1
|
Pistenmaa CL, Hoffman EA, Prince MR, Hughes E, Dashnaw S, Lo Cascio CM, Oelsner EC, Shen W, Sun Y, Winther H, Vogel-Claussen J, Wild JM, Tracy RP, Barr RG. Platelet activation and COPD-related clinical and imaging characteristics: The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study. Respir Med 2025; 241:108058. [PMID: 40147570 DOI: 10.1016/j.rmed.2025.108058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/25/2025] [Accepted: 03/25/2025] [Indexed: 03/29/2025]
Abstract
INTRODUCTION The pulmonary vasculature has been implicated in chronic obstructive pulmonary disease (COPD). Whether platelet activation is associated with COPD-related characteristics is unknown. METHODS The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study enrolled participants with 10+ pack-years with and without COPD from 2 cohort studies. Platelet activation was measured in platelet-free plasma as von Willebrand factor (vWF), beta-thromboglobulin (BTG) and platelet factor 4 (PF4). Phenotyping included spirometry, percent emphysema-950HU, air trapping on computed tomography (CT), low-ventilated lung volume on 3He-magnetic resonance imaging (MRI) and contrast-enhanced MRI pulmonary perfusion on and off oxygen. Linear and logistic regression adjusted for demographics, anthropometry, platelet count, aspirin use, COPD status and cohort; the final model adjusted for smoking, pack-years, oxygen saturation and hypertension. RESULTS The 116 with vWF were a mean age of 73.5 ± 7.3 years old, 60 % male, 58 % Non-Hispanic White, 28 % Black, 14 % Hispanic/Latino, 23 % smoked currently and 55 % had COPD. vWF was associated with lower FEV1/FVC (-2.0 %/SD vWF, 95 %CI: -3.5, -0.6), and greater percent low-ventilated lung volume on 3He-MRI (6.5 %/SD vWF, 95 %CI: 1.5, 11.5), CT air trapping (3.2 %/SD vWF, 95 %CI: 1.4, 5.1) and heterogeneity (CV) of pulmonary microvascular blood flow (PMBF) and pulmonary microvascular blood volume (PMBV) on oxygen. Higher BTG and PF4 were associated with greater PMBF and PMBV. There was increased odds of COPD with higher PF4 (final model only: OR 1.8/SD PF4, 95 %CI: 1.01, 3.20). CONCLUSIONS Platelet activation was associated with measures of small airways disease and pulmonary microvascular perfusion in this sample of smokers with and without COPD.
Collapse
Affiliation(s)
- Carrie L Pistenmaa
- Columbia University, New York, NY, USA; Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | | - Wei Shen
- Columbia University, New York, NY, USA
| | | | - Hinrich Winther
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Germany; Member of the German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Germany
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Germany; Member of the German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Germany
| | | | | | | |
Collapse
|
2
|
Xu J, Guo J, Liu T, Yang C, Meng Z, Libby P, Zhang J, Shi GP. Differential roles of eosinophils in cardiovascular disease. Nat Rev Cardiol 2025; 22:165-182. [PMID: 39285242 DOI: 10.1038/s41569-024-01071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 02/20/2025]
Abstract
Eosinophils are essential innate immune cells in allergic responses. Accumulating evidence indicates that eosinophils also participate in the pathogenesis of cardiovascular diseases (CVDs). In clinical studies, high blood eosinophil counts and eosinophil cationic protein levels have been associated with an increased risk of CVD, including myocardial infarction (MI), cardiac hypertrophy, atrial fibrillation, abdominal aortic aneurysm (AAA) and atherosclerosis. However, low blood eosinophil counts have also been reported to be a risk factor for MI, heart failure, aortic dissection, AAA, deep vein thrombosis, pulmonary embolism and ischaemic stroke. Although these conflicting clinical observations remain unexplained, CVD status, timing of eosinophil data collection, and tissue eosinophil phenotypic and functional heterogeneities might account for these discrepancies. Preclinical studies suggest that eosinophils have protective actions in MI, cardiac hypertrophy, heart failure and AAA. By contrast, cationic proteins and platelet-activating factor from eosinophils have been shown to promote vascular smooth muscle cell proliferation, vascular calcification, thrombomodulin inactivation and platelet activation and aggregation, thereby exacerbating atherosclerosis, atrial fibrillation, thrombosis and associated complications. Therefore, eosinophils seem to promote calcification and thrombosis in chronic CVD but are protective in acute cardiovascular settings. In this Review, we summarize the available clinical and preclinical data on the different roles of eosinophils in CVD.
Collapse
Affiliation(s)
- Junyan Xu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Junli Guo
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Tianxiao Liu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Chongzhe Yang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhaojie Meng
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jinying Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Zhao Q, Yang P, Li JP, Du L, Wang W, Zhu SX, Wu S, Chen YF. Association between platelet/high-density lipoprotein cholesterol ratio and blood eosinophil counts in American adults with asthma: a population-based study. Lipids Health Dis 2025; 24:67. [PMID: 39984961 PMCID: PMC11846263 DOI: 10.1186/s12944-025-02479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
OBJECTIVE This study aims to evaluate the relationship between the platelet-to-high-density lipoprotein cholesterol ratio (PHR) and blood eosinophil counts (BEOC) in asthmatic patients, using data from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2018. METHODS This research explored the link between PHR and BEOC among adults with asthma, drawing on data from a representative U.S. population sample (n = 3034; NHANES 2011-2018). To assess this relationship, multivariable linear models were employed, alongside subgroup and interaction analyses to identify any potential variations across different groups. Additionally, generalized additive models, smooth curve fitting, and threshold effect analysis were employed to explore the relationships in greater detail. Sensitivity tests were performed to ensure the robustness of the findings. RESULTS The weighted multivariable linear regression analysis showed that after adjusting for all covariables, each one-unit rise in PHR was linked to an increase of 41.61 in BEOC (β: 41.61, 95% CI: 25.25-57.97). Subgroup analyses demonstrated consistency across various categories, reinforcing the significant positive association between PHR and BEOC. Interaction tests indicated that this positive association remained stable regardless of factors such as body mass index, smoking, hypertension, or diabetes, with all interaction P-values greater than 0.05. Additionally, the application of generalized additive models and two-piece linear regression models further confirmed the linear association between PHR and BEOC. CONCLUSIONS Our study indicates that a higher PHR may be associated with an increased risk of elevated BEOC in American adults with asthma. Thus, PHR might be considered a potential marker for predicting elevated BEOC levels in this population.
Collapse
Affiliation(s)
- Qian Zhao
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan, China
| | - Peng Yang
- Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Jing-Pan Li
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan, China
| | - Lei Du
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan, China
| | - Wei Wang
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan, China
| | - Si-Xuan Zhu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shan Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yun-Feng Chen
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Olivia TJ, Christian TJ, Patricia RR, Rocío C, Luis MRJ, Del Carmen LEE, Blanca BP. Serum integrin accumulation during asthma exacerbation: The role of matrix metalloproteinases. Scand J Immunol 2024; 100:e13420. [PMID: 39511761 DOI: 10.1111/sji.13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
The inflammation caused by asthma exacerbation can lead to permanent changes in the airways and loss of lung function. Integrins are membrane receptors that interact with components of the extracellular matrix and cell adhesion molecules. It is known that these receptors can be found in soluble form in some conditions such as asthma, but it is unknown if exacerbation during asthma leads to soluble integrins. Our results indicated that asthma patients showed higher levels of soluble α1, α2, and β2 integrin subunits in their serum compared to controls, as confirmed by both ELISA and western blot. During asthma exacerbation, the levels of α2 and β2 integrin subunits increased even more compared to non-exacerbation and controls, while the α1 integrin subunit decreased. Western blot analysis identified two β2 integrin subunits, one at 75 kDa and another at 120 kDa; the 120 kDa subunit increased during asthma exacerbation. The activity of matrix metalloproteinase 9 (MMP9) increased during exacerbation, while MMP2 remained unchanged. Lower forced expiratory volume in 1 second (FEV1) values were associated with higher expression levels of α2, β1, and β2 integrin subunits. Active and latent MMP9 were correlated with the levels of the β2 integrin subunit, which means that at low levels of active and latent MMP9, there are lower levels of β2 integrin subunit. In conclusion, asthma exacerbation leads to the presence of soluble integrins, particularly the β2 subunit, most likely due to MMP9-induced proteolytic cleavage.
Collapse
Affiliation(s)
- Tellez-Jimenez Olivia
- Laboratory of Immunopharmacology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Trejo-Jasso Christian
- Clínica de Asma, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Ramos-Ramirez Patricia
- Laboratory of Immunopharmacology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Chapela Rocío
- Clínica de Asma, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Miguel-Reyes José Luis
- Clínica de Asma, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | | | - Bazán-Perkins Blanca
- Laboratory of Immunopharmacology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ciudad de México, Mexico
| |
Collapse
|
5
|
Martinez Bravo G, Annarapu G, Carmona E, Nawarskas J, Clark R, Novelli E, Mota Alvidrez RI. Platelets in Thrombosis and Atherosclerosis: A Double-Edged Sword. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1608-1621. [PMID: 38885926 PMCID: PMC11373056 DOI: 10.1016/j.ajpath.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
This review focuses on the dual role of platelets in atherosclerosis and thrombosis, exploring their involvement in inflammation, angiogenesis, and plaque formation, as well as their hemostatic and prothrombotic functions. Beyond their thrombotic functions, platelets engage in complex interactions with diverse cell types, influencing disease resolution and progression. The contribution of platelet degranulation helps in the formation of atheromatous plaque, whereas the reciprocal interaction with monocytes adds complexity. Alterations in platelet membrane receptors and signaling cascades contribute to advanced atherosclerosis, culminating in atherothrombotic events. Understanding these multifaceted roles of platelets will lead to the development of targeted antiplatelet strategies for effective cardiovascular disease prevention and treatment. Understanding platelet functions in atherosclerosis and atherothrombosis at different stages of disease will be critical for designing targeted treatments and medications to prevent or cure the disease Through this understanding, platelets can be targeted at specific times in the atherosclerosis process, possibly preventing the development of atherothrombosis.
Collapse
Affiliation(s)
| | - Gowtham Annarapu
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Emely Carmona
- School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - James Nawarskas
- Pharmaceutical Sciences-Pharmacy Practice, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Ross Clark
- Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico; Clinical and Translational Science Center, University of New Mexico, Albuquerque, New Mexico
| | - Enrico Novelli
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania; School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Roberto I Mota Alvidrez
- Biomedical Engineering Department, University of New Mexico, Albuquerque, New Mexico; Pharmaceutical Sciences-Pharmacy Practice, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico; Clinical and Translational Science Center, University of New Mexico, Albuquerque, New Mexico.
| |
Collapse
|
6
|
Zhou L, Ni C, Liao R, Tang X, Yi T, Ran M, Huang M, Liao R, Zhou X, Qin D, Wang L, Huang F, Xie X, Wan Y, Luo J, Wang Y, Wu J. Activating SRC/MAPK signaling via 5-HT1A receptor contributes to the effect of vilazodone on improving thrombocytopenia. eLife 2024; 13:RP94765. [PMID: 38573820 PMCID: PMC10994662 DOI: 10.7554/elife.94765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Thrombocytopenia caused by long-term radiotherapy and chemotherapy exists in cancer treatment. Previous research demonstrates that 5-Hydroxtrayptamine (5-HT) and its receptors induce the formation of megakaryocytes (MKs) and platelets. However, the relationships between 5-HT1A receptor (5-HTR1A) and MKs is unclear so far. We screened and investigated the mechanism of vilazodone as a 5-HTR1A partial agonist in promoting MK differentiation and evaluated its therapeutic effect in thrombocytopenia. We employed a drug screening model based on machine learning (ML) to screen the megakaryocytopoiesis activity of Vilazodone (VLZ). The effects of VLZ on megakaryocytopoiesis were verified in HEL and Meg-01 cells. Tg (itga2b: eGFP) zebrafish was performed to analyze the alterations in thrombopoiesis. Moreover, we established a thrombocytopenia mice model to investigate how VLZ administration accelerates platelet recovery and function. We carried out network pharmacology, Western blot, and immunofluorescence to demonstrate the potential targets and pathway of VLZ. VLZ has been predicted to have a potential biological action. Meanwhile, VLZ administration promotes MK differentiation and thrombopoiesis in cells and zebrafish models. Progressive experiments showed that VLZ has a potential therapeutic effect on radiation-induced thrombocytopenia in vivo. The network pharmacology and associated mechanism study indicated that SRC and MAPK signaling are both involved in the processes of megakaryopoiesis facilitated by VLZ. Furthermore, the expression of 5-HTR1A during megakaryocyte differentiation is closely related to the activation of SRC and MAPK. Our findings demonstrated that the expression of 5-HTR1A on MK, VLZ could bind to the 5-HTR1A receptor and further regulate the SRC/MAPK signaling pathway to facilitate megakaryocyte differentiation and platelet production, which provides new insights into the alternative therapeutic options for thrombocytopenia.
