumoniae P1 genotypes in children. Eur J Clin Microbiol Infect Dis 2018; 37:1265-1272. [PMID: 29603035 DOI: 10.1007/s10096-018-3243-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
Abstract
Mycoplasma pneumoniae (M. pneumoniae) isolates can be classified into two major genetic groups, P1 type 1 (MP1) and P1 type 2 (MP2), based on the DNA sequence of the P1 adhesion protein gene. The aim of our study was to determine if M. pneumoniae P1 genotype is associated with disease manifestation and severity of acute M. pneumoniae infection. We compared epidemiological and clinical data of children infected with either MP1 or MP2. In addition, we separately analysed data of patients presenting with individual manifestations of M. pneumoniae infection. Data of 356 patients infected with MP1 were compared with those of 126 patients infected with MP2. MP2-infected children presented with higher median baseline C-reactive protein levels and were admitted to the hospital more often. The distribution of P1 genotype varied among groups of patients with different manifestations of M. pneumoniae infection. MP2 was more common than MP1 among patients with neurological and cardiovascular manifestations, whereas MP1 was more prevalent in other manifestations. The results from our large cohort indicate that the two P1 subtypes may have different pathogenic potential and that infections with MP2 strains could be more virulent than those with MP1 strains.
Collapse
|
20
|
Prince OA, Krunkosky TM, Sheppard ES, Krause DC. Modelling persistent Mycoplasma pneumoniae infection of human airway epithelium. Cell Microbiol 2017; 20. [PMID: 29155483 DOI: 10.1111/cmi.12810] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/31/2022]
Abstract
Mycoplasma pneumoniae is a human respiratory tract pathogen causing acute and chronic airway disease states that can include long-term carriage and extrapulmonary spread. The mechanisms of persistence and migration beyond the conducting airways, however, remain poorly understood. We previously described an acute exposure model using normal human bronchial epithelium (NHBE) in air-liquid interface culture, showing that M. pneumoniae gliding motility is essential for initial colonisation and subsequent spread, including localisation to epithelial cell junctions. We extended those observations here, characterizing M. pneumoniae infection of NHBE for up to 4 weeks. Colonisation of the apical surface was followed by pericellular invasion of the basolateral compartment and migration across the underlying transwell membrane. Despite fluctuations in transepithelial electrical resistance and increased NHBE cell desquamation, barrier function remained largely intact. Desquamation was accompanied by epithelial remodelling that included cytoskeletal reorganisation and development of deep furrows in the epithelium. Finally, M. pneumoniae strains S1 and M129 differed with respect to invasion and histopathology, consistent with contrasting virulence in experimentally infected mice. In summary, this study reports pericellular invasion, NHBE cytoskeletal reorganisation, and tissue remodelling with persistent infection in a human airway epithelium model, providing clear insight into the likely route for extrapulmonary spread.
Collapse
Affiliation(s)
- Oliver A Prince
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Thomas M Krunkosky
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, GA, USA
| | | | - Duncan C Krause
- Department of Microbiology, University of Georgia, Athens, GA, USA
| |
Collapse
|
21
|
NLRP3 Is a Critical Regulator of Inflammation and Innate Immune Cell Response during Mycoplasma pneumoniae Infection. Infect Immun 2017; 86:IAI.00548-17. [PMID: 29061706 DOI: 10.1128/iai.00548-17] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022] Open
Abstract
Mycoplasma pneumoniae is an atypical bacterial respiratory pathogen known to cause a range of airway inflammation and lung and extrapulmonary pathologies. We recently reported that an M. pneumoniae-derived ADP-ribosylating and vacuolating toxin called community-acquired respiratory distress syndrome (CARDS) toxin is capable of triggering NLRP3 (NLR-family, leucine-rich repeat protein 3) inflammasome activation and interleukin-1β (IL-1β) secretion in macrophages. However, it is unclear whether the NLRP3 inflammasome is important for the immune response during M. pneumoniae acute infection. In the current study, we utilized in vitro and in vivo models of M. pneumoniae infection to characterize the role of the NLRP3 inflammasome during acute infection. M. pneumoniae-infected macrophages deficient for inflammasome components NLRP3, ASC (apoptosis speck-like protein containing a caspase activation and recruitment domain), or caspase-1 failed to process and secrete IL-1β. The MyD88/NF-κB signaling pathway was found to be critical for proinflammatory gene expression in macrophages infected with M. pneumoniae C57BL/6 mice deficient for NLRP3 expression were unable to produce IL-1β in the airways during acute infection, and lack of this inflammatory response led to deficient immune cell activation and delayed bacterial clearance. These findings are the first to report the importance of the NLRP3 inflammasome in regulating the inflammatory response and influencing the progression of M. pneumoniae during acute infection.
Collapse
|
22
|
Waites KB, Xiao L, Liu Y, Balish MF, Atkinson TP. Mycoplasma pneumoniae from the Respiratory Tract and Beyond. Clin Microbiol Rev 2017; 30:747-809. [PMID: 28539503 PMCID: PMC5475226 DOI: 10.1128/cmr.00114-16] [Citation(s) in RCA: 470] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mycoplasma pneumoniae is an important cause of respiratory tract infections in children as well as adults that can range in severity from mild to life-threatening. Over the past several years there has been much new information published concerning infections caused by this organism. New molecular-based tests for M. pneumoniae detection are now commercially available in the United States, and advances in molecular typing systems have enhanced understanding of the epidemiology of infections. More strains have had their entire genome sequences published, providing additional insights into pathogenic mechanisms. Clinically significant acquired macrolide resistance has emerged worldwide and is now complicating treatment. In vitro susceptibility testing methods have been standardized, and several new drugs that may be effective against this organism are undergoing development. This review focuses on the many new developments that have occurred over the past several years that enhance our understanding of this microbe, which is among the smallest bacterial pathogens but one of great clinical importance.
