1
|
Banaschewski BJH, Michki SN, Sitaraman S, Pan R, Wang JY, Stewart D, Goldy MK, Lin SM, Cantu E, Katzen JB, Basil MC, Emtiazjoo AM, Todd JL, Gokey JJ, Kropski JA, Frank DB, Zepp JA, Young LR. Emergence of inflammatory fibroblasts with aging in Hermansky-Pudlak syndrome associated pulmonary fibrosis. Commun Biol 2025; 8:284. [PMID: 39987372 PMCID: PMC11846979 DOI: 10.1038/s42003-025-07589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/21/2025] [Indexed: 02/24/2025] Open
Abstract
The longitudinal cellular interactions that drive pulmonary fibrosis are not well understood. To investigate the disease underpinnings associated with fibrosis onset and progression, we generated a scRNA-seq atlas of lungs from young and aged mouse models of multiple subtypes of Hermansky-Pudlak syndrome (HPS), a collection of rare autosomal recessive diseases associated with albinism, platelet dysfunction, and pulmonary fibrosis. We have identified an age-dependent increase in SAA3+ inflammatory lung fibroblasts in HPS mice, including in double-mutant HPS1-2 mice which develop spontaneous fibrosis. HPS1 fibroblasts show increased expression of IL-1R1, whereas alveolar type II epithelial cells from HPS2 mice induce the inflammatory gene signature in co-cultured fibroblasts. scRNA-seq of lung tissue from three HPS1 patients similarly shows the presence of inflammatory fibroblasts and increased IL1R1 expression on fibroblasts. These data posit complex interactions between dysfunctional epithelial cells, inflammatory fibroblasts, and recruited immune cells, suggesting potential opportunities for mitigation of the fibrotic cascade.
Collapse
Affiliation(s)
- Brandon J H Banaschewski
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sylvia N Michki
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sneha Sitaraman
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ruby Pan
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joanna Y Wang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Dominique Stewart
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mary Kate Goldy
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Susan M Lin
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward Cantu
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeremy B Katzen
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria C Basil
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Amir M Emtiazjoo
- Deparment of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Jamie L Todd
- Duke Clinical Research Institute, Durham, NC, USA
- Duke University Medical Center, Durham, NC, USA
| | - Jason J Gokey
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Veterans Affairs Medical Center, Nashville, TN, USA
| | - David B Frank
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jarod A Zepp
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Lisa R Young
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Wang JY, Michki SN, Sitaraman S, Banaschewski BJ, Jamal R, Gokey JJ, Lin SM, Katzen JB, Basil MC, Cantu E, Kropski JA, Zepp JA, Frank DB, Young LR. Dysregulated alveolar epithelial cell progenitor function and identity in Hermansky-Pudlak syndrome. JCI Insight 2024; 10:e183483. [PMID: 39699958 PMCID: PMC11948584 DOI: 10.1172/jci.insight.183483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a genetic disorder of endosomal protein trafficking associated with pulmonary fibrosis in specific subtypes, including HPS-1 and HPS-2. Single-mutant HPS1 and HPS2 mice display increased fibrotic sensitivity while double-mutant HPS1/2 mice exhibit spontaneous fibrosis with aging, which has been attributed to HPS mutations in alveolar epithelial type II (AT2) cells. We utilized HPS mouse models and human lung tissue to investigate mechanisms of AT2 cell dysfunction driving fibrotic remodeling in HPS. Starting at 8 weeks of age, HPS mice exhibited progressive loss of AT2 cell numbers. HPS AT2 cell function was impaired ex vivo and in vivo. Incorporating AT2 cell lineage tracing in HPS mice, we observed aberrant differentiation with increased AT2-derived alveolar epithelial type I cells. Transcriptomic analysis of HPS AT2 cells revealed elevated expression of genes associated with aberrant differentiation and p53 activation. Lineage-tracing and organoid-modeling studies demonstrated that HPS AT2 cells were primed to persist in a Keratin-8-positive reprogrammed transitional state, mediated by p53 activity. Intrinsic AT2 progenitor cell dysfunction and p53 pathway dysregulation are mechanisms of disease in HPS-related pulmonary fibrosis, with the potential for early targeted intervention before the onset of fibrotic lung disease.
Collapse
Affiliation(s)
- Joanna Y. Wang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sylvia N. Michki
- Division of Cardiology, Department of Pediatrics, and
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sneha Sitaraman
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Brandon J. Banaschewski
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Reshma Jamal
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jason J. Gokey
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Susan M. Lin
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lung Biology Institute and
| | - Jeremy B. Katzen
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lung Biology Institute and
| | - Maria C. Basil
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lung Biology Institute and
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward Cantu
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Jarod A. Zepp
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Lung Biology Institute and
| | - David B. Frank
- Division of Cardiology, Department of Pediatrics, and
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Lung Biology Institute and
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lisa R. Young
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Lung Biology Institute and
| |
Collapse
|
3
|
Wang JY, Michki SN, Sitaraman S, Banaschewski BJ, Jamal R, Gokey JJ, Lin SM, Katzen JB, Basil MC, Cantu E, Kropski JA, Zepp JA, Frank DB, Young LR. Dysregulated alveolar epithelial cell progenitor function and identity in Hermansky-Pudlak syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.17.545390. [PMID: 38496421 PMCID: PMC10942273 DOI: 10.1101/2023.06.17.545390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Hermansky-Pudlak syndrome (HPS) is a genetic disorder of endosomal protein trafficking associated with pulmonary fibrosis in specific subtypes, including HPS-1 and HPS-2. Single mutant HPS1 and HPS2 mice display increased fibrotic sensitivity while double mutant HPS1/2 mice exhibit spontaneous fibrosis with aging, which has been attributed to HPS mutations in alveolar epithelial type II (AT2) cells. We utilized HPS mouse models and human lung tissue to investigate mechanisms of AT2 cell dysfunction driving fibrotic remodeling in HPS. Starting at 8 weeks of age, HPS mice exhibited progressive loss of AT2 cell numbers. HPS AT2 cell function was impaired ex vivo and in vivo . Incorporating AT2 cell lineage tracing in HPS mice, we observed aberrant differentiation with increased AT2-derived alveolar epithelial type I cells. Transcriptomic analysis of HPS AT2 cells revealed elevated expression of genes associated with aberrant differentiation and p53 activation. Lineage tracing and organoid modeling studies demonstrated that HPS AT2 cells were primed to persist in a Krt8 + reprogrammed transitional state, mediated by p53 activity. Intrinsic AT2 progenitor cell dysfunction and p53 pathway dysregulation are novel mechanisms of disease in HPS-related pulmonary fibrosis, with the potential for early targeted intervention before the onset of fibrotic lung disease.
Collapse
|
4
|
Hu X, Wei Z, Wu Y, Zhao M, Zhou L, Lin Q. Pathogenesis and Therapy of Hermansky-Pudlak Syndrome (HPS)-Associated Pulmonary Fibrosis. Int J Mol Sci 2024; 25:11270. [PMID: 39457053 PMCID: PMC11508683 DOI: 10.3390/ijms252011270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Hermansky-Pudlak syndrome (HPS)-associated pulmonary fibrosis (HPS-PF) is a progressive lung disease that is a major cause of morbidity and mortality in HPS patients. Previous studies have demonstrated that the HPS proteins play an essential role in the biogenesis and function of lysosome-related organelles (LROs) in alveolar epithelial type II (AT2) cells and found that HPS-PF is associated with dysfunction of AT2 cells and abnormal immune reactions. Despite recent advances in research on HPS and the pathology of HPS-PF, the pathological mechanisms underlying HPS-PF remain poorly understood, and no effective treatment has been established. Therefore, it is necessary to refresh the progress in the pathogenesis of HPS-PF to increase our understanding of the pathogenic mechanism of HPS-PF and develop targeted therapeutic strategies. This review summarizes the recent progress in the pathogenesis of HPS-PF provides information about the current treatment strategies for HPS-PF, and hopefully increases our understanding of the pathogenesis of HPS-PF and offers thoughts for new therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Lin
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (X.H.); (Z.W.); (Y.W.); (M.Z.); (L.Z.)
| |
Collapse
|
5
|
Pérez-Gil J, Frick M. Acidic Enough for a Healthy Breath. Am J Respir Cell Mol Biol 2024; 71:383-385. [PMID: 38889348 PMCID: PMC11450314 DOI: 10.1165/rcmb.2024-0237ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Affiliation(s)
- Jesús Pérez-Gil
- Research Institute "Hospital 12 de Octubre (i+12)"
- Department of Biochemistry and Molecular Biology Complutense University Madrid, Spain
| | - Manfred Frick
- Institute of General Physiology Ulm University Ulm, Germany
| |
Collapse
|
6
|
Min B, Grant-Orser A, Johannson KA. Peripheral blood monocyte count and outcomes in patients with interstitial lung disease: a systematic review and meta-analysis. Eur Respir Rev 2023; 32:230072. [PMID: 37673424 PMCID: PMC10481330 DOI: 10.1183/16000617.0072-2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/13/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Peripheral blood monocyte counts have been associated with poor outcomes in interstitial lung disease (ILD). However, studies are limited by variable biomarker thresholds, analytic approaches and heterogenous populations. This systematic review and meta-analysis characterised the relationship between monocytes and clinical outcomes in ILD. METHODS Electronic database searches were performed. Two reviewers screened abstracts and extracted data. Pooled estimates (hazard ratios (HRs)) of monocyte count thresholds were calculated for their association with mortality using ≥0.6×109 and >0.9×109 cells·L-1 for unadjusted models and ≥0.95×109 cells·L-1 for adjusted models, using random effects, with heterogeneity and bias assessed. Disease progression associated with monocytes >0.9×109cells·L-1 was also calculated. RESULTS Of 3279 abstracts, 13 were included in the systematic review and eight in the meta-analysis. The pooled unadjusted HR for mortality for monocyte counts ≥0.6×109 cells·L-1 was 1.71 (95% CI 1.34-2.19, p<0.001, I2=0%) and for monocyte counts >0.90×109 cells·L-1 it was 2.44 (95% CI 1.53-3.87, p=0.0002, I2=52%). The pooled adjusted HR for mortality for monocyte counts ≥0.95×109 cells·L-1 was 1.93 (95% CI 1.24-3.01, p=0.0038 I2=69%). The pooled HR for disease progression associated with increased monocyte counts was 1.83 (95% CI 1.40-2.39, p<0.0001, I2=28%). CONCLUSIONS Peripheral blood monocyte counts were associated with an increased risk of mortality and disease progression in patients with ILD.
Collapse
Affiliation(s)
- Bohyung Min
- Department of Medicine, Division of Respirology, University of Calgary, Calgary, AB, Canada
| | - Amanda Grant-Orser
- Department of Medicine, Division of Respirology, University of Calgary, Calgary, AB, Canada
| | - Kerri A Johannson
- Department of Medicine, Division of Respirology, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Papiris SA, Kannengiesser C, Borie R, Kolilekas L, Kallieri M, Apollonatou V, Ba I, Nathan N, Bush A, Griese M, Dieude P, Crestani B, Manali ED. Genetics in Idiopathic Pulmonary Fibrosis: A Clinical Perspective. Diagnostics (Basel) 2022; 12:2928. [PMID: 36552935 PMCID: PMC9777433 DOI: 10.3390/diagnostics12122928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Unraveling the genetic background in a significant proportion of patients with both sporadic and familial IPF provided new insights into the pathogenic pathways of pulmonary fibrosis. AIM The aim of the present study is to overview the clinical significance of genetics in IPF. PERSPECTIVE It is fascinating to realize the so-far underestimated but dynamically increasing impact that genetics has on aspects related to the pathophysiology, accurate and early diagnosis, and treatment and prevention of this devastating disease. Genetics in IPF have contributed as no other in unchaining the disease from the dogma of a "a sporadic entity of the elderly, limited to the lungs" and allowed all scientists, but mostly clinicians, all over the world to consider its many aspects and "faces" in all age groups, including its co-existence with several extra pulmonary conditions from cutaneous albinism to bone-marrow and liver failure. CONCLUSION By providing additional evidence for unsuspected characteristics such as immunodeficiency, impaired mucus, and surfactant and telomere maintenance that very often co-exist through the interaction of common and rare genetic variants in the same patient, genetics have created a generous and pluralistic yet unifying platform that could lead to the understanding of the injurious and pro-fibrotic effects of many seemingly unrelated extrinsic and intrinsic offending factors. The same platform constantly instructs us about our limitations as well as about the heritability, the knowledge and the wisdom that is still missing.
