1
|
Leveque E, Joulia R, Battut L, Laurent C, Valitutti S, Cénac N, Dietrich G, Espinosa E. Mast Cells Promote Inflammatory Th17 Cells and Impair Treg Cells Through an IL-1β and PGE 2 Axis. J Inflamm Res 2025; 18:5851-5865. [PMID: 40331159 PMCID: PMC12050418 DOI: 10.2147/jir.s509931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Purpose CD4+ effector T cells (Teffs) play a key role in immune responses by infiltrating the sites of inflammation and modulating local leukocyte activity. In turn resident immune cells shape their response. This study aimed to investigate the influence of mast cells (MCs) on Teff biological responses. Methods This study examined human MC-Teff interactions, focusing on how MCs shape Teff responses. Flow cytometry, qRT-PCR, and cytokine assays were used to analyze the impact of primary human MCs on the Teff phenotype and function. MC-Teff crosstalk within Crohn's disease patient tissues was assessed using confocal microscopy and advanced image analysis. Results MCs promoted the differentiation of Th17 cells, particularly the inflammatory Th17.1 subset, that secretes IFN-γ and GM-CSF. This differentiation was driven by the PGE2 and IL-1β axis. Additionally, MCs disrupted the phenotype and impaired the suppressive function of regulatory T cells (Tregs) through PGE2, skewing the Th17/Treg balance. The analysis of biopsies from patients with Crohn's disease indicated that this MC/Teff crosstalk may play a role in the pathogenesis of auto-inflammatory processes. Conclusion MCs influence CD4+ T cell responses by fostering pro-inflammatory Th17 differentiation while impairing Treg function. This interaction underpins a Th17/Treg imbalance, which is significant in auto-inflammatory diseases such as Crohn's disease, positioning MCs as critical drivers of disease pathogenesis.
Collapse
Affiliation(s)
- Edouard Leveque
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR5071, Toulouse, F-31000, France
- Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
| | - Régis Joulia
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Louise Battut
- Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
- Institut de Recherche en Santé Digestive (IRSD), INSERM U1220, INRA, INP-ENVT, Toulouse, F-31024, France
| | - Camille Laurent
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR5071, Toulouse, F-31000, France
- Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
- CHU Toulouse, Department of Pathology, Institut Universitaire du Cancer - Oncopole de Toulouse, Toulouse, F-31000, France
| | - Salvatore Valitutti
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR5071, Toulouse, F-31000, France
- Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
- CHU Toulouse, Department of Pathology, Institut Universitaire du Cancer - Oncopole de Toulouse, Toulouse, F-31000, France
| | - Nicolas Cénac
- Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
- Institut de Recherche en Santé Digestive (IRSD), INSERM U1220, INRA, INP-ENVT, Toulouse, F-31024, France
| | - Gilles Dietrich
- Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
- Institut de Recherche en Santé Digestive (IRSD), INSERM U1220, INRA, INP-ENVT, Toulouse, F-31024, France
| | - Eric Espinosa
- Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
- Institut de Recherche en Santé Digestive (IRSD), INSERM U1220, INRA, INP-ENVT, Toulouse, F-31024, France
| |
Collapse
|
2
|
Wang R, Liang J, Wang Q, Zhang Y, Lu Y, Zhan X, Wang S, Gu Q. m6A mRNA methylation-mediated MAPK signaling modulates the nasal mucosa inflammatory response in allergic rhinitis. Front Immunol 2024; 15:1344995. [PMID: 39011034 PMCID: PMC11246857 DOI: 10.3389/fimmu.2024.1344995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/10/2024] [Indexed: 07/17/2024] Open
Abstract
Background Allergic rhinitis (AR) is a complex disease in which gene-environment interactions contribute to its pathogenesis. Epigenetic modifications, such as N6-methyladenosine (m6A) modification of mRNA, play important roles in regulating gene expression in multiple physiological and pathological processes. However, the function of m6A modification in AR and the inflammatory response is poorly understood. Methods We used the ovalbumin (OVA) and aluminum hydroxide to induce an AR mouse model. Nasal symptoms, histopathology, and serum cytokines were examined. We performed combined m6A and RNA sequencing to analyze changes in m6A modification profiles. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and methylated RNA immunoprecipitation sequencing qPCR (MeRIP-qPCR) were used to verify differential methylation of mRNAs and the m6A methylation level. Knockdown or inhibition of Alkbh5 in nasal mucosa of mice was mediated by lentiviral infection or IOX1 treatment. Results We showed that m6A was enriched in a group of genes involved in MAPK signaling pathway. Moreover, we identified a MAPK pathway involving Map3k8, Erk2, and Nfκb1 that may play a role in the disrupted inflammatory response associated with nasal inflammation. The m6A eraser, Alkbh5, was highly expressed in the nasal mucosa of AR model mice. Furthermore, knockdown of Alkbh5 expression by lentiviral infection resulted in high MAPK pathway activity and a significant nasal mucosa inflammatory response. Our findings indicate that ALKBH5-mediated m6A dysregulation likely contributes to a nasal inflammatory response via the MAPK pathway. Conclusion Together, our data show that m6A dysregulation mediated by ALKBH5, is likely to contribute to inflammation of the nasal mucosa via the MAPK signaling pathway, suggesting that ALKBH5 is a potential biomarker for AR treatment.
Collapse
Affiliation(s)
- Ruikun Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
- Capital Institute of Pediatrics, Peking University Teaching Hospital, Beijing, China
| | - Jieqiong Liang
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Qian Wang
- Graduate School of Peking Union Medical College, Capital Institute of Pediatrics, Beijing, China
| | - Yiming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Yingxia Lu
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Xiaojun Zhan
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Qinglong Gu
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
3
|
Li H, Bradbury JA, Edin ML, Gruzdev A, Li H, Graves JP, DeGraff LM, Lih FB, Feng C, Wolf ER, Bortner CD, London SJ, Sparks MA, Coffman TM, Zeldin DC. TXA2 attenuates allergic lung inflammation through regulation of Th2, Th9, and Treg differentiation. J Clin Invest 2024; 134:e165689. [PMID: 38483511 PMCID: PMC11060738 DOI: 10.1172/jci165689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/12/2024] [Indexed: 05/02/2024] Open
Abstract
In lung, thromboxane A2 (TXA2) activates the TP receptor to induce proinflammatory and bronchoconstrictor effects. Thus, TP receptor antagonists and TXA2 synthase inhibitors have been tested as potential asthma therapeutics in humans. Th9 cells play key roles in asthma and regulate the lung immune response to allergens. Herein, we found that TXA2 reduces Th9 cell differentiation during allergic lung inflammation. Th9 cells were decreased approximately 2-fold and airway hyperresponsiveness was attenuated in lungs of allergic mice treated with TXA2. Naive CD4+ T cell differentiation to Th9 cells and IL-9 production were inhibited dose-dependently by TXA2 in vitro. TP receptor-deficient mice had an approximately 2-fold increase in numbers of Th9 cells in lungs in vivo after OVA exposure compared with wild-type mice. Naive CD4+ T cells from TP-deficient mice exhibited increased Th9 cell differentiation and IL-9 production in vitro compared with CD4+ T cells from wild-type mice. TXA2 also suppressed Th2 and enhanced Treg differentiation both in vitro and in vivo. Thus, in contrast to its acute, proinflammatory effects, TXA2 also has longer-lasting immunosuppressive effects that attenuate the Th9 differentiation that drives asthma progression. These findings may explain the paradoxical failure of anti-thromboxane therapies in the treatment of asthma.
Collapse
Affiliation(s)
- Hong Li
- Division of Intramural Research, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA
| | - J. Alyce Bradbury
- Division of Intramural Research, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA
| | - Matthew L. Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA
| | - Artiom Gruzdev
- Division of Intramural Research, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA
| | - Huiling Li
- Division of Intramural Research, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA
| | - Joan P. Graves
- Division of Intramural Research, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA
| | - Laura M. DeGraff
- Division of Intramural Research, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA
| | - Fred B. Lih
- Division of Intramural Research, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA
| | - Chiguang Feng
- Division of Intramural Research, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA
| | - Erin R. Wolf
- Department of Nephrology, Duke University Medical Center, Durham, North Carolina, USA
| | - Carl D. Bortner
- Division of Intramural Research, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA
| | - Stephanie J. London
- Division of Intramural Research, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA
| | - Matthew A. Sparks
- Department of Nephrology, Duke University Medical Center, Durham, North Carolina, USA
| | - Thomas M. Coffman
- Department of Nephrology, Duke University Medical Center, Durham, North Carolina, USA
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Darryl C. Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA
| |
Collapse
|
4
|
Ahmed A, Tripathi H, van Meijgaarden KE, Kumar NC, Adiga V, Rakshit S, Parthiban C, Eveline J S, D’Souza G, Dias M, Ottenhoff TH, Netea MG, Joosten SA, Vyakarnam A. BCG revaccination in adults enhances pro-inflammatory markers of trained immunity along with anti-inflammatory pathways. iScience 2023; 26:107889. [PMID: 37817935 PMCID: PMC10561055 DOI: 10.1016/j.isci.2023.107889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/22/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
This study characterized mechanisms of Bacille Calmette-Guérin (BCG) revaccination-induced trained immunity (TI) in India. Adults, BCG vaccinated at birth, were sampled longitudinally before and after a second BCG dose. BCG revaccination significantly elevated tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6 in HLA-DR+CD16-CD14hi monocytes, demonstrating induction of TI. Mycobacteria-specific CD4+ T cell interferon (IFN) γ, IL-2, and TNF-α were significantly higher in re-vaccinees and correlated positively with HLA-DR+CD16-CD14hi TI responses. This, however, did not translate into increased mycobacterial growth control, measured by mycobacterial growth inhibition assay (MGIA). Post revaccination, elevated secreted TNF-α, IL-1β, and IL-6 to "heterologous" fungal, bacterial, and enhanced CXCL-10 and IFNα to viral stimuli were also observed concomitant with increased anti-inflammatory cytokine, IL-1RA. RNA sequencing after revaccination highlighted a BCG and LPS induced signature which included upregulated IL17 and TNF pathway genes and downregulated key inflammatory genes: CXCL11, CCL24, HLADRA, CTSS, CTSC. Our data highlight a balanced immune response comprising pro- and anti-inflammatory mediators to be a feature of BCG revaccination-induced immunity.
Collapse
Affiliation(s)
- Asma Ahmed
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Himanshu Tripathi
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | | | - Nirutha Chetan Kumar
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Vasista Adiga
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
- Department of Biotechnology, PES University, Bangalore, India
| | - Srabanti Rakshit
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Chaitra Parthiban
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Sharon Eveline J
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - George D’Souza
- Department of Pulmonary Medicine, St. John’s Medical College, Bangalore, India
| | - Mary Dias
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Tom H.M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Annapurna Vyakarnam
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
- Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Science & Medicine, King’s College, London, UK
| |
Collapse
|
5
|
Kanno T, Nakajima T, Miyako K, Endo Y. Lipid metabolism in Th17 cell function. Pharmacol Ther 2023; 245:108411. [PMID: 37037407 DOI: 10.1016/j.pharmthera.2023.108411] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
Among the subset of T helper cells, Th17 cells are known to play a crucial role in the pathogenesis of various autoimmune disorders, such as psoriasis, rheumatoid arthritis, inflammatory bowel disease, steroid-resistant asthma, and multiple sclerosis. The master transcription factor retinoid-related orphan receptor gamma t (RORγt), a nuclear hormone receptor, plays a vital role in inducing Th17-cell differentiation. Recent findings suggest that metabolic control is critical for Th17-cell differentiation, particularly through the engagement of de novo lipid biosynthesis. Inhibition of lipid biosynthesis, either through the use of pharmacological inhibitors or by the deficiency of related enzymes in CD4+ T cells, results in significant suppression of Th17-cell differentiation. Mechanistic studies indicate that metabolic fluxes through both the fatty acid and cholesterol biosynthetic pathways are essential for controlling RORγt activity through the generation of a lipid ligand of RORγt. This review highlights recent findings that underscore the significant role of lipid metabolism in the differentiation and function of Th17 cells, as well as elucidating the distinctive molecular pathways that drive the activation of RORγt by cellular lipid metabolism. We further elaborate on a pioneering therapeutic approach for ameliorating autoimmune disorders via the inhibition of RORγt.