Collapse
Affiliation(s)
- Ken B Waites
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Li Xiao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yang Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China, and Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | | | - T Prescott Atkinson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
23
|
Chaabane N, Coupez E, Buscot M, Souweine B. Acute respiratory distress syndrome related to Mycoplasma pneumoniae infection. Respir Med Case Rep 2016; 20:89-91. [PMID: 28119816 PMCID: PMC5237810 DOI: 10.1016/j.rmcr.2016.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 11/28/2022] Open
Abstract
M. pneumoniae respiratory infection is usually mild and self-limiting. We report a case of acute respiratory distress syndrome (ARDS) due to M. pneumoniae infection in a 60 years old woman. Quick diagnosis was established by multiplex PCR assay for detection of pneumonia-causing bacteria. Outcome was favorable. The factors accounting for the severity of pneumonia caused by M. pneumoniae are discussed.
Collapse
Affiliation(s)
- Nouha Chaabane
- Pulmonary and Allergology Department, University Hospital, Clermont-Ferrand, France
| | - Elisabeth Coupez
- Intensive Care Department, University Hospital, Clermont-Ferrand, France
| | - Matthieu Buscot
- Service de Pneumologie, CHU Nice, Université Côte d'Azur, France
| | - Bertrand Souweine
- Intensive Care Department, University Hospital, Clermont-Ferrand, France
| |
Collapse
|
24
|
Chaudhry R, Ghosh A, Chandolia A. Pathogenesis of Mycoplasma pneumoniae: An update. Indian J Med Microbiol 2016; 34:7-16. [PMID: 26776112 DOI: 10.4103/0255-0857.174112] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genus Mycoplasma, belonging to the class Mollicutes, encompasses unique lifeforms comprising of a small genome of 8,00,000 base pairs and the inability to produce a cell wall under any circumstances. Mycoplasma pneumoniae is the most common pathogenic species infecting humans. It is an atypical respiratory bacteria causing community acquired pneumonia (CAP) in children and adults of all ages. Although atypical pneumonia caused by M. pneumoniae can be managed in outpatient settings, complications affecting multiple organ systems can lead to hospitalization in vulnerable population. M. pneumoniae infection has also been associated with chronic lung disease and bronchial asthma. With the advent of molecular methods of diagnosis and genetic, immunological and ultrastructural assays that study infectious disease pathogenesis at subcellular level, newer virulence factors of M. pneumoniae have been recognized by researchers. Structure of the attachment organelle of the organism, that mediates the crucial initial step of cytadherence to respiratory tract epithelium through complex interaction between different adhesins and accessory adhesion proteins, has been decoded. Several subsequent virulence mechanisms like intracellular localization, direct cytotoxicity and activation of the inflammatory cascade through toll-like receptors (TLRs) leading to inflammatory cytokine mediated tissue injury, have also been demonstrated to play an essential role in pathogenesis. The most significant update in the knowledge of pathogenesis has been the discovery of Community-Acquired Respiratory Distress Syndrome toxin (CARDS toxin) of M. pneumoniae and its ability of adenosine diphosphate (ADP) ribosylation and inflammosome activation, thus initiating airway inflammation. Advances have also been made in terms of the different pathways behind the genesis of extrapulmonary complications. This article aims to comprehensively review the recent advances in the knowledge of pathogenesis of this organism, that had remained elusive during the era of serological diagnosis. Elucidation of virulence mechanisms of M. pneumoniae will help researchers to design effective vaccine candidates and newer therapeutic targets against this agent.
Collapse
Affiliation(s)
- R Chaudhry
- Department of Microbiology, AIIMS, New Delhi, India
| | | | | |
Collapse
|
25
|
He J, Liu M, Ye Z, Tan T, Liu X, You X, Zeng Y, Wu Y. Insights into the pathogenesis of Mycoplasma pneumoniae (Review). Mol Med Rep 2016; 14:4030-4036. [PMID: 27667580 PMCID: PMC5101875 DOI: 10.3892/mmr.2016.5765] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 08/25/2016] [Indexed: 11/08/2022] Open
Abstract
Mycoplasma are the smallest prokaryotic microbes present in nature. These wall-less, malleable organisms can pass through cell filters, and grow and propagate under cell-free conditions in vitro. Of the pathogenic Mycoplasma Mycoplasma pneumoniae has been examined the most. In addition to primary atypical pneumonia and community-acquired pneumonia with predominantly respiratory symptoms, M. pneumoniae can also induce autoimmune hemolytic anemia and other diseases in the blood, cardiovascular system, gastrointestinal tract and skin, and can induce pericarditis, myocarditis, nephritis and meningitis. The pathogenesis of M. pneumoniae infection is complex and remains to be fully elucidated. The present review aimed to summarize several direct damage mechanisms, including adhesion damage, destruction of membrane fusion, nutrition depletion, invasive damage, toxic damage, inflammatory damage and immune damage. Further investigations are required for determining the detailed pathogenesis of M. pneumoniae.
Collapse
Affiliation(s)
- Jun He
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Mihua Liu
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhufeng Ye
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Tianping Tan
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xinghui Liu
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoxing You
- Pathogenic Biology Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yanhua Zeng
- Pathogenic Biology Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yimou Wu
- Pathogenic Biology Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
26
|
Parrott GL, Kinjo T, Fujita J. A Compendium for Mycoplasma pneumoniae. Front Microbiol 2016; 7:513. [PMID: 27148202 PMCID: PMC4828434 DOI: 10.3389/fmicb.2016.00513] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/29/2016] [Indexed: 12/11/2022] Open
Abstract
Historically, atypical pneumonia was a term used to describe an unusual presentation of pneumonia. Currently, it is used to describe the multitude of symptoms juxtaposing the classic symptoms found in cases of pneumococcal pneumonia. Specifically, atypical pneumonia is a syndrome resulting from a relatively common group of pathogens including Chlamydophila sp., and Mycoplasma pneumoniae. The incidence of M. pneumoniae pneumonia in adults is less than the burden experienced by children. Transmission rates among families indicate children may act as a reservoir and maintain contagiousness over a long period of time ranging from months to years. In adults, M. pneumoniae typically produces a mild, “walking” pneumonia and is considered to be one of the causes of persistent cough in patients. M. pneumoniae has also been shown to trigger the exacerbation of other lung diseases. It has been repeatedly detected in patients with bronchitis, asthma, chronic obstructive pulmonary disorder, and cystic fibrosis. Recent advances in technology allow for the rapid diagnosis of M. pneumoniae through the use of polymerase chain reaction or rapid antigen tests. With this, more effort has been afforded to identify the causative etiologic agent in all cases of pneumonia. However, previous practices, including the overprescribing of macrolide treatment in China and Japan, have created increased incidence of macrolide-resistant M. pneumoniae. Reports from these countries indicate that >85% of M. pneumoniae pneumonia pediatric cases are macrolide-resistant. Despite its extensively studied past, the smallest bacterial species still inspires some of the largest questions. The developments in microbiology, diagnostic features and techniques, epidemiology, treatment and vaccines, and upper respiratory conditions associated with M. pneumoniae in adult populations are included within this review.