Collapse
Affiliation(s)
- Spyros A. Papiris
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Caroline Kannengiesser
- Département de Génétique, APHP Hôpital Bichat, Université de Paris, 75018 Paris, France
- INSERM UMR 1152, Université de Paris, 75018 Paris, France
| | - Raphael Borie
- Service de Pneumologie A, INSERM UMR_1152, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, APHP Hôpital Bichat, Sorbonne Université, 75018 Paris, France
| | - Lykourgos Kolilekas
- 7th Pulmonary Department, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece
| | - Maria Kallieri
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Vasiliki Apollonatou
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Ibrahima Ba
- Département de Génétique, APHP Hôpital Bichat, Université de Paris, 75018 Paris, France
| | - Nadia Nathan
- Peditric Pulmonology Department and Reference Centre for Rare Lung Diseases RespiRare, INSERM UMR_S933 Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Sorbonne University and APHP, 75012 Paris, France
| | - Andrew Bush
- Paediatrics and Paediatric Respirology, Imperial College, Imperial Centre for Paediatrics and Child Health, Royal Brompton Harefield NHS Foundation Trust, London SW3 6NP, UK
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, 80337 Munich, Germany
| | - Philippe Dieude
- Department of Rheumatology, INSERM U1152, APHP Hôpital Bichat-Claude Bernard, Université de Paris, 75018 Paris, France
| | - Bruno Crestani
- Service de Pneumologie A, INSERM UMR_1152, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, APHP Hôpital Bichat, Sorbonne Université, 75018 Paris, France
| | - Effrosyni D. Manali
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
8
|
Li S, Zhou X, Zeng R, Lin L, Zou X, Yan Y, Lu Z, Xia J, Zhang L, Ni S, Dai S, Chen H, Zhao Y. YAP1 silencing attenuated lung injury/fibrosis but worsened diaphragmatic function by regulating oxidative stress and inflammation response in mice. Free Radic Biol Med 2022; 193:485-498. [PMID: 36336232 DOI: 10.1016/j.freeradbiomed.2022.10.323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Oxidative stress is a crucial mechanism in the pathophysiology of lung injury/fibrosis and diaphragmatic dysfunction. Yes-associated protein 1 (YAP1) is a key oxidative stress response regulator. However, how lung injury/fibrosis and the subsequent YAP1 silencing treatment affect diaphragmatic function remains largely uncharacterized. In this study, mice models of acute lipopolysaccharide (LPS) and paraquat exposure were used to establish acute lung injury and chronic pulmonary fibrosis. AT2 and C2C12 cells were co-cultured under LPS and paraquat challenge. YAP1 was interfered with shRNA given in vivo and verteporfin administration in vitro. Pulmonary histology, contractile properties, and cross-sectional areas (CSAs) of the diaphragm and gastrocnemius were evaluated. Histological and biochemical analyses were performed for targeted biomarker determination. We found that LPS and paraquat caused significant lung injury/fibrosis and significantly reduced the diaphragmatic-specific force and CSAs compared with the control. YAP1 silencing alleviated inflammatory cell infiltration or collagen deposition in the lungs yet worsened the already impaired diaphragmatic function by increasing inflammatory cytokines (IL-6 and TNF-α), mitochondrial reactive oxidative species (ROS) emission, protein degradation (Murf-1, atrogin-1, and calpain), and decreasing antioxidant capabilities (superoxide dismutase 2 and glutathione peroxidase). No significant improvements were observed in diaphragmatic function by transient YAP1 knockdown in the gastrocnemius. In vitro, LPS- or paraquat-caused cytotoxicity in AT2 cells was mostly alleviated by verteporfin in a concentration that was 20-fold higher than that in C2C12 cells (20 and 1 μg/mL, respectively). Finally, 0.5 μg/mL of verteporfin significantly ameliorated hydrogen peroxide-induced proteolytic activity and antioxidant enzyme suppression in C2C12 cells, whereas 2 μg/mL of verteporfin deteriorated the same. Collectively, lung injury/fibrosis adversely affects the diaphragm. YAP1 inhibition alleviates lung injury/fibrosis but worsens diaphragmatic function potentially by enhancing inflammatory cytokines and ROS-mediated protein degradation. This disparity might be attributed to differences in susceptibility to YAP1 inhibition between muscles and the lungs.
Collapse
Affiliation(s)
- Shaoping Li
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China; Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Xianlong Zhou
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China; Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Rong Zeng
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Lian Lin
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Xingnan Zou
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yu Yan
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Zijun Lu
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jian Xia
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China; Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Lijuan Zhang
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China; Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Shaozhou Ni
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China; Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Shuai Dai
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Haihua Chen
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China; Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
| | - Yan Zhao
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China; Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
9
|
Heydarian M, Schulz C, Stoeger T, Hilgendorff A. Association of immune cell recruitment and BPD development. Mol Cell Pediatr 2022; 9:16. [PMID: 35917002 PMCID: PMC9346035 DOI: 10.1186/s40348-022-00148-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/15/2022] [Indexed: 11/10/2022] Open
Abstract
In the neonatal lung, exposure to both prenatal and early postnatal risk factors converge into the development of injury and ultimately chronic disease, also known as bronchopulmonary dysplasia (BPD). The focus of many studies has been the characteristic inflammatory responses provoked by these exposures. Here, we review the relationship between immaturity and prenatal conditions, as well as postnatal exposure to mechanical ventilation and oxygen toxicity, with the imbalance of pro- and anti-inflammatory regulatory networks. In these conditions, cytokine release, protease activity, and sustained presence of innate immune cells in the lung result in pathologic processes contributing to lung injury. We highlight the recruitment and function of myeloid innate immune cells, in particular, neutrophils and monocyte/macrophages in the BPD lung in human patients and animal models. We also discuss dissimilarities between the infant and adult immune system as a basis for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Motaharehsadat Heydarian
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Christian Schulz
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Medicine I, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Tobias Stoeger
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Anne Hilgendorff
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Germany. .,Center for Comprehensive Developmental Care (CDeCLMU) at the interdisciplinary Social Pediatric Center, (iSPZ), University Hospital Ludwig-Maximilian University, Munich, Germany.
| |
Collapse
|
10
|
Dietl P, Frick M. Channels and Transporters of the Pulmonary Lamellar Body in Health and Disease. Cells 2021; 11:45. [PMID: 35011607 PMCID: PMC8750383 DOI: 10.3390/cells11010045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
The lamellar body (LB) of the alveolar type II (ATII) cell is a lysosome-related organelle (LRO) that contains surfactant, a complex mix of mainly lipids and specific surfactant proteins. The major function of surfactant in the lung is the reduction of surface tension and stabilization of alveoli during respiration. Its lack or deficiency may cause various forms of respiratory distress syndrome (RDS). Surfactant is also part of the innate immune system in the lung, defending the organism against air-borne pathogens. The limiting (organelle) membrane that encloses the LB contains various transporters that are in part responsible for translocating lipids and other organic material into the LB. On the other hand, this membrane contains ion transporters and channels that maintain a specific internal ion composition including the acidic pH of about 5. Furthermore, P2X4 receptors, ligand gated ion channels of the danger signal ATP, are expressed in the limiting LB membrane. They play a role in boosting surfactant secretion and fluid clearance. In this review, we discuss the functions of these transporting pathways of the LB, including possible roles in disease and as therapeutic targets, including viral infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Paul Dietl
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
11
|
Wu J, Wang X, Zhou M, Chen GB, Du J, Wang Y, Ye C. The value of lymphocyte-to-monocyte ratio and neutrophil-to-lymphocyte ratio in differentiating pneumonia from upper respiratory tract infection (URTI) in children: a cross-sectional study. BMC Pediatr 2021; 21:545. [PMID: 34861849 PMCID: PMC8641150 DOI: 10.1186/s12887-021-03018-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUNDS Early and accurate diagnosis of pediatric pneumonia in primary health care can reduce the chance of long-term respiratory diseases, related hospitalizations and mortality while lowering medical costs. The aim of this study was to assess the value of blood biomarkers, clinical symptoms and their combination in assisting discrimination of pneumonia from upper respiratory tract infection (URTI) in children. METHODS Both univariate and multivariate logistic regressions were used to build the pneumonia screening model based on a retrospective cohort, comprised of 5211 children (age ≤ 18 years). The electronic health records of the patients, who had inpatient admission or outpatient visits between February 15, 2012 to September 30, 2018, were extracted from the hospital information system of Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province, China. The children who were diagnosed with pneumonia and URTI were enrolled and their clinical features and levels of blood biomarkers were compared. Using the area under the ROC curve, both two screening models were evaluated under 80% (training) versus 20% (test) cross-validation data split for their accuracy. RESULTS In the retrospective cohort, 2548 of 5211 children were diagnosed with the defined pneumonia. The univariate screening model reached predicted AUCs of 0.76 for lymphocyte/monocyte ratio (LMR) and 0.71 for neutrophil/lymphocyte ratio (NLR) when identified overall pneumonia from URTI, attaining the best performance among the biomarker candidates. In subgroup analysis, LMR and NLR attained AUCs of 0.80 and 0.86 to differentiate viral pneumonia from URTI, and AUCs of 0.77 and 0.71 to discriminate bacterial pneumonia from URTI respectively. After integrating LMR and NLR with three clinical symptoms of fever, cough and rhinorrhea, the multivariate screening model obtained increased predictive values, reaching validated AUCs of 0.84, 0.95 and 0.86 for distinguishing pneumonia, viral pneumonia and bacterial pneumonia from URTI respectively. CONCLUSIONS Our study demonstrated that combining LMR and NLR with critical clinical characteristics reached promising accuracy in differentiating pneumonia from URTI, thus could be considered as a useful screening tool to assist the diagnosis of pneumonia, in particular, in community healthcare centers. Further researches could be conducted to evaluate the model's clinical utility and cost-effectiveness in primary care scenarios to facilitate pneumonia diagnosis, especially in rural settings.
Collapse
Affiliation(s)
- Jinghua Wu
- Department of health management, Hangzhou Normal University, Zhejiang, 310000, Hangzhou, China.,Engineering Research Center of Mobile Health Management System, Ministry of Education, Hangzhou Normal University, Zhejiang, 310000, Hangzhou, China
| | - Xu Wang
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, 310014, Hangzhou, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Mingqi Zhou
- Department of health management, Hangzhou Normal University, Zhejiang, 310000, Hangzhou, China.,Engineering Research Center of Mobile Health Management System, Ministry of Education, Hangzhou Normal University, Zhejiang, 310000, Hangzhou, China
| | - Guo-Bo Chen
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang, 310000, Hangzhou, China.,Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, 310000, Hangzhou, China
| | - Jing Du
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, 310000, Hangzhou, China
| | - Ying Wang
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, 310000, Hangzhou, China.
| | - Chengyin Ye
- Department of health management, Hangzhou Normal University, Zhejiang, 310000, Hangzhou, China. .,Engineering Research Center of Mobile Health Management System, Ministry of Education, Hangzhou Normal University, Zhejiang, 310000, Hangzhou, China.
| |
Collapse
|
12
|
Alysandratos KD, Russo SJ, Petcherski A, Taddeo EP, Acín-Pérez R, Villacorta-Martin C, Jean JC, Mulugeta S, Rodriguez LR, Blum BC, Hekman RM, Hix OT, Minakin K, Vedaie M, Kook S, Tilston-Lunel AM, Varelas X, Wambach JA, Cole FS, Hamvas A, Young LR, Liesa M, Emili A, Guttentag SH, Shirihai OS, Beers MF, Kotton DN. Patient-specific iPSCs carrying an SFTPC mutation reveal the intrinsic alveolar epithelial dysfunction at the inception of interstitial lung disease. Cell Rep 2021; 36:109636. [PMID: 34469722 PMCID: PMC8432578 DOI: 10.1016/j.celrep.2021.109636] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/28/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023] Open
Abstract
Alveolar epithelial type 2 cell (AEC2) dysfunction is implicated in the pathogenesis of adult and pediatric interstitial lung disease (ILD), including idiopathic pulmonary fibrosis (IPF); however, identification of disease-initiating mechanisms has been impeded by inability to access primary AEC2s early on. Here, we present a human in vitro model permitting investigation of epithelial-intrinsic events culminating in AEC2 dysfunction, using patient-specific induced pluripotent stem cells (iPSCs) carrying an AEC2-exclusive disease-associated variant (SFTPCI73T). Comparing syngeneic mutant versus gene-corrected iPSCs after differentiation into AEC2s (iAEC2s), we find that mutant iAEC2s accumulate large amounts of misprocessed and mistrafficked pro-SFTPC protein, similar to in vivo changes, resulting in diminished AEC2 progenitor capacity, perturbed proteostasis, altered bioenergetic programs, time-dependent metabolic reprogramming, and nuclear factor κB (NF-κB) pathway activation. Treatment of SFTPCI73T-expressing iAEC2s with hydroxychloroquine, a medication used in pediatric ILD, aggravates the observed perturbations. Thus, iAEC2s provide a patient-specific preclinical platform for modeling the epithelial-intrinsic dysfunction at ILD inception.