Collapse
Affiliation(s)
- Toshio Kanno
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Takahiro Nakajima
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Keisuke Miyako
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Yusuke Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan.
| |
Collapse
|
6
|
Zhong L, Liu S, Zuo F, Geng Y, Ouyang P, Chen D, Yang S, Zheng W, Xiong Y, Cai W, Huang X. The IL17 signaling pathway: A potential signaling pathway mediating gill hyperplasia and inflammation under ammonia nitrogen stress was identified by multi-omics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161581. [PMID: 36638999 DOI: 10.1016/j.scitotenv.2023.161581] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Ammonia nitrogen is extremely toxic to aquatic animals, and is also the most common pollutant in the aquatic environment. In order to investigate the effect of high concentration of ambient ammonia nitrogen on fish gills, two groups, including a high ammonia group (T group: TAN = 2.5 mg/L, 10 % 96 h LC50) and a control group (Z group: total ammonia nitrogen (TAN) = 0 mg/L) were set up in this study. The effects of chronic ammonia stress on the gills of Pelteobagrus fulvidraco were investigated by histopathological, enzymatic, transcriptomic and proteomic analyses after 28 d of stress at different ammonia nitrogen concentrations. Histopathological observations revealed significant inflammatory cell infiltration, necrotic and abscission at the base of the gill filaments, and massive proliferation of cells at the base of the gill lamellae. Ammonia nitrogen stress led to increased reactive oxygen species (ROS) content and decreased catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) activities in gills, indicating significant oxidative stress in gills. And further transcriptomic analysis revealed that 807 differential expression genes (DEGs) were generated in the gills, of which 587 DEGs were up-regulated and 220 DEGs were down-regulated. In addition, proteomics analysis identified 1073 differential expression proteins (DEPs) in gills, including 983 up- and 90 down-regulated DEPs. Pathway enrichment analysis of the DEGs and DEPs revealed that multiple inflammation-related signaling pathways were activated in the gill, including the significantly enriched IL17 signaling pathway. This suggests that IL17 signaling pathway might have a significant impact during signaling transduction. Further analysis of network regulation by mapping DEGs and DEPs to KEGG pathway revealed that IL17 signaling pathway mediated inflammation and cell proliferation in gills under ammonia stress. The results of this study provided new insights into the response of fish gills to ammonia nitrogen stress, and the IL17 signaling pathway may be a potential therapeutic target for reducing ammonia nitrogen gill toxicity.
Collapse
Affiliation(s)
- Liang Zhong
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong
| | - Sha Liu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - FengYuan Zuo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shiyong Yang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wei Zheng
- Center for Conservation and Utilization of Rare and Endemic Fishes in Sichuan, Chengdu 611247, Sichuan, China
| | - Yinlin Xiong
- Center for Conservation and Utilization of Rare and Endemic Fishes in Sichuan, Chengdu 611247, Sichuan, China
| | - Wenlong Cai
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong.
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
7
|
Nechanitzky R, Nechanitzky D, Ramachandran P, Duncan GS, Zheng C, Göbl C, Gill KT, Haight J, Wakeham AC, Snow BE, Bradaschia-Correa V, Ganguly M, Lu Z, Saunders ME, Flavell RA, Mak TW. Cholinergic control of Th17 cell pathogenicity in experimental autoimmune encephalomyelitis. Cell Death Differ 2023; 30:407-416. [PMID: 36528755 PMCID: PMC9950465 DOI: 10.1038/s41418-022-01092-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a mouse model of multiple sclerosis (MS) in which Th17 cells have a crucial but unclear function. Here we show that choline acetyltransferase (ChAT), which synthesizes acetylcholine (ACh), is a critical driver of pathogenicity in EAE. Mice with ChAT-deficient Th17 cells resist disease progression and show reduced brain-infiltrating immune cells. ChAT expression in Th17 cells is linked to strong TCR signaling, expression of the transcription factor Bhlhe40, and increased Il2, Il17, Il22, and Il23r mRNA levels. ChAT expression in Th17 cells is independent of IL21r signaling but dampened by TGFβ, implicating ChAT in controlling the dichotomous nature of Th17 cells. Our study establishes a cholinergic program in which ACh signaling primes chronic activation of Th17 cells, and thereby constitutes a pathogenic determinant of EAE. Our work may point to novel targets for therapeutic immunomodulation in MS.
Collapse
Affiliation(s)
- Robert Nechanitzky
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Duygu Nechanitzky
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Parameswaran Ramachandran
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Gordon S Duncan
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Chunxing Zheng
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Christoph Göbl
- Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Kyle T Gill
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Jillian Haight
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Andrew C Wakeham
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Bryan E Snow
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | | | - Milan Ganguly
- Histology Core, The Centre for Phenogenomics, Toronto, ON, Canada
| | - Zhibin Lu
- UHN Bioinformatics and HPC Core, Toronto, ON, Canada
| | - Mary E Saunders
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Tak W Mak
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada.
- Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
| |
Collapse
|
8
|
Liermann W, Tümmler LM, Kuhla B, Viergutz T, Hammon HM. Effects of rumen cannulation combined with different pre-weaning feeding intensities on the intestinal, splenic and thymic immune system in heifer calves several month after surgery. Front Immunol 2023; 14:1160935. [PMID: 37143684 PMCID: PMC10151785 DOI: 10.3389/fimmu.2023.1160935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Fistulation is a helpful procedure in animal nutritional research and also common practise in human medicine. However, there are indications that alterations in the upper gastrointestinal tract contribute to intestinal immune modulations. The present study aimed to investigate effects of a rumen cannulation in week 3 of life on the intestinal and tissue specific immune system of 34-week old heifers. Nutrition influences the development of the neonatal intestinal immune system to a high extent. Therefore, rumen cannulation was investigated in combination with different pre-weaning milk feeding intensities (20% (20MR) vs. 10% milk replacer feeding (10MR). Heifers of 20MR without rumen cannula (NRC) showed higher cluster of differentiation (CD)8+ T cell subsets in mesenteric lymph nodes (MSL) compared to heifers with rumen cannula (RC) and 10MRNRC heifers. CD4+ T cell subsets in jejunal intraepithelial lymphocytes (IELs) were higher in 10MRNRC heifers compared to 10MRRC heifers. CD4+ T cell subsets in ileal IELs were lower and CD21+ B cell subsets were higher in NRC heifers compared to RC heifers. CD8+ T cell subsets in spleen tended to be lower in 20MRNRC heifers compared to all other groups. Splenic CD21+ B cell subsets were higher in 20MRNRC heifers compared to RC heifers. Splenic toll like receptor (TLR) 6 expression was increased and IL4 expression tended to be increased in RC heifers than NRC heifers. Splenic TLR2, 3 and 10 gene expression was higher in 20MR compared to 10MR heifers. Jejunal prostaglandin endoperoxide synthase 2 expression was higher in RC heifers than NRC heifers, and MUC2 expression tended to increase in 20MR heifers compared to 10MR heifers. In conclusion, rumen cannulation modulated T and B cell subsets in the down streaming gastrointestinal tract and spleen. Pre-weaning feeding intensity seemed to affect intestinal mucin secretion and T and B cell subsets in MSL, spleen and thymus until several month later. Interestingly, in MSL, spleen and thymus the 10MR feeding regime evoked similar modulations of T and B cell subsets like rumen cannulation.
Collapse
Affiliation(s)
- Wendy Liermann
- Institute of Nutritional Physiology "Oskar Kellner", Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- *Correspondence: Wendy Liermann,
| | - Lisa-Maria Tümmler
- Institute of Nutritional Physiology "Oskar Kellner", Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Björn Kuhla
- Institute of Nutritional Physiology "Oskar Kellner", Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Torsten Viergutz
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Harald Michael Hammon
- Institute of Nutritional Physiology "Oskar Kellner", Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
9
|
Patel K, Peebles RS. Prostacyclin Regulation of Allergic Inflammation. Biomedicines 2022; 10:2862. [PMID: 36359381 PMCID: PMC9687206 DOI: 10.3390/biomedicines10112862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Prostacyclin is a metabolic product of the cyclooxygenase pathway that is constitutively expressed and can be induced during inflammatory conditions. While prostacyclin and its analogs have historically been considered effective vasodilators and used in treating pulmonary hypertension, prostacyclin has demonstrated potent anti-inflammatory effects in animal models of allergic airway inflammation. In vitro studies reveal that prostacyclin directly inhibits type 2 cytokine production from CD4+ Th2 cells and ILC2 and reduces the ability of dendritic cells to generate Th2 cytokine production from CD4+ T cells in an antigen-specific manner. Thus, there is strong evidence that prostacyclin may be an additional therapeutic target for treating allergic inflammation and asthma in human subjects.
Collapse
Affiliation(s)
- Kunj Patel
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-2650, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2650, USA
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-2650, USA
- United States Department of Veterans Affairs, Nashville, TN 37232-2650, USA
- T-1218 MCN, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232-2650, USA
| |
Collapse
|
10
|
Loureirin C and Xanthoceraside Attenuate Depression-Like Behaviors and Expression of Interleukin-17 in the Prefrontal Cortex Induced by Chronic Unpredictable Mild Stress in Mice. Neurochem Res 2022; 47:2880-2889. [DOI: 10.1007/s11064-022-03692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 10/16/2022]
|
11
|
Harding JN, Gross M, Patel V, Potter S, Cormier SA. Association between particulate matter containing EPFRs and neutrophilic asthma through AhR and Th17. Respir Res 2021; 22:275. [PMID: 34702270 PMCID: PMC8549224 DOI: 10.1186/s12931-021-01867-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/14/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Epidemiological data associate high levels of combustion-derived particulate matter (PM) with deleterious respiratory outcomes, but the mechanism underlying those outcomes remains elusive. It has been acknowledged by the World Health Organization that PM exposure contributes to more than 4.2 million all-cause mortalities worldwide each year. Current literature demonstrates that PM exacerbates respiratory diseases, impairs lung function, results in chronic respiratory illnesses, and is associated with increased mortality. The proposed mechanisms revolve around oxidative stress and inflammation promoting pulmonary physiological remodeling. However, our previous data found that PM is capable of inducing T helper cell 17 (Th17) immune responses via aryl hydrocarbon receptor (Ahr) activation, which was associated with neutrophilic invasion characteristic of steroid insensitive asthma. METHODS In the present study, we utilized a combination of microarray and single cell RNA sequencing data to analyze the immunological landscape in mouse lungs following acute exposure to combustion derived particulate matter. RESULTS We present data that suggest epithelial cells produce specific cytokines in the aryl hydrocarbon receptor (Ahr) pathway that inform dendritic cells to initiate the production of pathogenic T helper (eTh17) cells. Using single-cell RNA sequencing analysis, we observed that upon exposure epithelial cells acquire a transcriptomic profile indicative of increased Il-17 signaling, Ahr activation, Egfr signaling, and T cell receptor and co-stimulatory signaling pathways. Epithelial cells further showed, Ahr activation is brought on by Ahr/ARNT nuclear translocation and activation of tyrosine kinase c-src, Egfr, and subsequently Erk1/2 pathways. CONCLUSIONS Collectively, our data corroborates that PM initiates an eTh17 specific inflammatory response causing neutrophilic asthma through pathways in epithelial, dendritic, and T cells that promote eTh17 differentiation during initial PM exposure.
