1
|
Zhang J, Qin X, Qin Y, Qi F, Wang Y, Sun J, Yan L, Sun W, Guo X. Proteomic- and metabolomic-based mechanisms of androgen-mediated right ventricular maladaptive remodeling under pressure overload. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167768. [PMID: 40049298 DOI: 10.1016/j.bbadis.2025.167768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/11/2025] [Accepted: 02/27/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Right ventricular (RV) maladaptive remodeling has been demonstrated to be more severe in males than in females under similar afterload, with androgen potentially involved. However, the mechanism remains unknown. METHODS We performed RV proteomics and metabolomics in male and castrated rats with pulmonary artery banding (PAB) or sham surgery. The core pathway was tested in other sets of male, castrated male, and testosterone-replaced rats with and without pathway inhibitors administration and in RV remodeling patients. Metabolite verification was carried out by matching secondary spectra. RESULTS With the same extent of increases in RV afterload, male PAB rats exhibited more pronounced RV hypertrophy and fibrosis than castrated PAB rats (p < 0.05). The omics analysis indicated that pathways and functions related to oxidative stress were exhibited in the male group, with the platelet-derived growth factor (PDGF) pathway being among them. More proteins and metabolites associated with fatty acid metabolism were downregulated in males. Correlation analysis showed that PDGF receptor beta (PDGFRB) and signal transducer and activator of transcription 3 (STAT3) were negatively correlated with carnitine and reactive oxygen species scavenging metabolites only in male rats. The activation of the PDGF pathway was verified in testosterone-replaced PAB rats and male patients with RV remodeling. Treatments with PDGFRB inhibitor and STAT3 inhibitor could reverse RV maladaptive remodeling in male and testosterone-replaced PAB rats but not in castrated ones. CONCLUSIONS Androgen might exacerbate RV maladaptive remodeling via intensified oxidative stress and insufficient energy supply, with activating the PDGFRB-STAT3 signaling being one of the possible pathways.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohan Qin
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuhan Qin
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Qi
- Proteomics Center, Core Facility of Instrument, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yufei Wang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiameng Sun
- Proteomics Center, Core Facility of Instrument, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Yan
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Sun
- Proteomics Center, Core Facility of Instrument, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Xiaoxiao Guo
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Wang Z, Li X, Liu X, Yang Y, Yan Y, Cui D, Meng C, Ali MI, Zhang J, Yao Z, Long Y, Yang R. Mechanistic insights into the anti-fibrotic effects of estrogen via the PI3K-Akt pathway in frozen shoulder. J Steroid Biochem Mol Biol 2025; 249:106701. [PMID: 39947440 DOI: 10.1016/j.jsbmb.2025.106701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
The development of frozen shoulder (FS) is primarily characterized by pathological fibrosis, yet clinical treatment options remain limited. Recent studies have identified estrogen depletion during perimenopause as a significant contributor to the onset of FS and fibrosis. This study investigates the role of estradiol (E2) and the estrogen-related receptor (GPER) in fibrotic processes associated with FS to elucidate the underlying mechanisms. The functional relationship between E2, GPER, and FS progression was examined using a rat immobilization model and synovial-derived fibroblasts (SFs) from FS patients. E2's effects on GPER expression, fibroblast activation, and tissue fibrosis were evaluated through Western blotting, immunofluorescence staining, collagen contraction assays, wound healing assays, and histological staining. RNA sequencing identified signaling pathways and key regulators involved in E2 treatment. Both E2 and the GPER activator G1 exhibited antifibrotic effects, improving shoulder mobility, reducing extracellular matrix (ECM) deposition in the periarticular capsule, and decreasing the expression of fibrosis-related genes, including fibronectin, α-SMA, and COL3. In contrast, the GPER inhibitor G15 reversed these effects, suggesting that E2 mediates its antifibrotic action through GPER activation. Mechanistically, KEGG pathway analysis revealed that E2 suppresses the PI3K/AKT signaling pathway by inhibiting PI3K and AKT phosphorylation, thereby preventing fibroblast activation and reversing FS-associated fibrosis. These findings provide mechanistic insights into the previously unrecognized role of GPER in FS progression and may open new avenues for research to optimize future clinical therapies.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xinhao Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaoshan Liu
- Pediatric Oncology, Children's Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Yitao Yang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yan Yan
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Dedong Cui
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Chenyang Meng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Maslah Idiris Ali
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jinming Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zeyu Yao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yi Long
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Rui Yang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
3
|
Shapero K, Madden T. The 2024 US Medical Eligibility Criteria for Contraceptive Use: Application to Practice in the Care of Patients With Cardiac Disease. Circ Res 2025; 136:566-582. [PMID: 40080533 DOI: 10.1161/circresaha.125.325682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 03/15/2025]
Abstract
Cardiovascular disease is the leading cause of maternal mortality in the United States, with the majority of deaths stemming from preventable causes. Contraception is one of the tools that can be utilized to prevent mortality and morbidity associated with unplanned pregnancy in patients with underlying congenital or acquired heart disease. There are a wide range of contraceptive methods available. While some methods, especially those containing estrogen, may be associated with increased risks in certain cardiac disease states, intrauterine devices, implants, and progestin-only methods may be safely used by the vast majority of patients with cardiac disease. Furthermore, intrauterine devices and implants are the most effective reversible contraceptive methods available. This review provides a summary of the US Centers for Disease Control and Prevention 2024 Medical Eligibility Criteria for Contraceptive Use as it applies to cardiac disease states. This review emphasizes the importance of contraceptive counseling and aims to familiarize the reader with the various forms of contraception available to patients, as well as the risks and benefits of each method in patients with different types of cardiac disease.
Collapse
Affiliation(s)
- Kayle Shapero
- Brown University Health Cardiovascular Institute, Providence, RI (K.S.)
| | - Tessa Madden
- Department of Obstetrics, Gynecology, and Reproductive Science, Yale School of Medicine, New Haven, CT (T.M.)
| |
Collapse
|
4
|
Gu S, Kopecky BJ, Peña B, Vagnozzi RJ, Lahm T. Sex-dependent Pathophysiology and Therapeutic Considerations in Right Heart Disease. Can J Cardiol 2025:S0828-282X(25)00178-3. [PMID: 40054579 DOI: 10.1016/j.cjca.2025.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/12/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Right ventricular (RV) adaptation to the increased afterload in the setting of pulmonary hypertension (PH) and other cardiac and pulmonary vascular conditions is a major determinant of survival. Although the RV remains understudied and less well understood than the left ventricle, recent advances have been made in understanding the function and biology of the RV in health and in disease, particularly in PH. RV adaptation in PH exhibits significant sexual dimorphisms in pathophysiology, adaptation, and outcomes. Despite a higher incidence of PH, women consistently demonstrate better RV adaptation and survival rates in the setting of increased RV afterload compared with men. Sexual dimorphisms extend to therapy responsiveness, with women benefiting more from certain pulmonary vasodilators and exhibiting superior RV recovery. In this review we discuss the current literature on sexual dimorphisms in RV structure, function, and molecular pathways in health and disease, as well as in RV-specific clinical manifestations, treatments, and outcomes in PH. Sex steroid-mediated effects as well as emerging studies on sex steroid-independent effects are reviewed. In general, sex steroids such as 17β-estradiol and dehydroepiandrosterone exert RV-protective effects. In contrast, testosterone negatively impacts RV structure and function. Emerging evidence highlights the influence of nonhormonal genetic determinants, such as BMPR1A and DMRT2 loci, which are associated with better RV function in women. A better understanding of the interplay between sex hormones, genetic factors, and RV biology is crucial for advancing and developing RV-directed therapies for patients of either sex.
Collapse
Affiliation(s)
- Sue Gu
- Cardio Vascular Pulmonary Research Laboratory, University of Colorado School of Medicine, Aurora, Colorado, USA; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| | - Benjamin J Kopecky
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Brisa Peña
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Bioengineering, College of Engineering, Design and Computing, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; CU-Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ronald J Vagnozzi
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tim Lahm
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA; Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA.
| |
Collapse
|
5
|
Li X, Wang J, Chen Y, Li P, Wen H, Xu X, Wang J, Xu Y, Chen Y, Song J, Lu W, Zhu D, Fu X. Estrogen Oppositely Regulates Pulmonary Hypertension via METTL3/PFKFB3 under Normoxia and Hypoxia. Am J Respir Cell Mol Biol 2025; 72:258-271. [PMID: 39265182 DOI: 10.1165/rcmb.2024-0042oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024] Open
Abstract
Despite extensive investigation into estrogen's role in pulmonary hypertension (PH) development, its effects, whether beneficial or detrimental, remain contentious. This study aimed to elucidate estrogen's potential role in PH under normoxic and hypoxic conditions. Using norfenfluramine- and hypoxia-induced rat models of PH, the study evaluated the impact of 17β-estradiol (E2) on PH progression. E2 promoted PH development under normoxia while providing protection under hypoxia. Mechanistically, under normoxia, E2 upregulated METTL3 (methyltransferase-like 3) gene transcription and protein via an estrogen response element-dependent pathway, which in turn increased the N6-methyladenosine methylation and translational efficiency of PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3) mRNA, leading to increased PFKFB3 protein levels and enhanced proliferation and migration of pulmonary artery smooth muscle cells. Conversely, under hypoxia, E2 downregulated METTL3 transcription through a hypoxia response element-dependent mechanism driven by increased HIF-1α (hypoxia-inducible factor 1α) levels, resulting in reduced PFKFB3 protein expression and diminished pulmonary artery smooth muscle cell proliferation and migration. METTL3 and PFKFB3 proteins are upregulated in the pulmonary arteries of patients with pulmonary arterial hypertension. Collectively, these findings suggest that E2 exerts differential effects on PH progression via dual regulation of the METTL3/PFKFB3 protein under normoxic and hypoxic conditions, positioning the METTL3/PFKFB3 protein as a potential therapeutic target for PH treatment.
Collapse
Affiliation(s)
- Xiaosa Li
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiale Wang
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| | - Ping Li
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hao Wen
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingyan Xu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| | - Yiming Xu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingying Chen
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| | - Dongxing Zhu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaodong Fu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Ghofrani HA, Gomberg-Maitland M, Zhao L, Grimminger F. Mechanisms and treatment of pulmonary arterial hypertension. Nat Rev Cardiol 2025; 22:105-120. [PMID: 39112561 DOI: 10.1038/s41569-024-01064-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 11/28/2024]
Abstract
Substantial progress has been made in the management of pulmonary arterial hypertension (PAH) in the past 25 years, but the disease remains life-limiting. Established therapies for PAH are mostly limited to symptomatic relief by correcting the imbalance of vasoactive factors. The tyrosine kinase inhibitor imatinib, the first predominantly non-vasodilatory drug to be tested in patients with PAH, improved exercise capacity and pulmonary haemodynamics compared with placebo but at the expense of adverse events such as subdural haematoma. Given that administration by inhalation might reduce the risk of systemic adverse effects, inhaled formulations of tyrosine kinase inhibitors are currently in clinical development. Other novel therapeutic approaches for PAH include suppression of activin receptor type IIA signalling with sotatercept, which has shown substantial efficacy in clinical trials and was approved for use in the USA in 2024, but the long-term safety of the drug remains unclear. Future advances in the management of PAH will focus on right ventricular function and involve deep phenotyping and the development of a personalized medicine approach. In this Review, we summarize the mechanisms underlying PAH, provide an overview of available PAH therapies and their limitations, describe the development of newer, predominantly non-vasodilatory drugs that are currently being tested in phase II or III clinical trials, and discuss future directions for PAH research.
Collapse
Affiliation(s)
- Hossein-Ardeschir Ghofrani
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany.
| | - Mardi Gomberg-Maitland
- George Washington University School of Medicine and Health Sciences, Department of Medicine, Washington, DC, USA
| | - Lan Zhao
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Friedrich Grimminger
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
7
|
Sun Y, Chen C, Yan Q, Wang S, Tan Y, Long J, Lin Y, Ning S, Wang J, Zhang S, Ai Q, Liu S. A peripheral system disease-Pulmonary hypertension. Biomed Pharmacother 2024; 175:116787. [PMID: 38788548 DOI: 10.1016/j.biopha.2024.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Pulmonary hypertension (PH) is a cardiovascular disorder characterized by substantial morbidity and mortality rates. It is a chronic condition characterized by intricate pathogenesis and uncontrollable factors. We summarized the pathological effects of estrogen, genetics, neuroinflammation, intestinal microbiota, metabolic reorganization, and histone modification on PH. PH is not only a pulmonary vascular disease, but also a systemic disease. The findings emphasize that the onset of PH is not exclusively confined to the pulmonary vasculature, consequently necessitating treatment approaches that extend beyond targeting pulmonary blood vessels. Hence, the research on the pathological mechanism of PH is not limited to target organs such as pulmonary vessels, but also focuses on exploring other fields (such as estrogen, genetics, neuroinflammation, intestinal microbiota, metabolic reorganization, and histone modification).