Collapse
Affiliation(s)
- Gretchen L Parrott
- Department of Infectious Diseases, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus Nishihara, Japan
| | - Takeshi Kinjo
- Department of Infectious Diseases, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus Nishihara, Japan
| | - Jiro Fujita
- Department of Infectious Diseases, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus Nishihara, Japan
| |
Collapse
|
27
|
Balish MF, Distelhorst SL. Potential Molecular Targets for Narrow-Spectrum Agents to Combat Mycoplasma pneumoniae Infection and Disease. Front Microbiol 2016; 7:205. [PMID: 26941728 PMCID: PMC4766277 DOI: 10.3389/fmicb.2016.00205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/08/2016] [Indexed: 12/17/2022] Open
Abstract
As Mycoplasma pneumoniae macrolide resistance grows and spreads worldwide, it is becoming more important to develop new drugs to prevent infection or limit disease. Because other mycoplasma species have acquired resistance to other classes of antibiotics, it is reasonable to presume that M. pneumoniae can do the same, so switching to commonly used antibiotics like fluoroquinolones will not result in forms of therapy with long-term utility. Moreover, broad-spectrum antibiotics can have serious consequences for the patient, as these drugs may have severe impacts on the natural microbiota of the individual, compromising the health of the patient either short-term or long-term. Therefore, developing narrow-spectrum antibiotics that effectively target only M. pneumoniae and no more than a small portion of the microbiota is likely to yield impactful, positive results that can be used perhaps indefinitely to combat M. pneumoniae. Development of these agents requires a deep understanding of the basic biology of M. pneumoniae, in many areas deeper than what is currently known. In this review, we discuss potential targets for new, narrow-spectrum agents and both the positive and negative aspects of selecting these targets, which include toxic molecules, metabolic pathways, and attachment and motility. By gathering this information together, we anticipate that it will be easier for researchers to evaluate topics of priority for study of M. pneumoniae.
Collapse
|
28
|
Dumke R, Jacobs E. Antibody Response to Mycoplasma pneumoniae: Protection of Host and Influence on Outbreaks? Front Microbiol 2016; 7:39. [PMID: 26858711 PMCID: PMC4726802 DOI: 10.3389/fmicb.2016.00039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/11/2016] [Indexed: 12/18/2022] Open
Abstract
In humans of all ages, the cell wall-less and genome-reduced species Mycoplasma pneumoniae can cause infections of the upper and lower respiratory tract. The well-documented occurrence of major peaks in the incidence of community-acquired pneumonia cases reported world-wide, the multifaceted clinical manifestations of infection and the increasing number of resistant strains provide reasons for ongoing interest in the pathogenesis of mycoplasmal disease. The results of recent studies have provided insights into the interaction of the limited virulence factors of the bacterium with its host. In addition, the availability of complete M. pneumoniae genomes from patient isolates and the development of proteomic methods for investigation of mycoplasmas have not only allowed characterization of sequence divergences between strains but have also shown the importance of proteins and protein parts for induction of the immune reaction after infection. This review focuses on selected aspects of the humoral host immune response as a factor that might influence the clinical course of infections, subsequent protection in cases of re-infections and changes of epidemiological pattern of infections. The characterization of antibodies directed to defined antigens and approaches to promote their induction in the respiratory mucosa are also preconditions for the development of a vaccine to protect risk populations from severe disease due to M. pneumoniae.
Collapse
Affiliation(s)
- Roger Dumke
- Institute of Medical Microbiology and Hygiene, Technische Universitaet Dresden Dresden, Germany
| | - Enno Jacobs
- Institute of Medical Microbiology and Hygiene, Technische Universitaet Dresden Dresden, Germany
| |
Collapse
|
29
|
Duenas Meza E, Jaramillo CA, Correa E, Torres-Duque CA, García C, González M, Rojas D, Hernández A, Páez AM, Delgado MDP. Virus and Mycoplasma pneumoniae prevalence in a selected pediatric population with acute asthma exacerbation. J Asthma 2016; 53:253-60. [PMID: 26799194 DOI: 10.3109/02770903.2015.1075548] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To determine the prevalence of viral and atypical bacteria Mycoplasma pneumoniae infection in children experiencing asthma exacerbation and compare positive and negative subjects with regard to exacerbation severity, need for hospitalization, and treatment. METHODS One hundred sixty-nine asthmatic children aged 2-15 years old who were admitted to emergency rooms in Bogota, Colombia for acute asthma exacerbation were interviewed. Nasopharyngeal aspirates were taken for DNA and RNA extraction. M. pneumoniae and virus were detected by PCR using specific primers. RESULTS The prevalence of M. pneumoniae and viral infection in the study population was 12.4% and 83.7%, respectively. All subjects positive for M. pneumoniae were also positive for viral infection. Rhinovirus was the most frequently detected viral agent. No significant differences in severity of asthma exacerbations or in need for hospitalization between the virus or M. pneumoniae positive and negative groups were observed. A significantly lower percentage of M. pneumoniae positive subjects had used inhaled steroids over the six months prior to asthma exacerbation compared to M. pneumoniae negative subjects (38.1% vs. 68.2%), suggesting that inhaled corticosteroids may have a protective effect against M. pneumoniae infections. CONCLUSIONS The M. pneumoniae and virus prevalence found in this study were similar to those described in the literature. The 100% co-infection rate observed suggests that viral infection can predispose patients to M. pneumoniae infection, and that this interaction may trigger asthmatic exacerbation. Further studies should be done to confirm the protective effect of inhaled corticosteroids on M. pneumoniae infection in patients with asthma exacerbations.
