1
|
Park JS, Choi YH, Min JY, Lee J, Shim G. Fundamental and Targeted Approaches in Pulmonary Arterial Hypertension Treatment. Pharmaceutics 2025; 17:224. [PMID: 40006591 PMCID: PMC11859843 DOI: 10.3390/pharmaceutics17020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic and progressive disease marked by vascular remodeling, inflammation, and smooth muscle cell proliferation, with limited treatment options focused primarily on symptom management. The multifactorial nature of PAH, encompassing genetic, autoimmune, and connective tissue contributions, complicates its treatment, while irreversible vascular changes, such as fibrosis, remain unaddressed by current therapies. Fundamental research on molecular pathways and targeted delivery systems has paved the way for advanced therapeutic strategies that aim to modify disease progression rather than merely manage symptoms. Nanoparticle-based drug delivery systems, leveraging controlled release and pulmonary targeting, offer a promising avenue to overcome these challenges. Such systems enable precise localization to pulmonary vasculature, minimize systemic side effects, and support emerging approaches like gene therapy and combination treatments. Future research should focus on refining nanoparticle formulations for personalized medicine, optimizing inhalation delivery systems, and integrating multi-target approaches to achieve curative outcomes in PAH. This review explores pathophysiology of PAH, current pharmacological strategies, and innovative nanoparticle-based therapies, emphasizing their potential to transform PAH treatment and address its underlying mechanisms.
Collapse
Affiliation(s)
- Ji Su Park
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
- Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Yong Hwan Choi
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
| | - Ji-Young Min
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
| | - Jaeseong Lee
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
| | - Gayong Shim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
- Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
2
|
Pradhan A, Tyagi R, Sharma P, Bajpai J, Kant S. Shifting Paradigms in the Management of Pulmonary Hypertension. Eur Cardiol 2024; 19:e25. [PMID: 39872419 PMCID: PMC11770536 DOI: 10.15420/ecr.2024.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/07/2024] [Indexed: 01/11/2025] Open
Abstract
Pulmonary arterial hypertension (PAH) is a long-term condition characterised by increased resistance to blood flow in the pulmonary circulation. The disease has a progressive course and is associated with a poor prognosis. Without treatment, PAH is associated with mortality in <3 years. Over the past decade, many advances have been made in revising the haemodynamic definition, clinical classification, risk calculation score, treatment options etc. Suggestions from the Sixth World Symposium on Pulmonary Hypertension were incorporated into a literature review that was included in the European Society of Cardiology/European Respiratory Society (ESC/ERS)'s most recent iteration of their guidelines in 2022. The traditional cut-off for pulmonary hypertension (PH), i.e., mean pulmonary artery pressure (mPAP) >25 mm Hg, has been challenged by observational cohort studies, which have shown poor outcomes for values of 21-24 mmHg; the new consensus is that PH is defined at mPAP >20 mm Hg. Although the gold standard for diagnosis and the major source of therapy guidance continues to be right cardiac catheterisation, echocardiography remains the initial test of choice. A multidisciplinary approach is highly recommended when treating PH patients and careful evaluation of patients will aid in proper diagnosis and prognosis. Pharmacotherapy for PAH has seen a paradigm shift with the successful use of newer agents in more extensive, longer and more inclusive trials driven by hard endpoints. Macitentan, selexipag and riociguat are three oral agents that have shown astounding success in PAH randomised studies in the past decade. Upfront combination therapy with two agents is now becoming the norm (following the AMBITION, OPTIMA and ITALY trials) and the momentum is shifting towards triple therapy as for essential hypertension. More recently, inhaled treprostinil was shown to improve exercise capacity in PH associated with interstitial lung disease in the phase III INCREASE study and has been granted regulatory approval for World Health Organization group 3 PH. A new class of drug, sotatercept (a tumour growth factor-β signalling inhibitor), has also been recently approved by the Food and Drug Administration for management of PAH based on positive results from the phase III STELLAR study. Pulmonary artery denervation and balloon pulmonary angioplasty have emerged as viable alternatives in PH that are resistant to drug therapy. This article aims to summarise the key changes and recent advances in diagnosis and managing PH in general, with an emphasis on certain subgroups.
Collapse
Affiliation(s)
- Akshyaya Pradhan
- Department of Cardiology, King George’s Medical UniversityLucknow, Uttar Pradesh, India
| | - Richa Tyagi
- Department of Pulmonary Medicine, Sanjay Gandhi PG Institute of Medical SciencesLucknow, Uttar Pradesh, India
| | - Prachi Sharma
- Department of Cardiology, King George’s Medical UniversityLucknow, Uttar Pradesh, India
| | - Jyoti Bajpai
- Department of Respiratory Medicine, King George’s Medical UniversityLucknow, Uttar Pradesh, India
| | - Surya Kant
- Department of Respiratory Medicine, King George’s Medical UniversityLucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Bahi M, Li C, Wang G, Korman BD. Systemic Sclerosis-Associated Pulmonary Arterial Hypertension: From Bedside to Bench and Back Again. Int J Mol Sci 2024; 25:4728. [PMID: 38731946 PMCID: PMC11084945 DOI: 10.3390/ijms25094728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Systemic sclerosis (SSc) is a heterogeneous disease characterized by autoimmunity, vasculopathy, and fibrosis which affects the skin and internal organs. One key aspect of SSc vasculopathy is pulmonary arterial hypertension (SSc-PAH) which represents a leading cause of morbidity and mortality in patients with SSc. The pathogenesis of pulmonary hypertension is complex, with multiple vascular cell types, inflammation, and intracellular signaling pathways contributing to vascular pathology and remodeling. In this review, we focus on shared molecular features of pulmonary hypertension and those which make SSc-PAH a unique entity. We highlight advances in the understanding of the clinical and translational science pertinent to this disease. We first review clinical presentations and phenotypes, pathology, and novel biomarkers, and then highlight relevant animal models, key cellular and molecular pathways in pathogenesis, and explore emerging treatment strategies in SSc-PAH.
Collapse
Affiliation(s)
| | | | | | - Benjamin D. Korman
- Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 695, Rochester, NY 14642, USA; (M.B.)
| |
Collapse
|
4
|
Novara ME, Di Martino E, Stephens B, Nayrouz M, Vitulo P, Carollo A, Provenzani A. Future Perspectives of Pulmonary Arterial Hypertension: A Review of Novel Pipeline Treatments and Indications. Drugs R D 2024; 24:13-28. [PMID: 38514585 PMCID: PMC11035521 DOI: 10.1007/s40268-024-00453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 03/23/2024] Open
Abstract
Pulmonary arterial hypertension is characterized by elevated blood pressure and pathological changes in the pulmonary arterioles, leading to the development of right-heart failure and potentially fatal outcomes if left untreated. This review aims to provide an overview of novel drugs or formulations and new drug indications for pulmonary arterial hypertension that are currently in phases II-III of randomized controlled trials, and describe the rationale for the use of these targeted therapies, as well as their efficacy, safety profile, and impact on quality of life and survival. The literature research was conducted using data from ClinicalTrials.gov for the period between 1 January 2016 up to 31 December 2022. The population of interest includes individuals aged ≥ 18 years who have been diagnosed with pulmonary arterial hypertension. The review selection criteria included trials with recruiting, enrolling by invitation, active, terminated or completed status in 2022 and 2023. A total of 24 studies were selected for evaluation based on the inclusion and exclusion criteria. This review summarizes the updated information from randomized clinical trials involving novel therapies for pulmonary arterial hypertension. However, larger clinical trials are required to validate their clinical safety and effects. In the future, clinicians should choose therapies based on the patient's individual situation and requirements when developing treatment strategies.
Collapse
Affiliation(s)
- Maria Eugenia Novara
- Clinical Pharmacy Service, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - Enrica Di Martino
- Clinical Pharmacy Service, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - Brandon Stephens
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Mary Nayrouz
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Patrizio Vitulo
- Pneumology Unit, Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - Anna Carollo
- Clinical Pharmacy Service, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - Alessio Provenzani
- Clinical Pharmacy Service, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy.
| |
Collapse
|
5
|
Benza RL, Grünig E, Sandner P, Stasch JP, Simonneau G. The nitric oxide-soluble guanylate cyclase-cGMP pathway in pulmonary hypertension: from PDE5 to soluble guanylate cyclase. Eur Respir Rev 2024; 33:230183. [PMID: 38508664 PMCID: PMC10957071 DOI: 10.1183/16000617.0183-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/18/2024] [Indexed: 03/22/2024] Open
Abstract
The nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway plays a key role in the pathogenesis of pulmonary hypertension (PH). Targeted treatments include phosphodiesterase type 5 inhibitors (PDE5i) and sGC stimulators. The sGC stimulator riociguat is approved for the treatment of pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). sGC stimulators have a dual mechanism of action, enhancing the sGC response to endogenous NO and directly stimulating sGC, independent of NO. This increase in cGMP production via a dual mechanism differs from PDE5i, which protects cGMP from degradation by PDE5, rather than increasing its production. sGC stimulators may therefore have the potential to increase cGMP levels under conditions of NO depletion that could limit the effectiveness of PDE5i. Such differences in mode of action between sGC stimulators and PDE5i could lead to differences in treatment efficacy between the classes. In addition to vascular effects, sGC stimulators have the potential to reduce inflammation, angiogenesis, fibrosis and right ventricular hypertrophy and remodelling. In this review we describe the evolution of treatments targeting the NO-sGC-cGMP pathway, with a focus on PH.
Collapse
Affiliation(s)
| | - Ekkehard Grünig
- Pulmonary Hypertension Unit, Thoraxklinik at Heidelberg University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Sandner
- Bayer AG, Wuppertal, Germany
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Johannes-Peter Stasch
- Bayer AG, Wuppertal, Germany
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Gérald Simonneau
- Centre de Référence de l'Hypertension Pulmonaire Sévère, CHU Kremlin Bicêtre, Kremlin Bicêtre, France
| |
Collapse
|
6
|
Farmakis IT, Baroutidou A, Patsiou V, Arvanitaki A, Doundoulakis I, Hobohm L, Zafeiropoulos S, Konstantinides SV, D'Alto M, Badagliacca R, Giannakoulas G. Contribution of pressure and flow changes to resistance reduction after pulmonary arterial hypertension treatment: a meta-analysis of 3898 patients. ERJ Open Res 2024; 10:00706-2023. [PMID: 38259812 PMCID: PMC10801731 DOI: 10.1183/23120541.00706-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/21/2023] [Indexed: 01/24/2024] Open
Abstract
Background Pulmonary arterial hypertension (PAH)-targeted therapies exert significant haemodynamic changes; however, systematic synthesis is currently lacking. Methods We searched PubMed, CENTRAL and Web of Science for studies evaluating mean pulmonary artery pressure (mPAP), cardiac index/cardiac output (CI/CO) and pulmonary vascular resistance (PVR) of PAH-targeted therapies either in monotherapy or combinations as assessed by right heart catheterisation in treatment-naïve PAH patients. We performed a random-effects meta-analysis with meta-regression. Results We included 68 studies (90 treatment groups) with 3898 patients (age 47.4±13.2 years, 74% women). In studies with small PVR reduction (<4 WU), CI/CO increase (R2=62%) and not mPAP reduction (R2=24%) was decisive for the PVR reduction (p<0.001 and p=0.36, respectively, in the multivariable meta-regression model); however, in studies with large PVR reduction (>4 WU), both CI/CO increase (R2=72%) and mPAP reduction (R2=35%) contributed significantly to the PVR reduction (p<0.001 and p=0.01, respectively). PVR reduction as a percentage of the pre-treatment value was more pronounced in the oral+prostanoid intravenous/subcutaneous combination therapy (mean difference -50.0%, 95% CI -60.8- -39.2%), compared to oral combination therapy (-41.7%, -47.6- -35.8%), prostanoid i.v./s.c. monotherapy (-31.8%, -37.6- -25.9%) and oral monotherapy (-21.6%, -25.4- -17.8%). Changes in haemodynamic parameters were significantly associated with changes in functional capacity of patients with PAH as expressed by the 6-min walking distance. Conclusion Combination therapies, especially with the inclusion of parenteral prostanoids, lead to remarkable haemodynamic improvement in treatment-naïve PAH patients and may unmask the contribution of mPAP reduction to the overall PVR reduction in addition to the increase in CO.