Collapse
Affiliation(s)
- Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Scott J Russo
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; PENN-CHOP Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Anton Petcherski
- Departments of Medicine, Endocrinology and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Evan P Taddeo
- Departments of Medicine, Endocrinology and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Rebeca Acín-Pérez
- Departments of Medicine, Endocrinology and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - J C Jean
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Surafel Mulugeta
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; PENN-CHOP Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Luis R Rodriguez
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; PENN-CHOP Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Benjamin C Blum
- Departments of Biology and Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ryan M Hekman
- Departments of Biology and Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Olivia T Hix
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Kasey Minakin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Marall Vedaie
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Seunghyi Kook
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital, Vanderbilt University, Nashville, TN 37232, USA
| | - Andrew M Tilston-Lunel
- Departments of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Xaralabos Varelas
- Departments of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jennifer A Wambach
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - F Sessions Cole
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Aaron Hamvas
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lisa R Young
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Marc Liesa
- Departments of Medicine, Endocrinology and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Andrew Emili
- Departments of Biology and Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Susan H Guttentag
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital, Vanderbilt University, Nashville, TN 37232, USA
| | - Orian S Shirihai
- Departments of Medicine, Endocrinology and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Michael F Beers
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; PENN-CHOP Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
13
|
Cinar R, Park JK, Zawatsky CN, Coffey NJ, Bodine SP, Abdalla J, Yokoyama T, Jourdan T, Jay L, Zuo MXG, O'Brien KJ, Huang J, Mackie K, Alimardanov A, Iyer MR, Gahl WA, Kunos G, Gochuico BR, Malicdan MCV. CB 1 R and iNOS are distinct players promoting pulmonary fibrosis in Hermansky-Pudlak syndrome. Clin Transl Med 2021; 11:e471. [PMID: 34323400 PMCID: PMC8255071 DOI: 10.1002/ctm2.471] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare genetic disorder which, in its most common and severe form, HPS-1, leads to fatal adult-onset pulmonary fibrosis (PF) with no effective treatment. We evaluated the role of the endocannabinoid/CB1 R system and inducible nitric oxide synthase (iNOS) for dual-target therapeutic strategy using human bronchoalveolar lavage fluid (BALF), lung samples from patients with HPS and controls, HPS-PF patient-derived lung fibroblasts, and bleomycin-induced PF in pale ear mice (HPS1ep/ep ). We found overexpression of CB1 R and iNOS in fibrotic lungs of HPSPF patients and bleomycin-infused pale ear mice. The endocannabinoid anandamide was elevated in BALF and negatively correlated with pulmonary function parameters in HPSPF patients and pale ear mice with bleomycin-induced PF. Simultaneous targeting of CB1 R and iNOS by MRI-1867 yielded greater antifibrotic efficacy than inhibiting either target alone by attenuating critical pathologic pathways. Moreover, MRI-1867 treatment abrogated bleomycin-induced increases in lung levels of the profibrotic interleukin-11 via iNOS inhibition and reversed mitochondrial dysfunction via CB1 R inhibition. Dual inhibition of CB1 R and iNOS is an effective antifibrotic strategy for HPSPF.
Collapse
Affiliation(s)
- Resat Cinar
- Section on Fibrotic DisordersNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthMarylandUSA
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Joshua K. Park
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Charles N. Zawatsky
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Nathan J. Coffey
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Steven P. Bodine
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Jasmina Abdalla
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Tadafumi Yokoyama
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
- Present address:
Department of PediatricsKanazawa UniversityKanazawaJapan
| | - Tony Jourdan
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
- Present address:
INSERM Lipids, Nutrition, Cancer UMR1231University of Burgundy and Franche‐ComtéDijonFrance
| | - Lindsey Jay
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Mei Xing G. Zuo
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Kevin J. O'Brien
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Junfeng Huang
- Therapeutics Development BranchDivision of Preclinical InnovationNational Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| | - Ken Mackie
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
| | - Asaf Alimardanov
- Therapeutics Development BranchDivision of Preclinical InnovationNational Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| | - Malliga R. Iyer
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - William A. Gahl
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
- NIH Undiagnosed Diseases Program and Office of the Clinical DirectorNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - George Kunos
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Bernadette R. Gochuico
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - May Christine V. Malicdan
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
- NIH Undiagnosed Diseases Program and Office of the Clinical DirectorNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
14
|
Sucre J, Haist L, Bolton CE, Hilgendorff A. Early Changes and Indicators Characterizing Lung Aging in Neonatal Chronic Lung Disease. Front Med (Lausanne) 2021; 8:665152. [PMID: 34136503 PMCID: PMC8200413 DOI: 10.3389/fmed.2021.665152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022] Open
Abstract
Infants suffering from neonatal chronic lung disease, i.e., bronchopulmonary dysplasia, are facing long-term consequences determined by individual genetic background, presence of infections, and postnatal treatment strategies such as mechanical ventilation and oxygen toxicity. The adverse effects provoked by these measures include inflammatory processes, oxidative stress, altered growth factor signaling, and remodeling of the extracellular matrix. Both, acute and long-term consequences are determined by the capacity of the immature lung to respond to the challenges outlined above. The subsequent impairment of lung growth translates into an altered trajectory of lung function later in life. Here, knowledge about second and third hit events provoked through environmental insults are of specific importance when advocating lifestyle recommendations to this patient population. A profound exchange between the different health care professionals involved is urgently needed and needs to consider disease origin while future monitoring and treatment strategies are developed.
Collapse
Affiliation(s)
- Jennifer Sucre
- Mildred Stahlman Division of Neonatology, Department of Pediatrics, Vanderbilt University, Nashville, TN, United States
| | - Lena Haist
- Institute for Lung Biology and Disease and Comprehensive Pneumology Center With the CPC-M bioArchive, Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Germany.,Center for Comprehensive Developmental Care (CDeCLMU), University Hospital Ludwig-Maximilian University, Munich, Germany
| | - Charlotte E Bolton
- Division of Respiratory Medicine, NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, City Hospital NUH Campus, Nottingham, United Kingdom
| | - Anne Hilgendorff
- Institute for Lung Biology and Disease and Comprehensive Pneumology Center With the CPC-M bioArchive, Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Germany.,Center for Comprehensive Developmental Care (CDeCLMU), University Hospital Ludwig-Maximilian University, Munich, Germany
| |
Collapse
|
15
|
Watanabe S, Markov NS, Lu Z, Piseaux Aillon R, Soberanes S, Runyan CE, Ren Z, Grant RA, Maciel M, Abdala-Valencia H, Politanska Y, Nam K, Sichizya L, Kihshen HG, Joshi N, McQuattie-Pimentel AC, Gruner KA, Jain M, Sznajder JI, Morimoto RI, Reyfman PA, Gottardi CJ, Budinger GRS, Misharin AV. Resetting proteostasis with ISRIB promotes epithelial differentiation to attenuate pulmonary fibrosis. Proc Natl Acad Sci U S A 2021; 118:e2101100118. [PMID: 33972447 PMCID: PMC8157939 DOI: 10.1073/pnas.2101100118] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pulmonary fibrosis is a relentlessly progressive and often fatal disease with a paucity of available therapies. Genetic evidence implicates disordered epithelial repair, which is normally achieved by the differentiation of small cuboidal alveolar type 2 (AT2) cells into large, flattened alveolar type 1 (AT1) cells as an initiating event in pulmonary fibrosis pathogenesis. Using models of pulmonary fibrosis in young adult and old mice and a model of adult alveologenesis after pneumonectomy, we show that administration of ISRIB, a small molecule that restores protein translation by EIF2B during activation of the integrated stress response (ISR), accelerated the differentiation of AT2 into AT1 cells. Accelerated epithelial repair reduced the recruitment of profibrotic monocyte-derived alveolar macrophages and ameliorated lung fibrosis. These findings suggest a dysfunctional role for the ISR in regeneration of the alveolar epithelium after injury with implications for therapy.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Department of Respiratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Nikolay S Markov
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Ziyan Lu
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Raul Piseaux Aillon
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Saul Soberanes
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Constance E Runyan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Ziyou Ren
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Rogan A Grant
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Mariana Maciel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Hiam Abdala-Valencia
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Yuliya Politanska
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Kiwon Nam
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Lango Sichizya
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Hermon G Kihshen
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Nikita Joshi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Alexandra C McQuattie-Pimentel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Katherine A Gruner
- Mouse Histology and Phenotyping Laboratory, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611
| | - Manu Jain
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Jacob I Sznajder
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Richard I Morimoto
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Paul A Reyfman
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Cara J Gottardi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - G R Scott Budinger
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611;
| | - Alexander V Misharin
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611;
| |
Collapse
|
16
|
AP-3-dependent targeting of flippase ATP8A1 to lamellar bodies suppresses activation of YAP in alveolar epithelial type 2 cells. Proc Natl Acad Sci U S A 2021; 118:2025208118. [PMID: 33990468 DOI: 10.1073/pnas.2025208118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lamellar bodies (LBs) are lysosome-related organelles (LROs) of surfactant-producing alveolar type 2 (AT2) cells of the distal lung epithelium. Trafficking pathways to LBs have been understudied but are likely critical to AT2 cell homeostasis given associations between genetic defects of endosome to LRO trafficking and pulmonary fibrosis in Hermansky Pudlak syndrome (HPS). Our prior studies uncovered a role for AP-3, defective in HPS type 2, in trafficking Peroxiredoxin-6 to LBs. We now show that the P4-type ATPase ATP8A1 is sorted by AP-3 from early endosomes to LBs through recognition of a C-terminal dileucine-based signal. Disruption of the AP-3/ATP8A1 interaction causes ATP8A1 accumulation in early sorting and/or recycling endosomes, enhancing phosphatidylserine exposure on the cytosolic leaflet. This in turn promotes activation of Yes-activating protein, a transcriptional coactivator, augmenting cell migration and AT2 cell numbers. Together, these studies illuminate a mechanism whereby loss of AP-3-mediated trafficking contributes to a toxic gain-of-function that results in enhanced and sustained activation of a repair pathway associated with pulmonary fibrosis.
Collapse
|
17
|
Velázquez-Díaz P, Nakajima E, Sorkhdini P, Hernandez-Gutierrez A, Eberle A, Yang D, Zhou Y. Hermansky-Pudlak Syndrome and Lung Disease: Pathogenesis and Therapeutics. Front Pharmacol 2021; 12:644671. [PMID: 33841163 PMCID: PMC8028140 DOI: 10.3389/fphar.2021.644671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/11/2021] [Indexed: 12/19/2022] Open
Abstract
Hermansky-Pudlak Syndrome (HPS) is a rare, genetic, multisystem disorder characterized by oculocutaneous albinism (OCA), bleeding diathesis, immunodeficiency, granulomatous colitis, and pulmonary fibrosis. HPS pulmonary fibrosis (HPS-PF) occurs in 100% of patients with subtype HPS-1 and has a similar presentation to idiopathic pulmonary fibrosis. Upon onset, individuals with HPS-PF have approximately 3 years before experiencing signs of respiratory failure and eventual death. This review aims to summarize current research on HPS along with its associated pulmonary fibrosis and its implications for the development of novel treatments. We will discuss the genetic basis of the disease, its epidemiology, and current therapeutic and clinical management strategies. We continue to review the cellular processes leading to the development of HPS-PF in alveolar epithelial cells, lymphocytes, mast cells, and fibrocytes, along with the molecular mechanisms that contribute to its pathogenesis and may be targeted in the treatment of HPS-PF. Finally, we will discuss emerging new cellular and molecular approaches for studying HPS, including lentiviral-mediated gene transfer, induced pluripotent stem cells (iPSCs), organoid and 3D-modelling, and CRISPR/Cas9-based gene editing approaches.