Collapse
Affiliation(s)
- Ling Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Chengyang Ni
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Ruixue Liao
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Xiaoqin Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Taian Yi
- School of Pharmacy, Chengdu University of Traditional Chinese MedicineChengduChina
| | - Mei Ran
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
- School of Basic Medical Sciences, Southwest Medical UniversityLuzhouChina
| | - Miao Huang
- School of Pharmacy, Chengdu University of Traditional Chinese MedicineChengduChina
| | - Rui Liao
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Long Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Feihong Huang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Xiang Xie
- School of Basic Medical Sciences, Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical UniversityLuzhouChina
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical UniversityLuzhouChina
| | - Jiesi Luo
- School of Basic Medical Sciences, Southwest Medical UniversityLuzhouChina
| | - Yiwei Wang
- School of Basic Medical Sciences, Southwest Medical UniversityLuzhouChina
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
- School of Basic Medical Sciences, Southwest Medical UniversityLuzhouChina
- Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical UniversityLuzhouChina
| |
Collapse
|
7
|
Entsie P, Kang Y, Amoafo EB, Schöneberg T, Liverani E. The Signaling Pathway of the ADP Receptor P2Y 12 in the Immune System: Recent Discoveries and New Challenges. Int J Mol Sci 2023; 24:6709. [PMID: 37047682 PMCID: PMC10095349 DOI: 10.3390/ijms24076709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
P2Y12 is a G-protein-coupled receptor that is activated upon ADP binding. Considering its well-established role in platelet activation, blocking P2Y12 has been used as a therapeutic strategy for antiplatelet aggregation in cardiovascular disease patients. However, receptor studies have shown that P2Y12 is functionally expressed not only in platelets and the microglia but also in other cells of the immune system, such as in monocytes, dendritic cells, and T lymphocytes. As a result, studies were carried out investigating whether therapies targeting P2Y12 could also ameliorate inflammatory conditions, such as sepsis, rheumatoid arthritis, neuroinflammation, cancer, COVID-19, atherosclerosis, and diabetes-associated inflammation in animal models and human subjects. This review reports what is known about the expression of P2Y12 in the cells of the immune system and the effect of P2Y12 activation and/or inhibition in inflammatory conditions. Lastly, we will discuss the major problems and challenges in studying this receptor and provide insights on how they can be overcome.
Collapse
Affiliation(s)
- Philomena Entsie
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Ying Kang
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Emmanuel Boadi Amoafo
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Torsten Schöneberg
- Division of Molecular Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Elisabetta Liverani
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
8
|
Hilvering B, Koenderman L. Quality over quantity; eosinophil activation status will deepen the insight into eosinophilic diseases. Respir Med 2023; 207:107094. [PMID: 36572067 DOI: 10.1016/j.rmed.2022.107094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Eosinophil associated diseases have gained much attention recently because of the introduction of specific eosinophil targeted therapies. These diseases range from acute parasitic infections to chronic inflammatory diseases such as eosinophilic asthma. In eosinophilic asthma an increased eosinophil cell count in peripheral blood is the gold standard for determination of the pheno-/endotype and severity of disease. Despite a broad consensus there is concern on validity of this simple measurement, because the eosinophil compartment is far from homogenous. Multiple tissues harbour non-activated cells under homeostatic conditions and other tissues, normally devoid of eosinophils, become infested with these cells under inflammatory conditions. It will, therefore, be clear that eosinophils become differentially (pre)-activated at different tissue sites in homeostatic and inflammatory conditions. This complexity should be investigated in detail as it is 1) far from clear what the long-term side effects are that are caused by application of eosinophil targeted therapies in a "one size fits all" concept and 2) real-world data of eosinophil targeted therapies in asthma shows a broad variety in the treatment response. This review will focus on complex mechanisms of eosinophil activation in vivo to create a better view on the dynamics of the eosinophil compartment in health and disease both to prevent collateral damage caused by aberrant activation of eosinophils ánd to improve effectiveness of eosinophil targeted treatments.
Collapse
Affiliation(s)
- B Hilvering
- Dept. Pulmonary Medicine, Amsterdam University Medical Center, the Netherlands.
| | - L Koenderman
- Dept. Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, the Netherlands
| |
Collapse
|
9
|
Sim MS, Kim HJ, Bae I, Kim C, Chang HS, Choi Y, Lee DH, Park HS, Chung IY. Calcium ionophore-activated platelets induce eosinophil extracellular trap formation. Allergol Int 2022:S1323-8930(22)00138-1. [PMID: 36586745 DOI: 10.1016/j.alit.2022.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/12/2022] [Accepted: 11/23/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Platelets play a modulatory role in inflammatory response by secreting a vast array of granules and disintegrating into membrane-bound microparticles upon activation. The interplay between eosinophils and platelets is postulated to be implicated in the pathology of allergic airway inflammation. In this study, we investigated whether activated platelets can induce eosinophil extracellular trap (EET) formation, a cellular process by which activated eosinophils release net-like DNA fibers. METHODS Platelets were stimulated with the calcium ionophore, A23187, and the platelet agonists, thrombin and adenosine diphosphate (ADP). Platelet cultures were fractionated into conditioned medium (CM) and pellet, which were then overlaid on eosinophils to examine EET formation. RESULTS The CM and pellet from A23187-activated platelets stimulated eosinophils to generate EET, whereas those from thrombin- or ADP-activated platelets failed to induce such generation. The EET-inducing activity of the A23187-activated platelet culture was linearly proportional to the number of activated platelets. Interestingly, while EET formation induced by the direct stimulation of eosinophils with A23187 was NADPH oxidase (NOX)-dependent, EET formation induced by A23187-activated platelets was NOX-independent and significantly inhibited by necroptosis pathway inhibitors. CONCLUSIONS Activated platelets and their products may induce EET formation, thereby potentiating their role in eosinophilic airway inflammation.
Collapse
Affiliation(s)
- Myeong Seong Sim
- Department of BionanoTechnology, Hanyang University, Ansan, South Korea
| | - Hye Jeong Kim
- Department of BionanoTechnology, Hanyang University, Ansan, South Korea
| | - Ikhyeon Bae
- Department of Molecular and Life Sciences, College of Science and Convergence Technology, Hanyang University, Ansan, South Korea
| | - Chun Kim
- Department of Molecular and Life Sciences, College of Science and Convergence Technology, Hanyang University, Ansan, South Korea
| | - Hun Soo Chang
- Department of Anatomy and BK21 FOUR Project, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Dong-Hyun Lee
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.
| | - Il Yup Chung
- Department of Molecular and Life Sciences, College of Science and Convergence Technology, Hanyang University, Ansan, South Korea.
| |
Collapse
|
10
|
Ma H, Yang L, Liu L, Zhou Y, Guo X, Wu S, Zhang X, Xu X, Ti X, Qu S. Using inflammatory index to distinguish asthma, asthma-COPD overlap and COPD: A retrospective observational study. Front Med (Lausanne) 2022; 9:1045503. [PMID: 36465915 PMCID: PMC9714673 DOI: 10.3389/fmed.2022.1045503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Although asthma and chronic obstructive pulmonary disease (COPD) are two well-defined and distinct diseases, some patients present combined clinical features of both asthma and COPD, particularly in smokers and the elderly, a condition termed as asthma-COPD overlap (ACO). However, the definition of ACO is yet to be established and clinical guidelines to identify and manage ACO remain controversial. Therefore, in this study, inflammatory biomarkers were established to distinguish asthma, ACO, and COPD, and their relationship with the severity of patients' symptoms and pulmonary function were explored. MATERIALS AND METHODS A total of 178 patients, diagnosed with asthma (n = 38), ACO (n = 44), and COPD (n = 96) between January 2021 to June 2022, were enrolled in this study. The patients' pulmonary function was examined and routine blood samples were taken for the analysis of inflammatory indexes. Logistic regression analysis was used to establish inflammatory biomarkers for distinguishing asthma, ACO, and COPD; linear regression analysis was used to analyze the relationship between inflammatory indexes and symptom severity and pulmonary function. RESULT The results showed that, compared with ACO, the higher the indexes of platelet, neutrophil-lymphocyte ratio (NLR) and eosinophil-basophil ratio (EBR), the more likely the possibility of asthma and COPD in patients, while the higher the eosinophils, the less likely the possibility of asthma and COPD. Hemoglobin and lymphocyte-monocyte ratio (LMR) were negatively correlated with the severity of patients' symptoms, while platelet-lymphocyte ratio (PLR) was negatively correlated with forced expiratory volume in the 1 s/forced vital capacity (FEV1/FVC) and FEV1 percent predicted (% pred), and EBR was positively correlated with FEV1% pred. CONCLUSION Inflammatory indexes are biomarkers for distinguishing asthma, ACO, and COPD, which are of clinical significance in therapeutic strategies and prognosis evaluation.
Collapse
Affiliation(s)
- Haiman Ma
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Liu Yang
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Lingli Liu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Ying Zhou
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xiaoya Guo
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shuo Wu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xiaoxiao Zhang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xi Xu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xinyu Ti
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shuoyao Qu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
11
|
Fiouane S, Chebbo M, Beley S, Paganini J, Picard C, D'Journo X, Thomas P, Chiaroni J, Chanez P, Gras D, Di Cristofaro J. Mobilisation of HLA-F on the surface of bronchial epithelial cells and platelets in asthmatic patients. HLA 2022; 100:491-499. [PMID: 35988034 PMCID: PMC9804204 DOI: 10.1111/tan.14782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 01/05/2023]
Abstract
Uncontrolled inflammation of the airways in chronic obstructive lung diseases leads to exacerbation, accelerated lung dysfunction and respiratory insufficiency. Among these diseases, asthma affects 358 million people worldwide. Human bronchial epithelium cells (HBEC) express both anti-inflammatory and activating molecules, and their deregulated expression contribute to immune cell recruitment and activation, especially platelets (PLT) particularly involved in lung tissue inflammation in asthma context. Previous results supported that HLA-G dysregulation in lung tissue is associated with immune cell activation. We investigated here HLA-F expression, reported to be mobilised on immune cell surface upon activation and displaying its highest affinity for the KIR3DS1-activating NK receptor. We explored HLA-F transcriptional expression in HBEC; HLA-F total expression in PBMC and HBEC collected from healthy individuals at rest and upon chemical activation and HLA-F membrane expression in PBMC, HBEC and PLT collected from healthy individuals at rest and upon chemical activation. We compared HLA-F transcriptional expression in HBEC from healthy individuals and asthmatic patients and its surface expression in HBEC and PLT from healthy individuals and asthmatic patients. Our results support that HLA-F is expressed by HBEC and PLT under healthy physiological conditions and is retained in cytoplasm, barely expressed on the surface, as previously reported in immune cells. In both cell types, HLA-F reaches the surface in the inflammatory asthma context whereas no effect is observed at the transcriptional level. Our study suggests that HLA-F surface expression is a ubiquitous post-transcriptional process in activated cells. It may be of therapeutic interest in controlling lung inflammation.
Collapse
Affiliation(s)
- Sabrina Fiouane
- CNRS, EFS, ADES, UMR7268Aix Marseille UniversityMarseilleFrance,Etablissement Français du Sang PACA CorseMarseilleFrance
| | - Mohamad Chebbo
- INSERM 1263, INRAE 1260, C2VNAix Marseille UniversityMarseilleFrance
| | - Sophie Beley
- CNRS, EFS, ADES, UMR7268Aix Marseille UniversityMarseilleFrance,Etablissement Français du Sang PACA CorseMarseilleFrance
| | | | - Christophe Picard
- CNRS, EFS, ADES, UMR7268Aix Marseille UniversityMarseilleFrance,Etablissement Français du Sang PACA CorseMarseilleFrance
| | - Xavier‐Benoît D'Journo
- Department of Thoracic Surgery, North HospitalAix‐Marseille University and Assistance Publique‐Hôpitaux de MarseilleMarseilleFrance
| | - Pascal‐Alexandre Thomas
- Department of Thoracic Surgery, North HospitalAix‐Marseille University and Assistance Publique‐Hôpitaux de MarseilleMarseilleFrance
| | - Jacques Chiaroni
- CNRS, EFS, ADES, UMR7268Aix Marseille UniversityMarseilleFrance,Etablissement Français du Sang PACA CorseMarseilleFrance
| | - Pascal Chanez
- INSERM 1263, INRAE 1260, C2VNAix Marseille UniversityMarseilleFrance,Clinique des Bronches, Allergies et SommeilNorth Hospital, Assistance Publique‐Hôpitaux de MarseilleMarseilleFrance
| | - Delphine Gras
- INSERM 1263, INRAE 1260, C2VNAix Marseille UniversityMarseilleFrance
| | - Julie Di Cristofaro
- CNRS, EFS, ADES, UMR7268Aix Marseille UniversityMarseilleFrance,Etablissement Français du Sang PACA CorseMarseilleFrance
| |
Collapse
|
12
|
Chaudhary PK, Kim S, Kim S. An Insight into Recent Advances on Platelet Function in Health and Disease. Int J Mol Sci 2022; 23:ijms23116022. [PMID: 35682700 PMCID: PMC9181192 DOI: 10.3390/ijms23116022] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Platelets play a variety of roles in vascular biology and are best recognized as primary hemostasis and thrombosis mediators. Platelets have a large number of receptors and secretory molecules that are required for platelet functionality. Upon activation, platelets release multiple substances that have the ability to influence both physiological and pathophysiological processes including inflammation, tissue regeneration and repair, cancer progression, and spreading. The involvement of platelets in the progression and seriousness of a variety of disorders other than thrombosis is still being discovered, especially in the areas of inflammation and the immunological response. This review represents an integrated summary of recent advances on the function of platelets in pathophysiology that connects hemostasis, inflammation, and immunological response in health and disease and suggests that antiplatelet treatment might be used for more than only thrombosis.