Collapse
Affiliation(s)
- Ioannis T. Farmakis
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Amalia Baroutidou
- Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki Patsiou
- Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandra Arvanitaki
- Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Doundoulakis
- Athens Heart Center, Athens Medical Center, Athens, Greece
- First Department of Cardiology, National and Kapodistrian University, “Hippokration” Hospital, Athens, Greece
| | - Lukas Hobohm
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Department of Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stefanos Zafeiropoulos
- Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, USA
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, NY
| | - Stavros V. Konstantinides
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Department of Cardiology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michele D'Alto
- Department of Cardiology, University “L. Vanvitelli”-Monaldi Hospital, Naples, Italy
| | - Roberto Badagliacca
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - George Giannakoulas
- Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
D’Agostino A, Lanzafame LG, Buono L, Crisci G, D’Assante R, Leone I, De Vito L, Bossone E, Cittadini A, Marra AM. Modulating NO-GC Pathway in Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 25:36. [PMID: 38203205 PMCID: PMC10779316 DOI: 10.3390/ijms25010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The pathogenesis of complex diseases such as pulmonary arterial hypertension (PAH) is entirely rooted in changes in the expression of some vasoactive factors. These play a significant role in the onset and progression of the disease. Indeed, PAH has been associated with pathophysiologic alterations in vascular function. These are often dictated by increased oxidative stress and impaired modulation of the nitric oxide (NO) pathway. NO reduces the uncontrolled proliferation of vascular smooth muscle cells that leads to occlusion of vessels and an increase in pulmonary vascular resistances, which is the mainstay of PAH development. To date, two classes of NO-pathway modulating drugs are approved for the treatment of PAH: the phosphodiesterase-5 inhibitors (PD5i), sildenafil and tadalafil, and the soluble guanylate cyclase activator (sGC), riociguat. Both drugs provide considerable improvement in exercise capacity and pulmonary hemodynamics. PD5i are the recommended drugs for first-line PAH treatment, whereas sGCs are also the only drug approved for the treatment of resistant or inoperable chronic thromboembolic pulmonary hypertension. In this review, we will focus on the current information regarding the nitric oxide pathway and its modulation in PAH.
Collapse
Affiliation(s)
- Anna D’Agostino
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (L.B.); (I.L.)
| | - Lorena Gioia Lanzafame
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi Hospital, University of Catania, Via Palermo 636, 95122 Catania, Italy;
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy; (G.C.); (R.D.); (L.D.V.); (A.C.)
| | - Lorena Buono
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (L.B.); (I.L.)
| | - Giulia Crisci
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy; (G.C.); (R.D.); (L.D.V.); (A.C.)
| | - Roberta D’Assante
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy; (G.C.); (R.D.); (L.D.V.); (A.C.)
| | - Ilaria Leone
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (L.B.); (I.L.)
| | - Luigi De Vito
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy; (G.C.); (R.D.); (L.D.V.); (A.C.)
| | - Eduardo Bossone
- Department of Public Health, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy;
| | - Antonio Cittadini
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy; (G.C.); (R.D.); (L.D.V.); (A.C.)
- Gender Interdipartimental Institute of Research (GENESIS), “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy
| | - Alberto Maria Marra
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy; (G.C.); (R.D.); (L.D.V.); (A.C.)
- Gender Interdipartimental Institute of Research (GENESIS), “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
8
|
Khan SL, Mathai SC. Scleroderma pulmonary arterial hypertension: the same as idiopathic pulmonary arterial hypertension? Curr Opin Pulm Med 2023; 29:380-390. [PMID: 37461869 PMCID: PMC11334969 DOI: 10.1097/mcp.0000000000001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
PURPOSE OF REVIEW Pulmonary arterial hypertension (PAH) is a common complication of systemic sclerosis (SSc), which confers significant morbidity and mortality. The current therapies and treatment strategies for SSc-associated PAH (SSc-PAH) are informed by those used to treat patients with idiopathic PAH (IPAH). There are, however, important differences between these two diseases that impact diagnosis, treatment, and outcomes. RECENT FINDINGS Both SSc-PAH and IPAH are incompletely understood with ongoing research into the underlying cellular biology that characterize and differentiate the two diseases. Additional research seeks to improve identification among SSc patients in order to diagnose patients earlier in the course of their disease. Novel therapies specifically for SSc-PAH such as rituximab and dimethyl fumarate are under investigation. SUMMARY Although patients with SSc-PAH and IPAH present with similar symptoms, there are significant differences between these two forms of PAH that warrant further investigation and characterization of optimal detection strategies, treatment algorithms, and outcomes assessment.
Collapse
Affiliation(s)
- Sarah L Khan
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
9
|
El-Kersh K, Jalil BA. Pulmonary hypertension inhaled therapies: An updated review. Am J Med Sci 2023; 366:3-15. [PMID: 36921672 DOI: 10.1016/j.amjms.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
Treatments of pulmonary hypertension (PH) continue to evolve with approval of new therapies. The currently FDA approved inhaled PH therapies include inhaled iloprost for group 1 pulmonary arterial hypertension (PAH), inhaled treprostinil solution and treprostinil dry powder inhaler for both group 1 PAH and group 3 PH associated with interstitial lung disease (PH-ILD). Inhaled treprostinil was recently approved for group 3 PH-ILD based on the results of INCREASE trial and the newer formulation of treprostinil dry powder that comes with a new inhaler was recently approved for both group 1 PAH and group 3 PH-ILD based on BREEZE study. The pipeline for inhaled PH therapies includes several promising molecules that can enrich the current PH therapeutic era and mitigate several systemic side effects by directly delivering the drug to the target organ. In this review article we summarize the evidence for the currently approved inhaled PAH/PH therapies, discuss the available inhalation devices, present a roadmap for successful treatment strategy, and present several inhaled PAH/PH therapies in the pipeline.
Collapse
Affiliation(s)
- Karim El-Kersh
- Division of Pulmonary, Critical Care, & Sleep Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, NE, United States.
| | - Bilal A Jalil
- Assistant Professor of Medicine, Divisions of Cardiovascular Critical Care and Advanced Heart Failure, Heart and Vascular Institute, West Virginia University, Morgantown, WV 26506, United States
| |
Collapse
|
10
|
Auth R, Klinger JR. Emerging pharmacotherapies for the treatment of pulmonary arterial hypertension. Expert Opin Investig Drugs 2023; 32:1025-1042. [PMID: 37881882 DOI: 10.1080/13543784.2023.2274439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease. Approved treatment options currently primarily target abnormal cell signaling pathways involved in vasoconstriction and proliferation, such as those mediated by prostacyclin, cyclic guanosine monophosphate, and endothelin. AREAS COVERED Recent advancements have led to new applications and modes of delivery of currently approved PAH medications. At the same time, novel drugs targeting specific molecular pathways involved in PAH pathogenesis have been developed and are being investigated in clinical trials. This review summarizes investigational drug trials for PAH gathered from a comprehensive search using PubMed and ClinicalTrials.gov between 2003 and 2023. It includes both currently approved medications studied at different doses or new administration forms and experimental drugs that have not yet been approved. EXPERT OPINION Approved treatments for PAH target imbalances in pulmonary vasoactive pathways that work primarily on enhancing pulmonary vasodilation with less salient effects on pulmonary vascular remodeling. The advent of more locally acting inhaled medications offers additional therapeutic options that may improve the ease of drug delivery and reduce adverse systemic effects. The more recent emphasis on developing and applying therapeutics that directly impact the aberrant signaling pathways implicated in PAH appears more likely to advance the treatment of this devastating disease.
Collapse
Affiliation(s)
- Roger Auth
- Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - James R Klinger
- Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
11
|
Garcia MVF, Coz-Yataco A, Al-Jaghbeer MJ. Pulmonary arterial hypertension trials put to the test: Using the fragility index to assess trials robustness. Heart Lung 2023; 61:147-152. [PMID: 37271106 DOI: 10.1016/j.hrtlng.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Randomized clinical trials (RCTs) are considered the gold standard for evidence-based medicine. The Fragility Index (FI) is a tool to assess the robustness of RCT results. FI was validated for dichotomous outcomes and recent work expanded its use to continuous outcomes. Studying the robustness of RCTs in Pulmonary Arterial Hypertension (PAH) treatments is crucial due to the severity and mortality risks associated with this rare condition. OBJECTIVES Analyze FI and Fragility quotient (FQ) of significant primary outcomes in PAH RCTs and study FI correlation with sample size and journal impact factor. METHODS FI and FQ calculation followed by Spearman correlation to assess the correlation between FI and sample size, and FI and impact factor. RESULTS The median sample size of the 21 trials was 202 patients (IQR 106-267), with 6 trials reporting primary outcomes as dichotomous and 15 reporting continuous primary outcomes. The median FI was 10 (IQR 3-20), and the median FQ was 0.044 (0.026-0.097). A moderate correlation was found between FI and sample size, with r = 0.56; P = 0.008 and FI and journal impact factor (r=0.50; P=0.019). The FI for continuous outcomes was similar to that for dichotomous outcomes. CONCLUSIONS This study represents the first analysis of the FI and FQ of PAH treatment RCTs, and expands the use of FI to continuous outcomes in this context. The moderate correlation between FI and sample size suggests that increasing sample size alone is partially correlated to a higher FI. The similarity between FI for continuous and dichotomous outcomes supports the broader use of FI in PAH RCTs.
Collapse
Affiliation(s)
| | - Angel Coz-Yataco
- Cleveland Clinic Foundation, Fairview Hospital, 18101 Lorain Ave, Cleveland, OH 44111, United States; Respiratory Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Mohammed J Al-Jaghbeer
- Cleveland Clinic Foundation, Fairview Hospital, 18101 Lorain Ave, Cleveland, OH 44111, United States; Respiratory Institute, Cleveland Clinic Foundation, Cleveland, OH, United States; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
12
|
Jin Q, Chen D, Zhang X, Zhang F, Zhong D, Lin D, Guan L, Pan W, Zhou D, Ge J. Medical Management of Pulmonary Arterial Hypertension: Current Approaches and Investigational Drugs. Pharmaceutics 2023; 15:1579. [PMID: 37376028 DOI: 10.3390/pharmaceutics15061579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/02/2023] [Accepted: 05/13/2023] [Indexed: 06/29/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a malignant pulmonary vascular syndrome characterized by a progressive increase in pulmonary vascular resistance and pulmonary arterial pressure, which eventually leads to right heart failure and even death. Although the exact mechanism of PAH is not fully understood, pulmonary vasoconstriction, vascular remodeling, immune and inflammatory responses, and thrombosis are thought to be involved in the development and progression of PAH. In the era of non-targeted agents, PAH had a very dismal prognosis with a median survival time of only 2.8 years. With the deep understanding of the pathophysiological mechanism of PAH as well as advances in drug research, PAH-specific therapeutic drugs have developed rapidly in the past 30 years, but they primarily focus on the three classical signaling pathways, namely the endothelin pathway, nitric oxide pathway, and prostacyclin pathway. These drugs dramatically improved pulmonary hemodynamics, cardiac function, exercise tolerance, quality of life, and prognosis in PAH patients, but could only reduce pulmonary arterial pressure and right ventricular afterload to a limited extent. Current targeted agents delay the progression of PAH but cannot fundamentally reverse pulmonary vascular remodeling. Through unremitting efforts, new therapeutic drugs such as sotatercept have emerged, injecting new vitality into this field. This review comprehensively summarizes the general treatments for PAH, including inotropes and vasopressors, diuretics, anticoagulants, general vasodilators, and anemia management. Additionally, this review elaborates the pharmacological properties and recent research progress of twelve specific drugs targeting three classical signaling pathways, as well as dual-, sequential triple-, and initial triple-therapy strategies based on the aforementioned targeted agents. More crucially, the search for novel therapeutic targets for PAH has never stopped, with great progress in recent years, and this review outlines the potential PAH therapeutic agents currently in the exploratory stage to provide new directions for the treatment of PAH and improve the long-term prognosis of PAH patients.
Collapse
Affiliation(s)
- Qi Jin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Dandan Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Xiaochun Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Feng Zhang
- Department of Cardiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai 201508, China
| | - Dongxiang Zhong
- Department of Cardiology, Shanghai East Hospital, Shanghai Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Dawei Lin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Lihua Guan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Wenzhi Pan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Daxin Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| |
Collapse
|
13
|
Swisher JW, Weaver E. The Evolving Management and Treatment Options for Patients with Pulmonary Hypertension: Current Evidence and Challenges. Vasc Health Risk Manag 2023; 19:103-126. [PMID: 36895278 PMCID: PMC9990521 DOI: 10.2147/vhrm.s321025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
Pulmonary hypertension may develop as a disease process specific to pulmonary arteries with no identifiable cause or may occur in relation to other cardiopulmonary and systemic illnesses. The World Health Organization (WHO) classifies pulmonary hypertensive diseases on the basis of primary mechanisms causing increased pulmonary vascular resistance. Effective management of pulmonary hypertension begins with accurately diagnosing and classifying the disease in order to determine appropriate treatment. Pulmonary arterial hypertension (PAH) is a particularly challenging form of pulmonary hypertension as it involves a progressive, hyperproliferative arterial process that leads to right heart failure and death if untreated. Over the last two decades, our understanding of the pathobiology and genetics behind PAH has evolved and led to the development of several targeted disease modifiers that ameliorate hemodynamics and quality of life. Effective risk management strategies and more aggressive treatment protocols have also allowed better outcomes for patients with PAH. For those patients who experience progressive PAH with medical therapy, lung transplantation remains a life-saving option. More recent work has been directed at developing effective treatment strategies for other forms of pulmonary hypertension, such as chronic thromboembolic pulmonary hypertension (CTEPH) and pulmonary hypertension due to other lung or heart diseases. The discovery of new disease pathways and modifiers affecting the pulmonary circulation is an ongoing area of intense investigation.