Collapse
Affiliation(s)
| | - Erika Nakajima
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Parand Sorkhdini
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | | | - Adam Eberle
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Dongqin Yang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| |
Collapse
|
18
|
Yokoyama T, Gochuico BR. Hermansky-Pudlak syndrome pulmonary fibrosis: a rare inherited interstitial lung disease. Eur Respir Rev 2021; 30:30/159/200193. [PMID: 33536261 DOI: 10.1183/16000617.0193-2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary fibrosis is a progressive interstitial lung disease of unknown aetiology with a poor prognosis. Studying genetic diseases associated with pulmonary fibrosis provides insights into the pathogenesis of the disease. Hermansky-Pudlak syndrome (HPS), a rare autosomal recessive disorder characterised by abnormal biogenesis of lysosome-related organelles, manifests with oculocutaneous albinism and excessive bleeding of variable severity. Pulmonary fibrosis is highly prevalent in three out of 10 genetic types of HPS (HPS-1, HPS-2 and HPS-4). Thus, genotyping of individuals with HPS is clinically relevant. HPS-1 tends to affect Puerto Rican individuals due to a genetic founder effect. HPS pulmonary fibrosis shares some clinical features with idiopathic pulmonary fibrosis (IPF), including dyspnoea, cough, restrictive lung physiology and computed tomography (CT) findings of fibrosis. In contrast to IPF, HPS pulmonary fibrosis generally affects children (HPS-2) or middle-aged adults (HPS-1 or HPS-4) and may be associated with ground-glass opacification in CT scans. Histopathology of HPS pulmonary fibrosis, and not IPF, shows vacuolated hyperplastic type II cells with enlarged lamellar bodies and alveolar macrophages with lipofuscin-like deposits. Antifibrotic drugs approved as treatment for IPF are not approved for HPS pulmonary fibrosis. However, lung transplantation has been performed in patients with severe HPS pulmonary fibrosis. HPS pulmonary fibrosis serves as a model for studying fibrotic lung disease and fibrosis in general.
Collapse
Affiliation(s)
- Tadafumi Yokoyama
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Dept of Pediatrics, Kanazawa University, Kanazawa, Japan
| | - Bernadette R Gochuico
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Homma S, Ebina M, Kuwano K, Goto H, Sakai F, Sakamoto S, Johkoh T, Sugino K, Tachibana T, Terasaki Y, Nishioka Y, Hagiwara K, Hashimoto N, Hasegawa Y, Hebisawa A. Intractable diffuse pulmonary diseases: Manual for diagnosis and treatment. Respir Investig 2021; 59:8-33. [PMID: 32622842 DOI: 10.1016/j.resinv.2020.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
This manual has been compiled by a joint production committee with the Diffuse Lung Disease Assembly of the Japanese Respiratory Society (JRS) to provide a practical manual for the epidemiology, diagnosis, and treatment of intractable diffuse pulmonary diseases. The contents are based upon the results of research into these diseases by the Diffuse Pulmonary Diseases Study Group (principal researcher: Sakae Homma) supported by the FY2014-FY2016 Health and Labor Sciences Research Grant on Intractable Diseases. This manual focuses on: 1) pulmonary alveolar microlithiasis, 2) bronchiolitis obliterans, and 3) Hermansky-Pudlak Syndrome with interstitial pneumonia. As these are rare/intractable diffuse lung diseases (2 and 3 were first recognized as specified intractable diseases in 2015), there have not been sufficient epidemiological studies made, and there has been little progress in formulating diagnostic criteria and severity scales; however, the results of Japan's first surveys and research into such details are presented herein. In addition, the manual provides treatment guidance and actual cases for each disease, aiming to assist in the establishment of future modalities. The manual was produced with the goal of enabling clinicians specialized in respiratory apparatus to handle these diseases in clinical settings and of further advancing future research and treatment.
Collapse
Affiliation(s)
- Sakae Homma
- Department of Advanced and Integrated Interstitial Lung Diseases Research, School of Medicine, Toho University, Tokyo, Japan.
| | - Masahito Ebina
- Department of Respiratory Medicine in the 1st Internal Medicine, Tohoku Medical and Pharmaceutical University School of Medicine, Sendai, Japan.
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Hisatsugu Goto
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.
| | - Fumikazu Sakai
- Department of Diagnostic Radiology, Saitama International Medical Center, Saitama Medical University, Saitama, Japan.
| | - Susumu Sakamoto
- Department of Respiratory Medicine, Toho University Omori Medical Center, Tokyo, Japan.
| | - Takeshi Johkoh
- Department of Radiology, Kinki Central Hospital of Mutual Aid Association of Public School Teachers, Hyogo, Japan.
| | - Keishi Sugino
- Department of Respiratory Medicine, Toho University Omori Medical Center, Tokyo, Japan.
| | - Teruo Tachibana
- Department of Internal Medicine, Aizenbashi Hospital, Osaka, Japan.
| | - Yasahiro Terasaki
- Department of Pathology (Analytic Human Pathology), Nippon Medical School, Tokyo, Japan.
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.
| | - Koichi Hagiwara
- Division of Pulmonary Medicine, Jichi Medical University, Saitama, Japan.
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan.
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan.
| | - Akira Hebisawa
- National Hospital Organization Tokyo Medical Center, Tokyo, Japan.
| |
Collapse
|
20
|
Gow J, Yang Y, Govindraj M, Guo C. Nitric Oxide Regulates Macrophage Fungicidal Activity via S-nitrosylation of Dectin-1. ACTA ACUST UNITED AC 2020; 6:90-98. [PMID: 32953945 PMCID: PMC7500157 DOI: 10.1089/aivt.2020.0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Recognition of fungal surface β-glucan by pattern recognition receptor Dectin-1 is a critical process for fungal clearance in the lung. In humans, persistent fungal infection is observed in individuals with particular Dectin-1 polymorphism. We have identified that nitric oxide (NO) modifies critical cysteines in pattern recognition molecules to disassemble and alter protein function. There is a hydrophobic S-nitrosylation motif present in surfactant protein-D (SP-D) that is also present in Dectin-1. We hypothesized that Dectin-1 can be modified by nitrosative stress potentially leading to impairment of fungal clearance. Materials and Methods: Recombinant Dectin-1 was incubated with l-nitrosocysteine (L-SNOC) and S-nitrosylated Dectin-1 was detected by Biotin-switch assay. Cells of a murine macrophage line (Raw 264.7) were incubated with S-nitroso-glutathione (GSNO) and Dectin-1 shedding from the cell surface was determined by Western blot. Dectin-1 quaternary structure was determined by native gel electrophoresis. Dectin-1 function was assayed by NF-κB activity and IL-6 mRNA real-time polymerase chain reaction (PCR). Phagocytic activity was measured by fluorescence labeled zymosan beads. Results: Dectin-1 was S-nitrosylated by l-nitrosocysteine (L-SNOC) in vitro, as determined by Biotin-switch assay, resulting in structural disruption. We used Western blotting and flow cytometry to demonstrate that incubation of a murine macrophage cell line (Raw 264.7 cells) with GSNO reduced the surface Dectin-1 expression as a result of shedding to the media. The shedding of Dectin-1 is due to formation of S-nitrosothiol (SNO)-Dectin-1 and disruption of the Dectin-1 oligomeric complex. GSNO also induces Dectin-1 shedding from the cell surface. The functional significance of GSNO treatment of macrophages is shown by reduced β-glucan-mediated signaling in terms of NF-κB function and IL-6 expression. Finally, it was demonstrated that GSNO treatment reduces the capability of macrophages to phagocytose zymosan. Conclusions: These data provide mechanistic data to support the role of Dectin-1 nitrosylation as a mediator of reduced fungal clearance in the face of increased NO exposure.
Collapse
Affiliation(s)
- James Gow
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Yujie Yang
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Mohan Govindraj
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Changjiang Guo
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
21
|
Bowman SL, Bi-Karchin J, Le L, Marks MS. The road to lysosome-related organelles: Insights from Hermansky-Pudlak syndrome and other rare diseases. Traffic 2020; 20:404-435. [PMID: 30945407 DOI: 10.1111/tra.12646] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
Lysosome-related organelles (LROs) comprise a diverse group of cell type-specific, membrane-bound subcellular organelles that derive at least in part from the endolysosomal system but that have unique contents, morphologies and functions to support specific physiological roles. They include: melanosomes that provide pigment to our eyes and skin; alpha and dense granules in platelets, and lytic granules in cytotoxic T cells and natural killer cells, which release effectors to regulate hemostasis and immunity; and distinct classes of lamellar bodies in lung epithelial cells and keratinocytes that support lung plasticity and skin lubrication. The formation, maturation and/or secretion of subsets of LROs are dysfunctional or entirely absent in a number of hereditary syndromic disorders, including in particular the Hermansky-Pudlak syndromes. This review provides a comprehensive overview of LROs in humans and model organisms and presents our current understanding of how the products of genes that are defective in heritable diseases impact their formation, motility and ultimate secretion.
Collapse
Affiliation(s)
- Shanna L Bowman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jing Bi-Karchin
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Linh Le
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Jing R, Zhang H, Kong Y, Li K, Dong X, Yan J, Han J, Feng L. Different functions of biogenesis of lysosomal organelles complex 3 subunit 1 (Hps1) and adaptor-related protein complex 3, beta 1 subunit (Ap3b1) genes on spermatogenesis and male fertility. Reprod Fertil Dev 2020; 31:972-982. [PMID: 30786955 DOI: 10.1071/rd18339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/24/2018] [Indexed: 12/16/2022] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disorder in humans and mice. Pale ear (ep) and pearl (pe) mice, bearing mutations in the biogenesis of lysosomal organelles complex 3 subunit 1 (Hps1) and adaptor-related protein complex 3, beta 1 subunit (Ap3b1) genes respectively, are mouse models of human HPS Type 1 (HPS1) and Type 2 (HPS2) respectively. In the present study we investigated and compared the reduced fertilities of ep and pe male mice. Both ep and pe males exhibited lower abilities to impregnate C57BL/6J (B6) females, and B6 females mated with ep males produced smaller litters than those mated with pe males. Delayed testis development, reduced sperm count and lower testosterone concentrations were observed in the pe but not ep male mice. However, the reduction in sperm motility was greater in ep than pe males, likely due to the mitochondrial and fibrous sheath abnormalities observed by electron microscopy in the sperm tails of ep males. Together, the results indicate that the Hps1 and Ap3b1 genes play distinct roles in male reproductive system development and spermatogenesis in mice, even though ep and pe males share common phenotypes, including reduced lysosomes in Sertoli cells and dislocated Zn2+ in sperm heads.
Collapse
Affiliation(s)
- Renwei Jing
- Basic Medical College, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, PR China; and Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, PR China
| | - Haiqing Zhang
- Department of Bioengineering, Shandong Polytechnic, Jinan, Shandong 250014, PR China
| | - Yu Kong
- Basic Medical College, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, PR China; and Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, PR China
| | - Kailin Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, PR China; and Present address: Central Research Laboratory, The Second Hospital of Shandong University, Jinan 250100, PR China
| | - Xuan Dong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, PR China
| | - Jie Yan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, PR China
| | - Jia Han
- Department of Nephrology, Key Laboratory for Kidney Regeneration of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Street, Jinan, 250021, China; and Corresponding authors. Emails: ;
| | - Lijun Feng
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, PR China; and Corresponding authors. Emails: ;
| |
Collapse
|
23
|
Guo CJ, Atochina-Vasserman EN, Abramova E, Smith LC, Beers MF, Gow AJ. Surfactant protein-D modulation of pulmonary macrophage phenotype is controlled by S-nitrosylation. Am J Physiol Lung Cell Mol Physiol 2019; 317:L539-L549. [PMID: 31411060 DOI: 10.1152/ajplung.00506.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Surfactant protein-D (SP-D) is a regulator of pulmonary innate immunity whose oligomeric state can be altered through S-nitrosylation to regulate its signaling function in macrophages. Here, we examined how nitrosylation of SP-D alters the phenotypic response of macrophages to stimuli both in vivo and in vitro. Bronchoalveolar lavage (BAL) from C57BL6/J and SP-D-overexpressing (SP-D OE) mice was incubated with RAW264.7 cells ± LPS. LPS induces the expression of the inflammatory genes Il1b and Nos2, which is reduced 10-fold by SP-D OE-BAL. S-nitrosylation of the SP-D OE-BAL (SNO-SP-D OE-BAL) abrogated this inhibition. SNO-SP-D OE-BAL alone induced Il1b and Nos2 expression. PCR array analysis of macrophages incubated with SP-D OE-BAL (±LPS) shows increased expression of repair genes, Ccl20, Cxcl1, and Vcam1, that was accentuated by LPS. LPS increases inflammatory gene expression, Il1a, Nos2, Tnf, and Ptgs2, which was accentuated by SNO-SP-D OE-BAL but inhibited by SP-D OE-BAL. The transcription factor NF-κB was identified as a target for SNO-SP-D by IPA, which was confirmed by Trans-AM ELISA in vitro. In vivo, SP-D overexpression increases the burden of infection in a Pneumocystis model while increasing cellular recruitment. Expression of iNOS and the production of NO metabolites were significantly reduced in SP-D OE mice relative to C57BL6/J. Inflammatory gene expression was increased in infected C57BL6/J mice but decreased in SP-D OE. SP-D oligomeric structure was disrupted in C57BL6/J infected mice but unaltered within SP-D OE. Thus SP-D modulates macrophage phenotype and the balance of multimeric to trimeric SP-D is critical to this regulation.