Collapse
Affiliation(s)
- Jeffrey N Harding
- Department of Biological Sciences, Louisiana State University and Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA
| | - Maureen Gross
- Department of Biological Sciences, Louisiana State University and Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA
| | - Vivek Patel
- Department of Biological Sciences, Louisiana State University and Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA
| | - Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University and Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
12
|
Baek SJ, Hammock BD, Hwang IK, Li Q, Moustaid-Moussa N, Park Y, Safe S, Suh N, Yi SS, Zeldin DC, Zhong Q, Bradbury JA, Edin ML, Graves JP, Jung HY, Jung YH, Kim MB, Kim W, Lee J, Li H, Moon JS, Yoo ID, Yue Y, Lee JY, Han HJ. Natural Products in the Prevention of Metabolic Diseases: Lessons Learned from the 20th KAST Frontier Scientists Workshop. Nutrients 2021; 13:1881. [PMID: 34072678 PMCID: PMC8227583 DOI: 10.3390/nu13061881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022] Open
Abstract
The incidence of metabolic and chronic diseases including cancer, obesity, inflammation-related diseases sharply increased in the 21st century. Major underlying causes for these diseases are inflammation and oxidative stress. Accordingly, natural products and their bioactive components are obvious therapeutic agents for these diseases, given their antioxidant and anti-inflammatory properties. Research in this area has been significantly expanded to include chemical identification of these compounds using advanced analytical techniques, determining their mechanism of action, food fortification and supplement development, and enhancing their bioavailability and bioactivity using nanotechnology. These timely topics were discussed at the 20th Frontier Scientists Workshop sponsored by the Korean Academy of Science and Technology, held at the University of Hawaii at Manoa on 23 November 2019. Scientists from South Korea and the U.S. shared their recent research under the overarching theme of Bioactive Compounds, Nanoparticles, and Disease Prevention. This review summarizes presentations at the workshop to provide current knowledge of the role of natural products in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Seung J. Baek
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Bruce D. Hammock
- Department of Entomology, University of California, Davis, CA 95616, USA;
| | - In-Koo Hwang
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Qingxiao Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences & Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Y.P.); (Y.Y.)
| | - Stephen Safe
- Department of Biochemistry & Biophysics, Texas A & M University, College Station, TX 77843, USA;
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
| | - Sun-Shin Yi
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Darryl C. Zeldin
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Qixin Zhong
- Department of Food Sciences, University of Tennessee, Knoxville, TN 37996, USA;
| | - Jennifer Alyce Bradbury
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Matthew L. Edin
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Joan P. Graves
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Hyo-Young Jung
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Young-Hyun Jung
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Woosuk Kim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Jaehak Lee
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Hong Li
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Jong-Seok Moon
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Ik-Dong Yoo
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Y.P.); (Y.Y.)
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Ho-Jae Han
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| |
Collapse
|
13
|
Norlander AE, Bloodworth MH, Toki S, Zhang J, Zhou W, Boyd K, Polosukhin VV, Cephus JY, Ceneviva ZJ, Gandhi VD, Chowdhury NU, Charbonnier LM, Rogers LM, Wang J, Aronoff DM, Bastarache L, Newcomb DC, Chatila TA, Peebles RS. Prostaglandin I2 signaling licenses Treg suppressive function and prevents pathogenic reprogramming. J Clin Invest 2021; 131:140690. [PMID: 33529171 PMCID: PMC8011897 DOI: 10.1172/jci140690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/27/2021] [Indexed: 12/29/2022] Open
Abstract
Tregs restrain both the innate and adaptive immune systems to maintain homeostasis. Allergic airway inflammation, characterized by a Th2 response that results from a breakdown of tolerance to innocuous environmental antigens, is negatively regulated by Tregs. We previously reported that prostaglandin I2 (PGI2) promoted immune tolerance in models of allergic inflammation; however, the effect of PGI2 on Treg function was not investigated. Tregs from mice deficient in the PGI2 receptor IP (IP KO) had impaired suppressive capabilities during allergic airway inflammatory responses compared with mice in which PGI2 signaling was intact. IP KO Tregs had significantly enhanced expression of immunoglobulin-like transcript 3 (ILT3) compared with WT Tregs, which may contribute to the impairment of the IP KO Treg's ability to suppress Th2 responses. Using fate-mapping mice, we reported that PGI2 signaling prevents Treg reprogramming toward a pathogenic phenotype. PGI2 analogs promoted the differentiation of naive T cells to Tregs in both mice and humans via repression of β-catenin signaling. Finally, a missense variant in IP in humans was strongly associated with chronic obstructive asthma. Together, these data support that PGI2 signaling licenses Treg suppressive function and that PGI2 is a therapeutic target for enhancing Treg function.
Collapse
Affiliation(s)
| | | | - Shinji Toki
- Division of Allergy, Pulmonary, and Critical Care Medicine and
| | - Jian Zhang
- Division of Allergy, Pulmonary, and Critical Care Medicine and
| | - Weisong Zhou
- Division of Allergy, Pulmonary, and Critical Care Medicine and
| | - Kelli Boyd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | - Vivek D. Gandhi
- Division of Allergy, Pulmonary, and Critical Care Medicine and
| | - Nowrin U. Chowdhury
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Louis-Marie Charbonnier
- Division of Immunology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Janey Wang
- Department of Biomedical Informatics, and
| | - David M. Aronoff
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Infectious Diseases, Department of Medicine
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | | | - Dawn C. Newcomb
- Division of Allergy, Pulmonary, and Critical Care Medicine and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Talal A. Chatila
- Division of Immunology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- United States Department of Veterans Affairs, Nashville, Tennessee, USA
| |
Collapse
|
14
|
Kim SH, Hong JH, Yang WK, Kim HJ, An HJ, Lee YC. Cryptotympana pustulata Extract and Its Main Active Component, Oleic Acid, Inhibit Ovalbumin-Induced Allergic Airway Inflammation through Inhibition of Th2/GATA-3 and Interleukin-17/RORγt Signaling Pathways in Asthmatic Mice. Molecules 2021; 26:molecules26071854. [PMID: 33806085 PMCID: PMC8037444 DOI: 10.3390/molecules26071854] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
Cicadae Periostracum (CP), derived from the slough of Cryptotympana pustulata, has been used as traditional medicine in Korea and China because of its diaphoretic, antipyretic, anti-inflammatory, antioxidant, and antianaphylactic activities. The major bioactive compounds include oleic acid (OA), palmitic acid, and linoleic acid. However, the precise therapeutic mechanisms underlying its action in asthma remain unclear. The objective of this study was to determine the antiasthmatic effects of CP in an ovalbumin (OVA)-induced asthmatic mouse model. CP and OA inhibited the inflammatory cell infiltration, airway hyperresponsiveness (AHR), and production of interleukin (IL)7 and Th2 cytokines (IL-5) in the bronchoalveolar lavage fluid and OVA-specific imunoglobin E (IgE) in the serum. The gene expression of IL-5, IL-13, CCR3, MUC5AC, and COX-2 was attenuated in lung tissues. CP and OA might inhibit the nuclear translocation of GATA-binding protein 3 (GATA-3) and retinoic acid receptor-related orphan receptor γt (RORγt) via the upregulation of forkhead box p3 (Foxp3), thereby preventing the activation of GATA-3 and RORγt. In the in vitro experiment, a similar result was observed for Th2 and GATA-3. These results suggest that CP has the potential for the treatment of asthma via the inhibition of the GATA-3/Th2 and IL-17/RORγt signaling pathways.
Collapse
Affiliation(s)
- Seung-Hyung Kim
- Institute of Traditional Medicine & Bioscience, Daejeon University, Daejeon 34520, Korea; (S.-H.K.); (W.-K.Y.)
| | - Jung-Hee Hong
- Department of Herbology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju 26339, Korea;
| | - Won-Kyung Yang
- Institute of Traditional Medicine & Bioscience, Daejeon University, Daejeon 34520, Korea; (S.-H.K.); (W.-K.Y.)
| | - Hyo-Jung Kim
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju 26339, Korea; (H.-J.K.); (H.-J.A.)
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju 26339, Korea; (H.-J.K.); (H.-J.A.)
| | - Young-Cheol Lee
- Department of Herbology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju 26339, Korea;
- Correspondence: ; Tel.: +82-33-730-0672; Fax: +82-33-730-0653
| |
Collapse
|
15
|
Zhang Y, Wei Z, Dong H, Zhou J, Yuan J, Ni B, Wu Y, Han C, Tian Y. Regulation of mRNA stability by RBPs and noncoding RNAs contributing to the pathogenicity of Th17 cells. RNA Biol 2020; 18:647-656. [PMID: 33302787 DOI: 10.1080/15476286.2020.1862567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Th17 cells remain one of the most important subsets of T cells in numerous autoimmune and chronic inflammatory diseases. Posttranscriptional regulation (PTR), especially mRNA stability, has recently emerged as an important mechanism that controls the fate of Th17 cells. This review summarizes the current knowledge on RNA-binding proteins (RBPs), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) that induce mRNA stability changes and their roles in mediating the differentiation, proliferation, function, and migration of Th17 cells. In addition, we summarize the role of RNA modifications and nonsense-mediated mRNA decay (NMD) in Th17 cells. Ongoing research will help to identify practical applications for the regulation of mRNA stability and provide potential targets to prevent and treat Th17-related autoimmune diseases.
Collapse
Affiliation(s)
- Yiwei Zhang
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China.,Department of Orthopedics, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Zhiyuan Wei
- Department of Orthopedics, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Hui Dong
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jian Zhou
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jizhao Yuan
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Chao Han
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yi Tian
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| |
Collapse
|
16
|
Assessing the Anti-inflammatory Mechanism of Reduning Injection by Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6134098. [PMID: 33381562 PMCID: PMC7758122 DOI: 10.1155/2020/6134098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/30/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022]
Abstract
Reduning Injection (RDNI) is a traditional Chinese medicine formula indicated for the treatment of inflammatory diseases. However, the molecular mechanism of RDNI is unclear. The information of RDNI ingredients was collected from previous studies. Targets of them were obtained by data mining and molecular docking. The information of targets and related pathways was collected in UniProt and KEGG. Networks were constructed and analyzed by Cytoscape to identify key compounds, targets, and pathways. Data mining and molecular docking identified 11 compounds, 84 targets, and 201 pathways that are related to the anti-inflammatory activity of RDNI. Network analysis identified two key compounds (caffeic acid and ferulic acid), five key targets (Bcl-2, eNOS, PTGS2, PPARA, and MMPs), and four key pathways (estrogen signaling pathway, PI3K-AKT signaling pathway, cGMP-PKG signaling pathway, and calcium signaling pathway) which would play critical roles in the treatment of inflammatory diseases by RDNI. The cross-talks among pathways provided a deeper understanding of anti-inflammatory effect of RDNI. RDNI is capable of regulating multiple biological processes and treating inflammation at a systems level. Network pharmacology is a practical approach to explore the therapeutic mechanism of TCM for complex disease.
Collapse
|
17
|
IL-17A as a Potential Therapeutic Target for Patients on Peritoneal Dialysis. Biomolecules 2020; 10:biom10101361. [PMID: 32987705 PMCID: PMC7598617 DOI: 10.3390/biom10101361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is a health problem reaching epidemic proportions. There is no cure for CKD, and patients may progress to end-stage renal disease (ESRD). Peritoneal dialysis (PD) is a current replacement therapy option for ESRD patients until renal transplantation can be achieved. One important problem in long-term PD patients is peritoneal membrane failure. The mechanisms involved in peritoneal damage include activation of the inflammatory and immune responses, associated with submesothelial immune infiltrates, angiogenesis, loss of the mesothelial layer due to cell death and mesothelial to mesenchymal transition, and collagen accumulation in the submesothelial compact zone. These processes lead to fibrosis and loss of peritoneal membrane function. Peritoneal inflammation and membrane failure are strongly associated with additional problems in PD patients, mainly with a very high risk of cardiovascular disease. Among the inflammatory mediators involved in peritoneal damage, cytokine IL-17A has recently been proposed as a potential therapeutic target for chronic inflammatory diseases, including CKD. Although IL-17A is the hallmark cytokine of Th17 immune cells, many other cells can also produce or secrete IL-17A. In the peritoneum of PD patients, IL-17A-secreting cells comprise Th17 cells, γδ T cells, mast cells, and neutrophils. Experimental studies demonstrated that IL-17A blockade ameliorated peritoneal damage caused by exposure to PD fluids. This article provides a comprehensive review of recent advances on the role of IL-17A in peritoneal membrane injury during PD and other PD-associated complications.
Collapse
|
18
|
Han C, Yang J, Song P, Wang X, Shi W. Effects of Salvia miltiorrhiza Polysaccharides on Lipopolysaccharide-Induced Inflammatory Factor Release in RAW264.7 Cells. J Interferon Cytokine Res 2019; 38:29-37. [PMID: 29328882 DOI: 10.1089/jir.2017.0087] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study investigated the anti-inflammatory effects and possible underlying mechanisms of Salvia miltiorrhiza polysaccharides (SMP) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The cytotoxicity of SMP was detected by the MTT method. The morphological change of RAW264.7 was observed by Diff-Quik staining. Enzyme-linked immunosorbent assay was used to evaluate the production of cytokines in LPS-induced RAW264.7 cells. The nitric oxide (NO) kit assay detected the NO release from LPS-induced RAW264.7 cells. Real-time polymerase chain reaction was used to detect the transcriptions of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), inducible NO synthase (iNOS), and cyclooxygenase (COX)-2 in LPS-induced RAW264.7 cells. The protein expression of nuclear NF-κB was measured by Western blot. The results showed that the safe medication range of SMP was less than 3 mg/mL. Compared with the LPS model group, SMP (2, 1, and 0.5 mg/mL) improved the degree of cell deformation and reduced the amount of pseudopodia, and statistically reduced the secretions of cytokines in cells induced by LPS (P < 0.01) at different time points. SMP significantly inhibited the mRNA transcriptions of TNF-α, IL-6, iNOS, and COX-2 and the protein expressions of NF-κB, p-p65, and p-IκBa. In conclusion, this study preliminarily proved the protective effect of SMP on LPS-induced RAW264.7 macrophage. Its mechanism might be related to inhibition of NF-κB signal pathway and the gene expressions and secretion of cytokines.