Collapse
|
13
|
Vrigkou E, Tsantes A, Konstantonis D, Rapti E, Maratou E, Pappas A, Halvatsiotis P, Tsangaris I. Platelet, Fibrinolytic and Other Coagulation Abnormalities in Newly-Diagnosed Patients with Chronic Thromboembolic Pulmonary Hypertension. Diagnostics (Basel) 2022; 12:diagnostics12051238. [PMID: 35626393 PMCID: PMC9141147 DOI: 10.3390/diagnostics12051238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/31/2022] Open
Abstract
The pathophysiological background of chronic thromboembolic pulmonary hypertension (CTEPH) has not been fully elucidated. Evidence suggests that abnormal platelet function and ineffective fibrinolysis may play a key role in the development of the disease. The purpose of this study was to evaluate platelet and coagulation function in CTEPH, using non-conventional global coagulation assays, and platelet activation and endothelial dysfunction laboratory markers. A total of 40 newly-diagnosed CTEPH patients were studied, along with 35 healthy controls. Blood samples from CTEPH patients were taken directly from the pulmonary artery. All subjects were assessed with platelet function analyzer-100, light transmission aggregometry, thromboelastometry, endogenous thrombin potential. von Willebrand antigen and activity, p-selectin, thromboxane A2 and serotonin levels were also assessed. The results showed that CTEPH patients present diminished platelet aggregation, presence of disaggregation, decreased rate of fibrinolysis, defective thrombin generation and increased levels of thromboxane A2, p-selectin, von Willebrand antigen and activity. Serotonin levels did not present any differences between the two groups. The results of this study suggest that CTEPH patients present platelet function, fibrinolytic, thrombin generation and other clot formation abnormalities. Well-designed clinical studies are needed to further evaluate the complex hemostatic abnormalities in the CTEPH setting and assess their potential clinical applications.
Collapse
Affiliation(s)
- Eleni Vrigkou
- Second Department of Critical Care Medicine, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (E.V.); (D.K.); (A.P.)
| | - Argirios Tsantes
- Laboratory of Hematology and Blood Bank Unit, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (E.R.)
| | - Dimitrios Konstantonis
- Second Department of Critical Care Medicine, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (E.V.); (D.K.); (A.P.)
| | - Evdoxia Rapti
- Laboratory of Hematology and Blood Bank Unit, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (E.R.)
| | - Eirini Maratou
- Laboratory of Clinical Biochemistry, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Athanasios Pappas
- Second Department of Critical Care Medicine, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (E.V.); (D.K.); (A.P.)
| | - Panagiotis Halvatsiotis
- Second Department of Internal Medicine, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Iraklis Tsangaris
- Second Department of Critical Care Medicine, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (E.V.); (D.K.); (A.P.)
- Correspondence:
| |
Collapse
|
14
|
Yue M, Hu M, Fu F, Ruan H, Wu C. Emerging Roles of Platelets in Allergic Asthma. Front Immunol 2022; 13:846055. [PMID: 35432313 PMCID: PMC9010873 DOI: 10.3389/fimmu.2022.846055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/21/2023] Open
Abstract
Allergic asthma is a complex chronic inflammatory disease of the airways, driven by Th2 immune responses and characterized by eosinophilic pulmonary inflammation, airway hyperresponsiveness, excessive mucus production, and airway remodeling. Overwhelming evidence from studies in animal models and allergic asthmatic patients suggests that platelets are aberrantly activated and recruited to the lungs. It has been established that platelets can interact with other immune cells and secrete various biochemical mediators to promote allergic sensitization and airway inflammatory response, and platelet deficiency may alleviate the pathological features and symptoms of allergic asthma. However, the comprehensive roles of platelets in allergic asthma have not been fully clarified, leaving attempts to treat allergic asthma with antiplatelet agents questionable. In this review, we summarize the role of platelet activation and pulmonary accumulation in allergic asthma; emphasis is placed on the different interactions between platelets with crucial immune cell types and the contribution of platelet-derived mediators in this context. Furthermore, clinical antiplatelet approaches to treat allergic asthma are discussed. This review provides a clearer understanding of the roles of platelets in the pathogenesis of allergic asthma and could be informative in the development of novel strategies for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Ming Yue
- Department of Physiology, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengjiao Hu
- Department of Immunology and Microbiology, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Hongfeng Ruan,
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
15
|
Orimo K, Tamari M, Takeda T, Kubo T, Rückert B, Motomura K, Sugiyama H, Yamada A, Saito K, Arae K, Kuriyama M, Hara M, Soyka MB, Ikutani M, Yamaguchi S, Morimoto N, Nakabayashi K, Hata K, Matsuda A, Akdis CA, Sudo K, Saito H, Nakae S, Tamaoki J, Tagaya E, Matsumoto K, Morita H. Direct platelet adhesion potentiates group 2 innate lymphoid cell functions. Allergy 2022; 77:843-855. [PMID: 34402091 DOI: 10.1111/all.15057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/11/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Platelets are thought to be involved in the pathophysiology of asthma, presumably through direct adhesion to inflammatory cells, including group 2 innate lymphoid cells (ILC2s). Here, we tried to elucidate the effects of platelet adhesion to ILC2s in vitro and in vivo, as well as the mechanisms involved. METHODS Alternaria-induced ILC2-dependent airway inflammation models using wild-type and c-mpl-/- mice were evaluated. Both purified CD41+ and CD41- ILC2s were cultured with IL-2 and IL-33 to determine in vitro Type 2 (T2) cytokine production and cell proliferation. RNA-seq data of flow-cytometry-sorted CD41+ and CD41- ILC2s were used to isolate ILC2-specific genes. Flow cytometry was performed to determine the expression of CD41 and adhesion-related molecules on ILC2s in both mouse and human tissues. RESULTS T2 inflammation and T2 cytokine production from ILC2s were significantly reduced in the c-mpl-/- mice compared to wild-type mice. Platelet-adherent ILC2s underwent significant proliferation and showed enhanced T2 cytokine production when exposed to IL-2 and IL-33. The functions of ILC2-specific genes were related to cell development and function. Upstream regulator analysis identified 15 molecules, that are thought to be involved in ILC2 activation. CD41 expression levels were higher in ILC2s from human PBMCs and mouse lung than in those from secondary lymphoid tissues, but they did not correlate with the P-selectin glycoprotein ligand-1 or CD24 expression level. CONCLUSION Platelets spontaneously adhere to ILC2s, probably in the peripheral blood and airways, thereby potentiating ILC2s to enhance their responses to IL-33.
Collapse
Affiliation(s)
- Keisuke Orimo
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
- Department of Respiratory Medicine Tokyo Women's Medical University Tokyo Japan
| | - Masato Tamari
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
- Department of Pediatrics Jikei University School of Medicine Tokyo Japan
| | - Tomohiro Takeda
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
- Department of Health Science Kansai University of Health Sciences Osaka Japan
| | - Terufumi Kubo
- Department of Pathology Sapporo Medical University School of Medicine Sapporo Japan
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Kenichiro Motomura
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Hiroki Sugiyama
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Ayako Yamada
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Kyoko Saito
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
- Department of Otorhinolaryngology Head and Neck Surgery University of Fukui Fukui Japan
| | - Ken Arae
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
- Department of Immunology Faculty of Health Sciences Kyorin University Tokyo Japan
| | - Motohiro Kuriyama
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Mariko Hara
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Michael B. Soyka
- Department of Otorhinolaryngology, Head and Neck Surgery University Hospital Zurich and University of Zurich Zurich Switzerland
| | - Masashi Ikutani
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima City Japan
- Department of Immune Regulation Research Institute, National Center for Global Health and Medicine Ichikawa Japan
| | - Sota Yamaguchi
- Division of Otolaryngology Department of Surgical Specialties National Center for Child Health and Development Tokyo Japan
| | - Noriko Morimoto
- Division of Otolaryngology Department of Surgical Specialties National Center for Child Health and Development Tokyo Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal–Fetal Biology National Research Institute for Child Health and Development Tokyo Japan
| | - Kenichiro Hata
- Department of Maternal–Fetal Biology National Research Institute for Child Health and Development Tokyo Japan
| | - Akio Matsuda
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Katsuko Sudo
- Animal Research Center Tokyo Medical University Tokyo Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Susumu Nakae
- Department of Immune Regulation Research Institute, National Center for Global Health and Medicine Ichikawa Japan
- Laboratory of Systems Biology Center for Experimental Medicine and Systems Biology The Institute of Medical Science, The University of Tokyo Tokyo Japan
- Precursory Research for Embryonic Science and Technology (PRESTO Japan Science and Technology Agency Saitama Japan
| | - Jun Tamaoki
- Department of Respiratory Medicine Tokyo Women's Medical University Tokyo Japan
| | - Etsuko Tagaya
- Department of Respiratory Medicine Tokyo Women's Medical University Tokyo Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
- Allergy Center National Center for Child Health and Development Tokyo Japan
| |
Collapse
|
16
|
Platelets, Not an Insignificant Player in Development of Allergic Asthma. Cells 2021; 10:cells10082038. [PMID: 34440807 PMCID: PMC8391764 DOI: 10.3390/cells10082038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022] Open
Abstract
Allergic asthma is a chronic and heterogeneous pulmonary disease in which platelets can be activated in an IgE-mediated pathway and migrate to the airways via CCR3-dependent mechanism. Activated platelets secrete IL-33, Dkk-1, and 5-HT or overexpress CD40L on the cell surfaces to induce Type 2 immune response or interact with TSLP-stimulated myeloid DCs through the RANK-RANKL-dependent manner to tune the sensitization stage of allergic asthma. Additionally, platelets can mediate leukocyte infiltration into the lungs through P-selectin-mediated interaction with PSGL-1 and upregulate integrin expression in activated leukocytes. Platelets release myl9/12 protein to recruit CD4+CD69+ T cells to the inflammatory sites. Bronchoactive mediators, enzymes, and ROS released by platelets also contribute to the pathogenesis of allergic asthma. GM-CSF from platelets inhibits the eosinophil apoptosis, thus enhancing the chronic inflammatory response and tissue damage. Functional alterations in the mitochondria of platelets in allergic asthmatic lungs further confirm the role of platelets in the inflammation response. Given the extensive roles of platelets in allergic asthma, antiplatelet drugs have been tested in some allergic asthma patients. Therefore, elucidating the role of platelets in the pathogenesis of allergic asthma will provide us with new insights and lead to novel approaches in the treatment of this disease.
Collapse
|
17
|
Shah SA, Kanabar V, Riffo-Vasquez Y, Mohamed Z, Cleary SJ, Corrigan C, James AL, Elliot JG, Shute JK, Page CP, Pitchford SC. Platelets Independently Recruit into Asthmatic Lungs and Models of Allergic Inflammation via CCR3. Am J Respir Cell Mol Biol 2021; 64:557-568. [PMID: 33556295 PMCID: PMC8086046 DOI: 10.1165/rcmb.2020-0425oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Platelet activation and pulmonary recruitment occur in patients with asthma and in animal models of allergic asthma, in which leukocyte infiltration, airway remodeling, and hyperresponsiveness are suppressed by experimental platelet depletion. These observations suggest the importance of platelets to various characteristics of allergic disease, but the mechanisms of platelet migration and location are not understood. The aim of this study was to assess the mechanism of platelet recruitment to extravascular compartments of lungs from patients with asthma and after allergen challenge in mice sensitized to house dust mite (HDM) extract (contains the DerP1 [Dermatophagoides pteronyssinus extract peptidase 1] allergen); in addition, we assessed the role of chemokines in this process. Lung sections were immunohistochemically stained for CD42b+ platelets. Intravital microscopy in allergic mice was used to visualize platelets tagged with an anti-mouse CD49b-PE (phycoerythrin) antibody. Platelet-endothelial interactions were measured in response to HDM (DerP1) exposure in the presence of antagonists to CCR3, CCR4, and CXCR4. Extravascular CD42b+ platelets were detected in the epithelium and submucosa in bronchial biopsy specimens taken from subjects with steroid-naive mild asthma. Platelets were significantly raised in the lung parenchyma from patients with fatal asthma compared with postmortem control-lung tissue. Furthermore, in DerP1-sensitized mice, subsequent HDM exposure induced endothelial rolling, endothelial adhesion, and recruitment of platelets into airway walls, compared with sham-sensitized mice, via a CCR3-dependent mechanism in the absence of aggregation or interactions with leukocytes. Localization of singular, nonaggregated platelets occurs in lungs of patients with asthma. In allergic mice, platelet recruitment occurs via recognized vascular adhesive and migratory events, independently of leukocytes via a CCR3-dependent mechanism.