Collapse
Affiliation(s)
- Chang-Jiang Guo
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | | | - Elena Abramova
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ley Cody Smith
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Michael F Beers
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew J Gow
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
24
|
Kook S, Qi A, Wang P, Meng S, Gulleman P, Young LR, Guttentag SH. Gene-edited MLE-15 Cells as a Model for the Hermansky-Pudlak Syndromes. Am J Respir Cell Mol Biol 2019; 58:566-574. [PMID: 29190429 DOI: 10.1165/rcmb.2017-0324ma] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Defining the mechanisms of cellular pathogenesis in rare lung diseases such as Hermansky-Pudlak syndrome (HPS) is often complicated by loss of the differentiated phenotype of cultured primary alveolar type 2 (AT2) cells, as well as by a lack of durable cell lines that are faithful to both AT2-cell and rare disease phenotypes. We used CRISPR/Cas9 gene editing to generate a series of HPS-specific mutations in the MLE-15 cell line. The resulting MLE-15/HPS cell lines exhibit preservation of AT2 cellular functions, including formation of lamellar body-like organelles, complete processing of surfactant protein B, and known features of HPS specific to each trafficking complex, including loss of protein targeting to lamellar bodies. MLE-15/HPS1 and MLE-15/HPS2 (with a mutation in Ap3β1) express increased macrophage chemotactic protein-1, a well-described mediator of alveolitis in patients with HPS and in mouse models. We show that MLE-15/HPS9 and pallid AT2 cells (with a mutation in Bloc1s6) also express increased macrophage chemotactic protein-1, suggesting that mice and humans with BLOC-1 mutations may also be susceptible to alveolitis. In addition to providing a flexible platform to examine the role of HPS-specific mutations in trafficking AT2 cells, MLE-15/HPS cell lines provide a durable resource for high-throughput screening and studies of cellular pathophysiology that are likely to accelerate progress toward developing novel therapies for this rare lung disease.
Collapse
Affiliation(s)
| | - Aidong Qi
- 2 Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | - Peter Gulleman
- 2 Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Lisa R Young
- 2 Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | |
Collapse
|
25
|
Katzen J, Wagner BD, Venosa A, Kopp M, Tomer Y, Russo SJ, Headen AC, Basil MC, Stark JM, Mulugeta S, Deterding RR, Beers MF. An SFTPC BRICHOS mutant links epithelial ER stress and spontaneous lung fibrosis. JCI Insight 2019; 4:126125. [PMID: 30721158 DOI: 10.1172/jci.insight.126125] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/31/2019] [Indexed: 12/14/2022] Open
Abstract
Alveolar type 2 (AT2) cell endoplasmic reticulum (ER) stress is a prominent feature in adult and pediatric interstitial lung disease (ILD and ChILD), but in vivo models linking AT2 cell ER stress to ILD have been elusive. Based on a clinical ChILD case, we identified a critical cysteine residue in the surfactant protein C gene (SFTPC) BRICHOS domain whose mutation induced ER stress in vitro. To model this in vivo, we generated a knockin mouse model expressing a cysteine-to-glycine substitution at codon 121 (C121G) in the Sftpc gene. SftpcC121G expression during fetal development resulted in a toxic gain-of-function causing fatal postnatal respiratory failure from disrupted lung morphogenesis. Induced SftpcC121G expression in adult mice resulted in an ER-retained pro-protein causing AT2 cell ER stress. SftpcC121G AT2 cells were a source of cytokines expressed in concert with development of polycellular alveolitis. These cytokines were subsequently found in a high-dimensional proteomic screen of bronchoalveolar lavage fluid from ChILD patients with the same class of SFTPC mutations. Following alveolitis resolution, SftpcC121G mice developed spontaneous pulmonary fibrosis and restrictive lung impairment. This model provides proof of concept linking AT2 cell ER stress to fibrotic lung disease coupled with translationally relevant biomarkers.
Collapse
Affiliation(s)
- Jeremy Katzen
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brandie D Wagner
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Alessandro Venosa
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Meghan Kopp
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yaniv Tomer
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott J Russo
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alvis C Headen
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria C Basil
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James M Stark
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Texas Health Science Center, Houston, Texas, USA
| | - Surafel Mulugeta
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robin R Deterding
- Department of Pediatrics and Breathing Institute, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael F Beers
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Penn Center For Pulmonary Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Hung LY, Sen D, Oniskey TK, Katzen J, Cohen NA, Vaughan AE, Nieves W, Urisman A, Beers MF, Krummel MF, Herbert DR. Macrophages promote epithelial proliferation following infectious and non-infectious lung injury through a Trefoil factor 2-dependent mechanism. Mucosal Immunol 2019; 12:64-76. [PMID: 30337651 PMCID: PMC6301101 DOI: 10.1038/s41385-018-0096-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 02/04/2023]
Abstract
Coordinated efforts between macrophages and epithelia are considered essential for wound healing, but the macrophage-derived molecules responsible for repair are poorly defined. This work demonstrates that lung macrophages rely upon Trefoil factor 2 to promote epithelial proliferation following damage caused by sterile wounding, Nippostrongylus brasiliensis or Bleomycin sulfate. Unexpectedly, the presence of T, B, or ILC populations was not essential for macrophage-driven repair. Instead, conditional deletion of TFF2 in myeloid-restricted CD11cCre TFF2 flox mice exacerbated lung pathology and reduced the proliferative expansion of CD45- EpCAM+ pro-SPC+ alveolar type 2 cells. TFF2 deficient macrophages had reduced expression of the Wnt genes Wnt4 and Wnt16 and reconstitution of hookworm-infected CD11cCre TFF2flox mice with rWnt4 and rWnt16 restored the proliferative defect in lung epithelia post-injury. These data reveal a previously unrecognized mechanism wherein lung myeloid phagocytes utilize a TFF2/Wnt axis as a mechanism that drives epithelial proliferation following lung injury.
Collapse
Affiliation(s)
- Li-Yin Hung
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Debasish Sen
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Taylor K. Oniskey
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Jeremey Katzen
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Noam A. Cohen
- Departments of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Monell Chemical Senses Center, and Philadelphia VA Medical Center Surgical Service
| | - Andrew E. Vaughan
- Department of Biological Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Wildaliz Nieves
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Anatoly Urisman
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael F. Beers
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania,PENN Center for Pulmonary Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Matthew F. Krummel
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - De’Broski R. Herbert
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| |
Collapse
|
27
|
Nureki SI, Tomer Y, Venosa A, Katzen J, Russo SJ, Jamil S, Barrett M, Nguyen V, Kopp M, Mulugeta S, Beers MF. Expression of mutant Sftpc in murine alveolar epithelia drives spontaneous lung fibrosis. J Clin Invest 2018; 128:4008-4024. [PMID: 29920187 PMCID: PMC6118576 DOI: 10.1172/jci99287] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/14/2018] [Indexed: 01/09/2023] Open
Abstract
Epithelial cell dysfunction is postulated as an important component in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Mutations in the surfactant protein C (SP-C) gene (SFTPC), an alveolar type II (AT2) cell-restricted protein, have been found in sporadic and familial IPF. To causally link these events, we developed a knockin mouse model capable of regulated expression of an IPF-associated isoleucine-to-threonine substitution at codon 73 (I73T) in Sftpc (SP-CI73T). Tamoxifen-treated SP-CI73T cohorts developed rapid increases in SftpcI73T mRNA and misprocessed proSP-CI73T protein accompanied by increased early mortality (days 7-14). This acute phase was marked by diffuse parenchymal lung injury, tissue infiltration by monocytes, polycellular alveolitis, and elevations in bronchoalveolar lavage and AT2 mRNA content of select inflammatory cytokines. Resolution of alveolitis (2-4 weeks), commensurate with a rise in TGF-β1, was followed by aberrant remodeling marked by collagen deposition, AT2 cell hyperplasia, α-smooth muscle actin-positive (α-SMA-positive) cells, and restrictive lung physiology. The translational relevance of the model was supported by detection of multiple IPF biomarkers previously reported in human cohorts. These data provide proof of principle that mutant SP-C expression in vivo causes spontaneous lung fibrosis, strengthening the role of AT2 cell dysfunction as a key upstream driver of IPF pathogenesis.
Collapse
Affiliation(s)
- Shin-Ichi Nureki
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Respiratory Medicine and Infectious Diseases, Oita University, Yufu, Japan
| | - Yaniv Tomer
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alessandro Venosa
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeremy Katzen
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott J. Russo
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarita Jamil
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew Barrett
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vivian Nguyen
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Meghan Kopp
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Surafel Mulugeta
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Center for Pulmonary Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael F. Beers
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Center for Pulmonary Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Klay D, Hoffman TW, Harmsze AM, Grutters JC, van Moorsel CHM. Systematic review of drug effects in humans and models with surfactant-processing disease. Eur Respir Rev 2018; 27:27/149/170135. [PMID: 29997245 DOI: 10.1183/16000617.0135-2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/12/2018] [Indexed: 12/14/2022] Open
Abstract
Fibrotic interstitial pneumonias are a group of rare diseases characterised by distortion of lung interstitium. Patients with mutations in surfactant-processing genes, such as surfactant protein C (SFTPC), surfactant protein A1 and A2 (SFTPA1 and A2), ATP binding cassette A3 (ABCA3) and Hermansky-Pudlak syndrome (HPS1, 2 and 4), develop progressive pulmonary fibrosis, often culminating in fatal respiratory insufficiency. Although many mutations have been described, little is known about the optimal treatment strategy for fibrotic interstitial pneumonia patients with surfactant-processing mutations.We performed a systematic literature review of studies that described a drug effect in patients, cell or mouse models with a surfactant-processing mutation. In total, 73 articles were selected, consisting of 55 interstitial lung disease case reports/series, two clinical trials and 16 cell or mouse studies. Clinical effect parameters included lung function, radiological characteristics and clinical symptoms, while experimental outcome parameters included chemokine/cytokine expression, surfactant trafficking, necrosis and apoptosis. SP600125, a c-jun N-terminal kinase (JNK) inhibitor, hydroxychloroquine and 4-phenylbutyric acid were most frequently studied in disease models and lead to variable outcomes, suggesting that outcome is mutation dependent.This systematic review summarises effect parameters for future studies on surfactant-processing disorders in disease models and provides directions for future trials in affected patients.
Collapse
Affiliation(s)
- Dymph Klay
- Interstitial Lung Disease Center of Excellence, Dept of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Thijs W Hoffman
- Interstitial Lung Disease Center of Excellence, Dept of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Ankie M Harmsze
- Dept of Clinical Pharmacy, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Jan C Grutters
- Interstitial Lung Disease Center of Excellence, Dept of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands.,Division of Heart and Lung, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Coline H M van Moorsel
- Interstitial Lung Disease Center of Excellence, Dept of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands .,Division of Heart and Lung, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
29
|
McQuattie-Pimentel AC, Budinger GRS, Ballinger MN. Monocyte-derived Alveolar Macrophages: The Dark Side of Lung Repair? Am J Respir Cell Mol Biol 2018; 58:5-6. [PMID: 29286855 DOI: 10.1165/rcmb.2017-0328ed] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
| | - G R Scott Budinger
- 1 Division of Pulmonary and Critical Care Northwestern University Chicago, Illinois and
| | - Megan N Ballinger
- 2 Division of Pulmonary, Critical Care and Sleep Medicine The Ohio State University Columbus, Ohio
| |
Collapse
|
30
|
|
31
|
Sorensen GL. Surfactant Protein D in Respiratory and Non-Respiratory Diseases. Front Med (Lausanne) 2018; 5:18. [PMID: 29473039 PMCID: PMC5809447 DOI: 10.3389/fmed.2018.00018] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases is summarized. Perspectives on the development of SP-D therapy are addressed.