Collapse
Affiliation(s)
- Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Siying Wang
- Pharmacy Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shuangcheng Ning
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Jin Wang
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Shusheng Zhang
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China.
| |
Collapse
|
8
|
Davies ML, Biryukov SS, Rill NO, Klimko CP, Hunter M, Dankmeyer JL, Miller JA, Shoe JL, Mlynek KD, Talyansky Y, Toothman RG, Qiu J, Bozue JA, Cote CK. Sex differences in immune protection in mice conferred by heterologous vaccines for pneumonic plague. Front Immunol 2024; 15:1397579. [PMID: 38835755 PMCID: PMC11148226 DOI: 10.3389/fimmu.2024.1397579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
Background Yersinia pestis is the etiological agent of plague, which can manifest as bubonic, septicemic, and/or pneumonic disease. Plague is a severe and rapidly progressing illness that can only be successfully treated with antibiotics initiated early after infection. There are no FDA-approved vaccines for plague, and some vaccine candidates may be less effective against pneumonic plague than bubonic plague. Y. pestis is not known to impact males and females differently in mechanisms of pathogenesis or severity of infection. However, one previous study reported sex-biased vaccine effectiveness after intranasal Y. pestis challenge. As part of developing a safe and effective vaccine, it is essential that potential sex differences are characterized. Methods In this study we evaluated novel vaccines in male and female BALB/c mice using a heterologous prime-boost approach and monitored survival, bacterial load in organs, and immunological correlates. Our vaccine strategy consisted of two subcutaneous immunizations, followed by challenge with aerosolized virulent nonencapsulated Y. pestis. Mice were immunized with a combination of live Y. pestis pgm- pPst-Δcaf1, live Y. pestis pgm- pPst-Δcaf1/ΔyopD, or recombinant F1-V (rF1-V) combined with adjuvants. Results The most effective vaccine regimen was initial priming with rF1-V, followed by boost with either of the live attenuated strains. However, this and other strategies were more protective in female mice. Males had higher bacterial burden and differing patterns of cytokine expression and serum antibody titers. Male mice did not demonstrate synergy between vaccination and antibiotic treatment as repeatedly observed in female mice. Conclusions This study provides new knowledge about heterologous vaccine strategies, sex differences in plague-vaccine efficacy, and the immunological factors that differ between male and female mice.
Collapse
Affiliation(s)
- Michael L Davies
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Sergei S Biryukov
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Nathaniel O Rill
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Christopher P Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Jennifer L Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Jeremy A Miller
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Jennifer L Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Kevin D Mlynek
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Yuli Talyansky
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Ronald G Toothman
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Ju Qiu
- Regulated Research Administration: Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Joel A Bozue
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Christopher K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| |
Collapse
|
9
|
Dignam JP, Sharma S, Stasinopoulos I, MacLean MR. Pulmonary arterial hypertension: Sex matters. Br J Pharmacol 2024; 181:938-966. [PMID: 37939796 DOI: 10.1111/bph.16277] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex disease of multifactorial origin. While registries have demonstrated that women are more susceptible to the disease, females with PAH have superior right ventricle (RV) function and a better prognosis than their male counterparts, a phenomenon referred to as the 'estrogen paradox'. Numerous pre-clinical studies have investigated the involvement of sex hormones in PAH pathobiology, often with conflicting results. However, recent advances suggest that abnormal estrogen synthesis, metabolism and signalling underpin the sexual dimorphism of this disease. Other sex hormones, such as progesterone, testosterone and dehydroepiandrosterone may also play a role. Several non-hormonal factor including sex chromosomes and epigenetics have also been implicated. Though the underlying pathophysiological mechanisms are complex, several compounds that modulate sex hormones levels and signalling are under investigation in PAH patients. Further elucidation of the estrogen paradox will set the stage for the identification of additional therapeutic targets for this disease.
Collapse
Affiliation(s)
- Joshua P Dignam
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Smriti Sharma
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Ioannis Stasinopoulos
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | - Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| |
Collapse
|
10
|
Zuo Y, Li B, Gao M, Xiong R, He R, Li N, Geng Q. Novel insights and new therapeutic potentials for macrophages in pulmonary hypertension. Respir Res 2024; 25:147. [PMID: 38555425 PMCID: PMC10981837 DOI: 10.1186/s12931-024-02772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
Inflammation and immune processes underlie pulmonary hypertension progression. Two main different activated phenotypes of macrophages, classically activated M1 macrophages and alternatively activated M2 macrophages, are both involved in inflammatory processes related to pulmonary hypertension. Recent advances suggest that macrophages coordinate interactions among different proinflammatory and anti-inflammatory mediators, and other cellular components such as smooth muscle cells and fibroblasts. In this review, we summarize the current literature on the role of macrophages in the pathogenesis of pulmonary hypertension, including the origin of pulmonary macrophages and their response to triggers of pulmonary hypertension. We then discuss the interactions among macrophages, cytokines, and vascular adventitial fibroblasts in pulmonary hypertension, as well as the potential therapeutic benefits of macrophages in this disease. Identifying the critical role of macrophages in pulmonary hypertension will contribute to a comprehensive understanding of this pathophysiological abnormality, and may provide new perspectives for pulmonary hypertension management.
Collapse
Affiliation(s)
- Yifan Zuo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Boyang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Minglang Gao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
11
|
Hassan HA, Mohamed Abdelhamid A, Samy W, Osama Mohammed H, Mortada Mahmoud S, Fawzy Abdel Mageed A, Abbas NAT. Ameliorative effects of androstenediol against acetic acid-induced colitis in male wistar rats via inhibiting TLR4-mediated PI3K/Akt and NF-κB pathways through estrogen receptor β activation. Int Immunopharmacol 2024; 127:111414. [PMID: 38141404 DOI: 10.1016/j.intimp.2023.111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
5-androstenediol (ADIOL) functions as a selective estrogen receptor β (ERβ) ligand with a protective effect against many diseases. So, we conducted a novel insight into its role in acetic acid (AA)-induced colitis and investigated its effect on TLR4-Mediated PI3K/Akt and NF-κB Pathways and the potential role of ERβ as contributing mechanisms. METHODS Rats were randomized into 5 Groups; Control, Colitis, Colitis + mesalazine (MLZ), Colitis + ADIOL, and Colitis + ADIOL + PHTPP (ER-β antagonist). The colitis was induced through a rectal enema of acetic acid (AA) on the 8th day. At the end of treatment, colons were collected for macroscopic assessment. Tissue levels of malondialdehyde (MDA), superoxide dismutase (SOD), nuclear factor kappa b (NF-κB), toll-like receptor (TLR4), and phosphorylated Protein kinase B (pAKT) were measured. Besides, Gene expression of interleukin-1beta (IL-1β), metalloproteases 9 (Mmp9), inositol 3 phosphate kinase (PI3K), Neutrophil gelatinase-associated lipocalin (NGAL), ERβ and NLRP6 were assessed. Histopathological and immunohistochemical studies were also investigated. RESULTS Compared to the untreated AA group, the disease activity index (DAI) and macroscopic assessment indicators significantly decreased with ADIOL injections. Indeed, ADIOL significantly decreased colonic tissue levels of MDA, TLR4, pAKT, and NF-κB immunostainig while increased SOD activity and β catenin immunostainig. ADIOL mitigated the high genetic expressions of IL1β, NGAL, MMP9, and PI3K while increased ERβ and NLRP6 gene expression. Also, the pathological changes detected in AA groups were markedly ameliorated with ADIOL. The specific ERβ antagonist, PHTPP, largely diminished these protective effects of ADIOL. CONCLUSION ADIOL could be beneficial against AA-induced colitis mostly through activating ERβ.
Collapse
Affiliation(s)
- Heba A Hassan
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt; Pharmacology Department, Faculty of Medicine, Mutah University, Mutah, Al-karak 61710, Jordan.
| | - Amira Mohamed Abdelhamid
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Walaa Samy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine -Zagazig University, Zagazig 45519, Egypt.
| | - Heba Osama Mohammed
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Samar Mortada Mahmoud
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Amal Fawzy Abdel Mageed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine -Zagazig University, Zagazig 45519, Egypt.
| | - Noha A T Abbas
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
12
|
Huang P, Wang Y, Liu C, Zhang Q, Ma Y, Liu H, Wang X, Wang Y, Wei M, Ma L. Exploring the Mechanism of Zhishi-Xiebai-Guizhi Decoction for the Treatment of Hypoxic Pulmonary Hypertension based on Network Pharmacology and Experimental Analyses. Curr Pharm Des 2024; 30:2059-2074. [PMID: 38867532 DOI: 10.2174/0113816128293601240523063527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/26/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Hypoxic Pulmonary Hypertension (HPH), a prevalent disease in highland areas, is a crucial factor in various complex highland diseases with high mortality rates. Zhishi-Xiebai-Guizhi decoction (ZXGD), traditional Chinese medicine with a long history of use in treating heart and lung diseases, lacks a clear understanding of its pharmacological mechanism. OBJECTIVE This study aimed to investigate the pharmacological effects and mechanisms of ZXGD on HPH. METHODS We conducted a network pharmacological prediction analysis and molecular docking to predict the effects, which were verified through in vivo experiments. RESULTS Network pharmacological analysis revealed 51 active compounds of ZXGD and 701 corresponding target genes. Additionally, there are 2,116 targets for HPH, 311 drug-disease co-targets, and 17 core-targets. GO functional annotation analysis revealed that the core targets primarily participate in biological processes such as apoptosis and cellular response to hypoxia. Furthermore, KEGG pathway enrichment analysis demonstrated that the core targets are involved in several pathways, including the phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) signaling pathway and Hypoxia Inducible Factor 1 (HIF1) signaling pathway. In vivo experiments, the continuous administration of ZXGD demonstrated a significant improvement in pulmonary artery pressure, right heart function, pulmonary vascular remodeling, and pulmonary vascular fibrosis in HPH rats. Furthermore, ZXGD was found to inhibit the expression of PI3K, Akt, and HIF1α proteins in rat lung tissue. CONCLUSION In summary, this study confirmed the beneficial effects and mechanism of ZXGD on HPH through a combination of network pharmacology and in vivo experiments. These findings provided a new insight for further research on HPH in the field of traditional Chinese medicine.
Collapse
Affiliation(s)
- Pan Huang
- Qinghai University Medical College, Xining 810016, China
| | - Yuxiang Wang
- Qinghai University Medical College, Xining 810016, China
| | - Chuanchuan Liu
- Hydatidosis Laboratory, Affiliated Hospital of Qinghai University, Xining 810012, China
| | - Qingqing Zhang
- Qinghai University Medical College, Xining 810016, China
| | - Yougang Ma
- Qinghai University Medical College, Xining 810016, China
| | - Hong Liu
- Qinghai University Medical College, Xining 810016, China
| | - Xiaobo Wang
- Qinghai University Medical College, Xining 810016, China
| | - Yating Wang
- Qinghai University Medical College, Xining 810016, China
| | - Minmin Wei
- Qinghai University Medical College, Xining 810016, China
- Qinghai Provincial Hospital of Traditional Chinese Medicine, Xining 810099, China
| | - Lan Ma
- Qinghai University Medical College, Xining 810016, China
| |
Collapse
|
13
|
Abstract
Heart failure (HF) is a significant public health problem worldwide. It has long been noted that premenopausal women, compared to postmenopausal women and men, have lower rates for developing this disease, as well as subsequent morbidity and mortality. This difference has been attributed to estrogen playing a cardioprotective role in these women, though exactly how it does so remains unclear. In this review, we examine the presence of estrogen receptors within the cardiovascular system, as well as the role they play behind the cardioprotective effect attributed to estrogen. Furthermore, we highlight the underlying mechanisms behind their alleviation of HF, as well as possible treatment approaches, such as hormone replacement therapy and exercise regimens, to manipulate these mechanisms in treating and preventing HF.
Collapse
Affiliation(s)
- Chenyue Qian
- The Second Clinical Medical College, Jinan University, Shenzhen, 518020, Guangdong, China
| | - Jingjin Liu
- The Second Clinical Medical College, Jinan University, Shenzhen, 518020, Guangdong, China.
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Department of GeriatricsThe Second Clinical Medical CollegeThe First Affiliated Hospital, Shenzhen People's HospitalJinan UniversitySouthern University of Science and Technology), Shenzhen, 518020, Guangdong, People's Republic of China.
| | - Huadong Liu
- The Second Clinical Medical College, Jinan University, Shenzhen, 518020, Guangdong, China.