Collapse
Affiliation(s)
- Chao Han
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei , Baoding, China
| | - Jinkai Yang
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei , Baoding, China
| | - Pengyan Song
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei , Baoding, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei , Baoding, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei , Baoding, China
| |
Collapse
|
19
|
Dileepan M, Rastle-Simpson S, Greenberg Y, Wijesinghe DS, Kumar NG, Yang J, Hwang SH, Hammock BD, Sriramarao P, Rao SP. Effect Of Dual sEH/COX-2 Inhibition on Allergen-Induced Airway Inflammation. Front Pharmacol 2019; 10:1118. [PMID: 31611798 PMCID: PMC6777353 DOI: 10.3389/fphar.2019.01118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022] Open
Abstract
Arachidonic acid metabolites resulting from the cyclooxygenase (COX), lipoxygenase, and cytochrome P450 oxidase enzymatic pathways play pro- and anti-inflammatory roles in allergic airway inflammation (AAI) and asthma. Expression of COX-2 and soluble epoxide hydrolase (sEH) are elevated in allergic airways and their enzymatic products (e.g., prostaglandins and diols of epoxyeicosatrienoic acids, respectively) have been shown to participate in the pathogenesis of AAI. Here, we evaluated the outcome of inhibiting the COX-2 and sEH enzymatic pathways with a novel dual inhibitor, PTUPB, in A. alternata-induced AAI. Allergen-challenged mice were administered with 10 or 30 mg/kg of PTUPB, celecoxib (selective COX-2 inhibitor), t-TUCB (selective sEH inhibitor) or vehicle daily by gavage and evaluated for various features of AAI. PTUPB and t-TUCB at 30 mg/kg, but not celecoxib, inhibited eosinophilic infiltration and significantly increased levels of anti-inflammatory EETs in the lung tissue of allergen-challenged mice. t-TUCB significantly inhibited allergen-induced IL-4 and IL-13, while a less pronounced reduction was noted with PTUPB and celecoxib. Additionally, t-TUCB markedly inhibited eotaxin-2, an eosinophil-specific chemokine, which was only marginally reduced by PTUPB and remained elevated in celecoxib-treated mice. PTUPB or t-TUCB administration reversed allergen-induced reduction in levels of various lipid mediators in the lungs, with only a minimal effect noted with celecoxib. Despite the anti-inflammatory effects, PTUPB or t-TUCB did not reduce allergen-induced airway hyperresponsiveness (AHR). However, development of structural changes in the allergic airways, such as mucus hypersecretion and smooth muscle hypertrophy, was significantly inhibited by both inhibitors. Celecoxib, on the other hand, inhibited only airway smooth muscle hypertrophy, but not mucus hypersecretion. In conclusion, dual inhibition of COX-2 and sEH offers no additional advantage relative to sEH inhibition alone in attenuating various features associated with A. alternata-induced AAI, while COX-2 inhibition exerts only moderate or no effect on several of these features. Dual sEH/COX-2 inhibition may be useful in treating conditions where eosinophilic inflammation co-exists with pain-associated inflammation.
Collapse
Affiliation(s)
- Mythili Dileepan
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Stephanie Rastle-Simpson
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Yana Greenberg
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Dayanjan S Wijesinghe
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Naren Gajenthra Kumar
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Jun Yang
- Department of Entomology, Nematology and Comprehensive Cancer Center, University of California, Davis, CA, United States
| | - Sung Hee Hwang
- Department of Entomology, Nematology and Comprehensive Cancer Center, University of California, Davis, CA, United States
| | - Bruce D Hammock
- Department of Entomology, Nematology and Comprehensive Cancer Center, University of California, Davis, CA, United States
| | - P Sriramarao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Savita P Rao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
20
|
Taniguchi M, Mitsui C, Hayashi H, Ono E, Kajiwara K, Mita H, Watai K, Kamide Y, Fukutomi Y, Sekiya K, Higashi N. Aspirin-exacerbated respiratory disease (AERD): Current understanding of AERD. Allergol Int 2019; 68:289-295. [PMID: 31235242 DOI: 10.1016/j.alit.2019.05.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022] Open
Abstract
The characteristics in AERD are severe adult-onset asthma, eosinophilic rhinosinusitis with nasal polyposis, and CysLT overproduction. The cause of AERD have remained unclear, however the decrease in the production of PGE2 caused by the reduction in COX-2 activity is considered to main pathological mechanism of AERD. The mast cell activation and the interaction between platelets and granulocytes are lead to the CysLT overproduction and severe eosinophilic inflammation. The ongoing activation of mast cells is important key pathogenesis in not only stable AERD but exacerbated AERD by aspirin and NSAIDs. In recent years, type 2 inflammation caused by ILC2 activation in patients with AERD have been attracting attention. Omalizumab is effective option for AERD via suppression of mast cell activation and CysLT overproduction. Dupilumab improves sinus symptoms especially in patients with AERD. In near future, anti-platelet drug, CRTH2 antagonist, and anti-TSLP antibody may be useful candidates of therapeutic options in patients with AERD.
Collapse
Affiliation(s)
- Masami Taniguchi
- National Hospital Organization Sagamihara National Hospital, Clinical Research Center, Kanagawa, Japan.
| | - Chihiro Mitsui
- National Hospital Organization Sagamihara National Hospital, Clinical Research Center, Kanagawa, Japan
| | - Hiroaki Hayashi
- National Hospital Organization Sagamihara National Hospital, Clinical Research Center, Kanagawa, Japan
| | - Emiko Ono
- National Hospital Organization Sagamihara National Hospital, Clinical Research Center, Kanagawa, Japan
| | - Keiichi Kajiwara
- National Hospital Organization Sagamihara National Hospital, Clinical Research Center, Kanagawa, Japan
| | - Haruhisa Mita
- National Hospital Organization Sagamihara National Hospital, Clinical Research Center, Kanagawa, Japan
| | - Kentaro Watai
- National Hospital Organization Sagamihara National Hospital, Clinical Research Center, Kanagawa, Japan
| | - Yosuke Kamide
- National Hospital Organization Sagamihara National Hospital, Clinical Research Center, Kanagawa, Japan
| | - Yuma Fukutomi
- National Hospital Organization Sagamihara National Hospital, Clinical Research Center, Kanagawa, Japan
| | - Kiyoshi Sekiya
- National Hospital Organization Sagamihara National Hospital, Clinical Research Center, Kanagawa, Japan
| | - Noritaka Higashi
- National Hospital Organization Sagamihara National Hospital, Clinical Research Center, Kanagawa, Japan
| |
Collapse
|
21
|
Sonoda Y, Yamamura K, Ishii K, Ohkubo K, Ihara K, Sakai Y, Ohga S. A Child with Prostaglandin I 2-associated Thyrotoxicosis: Case Report. J Clin Res Pediatr Endocrinol 2019; 11:207-210. [PMID: 30325337 PMCID: PMC6571540 DOI: 10.4274/jcrpe.galenos.2018.2018.0169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Prostaglandin I2 (PGI2) causes hyperthyroidism, a critical complication in patients with pulmonary arterial hypertension (PAH). However, it remains unknown whether PGI2 may have unfavorable effects on thyroid function in children with congenital portosystemic venous shunt syndrome (CPSVS). We present a boy with CPSVS who developed PAH at seven years of age. During ongoing PGI2 therapy, he experienced thyrotoxicosis at 17 years of age. The literature review showed that the reported 12 patients with PAH (median 11 years of age) developed hyperthyroidism during between one and 11 years of PGI2 treatment. Only one patient survived the acute PAH crisis due to hyperthyroidism. These data provide evidence that prophylactic intervention for hyperthyroidism is indicated for children with CPSVS during PGI2 treatment.
Collapse
Affiliation(s)
- Yuri Sonoda
- Kyushu University Graduate School of Medical Sciences, Department of Pediatrics, Fukuoka, Japan
| | - Kenichiro Yamamura
- Kyushu University Graduate School of Medical Sciences, Department of Pediatrics, Fukuoka, Japan,* Address for Correspondence: Kyushu University Graduate School of Medical Sciences, Department of Pediatrics, Fukuoka, Japan Phone: +81-92-642-5421 E-mail:
| | - Kanako Ishii
- Kyushu University Graduate School of Medical Sciences, Department of Pediatrics, Fukuoka, Japan
| | - Kazuhiro Ohkubo
- Kyushu University Graduate School of Medical Sciences, Department of Pediatrics, Fukuoka, Japan
| | - Kenji Ihara
- Kyushu University Graduate School of Medical Sciences, Department of Pediatrics, Fukuoka, Japan,Oita University Faculty of Medicine, Department of Pediatrics, Oita, Japan
| | - Yasunari Sakai
- Kyushu University Graduate School of Medical Sciences, Department of Pediatrics, Fukuoka, Japan
| | - Shouichi Ohga
- Kyushu University Graduate School of Medical Sciences, Department of Pediatrics, Fukuoka, Japan
| |
Collapse
|
22
|
Evasovic JM, Singer CA. Regulation of IL-17A and implications for TGF-β1 comodulation of airway smooth muscle remodeling in severe asthma. Am J Physiol Lung Cell Mol Physiol 2019; 316:L843-L868. [PMID: 30810068 PMCID: PMC6589583 DOI: 10.1152/ajplung.00416.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/04/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Severe asthma develops as a result of heightened, persistent symptoms that generally coincide with pronounced neutrophilic airway inflammation. In individuals with severe asthma, symptoms are poorly controlled by high-dose inhaled glucocorticoids and often lead to elevated morbidity and mortality rates that underscore the necessity for novel drug target identification that overcomes limitations in disease management. Many incidences of severe asthma are mechanistically associated with T helper 17 (TH17) cell-derived cytokines and immune factors that mediate neutrophilic influx to the airways. TH17-secreted interleukin-17A (IL-17A) is an independent risk factor for severe asthma that impacts airway smooth muscle (ASM) remodeling. TH17-derived cytokines and diverse immune mediators further interact with structural cells of the airway to induce pathophysiological processes that impact ASM functionality. Transforming growth factor-β1 (TGF-β1) is a pivotal mediator involved in airway remodeling that correlates with enhanced TH17 activity in individuals with severe asthma and is essential to TH17 differentiation and IL-17A production. IL-17A can also reciprocally enhance activation of TGF-β1 signaling pathways, whereas combined TH1/TH17 or TH2/TH17 immune responses may additively impact asthma severity. This review seeks to provide a comprehensive summary of cytokine-driven T cell fate determination and TH17-mediated airway inflammation. It will further review the evidence demonstrating the extent to which IL-17A interacts with various immune factors, specifically TGF-β1, to contribute to ASM remodeling and altered function in TH17-driven endotypes of severe asthma.
Collapse
Affiliation(s)
- Jon M Evasovic
- Department of Pharmacology, School of Medicine, University of Nevada , Reno, Nevada
| | - Cherie A Singer
- Department of Pharmacology, School of Medicine, University of Nevada , Reno, Nevada
| |
Collapse
|
23
|
Shah NM, Lai PF, Imami N, Johnson MR. Progesterone-Related Immune Modulation of Pregnancy and Labor. Front Endocrinol (Lausanne) 2019; 10:198. [PMID: 30984115 PMCID: PMC6449726 DOI: 10.3389/fendo.2019.00198] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Pregnancy involves a complex interplay between maternal neuroendocrine and immunological systems in order to establish and sustain a growing fetus. It is thought that the uterus at pregnancy transitions from quiescent to laboring state in response to interactions between maternal and fetal systems at least partly via altered neuroendocrine signaling. Progesterone (P4) is a vital hormone in maternal reproductive tissues and immune cells during pregnancy. As such, P4 is widely used in clinical interventions to improve the chance of embryo implantation, as well as reduce the risk of miscarriage and premature labor. Here we review research to date that focus on the pathways through which P4 mediates its actions on both the maternal reproductive and immune system. We will dissect the role of P4 as a modulator of inflammation, both systemic and intrinsic to the uterus, during human pregnancy and labor.
