1
|
Zhang S, Lin J. Association of circadian syndrome and lung health: A population-based cohort study. Respir Med 2025; 240:108031. [PMID: 40058667 DOI: 10.1016/j.rmed.2025.108031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/14/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Few studies have explored the association between circadian syndrome (CircS) and lung health. OBJECTIVE To assess the relationship between CircS and lung health. METHODS This prospective cohort study enrolled 6252 adults. Multivariable logistic and linear regression models were employed to examine the association between CircS and the prevalence of chronic lung disease, respiratory symptoms, and lung function, as appropriate. Receiver operating characteristic curve analysis was used to compare the predictive power of the number of metabolic syndrome (MetS) and CircS components for lung health. Kaplan-Meier survival and multiple Cox regression analyses were used to assess the relationship between CircS and all-cause mortality. The effects of CircS on health-related quality of life (HQL) and health care use were also evaluated. RESULTS Participants with CircS were significantly associated with a higher prevalence of asthma, chronic bronchitis, cough, wheeze, phlegm production, and exertional dyspnea. The number of CircS components demonstrated better predictive power for the prevalence of asthma, chronic bronchitis, emphysema, cough, wheeze, phlegm production, and exertional dyspnea than the number of MetS components. Higher numbers of CircS components were significantly associated with decreased forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC), worse HQL, and increased health care use. Longitudinally, participants with CircS exhibited a higher risk of all-cause mortality than those without CircS. CONCLUSIONS Our results support the claim of that CircS is a better predictor of lung health than the MetS in adults in the United States. Elevated CircS levels are associated with poorer lung function, increased health care use, worse HQL, and a higher risk of mortality.
Collapse
Affiliation(s)
- Shuwen Zhang
- Graduate School of Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100-029, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China
| | - Jiangtao Lin
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| |
Collapse
|
2
|
Xu X, Xu L, Lang Z, Sun G, Pan J, Li X, Bian Z, Wu X. Identification of potential susceptibility loci for non-small cell lung cancer through whole genome sequencing in circadian rhythm genes. Sci Rep 2025; 15:7825. [PMID: 40050692 PMCID: PMC11885630 DOI: 10.1038/s41598-025-92083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
Lung cancer is a malignant tumor with a high morbidity and mortality rate worldwide, causing an increasing disease burden. Of these, the most common type is non-small cell lung cancer (NSCLC), which accounts for 80-85% of all lung cancer cases. Genetic research is crucial for continuously discovering susceptibility genes related to lung cancer for in-depth study. The role of genetic predisposition in the development of NSCLC, particularly within circadian rhythm pathways known to govern various physiological processes, is increasingly acknowledged. Yet, the association between genetic variants of circadian rhythm-related genes and NSCLC susceptibility among Chinese populations is not fully understood. This study carried out a two-phase (discovery and validation stages) research design to identify genetic variants associated with NSCLC risk within the circadian rhythm pathway. We employed extensive whole-genome sequencing (WGS) for 1,104 NSCLC cases and 9,635 controls. FastGWA-GLMM was used for single-locus risk association analysis of NSCLC, and we screened candidate SNPs in the validation set that comprised 4,444 cases and 174,282 controls from the Biobank Japan Project (BBJ). Furthermore, GCTA-COJO conditional analysis was utilized to confirm SNPs related to NSCLC risk. Finally, potential genetic variations that may regulate gene expression were explored in GTEx and QTLbase. RNA sequencing data were utilized for transcriptomic verification. Our study identified eight candidate SNPs associated with NSCLC susceptibility within the circadian rhythm pathway that met the requirement with P < 0.05 in both the discovery and validation populations. After conditional analysis, five of these SNPs remained. The A allele of CUL1 rs78524436 (ORmeta = 1.18, 95%CI: 1.09-1.29, Pmeta = 7.99e-5) and the A allele of TEF rs9611588 (ORmeta = 1.06, 95%CI: 1.02-1.10, Pmeta = 1.28e-3) were associated with an increased risk of NSCLC. The A allele of FBXL21 rs2069868 (ORmeta = 0.86, 95%CI: 0.80-0.96, Pmeta = 4.78e-4), the T allele of CSNK1D rs147316973 (ORmeta = 0.76, 95%CI: 0.65-0.88, Pmeta = 5.93e-4), and the A allele of RORA rs1589701 (ORmeta = 0.94, 95%CI: 0.91-0.98, Pmeta = 3.40e-3) were associated with a lower risk of NSCLC, separately. The eQTL results revealed an association between RORA rs1589701 and TEF rs9611588 with the expression levels of RORA and TEF, respectively. Transcriptome data indicated that RORA and TEF showed lower expression levels in tumor tissues compared to normal tissues (P < 0.001). Moreover, poorer survival was observed in patients with lower RORA and TEF expressions (log-rank P < 0.05). Our findings spotlight potential susceptibility loci within circadian rhythm pathway genes that modulate NSCLC carcinogenesis, which enriches the understanding of the genetic susceptibility of NSCLC in the Chinese population and provides a more solid basis for exploring the biological mechanism of circadian rhythm genes in NSCLC.