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Department of GeriatricsThe Second Clinical Medical CollegeThe First Affiliated Hospital, Shenzhen People's HospitalJinan UniversitySouthern University of Science and Technology), Shenzhen, 518020, Guangdong, People's Republic of China.
| |
Collapse
|
14
|
Gafranek JT, D'Aniello E, Ravisankar P, Thakkar K, Vagnozzi RJ, Lim HW, Salomonis N, Waxman JS. Sinus venosus adaptation models prolonged cardiovascular disease and reveals insights into evolutionary transitions of the vertebrate heart. Nat Commun 2023; 14:5509. [PMID: 37679366 PMCID: PMC10485058 DOI: 10.1038/s41467-023-41184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
How two-chambered hearts in basal vertebrates have evolved from single-chamber hearts found in ancestral chordates remains unclear. Here, we show that the teleost sinus venosus (SV) is a chamber-like vessel comprised of an outer layer of smooth muscle cells. We find that in adult zebrafish nr2f1a mutants, which lack atria, the SV comes to physically resemble the thicker bulbus arteriosus (BA) at the arterial pole of the heart through an adaptive, hypertensive response involving smooth muscle proliferation due to aberrant hemodynamic flow. Single cell transcriptomics show that smooth muscle and endothelial cell populations within the adapting SV also take on arterial signatures. Bulk transcriptomics of the blood sinuses flanking the tunicate heart reinforce a model of greater equivalency in ancestral chordate BA and SV precursors. Our data simultaneously reveal that secondary complications from congenital heart defects can develop in adult zebrafish similar to those in humans and that the foundation of equivalency between flanking auxiliary vessels may remain latent within basal vertebrate hearts.
Collapse
Affiliation(s)
- Jacob T Gafranek
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Division of Molecular Cardiovascular Biology and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Enrico D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121, Napoli, Italy
| | - Padmapriyadarshini Ravisankar
- Division of Molecular Cardiovascular Biology and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kairavee Thakkar
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Ronald J Vagnozzi
- Division of Cardiology, Gates Center for Regenerative Medicine, Consortium for Fibrosis Research and Translation (CFReT), University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Joshua S Waxman
- Division of Molecular Cardiovascular Biology and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
15
|
Visniauskas B, Kilanowski-Doroh I, Ogola BO, Mcnally AB, Horton AC, Imulinde Sugi A, Lindsey SH. Estrogen-mediated mechanisms in hypertension and other cardiovascular diseases. J Hum Hypertens 2023; 37:609-618. [PMID: 36319856 PMCID: PMC10919324 DOI: 10.1038/s41371-022-00771-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 06/08/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally for men and women. Premenopausal women have a lower incidence of hypertension and other cardiovascular events than men of the same age, but diminished sex differences after menopause implicates 17-beta-estradiol (E2) as a protective agent. The cardioprotective effects of E2 are mediated by nuclear estrogen receptors (ERα and ERβ) and a G protein-coupled estrogen receptor (GPER). This review summarizes both established as well as emerging estrogen-mediated mechanisms that underlie sex differences in the vasculature during hypertension and CVD. In addition, remaining knowledge gaps inherent in the association of sex differences and E2 are identified, which may guide future clinical trials and experimental studies in this field.
Collapse
Affiliation(s)
- Bruna Visniauskas
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Benard O Ogola
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alexandra B Mcnally
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alec C Horton
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ariane Imulinde Sugi
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Center of Excellence in Sex-Based Biology and Medicine, New Orleans, LA, USA.
- Tulane Brain Institute, New Orleans, LA, USA.
| |
Collapse
|
16
|
Hedayati N, Yaghoobi A, Salami M, Gholinezhad Y, Aghadavood F, Eshraghi R, Aarabi MH, Homayoonfal M, Asemi Z, Mirzaei H, Hajijafari M, Mafi A, Rezaee M. Impact of polyphenols on heart failure and cardiac hypertrophy: clinical effects and molecular mechanisms. Front Cardiovasc Med 2023; 10:1174816. [PMID: 37293283 PMCID: PMC10244790 DOI: 10.3389/fcvm.2023.1174816] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Polyphenols are abundant in regular diets and possess antioxidant, anti-inflammatory, anti-cancer, neuroprotective, and cardioprotective effects. Regarding the inadequacy of the current treatments in preventing cardiac remodeling following cardiovascular diseases, attention has been focused on improving cardiac function with potential alternatives such as polyphenols. The following online databases were searched for relevant orginial published from 2000 to 2023: EMBASE, MEDLINE, and Web of Science databases. The search strategy aimed to assess the effects of polyphenols on heart failure and keywords were "heart failure" and "polyphenols" and "cardiac hypertrophy" and "molecular mechanisms". Our results indicated polyphenols are repeatedly indicated to regulate various heart failure-related vital molecules and signaling pathways, such as inactivating fibrotic and hypertrophic factors, preventing mitochondrial dysfunction and free radical production, the underlying causes of apoptosis, and also improving lipid profile and cellular metabolism. In the current study, we aimed to review the most recent literature and investigations on the underlying mechanism of actions of different polyphenols subclasses in cardiac hypertrophy and heart failure to provide deep insight into novel mechanistic treatments and direct future studies in this context. Moreover, due to polyphenols' low bioavailability from conventional oral and intravenous administration routes, in this study, we have also investigated the currently accessible nano-drug delivery methods to optimize the treatment outcomes by providing sufficient drug delivery, targeted therapy, and less off-target effects, as desired by precision medicine standards.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Alireza Yaghoobi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farnaz Aghadavood
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Eshraghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad-Hossein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hajijafari
- Department of Anesthesiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Prossnitz ER, Barton M. The G protein-coupled oestrogen receptor GPER in health and disease: an update. Nat Rev Endocrinol 2023:10.1038/s41574-023-00822-7. [PMID: 37193881 DOI: 10.1038/s41574-023-00822-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 05/18/2023]
Abstract
Oestrogens and their receptors contribute broadly to physiology and diseases. In premenopausal women, endogenous oestrogens protect against cardiovascular, metabolic and neurological diseases and are involved in hormone-sensitive cancers such as breast cancer. Oestrogens and oestrogen mimetics mediate their effects via the cytosolic and nuclear receptors oestrogen receptor-α (ERα) and oestrogen receptor-β (ERβ) and membrane subpopulations as well as the 7-transmembrane G protein-coupled oestrogen receptor (GPER). GPER, which dates back more than 450 million years in evolution, mediates both rapid signalling and transcriptional regulation. Oestrogen mimetics (such as phytooestrogens and xenooestrogens including endocrine disruptors) and licensed drugs such as selective oestrogen receptor modulators (SERMs) and downregulators (SERDs) also modulate oestrogen receptor activity in both health and disease. Following up on our previous Review of 2011, we herein summarize the progress made in the field of GPER research over the past decade. We will review molecular, cellular and pharmacological aspects of GPER signalling and function, its contribution to physiology, health and disease, and the potential of GPER to serve as a therapeutic target and prognostic indicator of numerous diseases. We also discuss the first clinical trial evaluating a GPER-selective drug and the opportunity of repurposing licensed drugs for the targeting of GPER in clinical medicine.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland.
- Andreas Grüntzig Foundation, Zürich, Switzerland.
| |
Collapse
|
18
|
Ormeloxifene, a selective estrogen receptor modulator, protects against pulmonary hypertension. Eur J Pharmacol 2023; 943:175558. [PMID: 36731722 DOI: 10.1016/j.ejphar.2023.175558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
PURPOSE Protective effect of 17β-estradiol is well-known in pulmonary hypertension. However, estrogen-based therapy may potentially increase the risk of breast cancer, necessitating a search for novel drugs. This study, therefore, investigated the ameliorative effects of a selective estrogen receptor modulator, ormeloxifene, in pulmonary hypertension. METHODS Cardiomyocytes (H9C2) and human pulmonary arterial smooth muscle cells (HPASMCs) were exposed to hypoxia (1% O2) for 42 and 96 h, respectively, with or without ormeloxifene pre-treatment (1 μM). Also, female (ovary-intact or ovariectomized) and male Sprague-Dawley rats received monocrotaline (60 mg/kg, once, subcutaneously), with or without ormeloxifene treatment (2.5 mg/kg, orally) for four weeks. RESULTS Hypoxia dysregulated 17β-hydroxysteroid dehydrogenase (17βHSD) 1 & 2 expressions, reducing 17β-estradiol production and estrogen receptors α and β in HPASMC but increasing estrone, proliferation, inflammation, oxidative stress, and mitochondrial dysfunction. Similarly, monocrotaline decreased plasma 17β-estradiol and uterine weight in ovary-intact rats. Further, monocrotaline altered 17βHSD1 & 2 expressions and reduced estrogen receptors α and β, increasing right ventricular pressure, proliferation, inflammation, oxidative stress, endothelial dysfunction, mitochondrial dysfunction, and vascular remodeling in female and male rats, with worsened conditions in ovariectomized rats. Ormeloxifene was less uterotrophic; however, it attenuated both hypoxia and monocrotaline effects by improving pulmonary 17β-estradiol synthesis. Furthermore, ormeloxifene decreased cardiac hypertrophy and right ventricular remodeling induced by hypoxia and monocrotaline. CONCLUSION This study demonstrates that ormeloxifene promoted pulmonary 17β-estradiol synthesis, alleviated inflammation, improved the NOX4/HO1/Nrf/PPARγ/PGC-1α axis, and attenuated pulmonary hypertension. It is evidently safe at tested concentrations and may be effectively repurposed for pulmonary hypertension treatment.
Collapse
|
19
|
Wang ZP, Hua M, Jiu T, Ge RL, Bai Z. Biofunctional roles of estrogen in coronavirus disease 2019: Beyond a steroid hormone. Front Pharmacol 2022; 13:1003469. [PMID: 36339571 PMCID: PMC9626865 DOI: 10.3389/fphar.2022.1003469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/06/2022] [Indexed: 09/26/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), epidemic poses a major global public health threat with more than one million daily new infections and hundreds of deaths. To combat this global pandemic, efficient prevention and management strategies are urgently needed. Together with the main characteristics of COVID-19, impaired coagulation with dysfunctions of the immune response in COVID-19 pathophysiology causes high mortality and morbidity. From recent clinical observations, increased expression of specific types of estrogen appears to protect patients from SARS-CoV-2 infection, thereby, reducing mortality. COVID-19 severity is less common in women than in men, particularly in menopausal women. Furthermore, estrogen levels are negatively correlated with COVID-19 severity and mortality. These findings suggest that estrogen plays a protective role in the pathophysiology of COVID-19. In this review, we discuss the potential roles of estrogen in blocking the SARS-CoV-2 from invading alveolar cells and replicating, and summarize the potential mechanisms of anti-inflammation, immune modulation, reactive oxygen species resistance, anti-thrombosis, vascular dilation, and vascular endothelium protection. Finally, the potential therapeutic effects of estrogen against COVID-19 are reviewed. This review provides insights into the role of estrogen and its use as a potential strategy to reduce the mortality associated with COVID-19, and possibly other viral infections and discusses the possible challenges and pertinent questions.
Collapse
Affiliation(s)
- Zhong-Ping Wang
- Clinical Medicine, School of Medicine, Qinghai University, Xining, China
- Department of Respiratory and Critical Diseases, Affiliated Hospital of Qinghai University, Xining, China
| | - Mao Hua
- Department of Respiratory and Critical Diseases, Affiliated Hospital of Qinghai University, Xining, China
| | - Tai Jiu
- Department of Respiratory and Critical Diseases, Affiliated Hospital of Qinghai University, Xining, China
| | - Ri-Li Ge
- Research Center of High-Altitude Medicine, School of Medicine, Qinghai University, Xining, China
- Joint Lab of Qinghai-Utah for High Altitude Medicine, School of Medicine, Qinghai University, Xining, China
| | - Zhenzhong Bai
- Clinical Medicine, School of Medicine, Qinghai University, Xining, China
- Research Center of High-Altitude Medicine, School of Medicine, Qinghai University, Xining, China
- Joint Lab of Qinghai-Utah for High Altitude Medicine, School of Medicine, Qinghai University, Xining, China
| |
Collapse
|
20
|
Erewele EO, Castellon M, Loya O, Marshboom G, Schwartz A, Yerlioglu K, Callahan C, Chen J, Minshall RD, Oliveira SD. Hypoxia-induced pulmonary hypertension upregulates eNOS and TGF-β contributing to sex-linked differences in BMPR2 +/R899X mutant mice. Pulm Circ 2022; 12:e12163. [PMID: 36484056 PMCID: PMC9722973 DOI: 10.1002/pul2.12163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/28/2022] Open
Abstract
Dysfunctional bone morphogenetic protein receptor 2 (BMPR2) and endothelial nitric oxide synthase (eNOS) have been largely implicated in the pathogenesis of pulmonary arterial hypertension (PAH); a life-threatening cardiopulmonary disease. Although the incident of PAH is about three times higher in females, males with PAH usually have a worse prognosis, which seems to be dependent on estrogen-associated cardiac and vascular protection. Here, we evaluated whether hypoxia-induced pulmonary hypertension (PH) in humanized BMPR2+/R899X loss-of-function mutant mice contributes to sex-associated differences observed in PAH by altering eNOS expression and inducing expansion of hyperactivated TGF-β-producing pulmonary myofibroblasts. To test this hypothesis, male and female wild-type (WT) and BMPR2+/R899X mutant mice were kept under hypoxic or normoxic conditions for 4 weeks, and then right ventricular systolic pressure (RVSP) and right ventricular hypertrophy (RVH) were measured. Chronic hypoxia exposure elevated RVSP, inducing RVH in both groups, with a greater effect in BMPR2+/R899X female mice. Lung histology revealed no differences in vessel thickness/area between sexes, suggesting RVSP differences in this model are unlikely to be in response to sex-dependent vascular narrowing. On the other hand, hypoxia exposure increased vascular collagen deposition, the number of TGF-β-associated α-SMA-positive microvessels, and eNOS expression, whereas it also reduced caveolin-1 expression in the lungs of BMPR2+/R899X females compared to males. Taken together, this brief report reveals elevated myofibroblast-derived TGF-β and eNOS-derived oxidants contribute to pulmonary microvascular muscularization and sex-linked differences in incidence, severity, and outcome of PAH.