Collapse
Affiliation(s)
- Grith L Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
32
|
Mueller M, Kramer BW. Stem cells and Bronchopulmonary Dysplasia - The five questions: Which cells, when, in which dose, to which patients via which route? Paediatr Respir Rev 2017; 24:54-59. [PMID: 28162941 DOI: 10.1016/j.prrv.2016.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/06/2016] [Indexed: 12/14/2022]
Abstract
Preterm birth is the leading cause of death in newborns and children. Despite advances in perinatology, immature infants continue to face serious risks such chronic respiratory impairment from bronchopulmonary dysplasia (BPD). Current treatment options are insufficient and novel approaches are desperately needed. In recent years stem cells have emerged as potential candidates to treat BPD with mesenchymal stem/stromal cells (MSCs) being particularly promising. MSCs originate from several stem cell niches including bone marrow, skin, or adipose, umbilical cord, and placental tissues. Although the first MSCs clinical trials in BPD are ongoing, multiple questions remain open. In this review, we discuss the question of the optimal cell source (live cells or cell products), route and timing of the transplantation. Furthermore, we discuss MSCs possible capacities including migration, homing, pro-angiogenesis, anti-inflammatory, and tissue-regenerative potential as well.
Collapse
Affiliation(s)
- Martin Mueller
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA; Department of Clinical Research, University of Bern, Bern, Switzerland.
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; School of Oncology and Developmental Biology (GROW), Maastricht, The Netherlands.
| |
Collapse
|
33
|
Mueller M, Wolfs TGA, Schoeberlein A, Gavilanes AWD, Surbek D, Kramer BW. Mesenchymal stem/stromal cells-a key mediator for regeneration after perinatal morbidity? Mol Cell Pediatr 2016; 3:6. [PMID: 26869264 PMCID: PMC4751100 DOI: 10.1186/s40348-016-0034-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
Perinatal complications in both term- and preterm-born infants are a leading cause of neonatal morbidities and mortality. Infants face different challenges in the neonatal intensive care unit with long-term morbidities such as perinatal brain injury and bronchopulmonary dysplasia being particularly devastating. While advances in perinatal medicine have improved our understanding of the pathogenesis, effective therapies to prevent and/or reduce the severity of these disorders are still lacking. The potential of mesenchymal stem/stromal cell (MSC) therapy has emerged during the last two decades, and an increasing effort is conducted to address brain- and lung-related morbidities in neonates at risk. Various studies support the notion that MSCs have protective effects. MSCs are an easy source and may be readily available after birth in a clinical setting. MSCs' mechanisms of action are diverse, including migration and homing, release of growth factors and immunomodulation, and the potential to replace injured cells. Here, we review the pathophysiology of perinatally acquired brain and lung injuries and focus on MSCs as potential candidates for therapeutic strategies summarizing preclinical and clinical evidence.
Collapse
Affiliation(s)
- Martin Mueller
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.
- Department of Obstetrics and Gynecology, University Hospital Bern and Department of Clinical Research, University of Bern, Bern, Switzerland.
| | - Tim G A Wolfs
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands.
- School of Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands.
| | - Andreina Schoeberlein
- Department of Obstetrics and Gynecology, University Hospital Bern and Department of Clinical Research, University of Bern, Bern, Switzerland.
| | - Antonio W D Gavilanes
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands.
- Institute of Biomedicine, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador.
- Department of Neuropsychology, Division Neuroscience, School of Mental Health and neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands.
| | - Daniel Surbek
- Department of Obstetrics and Gynecology, University Hospital Bern and Department of Clinical Research, University of Bern, Bern, Switzerland.
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands.
- School of Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands.
- Department of Neuropsychology, Division Neuroscience, School of Mental Health and neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
34
|
Young LR, Gulleman PM, Short CW, Tanjore H, Sherrill T, Qi A, McBride AP, Zaynagetdinov R, Benjamin JT, Lawson WE, Novitskiy SV, Blackwell TS. Epithelial-macrophage interactions determine pulmonary fibrosis susceptibility in Hermansky-Pudlak syndrome. JCI Insight 2016; 1:e88947. [PMID: 27777976 DOI: 10.1172/jci.insight.88947] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Alveolar epithelial cell (AEC) dysfunction underlies the pathogenesis of pulmonary fibrosis in Hermansky-Pudlak syndrome (HPS) and other genetic syndromes associated with interstitial lung disease; however, mechanisms linking AEC dysfunction and fibrotic remodeling are incompletely understood. Since increased macrophage recruitment precedes pulmonary fibrosis in HPS, we investigated whether crosstalk between AECs and macrophages determines fibrotic susceptibility. We found that AECs from HPS mice produce excessive MCP-1, which was associated with increased macrophages in the lungs of unchallenged HPS mice. Blocking MCP-1/CCR2 signaling in HPS mice with genetic deficiency of CCR2 or targeted deletion of MCP-1 in AECs normalized macrophage recruitment, decreased AEC apoptosis, and reduced lung fibrosis in these mice following treatment with low-dose bleomycin. We observed increased TGF-β production by HPS macrophages, which was eliminated by CCR2 deletion. Selective deletion of TGF-β in myeloid cells or of TGF-β signaling in AECs through deletion of TGFBR2 protected HPS mice from AEC apoptosis and bleomycin-induced fibrosis. Together, these data reveal a feedback loop in which increased MCP-1 production by dysfunctional AECs results in recruitment and activation of lung macrophages that produce TGF-β, thus amplifying the fibrotic cascade through AEC apoptosis and stimulation of fibrotic remodeling.
Collapse
Affiliation(s)
- Lisa R Young
- Department of Pediatrics, Division of Pulmonary Medicine, and.,Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Chelsi W Short
- Department of Pediatrics, Division of Pulmonary Medicine, and
| | - Harikrishna Tanjore
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Taylor Sherrill
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Aidong Qi
- Department of Pediatrics, Division of Pulmonary Medicine, and
| | | | - Rinat Zaynagetdinov
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - John T Benjamin
- Department of Pediatrics, Division of Neonatology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - William E Lawson
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sergey V Novitskiy
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Timothy S Blackwell
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA.,Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
35
|
Villalón H, Peñaloza G, Tuma D. TERAPIA REGENERATIVA EN NEONATOLOGÍA. REVISTA MÉDICA CLÍNICA LAS CONDES 2016. [DOI: 10.1016/j.rmclc.2016.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
36
|
Abstract
Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disorder that is associated with oculocutaneous albinism, bleeding diatheses, granulomatous colitis, and highly penetrant pulmonary fibrosis in some subtypes, including HPS-1, HPS-2, and HPS-4. HPS pulmonary fibrosis shows many of the clinical, radiologic, and histologic features found in idiopathic pulmonary fibrosis, but occurs at a younger age. Despite knowledge of the underlying genetic defects, there are currently no definitive therapeutic or preventive approaches for HPS pulmonary fibrosis other than lung transplant.
Collapse
Affiliation(s)
- Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Lisa R Young
- Division of Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, 2200 Children's Way, Doctor's Office Tower 11215, Nashville, TN 37232, USA; Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, 1161 21st Avenue South, B-1220 Medical Center North, Nashville, TN 37232, USA.
| |
Collapse
|
37
|
Kook S, Wang P, Young LR, Schwake M, Saftig P, Weng X, Meng Y, Neculai D, Marks MS, Gonzales L, Beers MF, Guttentag S. Impaired Lysosomal Integral Membrane Protein 2-dependent Peroxiredoxin 6 Delivery to Lamellar Bodies Accounts for Altered Alveolar Phospholipid Content in Adaptor Protein-3-deficient pearl Mice. J Biol Chem 2016; 291:8414-27. [PMID: 26907692 PMCID: PMC4861416 DOI: 10.1074/jbc.m116.720201] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 11/06/2022] Open
Abstract
The Hermansky Pudlak syndromes (HPS) constitute a family of disorders characterized by oculocutaneous albinism and bleeding diathesis, often associated with lethal lung fibrosis. HPS results from mutations in genes of membrane trafficking complexes that facilitate delivery of cargo to lysosome-related organelles. Among the affected lysosome-related organelles are lamellar bodies (LB) within alveolar type 2 cells (AT2) in which surfactant components are assembled, modified, and stored. AT2 from HPS patients and mouse models of HPS exhibit enlarged LB with increased phospholipid content, but the mechanism underlying these defects is unknown. We now show that AT2 in the pearl mouse model of HPS type 2 lacking the adaptor protein 3 complex (AP-3) fails to accumulate the soluble enzyme peroxiredoxin 6 (PRDX6) in LB. This defect reflects impaired AP-3-dependent trafficking of PRDX6 to LB, because pearl mouse AT2 cells harbor a normal total PRDX6 content. AP-3-dependent targeting of PRDX6 to LB requires the transmembrane protein LIMP-2/SCARB2, a known AP-3-dependent cargo protein that functions as a carrier for lysosomal proteins in other cell types. Depletion of LB PRDX6 in AP-3- or LIMP-2/SCARB2-deficient mice correlates with phospholipid accumulation in lamellar bodies and with defective intraluminal degradation of LB disaturated phosphatidylcholine. Furthermore, AP-3-dependent LB targeting is facilitated by protein/protein interaction between LIMP-2/SCARB2 and PRDX6 in vitro and in vivo Our data provide the first evidence for an AP-3-dependent cargo protein required for the maturation of LB in AT2 and suggest that the loss of PRDX6 activity contributes to the pathogenic changes in LB phospholipid homeostasis found HPS2 patients.
Collapse
Affiliation(s)
| | - Ping Wang
- From the Division of Neonatology and
| | - Lisa R Young
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Michael Schwake
- the Department of Chemistry, Biochemistry III, University of Bielefeld, D-33615 Bielefeld, Germany
| | - Paul Saftig
- the Institute of Biochemistry, Christian-Albrechts-University, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Xialian Weng
- the Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Ying Meng
- the Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Dante Neculai
- the Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Michael S Marks
- the Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, and the Departments of Pathology and Laboratory Medicine and of Physiology, and
| | - Linda Gonzales
- Division of Adult Pulmonary and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Michael F Beers
- Division of Adult Pulmonary and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
38
|
Guo C, Atochina-Vasserman E, Abramova H, George B, Manoj V, Scott P, Gow A. Role of NOS2 in pulmonary injury and repair in response to bleomycin. Free Radic Biol Med 2016; 91:293-301. [PMID: 26526764 PMCID: PMC5059840 DOI: 10.1016/j.freeradbiomed.2015.10.417] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO) is derived from multiple isoforms of the Nitric Oxide Synthases (NOSs) within the lung for a variety of functions; however, NOS2-derived nitrogen oxides seem to play an important role in inflammatory regulation. In this study, we investigate the role of NOS2 in pulmonary inflammation/fibrosis in response to intratracheal bleomycin instillation (ITB) and to determine if these effects are related to macrophage phenotype. Systemic NOS2 inhibition was achieved by administration of 1400W, a specific and potent NOS2 inhibitor, via osmotic pump starting six days prior to ITB. 1400W administration attenuated lung inflammation, decreased chemotactic activity of the broncheoalveolar lavage (BAL), and reduced BAL cell count and nitrogen oxide production. S-nitrosylated SP-D (SNO-SP-D), which has a pro-inflammatory function, was formed in response to ITB; but this formation, as well as structural disruption of SP-D, was inhibited by 1400W. mRNA levels of IL-1β, CCL2 and Ptgs2 were decreased by 1400W treatment. In contrast, expression of genes associated with alternate macrophage activation and fibrosis Fizz1, TGF-β and Ym-1 was not changed by 1400W. Similar to the effects of 1400W, NOS2-/- mice displayed an attenuated inflammatory response to ITB (day 3 and day 8 post-instillation). The DNA-binding activity of NF-κB was attenuated in NOS2-/- mice; in addition, expression of alternate activation genes (Fizz1, Ym-1, Gal3, Arg1) was increased. This shift towards an increase in alternate activation was confirmed by western blot for Fizz-1 and Gal-3 that show persistent up-regulation 15 days after ITB. In contrast arginase, which is increased in expression at 8 days post ITB in NOS2-/-, resolves by day 15. These data suggest that NOS2, while critical to the development of the acute inflammatory response to injury, is also necessary to control the late phase response to ITB.