Collapse
Affiliation(s)
- Xiaohang Xu
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, 310058, China
| | - Luopiao Xu
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, 310058, China
| | - Zeyong Lang
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Gege Sun
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Junlong Pan
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xue Li
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, 310058, China
| | - Zilong Bian
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xifeng Wu
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, 310058, China.
- National Institute for Data Science in Health and Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- School of Medicine and Health Science, George Washington University, Washington, DC, USA.
| |
Collapse
|
3
|
Nematisouldaragh D, Kirshenbaum E, Uzonna M, Kirshenbaum L, Rabinovich-Nikitin I. The Role of Retinoic-Acid-Related Orphan Receptor (RORs) in Cellular Homeostasis. Int J Mol Sci 2024; 25:11340. [PMID: 39518891 PMCID: PMC11545807 DOI: 10.3390/ijms252111340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Retinoic-acid-related orphan receptors (RORs) are transcription factors belonging to the nuclear receptor subfamily consisting of RORα, RORβ, and RORγ. By binding to the ROR response elements (ROREs) on target gene promoters, RORs regulate a wide variety of cellular processes, including autophagy, mitophagy, oxidative stress, and inflammation. The regulatory roles of RORs are observed in cardiac cells, hepatocytes, pulmonary epithelial cells, renal cells, immune cells, and cancer cells. A growing body of clinical and experimental evidence suggests that ROR expression levels are markedly reduced under different pathological and stress conditions, suggesting that RORs may play a critical role in the pathogenesis of a variety of disease states, including myocardial infarction, immune disorders, cancer, and metabolic syndrome. Reductions in RORs are also associated with inhibition of autophagy, increased reactive oxygen species (ROS), and increased cell death, underscoring the importance of RORs in the regulation of these processes. Herein, we highlight the relationship between RORs and homeostatic processes that influence cell viability. Understanding how these intricate processes are governed at the cellular level is of high scientific and clinical importance to develop new therapeutic strategies that modulate ROR expression and disease progression.
Collapse
Affiliation(s)
- Darya Nematisouldaragh
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Eryn Kirshenbaum
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Michael Uzonna
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Lorrie Kirshenbaum
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, MB R2H 2A6, Canada
| | - Inna Rabinovich-Nikitin
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
4
|
Castillejos-López M, Romero Y, Varela-Ordoñez A, Flores-Soto E, Romero-Martinez BS, Velázquez-Cruz R, Vázquez-Pérez JA, Ruiz V, Gomez-Verjan JC, Rivero-Segura NA, Camarena Á, Torres-Soria AK, Gonzalez-Avila G, Sommer B, Solís-Chagoyán H, Jaimez R, Torres-Espíndola LM, Aquino-Gálvez A. Hypoxia Induces Alterations in the Circadian Rhythm in Patients with Chronic Respiratory Diseases. Cells 2023; 12:2724. [PMID: 38067152 PMCID: PMC10706372 DOI: 10.3390/cells12232724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The function of the circadian cycle is to determine the natural 24 h biological rhythm, which includes physiological, metabolic, and hormonal changes that occur daily in the body. This cycle is controlled by an internal biological clock that is present in the body's tissues and helps regulate various processes such as sleeping, eating, and others. Interestingly, animal models have provided enough evidence to assume that the alteration in the circadian system leads to the appearance of numerous diseases. Alterations in breathing patterns in lung diseases can modify oxygenation and the circadian cycles; however, the response mechanisms to hypoxia and their relationship with the clock genes are not fully understood. Hypoxia is a condition in which the lack of adequate oxygenation promotes adaptation mechanisms and is related to several genes that regulate the circadian cycles, the latter because hypoxia alters the production of melatonin and brain physiology. Additionally, the lack of oxygen alters the expression of clock genes, leading to an alteration in the regularity and precision of the circadian cycle. In this sense, hypoxia is a hallmark of a wide variety of lung diseases. In the present work, we intended to review the functional repercussions of hypoxia in the presence of asthma, chronic obstructive sleep apnea, lung cancer, idiopathic pulmonary fibrosis, obstructive sleep apnea, influenza, and COVID-19 and its repercussions on the circadian cycles.