Collapse
Affiliation(s)
- John W Swisher
- East Tennessee Pulmonary Hypertension Center, StatCare Pulmonary Consultants, Knoxville, TN, USA
| | - Eric Weaver
- East Tennessee Pulmonary Hypertension Center, StatCare Pulmonary Consultants, Knoxville, TN, USA
| |
Collapse
|
14
|
Muacevic A, Adler JR, Ganipineni VDP, Gorle SA, Gaddipati S, Bseiso A, Pizzorno G, Shaik TA. Effect of Phosphodiesterase-5 (PDE-5) Inhibitors on Clinical Outcomes in Patients With Pulmonary Hypertension: A Meta-Analysis of Randomized Control Trials. Cureus 2023; 15:e33363. [PMID: 36751241 PMCID: PMC9897597 DOI: 10.7759/cureus.33363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 01/05/2023] Open
Abstract
We intended to summarize the most recent research pertaining to the use of phosphodiesterase-5 (PDE5) inhibitors in pulmonary hypertension in light of recent developments in the knowledge of the pathophysiological mechanisms and treatments for pulmonary hypertension, with major contributions in the area in the last decade. The aim of this meta-analysis is to determine the efficacy of PDE5 inhibitors for pulmonary hypertension in adults. We followed the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines to carry out this meta-analysis. Online database searching to identify eligible trials was performed in MEDLINE, EMBASE, and the Cochrane Library by two authors independently. Outcomes assessed in the current meta-analysis included change in the cardiac index from baseline in liters per minute per square meter (L/min/m2), mean peripheral arterial pressure (PAP) in mm Hg, mortality, hospitalization, and six-minute walking distance (6MWD) in meters (m). Overall, 17 articles met the inclusion criteria and were included in the current meta-analysis. PDE5 inhibitors significantly improve cardiac index (mean difference: 0.18, 95% CI: 0.04, 0.32, p-value: 0.01), mean PAP (mean difference: -5.61, 95% CI: -7.60, -3.62, p-value: 0.01), and 6MWD (mean difference: 26.26, 95% CI: 16.95, 35.57, p-value: 0.001) as compared to the patients in the control group. No significant difference was found in terms of risk of mortality (risk ratio (RR): 0.51, 95% CI: 0.17, 1.54) and risk of hospitalization (RR: 0.59, 95% CI: 0.23, 1.55) between the two groups. The current meta-analysis concluded that PDE5 inhibitors improve 6MWD, mean PAP, and cardiac index in patients with pulmonary hypertension. However, no significant difference was reported in terms of mortality and hospitalization between the two groups.
Collapse
|
15
|
Zhu J, Yang L, Jia Y, Balistrieri A, Fraidenburg DR, Wang J, Tang H, Yuan JXJ. Pathogenic Mechanisms of Pulmonary Arterial Hypertension: Homeostasis Imbalance of Endothelium-Derived Relaxing and Contracting Factors. JACC. ASIA 2022; 2:787-802. [PMID: 36713766 PMCID: PMC9877237 DOI: 10.1016/j.jacasi.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/29/2022] [Accepted: 09/14/2022] [Indexed: 12/23/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal disease. Sustained pulmonary vasoconstriction and concentric pulmonary vascular remodeling contribute to the elevated pulmonary vascular resistance and pulmonary artery pressure in PAH. Endothelial cells regulate vascular tension by producing endothelium-derived relaxing factors (EDRFs) and endothelium-derived contracting factors (EDCFs). Homeostasis of EDRF and EDCF production has been identified as a marker of the endothelium integrity. Impaired synthesis or release of EDRFs induces persistent vascular contraction and pulmonary artery remodeling, which subsequently leads to the development and progression of PAH. In this review, the authors summarize how EDRFs and EDCFs affect pulmonary vascular homeostasis, with special attention to the recently published novel mechanisms related to endothelial dysfunction in PAH and drugs associated with EDRFs and EDCFs.
Collapse
Key Words
- 5-HT, 5-hydroxytryptamine
- ACE, angiotensin-converting enzyme
- EC, endothelial cell
- EDCF, endothelium-derived contracting factor
- EDRF, endothelium-derived relaxing factor
- ET, endothelin
- PAH, pulmonary arterial hypertension
- PASMC, pulmonary artery smooth muscle cell
- PG, prostaglandin
- TPH, tryptophan hydroxylase
- TXA2, thromboxane A2
- cGMP, cyclic guanosine monophosphate
- endothelial dysfunction
- endothelium-derived relaxing factor
- pulmonary arterial hypertension
- vascular homeostasis
Collapse
Affiliation(s)
- Jinsheng Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yangfan Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Dustin R. Fraidenburg
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
16
|
Otani N, Tomoe T, Kawabe A, Sugiyama T, Horie Y, Sugimura H, Yasu T, Nakamoto T. Recent Advances in the Treatment of Pulmonary Arterial Hypertension. Pharmaceuticals (Basel) 2022; 15:1277. [PMID: 36297387 PMCID: PMC9609229 DOI: 10.3390/ph15101277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 09/29/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease in which stenosis or obstruction of the pulmonary arteries (PAs) causes an increase in PA pressure, leading to right-sided heart failure and death. Basic research has revealed a decrease in the levels of endogenous vasodilators, such as prostacyclin, and an increase in the levels of endogenous vasoconstrictors, such as endothelin, in patients with PAH, leading to the development of therapeutic agents. Currently, therapeutic agents for PAH target three pathways that are selective for PAs: the prostacyclin, endothelin, and nitric oxide pathways. These treatments improve the prognosis of PAH patients. In this review, we introduce new drug therapies and provide an overview of the current therapeutic agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Takaaki Nakamoto
- Department of Cardiology, Dokkyo Medical University Nikkyo Medical Center, 632 Takatoku, Nikko 321-2593, Japan
| |
Collapse
|
17
|
Pitre T, Su J, Cui S, Scanlan R, Chiang C, Husnudinov R, Khalid MF, Khan N, Leung G, Mikhail D, Saadat P, Shahid S, Mah J, Mielniczuk L, Zeraatkar D, Mehta S. Medications for the treatment of pulmonary arterial hypertension: a systematic review and network meta-analysis. Eur Respir Rev 2022; 31:31/165/220036. [PMID: 35948391 DOI: 10.1183/16000617.0036-2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/30/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND There is no consensus on the most effective treatments of pulmonary arterial hypertension (PAH). Our objective was to compare effects of medications for PAH. METHODS We searched MEDLINE, Embase, the Cochrane Central Register of Controlled Trials and Clinicaltrials.gov from inception to December 2021. We performed a frequentist random-effects network meta-analysis on all included trials. We rated the certainty of the evidence using the Grades of Recommendation, Assessment, Development, and Evaluation approach. RESULTS We included 53 randomised controlled trials with 10 670 patients. Combination therapy with endothelin receptor antagonist (ERA) plus phosphodiesterase-5 inhibitors (PDE5i) reduced clinical worsening (120.7 fewer events per 1000, 95% CI 136.8-93.4 fewer; high certainty) and was superior to either ERA or PDE5i alone, both of which reduced clinical worsening, as did riociguat monotherapy (all high certainty). PDE5i (24.9 fewer deaths per 1000, 95% CI 35.2 fewer to 2.1 more); intravenous/subcutaneous prostanoids (18.3 fewer deaths per 1000, 95% CI 28.6 fewer deaths to 0) and riociguat (29.1 fewer deaths per 1000, 95% CI 38.6 fewer to 8.7 more) probably reduce mortality as compared to placebo (all moderate certainty). Combination therapy with ERA+PDE5i (49.9 m, 95% CI 25.9-73.8 m) and riociguat (49.5 m, 95% CI 17.3-81.7 m) probably increase 6-min walk distance as compared to placebo (moderate certainty). CONCLUSION Current PAH treatments improve clinically important outcomes, although the degree and certainty of benefit vary between treatments.
Collapse
Affiliation(s)
- Tyler Pitre
- Division of Internal Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Johnny Su
- Division of Internal Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Sonya Cui
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ryan Scanlan
- Division of Internal Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Christopher Chiang
- Division of Internal Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Renata Husnudinov
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | | | - Nadia Khan
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Gareth Leung
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - David Mikhail
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Pakeezah Saadat
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Shaneela Shahid
- Health Research Methods Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Jasmine Mah
- Dept of Medicine, Dalhousie University, Halifax, NS, Canada
| | | | - Dena Zeraatkar
- Health Research Methods Evidence and Impact, McMaster University, Hamilton, ON, Canada.,Harvard Medical School, Harvard University, Boston, MA, USA.,D. Zeraatkar and S. Mehta contributed equally to this article as senior authors and supervised the work
| | - Sanjay Mehta
- Southwest Ontario PH Clinic, Division of Respirology, Dept of Medicine, Lawson Health Research Institute, London Health Sciences Centre, Schulich School of Medicine, Western University, London, ON, Canada.,PHA Canada, Vancouver, BC, Canada.,D. Zeraatkar and S. Mehta contributed equally to this article as senior authors and supervised the work
| |
Collapse
|
18
|
Yella JK, Jegga AG. MGATRx: Discovering Drug Repositioning Candidates Using Multi-View Graph Attention. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2596-2604. [PMID: 34014830 PMCID: PMC10038065 DOI: 10.1109/tcbb.2021.3082466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In-silico drug repositioning or predicting new indications for approved or late-stage clinical trial drugs is a resourceful and time-efficient strategy in drug discovery. However, inferring novel candidate drugs for a disease is challenging, given the heterogeneity and sparseness of the underlying biological entities and their relationships (e.g., disease/drug annotations). By integrating drug-centric and disease-centric annotations as multi-views, we propose a multi-view graph attention network for indication discovery (MGATRx). Unlike most current similarity-based methods, we employ graph attention network on the heterogeneous drug and disease data to learn the representation of nodes and identify associations. MGATRx outperformed four other state-of-art methods used for computational drug repositioning. Further, several of our predicted novel indications are either currently investigated or are supported by literature evidence, demonstrating the overall translational utility of MGATRx.
Collapse
|
19
|
Tremblay É, Gosselin C, Mai V, Lajoie AC, Kilo R, Weatherald J, Lacasse Y, Bonnet S, Lega JC, Provencher S. Assessment of Clinical Worsening End Points as a Surrogate for Mortality in Pulmonary Arterial Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Circulation 2022; 146:597-612. [PMID: 35862151 DOI: 10.1161/circulationaha.121.058635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Clinical worsening (CW) is a composite end point commonly used in pulmonary arterial hypertension (PAH) trials. We aimed to assess the trial-level surrogacy of CW for mortality in PAH trials, and whether the various CW components were similar in terms of frequency of occurrence, treatment-related relative risk (RR) reduction, and importance to patients. METHODS We searched MEDLINE, Embase, and the Cochrane Library (January 1990 to December 2020) for trials evaluating the effects of PAH therapies on CW. The coefficient of determination between the RR for CW and mortality was assessed by regression analysis. The frequency of occurrence, RR reduction, and importance to patients of the CW components were assessed. RESULTS We included 35 independent cohorts (9450 patients). PAH therapies significantly reduced CW events (RR, 0.64 [95% CI, 0.55-0.73]), including PAH-related hospitalizations (RR, 0.61 [95% CI, 0.47-0.79]), treatment escalation (RR, 0.57 [95% CI, 0.38-0.84]) and symptomatic progression (RR, 0.58 [95% CI, 0.48-0.69]), and modestly reduced all-cause mortality when incorporating deaths occurring after a primary CW-defining event (RR, 0.860 [95% CI, 0.742-0.997]). However, the effects of PAH-specific therapies on CW only modestly correlated with their effects on mortality (R2trial, 0.35 [95% CI, 0.10-0.59]; P<0.0001), and the gradient in the treatment effect across component end points was large in the majority of trials. The weighted proportions of CW-defining events were hospitalization (33.5%) and symptomatic progression (32.3%), whereas death (6.7%), treatment escalation (5.6%), and transplantation/atrioseptostomy (0.2%) were infrequent. CW events were driven by the occurrence of events of major (49%) and mild-to-moderate (37%) importance to patients, with 14% of the events valued as critical. CONCLUSIONS PAH therapies significantly reduced CW events, but study-level CW is not a surrogate for mortality in PAH trials. Moreover, components of CW largely vary in frequency, response to therapy, and importance to patients and are thus not interchangeable. REGISTRATION URL: https://www.crd.york.ac.uk/PROSPERO; Unique identifier: CRD42020178949.