Collapse
Affiliation(s)
- Sajeel A Shah
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Varsha Kanabar
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Yanira Riffo-Vasquez
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Zainab Mohamed
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Simon J Cleary
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Christopher Corrigan
- MRC-Asthma UK Centre for Allergic Mechanisms in Asthma, Guy's Hospital-King's College London, London, United Kingdom
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; and
| | - John G Elliot
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; and
| | - Janis K Shute
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| |
Collapse
|
18
|
Johansson MW. Seeing Is Believing: Extravascular Platelet Recruitment in Asthma and Allergic Inflammation. Am J Respir Cell Mol Biol 2021; 64:521-522. [PMID: 33705683 PMCID: PMC8086035 DOI: 10.1165/rcmb.2021-0045ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Mats W Johansson
- Morgridge Institute for Research Madison, Wisconsin and.,Departments of Biomolecular Chemistry and Medicine University of Wisconsin Madison, Wisconsin
| |
Collapse
|
19
|
Alba GA, Samokhin AO, Wang RS, Zhang YY, Wertheim BM, Arons E, Greenfield EA, Lundberg Slingsby MH, Ceglowski JR, Haley KJ, Bowman FP, Yu YR, Haney JC, Eng G, Mitchell RN, Sheets A, Vargas SO, Seo S, Channick RN, Leary PJ, Rajagopal S, Loscalzo J, Battinelli EM, Maron BA. NEDD9 Is a Novel and Modifiable Mediator of Platelet-Endothelial Adhesion in the Pulmonary Circulation. Am J Respir Crit Care Med 2021; 203:1533-1545. [PMID: 33523764 PMCID: PMC8483217 DOI: 10.1164/rccm.202003-0719oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 01/29/2021] [Indexed: 12/16/2022] Open
Abstract
Rationale: Data on the molecular mechanisms that regulate platelet-pulmonary endothelial adhesion under conditions of hypoxia are lacking, but may have important therapeutic implications. Objectives: To identify a hypoxia-sensitive, modifiable mediator of platelet-pulmonary artery endothelial cell adhesion and thrombotic remodeling. Methods: Network medicine was used to profile protein-protein interactions in hypoxia-treated human pulmonary artery endothelial cells. Data from liquid chromatography-mass spectrometry and microscale thermophoresis informed the development of a novel antibody (Ab) to inhibit platelet-endothelial adhesion, which was tested in cells from patients with chronic thromboembolic pulmonary hypertension (CTEPH) and three animal models in vivo. Measurements and Main Results: The protein NEDD9 was identified in the hypoxia thrombosome network in silico. Compared with normoxia, hypoxia (0.2% O2) for 24 hours increased HIF-1α (hypoxia-inducible factor-1α)-dependent NEDD9 upregulation in vitro. Increased NEDD9 was localized to the plasma-membrane surface of cells from control donors and patients with CTEPH. In endarterectomy specimens, NEDD9 colocalized with the platelet surface adhesion molecule P-selectin. Our custom-made anti-NEDD9 Ab targeted the NEDD9-P-selectin interaction and inhibited the adhesion of activated platelets to pulmonary artery endothelial cells from control donors in vitro and from patients with CTEPH ex vivo. Compared with control mice, platelet-pulmonary endothelial aggregates and pulmonary hypertension induced by ADP were decreased in NEDD9-/- mice or wild-type mice treated with the anti-NEDD9 Ab, which also decreased chronic pulmonary thromboembolic remodeling in vivo. Conclusions: The NEDD9-P-selectin protein-protein interaction is a modifiable target with which to inhibit platelet-pulmonary endothelial adhesion and thromboembolic vascular remodeling, with potential therapeutic implications for patients with disorders of increased hypoxia signaling pathways, including CTEPH.
Collapse
Affiliation(s)
- George A Alba
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Andriy O Samokhin
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Rui-Sheng Wang
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Ying-Yi Zhang
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Elena Arons
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | | | | - Frederick P Bowman
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Yen-Rei Yu
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - John C Haney
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - George Eng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Richard N Mitchell
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, and
| | - Anthony Sheets
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, and
| | - Sara O Vargas
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Duke University, Durham, North Carolina
| | - Sachiko Seo
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Richard N Channick
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi, Japan
| | - Peter J Leary
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Ronald Reagan UCLA Medical Center, University of California, Los Angeles, Los Angeles, California; and
| | - Sudarshan Rajagopal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Joseph Loscalzo
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Bradley A Maron
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
20
|
Baumann R, Untersmayr E, Zissler UM, Eyerich S, Adcock IM, Brockow K, Biedermann T, Ollert M, Chaker AM, Pfaar O, Garn H, Thwaites RS, Togias A, Kowalski ML, Hansel TT, Jakwerth CA, Schmidt‐Weber CB. Noninvasive and minimally invasive techniques for the diagnosis and management of allergic diseases. Allergy 2021; 76:1010-1023. [PMID: 33128851 DOI: 10.1111/all.14645] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 10/25/2020] [Indexed: 12/12/2022]
Abstract
Allergic diseases of the (upper and lower) airways, the skin and the gastrointestinal tract, are on the rise, resulting in impaired quality of life, decreased productivity, and increased healthcare costs. As allergic diseases are mostly tissue-specific, local sampling methods for respective biomarkers offer the potential for increased sensitivity and specificity. Additionally, local sampling using noninvasive or minimally invasive methods can be cost-effective and well tolerated, which may even be suitable for primary or home care sampling. Non- or minimally invasive local sampling and diagnostics may enable a more thorough endotyping, may help to avoid under- or overdiagnosis, and may provide the possibility to approach precision prevention, due to early diagnosis of these local diseases even before they get systemically manifested and detectable. At the same time, dried blood samples may help to facilitate minimal-invasive primary or home care sampling for classical systemic diagnostic approaches. This EAACI position paper contains a thorough review of the various technologies in allergy diagnosis available on the market, which analytes or biomarkers are employed, and which samples or matrices can be used. Based on this assessment, EAACI position is to drive these developments to efficiently identify allergy and possibly later also viral epidemics and take advantage of comprehensive knowledge to initiate preventions and treatments.
Collapse
Affiliation(s)
- Ralf Baumann
- Medical Faculty Institute for Molecular Medicine Medical School Hamburg (MSH) – Medical University Hamburg Germany
- RWTH Aachen University Hospital Institute for Occupational, Social and Environmental Medicine Aachen Germany
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Ulrich M. Zissler
- Center of Allergy and Environment (ZAUM) Technical University and Helmholtz Zentrum München München Germany
- Member of the German Center of Lung Research (DZL) and the Helmholtz I&I Initiative Munich Germany
| | - Stefanie Eyerich
- Center of Allergy and Environment (ZAUM) Technical University and Helmholtz Zentrum München München Germany
- Member of the German Center of Lung Research (DZL) and the Helmholtz I&I Initiative Munich Germany
| | - Ian M. Adcock
- National Heart and Lung Institute Imperial College London, and Royal Brompton and Harefield NHS Trust London UK
| | - Knut Brockow
- Department of Dermatology and Allergy Biederstein School of Medicine Technische Universität München Munich Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein School of Medicine Technische Universität München Munich Germany
| | - Markus Ollert
- Department of Infection and Immunity Luxembourg Institute of Health (LIH) Esch‐sur‐Alzette Luxembourg
- Department of Dermatology and Allergy Center Odense Research Centre for Anaphylaxis (ORCA) University of Southern Denmark Odense Denmark
| | - Adam M. Chaker
- Center of Allergy and Environment (ZAUM) Technical University and Helmholtz Zentrum München München Germany
- Member of the German Center of Lung Research (DZL) and the Helmholtz I&I Initiative Munich Germany
- Department of Otolaryngology Allergy Section Klinikum Rechts der Isar Technical University of Munich Munich Germany
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery University Hospital Marburg Philipps‐Universität Marburg Marburg Germany
| | - Holger Garn
- Biochemical Pharmacological Center (BPC) ‐ Molecular Diagnostics, Translational Inflammation Research Division & Core Facility for Single Cell Multiomics Philipps University of Marburg ‐ Medical Faculty Member of the German Center for Lung Research (DZL) Universities of Giessen and Marburg Lung Center (UGMLC) Marburg Germany
| | - Ryan S. Thwaites
- National Heart and Lung Institute Imperial College London, and Royal Brompton and Harefield NHS Trust London UK
| | - Alkis Togias
- Division of Allergy, Immunology and Transplantation National Institute of Allergy and Infectious Diseases National Institutes of Health Bethesda MD USA
| | - Marek L. Kowalski
- Department of Immunology and Allergy Medical University of Lodz Lodz Poland
| | - Trevor T. Hansel
- National Heart and Lung Institute Imperial College London, and Royal Brompton and Harefield NHS Trust London UK
| | - Constanze A. Jakwerth
- Center of Allergy and Environment (ZAUM) Technical University and Helmholtz Zentrum München München Germany
- Member of the German Center of Lung Research (DZL) and the Helmholtz I&I Initiative Munich Germany
| | - Carsten B. Schmidt‐Weber
- Center of Allergy and Environment (ZAUM) Technical University and Helmholtz Zentrum München München Germany
- Member of the German Center of Lung Research (DZL) and the Helmholtz I&I Initiative Munich Germany
| |
Collapse
|
21
|
Masterson JC, Menard-Katcher C, Larsen LD, Furuta GT, Spencer LA. Heterogeneity of Intestinal Tissue Eosinophils: Potential Considerations for Next-Generation Eosinophil-Targeting Strategies. Cells 2021; 10:cells10020426. [PMID: 33671475 PMCID: PMC7922004 DOI: 10.3390/cells10020426] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/05/2023] Open
Abstract
Eosinophils are implicated in the pathophysiology of a spectrum of eosinophil-associated diseases, including gastrointestinal eosinophilic diseases (EGIDs). Biologics that target the IL-5 pathway and are intended to ablate eosinophils have proved beneficial in severe eosinophilic asthma and may offer promise in treating some endotypes of EGIDs. However, destructive effector functions of eosinophils are only one side of the coin; eosinophils also play important roles in immune and tissue homeostasis. A growing body of data suggest tissue eosinophils represent a plastic and heterogeneous population of functional sub-phenotypes, shaped by environmental (systemic and local) pressures, which may differentially impact disease outcomes. This may be particularly relevant to the GI tract, wherein the highest density of eosinophils reside in the steady state, resident immune cells are exposed to an especially broad range of external and internal environmental pressures, and greater eosinophil longevity may uniquely enrich for co-expression of eosinophil sub-phenotypes. Here we review the growing evidence for functional sub-phenotypes of intestinal tissue eosinophils, with emphasis on the multifactorial pressures that shape and diversify eosinophil identity and potential targets to inform next-generation eosinophil-targeting strategies designed to restrain inflammatory eosinophil functions while sustaining homeostatic roles.
Collapse
Affiliation(s)
- Joanne C. Masterson
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
- GI and Liver Innate Immune Program, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Allergy, Inflammation & Remodeling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Calies Menard-Katcher
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
| | - Leigha D. Larsen
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
| | - Glenn T. Furuta
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
- GI and Liver Innate Immune Program, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Lisa A. Spencer
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
- GI and Liver Innate Immune Program, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-303-724-3277
| |
Collapse
|
22
|
Leukotriene D 4 paradoxically limits LTC 4-driven platelet activation and lung immunopathology. J Allergy Clin Immunol 2020; 148:195-208.e5. [PMID: 33285161 DOI: 10.1016/j.jaci.2020.10.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The 3 cysteinyl leukotrienes (cysLTs), leukotriene (LT) C4 (LTC4), LTD4, and LTE4, have different biologic half-lives, cellular targets, and receptor specificities. CysLT2R binds LTC4 and LTD4in vitro with similar affinities, but it displays a marked selectivity for LTC4in vivo. LTC4, but not LTD4, strongly potentiates allergen-induced pulmonary eosinophilia in mice through a CysLT2R-mediated, platelet- and IL-33-dependent pathway. OBJECTIVE We sought to determine whether LTD4 functionally antagonizes LTC4 signaling at CysLT2R. METHODS We used 2 different in vivo models of CysLT2R-dependent immunopathology, as well as ex vivo activation of mouse and human platelets. RESULTS LTC4-induced CD62P expression; HMGB1 release; and secretions of thromboxane A2, CXCL7, and IL-33 by mouse platelets were all were blocked by a selective CysLT2R antagonist and inhibited by LTD4. These effects did not depend on CysLT1R. Inhaled LTD4 blocked LTC4-mediated potentiation of ovalbumin-induced eosinophilic inflammation; recruitment of platelet-adherent eosinophils; and increases in IL-33, IL-4, IL-5, and IL-13 levels in lung tissue. In contrast, the effect of administration of LTE4, the preferred ligand for CysLT3R, was additive with LTC4. The administration of LTD4 to Ptges-/- mice, which display enhanced LTC4 synthesis similar to that in aspirin-exacerbated respiratory disease, completely blocked the physiologic response to subsequent lysine-aspirin inhalation challenges, as well as increases in levels of IL-33, type 2 cytokines, and biochemical markers of mast cell and platelet activation. CONCLUSION The conversion of LTC4 to LTD4 may limit the duration and extent of potentially deleterious signaling through CysLT2R, and it may contribute to the therapeutic properties of desensitization to aspirin in aspirin-exacerbated respiratory disease.