Collapse
Affiliation(s)
- Manuel Castillejos-López
- Departamento de Epidemiología e Infectología Hospitalaria, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Yair Romero
- Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
| | - Angelica Varela-Ordoñez
- Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores de Iztacala Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.V.-O.); (A.K.T.-S.)
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (E.F.-S.); (B.S.R.-M.); (R.J.)
| | - Bianca S. Romero-Martinez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (E.F.-S.); (B.S.R.-M.); (R.J.)
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Joel Armando Vázquez-Pérez
- Laboratorio de Biología Molecular de Enfermedades Emergentes y EPOC, Instituto Nacional de Enferdades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Víctor Ruiz
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional (INP), Mexico City 11340, Mexico
| | - Juan C. Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Mexico City 10200, Mexico; (J.C.G.-V.); (N.A.R.-S.)
| | - Nadia A. Rivero-Segura
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Mexico City 10200, Mexico; (J.C.G.-V.); (N.A.R.-S.)
| | - Ángel Camarena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Ana Karen Torres-Soria
- Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores de Iztacala Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.V.-O.); (A.K.T.-S.)
| | - Georgina Gonzalez-Avila
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurobiología Cognitiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Ruth Jaimez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (E.F.-S.); (B.S.R.-M.); (R.J.)
| | | | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
5
|
Joshi A, Sundar IK. Circadian Disruption in Night Shift Work and Its Association with Chronic Pulmonary Diseases. Adv Biol (Weinh) 2023; 7:e2200292. [PMID: 36797209 DOI: 10.1002/adbi.202200292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/08/2022] [Indexed: 02/18/2023]
Abstract
Globalization and the expansion of essential services over continuous 24 h cycles have necessitated the adaptation of the human workforce to shift-based schedules. Night shift work (NSW) causes a state of desynchrony between the internal circadian machinery and external environmental cues, which can impact inflammatory and metabolic pathways. The discovery of clock genes in the lung has shed light on potential mechanisms of circadian misalignment in chronic pulmonary disease. Here, the current knowledge of circadian clock disruption caused by NSW and its impact on lung inflammation and associated pathophysiology in chronic lung diseases, such as asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and COVID-19, is reviewed. Furthermore, the limitations of the current understanding of circadian disruption and potential future chronotherapeutic advances are discussed.
Collapse
Affiliation(s)
- Amey Joshi
- Department of Internal Medicine, Manipal Hospitals, Bangalore, Karnataka, 560066, India
| | - Isaac Kirubakaran Sundar
- Department of Internal Medicine, Division of Pulmonary Critical Care and Sleep Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| |
Collapse
|
6
|
Reichlmeir M, Canet-Pons J, Koepf G, Nurieva W, Duecker RP, Doering C, Abell K, Key J, Stokes MP, Zielen S, Schubert R, Ivics Z, Auburger G. In Cerebellar Atrophy of 12-Month-Old ATM-Null Mice, Transcriptome Upregulations Concern Most Neurotransmission and Neuropeptide Pathways, While Downregulations Affect Prominently Itpr1, Usp2 and Non-Coding RNA. Cells 2023; 12:2399. [PMID: 37830614 PMCID: PMC10572167 DOI: 10.3390/cells12192399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023] Open
Abstract
The autosomal recessive disorder Ataxia-Telangiectasia is caused by a dysfunction of the stress response protein, ATM. In the nucleus of proliferating cells, ATM senses DNA double-strand breaks and coordinates their repair. This role explains T-cell dysfunction and tumour risk. However, it remains unclear whether this function is relevant for postmitotic neurons and underlies cerebellar atrophy, since ATM is cytoplasmic in postmitotic neurons. Here, we used ATM-null mice that survived early immune deficits via bone-marrow transplantation, and that reached initial neurodegeneration stages at 12 months of age. Global cerebellar transcriptomics demonstrated that ATM depletion triggered upregulations in most neurotransmission and neuropeptide systems. Downregulated transcripts were found for the ATM interactome component Usp2, many non-coding RNAs, ataxia genes Itpr1, Grid2, immediate early genes and immunity factors. Allelic splice changes affected prominently the neuropeptide machinery, e.g., Oprm1. Validation experiments with stressors were performed in human neuroblastoma cells, where ATM was localised only to cytoplasm, similar to the brain. Effect confirmation in SH-SY5Y cells occurred after ATM depletion and osmotic stress better than nutrient/oxidative stress, but not after ATM kinase inhibition or DNA stressor bleomycin. Overall, we provide pioneer observations from a faithful A-T mouse model, which suggest general changes in synaptic and dense-core vesicle stress adaptation.