Collapse
Affiliation(s)
- Nishel M. Shah
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Pei F. Lai
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Nesrina Imami
- Department of Medicine, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Mark R. Johnson
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| |
Collapse
|
24
|
Yao C, Narumiya S. Prostaglandin-cytokine crosstalk in chronic inflammation. Br J Pharmacol 2019; 176:337-354. [PMID: 30381825 PMCID: PMC6329627 DOI: 10.1111/bph.14530] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/13/2018] [Accepted: 10/17/2018] [Indexed: 12/28/2022] Open
Abstract
Chronic inflammation underlies various debilitating disorders including autoimmune, neurodegenerative, vascular and metabolic diseases as well as cancer, where aberrant activation of the innate and acquired immune systems is frequently seen. Since non-steroidal anti-inflammatory drugs exert their effects by inhibiting COX and suppressing PG biosynthesis, PGs have been traditionally thought to function mostly as mediators of acute inflammation. However, an inducible COX isoform, COX-2, is often highly expressed in tissues of the chronic disorders, suggesting an as yet unidentified role of PGs in chronic inflammation. Recent studies have shown that in addition to their short-lived actions in acute inflammation, PGs crosstalk with cytokines and amplify the cytokine actions on various types of inflammatory cells and drive pathogenic conversion of these cells by critically regulating their gene expression. One mode of such PG-mediated amplification is to induce the expression of relevant cytokine receptors, which is typically observed in Th1 cell differentiation and Th17 cell expansion, events leading to chronic immune inflammation. Another mode of amplification is cooperation of PGs with cytokines at the transcription level. Typically, PGs and cytokines synergistically activate NF-κB to induce the expression of inflammation-related genes, one being COX-2 itself, which makes PG-mediated positive feedback loops. This signalling consequently enhances the expression of various NF-κB-induced genes including chemokines to macrophages and neutrophils, which enables sustained infiltration of these cells and further amplifies chronic inflammation. In addition, PGs are also involved in tissue remodelling such as fibrosis and angiogenesis. In this article, we review these findings and discuss their relevance to human diseases.
Collapse
Affiliation(s)
- Chengcan Yao
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Shuh Narumiya
- Alliance Laboratory for Advanced Medical Research and Department of Drug Discovery Medicine, Medical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| |
Collapse
|
25
|
Abstract
Prostaglandins are synthesized through the metabolism of arachidonic acid via the cyclooxygenase pathway. There are five primary prostaglandins, PGD2, PGE2, PGF2, PGI2, and thromboxane B2, that all signal through distinct seven transmembrane, G-protein coupled receptors. The receptors through which the prostaglandins signal determines their immunologic or physiologic effects. For instance, the same prostaglandin may have opposing properties, dependent upon the signaling pathways activated. In this article, we will detail how inhibition of cyclooxygenase metabolism and regulation of prostaglandin signaling regulates allergic airway inflammation and asthma physiology. Possible prostaglandin therapeutic targets for allergic lung inflammation and asthma will also be reviewed, as informed by human studies, basic science, and animal models.
Collapse
Affiliation(s)
- R Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
26
|
Dey I, Bishayi B. Role of Th17 and Treg cells in septic arthritis and the impact of the Th17/Treg -derived cytokines in the pathogenesis of S. aureus induced septic arthritis in mice. Microb Pathog 2017; 113:248-264. [PMID: 29074430 DOI: 10.1016/j.micpath.2017.10.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/10/2017] [Accepted: 10/20/2017] [Indexed: 12/18/2022]
Abstract
Intravenous inoculation of Swiss mice with S. aureus leads to severe synovial joint tissue swelling along with prominent T lymphocyte infiltrate with associated inflammation in synovial tissue. Cytokines released from macrophages such as TNF-α, IL-1β and IL-6 the main players that precede cartilage and bone destruction during septic arthritis (SA) followed by osteoclast differentiation and bone resorption. CD4+ naïve T cells upon cytokine driven activation, differentiate into lineages of helper (Th) and regulatory T cells (Treg) including inflammatory Th17 cell lineage. Acting as counterbalance, Tregs protect the host by releasing anti-inflammatory IL-10. A disturbed balance between Th17 and Treg cell development skews the pathways towards Th17 lineage, but how it actually induces SA is still unexplored. Therefore, this study has been attempted to demonstrate the Th17/Treg ratio in synovial tissue, spleen and peripheral blood by FACS and their derived cytokines from serum of arthritic mice. Here, we reported that the ratios of Th17/Treg as well as their related cytokine levels were increased at 3 days post-infection which was decreased during 9 DPI but heightened again at 15DPI resulting in persistence of the disease, though decreased again at 30 DPI even in animals with increased dose of infection. Bacterial colonies were present in synovial joints at 15 DPI in animals with increased infection but found to be absent at 30 DPI. Maintaining Th17/Treg balance by neutralizing functionally active Th17 and their related cytokines or adoptive transfer of fully active Tregs and/or their related cytokines may lead to a novel therapeutic strategy for combating Staphylococcal arthritis.
Collapse
Affiliation(s)
- Ipsita Dey
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, West Bengal, India.
| |
Collapse
|
27
|
Martin Alonso A, Fainardi V, Saglani S. Severe therapy resistant asthma in children: translational approaches to uncover sub-phenotypes. Expert Rev Respir Med 2017; 11:867-874. [PMID: 28826280 DOI: 10.1080/17476348.2017.1368391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Paediatric severe therapy resistant asthma (STRA) affects a very small proportion of all children with asthma, but results in significant morbidity, has a high risk of mortality and utilises approximately half of all healthcare resources for childhood asthma. children with STRA need add-on 'beyond guidelines' therapies because of poor control despite maximal conventional treatments and optimisation of basic asthma management. however, STRA is heterogeneous with marked phenotypic variation between patients and mechanisms from adult severe asthma cannot be extrapolated to children. Areas covered: This review will cover our current knowledge of paediatric STRA pathophysiology, with examples of translational approaches that have been used to define sub-phenotypes including; 1. pre-clinical age-appropriate models using clinically relevant allergens, 2. in vitro techniques incorporating complex co-cultures of structural and inflammatory cells, and 3. techniques that allow detailed cellular immunophenotyping of small airway samples will be discussed. Studies using these approaches that have demonstrated the importance of the innate mediator IL-33 and vitamin D deficiency in severe steroid resistant disease will also be discussed. Expert commentary: These experimental approaches allow investigation of age and disease specific molecular pathways and the development of personalised therapies that can be stratified and targeted to sub-phenotypes of paediatric STRA.
Collapse
Affiliation(s)
- Aldara Martin Alonso
- a Inflammation, Repair and Development , NHLI, Imperial College London , London , UK.,b Department of Respiratory Paediatrics , Royal Brompton Hospital , London , UK
| | - Valentina Fainardi
- a Inflammation, Repair and Development , NHLI, Imperial College London , London , UK.,b Department of Respiratory Paediatrics , Royal Brompton Hospital , London , UK
| | - Sejal Saglani
- a Inflammation, Repair and Development , NHLI, Imperial College London , London , UK.,b Department of Respiratory Paediatrics , Royal Brompton Hospital , London , UK
| |
Collapse
|
28
|
Majchrzak K, Nelson MH, Bowers JS, Bailey SR, Wyatt MM, Wrangle JM, Rubinstein MP, Varela JC, Li Z, Himes RA, Chan SS, Paulos CM. β-catenin and PI3Kδ inhibition expands precursor Th17 cells with heightened stemness and antitumor activity. JCI Insight 2017; 2:90547. [PMID: 28422756 PMCID: PMC5396523 DOI: 10.1172/jci.insight.90547] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 03/14/2017] [Indexed: 12/30/2022] Open
Abstract
ICOS costimulation generates Th17 cells with durable memory responses to tumor. Herein, we found that ICOS induces PI3K/p110δ/Akt and Wnt/β-catenin pathways in Th17 cells. Coinhibiting PI3Kδ and β-catenin altered the biological fate of Th17 cells. Th17 cells inhibited of both pathways expressed less RORγt, which, in turn, reduced their ability to secrete IL-17. Unexpectedly, these cells were more effective (than uninhibited cells) at regressing tumor when infused into mice, leading to long-term curative responses. PI3Kδ inhibition expanded precursor Th17 cells with a central memory phenotype that expressed nominal regulatory properties (low FoxP3), while β-catenin inhibition enhanced Th17 multifunctionality in vivo. Remarkably, upon TCR restimulation, RORγt and IL-17 rebounded in Th17 cells treated with PI3Kδ and β-catenin inhibitors. Moreover, these cells regained β-catenin, Tcf7, and Akt expression, licensing them to secrete heightened IL-2, persist, and eradicate solid tumors without help from endogenous NK and CD8 T cells. This finding shines a light on ways to repurpose FDA-approved drugs to augment T cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Kinga Majchrzak
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
- Department of Surgery
- Department of Dermatology and Dermatologic Surgery, and
| | - Michelle H. Nelson
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Surgery
- Department of Dermatology and Dermatologic Surgery, and
| | - Jacob S. Bowers
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Surgery
- Department of Dermatology and Dermatologic Surgery, and
| | - Stefanie R. Bailey
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Surgery
- Department of Dermatology and Dermatologic Surgery, and
| | - Megan M. Wyatt
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Surgery
- Department of Dermatology and Dermatologic Surgery, and
| | - John M. Wrangle
- Department of Hematology and Oncology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mark P. Rubinstein
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Surgery
| | - Juan C. Varela
- Department of Hematology and Oncology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Zihai Li
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Richard A. Himes
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, South Carolina, USA
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
- Neuroene Therapeutics, Mount Pleasant, South Carolina, USA
| | - Sherine S.L. Chan
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
- Neuroene Therapeutics, Mount Pleasant, South Carolina, USA
| | - Chrystal M. Paulos
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Surgery
- Department of Dermatology and Dermatologic Surgery, and
| |
Collapse
|
29
|
Zhou W, Zhang J, Goleniewska K, Dulek DE, Toki S, Newcomb DC, Cephus JY, Collins RD, Wu P, Boothby MR, Peebles RS. Prostaglandin I2 Suppresses Proinflammatory Chemokine Expression, CD4 T Cell Activation, and STAT6-Independent Allergic Lung Inflammation. THE JOURNAL OF IMMUNOLOGY 2016; 197:1577-86. [PMID: 27456482 DOI: 10.4049/jimmunol.1501063] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/20/2016] [Indexed: 12/12/2022]
Abstract
Allergic airway diseases are immune disorders associated with heightened type 2 immune responses and IL-5 and IL-13 production at the site of inflammation. We have previously reported that cyclooxygenase (COX) inhibition by indomethacin augmented allergic airway inflammation in a STAT6-independent manner. However, the key COX product(s) responsible for restraining indomethacin-mediated STAT6-independent allergic inflammation is unknown. In this study, using the mouse model of OVA-induced allergic airway inflammation, we identified that PGI2 receptor (IP) signaling was critical for indomethacin-induced, STAT6-independent proallergic effects. We demonstrated that IP deficiency increased inflammatory cell infiltration, eosinophilia, and IL-5 and IL-13 expression in the lung in a STAT6-independent manner. The augmented STAT6-independent allergic inflammation correlated with enhanced primary immune responses to allergic sensitization and elevated production of multiple inflammatory chemokines (CCL11, CCL17, CCL22, and CXCL12) in the lung after allergen challenge. We also showed that the PGI2 analogue cicaprost inhibited CD4 T cell proliferation and IL-5 and IL-13 expression in vitro, and IP deficiency diminished the stimulatory effect of indomethacin on STAT6-independent IL-5 and IL-13 responses in vivo. The inhibitory effects of PGI2 and the IP signaling pathway on CD4 T cell activation, inflammatory chemokine production, and allergic sensitization and airway inflammation suggest that PGI2 and its analogue iloprost, both Food and Drug Administration-approved drugs, may be useful in treating allergic diseases and asthma. In addition, inhibiting PGI2 signaling by drugs that either block PGI2 production or restrain IP signaling may augment STAT6-independent pathways of allergic inflammation.