Collapse
|
23
|
Lee Y, Park Y, Kim C, Lee E, Lee HY, Woo SD, You SC, Park RW, Park HS. Longitudinal Outcomes of Severe Asthma: Real-World Evidence of Multidimensional Analyses. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 9:1285-1294.e6. [PMID: 33049391 DOI: 10.1016/j.jaip.2020.09.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND There have been few studies assessing long-term outcomes of asthma based on regular follow-up data. OBJECTIVE We aimed to demonstrate clinical outcomes of asthma by multidimensional analyses of a long-term real-world database and a prediction model of severe asthma using machine learning. METHODS The database included 567 severe and 1337 nonsevere adult asthmatics, who had been monitored during a follow-up of up to 10 years. We evaluated longitudinal changes in eosinophilic inflammation, lung function, and the annual number of asthma exacerbations (AEs) using a linear mixed effects model. Least absolute shrinkage and selection operator logistic regression was used to develop a prediction model for severe asthma. Model performance was evaluated and validated. RESULTS Severe asthmatics had higher blood eosinophil (P = .02) and neutrophil (P < .001) counts at baseline than nonsevere asthmatics; blood eosinophil counts showed significantly slower declines in severe asthmatics than nonsevere asthmatics throughout the follow-up (P = .009). Severe asthmatics had a lower level of forced expiratory volume in 1 second (P < .001), which declined faster than nonsevere asthmatics (P = .033). Severe asthmatics showed a higher annual number of severe AEs than nonsevere asthmatics. The prediction model for severe asthma consisted of 17 variables, including novel biomarkers. CONCLUSIONS Severe asthma is a distinct phenotype of asthma with persistent eosinophilia, progressive lung function decline, and frequent severe AEs even on regular asthma medication. We suggest a useful prediction model of severe asthma for research and clinical purposes.
Collapse
Affiliation(s)
- Youngsoo Lee
- Department of Allergy & Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Youjin Park
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Chungsoo Kim
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Eunyoung Lee
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea; Office of Biostatistics, Medical Research Collaboration Center, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Korea
| | - Hyun Young Lee
- Department of Statistics, Clinical Trial Center, Ajou University Medical Center, Suwon, Korea
| | - Seong-Dae Woo
- Department of Allergy & Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Seng Chan You
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
| | - Rae Woong Park
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea; Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy & Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
24
|
Korde A, Ahangari F, Haslip M, Zhang X, Liu Q, Cohn L, Gomez JL, Chupp G, Pober JS, Gonzalez A, Takyar SS. An endothelial microRNA-1-regulated network controls eosinophil trafficking in asthma and chronic rhinosinusitis. J Allergy Clin Immunol 2020; 145:550-562. [PMID: 32035607 DOI: 10.1016/j.jaci.2019.10.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/25/2019] [Accepted: 10/16/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Airway eosinophilia is a prominent feature of asthma and chronic rhinosinusitis (CRS), and the endothelium plays a key role in eosinophil trafficking. To date, microRNA-1 (miR-1) is the only microRNA known to be regulated in the lung endothelium in asthma models. OBJECTIVE We sought to determine the role of endothelial miR-1 in allergic airway inflammation. METHODS We measured microRNA and mRNA expression using quantitative RT-PCR. We used ovalbumin and house dust mite models of asthma. Endothelium-specific overexpression of miR-1 was achieved through lentiviral vector delivery or induction of a transgene. Tissue eosinophilia was quantified by using Congo red and anti-eosinophil peroxidase staining. We measured eosinophil binding with a Sykes-Moore adhesion chamber. Target recruitment to RNA-induced silencing complex was assessed by using anti-Argonaute2 RNA immunoprecipitation. Surface P-selectin levels were measured by using flow cytometry. RESULTS Serum miR-1 levels had inverse correlations with sputum eosinophilia, airway obstruction, and number of hospitalizations in asthmatic patients and sinonasal tissue eosinophilia in patients with CRS. IL-13 stimulation decreased miR-1 levels in human lung endothelium. Endothelium-specific overexpression of miR-1 reduced airway eosinophilia and asthma phenotypes in murine models and inhibited IL-13-induced eosinophil binding to endothelial cells. miR-1 recruited P-selectin, thymic stromal lymphopoietin, eotaxin-3, and thrombopoietin receptor to the RNA-induced silencing complex; downregulated these genes in the lung endothelium; and reduced surface P-selectin levels in IL-13-stimulated endothelial cells. In our asthma and CRS cohorts, miR-1 levels correlated inversely with its target genes. CONCLUSION Endothelial miR-1 regulates eosinophil trafficking in the setting of allergic airway inflammation. miR-1 has therapeutic potential in asthmatic patients and patients with CRS.
Collapse
Affiliation(s)
- Asawari Korde
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Farida Ahangari
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Maria Haslip
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn; Yale School of Nursing, Orange, Conn
| | - Xuchen Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Conn
| | - Qing Liu
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Lauren Cohn
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Jose L Gomez
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Geoffrey Chupp
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Jordan S Pober
- Department of Immunobiology, Yale School of Medicine, New Haven, Conn
| | | | - Shervin S Takyar
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn.
| |
Collapse
|
25
|
Johansson MW, Grill BM, Barretto KT, Favour MC, Schira HM, Swanson CM, Lee KE, Sorkness RL, Mosher DF, Denlinger LC, Jarjour NN. Plasma P-Selectin Is Inversely Associated with Lung Function and Corticosteroid Responsiveness in Asthma. Int Arch Allergy Immunol 2020; 181:879-887. [PMID: 32777786 DOI: 10.1159/000509600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Severe asthma has multiple phenotypes for which biomarkers are still being defined. Plasma P-selectin reports endothelial and/or platelet activation. OBJECTIVE To determine if P-selectin is associated with features of asthma in a longitudinal study. METHODS Plasmas from 70 adult patients enrolled in the Severe Asthma Research Program (SARP) III at the University of Wisconsin-Madison were analyzed for concentration of P-selectin at several points over the course of 3 years, namely, at baseline (BPS), after intramuscular triamcinolone acetonide (TA) injection, and at 36 months after baseline. Thirty-four participants also came in during acute exacerbation and 6 weeks after exacerbation. RESULTS BPS correlated inversely with forced expiratory volume in 1 s (FEV1) and with residual volume/total lung capacity, an indicator of air trapping. BPS was inversely associated with FEV1 change after TA, by regression analysis. FEV1 did not change significantly after TA if BPS was above the median, whereas patients with BPS below the median had significantly increased FEV1 after TA. BPS was higher in and predicted assignment to SARP phenotype cluster 5 ("severe fixed-airflow asthma"). P-selectin was modestly but significantly increased at exacerbation but returned to baseline within 3 years. CONCLUSIONS High BPS is associated with airway obstruction, air trapping, the "severe fixed-airflow" cluster, and lack of FEV1 improvement in response to TA injection. P-selectin concentration, which is a stable trait with only modest elevation during exacerbation, may be a useful biomarker for a severe asthma pheno- or endotype characterized by low pulmonary function and lack of corticosteroid responsiveness.
Collapse
Affiliation(s)
- Mats W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA,
| | - Brandon M Grill
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Karina T Barretto
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Molly C Favour
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Hazel M Schira
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Calvin M Swanson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Kristine E Lee
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA
| | - Ronald L Sorkness
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Deane F Mosher
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA.,Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Loren C Denlinger
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
26
|
Kim S, Jung H, Kim M, Moon J, Ban G, Kim SJ, Yoo H, Park H. Ceramide/sphingosine-1-phosphate imbalance is associated with distinct inflammatory phenotypes of uncontrolled asthma. Allergy 2020; 75:1991-2004. [PMID: 32072647 DOI: 10.1111/all.14236] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Asthma is associated with inflammatory dysregulation, but the underlying metabolic signatures are unclear. This study aimed to classify asthma inflammatory phenotypes based on cellular and metabolic features. METHODS To determine cellular and metabolic profiles, we assessed inflammatory cell markers using flow cytometry, sphingolipid (SL) metabolites using LC-MS/MS, and serum cytokines using ELISA. Targeted gene polymorphisms were determined to identify genetic predispositions related to the asthma inflammatory phenotype. RESULTS In total, 137 patients with asthma and 20 healthy controls (HCs) were enrolled. Distinct cellular and metabolic profiles were found between them; patients with asthma showed increased expressions of inflammatory cell markers and higher levels of SL metabolites compared to HCs (P < .05 for all). Cellular markers (CD66+ neutrophils, platelet-adherent eosinophils) and SL metabolic markers (C16:0 and C24:0 ceramides) for uncontrolled asthma were also identified; higher levels were observed in uncontrolled asthma compared to controlled asthma (P < .05 for all). Asthmatics patients with higher levels of CD66+ neutrophils had lower FEV1(%), higher ACQ (but lower AQLO) scores, and higher sphingosine and C16:0 ceramide levels compared to those with low levels of CD66+ neutrophils. Asthmatics patients with higher levels of platelet-adherent eosinophils had higher S1P levels compared to those with lower levels of platelet-adherent eosinophils. Patients carrying TT genotype of ORMDL3 had more CD66+ neutrophils; those with AG/ GG genotypes of SGMS1 exhibited higher platelet-adherent eosinophils. CONCLUSION Patients with uncontrolled asthma possess distinct inflammatory phenotypes including increased CD66+ neutrophils and platelet-adherent eosinophils, with an imbalanced ceramide/S1P rheostat, potentially involving ORMDL3 and SGMS1 gene polymorphisms. Ceramide/S1P synthesis could be targeted to control airway inflammation.
Collapse
Affiliation(s)
- Seung‐Hyun Kim
- Translational Research Laboratory for Inflammatory Disease Clinical Trial Center Ajou University Medical Center Suwon South Korea
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Hae‐Won Jung
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Minji Kim
- Translational Research Laboratory for Inflammatory Disease Clinical Trial Center Ajou University Medical Center Suwon South Korea
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Ji‐Young Moon
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Ga‐Young Ban
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
- Department of Pulmonary, Allergy, and Critical Care Medicine Kangdong Sacred Heart HospitalHallym University College of Medicine Institute for Life Sciences Seoul South Korea
| | - Su Jung Kim
- Asan Institute for Life Sciences Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Hyun‐Ju Yoo
- Asan Institute for Life Sciences Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Hae‐Sim Park
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| |
Collapse
|
27
|
Margraf A, Zarbock A. Platelets in Inflammation and Resolution. THE JOURNAL OF IMMUNOLOGY 2019; 203:2357-2367. [DOI: 10.4049/jimmunol.1900899] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/30/2019] [Indexed: 12/22/2022]
|
28
|
Youngblood BA, Brock EC, Leung J, Falahati R, Bochner BS, Rasmussen HS, Peterson K, Bebbington C, Tomasevic N. Siglec-8 antibody reduces eosinophils and mast cells in a transgenic mouse model of eosinophilic gastroenteritis. JCI Insight 2019; 4:126219. [PMID: 31465299 DOI: 10.1172/jci.insight.126219] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 08/23/2019] [Indexed: 01/18/2023] Open
Abstract
Aberrant accumulation and activation of eosinophils and potentially mast cells (MCs) contribute to the pathogenesis of eosinophilic gastrointestinal diseases (EGIDs), including eosinophilic esophagitis (EoE), gastritis (EG), and gastroenteritis (EGE). Current treatment options, such as diet restriction and corticosteroids, have limited efficacy and are often inappropriate for chronic use. One promising new approach is to deplete eosinophils and inhibit MCs with a monoclonal antibody (mAb) against sialic acid-binding immunoglobulin-like lectin 8 (Siglec-8), an inhibitory receptor selectively expressed on MCs and eosinophils. Here, we characterize MCs and eosinophils from human EG and EoE biopsies using flow cytometry and evaluate the effects of an anti-Siglec-8 mAb using a potentially novel Siglec-8-transgenic mouse model in which EG/EGE was induced by ovalbumin sensitization and intragastric challenge. MCs and eosinophils were significantly increased and activated in human EG and EoE biopsies compared with healthy controls. Similar observations were made in EG/EGE mice. In Siglec-8-transgenic mice, anti-Siglec-8 mAb administration significantly reduced eosinophils and MCs in the stomach, small intestine, and mesenteric lymph nodes and decreased levels of inflammatory mediators. In summary, these findings suggest a role for both MCs and eosinophils in EGID pathogenesis and support the evaluation of anti-Siglec-8 as a therapeutic approach that targets both eosinophils and MCs.
Collapse
Affiliation(s)
| | | | - John Leung
- Allakos, Inc., Redwood City, California, USA
| | | | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Kathryn Peterson
- Division of Gastroenterology, Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | | | | |
Collapse
|
29
|
The Enhanced Adhesion of Eosinophils Is Associated with Their Prolonged Viability and Pro-Proliferative Effect in Asthma. J Clin Med 2019; 8:jcm8091274. [PMID: 31443410 PMCID: PMC6780628 DOI: 10.3390/jcm8091274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/24/2022] Open
Abstract
Before eosinophils migrate into the bronchial lumen, they promote airway structural changes after contact with pulmonary cells and extracellular matrix components. We aimed to investigate the impact of eosinophil adhesion to their viability and pro-proliferative effect on airway smooth muscle (ASM) cells and pulmonary fibroblasts during different asthma phenotypes. A total of 39 individuals were included: 14 steroid-free non-severe allergic asthma (AA) patients, 10 severe non-allergic eosinophilic asthma (SNEA) patients, and 15 healthy control subjects (HS). For AA patients and HS groups, a bronchial allergen challenge with Dermatophagoides pteronysinnus was performed. Individual combined cells cultures were prepared between isolated peripheral blood eosinophils and ASM cells or pulmonary fibroblasts. Eosinophil adhesion was measured by evaluating their peroxidase activity, cell viability was performed by annexin V and propidium iodide staining, and proliferation by Alamar blue assay. We found that increased adhesion of eosinophils was associated with prolonged viability (p < 0.05) and an enhanced pro-proliferative effect on ASM cells and pulmonary fibroblasts in asthma (p < 0.05). However, eosinophils from SNEA patients demonstrated higher viability and inhibition of pulmonary structural cell apoptosis, compared to the AA group (p < 0.05), while their adhesive and pro-proliferative properties were similar. Finally, in the AA group, in vivo allergen-activated eosinophils demonstrated a higher adhesion, viability, and pro-proliferative effect on pulmonary structural cells compared to non-activated eosinophils (p < 0.05).