Collapse
Affiliation(s)
- Ejehi O Erewele
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Maricela Castellon
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
- Cardiovascular Research Center, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Omar Loya
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Glenn Marshboom
- Department of Pharmacology and Regenerative Medicine, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Andrew Schwartz
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Kayla Yerlioglu
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Christopher Callahan
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Jiwang Chen
- Cardiovascular Research Center, College of Medicine University of Illinois at Chicago Chicago Illinois USA
- Department of Medicine, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Richard D Minshall
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
- Department of Pharmacology and Regenerative Medicine, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Suellen D Oliveira
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
- Department of Physiology & Biophysics, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| |
Collapse
|
21
|
Guajardo-Correa E, Silva-Agüero JF, Calle X, Chiong M, Henríquez M, García-Rivas G, Latorre M, Parra V. Estrogen signaling as a bridge between the nucleus and mitochondria in cardiovascular diseases. Front Cell Dev Biol 2022; 10:968373. [PMID: 36187489 PMCID: PMC9516331 DOI: 10.3389/fcell.2022.968373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Epidemiological studies indicate that pre-menopausal women are more protected against the development of CVDs compared to men of the same age. This effect is attributed to the action/effects of sex steroid hormones on the cardiovascular system. In this context, estrogen modulates cardiovascular function in physiological and pathological conditions, being one of the main physiological cardioprotective agents. Here we describe the common pathways and mechanisms by which estrogens modulate the retrograde and anterograde communication between the nucleus and mitochondria, highlighting the role of genomic and non-genomic pathways mediated by estrogen receptors. Additionally, we discuss the presumable role of bromodomain-containing protein 4 (BRD4) in enhancing mitochondrial biogenesis and function in different CVD models and how this protein could act as a master regulator of estrogen protective activity. Altogether, this review focuses on estrogenic control in gene expression and molecular pathways, how this activity governs nucleus-mitochondria communication, and its projection for a future generation of strategies in CVDs treatment.
Collapse
Affiliation(s)
- Emanuel Guajardo-Correa
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Juan Francisco Silva-Agüero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ximena Calle
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
- Center of Applied Nanoscience (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Mario Chiong
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mauricio Henríquez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| | - Gerardo García-Rivas
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
- Tecnológico de Monterrey, The Institute for Obesity Research, Hospital Zambrano Hellion, San Pedro Garza Garcia, Nuevo León, Mexico
| | - Mauricio Latorre
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| |
Collapse
|
22
|
Hu X, Wang Q, Zhao H, Wu W, Zhao Q, Jiang R, Liu J, Wang L, Yuan P. Role of miR-21-5p/FilGAP axis in estradiol alleviating the progression of monocrotaline-induced pulmonary hypertension. Animal Model Exp Med 2022; 5:217-226. [PMID: 35713208 PMCID: PMC9240735 DOI: 10.1002/ame2.12253] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background Aberrant expression of microRNAs (miRNAs) has been associated with the pathogenesis of pulmonary hypertension (PH). It is, however, not clear whether miRNAs are involved in estrogen rescue of PH. Methods Fresh plasma samples were prepared from 12 idiopathic pulmonary arterial hypertension (IPAH) patients and 12 healthy controls undergoing right heart catheterization in Shanghai Pulmonary Hospital. From each sample, 5 μg of total RNA was tagged and hybridized on microRNA microarray chips. Monocrotaline‐induced PH (MCT‐PH) male rats were treated with 17β‐estradiol (E2) or vehicle. Subgroups were cotreated with estrogen receptor (ER) antagonist or with antagonist of miRNA. Results Many circulating miRNAs, including miR‐21‐5p and miR‐574‐5p, were markedly expressed in patients and of interest in predicting mean pulmonary arterial pressure elevation in patients. The expression of miR‐21‐5p in the lungs was significantly upregulated in MCT‐PH rats compared with the controls. However, miR‐574‐5p showed no difference in the lungs of MCT‐PH rats and controls. miR‐21‐5p was selected for further analysis in rats as E2 strongly regulated it. E2 decreased miR‐21‐5p expression in the lungs of MCT‐PH rats by ERβ. E2 reversed miR‐21‐5p target gene FilGAP downregulation in the lungs of MCT‐PH rats. The abnormal expression of RhoA, ROCK2, Rac1 and c‐Jun in the lungs of MCT‐PH rats was inhibited by E2 and miR‐21‐5p antagonist. Conclusions miR‐21‐5p level was remarkably associated with PH severity in patients. Moreover, the miR‐21‐5p/FilGAP signaling pathway modulated the protective effect of E2 on MCT‐PH through ERβ.
Collapse
Affiliation(s)
- Xiaoyi Hu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qian Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.,Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.,Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenhui Wu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qinhua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Jinming Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| |
Collapse
|
23
|
Cunningham CM, Li M, Ruffenach G, Doshi M, Aryan L, Hong J, Park J, Hrncir H, Medzikovic L, Umar S, Arnold AP, Eghbali M. Y-Chromosome Gene, Uty, Protects Against Pulmonary Hypertension by Reducing Proinflammatory Chemokines. Am J Respir Crit Care Med 2022; 206:186-196. [PMID: 35504005 PMCID: PMC9887415 DOI: 10.1164/rccm.202110-2309oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rationale: Idiopathic pulmonary arterial hypertension (PAH) is a terminal pulmonary vascular disease characterized by increased pressure, right ventricular failure, and death. PAH exhibits a striking sex bias and is up to four times more prevalent in females. Understanding the molecular basis behind sex differences could help uncover novel therapies. Objectives: We previously discovered that the Y chromosome is protective against hypoxia-induced experimental pulmonary hypertension (PH), which may contribute to sex differences in PAH. Here, we identify the gene responsible for Y-chromosome protection, investigate key downstream autosomal genes, and demonstrate a novel preclinical therapy. Methods: To test the effect of Y-chromosome genes on PH development, we knocked down each Y-chromosome gene expressed in the lung by means of intratracheal instillation of siRNA in gonadectomized male mice exposed to hypoxia and monitored changes in right ventricular and pulmonary artery hemodynamics. We compared the lung transcriptome of Uty knockdown mouse lungs to those of male and female PAH patient lungs to identify common downstream pathogenic chemokines and tested the effects of these chemokines on human pulmonary artery endothelial cells. We further inhibited the activity of these chemokines in two preclinical pulmonary hypertension models to test the therapeutic efficacy. Measurements and Main Results: Knockdown of the Y-chromosome gene Uty resulted in more severe PH measured by increased right ventricular pressure and decreased pulmonary artery acceleration time. RNA sequencing revealed an increase in proinflammatory chemokines Cxcl9 and Cxcl10 as a result of Uty knockdown. We found CXCL9 and CXCL10 significantly upregulated in human PAH lungs, with more robust upregulation in females with PAH. Treatment of human pulmonary artery endothelial cells with CXCL9 and CXCL10 triggered apoptosis. Inhibition of Cxcl9 and Cxcl10 expression in male Uty knockout mice and CXCL9 and CXCL10 activity in female rats significantly reduced PH severity. Conclusions:Uty is protective against PH. Reduction of Uty expression results in increased expression of proinflammatory chemokines Cxcl9 and Cxcl10, which trigger endothelial cell death and PH. Inhibition of CLXC9 and CXLC10 rescues PH development in multiple experimental models.
Collapse
Affiliation(s)
- Christine M. Cunningham
- Division of Molecular Medicine, Department of Anesthesiology,,School of Medicine, Stanford University, Stanford, California;,VA Palo Alto Health Care System, Palo Alto, California; and
| | - Min Li
- Division of Molecular Medicine, Department of Anesthesiology
| | | | - Mitali Doshi
- Division of Molecular Medicine, Department of Anesthesiology,,University of Massachusetts Medical School, Worcester, Massachusetts
| | - Laila Aryan
- Division of Molecular Medicine, Department of Anesthesiology
| | - Jason Hong
- Division of Molecular Medicine, Department of Anesthesiology,,Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - John Park
- Division of Molecular Medicine, Department of Anesthesiology
| | - Haley Hrncir
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, California
| | | | - Soban Umar
- Division of Molecular Medicine, Department of Anesthesiology
| | - Arthur P. Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, California
| | | |
Collapse
|
24
|
Rodriguez-Arias JJ, García-Álvarez A. Sex Differences in Pulmonary Hypertension. FRONTIERS IN AGING 2022; 2:727558. [PMID: 35822006 PMCID: PMC9261364 DOI: 10.3389/fragi.2021.727558] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022]
Abstract
Pulmonary hypertension (PH) includes multiple diseases that share as common characteristic an elevated pulmonary artery pressure and right ventricular involvement. Sex differences are observed in practically all causes of PH. The most studied type is pulmonary arterial hypertension (PAH) which presents a gender bias regarding its prevalence, prognosis, and response to treatment. Although this disease is more frequent in women, once affected they present a better prognosis compared to men. Even if estrogens seem to be the key to understand these differences, animal models have shown contradictory results leading to the birth of the estrogen paradox. In this review we will summarize the evidence regarding sex differences in experimental animal models and, very specially, in patients suffering from PAH or PH from other etiologies.
Collapse
Affiliation(s)
| | - Ana García-Álvarez
- Cardiology Department, Institut Clínic Cardiovascular, Hospital Clínic, IDIBAPS, Madrid, Spain.,Universidad de Barcelona, Barcelona, Spain.,Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
25
|
Artemisinin and Its Derivate Alleviate Pulmonary Hypertension and Vasoconstriction in Rodent Models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2782429. [PMID: 35757500 PMCID: PMC9232380 DOI: 10.1155/2022/2782429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 03/20/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
Background Pulmonary arterial hypertension (PAH) is a complex pulmonary vasculature disease characterized by progressive obliteration of small pulmonary arteries and persistent increase in pulmonary vascular resistance, resulting in right heart failure and death if left untreated. Artemisinin (ARS) and its derivatives, which are common antimalarial drugs, have been found to possess a broad range of biological effects. Here, we sought to determine the therapeutic benefit and mechanism of ARS and its derivatives treatment in experimental pulmonary hypertension (PH) models. Methods Isolated perfused/ventilated lung and isometric tension measurements in arteries were performed to test pulmonary vasoconstriction and relaxation. Monocrotaline (MCT) and hypoxia+Su5416 (SuHx) were administered to rats to induce severe PH. Evaluation methods of ARS treatment and its derivatives in animal models include echocardiography, hemodynamics measurement, and histological staining. In vitro, the effect of these drugs on proliferation, viability, and hypoxia-inducible factor 1α (HIF1α) was examined in human pulmonary arterial smooth muscle cells (hPASMCs). Results ARS treatment attenuated pulmonary vasoconstriction induced by high K+ solution or alveolar hypoxia, decreased pulmonary artery (PA) basal vascular tension, improved acetylcholine- (ACh-) induced endothelial-dependent relaxation, increased endothelial nitric oxide (NO) synthase (eNOS) activity and NO levels, and decreased levels of NAD(P)H oxidase subunits (NOX2 and NOX4) expression, NAD(P)H oxidase activity, and reactive oxygen species (ROS) levels of pulmonary arteries (PAs) in MCT-PH rats. NOS inhibitor, L-NAME, abrogated the effects of ARS on PA constriction and relaxation. Furthermore, chronic application of both ARS and its derivative dihydroartemisinin (DHA) attenuated right ventricular systolic pressure (RVSP), Fulton index (right ventricular hypertrophy), and vascular remodeling of PAs in the two rat PH models. In addition, DHA inhibited proliferation and migration of hypoxia-induced PASMCs. Conclusions In conclusion, these results indicate that treatment with ARS or DHA can inhibit PA vasoconstriction, PASMC proliferation and migration, and vascular remodeling, as well as improve PA endothelium-dependent relaxation, and eventually attenuate the development and progression of PH. These effects might be achieved by decreasing NAD(P)H oxidase generated ROS production and increasing eNOS activation to release NO in PAs. ARS and its derivatives might have the potential to be novel drugs for the treatment of PH.