Collapse
Affiliation(s)
- Élodie Tremblay
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center (E.T., C.G., V.M., A.C.L., Y.L., S.B., S.P.), Université Laval, Quebec City, Canada.,Pulmonary Hypertension Research Group Quebec City, Canada (E.T., C.G., V.M., A.C.L., S.B., S.P.)
| | - Camille Gosselin
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center (E.T., C.G., V.M., A.C.L., Y.L., S.B., S.P.), Université Laval, Quebec City, Canada.,Pulmonary Hypertension Research Group Quebec City, Canada (E.T., C.G., V.M., A.C.L., S.B., S.P.)
| | - Vicky Mai
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center (E.T., C.G., V.M., A.C.L., Y.L., S.B., S.P.), Université Laval, Quebec City, Canada.,Pulmonary Hypertension Research Group Quebec City, Canada (E.T., C.G., V.M., A.C.L., S.B., S.P.)
| | - Annie C Lajoie
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center (E.T., C.G., V.M., A.C.L., Y.L., S.B., S.P.), Université Laval, Quebec City, Canada.,Pulmonary Hypertension Research Group Quebec City, Canada (E.T., C.G., V.M., A.C.L., S.B., S.P.)
| | - Roubi Kilo
- Pôle De Santé Publique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, F-69310, Pierre-Bénite, France (R.K.)
| | - Jason Weatherald
- Department of Medicine, Division of Respiratory Medicine, Libin Cardiovascular Institute, University of Calgary, Canada (J.W.)
| | - Yves Lacasse
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center (E.T., C.G., V.M., A.C.L., Y.L., S.B., S.P.), Université Laval, Quebec City, Canada.,Department of Medicine (Y.L., S.B., S.P.), Université Laval, Quebec City, Canada
| | - Sebastien Bonnet
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center (E.T., C.G., V.M., A.C.L., Y.L., S.B., S.P.), Université Laval, Quebec City, Canada.,Department of Medicine (Y.L., S.B., S.P.), Université Laval, Quebec City, Canada.,Pulmonary Hypertension Research Group Quebec City, Canada (E.T., C.G., V.M., A.C.L., S.B., S.P.)
| | - Jean-Christophe Lega
- Université de Lyon, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Centre national de la recherche scientifique, F-69100, Groupe d'Etude Multidisciplinaire des Maladies Thrombotiques, Department of Internal and Vascular Medicine, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, F-69310, Lyon, France (J.-C.L.)
| | - Steeve Provencher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center (E.T., C.G., V.M., A.C.L., Y.L., S.B., S.P.), Université Laval, Quebec City, Canada.,Department of Medicine (Y.L., S.B., S.P.), Université Laval, Quebec City, Canada.,Pulmonary Hypertension Research Group Quebec City, Canada (E.T., C.G., V.M., A.C.L., S.B., S.P.)
| |
Collapse
|
20
|
Zhu HR, Kuang HY, Li Q, Ji XJ. Effects of oral targeted treatments in pulmonary arterial hypertension: A systematic review and meta-analysis. Front Cardiovasc Med 2022; 9:915470. [PMID: 35983180 PMCID: PMC9378982 DOI: 10.3389/fcvm.2022.915470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022] Open
Abstract
Background Although pulmonary arterial hypertension (PAH) is a fatal disease, specific drugs have been used to treat PAH. These drugs predominantly target these three pathobiological pathways: Endothelin receptor antagonist (ERA), nitric oxide (NO), and prostanoids pathways. In this review, we aimed to analyze the efficacy and safety of oral targeted treatments for PAH. Methods The national library of medicine (MEDLINE), excerpta medica database (EMBASE), and Cochrane Central Register of Controlled Trials databases were searched. Randomized controlled trials that compared the oral targeted drugs with placebos were selected. We calculated odds ratios (ORs) with 95% confidence intervals (CIs) for variables with dichotomous outcomes, and standardized mean differences with continuous outcomes variables. Additionally, the mean of the differences for the 6-min walk distance (6MWD) was analyzed. Results In total, 23 studies involving 7,121 patients were included in this study. These studies show that orally PAH-specific drugs could decrease the risk of clinical worsening events, with an OR of 0.55 (p < 0.001). Furthermore, these drugs could improve exercise capacity, showing a 21.74-m increase in 6MWD (95% CI: 17.53–25.95 m) and cause a greater amelioration of functional class (OR = 0.60, 95% CI: 0.47–0.76). Additionally, subgroup analysis indicated that compared with placebo, ERAs, and drugs in the NO pathway were most effective and safe, which are associated with an improvement in exercise capacity, 6MWD, and worsening events-free survival rate. Conclusion Nitric oxide exhibited the most prominent clinical effect on exercise tolerance. However, in the subgroup analysis, oral targeted drugs of different pathways show applicability to different populations, which highlights the need for precise treatment in the clinical setting. Systematic Review Registration [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=297946], identifier [CRD 42022297946].
Collapse
Affiliation(s)
- Hui-ru Zhu
- National Clinical Research Center for Child Health and Disorders, Department of Ultrasound, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Hong-yu Kuang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Li
- Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Department of Cardiology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-juan Ji
- Department of Ultrasound, Chongqing General Hospital, Chongqing, China
- *Correspondence: Xiao-juan Ji,
| |
Collapse
|
21
|
Mares A, Mukherjee D, Lange RA, Nickel NP. Targeted Therapies in Patients with Pulmonary Arterial Hypertension Due to Congenital Heart Disease. Curr Vasc Pharmacol 2022; 20:341-360. [PMID: 36125818 DOI: 10.2174/1570161120666220811150853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating cardiovascular disease leading to right heart failure and death if untreated. Medical therapies for PAH have evolved substantially over the last decades and are associated with improvements in functional class, quality of life, and survival. PAH-targeted therapies now consist of multiple inhaled, oral, subcutaneous, and intravenous therapies targeting the phosphodiesterase, guanylate cyclase, endothelin and prostacyclin pathways. Patients with congenital heart disease (CHD) are at high risk of developing PAH and growing evidence exists that PAH-targeted therapy can be beneficial in PAH-CHD. However, the PAH-CHD patient population is challenging to treat due to the heterogeneity and complexity of their cardiac lesions and associated comorbidities. Furthermore, most high-quality randomized placebo-controlled trials investigating the effects of PAH-targeted therapies only included a minority of PAH-CHD patients. Few randomized, controlled trials have investigated the effects of PAH-targeted therapy in pre-specified PAH-CHD populations. Consequently, the results of these clinical trials cannot be extrapolated broadly to the PAH-CHD population. This review summarizes the data from high-quality clinical PAH treatment trials with a specific focus on the PAH-CHD population.
Collapse
Affiliation(s)
- Adriana Mares
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, 79905, USA
| | - Debabrata Mukherjee
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, 79905, USA.,Department of Internal Medicine, Division of Cardiology, Texas Tech University Health Sciences Center, El Paso, Texas, 79905, USA
| | - Richard A Lange
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, 79905, USA.,Department of Internal Medicine, Division of Cardiology, Texas Tech University Health Sciences Center, El Paso, Texas, 79905, USA
| | - Nils P Nickel
- Department of Internal Medicine, Division of Cardiology, Texas Tech University Health Sciences Center, El Paso, Texas, 79905, USA.,Department of Internal Medicine, Division of Pulmonology and Critical Care Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, 79905, USA
| |
Collapse
|
22
|
Benza RL, Franco V, Aras MA, Spikes L, Grinnan D, Satler C. Safety and efficacy of RT234 vardenafil inhalation powder on exercise parameters in pulmonary arterial hypertension: phase II, dose-escalation study design. Respir Res 2022; 23:355. [PMID: 36527025 PMCID: PMC9758858 DOI: 10.1186/s12931-022-02262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a progressive disease characterized by high mean pulmonary arterial pressure (≥ 20 mmHg) and remodeling of the vascular arteries. Approved therapies improve symptoms and delay clinical worsening in the long term, but they do not relieve acute exertional symptoms. RT234, a drug/device combination (Respira Therapeutics, Palo Alto, CA, USA) that delivers the phosphodiesterase 5 inhibitor vardenafil to the lungs via inhalation, has been shown to reduce pulmonary vascular resistance in patients with PAH. This study aims to evaluate whether RT234 can increase oxygen capacity during cardiopulmonary exercise testing (CPET) in patients with PAH. METHODS This prospective, multi-center, open-label, two-cohort, dose-escalation, phase IIb trial in patients with PAH will evaluate the safety and efficacy of RT234 in improving exercise parameters. The trial began in September 2020 and is expected to be completed by early 2024. Patients eligible for enrollment will have a right heart catheterization-confirmed diagnosis of PAH, a 6-minute walking distance of ≥ 150 m, a minute ventilation/carbon dioxide production slope of ≥ 36, and will be on up to three stable oral and/or inhaled (not parenteral) PAH-specific background therapies. The estimated sample size is 86 patients, who will be divided into two dose cohorts. Cohort 1 will receive 0.5 mg RT234, and cohort 2 will receive 1.0 mg RT234. Each cohort will contain two subgroups based on the number of PAH background medications (up to two vs three). The trial will assess patients' changes from baseline in peak oxygen consumption (VO2) during CPET 30 minutes after a single dose of 0.5 mg or 1.0 mg RT234, the change in the 6-minute walking distance, and the pharmacokinetics and safety profile of single doses of RT234. CONCLUSION This is the first trial involving an as-needed medication for PAH. The trial will provide insights into the safety and efficacy of as-needed RT234 in treating the acute symptoms of PAH during exercise and will inform the design of further trials. TRIAL REGISTRATION NUMBER ClinicalTrials.gov identifier NCT04266197.
Collapse
Affiliation(s)
- Raymond L. Benza
- grid.412332.50000 0001 1545 0811Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, 410 W 10th Ave, Columbus, OH 43210 USA
| | - Veronica Franco
- grid.412332.50000 0001 1545 0811Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, 410 W 10th Ave, Columbus, OH 43210 USA
| | - Mandar A. Aras
- grid.266102.10000 0001 2297 6811Division of Cardiology, University of California San Francisco, San Francisco, CA USA
| | - Leslie Spikes
- grid.412016.00000 0001 2177 6375University of Kansas Medical Center, Kansas City, KS USA
| | - Daniel Grinnan
- grid.224260.00000 0004 0458 8737Virginia Commonwealth University School of Medicine, Richmond, VA USA
| | | |
Collapse
|
23
|
Sudyka J, Wick JY. Treating Erectile Dysfunction with Prescription Medications & Natural Products: A Pharmacist's Guide. Sr Care Pharm 2021; 36:632-644. [PMID: 34861904 DOI: 10.4140/tcp.n.2021.632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stigma surrounding erectile dysfunction creates a difficult environment for appropriate management. Knowledge of the condition and treatment options presents a unique opportunity for pharmacists to optimize a safe and affordable plan that meets patient needs.
Collapse
|
24
|
Fu W, He W, Li Y, Chen Y, Liang J, Lei H, Fu L, Chen Y, Ren N, Jiang Q, Shen Y, Ma R, Wang T, Wang X, Zhang N, Xiao D, Liu C. Efficacy and safety of novel-targeted drugs in the treatment of pulmonary arterial hypertension: a Bayesian network meta-analysis. Drug Deliv 2021; 28:1007-1019. [PMID: 34060401 PMCID: PMC8172220 DOI: 10.1080/10717544.2021.1927243] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Pulmonary arterial hypertension (PAH) is a severe and fatal clinical syndrome characterized by high blood pressure and vascular remodeling in the pulmonary arterioles, which is also a rapidly progressing disease of the lung vasculature with a poor prognosis. Although PAH medication made great advances in recent years, the efficacy and safety of the medication are unsatisfactory. Therefore, we aimed to update and expand previous studies to explore the efficacy and safety of PAH-targeted medications. Methods: Relevant articles were searched and selected from published or publicly available data in PubMed, Cochrane Library, CNKI, PsycInfo, and MEDLINE (from inception until October 1st, 2020). To assess the efficacy and safety of PAH therapies, five efficacy outcomes [6-minute walking distance (6MWD), mean pulmonary arterial pressure (mPAP), WHO functional class (WHO FC) improvement, clinical worsening, death] and two safety outcomes [adverse events (AEs), serious adverse events (SAEs)] were selected. And 6MWD was regarded as the primary efficacy outcome.Results: 50 trials included with 10 996participants were selected. In terms of efficacy, all targeted drugs were more effective than placebo. For 6MWD, Bosentan + Sildenafil, Sildenafil, Bosentan + Iloprost were better than others. Bosentan + Iloprost and Bosentan + Sildenafil were better for mPAP. Bosentan + Iloprost and Ambrisentan + Tadalafil were more effective in improving WHO FC. Bosentan + Tadalafil and Bosentan + Iloprost had the Ambrisentan probability to reduce the incidence of clinical worsening. It is demonstrated that Ambrisentan had clear benefits in reducing all-cause mortality. In terms of safety, no therapies had been shown to reduce the incidence of SAEs significantly, and Ambrisentan + Tadalafil significantly increased the incidence of AEs.Conclusions: Phosphodiesterase 5 inhibitor (PDE5i) + Endothelin Receptor Antagonists (ERA) seems to be better therapy for PAH. Prostacyclin analogs (ProsA) + ERA appear promising, though additional data is warranted.Registration PROSPERO CRD42020218818.