Collapse
|
30
|
Liu T, Barrett NA, Kanaoka Y, Buchheit K, Laidlaw TM, Garofalo D, Lai J, Katz HR, Feng C, Boyce JA. Cysteinyl leukotriene receptor 2 drives lung immunopathology through a platelet and high mobility box 1-dependent mechanism. Mucosal Immunol 2019; 12:679-690. [PMID: 30664709 PMCID: PMC6462243 DOI: 10.1038/s41385-019-0134-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/14/2018] [Accepted: 01/08/2019] [Indexed: 02/04/2023]
Abstract
Cysteinyl leukotrienes (cysLTs) facilitate eosinophilic mucosal type 2 immunopathology, especially in aspirin-exacerbated respiratory disease (AERD), by incompletely understood mechanisms. We now demonstrate that platelets, activated through the type 2 cysLT receptor (CysLT2R), cause IL-33-dependent immunopathology through a rapidly inducible mechanism requiring the actions of high mobility box 1 (HMGB1) and the receptor for advanced glycation end products (RAGE). Leukotriene C4 (LTC4) induces surface HMGB1 expression by mouse platelets in a CysLT2R-dependent manner. Blockade of RAGE and neutralization of HMGB1 prevent LTC4-induced platelet activation. Challenges of AERD-like Ptges-/- mice with inhaled lysine aspirin (Lys-ASA) elicit LTC4 synthesis and cause rapid intrapulmonary recruitment of platelets with adherent granulocytes, along with platelet- and CysLT2R-mediated increases in lung IL-33, IL-5, IL-13, and bronchoalveolar lavage fluid HMGB1. The intrapulmonary administration of exogenous LTC4 mimics these effects. Platelet depletion, HMGB1 neutralization, and pharmacologic blockade of RAGE eliminate all manifestations of Lys-ASA challenges, including increase in IL-33, mast cell activation, and changes in airway resistance. Thus, CysLT2R signaling on platelets prominently utilizes RAGE/HMGB1 as a link to downstream type 2 respiratory immunopathology and IL-33-dependent mast cell activation typical of AERD. Antagonists of HMGB1 or RAGE may be useful to treat AERD and other disorders associated with type 2 immunopathology.
Collapse
Affiliation(s)
- Tao Liu
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital; Boston, MA,Jeff and Penny Vinik Center for Allergic Disease Research, Boston, MA
| | - Nora A. Barrett
- Department of Medicine, Harvard Medical School; Boston, MA,Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital; Boston, MA,Jeff and Penny Vinik Center for Allergic Disease Research, Boston, MA
| | - Yoshihide Kanaoka
- Department of Medicine, Harvard Medical School; Boston, MA,Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital; Boston, MA,Jeff and Penny Vinik Center for Allergic Disease Research, Boston, MA
| | - Kathleen Buchheit
- Department of Medicine, Harvard Medical School; Boston, MA,Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital; Boston, MA,Jeff and Penny Vinik Center for Allergic Disease Research, Boston, MA
| | - Tanya M. Laidlaw
- Department of Medicine, Harvard Medical School; Boston, MA,Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital; Boston, MA,Jeff and Penny Vinik Center for Allergic Disease Research, Boston, MA
| | - Denise Garofalo
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital; Boston, MA,Jeff and Penny Vinik Center for Allergic Disease Research, Boston, MA
| | - Juying Lai
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital; Boston, MA,Jeff and Penny Vinik Center for Allergic Disease Research, Boston, MA
| | - Howard R. Katz
- Department of Medicine, Harvard Medical School; Boston, MA,Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital; Boston, MA,Jeff and Penny Vinik Center for Allergic Disease Research, Boston, MA
| | - Chunli Feng
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital; Boston, MA,Jeff and Penny Vinik Center for Allergic Disease Research, Boston, MA
| | - Joshua A. Boyce
- Department of Medicine, Harvard Medical School; Boston, MA,Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital; Boston, MA,Jeff and Penny Vinik Center for Allergic Disease Research, Boston, MA
| |
Collapse
|
31
|
Amison RT, Cleary SJ, Riffo-Vasquez Y, Bajwa M, Page CP, Pitchford SC. Platelets Play a Central Role in Sensitization to Allergen. Am J Respir Cell Mol Biol 2019; 59:96-103. [PMID: 29365287 DOI: 10.1165/rcmb.2017-0401oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Platelet activation occurs in patients with allergic inflammation, and platelets can be activated directly by allergen via an IgE-dependent process. Platelets have been shown to activate APCs such as CD11c+ dendritic cells in vitro. Although CD11c+ dendritic cells are a requisite for allergen sensitization, the role of platelets in this process is unknown. In this study, we investigated whether platelets were necessary for allergen sensitization. Balb/c mice sensitized to ovalbumin were exposed to subsequent aerosolized allergen (ovalbumin challenge). We analyzed lung CD11c+ cell activation, colocalization with platelets, and some other indices of inflammation. The role of platelets at the time of allergen sensitization was assessed through platelet depletion experiments restricted to the period of sensitization. Platelets colocalized with airway CD11c+ cells, and this association increased after allergen sensitization as well as after subsequent allergen exposure. Temporary platelet depletion (>95%) at the time of allergen sensitization led to a suppression of IgE and IL-4 synthesis and to a decrease in the pulmonary recruitment of eosinophils, macrophages, and lymphocytes after subsequent allergen exposure. Furthermore, in mice previously depleted of platelets at the time of sensitization, the recovered platelet population was shown to have reduced expression of FcεRI. Pulmonary CD11c+ cell recruitment was suppressed in these mice after allergen challenge, suggesting that the migration of CD11c+ cells in vivo may be dependent on direct platelet recognition of allergen. We conclude that platelets are necessary for efficient host sensitization to allergen. This propagates the subsequent inflammatory response during secondary allergen exposure and increases platelet association with airway CD11c+ cells.
Collapse
Affiliation(s)
- Richard T Amison
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Simon J Cleary
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Yanira Riffo-Vasquez
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Maidda Bajwa
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| |
Collapse
|
32
|
Trinh HKT, Nguyen TVT, Choi Y, Park HS, Shin YS. The synergistic effects of clopidogrel with montelukast may be beneficial for asthma treatment. J Cell Mol Med 2019; 23:3441-3450. [PMID: 30905080 PMCID: PMC6484307 DOI: 10.1111/jcmm.14239] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022] Open
Abstract
Platelets modulate asthma pathogenesis by forming the platelet‐eosinophil aggregation (PEA), which facilitates the activation of eosinophils. Platelets exhibit the purinergic receptor (P2Y12R), which responds to cysteinyl leukotriene E4 (LTE4). We have suggested that the combination of an antiplatelet drug (clopidogrel, [Clo]) and montelukast (Mon) would synergistically suppress asthma. BALB/c mice were intraperitoneally sensitized with ovalbumin (OVA) on days 0 and 14 and subsequently challenged on days 28‐30 and 42‐44. Mice were administered with Clo (10 mg/kg), Mon (10 mg/kg) or both drugs (Clo/Mon) orally 30 minutes before the OVA (1%) challenge on days 42‐44. Mice were assayed for airway hyper‐responsiveness (AHR) to methacholine and airway inflammation. Clopidogrel and montelukast attenuated the increased AHR; the combined treatment was more effective than a single treatment for total and eosinophil counts (all P < 0.05). Levels of interleukin (IL)‐4, IL‐5, IL‐13, platelet factor 4, eosinophil peroxidase and LTE4 increased in the bronchoalveolar lavage fluid of asthmatic mice, but these levels decreased in mice treated with Clo/Mon (all P < 0.05). Goblet cell hyperplasia decreased in response to Clo/Mon. Mouse platelets and eosinophils were isolated and co‐cultured for an in vitro assay with 10 µmol/L adenosine diphosphate (ADP), LTE4 (200 nmol/L), Mon (1 µmol/L), Clo (1 µmol/L) and Clo/Mon (1 µmol/L). Flow cytometry revealed that the increased formation of the PEA (%) was fully mediated by ADP and partly mediated by LTE4. Clo/Mon reduced ADP‐induced PEA formation and P‐selectin expression (P < 0.05). In conclusion, Clo/Mon synergistically relieved asthma by inhibiting ADP‐mediated PEA formation.
Collapse
Affiliation(s)
- Hoang Kim Tu Trinh
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Thuy Van Thao Nguyen
- Department of Pediatrics, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Science, Ajou University School of Medicine, Suwon, South Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
33
|
Loguinova M, Pinegina N, Kogan V, Vagida M, Arakelyan A, Shpektor A, Margolis L, Vasilieva E. Monocytes of Different Subsets in Complexes with Platelets in Patients with Myocardial Infarction. Thromb Haemost 2018; 118:1969-1981. [PMID: 30300910 DOI: 10.1055/s-0038-1673342] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Acute myocardial infarction (AMI) is associated with activation of various cells, including platelets that form monocyte-platelet complexes (MPCs). Here, we analysed MPC in vivo and in vitro and investigated the abilities of different monocyte subclasses to form MPC, the characteristics of the cells involved in MPC formation and MPC changes in AMI. We identified MPC by co-staining for platelet antigen CD41a and monocyte antigens CD14 and CD16. Platelet activation was evaluated from expression of phosphatidylserine as revealed by annexin V. Our results confirm published data and provide new information regarding the patterns of MPC in AMI patients. We found that the patterns of platelet aggregation with monocytes were different in AMI patients and controls: (1) in AMI patients, MPC formed by intermediate monocytes carry more platelets whereas in healthy controls more platelets aggregated with classical monocytes; (2) the numbers of MPC in AMI patients, being already higher than in controls, were further increased if these patients suffered various in-hospital complications; (3) on the basis of the CD41a fluorescence of the antibody-stained MPC, some of the aggregates seem to consist of monocytes and platelet-derived extracellular vesicles (EVs); (4) aggregation of monocytes with platelet EV occurred in in vitro experiments; and (5) these experiments demonstrated that monocytes from AMI patients aggregate with both platelets and platelet EVs more efficiently than do monocytes from controls. MPC in AMI patients may play an important role in this pathology.
Collapse
Affiliation(s)
- Marina Loguinova
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Natalia Pinegina
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Valeria Kogan
- Ariel University, Institute for Translational Research, Ariel, Israel
| | - Murad Vagida
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Anush Arakelyan
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States
| | - Alexander Shpektor
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Leonid Margolis
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States
| | - Elena Vasilieva
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| |
Collapse
|
34
|
Johansson MW, Kelly EA, Nguyen CL, Jarjour NN, Bochner BS. Characterization of Siglec-8 Expression on Lavage Cells after Segmental Lung Allergen Challenge. Int Arch Allergy Immunol 2018; 177:16-28. [PMID: 29879704 DOI: 10.1159/000488951] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/03/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Siglec-8 is present at a high level on human blood eosinophils and low level on blood basophils. Engagement of Siglec-8 on blood eosinophils causes its internalization and results in death. Siglec-8 is a potential therapeutic target in eosinophilic asthma. OBJECTIVES The aim of this study was to determine Siglec-8 levels on eosinophils and basophils recruited during lung inflammation. METHOD We analyzed surface Siglec-8 by flow cytometry on cells obtained by bronchoalveolar lavage (BAL) 48 h after segmental lung allergen challenge of human subjects with mild allergic asthma and used confocal microscopy to compare Siglec-8 distribution on BAL and blood eosinophils. RESULTS Like their blood counterparts, BAL eosinophils had high unimodal surface Siglec-8, while BAL basophils had lower but detectable surface Siglec-8. BAL macrophages, monocytes, neutrophils, and plasmacytoid dendritic cells did not express surface Siglec-8. Microscopy of freshly isolated blood eosinophils demonstrated homogeneous Siglec-8 distribution over the cell surface. Upon incubation with IL-5, Siglec-8 on the surface of eosinophils became localized in patches both at the nucleopod tip and at the opposite cell pole. BAL eosinophils also had a patchy Siglec-8 distribution. CONCLUSIONS We conclude that 48 h after segmental allergen challenge, overall levels of Siglec-8 expression on airway eosinophils resemble those on blood eosinophils, but with a patchier distribution, a pattern consistent with activation. Thus, therapeutic targeting of Siglec-8 has the potential to impact blood as well as lung eosinophils, which may be associated with an improved outcome in eosinophilic lung diseases.