Collapse
|
26
|
Bossers GPL, Hagdorn QAJ, Koop AMC, van der Feen DE, van Leusden T, Bartelds B, de Boer RA, Silljé HHW, Berger RMF. Female rats are less prone to clinical heart failure than male rats in a juvenile rat model of right ventricular pressure load. Am J Physiol Heart Circ Physiol 2022; 322:H994-H1002. [PMID: 35333114 DOI: 10.1152/ajpheart.00071.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sex is increasingly emerging as determinant of right ventricular (RV) adaptation to abnormal loading conditions. It is unknown, however, whether sex-related differences already occur in childhood. Therefore, this study aimed to assess sex differences in a juvenile model of early RV pressure load by pulmonary artery banding (PAB) during transition from pre- to post-puberty. 3-weeks old rat pups (n=57, 30-45g) were subjected to PAB or sham surgery. Animals were sacrificed either before or after puberty (4 and 8 weeks post-surgery, respectively). Male PAB rats demonstrated failure to thrive already after 4 weeks, whereas females did not. After 8 weeks, female PAB rats showed less clinical symptoms of RV failure than male PAB rats. RV pressure-volume analysis demonstrated increased end-systolic elastance after 4 weeks in females only, and a trend toward preserved end-diastolic elastance in female PAB rats compared to males (p=0.055). Histology showed significantly less RV myocardial fibrosis in female compared to male PAB rats 8 weeks after surgery. Myosin heavy chain 7/6 ratio switch and calcineurin signaling were less pronounced in female PAB rats, compared to males. In this juvenile rat model of RV pressure load, female rats appeared to be less prone to clinical heart failure, compared to males. This was driven by increased RV contractility before puberty, and better preservation of diastolic function with less RV myocardial fibrosis after puberty. These findings show that RV adaptation to increased loading differs between sexes already before the introduction of pubertal hormones.
Collapse
Affiliation(s)
- Guido P L Bossers
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, GRONINGEN, Nederland, Netherlands
| | - Quint A J Hagdorn
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Anne Marie C Koop
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, GRONINGEN, Netherlands
| | - Diederik E van der Feen
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Tom van Leusden
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Beatrijs Bartelds
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen; Division of Pediatric Cardiology, Department of Pediatrics, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, Laboratory for Experimental Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Groningen, Netherlands
| | - Herman H W Silljé
- Department of Cardiology, Laboratory for Experimental Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Groningen, Netherlands
| | - Rolf M F Berger
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Netherlands
| |
Collapse
|
27
|
Kelly NJ, Chan SY. Pulmonary Arterial Hypertension: Emerging Principles of Precision Medicine across Basic Science to Clinical Practice. Rev Cardiovasc Med 2022; 23:378. [PMID: 36875282 PMCID: PMC9980296 DOI: 10.31083/j.rcm2311378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an enigmatic and deadly vascular disease with no known cure. Recent years have seen rapid advances in our understanding of the molecular underpinnings of PAH, with an expanding knowledge of the molecular, cellular, and systems-level drivers of disease that are being translated into novel therapeutic modalities. Simultaneous advances in clinical technology have led to a growing list of tools with potential application to diagnosis and phenotyping. Guided by fundamental biology, these developments hold the potential to usher in a new era of personalized medicine in PAH with broad implications for patient management and great promise for improved outcomes.
Collapse
Affiliation(s)
- Neil J Kelly
- Center for Pulmonary Vascular Biology and Medicine and Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute; Division of Cardiology; Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine and Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute; Division of Cardiology; Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
28
|
Chen P, Li B, Ou-Yang L. Role of estrogen receptors in health and disease. Front Endocrinol (Lausanne) 2022; 13:839005. [PMID: 36060947 PMCID: PMC9433670 DOI: 10.3389/fendo.2022.839005] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/26/2022] [Indexed: 12/14/2022] Open
Abstract
Estrogen receptors (ERs) regulate multiple complex physiological processes in humans. Abnormal ER signaling may result in various disorders, including reproductive system-related disorders (endometriosis, and breast, ovarian, and prostate cancer), bone-related abnormalities, lung cancer, cardiovascular disease, gastrointestinal disease, urogenital tract disease, neurodegenerative disorders, and cutaneous melanoma. ER alpha (ERα), ER beta (ERβ), and novel G-protein-coupled estrogen receptor 1 (GPER1) have been identified as the most prominent ERs. This review provides an overview of ERα, ERβ, and GPER1, as well as their functions in health and disease. Furthermore, the potential clinical applications and challenges are discussed.
Collapse
Affiliation(s)
| | - Bo Li
- *Correspondence: Bo Li, libo‐‐
| | | |
Collapse
|
29
|
Cheron C, McBride SA, Antigny F, Girerd B, Chouchana M, Chaumais MC, Jaïs X, Bertoletti L, Sitbon O, Weatherald J, Humbert M, Montani D. Sex and gender in pulmonary arterial hypertension. Eur Respir Rev 2021; 30:30/162/200330. [PMID: 34750113 DOI: 10.1183/16000617.0330-2020] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease characterised by pulmonary vascular remodelling and elevated pulmonary pressure, which eventually leads to right heart failure and death. Registries worldwide have noted a female predominance of the disease, spurring particular interest in hormonal involvement in the disease pathobiology. Several experimental models have shown both protective and deleterious effects of oestrogens, suggesting that complex mechanisms participate in PAH pathogenesis. In fact, oestrogen metabolites as well as receptors and enzymes implicated in oestrogen signalling pathways and associated conditions such as BMPR2 mutation contribute to PAH penetrance more specifically in women. Conversely, females have better right ventricular function, translating to a better prognosis. Along with right ventricular adaptation, women tend to respond to PAH treatment differently from men. As some young women suffer from PAH, contraception is of particular importance, considering that pregnancy in patients with PAH is strongly discouraged due to high risk of death. When contraception measures fail, pregnant women need a multidisciplinary team-based approach. This article aims to review epidemiology, mechanisms underlying the higher female predominance, but better prognosis and the intricacies in management of women affected by PAH.
Collapse
Affiliation(s)
- Céline Cheron
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Susan Ainslie McBride
- Internal Medicine Residency Program, Dept of Medicine, University of Calgary, Calgary, Canada
| | - Fabrice Antigny
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Barbara Girerd
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Margot Chouchana
- Assistance Publique Hôpitaux de Paris, Service de Pharmacie Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Marie-Camille Chaumais
- Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France.,Assistance Publique Hôpitaux de Paris, Service de Pharmacie Hôpital Bicêtre, Le Kremlin Bicêtre, France.,Université Paris-Saclay, Faculté de Pharmacie, Chatenay Malabry, France
| | - Xavier Jaïs
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Laurent Bertoletti
- Centre Hospitalier Universitaire de Saint-Etienne, Service de Médecine Vasculaire et Thérapeutique, Saint-Etienne, France.,INSERM U1059 et CIC1408, Université Jean-Monnet, Saint-Etienne, France
| | - Olivier Sitbon
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Jason Weatherald
- Division of Respirology, Dept of Medicine, University of Calgary, Calgary, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
| | - Marc Humbert
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - David Montani
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France .,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| |
Collapse
|
30
|
Sun Y, Sangam S, Guo Q, Wang J, Tang H, Black SM, Desai AA. Sex Differences, Estrogen Metabolism and Signaling in the Development of Pulmonary Arterial Hypertension. Front Cardiovasc Med 2021; 8:719058. [PMID: 34568460 PMCID: PMC8460911 DOI: 10.3389/fcvm.2021.719058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex and devastating disease with a poor long-term prognosis. While women are at increased risk for developing PAH, they exhibit superior right heart function and higher survival rates than men. Susceptibility to disease risk in PAH has been attributed, in part, to estrogen signaling. In contrast to potential pathological influences of estrogen in patients, studies of animal models reveal estrogen demonstrates protective effects in PAH. Consistent with this latter observation, an ovariectomy in female rats appears to aggravate the condition. This discrepancy between observations from patients and animal models is often called the "estrogen paradox." Further, the tissue-specific interactions between estrogen, its metabolites and receptors in PAH and right heart function remain complex; nonetheless, these relationships are essential to characterize to better understand PAH pathophysiology and to potentially develop novel therapeutic and curative targets. In this review, we explore estrogen-mediated mechanisms that may further explain this paradox by summarizing published literature related to: (1) the synthesis and catabolism of estrogen; (2) activity and functions of the various estrogen receptors; (3) the multiple modalities of estrogen signaling in cells; and (4) the role of estrogen and its diverse metabolites on the susceptibility to, and progression of, PAH as well as their impact on right heart function.
Collapse
Affiliation(s)
- Yanan Sun
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shreya Sangam
- Department of Medicine, Krannert Institute of Cardiology, Indiana University, Indianapolis, IN, United States
| | - Qiang Guo
- Department of Critical Care Medicine, Suzhou Dushu Lake Hospital, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haiyang Tang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Stephen M. Black
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Miami, FL, United States
- Center for Translational Science and Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Port St. Lucie, FL, United States
| | - Ankit A. Desai
- Department of Medicine, Krannert Institute of Cardiology, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
31
|
Ambade AS, Hassoun PM, Damico RL. Basement Membrane Extracellular Matrix Proteins in Pulmonary Vascular and Right Ventricular Remodeling in Pulmonary Hypertension. Am J Respir Cell Mol Biol 2021; 65:245-258. [PMID: 34129804 PMCID: PMC8485997 DOI: 10.1165/rcmb.2021-0091tr] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM), a highly organized network of structural and nonstructural proteins, plays a pivotal role in cellular and tissue homeostasis. Changes in the ECM are critical for normal tissue repair, whereas dysregulation contributes to aberrant tissue remodeling. Pulmonary arterial hypertension is a severe disorder of the pulmonary vasculature characterized by pathologic remodeling of the pulmonary vasculature and right ventricle, increased production and deposition of structural and nonstructural proteins, and altered expression of ECM growth factors and proteases. Furthermore, ECM remodeling plays a significant role in disease progression, as several dynamic changes in its composition, quantity, and organization are documented in both humans and animal models of disease. These ECM changes impact vascular cell biology and affect proliferation of resident cells. Furthermore, ECM components determine the tissue architecture of the pulmonary and myocardial vasculature as well as the myocardium itself and provide mechanical stability crucial for tissue homeostasis. However, little is known about the basement membrane (BM), a specialized, self-assembled conglomerate of ECM proteins, during remodeling. In the vasculature, the BM is in close physical association with the vascular endothelium and smooth muscle cells. While in the myocardium, each cardiomyocyte is enclosed by a BM that serves as the interface between cardiomyocytes and the surrounding interstitial matrix. In this review, we provide a brief overview on the current state of knowledge of the BM and its ECM composition and their impact on pulmonary vascular remodeling and right ventricle dysfunction and failure in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Anjira S Ambade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Rachel L Damico
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
32
|
Satoh T, Wang L, Espinosa-Diez C, Wang B, Hahn SA, Noda K, Rochon ER, Dent MR, Levine A, Baust JJ, Wyman S, Wu YL, Triantafyllou GA, Tang Y, Reynolds M, Shiva S, St Hilaire C, Gomez D, Goncharov DA, Goncharova EA, Chan SY, Straub AC, Lai YC, McTiernan CF, Gladwin MT. Metabolic Syndrome Mediates ROS-miR-193b-NFYA-Dependent Downregulation of Soluble Guanylate Cyclase and Contributes to Exercise-Induced Pulmonary Hypertension in Heart Failure With Preserved Ejection Fraction. Circulation 2021; 144:615-637. [PMID: 34157861 PMCID: PMC8384699 DOI: 10.1161/circulationaha.121.053889] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Many patients with heart failure with preserved ejection fraction have metabolic syndrome and develop exercise-induced pulmonary hypertension (EIPH). Increases in pulmonary vascular resistance in patients with heart failure with preserved ejection fraction portend a poor prognosis; this phenotype is referred to as combined precapillary and postcapillary pulmonary hypertension (CpcPH). Therapeutic trials for EIPH and CpcPH have been disappointing, suggesting the need for strategies that target upstream mechanisms of disease. This work reports novel rat EIPH models and mechanisms of pulmonary vascular dysfunction centered around the transcriptional repression of the soluble guanylate cyclase (sGC) enzyme in pulmonary artery (PA) smooth muscle cells. METHODS We used obese ZSF-1 leptin-receptor knockout rats (heart failure with preserved ejection fraction model), obese ZSF-1 rats treated with SU5416 to stimulate resting pulmonary hypertension (obese+sugen, CpcPH model), and lean ZSF-1 rats (controls). Right and left ventricular hemodynamics were evaluated using implanted catheters during treadmill exercise. PA function was evaluated with magnetic resonance imaging and myography. Overexpression of nuclear factor Y α subunit (NFYA), a transcriptional enhancer of sGC β1 subunit (sGCβ1), was performed by PA delivery of adeno-associated virus 6. Treatment groups received the SGLT2 inhibitor empagliflozin in drinking water. PA smooth muscle cells from rats and humans were cultured with palmitic acid, glucose, and insulin to induce metabolic stress. RESULTS Obese rats showed normal resting right ventricular systolic pressures, which significantly increased during exercise, modeling EIPH. Obese+sugen rats showed anatomic PA remodeling and developed elevated right ventricular systolic pressure at rest, which was exacerbated with exercise, modeling CpcPH. Myography and magnetic resonance imaging during dobutamine challenge revealed PA functional impairment of both obese groups. PAs of obese rats produced reactive oxygen species and decreased sGCβ1 expression. Mechanistically, cultured PA smooth muscle cells from obese rats and humans with diabetes or treated with palmitic acid, glucose, and insulin showed increased mitochondrial reactive oxygen species, which enhanced miR-193b-dependent RNA degradation of nuclear factor Y α subunit (NFYA), resulting in decreased sGCβ1-cGMP signaling. Forced NYFA expression by adeno-associated virus 6 delivery increased sGCβ1 levels and improved exercise pulmonary hypertension in obese+sugen rats. Treatment of obese+sugen rats with empagliflozin improved metabolic syndrome, reduced mitochondrial reactive oxygen species and miR-193b levels, restored NFYA/sGC activity, and prevented EIPH. CONCLUSIONS In heart failure with preserved ejection fraction and CpcPH models, metabolic syndrome contributes to pulmonary vascular dysfunction and EIPH through enhanced reactive oxygen species and miR-193b expression, which downregulates NFYA-dependent sGCβ1 expression. Adeno-associated virus-mediated NFYA overexpression and SGLT2 inhibition restore NFYA-sGCβ1-cGMP signaling and ameliorate EIPH.