Collapse
Affiliation(s)
- Weisong Zhou
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Jian Zhang
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Kasia Goleniewska
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Daniel E Dulek
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Shinji Toki
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Dawn C Newcomb
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Jacqueline Y Cephus
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Robert D Collins
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Pingsheng Wu
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Mark R Boothby
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - R Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
30
|
Bakema JE, Tuk CW, van Vliet SJ, Bruijns SC, Vos JB, Letsiou S, Dijkstra CD, van Kooyk Y, Brenkman AB, van Egmond M. Antibody-opsonized bacteria evoke an inflammatory dendritic cell phenotype and polyfunctional Th cells by cross-talk between TLRs and FcRs. THE JOURNAL OF IMMUNOLOGY 2015; 194:1856-66. [PMID: 25582855 DOI: 10.4049/jimmunol.1303126] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During secondary immune responses, Ab-opsonized bacteria are efficiently taken up via FcRs by dendritic cells. We now demonstrate that this process induces cross-talk between FcRs and TLRs, which results in synergistic release of several inflammatory cytokines, as well as altered lipid metabolite profiles. This altered inflammatory profile redirects Th1 polarization toward Th17 cell responses. Interestingly, GM-CSF-producing Th cells were synergistically evoked as well, which suggests the onset of polyfunctional Th17 cells. Synergistic cytokine release was dependent on activation via MyD88 and ITAM signaling pathways through TLRs and FcRs, respectively. Cytokine regulation occurred via transcription-dependent mechanisms for TNF-α and IL-23 and posttranscriptional mechanisms for caspase-1-dependent release of IL-1β. Furthermore, cross-talk between TLRs and FcRs was not restricted to dendritic cells. In conclusion, our results support that bacteria alone initiate fundamentally different immune responses compared with Ab-opsonized bacteria through the combined action of two classes of receptors and, ultimately, may refine new therapies for inflammatory diseases.
Collapse
Affiliation(s)
- Jantine E Bakema
- Department of Otolaryngology - Head and Neck Surgery, VU University Medical Center, 1007 MB Amsterdam, the Netherlands; Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands;
| | - Cornelis W Tuk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands
| | - Sven C Bruijns
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands
| | - Joost B Vos
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands; Immunaffect BV, 1404 AK Bussum, the Netherlands
| | - Sophia Letsiou
- Department of Metabolic Diseases, Netherlands Metabolomics Centre, University Medical Centre Utrecht, Utrecht 3584 EA, the Netherlands; and
| | - Christien D Dijkstra
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands
| | - Arjan B Brenkman
- Department of Metabolic Diseases, Netherlands Metabolomics Centre, University Medical Centre Utrecht, Utrecht 3584 EA, the Netherlands; and
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands; Department of Surgery, VU University Medical Center, 1081 BT Amsterdam, the Netherlands
| |
Collapse
|
31
|
Brenner DR, Scherer D, Muir K, Schildkraut J, Boffetta P, Spitz MR, Le Marchand L, Chan AT, Goode EL, Ulrich CM, Hung RJ. A review of the application of inflammatory biomarkers in epidemiologic cancer research. Cancer Epidemiol Biomarkers Prev 2014; 23:1729-51. [PMID: 24962838 DOI: 10.1158/1055-9965.epi-14-0064] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a facilitating process for multiple cancer types. It is believed to affect cancer development and progression through several etiologic pathways, including increased levels of DNA adduct formation, increased angiogenesis, and altered antiapoptotic signaling. This review highlights the application of inflammatory biomarkers in epidemiologic studies and discusses the various cellular mediators of inflammation characterizing the innate immune system response to infection and chronic insult from environmental factors. Included is a review of six classes of inflammation-related biomarkers: cytokines/chemokines, immune-related effectors, acute-phase proteins, reactive oxygen and nitrogen species, prostaglandins and cyclooxygenase-related factors, and mediators such as transcription factors and growth factors. For each of these biomarkers, we provide a brief overview of the etiologic role in the inflammation response and how they have been related to cancer etiology and progression within the literature. We provide a discussion of the common techniques available for quantification of each marker, including strengths, weaknesses, and potential pitfalls. Subsequently, we highlight a few under-studied measures to characterize the inflammatory response and their potential utility in epidemiologic studies of cancer. Finally, we suggest integrative methods for future studies to apply multifaceted approaches to examine the relationship between inflammatory markers and their roles in cancer development.
Collapse
Affiliation(s)
- Darren R Brenner
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada. Department of Cancer Epidemiology and Prevention, Cancer Control Alberta, Alberta Health Services, Calgary, Alberta, Canada
| | - Dominique Scherer
- Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | | | | | - Paolo Boffetta
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York
| | | | | | - Andrew T Chan
- Dana Farber/Harvard Cancer Center, Boston, Massachusetts
| | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Cornelia M Ulrich
- Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany. Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
32
|
Yuan S, Cao S, Jiang R, Liu R, Bai J, Hou Q. FLLL31, a derivative of curcumin, attenuates airway inflammation in a multi-allergen challenged mouse model. Int Immunopharmacol 2014; 21:128-36. [PMID: 24819716 DOI: 10.1016/j.intimp.2014.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
Signal transducer and activator of transcription protein 3 (STAT3), one of the major regulators of inflammation, plays multiple roles in cellular transcription, differentiation, proliferation, and survival in human diseases. Dysregulation of STAT3 is related to the severe airway inflammation associated with asthma. FLLL31 is a newly developed compound based on the herbal medicine curcumin, which specifically suppresses the activation of STAT3. However, the function of FLLL31 on inflammatory diseases, especially on the regulation of airway inflammation, has not been fully studied. In our prior investigations, we developed a mouse model that was challenged with a mixture of DRA allergens (including house dust mite, ragweed, and Aspergillums species) to mimic the severe airway inflammation observed in human patients. In this study, we performed a series of experiments on the inflammatory regulation activities of FLLL31 in both in vitro cultured cells and our in vivo DRA-challenged mouse model. Our results show that FLLL31 exhibits anti-inflammatory effects on macrophage activation, lymphocyte differentiation, and pro-inflammatory factor production. Importantly, FLLL31 significantly inhibited airway inflammation and recruitment of inflammatory cells in the DRA-challenged mouse model. Based on these results, we conclude that FLLL31 is a potential therapeutic agent that can be used against severe airway inflammation diseases.
Collapse
Affiliation(s)
- Shaopeng Yuan
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, People's Republic of China
| | - Shuhua Cao
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, People's Republic of China
| | - Rentao Jiang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, People's Republic of China
| | - Renping Liu
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, People's Republic of China
| | - Jinye Bai
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, People's Republic of China
| | - Qi Hou
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, People's Republic of China.
| |
Collapse
|
33
|
Sayers BC, Taylor AJ, Glista-Baker EE, Shipley-Phillips JK, Dackor RT, Edin ML, Lih FB, Tomer KB, Zeldin DC, Langenbach R, Bonner JC. Role of cyclooxygenase-2 in exacerbation of allergen-induced airway remodeling by multiwalled carbon nanotubes. Am J Respir Cell Mol Biol 2014; 49:525-35. [PMID: 23642096 DOI: 10.1165/rcmb.2013-0019oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The emergence of nanotechnology has produced a multitude of engineered nanomaterials such as carbon nanotubes (CNTs), and concerns have been raised about their effects on human health, especially for susceptible populations such as individuals with asthma. Multiwalled CNTs (MWCNTs) have been shown to exacerbate ovalbumin (OVA)-induced airway remodeling in mice. Moreover, cyclooxygenase-2 (COX-2) has been described as a protective factor in asthma. We postulated that COX-2-deficient (COX-2(-/-)) mice would be susceptible to MWCNT-induced exacerbations of allergen-induced airway remodeling, including airway inflammation, fibrosis, and mucus-cell metaplasia (i.e., the formation of goblet cells). Wild-type (WT) or COX-2(-/-) mice were sensitized to OVA to induce allergic airway inflammation before a single dose of MWCNTs (4 mg/kg) delivered to the lungs by oropharyngeal aspiration. MWCNTs significantly increased OVA-induced lung inflammation and mucus-cell metaplasia in COX-2(-/-) mice compared with WT mice. However, airway fibrosis after exposure to allergen and MWCNTs was no different between WT and COX-2(-/-) mice. Concentrations of certain prostanoids (prostaglandin D2 and thromboxane B2) were enhanced by OVA or MWCNTs in COX-2(-/-) mice. No differences in COX-1 mRNA concentrations were evident between WT and COX-2(-/-) mice treated with OVA and MWCNTs. Interestingly, MWCNTs significantly enhanced allergen-induced cytokines involved in Th2 (IL-13 and IL-5), Th1 (CXCL10), and Th17 (IL-17A) inflammatory responses in COX-2(-/-) mice, but not in WT mice. We conclude that exacerbations of allergen-induced airway inflammation and mucus-cell metaplasia by MWCNTs are enhanced by deficiencies in COX-2, and are associated with the activation of a mixed Th1/Th2/Th17 immune response.
Collapse
Affiliation(s)
- Brian C Sayers
- 1 Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nicolaou A, Mauro C, Urquhart P, Marelli-Berg F. Polyunsaturated Fatty Acid-derived lipid mediators and T cell function. Front Immunol 2014; 5:75. [PMID: 24611066 PMCID: PMC3933826 DOI: 10.3389/fimmu.2014.00075] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/11/2014] [Indexed: 01/10/2023] Open
Abstract
Fatty acids are involved in T cell biology both as nutrients important for energy production as well as signaling molecules. In particular, polyunsaturated fatty acids are known to exhibit a range of immunomodulatory properties that progress through T cell mediated events, although the molecular mechanisms of these actions have not yet been fully elucidated. Some of these immune activities are linked to polyunsaturated fatty acid-induced alteration of the composition of cellular membranes and the consequent changes in signaling pathways linked to membrane raft-associated proteins. However, significant aspects of the polyunsaturated fatty acid bioactivities are mediated through their transformation to specific lipid mediators, products of cyclooxygenase, lipoxygenase, or cytochrome P450 enzymatic reactions. Resulting bioactive metabolites including prostaglandins, leukotrienes, and endocannabinoids are produced by and/or act upon T leukocytes through cell surface receptors and have been shown to alter T cell activation and differentiation, proliferation, cytokine production, motility, and homing events. Detailed appreciation of the mode of action of these lipids presents opportunities for the design and development of therapeutic strategies aimed at regulating T cell function.
Collapse
Affiliation(s)
- Anna Nicolaou
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester , Manchester , UK
| | - Claudio Mauro
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London , London , UK
| | - Paula Urquhart
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester , Manchester , UK
| | - Federica Marelli-Berg
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London , London , UK
| |
Collapse
|
35
|
Liu W, Li H, Zhang X, Wen D, Yu F, Yang S, Jia X, Cong B, Ma C. Prostaglandin I2-IP signalling regulates human Th17 and Treg cell differentiation. Prostaglandins Leukot Essent Fatty Acids 2013; 89:335-44. [PMID: 24035274 DOI: 10.1016/j.plefa.2013.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 08/23/2013] [Accepted: 08/25/2013] [Indexed: 02/04/2023]
Abstract
Prostaglandin I2 (PGI2) is an important immunoregulatory lipid mediator. In this study, we analysed the effects of the PGI2 analogue (Iloprost) on the differentiation of Th17 cells and Tregs from human naïve CD4(+) T cells. PGI2 receptors (IP) are expressed on human naïve CD4(+) T cells. Via IP binding, the PGI2 analogue decreased the proportion of Tregs and Foxp3 mRNA expression but increased the percentage of Th17 cells, RORC mRNA and IL-17A production. The regulatory effects of Iloprost correlated with elevated intracellular cAMP levels. The effects were mimicked by a cAMP agonist (db-cAMP) but attenuated by a protein kinase A inhibitor (H-89). STAT3 and STAT5 signalling play direct and crucial roles in the development of Th17 and Tregs, respectively. The PGI2 analogue enhanced the activation of STAT3 in response to IL-6, whereas it decreased STAT5 activation in response to IL-2. Moreover, db-cAMP imitated the above effects of Iloprost, which were weakened by H-89. These results demonstrate that the PGI2-IP interaction promoted the phosphorylation of STAT3 and reduced the phosphorylation of STAT5, likely via the upregulation of cAMP-PKA signalling, thus facilitated Th17 differentiation and suppressed Treg differentiation. Together with previous results, these data suggest that prostanoids play an important role in the pathogenesis of autoimmune diseases, such as rheumatoid arthritis.