Collapse
Affiliation(s)
- Mats W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Elizabeth A Kelly
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Christopher L Nguyen
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Nizar N Jarjour
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
35
|
Cardenas EI, Breaux K, Da Q, Flores JR, Ramos MA, Tuvim MJ, Burns AR, Rumbaut RE, Adachi R. Platelet Munc13-4 regulates hemostasis, thrombosis and airway inflammation. Haematologica 2018; 103:1235-1244. [PMID: 29674495 PMCID: PMC6029531 DOI: 10.3324/haematol.2017.185637] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/12/2018] [Indexed: 01/15/2023] Open
Abstract
Platelet degranulation is crucial for hemostasis and may participate in inflammation. Exocytosis in platelets is mediated by SNARE proteins and should be controlled by Munc13 proteins. We found that platelets express Munc13-2 and -4. We assessed platelet granule exocytosis in Munc13-2 and -4 global and conditional knockout (KO) mice, and observed that deletion of Munc13-4 ablates dense granule release and indirectly impairs alpha granule exocytosis. We found no exocytic role for Munc13-2 in platelets, not even in the absence of Munc13-4. In vitro, Munc13-4-deficient platelets exhibited defective aggregation at low doses of collagen. In a flow chamber assay, we observed that Munc13-4 acted as a rate-limiting factor in the formation of thrombi. In vivo, we observed a dose-dependency between Munc13-4 expression in platelets and both venous bleeding time and time to arterial thrombosis. Finally, in a model of allergic airway inflammation, we found that platelet-specific Munc13-4 KO mice had a reduction in airway hyper-responsiveness and eosinophilic inflammation. Taken together, our results indicate that Munc13-4-dependent platelet dense granule release plays essential roles in hemostasis, thrombosis and allergic inflammation.
Collapse
Affiliation(s)
- Eduardo I Cardenas
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Monterrey, Mexico
| | - Keegan Breaux
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Da
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jose R Flores
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marco A Ramos
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Tuvim
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alan R Burns
- College of Optometry, University of Houston, TX, USA
| | - Rolando E Rumbaut
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Roberto Adachi
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
36
|
Shi G, Zhao JW, Sun XX, Ma JF, Wang P, He FC, Ming L. TIPE2 is negatively correlated with tissue factor and thrombospondin-1 expression in patients with bronchial asthma. Exp Ther Med 2018; 15:3449-3454. [PMID: 29545867 PMCID: PMC5840926 DOI: 10.3892/etm.2018.5870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 11/16/2017] [Indexed: 12/16/2022] Open
Abstract
The interaction between inflammatory processes and a hypercoagulant state may aggravate the severity of asthma and stimulate the airway remodeling of asthma. The aim of the current study was to evaluate the association between the negative inflammatory regulator tumor necrosis factor α induced protein-8 like-2 (TIPE2) and the coagulating substances tissue factor (TF) and thrombospondin-1 (TSP-1) in patients with bronchial asthma. Compared with healthy controls, TIPE2 expression was significantly downregulated, whereas TF expression was upregulated in the peripheral blood mononuclear cells (PBMCs) of patients with bronchial asthma. In addition, levels of TF and TSP-1 in the sera were up-regulated in patients with asthma compared with healthy controls. TIPE2 expression was negatively correlated with TF in the PBMCs and sera and was negatively correlated with TSP-1 levels in the sera of patients with bronchial asthma. The results of the current study indicated that anti-inflammatory TIPE2 levels are associated with levels of the coagulation substances TF and TSP-1. However, further studies are required to determine whether TIPE2 participates in the pathogenesis of asthma by interacting with the coagulation substances TF and TSP-1.
Collapse
Affiliation(s)
- Guang Shi
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, P.R. China
- Department of Laboratory Medicine of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jun-Wei Zhao
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, P.R. China
- Department of Laboratory Medicine of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiao-Xu Sun
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, P.R. China
| | - Jun-Fen Ma
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, P.R. China
- Department of Laboratory Medicine of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Pan Wang
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Fu-Cheng He
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, P.R. China
- Department of Laboratory Medicine of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liang Ming
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, P.R. China
- Department of Laboratory Medicine of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Correspondence to: Professor Liang Ming, Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, 1E Jianshe Road, Zhengzhou, Henan 450052, P.R. China, E-mail:
| |
Collapse
|
37
|
Vimalathas P, Farris A, Letner D, Deshpande V, Yajnik V, Shreffler W, Garber J. Integrin αM activation and upregulation on esophageal eosinophils and periostin-mediated eosinophil survival in eosinophilic esophagitis. Immunol Cell Biol 2018; 96:426-438. [PMID: 29424023 DOI: 10.1111/imcb.12018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 12/12/2022]
Abstract
Eosinophilic esophagitis (EoE) is an increasingly recognized allergic disease associated with dysphagia and esophageal fibrosis. We aimed to determine expression patterns of specific eosinophil integrins that promote eosinophilic infiltration of the esophageal epithelium, and to determine how key EoE-related cytokines influence eosinophil activation and survival. Esophageal and peripheral eosinophils were isolated from 20 adult subjects with EoE for immunophenotyping and integrin profiling using multicolor flow cytometry and immunohistochemistry. Expression signatures of eosinophil integrins were further assessed by immunohistochemistry using serial sections of esophageal biopsy specimens. Purified eosinophils were used to assess the effect of EoE-relevant cytokines and recombinant periostin on expression of known eosinophil integrins and eosinophil survival and activation. We found that resting eosinophils express high levels of the β2-pairing integrins αL and αM, and lower levels of α4, α6 and α4β7. The migration of peripheral eosinophils to the esophagus is characterized by the specific induction of αM, and a significant increase in the proportion of αM in high-activity conformation. Periostin, a secreted extracellular matrix protein that is significantly overexpressed in EoE, enhances eosinophil survival, and this effect is mediated by αM interaction. Integrin αM is a specific marker of activated tissue eosinophils in EoE, and promotes eosinophil survival through interactions with periostin. The ability of αMβ2 to mediate eosinophil tissue residency via periostin represents a key mechanism for disease development and a potential therapeutic target in EoE.
Collapse
Affiliation(s)
| | - Alexandra Farris
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Dorothea Letner
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Vijay Yajnik
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Wayne Shreffler
- Food Allergy Center, Division of Allergy & Immunology, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - John Garber
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Uwaezuoke SN, Ayuk AC, Eze JN. Severe bronchial asthma in children: a review of novel biomarkers used as predictors of the disease. J Asthma Allergy 2018; 11:11-18. [PMID: 29398922 PMCID: PMC5774744 DOI: 10.2147/jaa.s149577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Severe asthma or therapy-resistant asthma in children is a heterogeneous disease that affects all age-groups. Given its heterogeneity, precision in diagnosis and treatment has become imperative, in order to achieve better outcomes. If one is thus able to identify specific patient phenotypes and endotypes using the appropriate biomarkers, it will assist in providing the patient with more personalized and appropriate treatment. However, there appears to be a huge diagnostic gap in severe asthma, as there is no single test yet that accurately determines disease phenotype. In this paper, we review the published literature on some of these biomarkers and their possible role in bridging this diagnostic gap. We also highlight the cellular and molecular mechanisms involved in severe asthma, in order to show the basis for the novel biomarkers. Some markers useful for monitoring therapy and assessing airway remodeling in the disease are also discussed. A review of the literature was conducted with PubMed to gather baseline data on the subject. The literature search extended to articles published within the last 40 years. Although biomarkers specific to different severe asthma phenotypes have been identified, progress in their utility remains slow, because of several disease mechanisms, the variation of biomarkers at different levels of inflammation, changes in relying on one test over time (eg, from sputum eosinophilia to blood eosinophilia), and the degree of invasive tests required to collect biomarkers, which limits their applicability in clinical settings. In conclusion, several biomarkers remain useful in recognizing various asthma phenotypes. However, due to disease heterogeneity, identification and utilization of ideal and defined biomarkers in severe asthma are still inconclusive. The development of novel serum/sputum-based biomarker panels with enhanced sensitivity and specificity may lead to prompt diagnosis of the disease in the future.
Collapse
Affiliation(s)
- Samuel N Uwaezuoke
- Department of Pediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Nigeria
| | - Adaeze C Ayuk
- Department of Pediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Nigeria
| | - Joy N Eze
- Department of Pediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Nigeria
| |
Collapse
|
39
|
Chen Z, Yao X, Liu L, Guan J, Liu M, Li Z, Yang J, Huang S, Wu J, Tian F, Jing M. Blood coagulation evaluation of N -alkylated chitosan. Carbohydr Polym 2017; 173:259-268. [DOI: 10.1016/j.carbpol.2017.05.085] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/27/2017] [Accepted: 05/25/2017] [Indexed: 10/19/2022]
|
40
|
Shah SA, Page CP, Pitchford SC. Platelet-Eosinophil Interactions As a Potential Therapeutic Target in Allergic Inflammation and Asthma. Front Med (Lausanne) 2017; 4:129. [PMID: 28848732 PMCID: PMC5550710 DOI: 10.3389/fmed.2017.00129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/24/2017] [Indexed: 01/24/2023] Open
Abstract
The importance of platelet activation during hemostasis is well understood. An understanding of these mechanisms has led to the use of several classes of anti-platelet drugs to inhibit aggregation for the prevention of thrombi during cardiovascular disease. It is now also recognized that platelets can function very differently during inflammation, as part of their role in the innate immune response against pathogens. This dichotomy in platelet function occurs through distinct physiological processes and alternative signaling pathways compared to that of hemostasis (leading to platelet aggregation) and is manifested as increased rheological interactions with leukocytes, the ability to undergo chemotaxis, communication with antigen-presenting cells, and direct anti-pathogen responses. Mounting evidence suggests platelets are also critical in the pathogenesis of allergic diseases such as asthma, where they have been associated with antigen presentation, bronchoconstriction, bronchial hyperresponsiveness, airway inflammation, and airway remodeling in both clinical and experimental studies. In particular, platelets have been reported bound to eosinophils in the blood of patients with asthma and the incidence of these events increases after both spontaneous asthma attacks in a biphasic manner, or after allergen challenge in the clinic. Platelet depletion in animal models of allergic airway inflammation causes a profound reduction in eosinophil recruitment to the lung, suggesting that the association of platelets with eosinophils is indeed an important event during eosinophil activation. Furthermore, in cases of severe asthma, and in animal models of allergic airways inflammation, platelet–eosinophil complexes move into the lung through a platelet P-selectin-mediated, eosinophil β1-integrin activation-dependent process, while platelets increase adherence of eosinophils to the vascular endothelium in vitro, demonstrating a clear interaction between these cell types in allergic inflammatory diseases. This review will explore non-thrombotic platelet activation in the context of allergy and the association of platelets with eosinophils, to reveal how these phenomena may lead to the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Sajeel A Shah
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| |
Collapse
|
41
|
Tak T, van Groenendael R, Pickkers P, Koenderman L. Monocyte Subsets Are Differentially Lost from the Circulation during Acute Inflammation Induced by Human Experimental Endotoxemia. J Innate Immun 2017. [PMID: 28641299 DOI: 10.1159/000475665] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Three human monocyte subsets are recognized with different functions in the immune system: CD14++/CD16- classical monocytes (CM), CD14++/CD16+ intermediate monocytes (IM) and CD14+/CD16++ non-classical monocytes (NCM). Increased IM and NCM percentages have been reported under inflammatory conditions, yet little is known about monocyte subsets at the onset of inflammation. The human endotoxemia model is uniquely capable of studying the first phases of acute inflammation induced by intravenous injection of 2 ng/kg bodyweight lipopolysaccharide (LPS) into healthy volunteers. After that, monocyte subset counts, activation/differentiation status and chemokine levels were studied over 24 h. The numbers of all subsets were decreased by >95% after LPS injection. CM numbers recovered first (3- 6 h), followed by IM (6-8 h) and NCM numbers (8-24 h). Similarly, increased monocyte counts were observed first in CM (8 h), followed by IM and NCM (24 h). Monocytes did not display a clear activated phenotype (minor increase in CD11b and CD38 expression). Plasma levels of CCL2, CCL4 and CX3CL1 closely resembled the cell numbers of CM, IM and NCM, respectively. Our study provides critical insights into the earliest stages of acute inflammation and emphasizes the necessity to stain for different monocyte subsets when studying the role of monocytes in disease, as neither function nor kinetics of the subsets overlap.
Collapse
Affiliation(s)
- Tamar Tak
- Department of Respiratory Medicine and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
42
|
Johansson MW. Eosinophil Activation Status in Separate Compartments and Association with Asthma. Front Med (Lausanne) 2017; 4:75. [PMID: 28660189 PMCID: PMC5466952 DOI: 10.3389/fmed.2017.00075] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023] Open
Abstract
Asthma is frequently characterized by eosinophil-rich airway inflammation. Airway eosinophilia is associated with asthma exacerbations and likely plays a part in airway remodeling. Eosinophil recruitment from the bloodstream depends on circulating eosinophils becoming activated, which leads to eosinophil arrest on activated endothelium, extravasation, and continued movement through the bronchial tissue by interaction with the extracellular matrix (ECM). Circulating eosinophils can exist at different activation levels, which include non-activated or pre-activated (sensitized or “primed”). Further, the bloodstream may lack pre-activated cells, due to such eosinophils having arrested on endothelium or extravasated into tissue. Increased expression, and in some instances, decreased expression of cell-surface proteins, including CD44, CD45, CD45R0, CD48, CD137, neuropeptide S receptor, cytokine receptors, Fc receptors, and integrins (receptors mediating cell adhesion and migration by interacting with ligands on other cells or in the ECM), and activated states of integrins or Fc receptors on blood eosinophils have been reported to correlate with aspects of asthma. A subset of these proteins has been reported to respond to intervention, e.g., with anti-interleukin (IL)-5. How these surface proteins and the activation state of the eosinophil respond to other interventions, e.g., with anti-IL-4 receptor alpha or anti-IL-13, is unknown. Eosinophil surface proteins suggested to be biomarkers of activation, particularly integrins, and reports on correlations between eosinophil activation and aspects of asthma are described in this review. Intermediate activation of beta1 and beta2 integrins on circulating eosinophils correlates with decreased pulmonary function, airway inflammation, or airway lumen eosinophils in non-severe asthma. The correlation does not appear in severe asthma, likely due to a higher degree of extravasation of pre-activated eosinophils in more severe disease. Bronchoalveolar lavage (BAL) eosinophils have highly activated integrins and other changes in surface proteins compared to blood eosinophils. The activation state of eosinophils in lung tissue, although likely very important in asthma, is largely unknown. However, some recent articles, mainly on mice but partly on human cells, indicate that tissue eosinophils may have a surface phenotype(s) different from that of sputum or BAL eosinophils.