Collapse
Affiliation(s)
- Marina Reichlmeir
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| | - Júlia Canet-Pons
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| | - Gabriele Koepf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| | - Wasifa Nurieva
- Transposition and Genome Engineering, Research Centre of the Division of Hematology, Gene and Cell Therapy, Paul Ehrlich Institute, 63225 Langen, Germany; (W.N.); (Z.I.)
| | - Ruth Pia Duecker
- Division of Pediatrics, Pulmonology, Allergology, Infectious Diseases and Gastroenterology, Children’s Hospital, University Hospital, Goethe-University, 60590 Frankfurt am Main, Germany; (R.P.D.); (S.Z.); (R.S.)
| | - Claudia Doering
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Kathryn Abell
- Cell Signaling Technology, Inc., Danvers, MA 01923, USA; (K.A.); (M.P.S.)
| | - Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| | - Matthew P. Stokes
- Cell Signaling Technology, Inc., Danvers, MA 01923, USA; (K.A.); (M.P.S.)
| | - Stefan Zielen
- Division of Pediatrics, Pulmonology, Allergology, Infectious Diseases and Gastroenterology, Children’s Hospital, University Hospital, Goethe-University, 60590 Frankfurt am Main, Germany; (R.P.D.); (S.Z.); (R.S.)
- Respiratory Research Institute, Medaimun GmbH, 60596 Frankfurt am Main, Germany
| | - Ralf Schubert
- Division of Pediatrics, Pulmonology, Allergology, Infectious Diseases and Gastroenterology, Children’s Hospital, University Hospital, Goethe-University, 60590 Frankfurt am Main, Germany; (R.P.D.); (S.Z.); (R.S.)
| | - Zoltán Ivics
- Transposition and Genome Engineering, Research Centre of the Division of Hematology, Gene and Cell Therapy, Paul Ehrlich Institute, 63225 Langen, Germany; (W.N.); (Z.I.)
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| |
Collapse
|
7
|
Gu W, Tian Z, Tian W, Song Y, Qi G, Qi J, Sun C. Association of rest-activity circadian rhythm with chronic respiratory diseases, a cross-section survey from NHANES 2011-2014. Respir Med 2023; 209:107147. [PMID: 36754218 DOI: 10.1016/j.rmed.2023.107147] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
OBJECTIVE A growing number of studies have examined the 24-h rest-activity characteristics in relation to health outcomes. Up to now, few studies have paid attention to the role of rest-activity circadian rhythm in chronic respiratory diseases (CRDs); therefore, to fill this gap, our study innovatively explored the association of rest-activity circadian rhythm indices with CRDs. METHODS A total of 7412 participants from the National Health and Nutrition Examination Survey (NHANES) 2011-2014 were included in this study. The rest-activity circadian rhythm indices were calculated using accelerometer data and were divided into quartiles to perform logistic regression. RESULTS Participants in the highest quartile of Relative amplitude (RA) had a lower prevalence of emphysema, chronic bronchitis and asthma, compared to those in the lowest quartile. Participants in the highest quartile of Intradaily variability (IV) was associated with a higher prevalence of emphysema relative to those in the lowest quartile. Compared to those in the lowest quartile, participants in the highest quartile of the average activity of the most active continuous 10-h period (M10) had a lower prevalence of emphysema. Additionally, compared to those in the lowest quartile of the average activity of the least active continuous 5-h period (L5) and L5 start time, participants in the highest quartile had a higher prevalence of asthma. CONCLUSIONS This study demonstrated that in general US adult population, disrupted rest-activity circadian rhythm was associated with a higher prevalence of CRDs.