Collapse
Affiliation(s)
- Wenhai Fu
- Department of Medicine, First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Wenjun He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Yuexin Li
- Department of Medicine, First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Yangxiao Chen
- Department of Medicine, First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Jingyi Liang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Hui Lei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Lin Fu
- Department of Medicine, First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Yanghang Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Ni Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Qian Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Yi Shen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Ran Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Xinni Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Nuofu Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Dakai Xiao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Chunli Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| |
Collapse
|
25
|
Gupta S, Padhan P, Subhankar S, Singh P. Cardiovascular complications in patients with interstitial lung disease and their correlation with 6-minute walk test and spirometry: A single-center study. J Family Med Prim Care 2021; 10:3330-3335. [PMID: 34760753 PMCID: PMC8565147 DOI: 10.4103/jfmpc.jfmpc_350_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 11/04/2022] Open
Abstract
Introduction Pulmonary hypertension and other cardiac complications occur frequently due to chronic hypoxia induced by interstitial lung diseases (ILD) or due to connective tissue disorder itself. Two-dimensional (2D) echocardiography is ideal for identifying abnormalities at a given time. In this study, we tried to detect cardiovascular complications in patients with ILD using 2D echocardiography and correlate them with a 6-minute walk test (6 MWT) and spirometry. Materials and Methods This study was carried out for 18 months including 100 consecutive cases of ILD. The diagnosis was made using the latest criteria as per the disease and high-resolution computed tomography (HRCT) thorax. All patients were evaluated with 2D echocardiography, 6 MWT, and spirometry along with routine investigations. Their results were analyzed using STATA 15.1 software. Result Cardiovascular involvement was detected in 68% of cases. Pulmonary hypertension predominated with a prevalence of 50%. In spirometry, mean Forced expiratory volume in first second (FEV1)and Forced vital capacity (FVC) were found to be 54.96 (L) and 53.49 (L), respectively, with a predominant restrictive pattern (89%). There was a significant correlation between baseline saturation of oxygen (SpO2) and pulmonary arterial systolic pressure (PASP) with a P value of <0.05. Baseline SpO2 and distance covered in 6 MWT had a significant correlation (P = 0.014). Conclusion A baseline or nighttime hypoxia is responsible for developing PAH. Pulmonary arterial hypertension should be suspected in patients unable to perform 6 MWT or having low baseline SpO2. A routine follow-up with a 6 MWT and baseline SpO2 should be performed in each visit to identify early deterioration of the disease.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Pulmonary Medicine, Kalinga Institute of Medical Sciences, KIIT University, Patia, Bhubaneswar, Odisha, India
| | - Prasanta Padhan
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences, KIIT University, Patia, Bhubaneswar, Odisha, India
| | - Saswat Subhankar
- Department of Pulmonary Medicine, Kalinga Institute of Medical Sciences, KIIT University, Patia, Bhubaneswar, Odisha, India
| | - Pratima Singh
- Department of Pulmonary Medicine, Kalinga Institute of Medical Sciences, KIIT University, Patia, Bhubaneswar, Odisha, India
| |
Collapse
|
26
|
Tettey A, Jiang Y, Li X, Li Y. Therapy for Pulmonary Arterial Hypertension: Glance on Nitric Oxide Pathway. Front Pharmacol 2021; 12:767002. [PMID: 34867394 PMCID: PMC8633825 DOI: 10.3389/fphar.2021.767002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 01/11/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease with a resultant increase of the mean pulmonary arterial pressure, right ventricular hypertrophy and eventual death. Research in recent years has produced various therapeutic options for its clinical management but the high mortality even under treatment remains a big challenge attributed to the complex pathophysiology. Studies from clinical and non-clinical experiments have revealed that the nitric oxide (NO) pathway is one of the key pathways underlying the pathophysiology of PAH. Many of the essential drugs used in the management of PAH act on this pathway highlighting its significant role in PAH. Meanwhile, several novel compounds targeting on NO pathway exhibits great potential to become future therapy medications. Furthermore, the NO pathway is found to interact with other crucial pathways. Understanding such interactions could be helpful in the discovery of new drug that provide better clinical outcomes.
Collapse
Affiliation(s)
- Abraham Tettey
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, China
| | - Yujie Jiang
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, China
| | - Xiaohui Li
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| | - Ying Li
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| |
Collapse
|
27
|
Sung SH, Yeh WY, Chiang CE, Huang CJ, Huang WM, Chen CH, Cheng HM. The prognostic significance of the alterations of pulmonary hemodynamics in patients with pulmonary arterial hypertension: a meta-regression analysis of randomized controlled trials. Syst Rev 2021; 10:284. [PMID: 34717773 PMCID: PMC8556931 DOI: 10.1186/s13643-021-01816-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hemodynamic assessment in patients with pulmonary arterial hypertension (PAH) is essential for risk stratification and pharmacological management. However, the prognostic value of the hemodynamic changes after treatment is less well established. OBJECTIVES We investigated the prognostic impacts of the changes in hemodynamic indices, including mean pulmonary artery pressure (mPAP), pulmonary vascular resistance (PVR), right atrial pressure (RAP), and cardiac output index (CI). We conducted this systematic review with meta-regression analysis on existing clinical trials. METHODS We searched and identified all relevant randomized controlled trials from multiple databases. An analogous R2 index was used to quantify the proportion of variance explained by each predictor in the association with PAH patients' prognosis. A total of 21 trials and 3306 individuals were enrolled. RESULTS The changes in mPAP, PVR, RAP, and CI were all significantly associated with the change in 6MWD (∆6MWD). The change in mPAP was with the highest explanatory power for ∆6MWD (R2 analog = 0.740). Additionally, the changes in mPAP, PVR, and CI were independently predictive of adverse clinical events. The change in mPAP had the highest explanatory power for the clinical events (R2 analog = 0.911). Furthermore, the change in PVR was with the highest explanatory power for total mortality of PAH patients (R2 analog = 0.612). CONCLUSION Hemodynamic changes after treatment, including mPAP, PVR, CI, and RAP, were significantly associated with adverse clinical events or mortality in treated PAH patients. It is recommended that further studies be conducted to evaluate the changes in hemodynamic indices to guide drug titration. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42019125157.
Collapse
Affiliation(s)
- Shih-Hsien Sung
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan
| | - Wan-Yu Yeh
- Center for Evidence-based Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Beitou District, Taipei, Taiwan
| | - Chern-En Chiang
- Department of Medicine, National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan.,General Clinical Research Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Jung Huang
- Center for Evidence-based Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Beitou District, Taipei, Taiwan
| | - Wei-Ming Huang
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan
| | - Chen-Huan Chen
- Department of Medicine, National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan.,Institute of Public Health and Community Medicine Research Center, National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan.,Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hao-Min Cheng
- Department of Medicine, National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan. .,Center for Evidence-based Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Beitou District, Taipei, Taiwan. .,Institute of Public Health and Community Medicine Research Center, National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan. .,Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
28
|
Effect of Tadalafil Administration on Redox Homeostasis and Polyamine Levels in Healthy Men with High Level of Physical Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18199962. [PMID: 34639267 PMCID: PMC8508218 DOI: 10.3390/ijerph18199962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 01/07/2023]
Abstract
Background: The phosphodiesterase type 5 inhibitor (PDE5I) tadalafil, in addition to its therapeutic role, has shown antioxidant effects in different in vivo models. Supplementation with antioxidants has received interest as a suitable tool for preventing or reducing exercise-related oxidative stress, possibly leading to the improvement of sport performance in athletes. However, the use/abuse of these substances must be evaluated not only within the context of amateur sport, but especially in competitions where elite athletes are more exposed to stressful physical practice. To date, very few human studies have addressed the influence of the administration of PDE5Is on redox balance in subjects with a fitness level comparable to elite athletes; therefore, the aim of this study was to investigate for the first time whether acute ingestion of tadalafil could affect plasma markers related to cellular damage, redox homeostasis, and blood polyamines levels in healthy subjects with an elevated cardiorespiratory fitness level. Methods: Healthy male volunteers (n = 12), with a VO2max range of 40.1–56.0 mL/(kg × min), were administered with a single dose of tadalafil (20 mg). Plasma molecules related to muscle damage and redox-homeostasis, such as creatine kinase (CK), lactate dehydrogenase (LDH), total antioxidant capacity (TAC), reduced/oxidized glutathione ratio (GSH/GSSG), free thiols (FTH), antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)), as well as thiobarbituric acid reactive substances (TBARs), protein carbonyls (PrCAR), and polyamine levels (spermine (Spm) and spermidine (Spd)) were evaluated immediately before and 2, 6 and 24 hours after the acute tadalafil administration. Results: A single tadalafil administration induced an increase in CK and LDH plasma levels 24 after consumption. No effects were observed on redox homeostasis or antioxidant enzyme activities, and neither were they observed on the oxidation target molecules or polyamines levels. Conclusion: Our results show that in subjects with an elevated fitness level, a single administration of tadalafil induced a significant increase in muscle damage target without affecting plasma antioxidant status.
Collapse
|
29
|
Kolb TM, Johnston L, Damarla M, Kass DA, Hassoun PM. PDE9A deficiency does not prevent chronic-hypoxic pulmonary hypertension in mice. Physiol Rep 2021; 9:e15057. [PMID: 34569183 PMCID: PMC8474007 DOI: 10.14814/phy2.15057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/31/2022] Open
Abstract
Inhibition of cyclic guanosine monophosphate (cGMP)-specific phosphodiesterases (PDEs) is a cornerstone of pulmonary arterial hypertension (PAH)-specific therapy. PDE9A, expressed in the heart and lung tissue, has the highest affinity for cGMP of all known PDEs. PDE9A deficiency protects mice against chronic left ventricular (LV) pressure overload via increased natriuretic peptide (NP)-dependent cGMP signaling. Chronic-hypoxic pulmonary hypertension (CH-PH) is a model of chronic right ventricular (RV) pressure overload, and previous studies have demonstrated a protective role for NPs in the murine model. Therefore, we hypothesized that PDE9A deficiency would promote NP-dependent cGMP signaling and prevent RV remodeling in the CH-PH model, analogous to findings in the LV. We exposed wild-type and PDE9A-deficient (Pde9a-/- ) C57BL/6 mice to CH-PH for 3 weeks. We measured RV pressure, hypertrophy, and levels of lung and RV cGMP, PDE9A, PDE5A, and phosphorylation of the protein kinase G substrate VASP (vasodilatory-stimulated phosphoprotein) after CH-PH. In wild-type mice, CH-PH was associated with increased circulating ANP and lung PDE5A, but no increase in cGMP, PDE9A, or VASP phosphorylation. Downstream effectors of cGMP were not increased in Pde9a-/- mice exposed to CH-PH compared with Pde9a+/+ littermates, and CH-PH induced increases in RV pressure and hypertrophy were not attenuated in knockout mice. Taken together, these findings argue against a prominent role for PDE9A in the murine CH-PH model.
Collapse
Affiliation(s)
- Todd M. Kolb
- Division of Pulmonary and Critical Care Medicine PulmonaryJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Laura Johnston
- Division of Pulmonary and Critical Care Medicine PulmonaryJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Mahendra Damarla
- Division of Pulmonary and Critical Care Medicine PulmonaryJohns Hopkins UniversityBaltimoreMarylandUSA
| | - David A. Kass
- Division of CardiologyDepartment of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Paul M. Hassoun
- Division of Pulmonary and Critical Care Medicine PulmonaryJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
30
|
Combinations of Freeze-Dried Amorphous Vardenafil Hydrochloride with Saccharides as a Way to Enhance Dissolution Rate and Permeability. Pharmaceuticals (Basel) 2021; 14:ph14050453. [PMID: 34064796 PMCID: PMC8151567 DOI: 10.3390/ph14050453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
To improve physicochemical properties of vardenafil hydrochloride (VAR), its amorphous form and combinations with excipients-hydroxypropyl methylcellulose (HPMC) and β-cyclodextrin (β-CD)-were prepared. The impact of the modification on physicochemical properties was estimated by comparing amorphous mixtures of VAR to their crystalline form. The amorphous form of VAR was obtained as a result of the freeze-drying process. Confirmation of the identity of the amorphous dispersion of VAR was obtained through the use of comprehensive analysis techniques-X-ray powder diffraction (PXRD) and differential scanning calorimetry (DSC), supported by FT-IR (Fourier-transform infrared spectroscopy) coupled with density functional theory (DFT) calculations. The amorphous mixtures of VAR increased its apparent solubility compared to the crystalline form. Moreover, a nearly 1.3-fold increase of amorphous VAR permeability through membranes simulating gastrointestinal epithelium as a consequence of the changes of apparent solubility (Papp crystalline VAR = 6.83 × 10-6 cm/s vs. Papp amorphous VAR = 8.75 × 10-6 cm/s) was observed, especially for its combinations with β-CD in the ratio of 1:5-more than 1.5-fold increase (Papp amorphous VAR = 8.75 × 10-6 cm/s vs. Papp amorphous VAR:β-CD 1:5 = 13.43 × 10-6 cm/s). The stability of the amorphous VAR was confirmed for 7 months. The HPMC and β-CD are effective modifiers of its apparent solubility and permeation through membranes simulating gastrointestinal epithelium, suggesting a possibility of a stronger pharmacological effect.