Collapse
Affiliation(s)
- Changjiang Guo
- Department of Pharmacology & Toxicology, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Elena Atochina-Vasserman
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Helen Abramova
- Department of Pharmacology & Toxicology, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Blessy George
- Department of Pharmacology & Toxicology, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Veleeparambil Manoj
- Department of Molecular Genetics, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Pamela Scott
- Department of Pharmacology & Toxicology, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Andrew Gow
- Department of Pharmacology & Toxicology, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
39
|
Atochina-Vasserman EN, Abramova E, James ML, Rue R, Liu AY, Ersumo NT, Guo CJ, Gow AJ, Krymskaya VP. Pharmacological targeting of VEGFR signaling with axitinib inhibits Tsc2-null lesion growth in the mouse model of lymphangioleiomyomatosis. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1447-54. [PMID: 26432869 DOI: 10.1152/ajplung.00262.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/30/2015] [Indexed: 11/22/2022] Open
Abstract
Pulmonary lymphangioleiomyomatosis (LAM), a rare progressive lung disease associated with mutations of the tuberous sclerosis complex 2 (Tsc2) tumor suppressor gene, manifests by neoplastic growth of LAM cells, induction of cystic lung destruction, and respiratory failure. LAM severity correlates with upregulation in serum of the prolymphangiogenic vascular endothelial growth factor D (VEGF-D) that distinguishes LAM from other cystic diseases. The goals of our study was to determine whether Tsc2 deficiency upregulates VEGF-D, and whether axitinib, the Food and Drug Administration-approved small-molecule inhibitor of VEGF receptor (VEGFR) signaling, will reduce Tsc2-null lung lesion growth in a mouse model of LAM. Our data demonstrate upregulation of VEGF-D in the serum and lung lining in mice with Tsc2-null lesions. Progressive growth of Tsc2-null lesions induces recruitment and activation of inflammatory cells and increased nitric oxide production. Recruited cells isolated from the lung lining of mice with Tsc2-null lesions demonstrate upregulated expression of provasculogenic Vegfa, prolymphangiogenic Figf, and proinflammatory Nos2, Il6, and Ccl2 genes. Importantly, axitinib is an effective inhibitor of Tsc2-null lesion growth and inflammatory cell recruitment, which correlates with reduced VEGF-D levels in serum and lung lining. Our data demonstrate that pharmacological inhibition of VEGFR signaling with axitinib inhibits Tsc2-null lesion growth, attenuates recruitment and activation of inflammatory cells, and reduces VEGF-D levels systemically and in the lung lining. Our study suggests a potential therapeutic benefit of inhibition of VEGFR signaling for treatment of LAM.
Collapse
Affiliation(s)
- Elena N Atochina-Vasserman
- Airway Biology Initiative, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Pulmonary, Allergy and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| | - Elena Abramova
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, New Jersey
| | - Melane L James
- Airway Biology Initiative, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Pulmonary, Allergy and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| | - Ryan Rue
- Airway Biology Initiative, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Amy Y Liu
- Airway Biology Initiative, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nathan Tessema Ersumo
- Airway Biology Initiative, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Chang-Jiang Guo
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, New Jersey
| | - Andrew J Gow
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, New Jersey
| | - Vera P Krymskaya
- Airway Biology Initiative, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Pulmonary, Allergy and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| |
Collapse
|
40
|
Atochina-Vasserman EN, Guo CJ, Abramova E, Golden TN, Sims M, James ML, Beers MF, Gow AJ, Krymskaya VP. Surfactant dysfunction and lung inflammation in the female mouse model of lymphangioleiomyomatosis. Am J Respir Cell Mol Biol 2015; 53:96-104. [PMID: 25474372 DOI: 10.1165/rcmb.2014-0224oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pulmonary lymphangioleiomyomatosis (LAM) is a rare lung disease caused by mutations of the tumor suppressor genes, tuberous sclerosis complex (TSC) 1 or TSC2. LAM affects women almost exclusively, and it is characterized by neoplastic growth of atypical smooth muscle-like TSC2-null LAM cells in the pulmonary interstitium, cystic destruction of lung parenchyma, and progressive decline in lung function. In this study, we hypothesized that TSC2-null lesions promote a proinflammatory environment, which contributes to lung parenchyma destruction. Using a TSC2-null female murine LAM model, we demonstrate that TSC2-null lesions promote alveolar macrophage accumulation, recruitment of immature multinucleated cells, an increased induction of proinflammatory genes, nitric oxide (NO) synthase 2, IL-6, chemokine (C-C motif) ligand 2 (CCL2)/monocyte chemotactic protein 1 (MCP1), chemokine (C-X-C motif) ligand 1 (CXCL1)/keratinocyte chemoattractant (KC), and up-regulation of IL-6, KC, MCP-1, and transforming growth factor-β1 levels in bronchoalveolar lavage fluid. Bronchoalveolar lavage fluid also contained an increased level of surfactant protein (SP)-D, but not SP-A, significant reduction of SP-B levels, and a resultant increase in alveolar surface tension. Consistent with the growth of TSC2-null lesions, NO levels were also increased and, in turn, modified SP-D through S-nitrosylation, forming S-nitrosylated SP-D, a known consequence of lung inflammation. Progressive growth of TSC2-null lesions was accompanied by elevated levels of matrix metalloproteinase-3 and -9. This report demonstrates a link between growth of TSC2-null lesions and inflammation-induced surfactant dysfunction that might contribute to lung destruction in LAM.
Collapse
Affiliation(s)
- Elena N Atochina-Vasserman
- 1 Airway Biology Initiative and.,2 Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| | - Chang-Jiang Guo
- 3 Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
| | - Elena Abramova
- 3 Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
| | - Thea N Golden
- 3 Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
| | - Michael Sims
- 2 Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| | - Melane L James
- 1 Airway Biology Initiative and.,2 Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| | - Michael F Beers
- 2 Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| | - Andrew J Gow
- 3 Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
| | - Vera P Krymskaya
- 1 Airway Biology Initiative and.,2 Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| |
Collapse
|
41
|
Mulugeta S, Nureki SI, Beers MF. Lost after translation: insights from pulmonary surfactant for understanding the role of alveolar epithelial dysfunction and cellular quality control in fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 2015; 309:L507-25. [PMID: 26186947 PMCID: PMC4572416 DOI: 10.1152/ajplung.00139.2015] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/10/2015] [Indexed: 01/08/2023] Open
Abstract
Dating back nearly 35 years ago to the Witschi hypothesis, epithelial cell dysfunction and abnormal wound healing have reemerged as central concepts in the pathophysiology of idiopathic pulmonary fibrosis (IPF) in adults and in interstitial lung disease in children. Alveolar type 2 (AT2) cells represent a metabolically active compartment in the distal air spaces responsible for pulmonary surfactant biosynthesis and function as a progenitor population required for maintenance of alveolar integrity. Rare mutations in surfactant system components have provided new clues to understanding broader questions regarding the role of AT2 cell dysfunction in the pathophysiology of fibrotic lung diseases. Drawing on data generated from a variety of model systems expressing disease-related surfactant component mutations [surfactant proteins A and C (SP-A and SP-C); the lipid transporter ABCA3], this review will examine the concept of epithelial dysfunction in fibrotic lung disease, provide an update on AT2 cell and surfactant biology, summarize cellular responses to mutant surfactant components [including endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and intrinsic apoptosis], and examine quality control pathways (unfolded protein response, the ubiquitin-proteasome system, macroautophagy) that can be utilized to restore AT2 homeostasis. This integrated response and its derangement will be placed in the context of cell stress and quality control signatures found in patients with familial or sporadic IPF as well as non-surfactant-related AT2 cell dysfunction syndromes associated with a fibrotic lung phenotype. Finally, the need for targeted therapeutic strategies for pulmonary fibrosis that address epithelial ER stress, its downstream signaling, and cell quality control are discussed.
Collapse
Affiliation(s)
- Surafel Mulugeta
- Pulmonary, Allergy, and Critical Care Division; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| | - Shin-Ichi Nureki
- Department of Respiratory Medicine and Infectious Diseases, Oita University, Yufu, Oita, Japan
| | - Michael F Beers
- Pulmonary, Allergy, and Critical Care Division; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| |
Collapse
|
42
|
Zhou Y, He CH, Herzog EL, Peng X, Lee CM, Nguyen TH, Gulati M, Gochuico BR, Gahl WA, Slade ML, Lee CG, Elias JA. Chitinase 3-like-1 and its receptors in Hermansky-Pudlak syndrome-associated lung disease. J Clin Invest 2015; 125:3178-92. [PMID: 26121745 DOI: 10.1172/jci79792] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 05/21/2015] [Indexed: 12/20/2022] Open
Abstract
Hermansky-Pudlak syndrome (HPS) comprises a group of inherited disorders caused by mutations that alter the function of lysosome-related organelles. Pulmonary fibrosis is the major cause of morbidity and mortality in patients with subtypes HPS-1 and HPS-4, which both result from defects in biogenesis of lysosome-related organelle complex 3 (BLOC-3). The prototypic chitinase-like protein chitinase 3-like-1 (CHI3L1) plays a protective role in the lung by ameliorating cell death and stimulating fibroproliferative repair. Here, we demonstrated that circulating CHI3L1 levels are higher in HPS patients with pulmonary fibrosis compared with those who remain fibrosis free, and that these levels associate with disease severity. Using murine HPS models, we also determined that these animals have a defect in the ability of CHI3L1 to inhibit epithelial apoptosis but exhibit exaggerated CHI3L1-driven fibroproliferation, which together promote HPS fibrosis. These divergent responses resulted from differences in the trafficking and effector functions of two CHI3L1 receptors. Specifically, the enhanced sensitivity to apoptosis was due to abnormal localization of IL-13Rα2 as a consequence of dysfunctional BLOC-3-dependent membrane trafficking. In contrast, the fibrosis was due to interactions between CHI3L1 and the receptor CRTH2, which trafficked normally in BLOC-3 mutant HPS. These data demonstrate that CHI3L1-dependent pathways exacerbate pulmonary fibrosis and suggest CHI3L1 as a potential biomarker for pulmonary fibrosis progression and severity in HPS.
Collapse
|
43
|
Birkelbach B, Lutz D, Ruppert C, Henneke I, Lopez-Rodriguez E, Günther A, Ochs M, Mahavadi P, Knudsen L. Linking progression of fibrotic lung remodeling and ultrastructural alterations of alveolar epithelial type II cells in the amiodarone mouse model. Am J Physiol Lung Cell Mol Physiol 2015; 309:L63-75. [PMID: 25957292 DOI: 10.1152/ajplung.00279.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 05/07/2015] [Indexed: 01/08/2023] Open
Abstract
Chronic injury of alveolar epithelial type II cells (AE2 cells) represents a key event in the development of lung fibrosis in animal models and in humans, such as idiopathic pulmonary fibrosis (IPF). Intratracheal delivery of amiodarone to mice results in a profound injury and macroautophagy-dependent apoptosis of AE2 cells. Increased autophagy manifested in AE2 cells by disturbances of the intracellular surfactant. Hence, we hypothesized that ultrastructural alterations of the intracellular surfactant pool are signs of epithelial stress correlating with the severity of fibrotic remodeling. With the use of design-based stereology, the amiodarone model of pulmonary fibrosis in mice was characterized at the light and ultrastructural level during progression. Mean volume of AE2 cells, volume of lamellar bodies per AE2 cell, and mean size of lamellar bodies were correlated to structural parameters reflecting severity of fibrosis like collagen content. Within 2 wk amiodarone leads to an increase in septal wall thickness and a decrease in alveolar numbers due to irreversible alveolar collapse associated with alveolar surfactant dysfunction. Progressive hypertrophy of AE2 cells and increase in mean individual size and total volume of lamellar bodies per AE2 cell were observed. A high positive correlation of these AE2 cell-related ultrastructural changes and the deposition of collagen fibrils within septal walls were established. Qualitatively, similar alterations could be found in IPF samples with mild to moderate fibrosis. We conclude that ultrastructural alterations of AE2 cells including the surfactant system are tightly correlated with the progression of fibrotic remodeling.
Collapse
Affiliation(s)
- Bastian Birkelbach
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany; Member of the German Center for Lung Research (DZL), Germany
| | - Dennis Lutz
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany; Member of the German Center for Lung Research (DZL), Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany; Member of the German Center for Lung Research (DZL), Germany
| | - Ingrid Henneke
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany; Member of the German Center for Lung Research (DZL), Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany; Member of the German Center for Lung Research (DZL), Germany
| | - Andreas Günther
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany; Member of the German Center for Lung Research (DZL), Germany; European IPF Network, Giessen, Germany; Excellence Cluster "Cardiopulmonary System ECCPS," Giessen, Germany; Lung Clinic Waldhof-Elgershausen, Greifenstein, Germany; and
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany; Member of the German Center for Lung Research (DZL), Germany; REBIRTH Cluster of Excellence, Hannover, Germany
| | - Poornima Mahavadi
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany; Member of the German Center for Lung Research (DZL), Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany; Member of the German Center for Lung Research (DZL), Germany;
| |
Collapse
|
44
|
Hilgendorff A, O'Reilly MA. Bronchopulmonary dysplasia early changes leading to long-term consequences. Front Med (Lausanne) 2015; 2:2. [PMID: 25729750 PMCID: PMC4325927 DOI: 10.3389/fmed.2015.00002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/05/2015] [Indexed: 12/05/2022] Open
Abstract
Neonatal chronic lung disease, i.e., bronchopulmonary dysplasia, is characterized by impaired pulmonary development resulting from the impact of different risk factors including infections, hyperoxia, and mechanical ventilation on the immature lung. Remodeling of the extracellular matrix, apoptosis as well as altered growth factor signaling characterize the disease. The immediate consequences of these early insults have been studied in different animal models supported by results from in vitro approaches leading to the successful application of some findings to the clinical setting in the past. Nonetheless, existing information about long-term consequences of the identified early and most likely sustained changes to the developing lung is limited. Interesting results point towards a tremendous impact of these early injuries on the pulmonary repair capacity as well as aging related processes in the adult lung.