Collapse
Affiliation(s)
- Wenbo Gu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhen Tian
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Tian
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuhua Song
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Guolian Qi
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiayue Qi
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
8
|
Circadian clock molecule REV-ERBα regulates lung fibrotic progression through collagen stabilization. Nat Commun 2023; 14:1295. [PMID: 36894533 PMCID: PMC9996598 DOI: 10.1038/s41467-023-36896-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Molecular clock REV-ERBα is central to regulating lung injuries, and decreased REV-ERBα abundance mediates sensitivity to pro-fibrotic insults and exacerbates fibrotic progression. In this study, we determine the role of REV-ERBα in fibrogenesis induced by bleomycin and Influenza A virus (IAV). Bleomycin exposure decreases the abundance of REV-ERBα, and mice dosed with bleomycin at night display exacerbated lung fibrogenesis. Rev-erbα agonist (SR9009) treatment prevents bleomycin induced collagen overexpression in mice. Rev-erbα global heterozygous (Rev-erbα Het) mice infected with IAV showed augmented levels of collagens and lysyl oxidases compared with WT-infected mice. Furthermore, Rev-erbα agonist (GSK4112) prevents collagen and lysyl oxidase overexpression induced by TGFβ in human lung fibroblasts, whereas the Rev-erbα antagonist exacerbates it. Overall, these results indicate that loss of REV-ERBα exacerbates the fibrotic responses by promoting collagen and lysyl oxidase expression, whereas Rev-erbα agonist prevents it. This study provides the potential of Rev-erbα agonists in the treatment of pulmonary fibrosis.
Collapse
|
9
|
Zhao M, Li C, Zhang J, Yin Z, Zheng Z, Wan J, Wang M. Maresin-1 and Its Receptors RORα/LGR6 as Potential Therapeutic Target for Respiratory Diseases. Pharmacol Res 2022; 182:106337. [PMID: 35781060 DOI: 10.1016/j.phrs.2022.106337] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 12/15/2022]
Abstract
Maresin-1 is one of the representative specialized pro-resolving mediators that has shown beneficial effects in inflammatory disease models. Recently, two distinct types of receptor molecules were discovered as the targets of maresin-1, further revealing the pro-resolution mechanism of maresin-1. One is retinoic acid-related orphan receptor α (RORα) and the another one is leucine-rich repeat domain-containing G protein-coupled receptor 6 (LGR6). In this review, we summarized the detailed role of maresin-1 and its two different receptors in respiratory diseases. RORα and LGR6 are potential targets for the treatment of respiratory diseases. Future basic research and clinical trials on MaR1 and its receptors should provide useful information for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Chenfei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| |
Collapse
|
10
|
Kim HS, An CH, Teller D, Moon SJ, Hwang GW, Song JW. The role of retinoid-related orphan receptor-α in cigarette smoke-induced autophagic response. Respir Res 2022; 23:110. [PMID: 35509068 PMCID: PMC9066967 DOI: 10.1186/s12931-022-02034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/25/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Retinoid-related orphan receptor-α (RORα) and autophagy dysregulation are involved in the pathophysiology of chronic obstructive pulmonary disease (COPD), but little is known regarding their association. We investigated the role of RORα in COPD-related autophagy. METHODS The lung tissues and cells from a mouse model were analyzed for autophagy markers by using western blot analysis and transmission electron microscopy. RESULTS Cigarette smoke increased the LC3-II level and decreased the p62 level in whole lung homogenates of a chronic cigarette smoking mouse model. Although cigarette smoke did not affect the levels of p62 in Staggerer mutant mice (RORαsg/sg), the baseline expression levels of p62 were significantly higher than those in wild type (WT) mice. Autophagy was induced by cigarette smoke extract (CSE) in Beas-2B cells and in primary fibroblasts from WT mice. In contrast, fibroblasts from RORαsg/sg mice failed to show CSE-induced autophagy and exhibited fewer autophagosomes, lower LC3-II levels, and higher p62 levels than fibroblasts from WT mice. Damage-regulated autophagy modulator (DRAM), a p53-induced modulator of autophagy, was expressed at significantly lower levels in the fibroblasts from RORαsg/sg mice than in those from WT mice. DRAM knockdown using siRNA in Beas-2B cells inhibited CSE-induced autophagy and cell death. Furthermore, RORα co-immunoprecipitated with p53 and the interaction increased p53 reporter gene activity. CONCLUSIONS Our findings suggest that RORα promotes autophagy and contributes to COPD pathogenesis via regulation of the RORα-p53-DRAM pathway.