Collapse
Affiliation(s)
| | - Carlos Alberto Jaramillo
- b Molecular Diagnostics and Bioinformatics Laboratory, Biological Sciences Department , Faculty of Science, Universidad de los Andes , Bogotá , Colombia
| | - Eliana Correa
- a Fundación Neumológica Colombiana , Bogotá , Colombia and
| | | | - Catherine García
- b Molecular Diagnostics and Bioinformatics Laboratory, Biological Sciences Department , Faculty of Science, Universidad de los Andes , Bogotá , Colombia
| | | | - Diana Rojas
- b Molecular Diagnostics and Bioinformatics Laboratory, Biological Sciences Department , Faculty of Science, Universidad de los Andes , Bogotá , Colombia
| | - Alejandra Hernández
- b Molecular Diagnostics and Bioinformatics Laboratory, Biological Sciences Department , Faculty of Science, Universidad de los Andes , Bogotá , Colombia
| | - Ana María Páez
- b Molecular Diagnostics and Bioinformatics Laboratory, Biological Sciences Department , Faculty of Science, Universidad de los Andes , Bogotá , Colombia
| | - María Del Pilar Delgado
- b Molecular Diagnostics and Bioinformatics Laboratory, Biological Sciences Department , Faculty of Science, Universidad de los Andes , Bogotá , Colombia
| |
Collapse
|
30
|
Lluch-Senar M, Cozzuto L, Cano J, Delgado J, Llórens-Rico V, Pereyre S, Bebear C, Serrano L. Comparative "-omics" in Mycoplasma pneumoniae Clinical Isolates Reveals Key Virulence Factors. PLoS One 2015; 10:e0137354. [PMID: 26335586 PMCID: PMC4559472 DOI: 10.1371/journal.pone.0137354] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/14/2015] [Indexed: 01/21/2023] Open
Abstract
The human respiratory tract pathogen M. pneumoniae is one of the best characterized minimal bacterium. Until now, two main groups of clinical isolates of this bacterium have been described (types 1 and 2), differing in the sequence of the P1 adhesin gene. Here, we have sequenced the genomes of 23 clinical isolates of M. pneumoniae. Studying SNPs, non-synonymous mutations, indels and genome rearrangements of these 23 strains and 4 previously sequenced ones, has revealed new subclasses in the two main groups, some of them being associated with the country of isolation. Integrative analysis of in vitro gene essentiality and mutation rates enabled the identification of several putative virulence factors and antigenic proteins; revealing recombination machinery, glycerol metabolism and peroxide production as possible factors in the genetics and physiology of these pathogenic strains. Additionally, the transcriptomes and proteomes of two representative strains, one from each of the two main groups, have been characterized to evaluate the impact of mutations on RNA and proteins levels. This study has revealed that type 2 strains show higher expression levels of CARDS toxin, a protein recently shown to be one of the major factors of inflammation. Thus, we propose that type 2 strains could be more toxigenic than type 1 strains of M. pneumoniae.
Collapse
Affiliation(s)
- Maria Lluch-Senar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, Barcelona, Spain
- * E-mail: (MLS); (LS)
| | - Luca Cozzuto
- Bioinformatics Unit, Centre for Genomic Regulation (CRG) and UPF, Dr. Aiguader 88, Barcelona, Spain
| | - Jaime Cano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, Barcelona, Spain
| | - Javier Delgado
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, Barcelona, Spain
| | - Verónica Llórens-Rico
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, Barcelona, Spain
| | - Sabine Pereyre
- Univ. Bordeaux, INRA, USC-EA3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France
- Bacteriology department, Bordeaux University Hospital, Bordeaux, France
| | - Cécile Bebear
- Univ. Bordeaux, INRA, USC-EA3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France
- Bacteriology department, Bordeaux University Hospital, Bordeaux, France
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, Barcelona, Spain
- * E-mail: (MLS); (LS)
| |
Collapse
|
31
|
Pritchard RE, Balish MF. Mycoplasma iowae: relationships among oxygen, virulence, and protection from oxidative stress. Vet Res 2015; 46:36. [PMID: 25880161 PMCID: PMC4367981 DOI: 10.1186/s13567-015-0170-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/05/2015] [Indexed: 12/20/2022] Open
Abstract
The poultry-associated bacterium Mycoplasma iowae colonizes multiple sites in embryos, with disease or death resulting. Although M. iowae accumulates in the intestinal tract, it does not cause disease at that site, but rather only in tissues that are exposed to atmospheric O2. The activity of M. iowae catalase, encoded by katE, is capable of rapid removal of damaging H2O2 from solution, and katE confers a substantial reduction in the amount of H2O2 produced by Mycoplasma gallisepticum katE transformants in the presence of glycerol. As catalase-producing bacteria are often beneficial to hosts with inflammatory bowel disease, we explored whether M. iowae was exclusively protective against H2O2-producing bacteria in a Caenorhabditis elegans model, whether its protectiveness changed in response to O2 levels, and whether expression of genes involved in H2O2 metabolism and virulence changed in response to O2 levels. We observed that M. iowae was in fact protective against H2O2-producing Streptococcus pneumoniae, but not HCN-producing Pseudomonas aeruginosa, and that M. iowae cells grown in 1% O2 promoted survival of C. elegans to a greater extent than M. iowae cells grown in atmospheric O2. Transcript levels of an M. iowae gene encoding a homolog of Mycoplasma pneumoniae CARDS toxin were 5-fold lower in cells grown in low O2. These data suggest that reduced O2, representing the intestinal environment, triggers M. iowae to reduce its virulence capabilities, effecting a change from a pathogenic mode to a potentially beneficial one.