Collapse
Affiliation(s)
- Anne Hilgendorff
- Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL) , Munich , Germany ; Neonatology, Perinatal Center Grosshadern, Dr. von Hauner Children's Hospital, Ludwig-Maximilians University , Munich , Germany
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester , Rochester, NY , USA
| |
Collapse
|
45
|
Hawkins A, Guttentag SH, Deterding R, Funkhouser WK, Goralski JL, Chatterjee S, Mulugeta S, Beers MF. A non-BRICHOS SFTPC mutant (SP-CI73T) linked to interstitial lung disease promotes a late block in macroautophagy disrupting cellular proteostasis and mitophagy. Am J Physiol Lung Cell Mol Physiol 2014; 308:L33-47. [PMID: 25344067 DOI: 10.1152/ajplung.00217.2014] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mutation of threonine for isoleucine at codon 73 (I73T) in the human surfactant protein C (hSP-C) gene (SFTPC) accounts for a significant portion of SFTPC mutations associated with interstitial lung disease (ILD). Cell lines stably expressing tagged primary translation product of SP-C isoforms were generated to test the hypothesis that deposition of hSP-C(I73T) within the endosomal system promotes disruption of a key cellular quality control pathway, macroautophagy. By fluorescence microscopy, wild-type hSP-C (hSP-C(WT)) colocalized with exogenously expressed human ATP binding cassette class A3 (hABCA3), an indicator of normal trafficking to lysosomal-related organelles. In contrast, hSP-C(I73T) was dissociated from hABCA3 but colocalized to the plasma membrane as well as the endosomal network. Cells expressing hSP-C(I73T) exhibited increases in size and number of cytosolic green fluorescent protein/microtubule-associated protein 1 light-chain 3 (LC3) vesicles, some of which colabeled with red fluorescent protein from the gene dsRed/hSP-C(I73T). By transmission electron microscopy, hSP-C(I73T) cells contained abnormally large autophagic vacuoles containing organellar and proteinaceous debris, which phenocopied ultrastructural changes in alveolar type 2 cells in a lung biopsy from a SFTPC I73T patient. Biochemically, hSP-C(I73T) cells exhibited increased expression of Atg8/LC3, SQSTM1/p62, and Rab7, consistent with a distal block in autophagic vacuole maturation, confirmed by flux studies using bafilomycin A1 and rapamycin. Functionally, hSP-C(I73T) cells showed an impaired degradative capacity for an aggregation-prone huntingtin-1 reporter substrate. The disruption of autophagy-dependent proteostasis was accompanied by increases in mitochondria biomass and parkin expression coupled with a decrease in mitochondrial membrane potential. We conclude that hSP-C(I73T) induces an acquired block in macroautophagy-dependent proteostasis and mitophagy, which could contribute to the increased vulnerability of the lung epithelia to second-hit injury as seen in ILD.
Collapse
Affiliation(s)
- Arie Hawkins
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Susan H Guttentag
- Department of Pediatrics; Monroe Carell Jr. Children's Hospital, Vanderbilt University, Nashville, Tennessee
| | - Robin Deterding
- Department of Pediatrics; University of Colorado School of Medicine, Denver, Colorado
| | - William K Funkhouser
- Department of Pathology and Lab Medicine; University of North Carolina, Chapel Hill, North Carolina
| | - Jennifer L Goralski
- Departments of Medicine and Pediatrics; University of North Carolina, Chapel Hill, North Carolina
| | - Shampa Chatterjee
- Institute for Environmental Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Surafel Mulugeta
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania;
| | - Michael F Beers
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
46
|
Goncharova EA, Goncharov DA, James ML, Atochina-Vasserman EN, Stepanova V, Hong SB, Li H, Gonzales L, Baba M, Linehan WM, Gow AJ, Margulies S, Guttentag S, Schmidt LS, Krymskaya VP. Folliculin controls lung alveolar enlargement and epithelial cell survival through E-cadherin, LKB1, and AMPK. Cell Rep 2014; 7:412-423. [PMID: 24726356 PMCID: PMC4034569 DOI: 10.1016/j.celrep.2014.03.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/30/2014] [Accepted: 03/10/2014] [Indexed: 12/21/2022] Open
Abstract
Spontaneous pneumothoraces due to lung cyst rupture afflict patients with the rare disease Birt-Hogg-Dubé (BHD) syndrome, which is caused by mutations of the tumor suppressor gene folliculin (FLCN). The underlying mechanism of the lung manifestations in BHD is unclear. We show that BHD lungs exhibit increased alveolar epithelial cell apoptosis and that Flcn deletion in mouse lung epithelium leads to cell apoptosis, alveolar enlargement, and an impairment of both epithelial barrier and overall lung function. We find that Flcn-null epithelial cell apoptosis is the result of impaired AMPK activation and increased cleaved caspase-3. AMPK activator LKB1 and E-cadherin are downregulated by Flcn loss and restored by its expression. Correspondingly, Flcn-null cell survival is rescued by the AMPK activator AICAR or constitutively active AMPK. AICAR also improves lung condition of Flcn(f/f):SP-C-Cre mice. Our data suggest that lung cysts in BHD may result from an underlying defect in alveolar epithelial cell survival, attributable to FLCN regulation of the E-cadherin-LKB1-AMPK axis.
Collapse
Affiliation(s)
- Elena A Goncharova
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, Department of Medicine, Perelman School of Medicine, Philadelphia, PA 19104, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dmitry A Goncharov
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, Department of Medicine, Perelman School of Medicine, Philadelphia, PA 19104, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Melane L James
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, Department of Medicine, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Elena N Atochina-Vasserman
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, Department of Medicine, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Victoria Stepanova
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Seung-Beom Hong
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, Department of Medicine, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hua Li
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, Department of Medicine, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Linda Gonzales
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Masaya Baba
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - W Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Andrew J Gow
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Susan Margulies
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susan Guttentag
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Laura S Schmidt
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA; Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 20892, USA
| | - Vera P Krymskaya
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, Department of Medicine, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
47
|
Jakus Z, Gleghorn JP, Enis DR, Sen A, Chia S, Liu X, Rawnsley DR, Yang Y, Hess PR, Zou Z, Yang J, Guttentag SH, Nelson CM, Kahn ML. Lymphatic function is required prenatally for lung inflation at birth. ACTA ACUST UNITED AC 2014; 211:815-26. [PMID: 24733830 PMCID: PMC4010903 DOI: 10.1084/jem.20132308] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neonatal mice lacking lymphatic vessels due to loss of lymphangiogenic factor CCBE1 or VEGFR3 function fail to inflate their lungs, suggestive of respiratory failure in infants with congenital pulmonary lymphangiectasia. Mammals must inflate their lungs and breathe within minutes of birth to survive. A key regulator of neonatal lung inflation is pulmonary surfactant, a lipoprotein complex which increases lung compliance by reducing alveolar surface tension (Morgan, 1971). Whether other developmental processes also alter lung mechanics in preparation for birth is unknown. We identify prenatal lymphatic function as an unexpected requirement for neonatal lung inflation and respiration. Mice lacking lymphatic vessels, due either to loss of the lymphangiogenic factor CCBE1 or VEGFR3 function, appear cyanotic and die shortly after birth due to failure of lung inflation. Failure of lung inflation is not due to reduced surfactant levels or altered development of the lung but is associated with an elevated wet/dry ratio consistent with edema. Embryonic studies reveal active lymphatic function in the late gestation lung, and significantly reduced total lung compliance in late gestation embryos that lack lymphatics. These findings reveal that lymphatic vascular function plays a previously unrecognized mechanical role in the developing lung that prepares it for inflation at birth. They explain respiratory failure in infants with congenital pulmonary lymphangiectasia, and suggest that inadequate late gestation lymphatic function may also contribute to respiratory failure in premature infants.
Collapse
Affiliation(s)
- Zoltán Jakus
- Department of Medicine, 2 Cardiovascular Institute, and 3 Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bridges JP, Ludwig MG, Mueller M, Kinzel B, Sato A, Xu Y, Whitsett JA, Ikegami M. Orphan G protein-coupled receptor GPR116 regulates pulmonary surfactant pool size. Am J Respir Cell Mol Biol 2013; 49:348-57. [PMID: 23590306 DOI: 10.1165/rcmb.2012-0439oc] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pulmonary surfactant levels within the alveoli are tightly regulated to maintain lung volumes and promote efficient gas exchange across the air/blood barrier. Quantitative and qualitative abnormalities in surfactant are associated with severe lung diseases in children and adults. Although the cellular and molecular mechanisms that control surfactant metabolism have been studied intensively, the critical molecular pathways that sense and regulate endogenous surfactant levels within the alveolus have not been identified and constitute a fundamental knowledge gap in the field. In this study, we demonstrate that expression of an orphan G protein-coupled receptor, GPR116, in the murine lung is developmentally regulated, reaching maximal levels 1 day after birth, and is highly expressed on the apical surface of alveolar type I and type II epithelial cells. To define the physiological role of GPR116 in vivo, mice with a targeted mutation of the Gpr116 locus, Gpr116(Δexon17), were generated. Gpr116(Δexon17) mice developed a profound accumulation of alveolar surfactant phospholipids at 4 weeks of age (12-fold) that was further increased at 20 weeks of age (30-fold). Surfactant accumulation in Gpr116(Δexon17) mice was associated with increased saturated phosphatidylcholine synthesis at 4 weeks and the presence of enlarged, lipid-laden macrophages, neutrophilia, and alveolar destruction at 20 weeks. mRNA microarray analyses indicated that P2RY2, a purinergic receptor known to mediate surfactant secretion, was induced in Gpr116(Δexon17) type II cells. Collectively, these data support the concept that GPR116 functions as a molecular sensor of alveolar surfactant lipid pool sizes by regulating surfactant secretion.
Collapse
Affiliation(s)
- James P Bridges
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kropski JA, Lawson WE, Young LR, Blackwell TS. Genetic studies provide clues on the pathogenesis of idiopathic pulmonary fibrosis. Dis Model Mech 2013; 6:9-17. [PMID: 23268535 PMCID: PMC3529334 DOI: 10.1242/dmm.010736] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and often fatal lung disease for which there is no known treatment. Although the traditional paradigm of IPF pathogenesis emphasized chronic inflammation as the primary driver of fibrotic remodeling, more recent insights have challenged this view. Linkage analysis and candidate gene approaches have identified four genes that cause the inherited form of IPF, familial interstitial pneumonia (FIP). These four genes encode two surfactant proteins, surfactant protein C (encoded by SFTPC) and surfactant protein A2 (SFTPA2), and two components of the telomerase complex, telomerase reverse transcriptase (TERT) and the RNA component of telomerase (TERC). In this review, we discuss how investigating these mutations, as well as genetic variants identified in other inherited disorders associated with pulmonary fibrosis, are providing new insights into the pathogenesis of common idiopathic interstitial lung diseases, particularly IPF. Studies in this area have highlighted key roles for epithelial cell injury and dysfunction in the development of lung fibrosis. In addition, genetic approaches have uncovered the importance of several processes – including endoplasmic reticulum stress and the unfolded protein response, DNA-damage and -repair pathways, and cellular senescence – that might provide new therapeutic targets in fibrotic lung diseases.
Collapse
Affiliation(s)
- Jonathan A Kropski
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | |
Collapse
|
50
|
Mahavadi P, Guenther A, Gochuico BR. Hermansky-Pudlak syndrome interstitial pneumonia: it's the epithelium, stupid! Am J Respir Crit Care Med 2013; 186:939-40. [PMID: 23155210 DOI: 10.1164/rccm.201210-1771ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|