Collapse
Affiliation(s)
- Hak-Su Kim
- Veterans Health Service Medical Center, Veterans Medical Research Institute, Seoul, Republic of Korea
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Chang Hyeok An
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, USA
- Division of Pulmonology, Department of Internal Medicine, Hanil General Hospital, Seoul, Republic of Korea
| | - Danielle Teller
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, USA
| | - Su-Jin Moon
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Gi Won Hwang
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Jin Woo Song
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
11
|
Giri A, Wang Q, Rahman I, Sundar IK. Circadian molecular clock disruption in chronic pulmonary diseases. Trends Mol Med 2022; 28:513-527. [DOI: 10.1016/j.molmed.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/31/2022]
|
12
|
Zhang H, Liu R, Zhang B, Huo H, Song Z. Advances in the Study of Circadian Genes in Non-Small Cell Lung Cancer. Integr Cancer Ther 2022; 21:15347354221096080. [PMID: 35575281 PMCID: PMC9121494 DOI: 10.1177/15347354221096080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Circadian genes regulate several physiological functions such as circadian rhythm
and metabolism and participate in the cytogenesis and progression of various
malignancies. The abnormal expression of these genes in non-small cell lung
cancer (NSCLC) is closely related to the clinicopathological features of NSCLC
and may promote or inhibit NSCLC progression. Circadian rhythm disorders and
clock gene abnormalities may increase the risk of lung cancer in some
populations. We collected 15 circadian genes in NSCLC, namely PER1,
PER2, PER3, TIMELESS, Cry1, Cry2, CLOCK, BMAL1/ARNTL-1, ARNTL2, NPAS2,
NR1D1(REV-ERB), DEC1, DEC2, RORα, and RORγ, and
determined their relationships with the clinicopathological features of patients
and the potential mechanisms promoting or inhibiting NSCLC progression. We also
summarized the studies on circadian rhythm disorders and circadian genes
associated with lung cancer risk. The present study aimed to provide theoretical
support for the future exploration of new therapeutic targets and for the
primary prevention of NSCLC from the perspective of circadian genes.
Interpretation of circadian rhythms in lung cancer could guide further lung
cancer mechanism research and drug development that could lead to more effective
treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Hao Zhang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Renwang Liu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Zhang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Huandong Huo
- Tianjin Medical University General Hospital, Tianjin, China
| | - Zuoqing Song
- Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
13
|
Wang Q, Sundar IK, Lucas JH, Muthumalage T, Rahman I. Molecular clock REV-ERBα regulates cigarette smoke-induced pulmonary inflammation and epithelial-mesenchymal transition. JCI Insight 2021; 6:145200. [PMID: 34014841 PMCID: PMC8262497 DOI: 10.1172/jci.insight.145200] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/17/2021] [Indexed: 01/20/2023] Open
Abstract
Cigarette smoke (CS) is the main etiological factor in the pathogenesis of emphysema/chronic obstructive pulmonary disease (COPD), which is associated with abnormal epithelial-mesenchymal transition (EMT). Previously, we have shown an association among circadian rhythms, CS-induced lung inflammation, and nuclear heme receptor α (REV-ERBα), acting as an antiinflammatory target in both pulmonary epithelial cells and fibroblasts. We hypothesized that molecular clock REV-ERBα plays an important role in CS-induced circadian dysfunction and EMT alteration. C57BL/6J WT and REV-ERBα heterozygous (Het) and –KO mice were exposed to CS for 30 days (subchronic) and 4 months (chronic), and WT mice were exposed to CS for 10 days with or without REV-ERBα agonist (SR9009) administration. Subchronic/chronic CS exposure caused circadian disruption and dysregulated EMT in the lungs of WT and REV-ERBα–KO mice; both circadian and EMT dysregulation were exaggerated in the REV-ERBα–KO condition. REV-ERBα agonist, SR9009 treatment reduced acute CS-induced inflammatory response and abnormal EMT in the lungs. Moreover, REV-ERBα agonist (GSK4112) inhibited TGF-β/CS–induced fibroblast differentiation in human fetal lung fibroblast 1 (HFL-1). Thus, CS-induced circadian gene alterations and EMT activation are mediated through a Rev-erbα–dependent mechanism, which suggests activation of REV-ERBα as a novel therapeutic approach for smoking-induced chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Qixin Wang