Collapse
Affiliation(s)
- Rachel E Pritchard
- Department of Microbiology, Miami University, Oxford, OH, 45056, USA. .,Present address: Division of Natural Sciences and Mathematics, Kentucky Wesleyan College, Owensboro, KY, 42301, USA.
| | - Mitchell F Balish
- Department of Microbiology, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
32
|
Annexin A2 mediates Mycoplasma pneumoniae community-acquired respiratory distress syndrome toxin binding to eukaryotic cells. mBio 2014; 5:mBio.01497-14. [PMID: 25139904 PMCID: PMC4147866 DOI: 10.1128/mbio.01497-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mycoplasma pneumoniae synthesizes a novel human surfactant protein A (SP-A)-binding cytotoxin, designated community-acquired respiratory distress syndrome (CARDS) toxin, that exhibits ADP-ribosylating and vacuolating activities in mammalian cells and is directly linked to a range of acute and chronic airway diseases, including asthma. In our attempt to detect additional CARDS toxin-binding proteins, we subjected the membrane fraction of human A549 airway cells to affinity chromatography using recombinant CARDS toxin as bait. A 36-kDa A549 cell membrane protein bound to CARDS toxin and was identified by time of flight (TOF) mass spectroscopy as annexin A2 (AnxA2) and verified by immunoblotting with anti-AnxA2 monoclonal antibody. Dose-dependent binding of CARDS toxin to recombinant AnxA2 reinforced the specificity of the interaction, and further studies revealed that the carboxy terminus of CARDS toxin mediated binding to AnxA2. In addition, pretreatment of viable A549 cells with anti-AnxA2 monoclonal antibody or AnxA2 small interfering RNA (siRNA) reduced toxin binding and internalization. Immunofluorescence analysis of CARDS toxin-treated A549 cells demonstrated the colocalization of CARDS toxin with cell surface-associated AnxA2 upon initial binding and with intracellular AnxA2 following toxin internalization. HepG2 cells, which express low levels of AnxA2, were transfected with a plasmid expressing AnxA2 protein, resulting in enhanced binding of CARDS toxin and increased vacuolization. In addition, NCI-H441 cells, which express both AnxA2 and SP-A, upon AnxA2 siRNA transfection, showed decreased binding and subsequent vacuolization. These results indicate that CARDS toxin recognizes AnxA2 as a functional receptor, leading to CARDS toxin-induced changes in mammalian cells. Host cell susceptibility to bacterial toxins is usually determined by the presence and abundance of appropriate receptors, which provides a molecular basis for toxin target cell specificities. To perform its ADP-ribosylating and vacuolating activities, community-acquired respiratory distress syndrome (CARDS) toxin must bind to host cell surfaces via receptor-mediated events in order to be internalized and trafficked effectively. Earlier, we reported the binding of CARDS toxin to surfactant protein A (SP-A), and here we show how CARDS toxin uses an alternative receptor to execute its pathogenic properties. CARDS toxin binds selectively to annexin A2 (AnxA2), which exists both on the cell surface and intracellularly. Since AnxA2 regulates membrane dynamics at early stages of endocytosis and trafficking, it serves as a distinct receptor for CARDS toxin binding and internalization and enhances CARDS toxin-induced vacuolization in mammalian cells.
Collapse
|
33
|
Mycoplasma pneumoniae CARDS toxin exacerbates ovalbumin-induced asthma-like inflammation in BALB/c mice. PLoS One 2014; 9:e102613. [PMID: 25058417 PMCID: PMC4109942 DOI: 10.1371/journal.pone.0102613] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/20/2014] [Indexed: 01/21/2023] Open
Abstract
Mycoplasma pneumoniae causes a range of airway and extrapulmonary pathologies in humans. Clinically, M. pneumoniae is associated with acute exacerbations of human asthma and a worsening of experimentally induced asthma in mice. Recently, we demonstrated that Community Acquired Respiratory Distress Syndrome (CARDS) toxin, an ADP-ribosylating and vacuolating toxin synthesized by M. pneumoniae, is sufficient to induce an asthma-like disease in BALB/cJ mice. To test the potential of CARDS toxin to exacerbate preexisting asthma, we examined inflammatory responses to recombinant CARDS toxin in an ovalbumin (OVA) murine model of asthma. Differences in pulmonary inflammatory responses between treatment groups were analyzed by histology, cell differentials and changes in cytokine and chemokine concentrations. Additionally, assessments of airway hyperreactivity were evaluated through direct pulmonary function measurements. Analysis of histology revealed exaggerated cellular inflammation with a strong eosinophilic component in the CARDS toxin-treated group. Heightened T-helper type-2 inflammatory responses were evidenced by increased expression of IL-4, IL-13, CCL17 and CCL22 corresponding with increased airway hyperreactivity in the CARDS toxin-treated mice. These data demonstrate that CARDS toxin can be a causal factor in the worsening of experimental allergic asthma, highlighting the potential importance of CARDS toxin in the etiology and exacerbation of human asthma.
Collapse
|
34
|
Kannan TR, Krishnan M, Ramasamy K, Becker A, Pakhomova ON, Hart PJ, Baseman JB. Functional mapping of community-acquired respiratory distress syndrome (CARDS) toxin of Mycoplasma pneumoniae defines regions with ADP-ribosyltransferase, vacuolating and receptor-binding activities. Mol Microbiol 2014; 93:568-81. [PMID: 24948331 DOI: 10.1111/mmi.12680] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2014] [Indexed: 11/28/2022]
Abstract
Community-acquired respiratory distress syndrome (CARDS) toxin from Mycoplasma pneumoniae is a 591-amino-acid virulence factor with ADP-ribosyltransferase (ADPRT) and vacuolating activities. It is expressed at low levels during in vitro growth and at high levels during colonization of the lung. Exposure of experimental animals to purified recombinant CARDS toxin alone is sufficient to recapitulate the cytopathology and inflammatory responses associated with M. pneumoniae infection in humans and animals. Here, by molecular modelling, serial truncations and site-directed mutagenesis, we show that the N-terminal region is essential for ADP-ribosylating activity. Also, by systematic truncation and limited proteolysis experiments we identified a portion of the C-terminal region that mediates toxin binding to mammalian cell surfaces and subsequent internalization. In addition, the C-terminal region alone induces vacuolization in a manner similar to full-length toxin. Together, these data suggest that CARDS toxin has a unique architecture with functionally separable N-terminal and C-terminal domains.