Collapse
|
31
|
Englert L, Stadlbauer C, Spaeth M, Hofmann HS, Schneider C, Hatz RA, Preissler G, Michel S, Golovchenko S, Ried M, Hoenicka M. Evaluation of the combination of endothelin receptor antagonists (ERA) and phosphodiesterase-5 inhibitors for the treatment of pulmonary arterial hypertension (PAH) in pathologic human pulmonary arteries in an ex-vivo organ bath model. Pulm Pharmacol Ther 2020; 66:101985. [PMID: 33359621 DOI: 10.1016/j.pupt.2020.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/13/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Medical combination therapy of pulmonary arterial hypertension (PAH) may alleviate the drawbacks of monotherapy by avoiding drug tolerance and by increasing effectiveness, as shown by the combination of ambrisentan and tadalafil (AMBITION trial). The present ex-vivo study evaluated the combination of the endothelin receptor antagonists (ERA) macitentan and bosentan with the phosphodiesterase-5 (PDE-5) inhibitor vardenafil in pulmonary arteries from patients suffering from terminal lung disease as a model of PAH. METHODS Segments of the pulmonary vessels were excised from resected lungs of patients requiring lung transplantation (LTX). Contraction of pulmonary arteries (PA) was elicited by consecutive dose-response curves of endothelin-1 (ET-1) followed by norepinephrine (NE) to allow inhibition by different pathways. Forces were measured isometrically in an organ bath in the presence and absence of ERA and PDE-5 inhibitors and their combination. RESULTS PA of 38 patients were examined between October 2016 and November 2019. Bosentan (1E-7 M) and macitentan (1E-8 M, 3E-8 M, 1E-7 M) inhibited ET-1 induced contractions, whereas vardenafil (1E-6 M, 3E-6 M, 1E-5 M) inhibited only the NE induced part of the contractions. Vardenafil enhanced bosentan-induced inhibition of vasoconstriction in a dose-dependent fashion. Combination effects exceeded single bosentan at 3E-6 M and 1E-5 M vardenafil, and they exceeded single vardenafil at the lower vardenafil concentrations. Macitentan showed a more pronounced inhibition than bosentan regardless of the lower concentrations. Accordingly, combination effects with vardenafil resembled those of macitentan alone. CONCLUSIONS Macitentan and bosentan were potent antagonists of vasoconstriction in PA of LTX patients. The benefit of drug combinations was demonstrated at selected concentrations only owing to a narrow therapeutic range of vardenafil in this ex-vivo model. These results suggest the utility of drug combinations other than the established pair of ambrisentan and tadalafil in PAH treatment but also make a case for a further assessment of vasodilator properties of drugs complementing ERA.
Collapse
Affiliation(s)
- L Englert
- Department of Thoracic Surgery, University Medical Center Regensburg, Germany.
| | - C Stadlbauer
- Department of Thoracic Surgery, University Medical Center Regensburg, Germany
| | - M Spaeth
- Department of Thoracic Surgery, University Medical Center Regensburg, Germany
| | - H S Hofmann
- Department of Thoracic Surgery, University Medical Center Regensburg, Germany
| | - C Schneider
- Department of Thoracic Surgery, Campus Großhadern, University of Munich, Germany
| | - R A Hatz
- Department of Thoracic Surgery, Campus Großhadern, University of Munich, Germany
| | - G Preissler
- Department of Thoracic Surgery, Hospital Schillerhöhe, Robert-Bosch-Hospital, Gerlingen, Germany
| | - S Michel
- Department of Cardiac Surgery, Campus Großhadern, University of Munich, Germany
| | - S Golovchenko
- Department of Thoracic Surgery, University Medical Center Regensburg, Germany
| | - M Ried
- Department of Thoracic Surgery, University Medical Center Regensburg, Germany
| | - M Hoenicka
- Department of Cardiothoracic and Vascular Surgery, University of Ulm Medical Center, Ulm, Germany
| |
Collapse
|
32
|
Friebe A, Englert N. NO-sensitive guanylyl cyclase in the lung. Br J Pharmacol 2020; 179:2328-2343. [PMID: 33332689 DOI: 10.1111/bph.15345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022] Open
Abstract
In the late 1960s, several labatories identified guanylyl cyclase (GC) as the cGMP-producing enzyme. Subsequently, two different types of GC were described that differed in their cellular localization. Primarily found in the cytosol, nitric oxide (NO)-sensitive guanylyl cyclase (NO-GC) acts as receptor for the signalling molecule NO, in contrast the membrane-bound isoenzyme is activated by natriuretic peptides. The lung compared with other tissues exhibits the highest expression of NO-GC. The enzyme has been purified from lung for biochemical analysis. Although expressed in smooth muscle cells (SMCs) and in pericytes, the function of NO-GC in lung, especially in pericytes, is still not fully elucidated. However, pharmacological compounds that target NO-GC are available and have been implemented for the therapy of pulmonary arterial hypertension. In addition, NO-GC has been suggested as drug target for the therapy of asthma, acute respiratory distress syndrome and pulmonary fibrosis.
Collapse
Affiliation(s)
- Andreas Friebe
- Physiological Institute, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Nils Englert
- Physiological Institute, Julius Maximilian University of Würzburg, Würzburg, Germany
| |
Collapse
|
33
|
Eldon MA, Parsley EL, Maurer M, Tarara TE, Okikawa J, Weers JG. Safety, Tolerability, and Pharmacokinetics of RT234 (Vardenafil Inhalation Powder): A First-in-Human, Ascending Single- and Multiple-Dose Study in Healthy Subjects. J Aerosol Med Pulm Drug Deliv 2020; 34:251-261. [PMID: 33325799 PMCID: PMC8377511 DOI: 10.1089/jamp.2020.1651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: RT234 (vardenafil inhalation powder) is being developed for pulmonary administration “as needed”, to acutely improve exercise tolerance and symptoms in patients with pulmonary arterial hypertension (PAH). Methods: This single-center, open-label, randomized study in 32 healthy adult subjects evaluated single and multiple inhalation doses of RT234, for safety, tolerability, and pharmacokinetics (PKs). Results: RT234 was generally safe and well tolerated at single doses of 0.2–2.4 mg and after repeated dose administration of up to 2.4 mg q4h for four doses daily for 9 days. The most common treatment-emergent adverse events were mild-to-moderate headaches. There was no evidence of pulmonary irritation or inflammation. Vardenafil was absorbed very rapidly after inhalation as RT234, independent of dose level and number of doses administered. The tmax occurred at the time that the first blood sample following completion of dosing. After Cmax was achieved, plasma vardenafil concentrations declined rapidly in an exponential fashion that appeared to be parallel among dose levels. Vardenafil plasma concentrations and PK parameters increased in a dose-proportional manner. Vardenafil systemic exposure was notably greater after oral administration of 20 mg vardenafil tablets (Levitra®) than after administration of any dose level of RT234. During repeated dose administration of RT234, Cmax was attained rapidly following each dose and in a pattern similar to that observed after single-dose administration. Minor accumulation, characterized by very low mean morning predose vardenafil concentrations (<0.5 ng/mL), occurred after q4h dosing of up to four doses per day for 9 days. Taken together, these findings show that no clinically important vardenafil accumulation is likely after repeated-dose administration of RT234. Mean vardenafil t1/2 values were comparable after single- and repeated-dose administration. Conclusions: Comparative plasma vardenafil bioavailability data from this study provide scientific justification for reliance on Food and Drug Administration findings for Levitra tablets. These findings support further evaluation of RT234 for as-needed treatment of patients with PAH. The Clinical Trials Registration number is ACTRN12618001077257.
Collapse
Affiliation(s)
- Michael A Eldon
- Clinical Pharmacology and Pharmacometics Consultant, Emerald Hills, California, USA
| | | | - Mari Maurer
- Respira Therapeutics, Inc., Burlingame, California, USA
| | | | - Jerry Okikawa
- Okikawa and Associates, Inc., Englewood, Florida, USA
| | | |
Collapse
|
34
|
Zheng W, Wang Z, Jiang X, Zhao Q, Shen J. Targeted Drugs for Treatment of Pulmonary Arterial Hypertension: Past, Present, and Future Perspectives. J Med Chem 2020; 63:15153-15186. [PMID: 33314936 DOI: 10.1021/acs.jmedchem.0c01093] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease that can lead to right ventricular failure and premature death. Although approved drugs have been shown to be safe and effective, PAH remains a severe clinical condition, and the long-term survival of patients with PAH is still suboptimal. Thus, potential therapeutic targets and new agents to treat PAH are urgently needed. In recent years, a variety of related pathways and potential therapeutic targets have been found, which brings new hope for PAH therapy. In this perspective, not only are the marketed drugs used to treat PAH summarized but also the recently developed novel pharmaceutical therapies currently in clinical trials are discussed. Furthermore, the advances in natural products as potential treatment for PAH are also updated.
Collapse
Affiliation(s)
- Wei Zheng
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiangrui Jiang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qingjie Zhao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingshan Shen
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
The Phosphodiesterase-5 Inhibitor Vardenafil Improves the Activation of BMP Signaling in Response to Hydrogen Peroxide. Cardiovasc Drugs Ther 2020; 34:41-52. [PMID: 32096002 DOI: 10.1007/s10557-020-06939-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The pleiotropic roles of phosphodiesterase-5 inhibitors (PDE5is) in cardiovascular diseases have attracted attention. The effect of vardenafil (a PDE5i) is partly mediated through reduced oxidative stress, but it is unclear whether vardenafil protects against hydrogen peroxide (H2O2)-induced endothelial cell injury, and the molecular mechanisms that are involved remain unknown. We determined the protective role of vardenafil on H2O2-induced endothelial cell injury in cultured human umbilical vein endothelial cells (HUVECs). METHODS AND RESULTS Vardenafil decreased the number of TUNEL-positive cells, increased the Bcl2/Bax ratio, and ameliorated the numbers of BrdU-positive cells in H2O2-treated HUVECs. The bone morphogenetic protein receptor (BMPR)/p-Smad/MSX2 pathway was enhanced in response to H2O2, and vardenafil treatment could normalize this pathway. To determine whether the BMP pathway is involved, we blocked the BMP pathway using dorsomorphin, which abolished the protective effects of vardenafil. We found that vardenafil improved the H2O2-induced downregulation of BMP-binding endothelial regulator protein (BMPER), which possibly intersects with the BMP pathway in the regulation of endothelial cell injury in response to oxidative stress. CONCLUSIONS We demonstrated for the first time that exogenous H2O2 activates BMPR expression and promotes Smad1/5/8 phosphorylation. Additionally, vardenafil can attenuate H2O2-induced endothelial cell injury in HUVECs. Vardenafil decreases apoptosis through an improved Bcl-2/Bax ratio and increases cell proliferation. Vardenafil protects against endothelial cell injury through ameliorating the intracellular oxidative stress level and BMPER expression. The protective role of vardenafil on H2O2-induced endothelial cell injury is mediated through BMPR/p-Smad/MSX2 in HUVECs.
Collapse
|
36
|
Sadek MS, Cachorro E, El-Armouche A, Kämmerer S. Therapeutic Implications for PDE2 and cGMP/cAMP Mediated Crosstalk in Cardiovascular Diseases. Int J Mol Sci 2020; 21:E7462. [PMID: 33050419 PMCID: PMC7590001 DOI: 10.3390/ijms21207462] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Phosphodiesterases (PDEs) are the principal superfamily of enzymes responsible for degrading the secondary messengers 3',5'-cyclic nucleotides cAMP and cGMP. Their refined subcellular localization and substrate specificity contribute to finely regulate cAMP/cGMP gradients in various cellular microdomains. Redistribution of multiple signal compartmentalization components is often perceived under pathological conditions. Thereby PDEs have long been pursued as therapeutic targets in diverse disease conditions including neurological, metabolic, cancer and autoimmune disorders in addition to numerous cardiovascular diseases (CVDs). PDE2 is a unique member of the broad family of PDEs. In addition to its capability to hydrolyze both cAMP and cGMP, PDE2 is the sole isoform that may be allosterically activated by cGMP increasing its cAMP hydrolyzing activity. Within the cardiovascular system, PDE2 serves as an integral regulator for the crosstalk between cAMP/cGMP pathways and thereby may couple chronically adverse augmented cAMP signaling with cardioprotective cGMP signaling. This review provides a comprehensive overview of PDE2 regulatory functions in multiple cellular components within the cardiovascular system and also within various subcellular microdomains. Implications for PDE2- mediated crosstalk mechanisms in diverse cardiovascular pathologies are discussed highlighting the prospective use of PDE2 as a potential therapeutic target in cardiovascular disorders.
Collapse
Affiliation(s)
| | | | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.S.S.); (E.C.)
| | - Susanne Kämmerer
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.S.S.); (E.C.)
| |
Collapse
|
37
|
Ammar HO, Tadros MI, Salama NM, Ghoneim AM. Ethosome-Derived Invasomes as a Potential Transdermal Delivery System for Vardenafil Hydrochloride: Development, Optimization and Application of Physiologically Based Pharmacokinetic Modeling in Adults and Geriatrics. Int J Nanomedicine 2020; 15:5671-5685. [PMID: 32821096 PMCID: PMC7418156 DOI: 10.2147/ijn.s261764] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/08/2020] [Indexed: 01/15/2023] Open
Abstract
Aim The aim of the current work was to develop vardenafil hydrochloride (VRD)-loaded ethosome-derived invasomes as a possible transdermal system which could be used for patients suffering from pulmonary arterial hypertension. Methods VRD-loaded ethosomes were developed at three concentrations of phosphatidylcholine (5, 10 and 15 mg/mL) and three percentages of ethanol (20%, 30% and 40%, v/v). The best achieved VRD-loaded ethosomes (ETH9) were optimized to invasomes via incorporation of terpenes (limonene, cineole and a 1:1 mixture) at three concentrations (0.5%, 1% and 2%, v/v). All systems were evaluated for vesicle size, zeta potential, drug entrapment efficiency (EE%), cumulative drug permeated percentages after 0.5hrs (Q0.5h) and 12hrs (Q12h) and steady-state flux (Jss). The optimized system (ETH9-INV8) was further characterized for morphology, histopathology and confocal laser scanning microscopy (CLSM). Physiologically based pharmacokinetic (PBPK) modeling was employed to estimate VRD pharmacokinetic parameters from the optimized transdermal system and an oral aqueous drug dispersion, in adults and geriatrics. Results The optimized invasomal system (ETH9-INV8) was characterized with spherical vesicles (159.9 nm) possessing negative zeta potential (-20.3 mV), promising EE% (81.3%), low Q0.5h (25.4%), high Q12h (85.3%) and the largest steady-state flux (6.4 µg.cm-2h-1). Following a leave-on period of 12hrs in rats, it showed minor histopathologic changes. CLSM studies proved its ability to deeply permeate rat skin. Lower Cmax values, delayed Tmax estimates and greater AUC0-24h folds in adults and geriatrics (≈ 2.18 and 1.69, respectively) were estimated following the transdermal application of ETH9-INV8 system. Conclusion ETH9-INV8 is a promising transdermal system for VRD.