Collapse
MESH Headings
- Bucladesine/pharmacology
- Cell Differentiation
- Cyclic AMP/antagonists & inhibitors
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases
- Epoprostenol/metabolism
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation
- Humans
- Iloprost/pharmacology
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Interleukin-2/genetics
- Interleukin-2/metabolism
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Isoquinolines/pharmacology
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Phosphorylation/drug effects
- Platelet Aggregation Inhibitors/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Epoprostenol/genetics
- Receptors, Epoprostenol/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/metabolism
- Signal Transduction
- Sulfonamides/pharmacology
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/cytology
- Th17 Cells/drug effects
- Th17 Cells/metabolism
Collapse
Affiliation(s)
- Wenxuan Liu
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kim SJ, Shin HJ, Lee BJ, Kim DS, Lee JH, Jeong MY, Kim HL, Park J, Lim H, Kim SH, Hong SH, Hwang MW, Um JY. The Antiinflammatory Mechanism of Igongsan in Mouse Peritoneal Macrophages via Suppression of NF-κB/Caspase-1 Activation. Phytother Res 2013; 28:736-44. [DOI: 10.1002/ptr.5058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/16/2013] [Accepted: 07/23/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Su-Jin Kim
- Department of Cosmeceutical Science; Daegu Hanny University; Yugok-dong Kyungsan 712-715 Korea
| | - Hyun-Ji Shin
- College of Pharmacy; Wonkwang University; Iksan Jeonbuk 570-749 Korea
| | - Byung-Joo Lee
- College of Korean Medicine, Institute of Korean Medicine; Kyung Hee University; 1 Hoegi-Dong Dongdaemun-Gu Seoul 130-701 Korea
| | - Dae-Seung Kim
- College of Pharmacy; Wonkwang University; Iksan Jeonbuk 570-749 Korea
| | - Jong Hyun Lee
- College of Pharmacy; Dongduk Women's University; 23-1 Wolgok-dong Seongbuk-gu Seoul Korea
| | - Mi-Young Jeong
- College of Korean Medicine, Institute of Korean Medicine; Kyung Hee University; 1 Hoegi-Dong Dongdaemun-Gu Seoul 130-701 Korea
| | - Hye-Lin Kim
- College of Korean Medicine, Institute of Korean Medicine; Kyung Hee University; 1 Hoegi-Dong Dongdaemun-Gu Seoul 130-701 Korea
| | - Jinbong Park
- College of Korean Medicine, Institute of Korean Medicine; Kyung Hee University; 1 Hoegi-Dong Dongdaemun-Gu Seoul 130-701 Korea
| | - Hara Lim
- College of Korean Medicine, Institute of Korean Medicine; Kyung Hee University; 1 Hoegi-Dong Dongdaemun-Gu Seoul 130-701 Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Institute of Korean Medicine; Kyung Hee University; 1 Hoegi-Dong Dongdaemun-Gu Seoul 130-701 Korea
| | - Seung-Heon Hong
- College of Pharmacy; Wonkwang University; Iksan Jeonbuk 570-749 Korea
| | - Min-Woo Hwang
- College of Korean Medicine, Institute of Korean Medicine; Kyung Hee University; 1 Hoegi-Dong Dongdaemun-Gu Seoul 130-701 Korea
| | - Jae-Young Um
- College of Korean Medicine, Institute of Korean Medicine; Kyung Hee University; 1 Hoegi-Dong Dongdaemun-Gu Seoul 130-701 Korea
| |
Collapse
|
37
|
Formaldehyde inhalation reduces respiratory mechanics in a rat model with allergic lung inflammation by altering the nitric oxide/cyclooxygenase-derived products relationship. Food Chem Toxicol 2013; 59:731-8. [PMID: 23871789 DOI: 10.1016/j.fct.2013.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/20/2013] [Accepted: 07/11/2013] [Indexed: 11/23/2022]
Abstract
Bronchial hyperresponsiveness is a hallmark of asthma and many factors modulate bronchoconstriction episodes. A potential correlation of formaldehyde (FA) inhalation and asthma has been observed; however, the exact role of FA remains controversial. We investigated the effects of FA inhalation on Ovalbumin (OVA) sensitisation using a parameter of respiratory mechanics. The involvement of nitric oxide (NO) and cyclooxygenase-derived products were also evaluated. The rats were submitted, or not, to FA inhalation (1%, 90 min/day, 3 days) and were OVA-sensitised and challenged 14 days later. Our data showed that previous FA exposure in allergic rats reduced bronchial responsiveness, respiratory resistance (Rrs) and elastance (Ers) to methacholine. FA exposure in allergic rats also increased the iNOS gene expression and reduced COX-1. L-NAME treatment exacerbated the bronchial hyporesponsiveness and did not modify the Ers and Rrs, while Indomethacin partially reversed all of the parameters studied. The L-NAME and Indomethacin treatments reduced leukotriene B₄ levels while they increased thromboxane B₂ and prostaglandin E₂. In conclusion, FA exposure prior to OVA sensitisation reduces the respiratory mechanics and the interaction of NO and PGE₂ may be representing a compensatory mechanism in order to protect the lung from bronchoconstriction effects.
Collapse
|
38
|
Paulissen SMJ, van Hamburg JP, Davelaar N, Asmawidjaja PS, Hazes JMW, Lubberts E. Synovial Fibroblasts Directly Induce Th17 Pathogenicity via the Cyclooxygenase/Prostaglandin E2 Pathway, Independent of IL-23. THE JOURNAL OF IMMUNOLOGY 2013; 191:1364-72. [DOI: 10.4049/jimmunol.1300274] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Zheng Y, Xiong C, He J. PGI2-induced Th17 cell differentiation in connective tissue disease: a comment. Ann Rheum Dis 2013; 72:e15. [PMID: 23606707 DOI: 10.1136/annrheumdis-2013-203555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
40
|
Isoflurane regulates atypical type-A γ-aminobutyric acid receptors in alveolar type II epithelial cells. Anesthesiology 2013; 118:1065-75. [PMID: 23485993 DOI: 10.1097/aln.0b013e31828e180e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Volatile anesthetics act primarily through upregulating the activity of γ-aminobutyric acid type A (GABAA) receptors. They also exhibit antiinflammatory actions in the lung. Rodent alveolar type II (ATII) epithelial cells express GABAA receptors and the inflammatory factor cyclooxygenase-2 (COX-2). The goal of this study was to determine whether human ATII cells also express GABAA receptors and whether volatile anesthetics upregulate GABAA receptor activity, thereby reducing the expression of COX-2 in ATII cells. METHODS The expression of GABAA receptor subunits and COX-2 in ATII cells of human lung tissue and in the human ATII cell line A549 was studied with immunostaining and immunoblot analyses. Patch clamp recordings were used to study the functional and pharmacological properties of GABAA receptors in cultured A549 cells. RESULTS ATII cells in human lungs and cultured A549 cells expressed GABAA receptor subunits and COX-2. GABA induced currents in A549 cells, with half-maximal effective concentration of 2.5 µM. Isoflurane (0.1-250 µM) enhanced the GABA currents, which were partially inhibited by bicuculline. Treating A549 cells with muscimol or with isoflurane (250 µM) reduced the expression of COX-2, an effect that was attenuated by cotreatment with bicuculline. CONCLUSIONS GABAA receptors expressed by human ATII cells differ pharmacologically from those in neurons, exhibiting a higher affinity for GABA and lower sensitivity to bicuculline. Clinically relevant concentrations of isoflurane increased the activity of GABAA receptors and reduced the expression of COX-2 in ATII cells. These findings reveal a novel mechanism that could contribute to the antiinflammatory effect of isoflurane in the human lung.
Collapse
|
41
|
Li H, Edin ML, Bradbury JA, Graves JP, DeGraff LM, Gruzdev A, Cheng J, Dackor RT, Wang PM, Bortner CD, Garantziotis S, Jetten AM, Zeldin DC. Cyclooxygenase-2 inhibits T helper cell type 9 differentiation during allergic lung inflammation via down-regulation of IL-17RB. Am J Respir Crit Care Med 2013; 187:812-22. [PMID: 23449692 DOI: 10.1164/rccm.201211-2073oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RATIONALE Helper CD4(+) T cell subsets, including IL-9- and IL-10-producing T helper cell type 9 (Th9) cells, exist under certain inflammatory conditions. Cyclooxygenase (COX)-1 and COX-2 play important roles in allergic lung inflammation and asthma. It is unknown whether COX-derived eicosanoids regulate Th9 cells during allergic lung inflammation. OBJECTIVES To determine the role of COX metabolites in regulating Th9 cell differentiation and function during allergic lung inflammation. METHODS COX-1(-/-), COX-2(-/-), and wild-type (WT) mice were studied in an in vivo model of ovalbumin-induced allergic inflammation and an in vitro model of Th9 differentiation using flow cytometry, cytokine assays, confocal microscopy, real-time PCR, and immunoblotting. In addition, the role of specific eicosanoids and their receptors was examined using synthetic prostaglandins (PGs), selective inhibitors, and siRNA knockdown. MEASUREMENTS AND MAIN RESULTS Experimental endpoints were not different between COX-1(-/-) and WT mice; however, the percentage of IL-9(+) CD4(+) T cells was increased in lung, bronchoalveolar lavage fluid, lymph nodes, and blood of allergic COX-2(-/-) mice relative to WT. Bronchoalveolar lavage fluid IL-9 and IL-10, serum IL-9, and lung IL-17RB levels were significantly increased in allergic COX-2(-/-) mice or in WT mice treated with COX-2 inhibitors. IL-9, IL-10, and IL-17RB expression in vivo was inhibited by PGD2 and PGE2, which also reduced Th9 cell differentiation of murine and human naive CD4(+) T cells in vitro. Inhibition of protein kinase A significantly increased Th9 cell differentiation of naive CD4(+) T cells isolated from WT mice in vitro. CONCLUSIONS COX-2-derived PGD2 and PGE2 regulate Th9 cell differentiation by suppressing IL-17RB expression via a protein kinase A-dependent mechanism.
Collapse
Affiliation(s)
- Hong Li
- Laboratory of Respiratory Biology, Division of Intramural Research, National Institutes of Health/National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lone AM, Taskén K. Proinflammatory and immunoregulatory roles of eicosanoids in T cells. Front Immunol 2013; 4:130. [PMID: 23760108 PMCID: PMC3671288 DOI: 10.3389/fimmu.2013.00130] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/17/2013] [Indexed: 01/08/2023] Open
Abstract
Eicosanoids are inflammatory mediators primarily generated by hydrolysis of membrane phospholipids by phospholipase A2 to ω-3 and ω-6 C20 fatty acids that next are converted to leukotrienes (LTs), prostaglandins (PGs), prostacyclins (PCs), and thromboxanes (TXAs). The rate-limiting and tightly regulated lipoxygenases control synthesis of LTs while the equally well-controlled cyclooxygenases 1 and 2 generate prostanoids, including PGs, PCs, and TXAs. While many of the classical signs of inflammation such as redness, swelling, pain, and heat are caused by eicosanoid species with vasoactive, pyretic, and pain-inducing effects locally, some eicosanoids also regulate T cell functions. Here, we will review eicosanoid production in T cell subsets and the inflammatory and immunoregulatory functions of LTs, PGs, PCs, and TXAs in T cells.