Collapse
Affiliation(s)
- Thirumalai R Kannan
- Department of Microbiology and Immunology/Center for Airway Inflammation Research, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
[Mycoplasma pneumoniae respiratory infections in adults: beware atypical cases!]. Rev Mal Respir 2013; 30:743-5. [PMID: 24267763 DOI: 10.1016/j.rmr.2013.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 11/21/2022]
|
37
|
Wood PR, Hill VL, Burks ML, Peters JI, Singh H, Kannan TR, Vale S, Cagle MP, Principe MFR, Baseman JB, Brooks EG. Mycoplasma pneumoniae in children with acute and refractory asthma. Ann Allergy Asthma Immunol 2013; 110:328-334.e1. [PMID: 23622002 DOI: 10.1016/j.anai.2013.01.022] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/26/2013] [Accepted: 01/28/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND The presence of Mycoplasma pneumoniae has been associated with worsening asthma in children. Sensitive assays have been developed to detect M pneumoniae-derived community-acquired respiratory distress syndrome (CARDS) toxin. OBJECTIVES To identify the frequency and persistence of M pneumoniae detection in respiratory secretions of children with and without asthma and to evaluate antibody responses to M pneumoniae and the impact of M pneumoniae on biological markers, asthma control, and quality of life. METHODS We enrolled 143 pediatric patients (53 patients with acute asthma, 26 patients with refractory asthma, and 64 healthy controls; age range, 5-17 years) during a 20-month period with 2 to 5 follow-up visits. We detected M pneumoniae using CARDS toxin antigen capture and polymerase chain reaction and P1 adhesin polymerase chain reaction. Immune responses to M pneumoniae were determined by IgG and IgM levels directed against CARDS toxin and P1 adhesin. pH was measured in exhaled breath condensates, and asthma control and quality of life were assessed using the Asthma Control Test and Pediatric Asthma Quality of Life Questionnaire. RESULTS M pneumoniae was detected in 64% of patients with acute asthma, 65% with refractory asthma, and 56% of healthy controls. Children with asthma had lower antibody levels to M pneumoniae compared with healthy controls. Exhaled breath condensate pHs and asthma control and quality of life scores were lower in M pneumoniae-positive patients with asthma. CONCLUSION The results suggest that M pneumoniae detection is common in children, M pneumoniae detection is associated with worsening asthma, and children with asthma may have poor humoral immune responses to M pneumoniae.
Collapse
Affiliation(s)
- Pamela R Wood
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pneumopathie à mycoplasme : une cause rare de syndrome de détresse respiratoire aiguë (SDRA) et de résistance potentielle aux antibiotiques. Rev Mal Respir 2013; 30:77-80. [DOI: 10.1016/j.rmr.2012.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/06/2012] [Indexed: 12/21/2022]
|
39
|
Multilocus variable-number tandem-repeat analysis-confirmed emergence of a macrolide resistance-associated mutation in Mycoplasma pneumoniae during macrolide therapy for interstitial pneumonia in an immunocompromised child. J Clin Microbiol 2012; 50:3402-5. [PMID: 22814468 DOI: 10.1128/jcm.01248-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A child with Job's syndrome was treated for pneumonia due to Mycoplasma pneumoniae. A mixed population of wild-type bacteria and an A2059G mutant was detected during josamycin treatment failure. The same multilocus variable-number tandem-repeat analysis (MLVA) type (MLVA type I) was isolated before and after treatment failure. The child recovered after ciprofloxacin treatment.
Collapse
|
40
|
Youn YS, Lee KY. Mycoplasma pneumoniae pneumonia in children. KOREAN JOURNAL OF PEDIATRICS 2012; 55:42-7. [PMID: 22375148 PMCID: PMC3286761 DOI: 10.3345/kjp.2012.55.2.42] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/11/2012] [Indexed: 12/20/2022]
Abstract
Mycoplasma pneumoniae (MP), the smallest self-replicating biological system, is a common cause of upper and lower respiratory tract infections, leading to a wide range of pulmonary and extra-pulmonary manifestations. MP pneumonia has been reported in 10 to 40% of cases of community-acquired pneumonia and shows an even higher proportion during epidemics. MP infection is endemic in larger communities of the world with cyclic epidemics every 3 to 7 years. In Korea, 3 to 4-year cycles have been observed from the mid-1980s to present. Although a variety of serologic assays and polymerase chain reaction (PCR) techniques are available for the diagnosis of MP infections, early diagnosis of MP pneumonia is limited by the lack of immunoglobulin (Ig) M antibodies and variable PCR results in the early stages of the infection. Thus, short-term paired IgM serologic tests may be mandatory for an early and definitive diagnosis. MP infection is usually a mild and self-limiting disease without specific treatment, and if needed, macrolides are generally used as a first-choice drug for children. Recently, macrolide-resistant MP strains have been reported worldwide. However, there are few reports of apparent treatment failure, such as progression of pneumonia to acute respiratory distress syndrome despite macrolide treatment. The immunopathogenesis of MP pneumonia is believed to be a hyperimmune reaction of the host to the insults from MP infection, including cytokine overproduction and immune cell activation (T cells). In this context, immunomodulatory treatment (corticosteroids or/and intravenous Ig), in addition to antibiotic treatment, might be considered for patients with severe infection.
Collapse
Affiliation(s)
- You-Sook Youn
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | |
Collapse
|
41
|
Medina JL, Coalson JJ, Brooks EG, Winter VT, Chaparro A, Principe MFR, Kannan TR, Baseman JB, Dube PH. Mycoplasma pneumoniae CARDS toxin induces pulmonary eosinophilic and lymphocytic inflammation. Am J Respir Cell Mol Biol 2012; 46:815-22. [PMID: 22281984 DOI: 10.1165/rcmb.2011-0135oc] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mycoplasma pneumoniae causes acute and chronic lung infections in humans, leading to a variety of pulmonary and extrapulmonary sequelae. Of the airway complications of M. pneumoniae infection, M. pneumoniae-associated exacerbation of asthma and pediatric wheezing are emerging as significant sources of human morbidity. However, M. pneumoniae products capable of promoting allergic inflammation are unknown. Recently, we reported that M. pneumoniae produces an ADP-ribosylating and vacuolating toxin termed the community-acquired respiratory distress syndrome (CARDS) toxin. Here we report that naive mice exposed to a single dose of recombinant CARDS (rCARDS) toxin respond with a robust inflammatory response consistent with allergic disease. rCARDS toxin induced 30-fold increased expression of the Th-2 cytokines IL-4 and IL-13 and 70- to 80-fold increased expression of the Th-2 chemokines CCL17 and CCL22, corresponding to a mixed cellular inflammatory response comprised of a robust eosinophilia, accumulation of T cells and B cells, and mucus metaplasia. The inflammatory responses correlate temporally with toxin-dependent increases in airway hyperreactivity characterized by increases in airway restriction and decreases in lung compliance. Furthermore, CARDS toxin-mediated changes in lung function and histopathology are dependent on CD4(+) T cells. Altogether, the data suggest that rCARDS toxin is capable of inducing allergic-type inflammation in naive animals and may represent a causal factor in M. pneumoniae-associated asthma.