Collapse
Affiliation(s)
- Taijyu Satoh
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Longfei Wang
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cristina Espinosa-Diez
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bing Wang
- Departments of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott A. Hahn
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kentaro Noda
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth R. Rochon
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew R. Dent
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Andrea Levine
- Pulmonary & Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeffrey J. Baust
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Samuel Wyman
- Rangos Research Center Animal Imaging Core and Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yijen L. Wu
- Rangos Research Center Animal Imaging Core and Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Georgios A. Triantafyllou
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ying Tang
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mike Reynolds
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sruti Shiva
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cynthia St Hilaire
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Delphine Gomez
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dmitry A. Goncharov
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California Davis, Davis, CA, USA
| | - Elena A. Goncharova
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California Davis, Davis, CA, USA
| | - Stephen Y. Chan
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Adam C. Straub
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yen-Chun Lai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Charles F. McTiernan
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark T. Gladwin
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Murthy S, Benza R. The Evolution of Risk Assessment in Pulmonary Arterial Hypertension. Methodist Debakey Cardiovasc J 2021; 17:134-144. [PMID: 34326933 PMCID: PMC8298117 DOI: 10.14797/lrpr7655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 11/08/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic debilitating disease that
carries an unacceptably high morbidity and mortality rate despite improved
survival with modern therapies. The combination of several modifiable and
nonmodifiable variables yields a robust risk assessment across various available
clinical calculators. The role of risk calculation is integral to managing PAH
and aids in the timely referral to expert centers and potentially lung
transplantation. Studies are ongoing to determine the role of risk calculators
in the framework of clinical trials and to elucidate novel markers of high risk
in PAH.
Collapse
Affiliation(s)
| | - Raymond Benza
- Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
34
|
Török M, Merkely P, Monori-Kiss A, Horváth EM, Sziva RE, Péterffy B, Jósvai A, Sayour AA, Oláh A, Radovits T, Merkely B, Ács N, Nádasy GL, Várbíró S. Network analysis of the left anterior descending coronary arteries in swim-trained rats by an in situ video microscopic technique. Biol Sex Differ 2021; 12:37. [PMID: 34039432 PMCID: PMC8152314 DOI: 10.1186/s13293-021-00379-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/04/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND We aimed to identify sex differences in the network properties and to recognize the geometric alteration effects of long-term swim training in a rat model of exercise-induced left ventricular (LV) hypertrophy. METHODS Thirty-eight Wistar rats were divided into four groups: male sedentary, female sedentary, male exercised and female exercised. After training sessions, LV morphology and function were checked by echocardiography. The geometry of the left coronary artery system was analysed on pressure-perfused, microsurgically prepared resistance artery networks using in situ video microscopy. All segments over > 80 μm in diameter were studied using divided 50-μm-long cylindrical ring units of the networks. Oxidative-nitrative (O-N) stress markers, adenosine A2A and estrogen receptor (ER) were investigated by immunohistochemistry. RESULTS The LV mass index, ejection fraction and fractional shortening significantly increased in exercised animals. We found substantial sex differences in the coronary network in the control groups and in the swim-trained animals. Ring frequency spectra were significantly different between male and female animals in both the sedentary and trained groups. The thickness of the wall was higher in males as a result of training. There were elevations in the populations of 200- and 400-μm vessel units in males; the thinner ones developed farther and the thicker ones closer to the orifice. In females, a new population of 200- to 250-μm vessels appeared unusually close to the orifice. CONCLUSIONS Physical activity and LV hypertrophy were accompanied by a remodelling of coronary resistance artery network geometry that was different in both sexes.
Collapse
Affiliation(s)
- Marianna Török
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082 Hungary
| | - Petra Merkely
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082 Hungary
| | - Anna Monori-Kiss
- Institute of Clinical Experimental Research, Semmelweis University, Tűzoltó u. 37-47, Budapest, 1094 Hungary
| | - Eszter Mária Horváth
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, Budapest, 1094 Hungary
| | - Réka Eszter Sziva
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082 Hungary
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, Budapest, 1094 Hungary
| | - Borbála Péterffy
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, Budapest, 1094 Hungary
| | - Attila Jósvai
- Department of Neurosurgery, Military Hospital, Róbert Károly körút 44, Budapest, 1134 Hungary
| | - Alex Ali Sayour
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122 Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122 Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122 Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122 Hungary
| | - Nándor Ács
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082 Hungary
| | - György László Nádasy
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, Budapest, 1094 Hungary
| | - Szabolcs Várbíró
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082 Hungary
| |
Collapse
|
35
|
Sex and Gender Differences in Lung Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:227-258. [PMID: 34019273 DOI: 10.1007/978-3-030-68748-9_14] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sex differences in the anatomy and physiology of the respiratory system have been widely reported. These intrinsic sex differences have also been shown to modulate the pathophysiology, incidence, morbidity, and mortality of several lung diseases across the life span. In this chapter, we describe the epidemiology of sex differences in respiratory diseases including neonatal lung disease (respiratory distress syndrome, bronchopulmonary dysplasia) and pediatric and adult disease (including asthma, cystic fibrosis, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, lung cancer, lymphangioleiomyomatosis, obstructive sleep apnea, pulmonary arterial hypertension, and respiratory viral infections such as respiratory syncytial virus, influenza, and SARS-CoV-2). We also discuss the current state of research on the mechanisms underlying the observed sex differences in lung disease susceptibility and severity and the importance of considering both sex and gender variables in research studies' design and analysis.
Collapse
|
36
|
Kostyunina DS, McLoughlin P. Sex Dimorphism in Pulmonary Hypertension: The Role of the Sex Chromosomes. Antioxidants (Basel) 2021; 10:779. [PMID: 34068984 PMCID: PMC8156365 DOI: 10.3390/antiox10050779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023] Open
Abstract
Pulmonary hypertension (PH) is a condition characterised by an abnormal elevation of pulmonary artery pressure caused by an increased pulmonary vascular resistance, frequently leading to right ventricular failure and reduced survival. Marked sexual dimorphism is observed in patients with pulmonary arterial hypertension, a form of pulmonary hypertension with a particularly severe clinical course. The incidence in females is 2-4 times greater than in males, although the disease is less severe in females. We review the contribution of the sex chromosomes to this sex dimorphism highlighting the impact of proteins, microRNAs and long non-coding RNAs encoded on the X and Y chromosomes. These genes are centrally involved in the cellular pathways that cause increased pulmonary vascular resistance including the production of reactive oxygen species, altered metabolism, apoptosis, inflammation, vasoconstriction and vascular remodelling. The interaction with genetic mutations on autosomal genes that cause heritable pulmonary arterial hypertension such as bone morphogenetic protein 2 (BMPR2) are examined. The mechanisms that can lead to differences in the expression of genes located on the X chromosomes between females and males are also reviewed. A better understanding of the mechanisms of sex dimorphism in this disease will contribute to the development of more effective therapies for both women and men.
Collapse
Affiliation(s)
| | - Paul McLoughlin
- Conway Institute, School of Medicine, University College Dublin, Dublin D04 V1W8, Ireland;
| |
Collapse
|
37
|
Ma KH, Lippner DS, Basi KA, DeLeon SM, Cappuccio WR, Rhoomes MO, Hildenberger DM, Hoard-Fruchey HM, Rockwood GA. Cyanide Poisoning Compromises Gene Pathways Modulating Cardiac Injury in Vivo. Chem Res Toxicol 2021; 34:1530-1541. [PMID: 33914522 DOI: 10.1021/acs.chemrestox.0c00467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Smoke inhalation from a structure fire is a common route of cyanide poisoning in the U.S. Cyanide inhibits cellular respiration, often leading to death. Its rapid distribution throughout the body can result in injuries to multiple organs, and cyanide victims were reported to experience myocardial infarction and other cardiac complications. However, molecular mechanisms of such complications are yet to be elucidated. While FDA-approved CN antidotes such as sodium thiosulfate and hydroxocobalamin are clinically used, they have foreseeable limitations during mass casualty situations because they require intravenous administration. To facilitate the development of better antidotes and therapeutic treatments, a global view of molecular changes induced by cyanide exposure is necessary. As an exploratory pursuit, we performed oligonucleotide microarrays to establish cardiac transcriptomes of an animal model of nose-only inhalation exposure to hydrogen cyanide (HCN), which is relevant to smoke inhalation. We also profiled cardiac transcriptomes after subcutaneous injection of potassium cyanide (KCN). Although the KCN injection model has often been used to evaluate medical countermeasures, this study demonstrated that cardiac transcriptomes are largely different from that of the HCN inhalation model at multiple time points within 24 h after exposure. Pathway analysis identified that HCN-induced transcriptomes were enriched with genes encoding mediators of pathways critical in modulation of cardiac complications and that a large number of such genes were significantly decreased in expression. We utilized the upstream regulatory analysis to propose drugs that can be potentially employed to treat cyanide-induced cardiac complications.
Collapse
Affiliation(s)
- Ki H Ma
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Dennean S Lippner
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Kelly A Basi
- U.S. Army Combat Capabilities Development Command, Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Susan M DeLeon
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - William R Cappuccio
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Melissa O Rhoomes
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Diane M Hildenberger
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Heidi M Hoard-Fruchey
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Gary A Rockwood
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| |
Collapse
|
38
|
Pulmonary Hypertension Complicating Pregnancy. CURRENT PULMONOLOGY REPORTS 2021. [DOI: 10.1007/s13665-021-00275-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Abstract
Purpose of review
This study aims to describe the pathophysiology of pregnancy in pulmonary hypertension (PH) and review recent literature on maternal and fetal outcomes.
Recent findings
There is an increasing number of pregnant women with PH. Maternal mortality in pulmonary arterial hypertension (PAH) ranges from 9 to 25%, most commonly from heart failure and arrythmias. The highest risk of death is peri-partum and post-partum. Fetal/neonatal morbidity and mortality are also substantial. There are high rates of prematurity, intrauterine growth retardation, and preeclampsia. Women should be referred to expert centers for management. Combination PAH therapy with parenteral prostacyclin and a phosphodiesterase type V inhibitor is recommended. Induced vaginal delivery is preferred, except in cases of severe heart failure or obstetric indications for cesarean section.
Summary
Despite advances in management, pregnancy in PAH remains a high-risk condition and should be prevented.