Collapse
Affiliation(s)
- Anna Mari Lone
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital , Oslo , Norway ; Biotechnology Centre, University of Oslo , Oslo , Norway ; K.G. Jebsen Inflammation Research Centre, University of Oslo , Oslo , Norway
| | | |
Collapse
|
43
|
Lee IT, Lin CC, Lin WN, Wu WL, Hsiao LD, Yang CM. Lung inflammation caused by adenosine-5'-triphosphate is mediated via Ca2+/PKCs-dependent COX-2/PGE2 induction. Int J Biochem Cell Biol 2013; 45:1657-68. [PMID: 23680674 DOI: 10.1016/j.biocel.2013.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 12/13/2022]
Abstract
Up-regulation of cyclooxygenase (COX)-2 and prostaglandin E2 (PGE2) are implicated in lung inflammation. Adenosine 5'-triphosphate (ATP) has been shown to act via activation of P2 purinoceptors, leading to COX-2 expression in various inflammatory diseases. The mechanisms of ATP-induced COX-2 expression and PGE2 release remain unclear. We showed that pretreatment with the inhibitors of P2 receptors (PPADS and Suramin), Gq protein (GPA2A), phosphatidylcholine-phospholipase C (PC-PLC; D609), phosphoinositide-phospholipase C (PI-PLC; ET-18-OCH3), Ca(2+)/calmodulin-dependent protein kinase II (CaMKII; KN62), protein kinase C (PKC; Gö6976, Ro-318220, GF109203X, and rottlerin), MEK1/2 (PD98059), p38 MAPK (SB202190), and nuclear factor-kappaB (NF-κB; Bay11-7082) and the intracellular calcium chelator (BAPTA/AM) or transfection with siRNAs of these molecules and cPLA2 reduced ATPγS-induced COX-2 expression or PGE2 production in A549 cells. In addition, ATPγS-induced elevation of intracellular Ca(2+) concentration was attenuated by PPADS, Suramin, D609, or ET-18-OCH3. ATPγS-induced p38 MAPK, p42/p44 MAPK, and NF-κB p65 activation were inhibited by Gö6976, Ro-318220, GF109203X, or rottlerin. ATPγS also induced cPLA2 phosphorylation and activity, which were reduced via inhibition of P2 receptors, PKCs, p38 MAPK, and p42/p44 MAPK. ATPγS-induced cPLA2 expression was inhibited by SB202190, PD98059, or Bay11-7082. In the in vitro study, we established that ATPγS induced PGE2 generation via a cPLA2/COX-2-dependent pathway. In the in vivo study, we found that ATPγS induced COX-2 mRNA expression in the lungs and leukocyte (mainly eosinophils and neutrophils) count in bronchoalveolar lavage (BAL) fluid in mice via a P2 receptors-dependent signaling pathway. We concluded that ATPγS may induce lung inflammation via a cPLA2/COX-2/PGE2-dependent pathway.
Collapse
Affiliation(s)
- I-Ta Lee
- Department of Anesthetics, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | | | |
Collapse
|
44
|
ATP mediates NADPH oxidase/ROS generation and COX-2/PGE2 expression in A549 cells: role of P2 receptor-dependent STAT3 activation. PLoS One 2013; 8:e54125. [PMID: 23326583 PMCID: PMC3543320 DOI: 10.1371/journal.pone.0054125] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/06/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Up-regulation of cyclooxygenase (COX)-2 and its metabolite prostaglandin E(2) (PGE(2)) are frequently implicated in lung inflammation. Extracellular nucleotides, such as ATP have been shown to act via activation of P2 purinoceptors, leading to COX-2 expression in various inflammatory diseases, such as lung inflammation. However, the mechanisms underlying ATP-induced COX-2 expression and PGE(2) release remain unclear. PRINCIPAL FINDINGS Here, we showed that ATPγS induced COX-2 expression in A549 cells revealed by western blot and real-time PCR. Pretreatment with the inhibitors of P2 receptor (PPADS and suramin), PKC (Gö6983, Gö6976, Ro318220, and Rottlerin), ROS (Edaravone), NADPH oxidase [diphenyleneiodonium chloride (DPI) and apocynin], Jak2 (AG490), and STAT3 [cucurbitacin E (CBE)] and transfection with siRNAs of PKCα, PKCι, PKCμ, p47(phox), Jak2, STAT3, and cPLA(2) markedly reduced ATPγS-induced COX-2 expression and PGE(2) production. In addition, pretreatment with the inhibitors of P2 receptor attenuated PKCs translocation from the cytosol to the membrane in response to ATPγS. Moreover, ATPγS-induced ROS generation and p47(phox) translocation was also reduced by pretreatment with the inhibitors of P2 receptor, PKC, and NADPH oxidase. On the other hand, ATPγS stimulated Jak2 and STAT3 activation which were inhibited by pretreatment with PPADS, suramin, Gö6983, Gö6976, Ro318220, GF109203X, Rottlerin, Edaravone, DPI, and apocynin in A549 cells. SIGNIFICANCE Taken together, these results showed that ATPγS induced COX-2 expression and PGE(2) production via a P2 receptor/PKC/NADPH oxidase/ROS/Jak2/STAT3/cPLA(2) signaling pathway in A549 cells. Increased understanding of signal transduction mechanisms underlying COX-2 gene regulation will create opportunities for the development of anti-inflammation therapeutic strategies.
Collapse
|
45
|
Truchetet ME, Allanore Y, Montanari E, Chizzolini C, Brembilla NC. Prostaglandin I(2) analogues enhance already exuberant Th17 cell responses in systemic sclerosis. Ann Rheum Dis 2012; 71:2044-50. [PMID: 22814427 DOI: 10.1136/annrheumdis-2012-201400] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Among pleiotropic effects, the capacity of prostaglandin I(2) (PGI(2)) analogues to affect adaptive immunity remains poorly characterised. The purpose of this study was to assess whether PGI(2) analogues could affect T helper (Th) cell responses in patients with systemic sclerosis (SSc) and healthy donors (HD). METHODS Peripheral blood mononuclear cells (PBMC) were obtained from 33 patients with SSc and 29 HD. Cytokine levels in PBMC and monocyte/CD4 T cell cultures were quantified by immunoassays. The frequencies of interleukin (IL)-17A, IL-22, interferon γ (IFNγ) and IL-4-producing CD4 T cells were assessed by multiparametric flow cytometry. Selective receptor antagonists, cytokine blocking antibodies and signalling protein inhibitors were used to identify the receptors and signalling pathways mediating PGI(2) analogue effects. RESULTS Th17 and Th22 cells were more abundant in individuals with SSc than in HD. PGI(2) analogues (iloprost, treprostinil and beraprost) significantly increased IL-17A and IL-22 in vitro while decreasing IFNγ production both in SSc and HD PBMC. These effects relied on the specific expansion of Th17 and Th22 and inhibition of Th1 cells. The enhanced Th17 cell responses depended on increased IL-23 production by monocytes, involved the IP prostacyclin receptor and required protein kinase A activation. Importantly, in vivo administration of iloprost in individuals with SSc presenting with digital ulcers resulted in a significant increase in the frequency of Th17 cells. CONCLUSIONS These findings demonstrate that PGI(2) analogues affect Th cell differentiation/expansion programmes, favouring Th17 and inhibiting Th1 cell responses in SSc. The impact of these changes on the disease course needs to be taken into consideration and further exploited to improve SSc.
Collapse
Affiliation(s)
- Marie-Elise Truchetet
- Division of Immunology and Allergy, University Hospital and School of Medicine, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
46
|
Li H, Edin ML, Gruzdev A, Cheng J, Bradbury JA, Graves JP, DeGraff LM, Zeldin DC. Regulation of T helper cell subsets by cyclooxygenases and their metabolites. Prostaglandins Other Lipid Mediat 2012. [PMID: 23201570 DOI: 10.1016/j.prostaglandins.2012.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cyclooxygenases and their metabolites are important regulators of inflammatory responses and play critical roles in regulating the differentiation of T helper cell subsets in inflammatory diseases. In this review, we highlight new information on regulation of T helper cell subsets by cyclooxygenases and their metabolites. Prostanoids influence cytokine production by both antigen presenting cells and T cells to regulate the differentiation of naïve CD4(+) T cells to Th1, Th2 and Th17 cell phenotypes. Cyclooxygenases and PGE2 generally exacerbate Th2 and Th17 phenotypes, while suppressing Th1 differentiation. Thus, cycloxygenases may play a critical role in diseases that involve immune cell dysfunction. Targeting of cyclooxygenases and their eicosanoid products may represent a new approach for treatment of inflammatory diseases, tumors and autoimmune disorders.
Collapse
Affiliation(s)
- Hong Li
- Laboratory of Respiratory Biology, Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Shamsah Kazani
- Department of Medicine, Pulmonary and Critical Care Division, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | | |
Collapse
|
48
|
Zhou W, Dowell DR, Huckabee MM, Newcomb DC, Boswell MG, Goleniewska K, Lotz MT, Toki S, Yin H, Yao S, Natarajan C, Wu P, Sriram S, Breyer RM, Fitzgerald GA, Peebles RS. Prostaglandin I2 signaling drives Th17 differentiation and exacerbates experimental autoimmune encephalomyelitis. PLoS One 2012; 7:e33518. [PMID: 22590492 PMCID: PMC3349674 DOI: 10.1371/journal.pone.0033518] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/15/2012] [Indexed: 01/11/2023] Open
Abstract
Background Prostaglandin I2 (PGI2), a lipid mediator currently used in treatment of human disease, is a critical regulator of adaptive immune responses. Although PGI2 signaling suppressed Th1 and Th2 immune responses, the role of PGI2 in Th17 differentiation is not known. Methodology/Principal Findings In mouse CD4+CD62L+ naïve T cell culture, the PGI2 analogs iloprost and cicaprost increased IL-17A and IL-22 protein production and Th17 differentiation in vitro. This effect was augmented by IL-23 and was dependent on PGI2 receptor IP signaling. In mouse bone marrow-derived CD11c+ dendritic cells (BMDCs), PGI2 analogs increased the ratio of IL-23/IL-12, which is correlated with increased ability of BMDCs to stimulate naïve T cells for IL-17A production. Moreover, IP knockout mice had delayed onset of a Th17-associated neurological disease, experimental autoimmune encephalomyelitis (EAE), and reduced infiltration of IL-17A-expressing mononuclear cells in the spinal cords compared to wild type mice. These results suggest that PGI2 promotes in vivo Th17 responses. Conclusion The preferential stimulation of Th17 differentiation by IP signaling may have important clinical implications as PGI2 and its analogs are commonly used to treat human pulmonary hypertension.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/immunology
- Antineoplastic Agents/pharmacology
- Cell Differentiation/drug effects
- Cell Differentiation/immunology
- Cells, Cultured
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Epoprostenol/analogs & derivatives
- Epoprostenol/genetics
- Epoprostenol/immunology
- Epoprostenol/pharmacology
- Female
- Humans
- Iloprost/immunology
- Iloprost/pharmacology
- Interleukin-12/genetics
- Interleukin-12/immunology
- Interleukin-17/genetics
- Interleukin-17/immunology
- Interleukin-23/genetics
- Interleukin-23/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Platelet Aggregation Inhibitors/immunology
- Platelet Aggregation Inhibitors/pharmacology
- Receptors, Epoprostenol/genetics
- Receptors, Epoprostenol/immunology
- Spinal Cord/immunology
- Spinal Cord/pathology
- Th17 Cells/immunology
- Th17 Cells/pathology
Collapse
Affiliation(s)
- Weisong Zhou
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Farnesi-de-Assunção TS, Alves CF, Carregaro V, de Oliveira JR, da Silva CA, Cheraim AB, Cunha FQ, Napimoga MH. PPAR-γ agonists, mainly 15d-PGJ2, reduce eosinophil recruitment following allergen challenge. Cell Immunol 2012; 273:23-9. [DOI: 10.1016/j.cellimm.2011.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/04/2011] [Accepted: 11/29/2011] [Indexed: 11/24/2022]
|
50
|
Xie Y, Chen R, Zhang X, Yu Y, Yang Y, Zou Y, Ge J, Chen H, Garzino-Demo A. Blockade of interleukin-17A protects against coxsackievirus B3-induced myocarditis by increasing COX-2/PGE2 production in the heart. ACTA ACUST UNITED AC 2011; 64:343-51. [PMID: 22141571 DOI: 10.1111/j.1574-695x.2011.00918.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/21/2011] [Accepted: 11/28/2011] [Indexed: 11/30/2022]
Abstract
The Th17/interleukin (IL)-17 axis controls inflammation and might be important in the pathogenesis of experimental autoimmune myocarditis (EAM) and other autoimmune diseases. However, the mechanism underlying the increased Th17 cell response in coxsackievirus-induced myocarditis remains unclear. This study aimed to elucidate the regulatory mechanisms affected by blocking IL-17A responses in acute virus-induced myocarditis (AVMC) mice. The results showed that IL-17A and COX-2 proteins were significantly increased in the cardiac tissue of acute myocarditis, as were Th17 cells in the spleen. Using anti-mouse IL-17Ab to block IL-17A on day 7 of the viral myocarditis led to decreased expressions of cardiac tumor-necrosis factor alpha, IL-17A and transforming growth factor beta in AVMC mice compared to isotype control mice. COX-2 and prostaglandin E2 proteins were dramatically elevated, followed by marked reductions in CVB3 replication and myocardial injury. These results hint that the Th17/IL-17 axis is intimately associated with viral replication in acute myocarditis via induction of COX-2 and prostaglandin E2.
Collapse
Affiliation(s)
- Yuquan Xie
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|