Collapse
Affiliation(s)
- Jorge L Medina
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Saraya T, Nakata K, Nakagaki K, Motoi N, Iihara K, Fujioka Y, Oka T, Kurai D, Wada H, Ishii H, Taguchi H, Kamiya S, Goto H. Identification of a mechanism for lung inflammation caused by Mycoplasma pneumoniae using a novel mouse model. RESULTS IN IMMUNOLOGY 2011; 1:76-87. [PMID: 24371556 DOI: 10.1016/j.rinim.2011.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/05/2011] [Accepted: 11/07/2011] [Indexed: 02/02/2023]
Abstract
Human Mycoplasma pneumoniae (MP) pneumonia is characterized by alveolar infiltration with neutrophils and lymphocytes and lymphocyte/plasma cell infiltrates in the peri-bronchovascular area (PBVA). No mouse model has been able to mimic the pathological features seen in human MP pneumonia, such as plasma cell-rich lymphocytic infiltration in PBVA. To figure out the mechanism for inflammation by MP infection using a novel mouse model that mimics human MP pneumonia, mice were pre-immunized intraperitoneally with Th2 stimulating adjuvant, alum, alone or MP extracts with an alum, followed by intratracheal challenge with MP extracts. The toll-like receptor-2, which is the major receptor for mycoplasma cell wall lipoproteins, was strongly up-regulated in alveolar macrophages in a latter group after the pre-immunization but prior to the intratracheal challenge. Those findings demonstrated that acceleration of innate immunity by antecedent antigenic stimulation can be an important positive-feedback mechanism in lung inflammation during MP pneumonia.
Collapse
Affiliation(s)
- Takeshi Saraya
- Department of Respiratory Medicine, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka City, Tokyo, Japan
| | - Koh Nakata
- Niigata University Medical & Dental Hospital, Bioscience Medical Research Center, 1-754, Asashimachi-dori, Chuo-ku, Niigata 951-8520, Japan
| | - Kazuhide Nakagaki
- Laboratory of Infectious Diseases and Immunology, College of Veterinary Medicine, Nippon Jui Seimei-kagaku University, Musashino, Tokyo 180-8602, Japan
| | - Natsuki Motoi
- Niigata University Medical & Dental Hospital, Bioscience Medical Research Center, 1-754, Asashimachi-dori, Chuo-ku, Niigata 951-8520, Japan
| | - Kuniko Iihara
- NTT Medical Center Tokyo, Department of Diagnostic Pathology, Japan
| | - Yasunori Fujioka
- Department of Pathology, Kyorin University School of Medicine, Japan
| | - Teruaki Oka
- Division of Pathology and Central Clinical Laboratory, Kanto Central Hospital of the Mutual Aid Association of Public School Teachers, Japan
| | - Daisuke Kurai
- Department of Respiratory Medicine, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka City, Tokyo, Japan
| | - Hiroo Wada
- Department of Respiratory Medicine, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka City, Tokyo, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka City, Tokyo, Japan
| | - Haruhiko Taguchi
- Department of Immunology, Kyorin University, Faculty of Health Sciences, Japan
| | - Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka City, Tokyo, Japan
| | - Hajime Goto
- Department of Respiratory Medicine, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka City, Tokyo, Japan
| |
Collapse
|
43
|
Kannan TR, Hardy RD, Coalson JJ, Cavuoti DC, Siegel JD, Cagle M, Musatovova O, Herrera C, Baseman JB. Fatal outcomes in family transmission of Mycoplasma pneumoniae. Clin Infect Dis 2011; 54:225-31. [PMID: 22052890 DOI: 10.1093/cid/cir769] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Mycoplasma pneumoniae continues to be a significant cause of community-acquired pneumonia and, on rare occasions, manifests as fulminant disease that leads to mortality, even in healthy individuals. METHODS We conducted a retrospective study on members of a family who were quarantined by the Centers for Disease Control and Prevention in 2002 for respiratory failure and death of a 15-year-old brother (sibling 1) and a 13-year-old sister (sibling 2). Collected airway, cerebrospinal fluid (CSF), and serum samples from both deceased siblings and serum samples from both parents and the remaining 3 ill siblings (sibling 3-5) were tested using a range of diagnostic assays. Autopsy lung tissue samples from sibling 2 were also assessed using immunohistochemical and immunoelectron microscopic methods. RESULTS Autopsy evaluation of sibling 1 revealed cerebral edema consistent with hypoxic ischemic encepatholopathy and pulmonary findings of bronchiolitis obliterans with organizing pneumonia (BOOP). Postmortem lung examination of sibling 2 revealed lymphoplasmacytic bronchiolitis with intraluminal purulent exudate, BOOP, and pulmonary edema. Results of diagnostic assays implicated the household transmission of M. pneumoniae among all 5 siblings and both parents. Further analysis of lung tissue from sibling 2 demonstrated the presence of M. pneumoniae organisms and community-acquired respiratory distress syndrome toxin. M. pneumoniae was cultured directly from sibling 2 autopsy lung tissue. CONCLUSION Evidence is provided that M. pneumoniae was readily transmitted to all members of the household and that the resulting infections led to a spectrum of individual responses with variation in disease progression, including lymphoplasmacytic bronchiolitis, BOOP, and death.