Collapse
|
39
|
Huang A, Kandhi S, Sun D. Roles of Genetic Predisposition in the Sex Bias of Pulmonary Pathophysiology, as a Function of Estrogens : Sex Matters in the Prevalence of Lung Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:107-127. [PMID: 33788190 DOI: 10.1007/978-3-030-63046-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In addition to studies focused on estrogen mediation of sex-different regulation of systemic circulations, there is now increasing clinical relevance and research interests in the pulmonary circulation, in terms of sex differences in the morbidity and mortality of lung diseases such as inherent-, allergic- and inflammatory-based events. Thus, female predisposition to pulmonary artery hypertension (PAH) is an inevitable topic. To better understand the nature of sexual differentiation in the pulmonary circulation, and how heritable factors, in vivo- and/or in vitro-altered estrogen circumstances and changes in the live environment work in concert to discern the sex bias, this chapter reviews pulmonary events characterized by sex-different features, concomitant with exploration of how alterations of genetic expression and estrogen metabolisms trigger the female-predominant pathological signaling. We address the following: PAH (Sect.7.2) is characterized as an estrogenic promotion of its incidence (Sect. 7.2.2), as a function of specific germline mutations, and as an estrogen-elicited protection of its prognosis (Sect.7.2.1). More detail is provided to introduce a less recognized gene of Ephx2 that encodes soluble epoxide hydrolase (sEH) to degrade epoxyeicosatrienic acids (EETs). As a susceptible target of estrogen, Ephx2/sEH expression is downregulated by an estrogen-dependent epigenetic mechanism. Increases in pulmonary EETs then evoke a potentiation of PAH generation, but mitigation of its progression, a phenomenon similar to the estrogen-paradox regulation of PAH. Additionally, the female susceptibility to chronic obstructive pulmonary diseases (Sect. 7.3) and asthma (Sect.7.4), but less preference to COVID-19 (Sect. 7.5), and roles of estrogen in their pathogeneses are briefly discussed.
Collapse
Affiliation(s)
- An Huang
- Department of Physiology, New York Medical College, Valhalla, NY, USA.
| | - Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
40
|
Dignam JP, Scott TE, Kemp-Harper BK, Hobbs AJ. Animal models of pulmonary hypertension: Getting to the heart of the problem. Br J Pharmacol 2021; 179:811-837. [PMID: 33724447 DOI: 10.1111/bph.15444] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/04/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Despite recent therapeutic advances, pulmonary hypertension (PH) remains a fatal disease due to the development of right ventricular (RV) failure. At present, no treatments targeted at the right ventricle are available, and RV function is not widely considered in the preclinical assessment of new therapeutics. Several small animal models are used in the study of PH, including the classic models of exposure to either hypoxia or monocrotaline, newer combinational and genetic models, and pulmonary artery banding, a surgical model of pure RV pressure overload. These models reproduce selected features of the structural remodelling and functional decline seen in patients and have provided valuable insight into the pathophysiology of RV failure. However, significant reversal of remodelling and improvement in RV function remains a therapeutic obstacle. Emerging animal models will provide a deeper understanding of the mechanisms governing the transition from adaptive remodelling to a failing right ventricle, aiding the hunt for druggable molecular targets.
Collapse
Affiliation(s)
- Joshua P Dignam
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tara E Scott
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University Clayton Campus, Clayton, Victoria, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Parkville, Victoria, Australia
| | - Barbara K Kemp-Harper
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University Clayton Campus, Clayton, Victoria, Australia
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
41
|
Hye T, Dwivedi P, Li W, Lahm T, Nozik-Grayck E, Stenmark KR, Ahsan F. Newer insights into the pathobiological and pharmacological basis of the sex disparity in patients with pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1025-L1037. [PMID: 33719549 DOI: 10.1152/ajplung.00559.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) affects more women than men, although affected females tend to survive longer than affected males. This sex disparity in PAH is postulated to stem from the diverse roles of sex hormones in disease etiology. In animal models, estrogens appear to be implicated not only in pathologic remodeling of pulmonary arteries, but also in protection against right ventricular (RV) hypertrophy. In contrast, the male sex hormone testosterone is associated with reduced survival in male animals, where it is associated with increased RV mass, volume, and fibrosis. However, it also has a vasodilatory effect on pulmonary arteries. Furthermore, patients of both sexes show varying degrees of response to current therapies for PAH. As such, there are many gaps and contradictions regarding PAH development, progression, and therapeutic interventions in male versus female patients. Many of these questions remain unanswered, which may be due in part to lack of effective experimental models that can consistently reproduce PAH pulmonary microenvironments in their sex-specific forms. This review article summarizes the roles of estrogens and related sex hormones, immunological and genetical differences, and the benefits and limitations of existing experimental tools to fill in gaps in our understanding of the sex-based variation in PAH development and progression. Finally, we highlight the potential of a new tissue chip-based model mimicking PAH-afflicted male and female pulmonary arteries to study the sex-based differences in PAH and to develop personalized therapies based on patient sex and responsiveness to existing and new drugs.
Collapse
Affiliation(s)
- Tanvirul Hye
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, Texas
| | - Pankaj Dwivedi
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, Missouri
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas
| | - Tim Lahm
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Eva Nozik-Grayck
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Fakhrul Ahsan
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, Texas.,Department of Pharmaceutical and Biomedical Sciences, California Northstate University, Elk Grove, California
| |
Collapse
|
42
|
Takase T, Taniguchi M, Hirano Y, Nakazawa G, Miyazaki S, Iwanaga Y. Sex difference in pulmonary hypertension in the evaluation by exercise echocardiography. Pulm Circ 2021; 11:2045894020988453. [PMID: 33614017 PMCID: PMC7869067 DOI: 10.1177/2045894020988453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
Male patients with pulmonary hypertension have poor survival than their female counterparts. Poor right ventricular function in men may be one of the major determinants of poor prognosis. This study aimed to investigate the difference in hemodynamics during exercise between men and women by exercise echocardiography. Consecutive patients with pulmonary hypertension who underwent right heart catheterization were enrolled, and survival was analyzed. In patients who underwent exercise echocardiography, the change in tricuspid regurgitation pressure gradient during exercise was calculated at multiple stages (low-, moderate-, and high-load exercise), and the mortality was also recorded. In a total of 93 patients, although there were no differences in pulmonary artery pressure and vascular resistance between sexes, male patients showed poor survival. In patients with exercise echocardiography, change in tricuspid regurgitation pressure gradient at low-load (25 W) exercise was significantly lower in men, although that at maximum-load exercise was not different between men and women. In the Kaplan-Meier analysis, in a median follow-up duration of 1760 days, male patients and those with lower change in tricuspid regurgitation pressure gradient at low-load exercise showed poorer survival (P = 0.002 and 0.026, respectively). In the Cox proportional hazards analysis, the change in tricuspid regurgitation pressure gradient at low-load exercise was independently associated with poor survival after adjustment for age and sex. In conclusion, a lower change in tricuspid regurgitation pressure gradient at low-load exercise was observed in male patients and was a prognostic marker, which may be associated, at least in part, with poorer prognosis in male patients with pulmonary hypertension.
Collapse
Affiliation(s)
- Toru Takase
- Faculty of Medicine, Division of Cardiology, Kindai University, Osakasayama, Japan
| | - Mitsugu Taniguchi
- Division of Cardiology, Osaka Pref. Saiseikai Tondabayashi Hospital, Tondabayashi, Japan
| | - Yutaka Hirano
- Faculty of Medicine, Division of Cardiology, Kindai University, Osakasayama, Japan
| | - Gaku Nakazawa
- Faculty of Medicine, Division of Cardiology, Kindai University, Osakasayama, Japan
| | - Shunichi Miyazaki
- Division of Cardiology, Osaka Pref. Saiseikai Tondabayashi Hospital, Tondabayashi, Japan
| | - Yoshitaka Iwanaga
- Faculty of Medicine, Division of Cardiology, Kindai University, Osakasayama, Japan.,Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
43
|
Keen J, Prisco SZ, Prins KW. Sex Differences in Right Ventricular Dysfunction: Insights From the Bench to Bedside. Front Physiol 2021; 11:623129. [PMID: 33536939 PMCID: PMC7848185 DOI: 10.3389/fphys.2020.623129] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/17/2020] [Indexed: 12/04/2022] Open
Abstract
There are inherent distinctions in right ventricular (RV) performance based on sex as females have better RV function than males. These differences are magnified and have very important prognostic implications in two RV-centric diseases, pulmonary hypertension (PH), and arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). In both PH and ARVC/D, RV dysfunction results in poor patient outcomes. However, there are no currently approved therapies specifically targeting the failing RV, an important unmet need for these two life-threatening disorders. In this review, we highlight human data demonstrating divergent RV phenotypes in healthy, PH, and ARVC/D patients based on sex. Furthermore, we discuss the links between estrogen (the female predominant sex hormone), testosterone (the male predominant sex hormone), and dehydroepiandrosterone (a precursor hormone for multiple sex hormones in males and females) and RV function in both disorders. To provide potential mechanistic insights into sex differences in RV function, we review data that investigate how sex hormones combat or contribute to pathophysiological changes in the RV. Finally, we highlight the ongoing clinical trials in pulmonary arterial hypertension targeting estrogen and dehydroepiandrosterone signaling. Hopefully, a greater understanding of the factors that promote superior RV function in females will lead to novel therapeutic approaches to combat RV dysfunction in PH and ARVC/D.
Collapse
Affiliation(s)
- Jennifer Keen
- Pulmonary and Critical Care, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Sasha Z Prisco
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Kurt W Prins
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
44
|
Cheng TC, Philip JL, Tabima DM, Kumari S, Yakubov B, Frump AL, Hacker TA, Bellofiore A, Li R, Sun X, Goss KN, Lahm T, Chesler NC. Estrogen receptor-α prevents right ventricular diastolic dysfunction and fibrosis in female rats. Am J Physiol Heart Circ Physiol 2020; 319:H1459-H1473. [PMID: 33064565 PMCID: PMC7792707 DOI: 10.1152/ajpheart.00247.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022]
Abstract
Although women are more susceptible to pulmonary arterial hypertension (PAH) than men, their right ventricular (RV) function is better preserved. Estrogen receptor-α (ERα) has been identified as a likely mediator for estrogen protection in the RV. However, the role of ERα in preserving RV function and remodeling during pressure overload remains poorly understood. We hypothesized that loss of functional ERα removes female protection from adverse remodeling and is permissive for the development of a maladapted RV phenotype. Male and female rats with a loss-of-function mutation in ERα (ERαMut) and wild-type (WT) littermates underwent RV pressure overload by pulmonary artery banding (PAB). At 10 wk post-PAB, WT and ERαMut demonstrated RV hypertrophy. Analysis of RV pressure waveforms demonstrated RV-pulmonary vascular uncoupling and diastolic dysfunction in female, but not male, ERαMut PAB rats. Similarly, female, but not male, ERαMut exhibited increased RV fibrosis, comprised primarily of thick collagen fibers. There was an increased protein expression ratio of TIMP metallopeptidase inhibitor 1 (Timp1) to matrix metalloproteinase 9 (Mmp9) in female ERαMut compared with WT PAB rats, suggesting less collagen degradation. RNA-sequencing in female WT and ERαMut RV revealed kallikrein-related peptidase 10 (Klk10) and Jun Proto-Oncogene (Jun) as possible mediators of female RV protection during PAB. In summary, ERα in females is protective against RV-pulmonary vascular uncoupling, diastolic dysfunction, and fibrosis in response to pressure overload. ERα appears to be dispensable for RV adaptation in males. ERα may be a mediator of superior RV adaptation in female patients with PAH.NEW & NOTEWORTHY Using a novel loss-of-function mutation in estrogen receptor-α (ERα), we demonstrate that female, but not male, ERα mutant rats display right ventricular (RV)-vascular uncoupling, diastolic dysfunction, and fibrosis following pressure overload, indicating a sex-dependent role of ERα in protecting against adverse RV remodeling. TIMP metallopeptidase inhibitor 1 (Timp1), matrix metalloproteinase 9 (Mmp9), kallikrein-related peptidase 10 (Klk10), and Jun Proto-Oncogene (Jun) were identified as potential mediators in ERα-regulated pathways in RV pressure overload.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Fibrillar Collagens/metabolism
- Fibrosis
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/prevention & control
- Kallikreins/genetics
- Kallikreins/metabolism
- Male
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mutation
- Myocardium/metabolism
- Myocardium/pathology
- Proto-Oncogene Proteins c-jun/genetics
- Proto-Oncogene Proteins c-jun/metabolism
- Rats, Mutant Strains
- Rats, Sprague-Dawley
- Sex Factors
- Signal Transduction
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/pathology
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/prevention & control
- Ventricular Function, Right
- Ventricular Remodeling
Collapse
Affiliation(s)
- Tik-Chee Cheng
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jennifer L Philip
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin
| | - Diana M Tabima
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Santosh Kumari
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Bakhtiyor Yakubov
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrea L Frump
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Timothy A Hacker
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Alessandro Bellofiore
- Department of Biomedical, Chemical and Materials Engineering, San Jose State University, San Jose, California
| | - Rongbo Li
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Xin Sun
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Kara N Goss
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Tim Lahm
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Naomi C Chesler
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
45
|
At the X-Roads of Sex and Genetics in Pulmonary Arterial Hypertension. Genes (Basel) 2020; 11:genes11111371. [PMID: 33233517 PMCID: PMC7699559 DOI: 10.3390/genes11111371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022] Open
Abstract
Group 1 pulmonary hypertension (pulmonary arterial hypertension; PAH) is a rare disease characterized by remodeling of the small pulmonary arteries leading to progressive elevation of pulmonary vascular resistance, ultimately leading to right ventricular failure and death. Deleterious mutations in the serine-threonine receptor bone morphogenetic protein receptor 2 (BMPR2; a central mediator of bone morphogenetic protein (BMP) signaling) and female sex are known risk factors for the development of PAH in humans. In this narrative review, we explore the complex interplay between the BMP and estrogen signaling pathways, and the potentially synergistic mechanisms by which these signaling cascades increase the risk of developing PAH. A comprehensive understanding of these tangled pathways may reveal therapeutic targets to prevent or slow the progression of PAH.