Collapse
Affiliation(s)
- Mats W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
43
|
Akgedik R, Yağız Y. Is Decreased Mean Platelet Volume in Allergic Airway Diseases Associated With Extent of the Inflammation Area? Am J Med Sci 2017; 354:33-38. [PMID: 28755730 DOI: 10.1016/j.amjms.2017.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/24/2017] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The aim of this study was to determine the relationship between mean platelet volume (MPV) level and the extent of airway inflammation in allergic airway diseases and in subgroups by comparison of inflammatory markers. MATERIALS AND METHODS A retrospective examination was made of 250 patients with allergic airway disease in the symptomatic phase, who had been newly diagnosed or who had abandoned treatment for at least 6 months. These patients were separated into 3 groups of asthma without allergic rhinitis (A - AR, n = 107), asthma with allergic rhinitis (A + AR, n = 83) and allergic rhinitis without asthma (AR - A, n = 60). RESULTS The MPV values of the study groups were found to be significantly lower than those of the control group (P < 0.001). MPV was determined to be negatively correlated with white blood cells, neutrophil count, platelet count and immunoglobulin E level in the study groups. The lowest MPV value was determined in the A + AR group (8.035 ± 1.05fL), which had the most extensive airway involvement, and the highest MPV value was determined in the AR - A group (8.109 ± 1.11fL) with the least airway involvement. MPV level sensitivity and the specificity of the best cutoff level were 74.5% and 40.8%, respectively. The cutoff level of 8.18fL for MPV level was found to have moderate sensitivity and low specificity for predicting pulmonary embolism. CONCLUSIONS The results of this study showed that MPV is lower in allergic airway diseases and a negative correlation was determined between MPV and inflammation markers but no statistically significant difference was determined between MPV and extent of the inflammation area.
Collapse
Affiliation(s)
- Recep Akgedik
- Deparment of Pulmonary Diseases, Ordu University Medical School, Ordu, Turkey.
| | - Yasin Yağız
- Department of Otorhinolaryngology-Head and Neck Surgery, Ordu University Medical School, Ordu, Turkey
| |
Collapse
|
44
|
Abstract
The role of platelets as inflammatory cells is now well established. Given the peculiar characteristics of the lung circulation, with a broad capillary bed, platelets are especially involved with the physiology of the lungs and play a key role in a number of inflammatory lung disorders. The platelet precursors, megakaryocytes, are detected in the lung microcirculation; moreover platelets with their endothelium-protective and vascular reparative activities contribute to the lung capillary blood barrier integrity. Given the function of the lungs as first wall against pathogen invasion, platelets participate in immune defence of the normal lung. On the other hand, platelets may turn into effectors of the inflammatory reaction of the lungs to allergens, to infectious agents, to chemical agents and may contribute strongly to the perpetuation of chronic inflammatory reactions, largely by their ability to interact with other inflammatory cells and the endothelium. In this chapter we provide an overview of the role of platelets in several inflammatory lung disorders discussing the pathophysiologic bases of platelet involvement in these conditions and the experimental and clinical evidence for a role of platelets in lung diseases.
Collapse
|
45
|
Chen Y, Zhou L, Yang Y. Effect of sublingual immunotherapy on platelet activity in children with allergic rhinitis. Braz J Otorhinolaryngol 2017; 83:190-194. [PMID: 27329923 PMCID: PMC9442741 DOI: 10.1016/j.bjorl.2016.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/23/2016] [Accepted: 03/02/2016] [Indexed: 01/13/2023] Open
Abstract
Introduction The role of platelet activation in allergic inflammation is receiving increasing attention. Sublingual immunotherapy for allergic rhinitis can modify the immunological process to an allergen, rather than simply treating symptoms. Objective The aim of this study was to explore the role of platelet activation during sublingual immunotherapy in children with allergic rhinitis. Methods Forty-two House Dust Mite – sensitized children with allergic rhinitis were enrolled and received House Dust Mite allergen extract for sublingual immunotherapy or placebo. Serum of different time points during treatment was collected and used for detection of Platelet Factor-4 and Beta-Thromboglobulin concentration by Enzyme-Linked Immuno Sorbent Assay. Results Our data showed decreased expression of Platelet Factor-4 and Beta-Thromboglobulin protein after one year's sublingual immunotherapy. In addition, the decrease of symptom scores and serum Platelet Factor-4 and Beta-Thromboglobulin protein concentrations was positively related. Conclusion During sublingual immunotherapy, platelet activation was inhibited significantly. Our results might indicate that inhibition of platelet activation within the systemic circulation is an important mechanism during sublingual immunotherapy.
Collapse
Affiliation(s)
- Yanqiu Chen
- Guangzhou Medical College, Guangzhou Women and Children's Medical Center, Department of Otolaryngology, Guangzhou, China
| | - Lifeng Zhou
- Guangzhou Medical College, Guangzhou Women and Children's Medical Center, Department of Otolaryngology, Guangzhou, China.
| | - Yan Yang
- Sun Yat-sen University (Northern Campus), School of Public Health, Department of Nutrition, Guangzhou, China.
| |
Collapse
|
46
|
Middleton EA, Weyrich AS, Zimmerman GA. Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases. Physiol Rev 2016; 96:1211-59. [PMID: 27489307 PMCID: PMC6345245 DOI: 10.1152/physrev.00038.2015] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Platelets are essential for physiological hemostasis and are central in pathological thrombosis. These are their traditional and best known activities in health and disease. In addition, however, platelets have specializations that broaden their functional repertoire considerably. These functional capabilities, some of which are recently discovered, include the ability to sense and respond to infectious and immune signals and to act as inflammatory effector cells. Human platelets and platelets from mice and other experimental animals can link the innate and adaptive limbs of the immune system and act across the immune continuum, often also linking immune and hemostatic functions. Traditional and newly recognized facets of the biology of platelets are relevant to defensive, physiological immune responses of the lungs and to inflammatory lung diseases. The emerging view of platelets as blood cells that are much more diverse and versatile than previously thought further predicts that additional features of the biology of platelets and of megakaryocytes, the precursors of platelets, will be discovered and that some of these will also influence pulmonary immune defenses and inflammatory injury.
Collapse
Affiliation(s)
- Elizabeth A Middleton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrew S Weyrich
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guy A Zimmerman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
47
|
Singh J, Shah R, Singh D. Inundation of asthma target research: Untangling asthma riddles. Pulm Pharmacol Ther 2016; 41:60-85. [PMID: 27667568 DOI: 10.1016/j.pupt.2016.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/11/2016] [Accepted: 09/20/2016] [Indexed: 12/31/2022]
Abstract
Asthma is an inveterate inflammatory disorder, delineated by the airway inflammation, bronchial hyperresponsiveness (BHR) and airway wall remodeling. Although, asthma is a vague term, and is recognized as heterogenous entity encompassing different phenotypes. Targeting single mediator or receptor did not prove much clinical significant, as asthma is complex disease involving myriad inflammatory mediators. Asthma may probably involve a large number of different types of molecular and cellular components interacting through complex pathophysiological pathways. This review covers the past, present, and future therapeutic approaches and pathophysiological mechanisms of asthma. Furthermore, review describe importance of targeting several mediators/modulators and receptor antagonists involved in the physiopathology of asthma. Novel targets for asthma research include Galectins, Immunological targets, K + Channels, Kinases and Transcription Factors, Toll-like receptors, Selectins and Transient receptor potential channels. But recent developments in asthma research are very promising, these include Bitter taste receptors (TAS2R) abated airway obstruction in mouse model of asthma and Calcium-sensing receptor obliterate inflammation and in bronchial hyperresponsiveness allergic asthma. All these progresses in asthma targets, and asthma phenotypes exploration are auspicious in untangling of asthma riddles.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Ramanpreet Shah
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
48
|
Wang Y, Zhu H, Tong J, Li Z. Ligustrazine improves blood circulation by suppressing Platelet activation in a rat model of allergic asthma. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 45:334-339. [PMID: 27362664 DOI: 10.1016/j.etap.2016.06.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/12/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Chuan-xiong (Ligusticum wallichii) is a traditional herbal medicine in Eastern Asia, but the effect of its active component ligustrazine remains unclear. We explored its effect and possible mechanism in a well-characterized rat model of allergic asthma. Ligustrazine suppressed bronchial hyper-responsiveness to methacholine, and suppressed lung inflammation in asthmatic rats. Ligustrazine exhibited potent immuno-modulatory and anti-inflammatory effects: it suppressed lymphocyte and eosinophil mobilization, and reduced cytokine IL-5 and IL-13 production significantly in lung tissues from asthmatic rats (P<0.05). Further histological examinations clearly demonstrated that ligustrazine improved blood circulation and ameliorated platelet activation, aggregation and adhesion, which induced sustained infiltration and activation of various inflammatory cells, including lymphocytes and eosinophils, followed by synthesis and release of a variety of pro-inflammatory mediators and cytokines. The present study suggests that ligustrazine is a potent agent for the treatment of allergic asthma due to its strong anti-inflammatory and immuno-modulatory properties.
Collapse
Affiliation(s)
- Yajuan Wang
- Anhui University of Chinese Medicine, No. 103 Meishan Road, Hefei 230012, Anhui, China
| | - Huizhi Zhu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, No. 218 Jixi Road, Hefei 230022, Anhui, China
| | - Jiabing Tong
- The First Affiliated Hospital of Anhui University of Chinese Medicine, No. 218 Jixi Road, Hefei 230022, Anhui, China
| | - Zegeng Li
- Anhui University of Chinese Medicine, No. 103 Meishan Road, Hefei 230012, Anhui, China.
| |
Collapse
|
49
|
Johansson MW, Evans MD, Crisafi GM, Holweg CTJ, Matthews JG, Jarjour NN. Serum periostin is associated with type 2 immunity in severe asthma. J Allergy Clin Immunol 2016; 137:1904-1907.e2. [PMID: 27061252 DOI: 10.1016/j.jaci.2015.12.1346] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 12/02/2015] [Accepted: 12/21/2015] [Indexed: 11/18/2022]
Affiliation(s)
- Mats W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wis
| | - Michael D Evans
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wis
| | - Gina M Crisafi
- Department of Medicine, University of Wisconsin, Madison, Wis
| | | | | | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin, Madison, Wis.
| |
Collapse
|
50
|
Wilkerson EM, Johansson MW, Hebert AS, Westphall MS, Mathur SK, Jarjour NN, Schwantes EA, Mosher DF, Coon JJ. The Peripheral Blood Eosinophil Proteome. J Proteome Res 2016; 15:1524-33. [PMID: 27005946 DOI: 10.1021/acs.jproteome.6b00006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A system-wide understanding of biological processes requires a comprehensive knowledge of the proteins in the biological system. The eosinophil is a type of granulocytic leukocyte specified early in hematopoietic differentiation that participates in barrier defense, innate immunity, and allergic disease. The proteome of the eosinophil is largely unannotated with under 500 proteins identified. We now report a map of the nonstimulated peripheral blood eosinophil proteome assembled using two-dimensional liquid chromatography coupled with high-resolution mass spectrometry. Our analysis yielded 100,892 unique peptides mapping to 7,086 protein groups representing 6,813 genes as well as 4,802 site-specific phosphorylation events. We account for the contribution of platelets that routinely contaminate purified eosinophils and report the variability in the eosinophil proteome among five individuals and proteomic changes accompanying acute activation of eosinophils by interleukin-5. Our deep coverage and quantitative analyses fill an important gap in the existing maps of the human proteome and will enable the strategic use of proteomics to study eosinophils in human diseases.
Collapse
Affiliation(s)
| | | | - Alexander S Hebert
- Genome Center of Wisconsin, University of Wisconsin , 425 Henry Mall, Madison, Wisconsin 53706, United States
| | - Michael S Westphall
- Genome Center of Wisconsin, University of Wisconsin , 425 Henry Mall, Madison, Wisconsin 53706, United States
| | - Sameer K Mathur
- Department of Medicine, University of Wisconsin , Madison, Wisconsin 53792, United States
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin , Madison, Wisconsin 53792, United States
| | - Elizabeth A Schwantes
- Department of Medicine, University of Wisconsin , Madison, Wisconsin 53792, United States
| | - Deane F Mosher
- Department of Medicine, University of Wisconsin , Madison, Wisconsin 53792, United States
| | - Joshua J Coon
- Genome Center of Wisconsin, University of Wisconsin , 425 Henry Mall, Madison, Wisconsin 53706, United States
| |
Collapse
|