Collapse
Affiliation(s)
- T R Kannan
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kannan TR, Coalson JJ, Cagle M, Musatovova O, Hardy RD, Baseman JB. Synthesis and distribution of CARDS toxin during Mycoplasma pneumoniae infection in a murine model. J Infect Dis 2011; 204:1596-604. [PMID: 21957154 DOI: 10.1093/infdis/jir557] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mice were infected with Mycoplasma pneumoniae and monitored for the synthesis and distribution of the unique adenosine diphosphate-ribosylating and vacuolating Community Acquired Respiratory Distress Syndrome (CARDS) toxin in bronchiolar lavage fluid (BALF) and lung. We noted direct relationships between the concentration of CARDS toxin and numbers of mycoplasma genomes in BALF and the degree of histologic pulmonary inflammation. Immunostaining of lungs revealed extensive colonization by mycoplasmas, including the detection of CARDS toxin in the corresponding inflamed airways. Lung lesion scores were higher during the early stages of infection, decreased gradually by day 14 postinfection, and reached substantially lower values at day 35. Infected mouse immunoglobulin (Ig) M and IgG titers were positive for CARDS toxin as well as for the major adhesin P1 of M. pneumoniae. These data reinforce the proposed pathogenic role of CARDS toxin in M. pneumoniae-mediated pathologies.
Collapse
Affiliation(s)
- T R Kannan
- Department of Microbiology and Immunology, University of Texas Health Sciences Center at San Antonio, TX, USA
| | | | | | | | | | | |
Collapse
|
45
|
Peters J, Singh H, Brooks EG, Diaz J, Kannan TR, Coalson JJ, Baseman JG, Cagle M, Baseman JB. Persistence of community-acquired respiratory distress syndrome toxin-producing Mycoplasma pneumoniae in refractory asthma. Chest 2011; 140:401-407. [PMID: 21622549 PMCID: PMC3148797 DOI: 10.1378/chest.11-0221] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/13/2011] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The role of Mycoplasma pneumoniae (Mp) in the initiation and persistence of asthma remains elusive. Mp community-acquired respiratory distress syndrome toxin (CARDS Tx) is a unique virulence factor that induces an intense lymphocytic response and exacerbates asthma in animal models. We sought to determine the incidence of Mp infection and the presence of CARDS Tx in subjects with refractory asthma (RA). METHODS We conducted a prospective observational study in 64 subjects with RA. Respiratory secretions (sputum, nasal lavage, and throat swab) and blood were analyzed for the presence of CARDS Tx and P1 adhesin (P1) DNA by polymerase chain reaction (PCR), and CARDS Tx by antigen capture. Serum IgM and IgG antibodies to CARDS Tx were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS Thirty-three of 64 subjects (52%) tested positive for Mp: 29 of 33 by CARDS Tx vs 10 of 33 by P1 assays. Ten subjects followed longitudinally for up to 633 days tested persistently positive for Mp. There were no significant differences in Mp-specific IgG responses between Mp-positive and Mp-negative groups. Eight of 10 subjects who tested persistently positive failed to mount a substantial IgG response to CARDS Tx, and up to 8 weeks of clarithromycin failed to eradicate Mp in five subjects. CONCLUSIONS Subjects with RA may be chronically infected with Mp. PCR for CARDS Tx appears to be the most sensitive method of identifying Mp infection. Despite the persistence of Mp in subjects with RA, some subjects failed to mount an IgG response, and macrolide therapy was insufficient to eradicate Mp.
Collapse
Affiliation(s)
- Jay Peters
- Department of Medicine, University of Texas Health Science Center at San Antonio, TX.
| | - Harjinder Singh
- Department of Medicine, University of Texas Health Science Center at San Antonio, TX
| | - Edward G Brooks
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, TX
| | - Joseph Diaz
- Asthma and Allergy Associates of South Texas, San Antonio, TX
| | - Thirumalai R Kannan
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, TX
| | - Jacqueline J Coalson
- Department of Pathology, University of Texas Health Science Center at San Antonio, TX
| | - Janet G Baseman
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, TX
| | - Marianna Cagle
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, TX
| | - Joel B Baseman
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, TX; Department of Epidemiology, University of Washington School of Public Health, Seattle, WA
| |
Collapse
|
46
|
Johnson C, Kannan TR, Baseman JB. Cellular vacuoles induced by Mycoplasma pneumoniae CARDS toxin originate from Rab9-associated compartments. PLoS One 2011; 6:e22877. [PMID: 21829543 PMCID: PMC3146493 DOI: 10.1371/journal.pone.0022877] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/06/2011] [Indexed: 11/24/2022] Open
Abstract
Recently, we identified an ADP-ribosylating and vacuolating cytotoxin in Mycoplasma pneumoniae designated Community Acquired Respiratory Distress Syndrome (CARDS) toxin. In this study we show that vacuoles induced by recombinant CARDS (rCARDS) toxin are acidic and derive from the endocytic pathway as determined by the uptake of neutral red and the fluid-phase marker, Lucifer yellow, respectively. Also, we demonstrate that the formation of rCARDS toxin-associated cytoplasmic vacuoles is inhibited by the vacuolar ATPase inhibitor, bafilomycin A1, and the ionophore, monensin. To examine the ontogeny of these vacuoles, we analyzed the distribution of endosomal and lysosomal membrane markers during vacuole formation and observed the enrichment of the late endosomal GTPase, Rab9, around rCARDS toxin-induced vacuoles. Immunogold-labeled Rab9 and overexpression of green fluorescent-tagged Rab9 further confirmed vacuolar association. The late endosomal- and lysosomal-associated membrane proteins, LAMP1 and LAMP2, also localized to the vacuolar membranes, while the late endosomal protein, Rab7, and early endosomal markers, Rab5 and EEA1, were excluded. HeLa cells expressing dominant-negative (DN) Rab9 exhibited markedly reduced vacuole formation in the presence of rCARDS toxin, in contrast to cells expressing DN-Rab7, highlighting the importance of Rab9 function in rCARDS toxin-induced vacuolation. Our findings reveal the unique Rab9-association with rCARDS toxin-induced vacuoles and its possible relationship to the characteristic histopathology that accompanies M. pneumoniae infection.
Collapse
Affiliation(s)
- Coreen Johnson
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - T. R. Kannan
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Joel B. Baseman
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|