Collapse
Affiliation(s)
- Hussein O Ammar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt (FUE), New Cairo, Egypt
| | - Mina Ibrahim Tadros
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nahla M Salama
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt (FUE), New Cairo, Egypt
| | - Amira Mohsen Ghoneim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt (FUE), New Cairo, Egypt
| |
Collapse
|
38
|
Bisserier M, Pradhan N, Hadri L. Current and emerging therapeutic approaches to pulmonary hypertension. Rev Cardiovasc Med 2020; 21:163-179. [PMID: 32706206 PMCID: PMC7389678 DOI: 10.31083/j.rcm.2020.02.597] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal lung disease of multifactorial etiology. Most of the available drugs and FDA-approved therapies for treating pulmonary hypertension attempt to overcome the imbalance between vasoactive and vasodilator mediators, and restore the endothelial cell function. Traditional medications for treating PAH include the prostacyclin analogs and receptor agonists, phosphodiesterase 5 inhibitors, endothelin-receptor antagonists, and cGMP activators. While the current FDA-approved drugs showed improvements in quality of life and hemodynamic parameters, they have shown only very limited beneficial effects on survival and disease progression. None of them offers a cure against PAH, and the median survival rate remains less than three years from diagnosis. Extensive research efforts have led to the emergence of innovative therapeutic approaches in the area of PAH. In this review, we provide an overview of the current FDA-approved therapies in PAH and discuss the associated clinical trials and reported-side effects. As recent studies have led to the emergence of innovative therapeutic approaches in the area of PAH, we also focus on the latest promising therapies in preclinical studies such as stem cell-based therapies, gene transfer, and epigenetic therapies.
Collapse
Affiliation(s)
- Malik Bisserier
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Natasha Pradhan
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
39
|
Lim Y, Maaroof SMB, Low TT, Kuntjoro I, Yip JW, Tay E. Help-seeking patterns and funding strategies in patients with pulmonary arterial hypertension on phosphodiesterase-5 inhibitors: an orphan disease with effective but costly treatment. Singapore Med J 2020; 62:199-203. [PMID: 32179923 DOI: 10.11622/smedj.2020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Pulmonary arterial hypertension (PAH) is associated with high medical and pharmaceutical costs. Phosphodiesterase type 5 (PDE5) inhibitors have been found to be beneficial but costly. They are not subsidised in Singapore except via the Medication Assistance Fund (MAF) Plus scheme. In this study, we described the help-seeking behaviour of patients and funding strategies for Singaporean patients on PDE5 inhibitors in our registry. METHODS We consecutively recruited all patients with PAH who presented to our pulmonary hypertension specialty centre between 1 January 2003 and 29 December 2016. Singaporean patients on PDE5 inhibitors were included. Data recorded and analysed for this study included baseline demographics, whether the patients received MAF Plus funding, percentage of funding, and any additional source of subsidies. RESULTS 114 (77.0%) of 148 patients in the registry were Singapore citizens on PDE5 inhibitors. 75 (65.8%) of these 114 patients had been seen by a medical social worker, of whom 16 were on MAF Plus funding. 14 of the remaining 59 patients were subsidised by MediFund, whereas the remainder were self-paying. 30 (26.3%) patients in total were on some form of subsidy, and 28 (24.6%) patients were on combination therapy. Of this group, nine were receiving MAF Plus subsidies. CONCLUSION Fewer than expected patients were found to be receiving drug subsidies for PAH. This was partly due to insufficient referrals and lack of requests for financial assistance. Patients on combination therapy had greater financial challenges. This study should spur us on to study funding gaps further and address them.
Collapse
Affiliation(s)
- Yinghao Lim
- Department of Cardiology, National University Heart Centre Singapore, Singapore
| | | | - Ting Ting Low
- Department of Cardiology, National University Heart Centre Singapore, Singapore
| | - Ivandito Kuntjoro
- Department of Cardiology, National University Heart Centre Singapore, Singapore
| | - James Wl Yip
- Department of Cardiology, National University Heart Centre Singapore, Singapore
| | - Edgar Tay
- Department of Cardiology, National University Heart Centre Singapore, Singapore
| |
Collapse
|
40
|
Yang YL, Yu YZ, Yuan P, Gong SG, Wang CY, Li Y, Zhao QH, Jiang R, Wu WH, He J, Guo J, Luo CJ, Qiu HL, Li JL, Wang L, Xie WP, Liu JM. Sex differences of hemodynamics during acute vasoreactivity testing to predict the outcomes of chronic thromboembolic pulmonary hypertension. CLINICAL RESPIRATORY JOURNAL 2020; 14:611-621. [PMID: 32090459 DOI: 10.1111/crj.13173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/23/2019] [Accepted: 02/18/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Acute vasoreactivity testing (AVT) which reflects the compliance of the pulmonary vascular bed has been proven to be of prognostic value. The purpose of the present study is to explore the sex differences of hemodynamics during the AVT and their impact on event-free survival in patients with chronic thromboembolic pulmonary hypertension (CTEPH). METHODS Eighty-six patients underwent a right heart catheterization and AVT at Shanghai Pulmonary Hospital from February 2009 to February 2018. Univariate and multiple stepwise regression analysis were performed to determine the predictors of independent event-free survival, and receiver operating characteristic curve was plotted to determine the cut-off value of independent parameters in CTEPH. RESULTS There were no significant differences in both demographics and hemodynamics between male and female patients with CTEPH. Except ΔPVR/PVR showed a significantly higher difference in female than male patients (P = 0.034). Male patients had higher mRAP of pre- and post-AVT than female patients in the event-free subgroup, while, female patients showed higher PVR of pre-AVT than male patients in the event subgroup (P < 0.05). The mRAP and SvO2 were independent predictors of event-free survival in female patients both before and after the AVT, whereas ΔSvO2 was an independent predictor of event-free survival in male patients. CONCLUSION Hemodynamics during the AVT varied between male and female patients with CTEPH. Both sexes displayed unique hemodynamic responses that were independently able to predict event-free survival. Therefore, better estimates of prognosis in CTEPH can be made when sex differences are also taken into consideration.
Collapse
Affiliation(s)
- Yi-Lan Yang
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yan-Zhe Yu
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital, Nanjing, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Su-Gang Gong
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Chuan-Yu Wang
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.,The Third Affiliated Hospital of Soochow University, Jiangsu, China
| | - Yuan Li
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Qin-Hua Zhao
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Wen-Hui Wu
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Jing He
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Jian Guo
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Ci-Jun Luo
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Hong-Ling Qiu
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Jin-Ling Li
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Wei-Ping Xie
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Ming Liu
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| |
Collapse
|
41
|
Treatment of pulmonary arterial hypertension by vardenafil-solid dispersion lozenges as a potential alternative drug delivery system. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Two Birds with One Stone: Regular Use of PDE5 Inhibitors for Treating Male Patients with Erectile Dysfunction and Cardiovascular Diseases. Cardiovasc Drugs Ther 2019; 33:119-128. [PMID: 30675707 DOI: 10.1007/s10557-019-06851-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Patients with cardiovascular disease (CVD) frequently have erectile dysfunction (ED) because the two conditions have similar risk factors and potential mechanisms. The therapeutic effect of CVD is strongly dependent upon long-term management of the condition. Patients with CVD tend to have poor medication compliance, and the coexistence of ED often discourages patients with CVD from continuing their long-term CVD management, thus worsening CVD treatment compliance. The two major reasons for poor compliance are that (i) the adverse effects of cardiovascular medications on erectile function drive people to reduce the prescribed dosage or even stop taking the medications to obtain satisfactory sexual arousal and (ii) a worsening mental state due to ED reduces medication compliance. The regular administration of phosphodiesterase-5 inhibitors (PDE5is) guarantees that the prescribed medication dosages are easy to comply with and that they improve the mental status of patients by enhancing their erectile function, resulting in improved long-term management of CVD through medication compliance. PDE5is themselves also play a role in reducing cardiovascular events and improving the prognosis. We recommend prescribing PDE5is for ED and suggest that PDE5i administration is a promising strategy to improve the long-term management of patients with both ED and CVD.
Collapse
|
43
|
Sabnis DH, Storer LCD, Liu JF, Jackson HK, Kilday JP, Grundy RG, Kerr ID, Coyle B. A role for ABCB1 in prognosis, invasion and drug resistance in ependymoma. Sci Rep 2019; 9:10290. [PMID: 31311995 PMCID: PMC6635358 DOI: 10.1038/s41598-019-46700-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 06/27/2019] [Indexed: 11/16/2022] Open
Abstract
Three of the hallmarks of poor prognosis in paediatric ependymoma are drug resistance, local invasion and recurrence. We hypothesised that these hallmarks were due to the presence of a sub-population of cancer stem cells expressing the multi-drug efflux transporter ABCB1. ABCB1 gene expression was observed in 4 out of 5 paediatric ependymoma cell lines and increased in stem cell enriched neurospheres. Functional inhibition of ABCB1 using vardenafil or verapamil significantly (p ≤ 0.05–0.001) potentiated the response to three chemotherapeutic drugs (vincristine, etoposide and methotrexate). Both inhibitors were also able to significantly reduce migration (p ≤ 0.001) and invasion (p ≤ 0.001). We demonstrate that ABCB1 positive patients from an infant chemotherapy-led trial (CNS9204) had a shorter mean event free survival (EFS) (2.7 versus 8.6 years; p = 0.007 log-rank analysis) and overall survival (OS) (5.4 versus 12 years; p = 0.009 log-rank analysis). ABCB1 positivity also correlated with reduced event free survival in patients with incompletely resected tumours who received chemotherapy across CNS9204 and CNS9904 (a radiotherapy-led SIOP 1999-04 trial cohort; p = 0.03). ABCB1 is a predictive marker of chemotherapy response in ependymoma patients and vardenafil, currently used to treat paediatric pulmonary hypertension in children, could be repurposed to reduce chemoresistance, migration and invasion in paediatric ependymoma patients at non-toxic concentrations.
Collapse
Affiliation(s)
- Durgagauri H Sabnis
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Lisa C D Storer
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jo-Fen Liu
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Hannah K Jackson
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - J P Kilday
- Royal Manchester Children's Hospital, Children's Brain Tumour Research Network & Institute of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Richard G Grundy
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ian D Kerr
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Beth Coyle
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
44
|
Ishak Gabra NB, Mahmoud O, Ishikawa O, Shah V, Altshul E, Oron M, Mina B. Pulmonary Arterial Hypertension and Therapeutic Interventions. Int J Angiol 2019; 28:80-92. [PMID: 31384105 DOI: 10.1055/s-0039-1692452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pulmonary hypertension is an uncommon disease that carries a significant morbidity and mortality. Pulmonary arterial hypertension is a subtype of pulmonary hypertension that describes a group of disease entities that lead to an elevation in precapillary pulmonary artery pressure. Despite advances in the diagnosis and treatment of pulmonary arterial hypertension, it remains a difficult disease to recognize and manage. In this review article, we will discuss the definition and diagnosis of pulmonary arterial hypertension. Additionally, we will discuss the ever-expanding management options, their mechanisms and strategies, including combination therapy and the most recent advances and future directions.
Collapse
Affiliation(s)
- Nader B Ishak Gabra
- Department of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, New York, New York
| | - Omar Mahmoud
- Department of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, New York, New York
| | - Oki Ishikawa
- Department of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, New York, New York
| | - Varun Shah
- Department of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, New York, New York
| | - Erica Altshul
- Department of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, New York, New York
| | - Maly Oron
- Department of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, New York, New York
| | - Bushra Mina
- Department of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, New York, New York
| |
Collapse
|
45
|
Treatment of pulmonary arterial hypertension: A review of drugs available for advanced therapy. Afr J Thorac Crit Care Med 2019; 25. [PMID: 34286246 PMCID: PMC8279001 DOI: 10.7196/sarj.2019.v25i1.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2019] [Indexed: 11/28/2022] Open
Abstract
Pulmonary hypertension (PH) has traditionally been considered a rare disease with a uniformly poor prognosis. However, this was prior
to the introduction of advanced therapies for this condition, and more recent registries in the treatment era have shown 5-year survival
rates of up to 65%. Prior to 2000, there was only one licensed therapy for pulmonary arterial hypertension (PAH); less than 20 years later,
the US Food and Drug Administration has approved 14 different medications for PAH. This review aims to summarise for the general
pulmonologist the evidence for the current internationally available advanced therapies for PAH (World Health Organization Group I
disease), which is characterised haemodynamically by the presence of precapillary PH in the absence of another cause. The benefit of these
agents, either alone or in combinations, is now undisputed and their use is advocated in all current international guidelines for PAH. The
improvement in survival of patients with PAH over the concurrent timeline emphasises the importance both of the availability and usage of
effective therapies and of patients being seen in specialist centres, where physicians are familiar with using these therapies.