Collapse
|
46
|
Zawia A, Arnold ND, West L, Pickworth JA, Turton H, Iremonger J, Braithwaite AT, Cañedo J, Johnston SA, Thompson AAR, Miller G, Lawrie A. Altered Macrophage Polarization Induces Experimental Pulmonary Hypertension and Is Observed in Patients With Pulmonary Arterial Hypertension. Arterioscler Thromb Vasc Biol 2020; 41:430-445. [PMID: 33147993 PMCID: PMC7752239 DOI: 10.1161/atvbaha.120.314639] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Supplemental Digital Content is available in the text. To determine whether global reduction of CD68 (cluster of differentiation) macrophages impacts the development of experimental pulmonary arterial hypertension (PAH) and whether this reduction affects the balance of pro- and anti-inflammatory macrophages within the lung. Additionally, to determine whether there is evidence of an altered macrophage polarization in patients with PAH.
Collapse
Affiliation(s)
- Amira Zawia
- Department of Infection, Immunity and Cardiovascular Disease (A.Z., N.D.A., L.W., J.A.P., H.T., J.I., A.T.B., J.C., S.A.J., A.A.R.T., A.L.), University of Sheffield, United Kingdom
| | - Nadine D Arnold
- Department of Infection, Immunity and Cardiovascular Disease (A.Z., N.D.A., L.W., J.A.P., H.T., J.I., A.T.B., J.C., S.A.J., A.A.R.T., A.L.), University of Sheffield, United Kingdom
| | - Laura West
- Department of Infection, Immunity and Cardiovascular Disease (A.Z., N.D.A., L.W., J.A.P., H.T., J.I., A.T.B., J.C., S.A.J., A.A.R.T., A.L.), University of Sheffield, United Kingdom
| | - Josephine A Pickworth
- Department of Infection, Immunity and Cardiovascular Disease (A.Z., N.D.A., L.W., J.A.P., H.T., J.I., A.T.B., J.C., S.A.J., A.A.R.T., A.L.), University of Sheffield, United Kingdom
| | - Helena Turton
- Department of Infection, Immunity and Cardiovascular Disease (A.Z., N.D.A., L.W., J.A.P., H.T., J.I., A.T.B., J.C., S.A.J., A.A.R.T., A.L.), University of Sheffield, United Kingdom
| | - James Iremonger
- Department of Infection, Immunity and Cardiovascular Disease (A.Z., N.D.A., L.W., J.A.P., H.T., J.I., A.T.B., J.C., S.A.J., A.A.R.T., A.L.), University of Sheffield, United Kingdom
| | - Adam T Braithwaite
- Department of Infection, Immunity and Cardiovascular Disease (A.Z., N.D.A., L.W., J.A.P., H.T., J.I., A.T.B., J.C., S.A.J., A.A.R.T., A.L.), University of Sheffield, United Kingdom
| | - Jaime Cañedo
- Department of Infection, Immunity and Cardiovascular Disease (A.Z., N.D.A., L.W., J.A.P., H.T., J.I., A.T.B., J.C., S.A.J., A.A.R.T., A.L.), University of Sheffield, United Kingdom
| | - Simon A Johnston
- Department of Infection, Immunity and Cardiovascular Disease (A.Z., N.D.A., L.W., J.A.P., H.T., J.I., A.T.B., J.C., S.A.J., A.A.R.T., A.L.), University of Sheffield, United Kingdom
| | - A A Roger Thompson
- Department of Infection, Immunity and Cardiovascular Disease (A.Z., N.D.A., L.W., J.A.P., H.T., J.I., A.T.B., J.C., S.A.J., A.A.R.T., A.L.), University of Sheffield, United Kingdom
| | - Gaynor Miller
- Department of Oncology and Metabolism (G.M.), University of Sheffield, United Kingdom.,College of Medical and Dental Science, University of Birmingham, United Kingdom (G.M.)
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease (A.Z., N.D.A., L.W., J.A.P., H.T., J.I., A.T.B., J.C., S.A.J., A.A.R.T., A.L.), University of Sheffield, United Kingdom
| |
Collapse
|
47
|
Lu GH, Gong SG, Li C, Zhao QH, Jiang R, Luo CJ, Wang L, Zhang R. Prognostic Value of Gamma-Glutamyltransferase in Male Patients With Idiopathic Pulmonary Arterial Hypertension. Front Cardiovasc Med 2020; 7:580908. [PMID: 33195467 PMCID: PMC7644547 DOI: 10.3389/fcvm.2020.580908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/29/2020] [Indexed: 12/04/2022] Open
Abstract
Background: The elevated gamma-glutamyltransferase (GGT) activity is regarded as an indicator of cardiovascular disease, with males having higher values than females. The greater incidence of idiopathic pulmonary arterial hypertension (IPAH) is observed in women, whereas prognosis is poor in men. The present study aims to investigate the potential association of GGT on male patients. Methods: Serum GGT levels were measured in 338 consecutive adult IPAH patients, who underwent bone morphogenetic protein receptor type 2 (BMPR2) genetic counseling, and matched with healthy subjects by sex and age. The followed interval was 48 ± 34 months. Results: Increased serum GGT levels were more common in patients with IPAH than controls (p < 0.001). GGT values were significantly higher in male patients than those of females (p < 0.001). Compared with female patients with BMPR2 mutation, GGT level in male patients with BMPR2 mutation was further increased (p = 0.002). Higher GGT levels were associated with worse hemodynamics and Nterminal pro B-type natriuretic peptide in all patients. However, males with a GGT concentration ≥ 53 U/L had a worse survival than those of females. Contrarily, if GGT concentration <53 U/L, there was no survival difference between male and female patients. After adjustment for relevant variables of clinical features and hemodynamics, baseline higher GGT levels remained increased risks of all-cause mortality in males rather than females. During rehospitalization follow-up, male patients still had significantly higher values of GGT than females. Conclusions: Increased GGT levels were correlated with BMPR2 mutation, hemodynamic dysfunction, and poor outcomes in male patients with IPAH. Further studies are needed to explain the origin of abnormal GGT and its potential pathogenesis in men.
Collapse
Affiliation(s)
- Gang-Hua Lu
- Tongji University School of Medicine, Shanghai, China
| | - Su-Gang Gong
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Li
- Tongji University School of Medicine, Shanghai, China
| | - Qin-Hua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ci-Jun Luo
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lan Wang
- Tongji University School of Medicine, Shanghai, China
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Lan Wang
| | - Rui Zhang
- Tongji University School of Medicine, Shanghai, China
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Rui Zhang
| |
Collapse
|
48
|
Agrawal V, Lahm T, Hansmann G, Hemnes AR. Molecular mechanisms of right ventricular dysfunction in pulmonary arterial hypertension: focus on the coronary vasculature, sex hormones, and glucose/lipid metabolism. Cardiovasc Diagn Ther 2020; 10:1522-1540. [PMID: 33224772 PMCID: PMC7666935 DOI: 10.21037/cdt-20-404] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare, life-threatening condition characterized by dysregulated metabolism, pulmonary vascular remodeling, and loss of pulmonary vascular cross-sectional area due to a variety of etiologies. Right ventricular (RV) dysfunction in PAH is a critical mediator of both long-term morbidity and mortality. While combinatory oral pharmacotherapy and/or intravenous prostacyclin aimed at decreasing pulmonary vascular resistance (PVR) have improved clinical outcomes, there are currently no treatments that directly address RV failure in PAH. This is, in part, due to the incomplete understanding of the pathogenesis of RV dysfunction in PAH. The purpose of this review is to discuss the current understanding of key molecular mechanisms that cause, contribute and/or sustain RV dysfunction, with a special focus on pathways that either have led to or have the potential to lead to clinical therapeutic intervention. Specifically, this review discusses the mechanisms by which vessel loss and dysfunctional angiogenesis, sex hormones, and metabolic derangements in PAH directly contribute to RV dysfunction. Finally, this review discusses limitations and future areas of investigation that may lead to novel understanding and therapeutic interventions for RV dysfunction in PAH.
Collapse
Affiliation(s)
- Vineet Agrawal
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tim Lahm
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Anna R. Hemnes
- Division of Allergy, Pulmonology and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
49
|
Teoh JP, Li X, Simoncini T, Zhu D, Fu X. Estrogen-Mediated Gaseous Signaling Molecules in Cardiovascular Disease. Trends Endocrinol Metab 2020; 31:773-784. [PMID: 32682630 DOI: 10.1016/j.tem.2020.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/07/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Gender difference is well recognized as a key risk factor for cardiovascular disease (CVD). Estrogen, the primary female sex hormone, improves cardiovascular functions through receptor (ERα, ERβ, or G protein-coupled estrogen receptor)-initiated genomic or non-genomic mechanisms. Gaseous signaling molecules, including nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO), are important regulators of cardiovascular function. Recent studies have demonstrated that estrogen regulates the production of these signaling molecules in cardiovascular cells to exert its cardiovascular protective effects. We discuss current understanding of gaseous signaling molecules in cardiovascular disease (CVD), the underlying mechanisms through which estrogen exerts cardiovascular protective effects by regulating these molecules, and how these findings can be translated to improve the health of postmenopausal women.
Collapse
Affiliation(s)
- Jian-Peng Teoh
- Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China
| | - Xiaosa Li
- Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China
| | - Tommaso Simoncini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa 56100, Italy
| | - Dongxing Zhu
- Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China.
| | - Xiaodong Fu
- Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China.
| |
Collapse
|
50
|
Al-Hilal TA, Keshavarz A, Kadry H, Lahooti B, Al-Obaida A, Ding Z, Li W, Kamm R, McMurtry IF, Lahm T, Nozik-Grayck E, Stenmark KR, Ahsan F. Pulmonary-arterial-hypertension (PAH)-on-a-chip: fabrication, validation and application. LAB ON A CHIP 2020; 20:3334-3345. [PMID: 32749432 PMCID: PMC7592346 DOI: 10.1039/d0lc00605j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Currently used animal and cellular models for pulmonary arterial hypertension (PAH) only partially recapitulate its pathophysiology in humans and are thus inadequate in reproducing the hallmarks of the disease, inconsistent in portraying the sex-disparity, and unyielding to combinatorial study designs. Here we sought to deploy the ingenuity of microengineering in developing and validating a tissue chip model for human PAH. We designed and fabricated a microfluidic device to emulate the luminal, intimal, medial, adventitial, and perivascular layers of a pulmonary artery. By growing three types of pulmonary arterial cells (PACs)-endothelial, smooth muscle, and adventitial cells, we recreated the PAH pathophysiology on the device. Diseased (PAH) PACs, when grown on the chips, moved of out their designated layers and created phenomena similar to the major pathologies of human PAH: intimal thickening, muscularization, and arterial remodeling and show an endothelial to mesenchymal transition. Flow-induced stress caused control cells, grown on the chips, to undergo morphological changes and elicit arterial remodeling. Our data also suggest that the newly developed chips can be used to elucidate the sex disparity in PAH and to study the therapeutic efficacy of existing and investigational anti-PAH drugs. We believe this miniaturized device can be deployed for testing various prevailing and new hypotheses regarding the pathobiology and drug therapy in human PAH.
Collapse
Affiliation(s)
- Taslim A Al-Hilal
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, 1300 Coulter Dr., Amarillo, 79119 Texas, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|