Collapse
|
46
|
Wang S, Yu M, Zheng X, Dong S. A Bayesian network meta-analysis on the efficacy and safety of eighteen targeted drugs or drug combinations for pulmonary arterial hypertension. Drug Deliv 2019; 25:1898-1909. [PMID: 30442035 PMCID: PMC6249551 DOI: 10.1080/10717544.2018.1523257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) can be relieved by pharmacological interventions, especially the targeted drug, which is classified into endothelin receptor antagonist, phosphodiesterase 5 inhibitor, prostaglandin I2, soluble guanylate cyclase stimulator and selective non-prostanoid prostacyclin receptor agonist. To solve the contradictions existing in reported trials and provide a comprehensive guideline for clinical practice. PubMed, Embase, Cochrane library, and clinicaltrials.gov were searched. The basic information about the article, trial, arm, intervention, and the detailed data of outcome, including 6 minutes walking distance (6MWD) change, WHO functional class (FC) improvement, Borg dyspnea score (BDS) change, cardiac index (CI) change, mean pulmonary arterial pressure (mPAP) change, mean right arterial pressure (mRAP) change, pulmonary vascular resistance (PVR) change, clinical worsening, hospitalization, death, severe adverse events (SAEs), and withdrawal were extracted. The rank of treatments was estimated. 10,230 cases provided the firsthand comparison data about targeted drugs for treating PAH. For 6MWD, ambrisentan + tadalafil, vardenafil, and sildenafil + bosentan were better than others. Epoprostenol, macitentan, and sildenafil represented a greater WHO FC improvement. Vardenafil and treprostinil were better for BDS. So were bosentan + epoprostenol and bosentan alone for CI. Iloprost plus bosentan, bosentan + epoprostenol, and epoprostenol were better for mPAP. Iloprost plus bosentan, bosentan alone, and selexipag could reduce PVR. Sildenafil, epoprostenol, and vardenafil had the highest probability to reduce the incidence of death and withdrawal. To conclude, vardenafil and iloprost + bosentan showed relatively better performance in both efficacy and safety. However, the therapeutic choice should be made according to both the feature of each therapy and the individual condition.
Collapse
Affiliation(s)
- Sumei Wang
- a Department of Emergency , Dongfang Hospital Beijing University of Chinese Medicine , Beijing , China
| | - Miao Yu
- b Department of Emergency , Beijing University of Chinese Medicine Third Affiliated Hospital , Beijing , China
| | - Xiangchun Zheng
- a Department of Emergency , Dongfang Hospital Beijing University of Chinese Medicine , Beijing , China
| | - Shangjuan Dong
- c Department Respiration , Dongfang Hospital Beijing University of Chinese Medicine , Beijing , China
| |
Collapse
|
47
|
Hoenicka M, Golovchenko S, Englert L, Spaeth M, Shoshiashvili L, Großer C, Hofmann HS, Ried M. Combination Therapy of Pulmonary Arterial Hypertension with Vardenafil and Macitentan Assessed in a Human Ex Vivo Model. Cardiovasc Drugs Ther 2019; 33:287-295. [DOI: 10.1007/s10557-019-06868-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Kalani C, Garcia I, Ocegueda-Pacheco C, Varon J, Surani S. The Innovations in Pulmonary Hypertension Pathophysiology and Treatment: What are our Options! CURRENT RESPIRATORY MEDICINE REVIEWS 2019; 14:189-203. [DOI: 10.2174/1573398x15666190117133311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 02/08/2023]
Affiliation(s)
- Charlene Kalani
- Bay Area Medical Center, Corpus Christi, Texas, United States
| | - Ismael Garcia
- Dorrington Medical Associates, PA, Houston, Texas, United States
| | | | | | - Salim Surani
- Texas A&M University, College Station, Texas, United States
| |
Collapse
|
49
|
Abstract
BACKGROUND Pulmonary hypertension (PH) comprises a group of complex and heterogenous conditions, characterised by elevated pulmonary artery pressure, and which left untreated leads to right-heart failure and death. PH includes World Health Organisation (WHO) Group 1 pulmonary arterial hypertension (PAH); Group 2 consists of PH due to left-heart disease (PH-LHD); Group 3 comprises PH as a result of lung diseases or hypoxia, or both; Group 4 includes PH due to chronic thromboembolic occlusion of pulmonary vasculature (CTEPH), and Group 5 consists of cases of PH due to unclear and/or multifactorial mechanisms including haematological, systemic, or metabolic disorders. Phosphodiesterase type 5 (PDE5) inhibitors increase vasodilation and inhibit proliferation. OBJECTIVES To determine the efficacy of PDE5 inhibitors for pulmonary hypertension in adults and children. SEARCH METHODS We performed searches of CENTRAL, MEDLINE, Embase, CINAHL, and Web of Science up to 26 September 2018. We handsearched review articles, clinical trial registries, and reference lists of retrieved articles. SELECTION CRITERIA We included randomised controlled trials that compared any PDE5 inhibitor versus placebo, or any other PAH disease-specific therapies, for at least 12 weeks. We include separate analyses for each PH group. DATA COLLECTION AND ANALYSIS We imported studies identified by the search into a reference manager database. We retrieved the full-text versions of relevant studies, and two review authors independently extracted data. Primary outcomes were: change in WHO functional class, six-minute walk distance (6MWD), and mortality. Secondary outcomes were haemodynamic parameters, quality of life/health status, dyspnoea, clinical worsening (hospitalisation/intervention), and adverse events. When appropriate, we performed meta-analyses and subgroup analyses by severity of lung function, connective tissue disease diagnosis, and radiological pattern of fibrosis. We assessed the evidence using the GRADE approach and created 'Summary of findings' tables. MAIN RESULTS We included 36 studies with 2999 participants (with pulmonary hypertension from all causes) in the final review. Trials were conducted for 14 weeks on average, with some as long as 12 months. Two trials specifically included children.Nineteen trials included group 1 PAH participants. PAH participants treated with PDE5 inhibitors were more likely to improve their WHO functional class (odds ratio (OR) 8.59, 95% confidence interval (CI) 3.95 to 18.72; 4 trials, 282 participants), to walk 48 metres further in 6MWD (95% CI 40 to 56; 8 trials, 880 participants), and were 22% less likely to die over a mean duration of 14 weeks (95% CI 0.07 to 0.68; 8 trials, 1119 participants) compared to placebo (high-certainty evidence). The number needed to treat to prevent one additional death was 32 participants. There was an increased risk of adverse events with PDE5 inhibitors, especially headache (OR 1.97, 95% CI 1.33 to 2.92; 5 trials, 848 participants), gastrointestinal upset (OR 1.63, 95% CI 1.07 to 2.48; 5 trials, 848 participants), flushing (OR 4.12, 95% CI 1.83 to 9.26; 3 trials, 748 participants), and muscle aches and joint pains (OR 2.52, 95% CI 1.59 to 3.99; 4 trials, 792 participants).Data comparing PDE5 inhibitors to placebo whilst on other PAH-specific therapy were limited by the small number of included trials. Those PAH participants on PDE5 inhibitors plus combination therapy walked 19.66 metres further in six minutes (95% CI 9 to 30; 4 trials, 509 participants) compared to placebo (moderate-certainty evidence). There were limited trials comparing PDE5 inhibitors directly with other PAH-specific therapy (endothelin receptor antagonists (ERAs)). Those on PDE5 inhibitors walked 49 metres further than on ERAs (95% CI 4 to 95; 2 trials, 36 participants) (low-certainty evidence). There was no evidence of a difference in WHO functional class or mortality across both treatments.Five trials compared PDE5 inhibitors to placebo in PH secondary to left-heart disease (PH-LHD). The quality of data were low due to imprecision and inconsistency across trials. In those with PH-LHD there were reduced odds of an improvement in WHO functional class using PDE5 inhibitors compared to placebo (OR 0.53, 95% CI 0.32 to 0.87; 3 trials, 285 participants), and those using PDE5 inhibitors walked 34 metres further compared to placebo (95% CI 23 to 46; 3 trials, 284 participants). There was no evidence of a difference in mortality. Five trials compared PDE5 inhibitors to placebo in PH secondary to lung disease/hypoxia, mostly in COPD. Data were of low quality due to imprecision of effect and inconsistency across trials. There was a small improvement of 27 metres in 6MWD using PDE5 inhibitors compared to placebo in those with PH due to lung disease. There was no evidence of worsening hypoxia using PDE5 inhibitors, although data were limited. Three studies compared PDE5 inhibitors to placebo or other PAH-specific therapy in chronic thromboembolic disease. There was no significant difference in any outcomes. Data quality was low due to imprecision of effect and heterogeneity across trials. AUTHORS' CONCLUSIONS PDE5 inhibitors appear to have clear beneficial effects in group 1 PAH. Sildenafil, tadalafil and vardenafil are all efficacious in this clinical setting, and clinicians should consider the side-effect profile for each individual when choosing which PDE5 inhibitor to prescribe.While there appears to be some benefit for the use of PDE5 inhibitors in PH-left-heart disease, it is not clear based on the mostly small, short-term studies, which type of left-heart disease stands to benefit. These data suggest possible harm in valvular heart disease. There is no clear benefit for PDE5 inhibitors in pulmonary hypertension secondary to lung disease or chronic thromboembolic disease. Further research is required into the mechanisms of pulmonary hypertension secondary to left-heart disease, and cautious consideration of which subset of these patients may benefit from PDE5 inhibitors. Future trials in PH-LHD should be sufficiently powered, with long-term follow-up, and should include invasive haemodynamic data, WHO functional class, six-minute walk distance, and clinical worsening.
Collapse
Affiliation(s)
- Hayley Barnes
- The Alfred HospitalDepartment of Respiratory MedicineCommercial RdMelbourneAustralia3004
| | - Zoe Brown
- St Vincent's HospitalMelbourneAustralia
| | | | - Trevor Williams
- The Alfred HospitalDepartment of Respiratory MedicineCommercial RdMelbourneAustralia3004
| | | |
Collapse
|
50
|
Galiè N, Channick RN, Frantz RP, Grünig E, Jing ZC, Moiseeva O, Preston IR, Pulido T, Safdar Z, Tamura Y, McLaughlin VV. Risk stratification and medical therapy of pulmonary arterial hypertension. Eur Respir J 2019; 53:1801889. [PMID: 30545971 PMCID: PMC6351343 DOI: 10.1183/13993003.01889-2018] [Citation(s) in RCA: 596] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 01/15/2023]
Abstract
Pulmonary arterial hypertension (PAH) remains a severe clinical condition despite the availability over the past 15 years of multiple drugs interfering with the endothelin, nitric oxide and prostacyclin pathways. The recent progress observed in medical therapy of PAH is not, therefore, related to the discovery of new pathways, but to the development of new strategies for combination therapy and on escalation of treatments based on systematic assessment of clinical response. The current treatment strategy is based on the severity of the newly diagnosed PAH patient as assessed by a multiparametric risk stratification approach. Clinical, exercise, right ventricular function and haemodynamic parameters are combined to define a low-, intermediate- or high-risk status according to the expected 1-year mortality. The current treatment algorithm provides the most appropriate initial strategy, including monotherapy, or double or triple combination therapy. Further treatment escalation is required in case low-risk status is not achieved in planned follow-up assessments. Lung transplantation may be required in most advanced cases on maximal medical therapy.
Collapse
Affiliation(s)
- Nazzareno Galiè
- Dept of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Richard N. Channick
- Pulmonary and Critical Care Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert P. Frantz
- Dept of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Ekkehard Grünig
- Pulmonary Hypertension Center, Thoraxklinic at Heidelberg University Hospital, Heidelberg, Germany
| | - Zhi Cheng Jing
- State Key Lab of Cardiovascular Disease, FuWai Hospital and Key Lab of Pulmonary Vascular Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Olga Moiseeva
- Non-Coronary Heart Disease Dept, Almazov National Medical Research Centre, St Petersburg, Russian Federation
| | - Ioana R. Preston
- Tufts University School of Medicine, Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Tomas Pulido
- Cardiopulmonary Dept, National Heart Institute, La Salle University, Mexico City, Mexico
| | - Zeenat Safdar
- Pulmonary, Critical Care Division, Houston Methodist Hospital, Weill Cornell College of Medicine, Houston, TX, USA
| | - Yuichi Tamura
- Dept of Cardiology, International University of Health and Welfare School of Medicine, Tokyo, Japan
| | | |
Collapse
|