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Isaac K Sundar
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Joseph H Lucas
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Thivanka Muthumalage
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Irfan Rahman
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
14
|
Tiwari D, Gupta P. Nuclear Receptors in Asthma: Empowering Classical Molecules Against a Contemporary Ailment. Front Immunol 2021; 11:594433. [PMID: 33574813 PMCID: PMC7870687 DOI: 10.3389/fimmu.2020.594433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
The escalation in living standards and adoption of 'Western lifestyle' has an allied effect on the increased allergy and asthma burden in both developed and developing countries. Current scientific reports bespeak an association between allergic diseases and metabolic dysfunction; hinting toward the critical requirement of organized lifestyle and dietary habits. The ubiquitous nuclear receptors (NRs) translate metabolic stimuli into gene regulatory signals, integrating diet inflences to overall developmental and physiological processes. As a consequence of such promising attributes, nuclear receptors have historically been at the cutting edge of pharmacy world. This review discusses the recent findings that feature the cardinal importance of nuclear receptors and how they can be instrumental in modulating current asthma pharmacology. Further, it highlights a possible future employment of therapy involving dietary supplements and synthetic ligands that would engage NRs and aid in eliminating both asthma and linked comorbidities. Therefore, uncovering new and evolving roles through analysis of genomic changes would represent a feasible approach in both prevention and alleviation of asthma.
Collapse
Affiliation(s)
| | - Pawan Gupta
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
15
|
Mallampalli RK, Li X, Jang JH, Kaminski T, Hoji A, Coon T, Chandra D, Welty S, Teng Y, Sembrat J, Rojas M, Zhao Y, Lafyatis R, Zou C, Sciurba F, Sundd P, Lan L, Nyunoya T. Cigarette smoke exposure enhances transforming acidic coiled-coil-containing protein 2 turnover and thereby promotes emphysema. JCI Insight 2020; 5:125895. [PMID: 31996486 PMCID: PMC7098723 DOI: 10.1172/jci.insight.125895] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/18/2019] [Indexed: 01/09/2023] Open
Abstract
Our integrative genomic and functional analysis identified transforming acidic coiled-coil-containing protein 2 (TACC2) as a chronic obstructive pulmonary disease (COPD) candidate gene. Here, we found that smokers with COPD exhibit a marked decrease in lung TACC2 protein levels relative to smokers without COPD. Single cell RNA sequencing reveals that TACC2 is expressed primarily in lung epithelial cells in normal human lungs. Furthermore, suppression of TACC2 expression impairs the efficiency of homologous recombination repair and augments spontaneous and cigarette smoke extract-induced (CSE-induced) DNA damage and cytotoxicity in immortalized human bronchial epithelial cells. By contrast, enforced expression of TACC2 attenuates the CSE effects. We also found that CSE enhances TACC2 degradation via the ubiquitin-proteasome system mediated by the ubiquitin E3 ligase subunit, F box L7. Furthermore, cellularly expressed TACC2 proteins harboring naturally occurring mutations exhibited altered protein lifespan coupled with modified DNA damage repair and cytotoxic responses. CS triggers emphysematous changes accompanied by accumulated DNA damage, apoptosis of alveolar epithelia, and lung inflammation in Tacc2-/- compared with Tacc2+/+ mice. Our results suggest that CS destabilizes TACC2 protein in lung epithelia by the ubiquitin proteasome system, leading to subsequent DNA damage, cytotoxicity, and emphysema.
Collapse
Affiliation(s)
- Rama K. Mallampalli
- Department of Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Xiuying Li
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, Pennsylvania, USA
| | - Jun-Ho Jang
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tomasz Kaminski
- Vascular Medical Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aki Hoji
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tiffany Coon
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Divay Chandra
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Starr Welty
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UMPC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Yaqun Teng
- School of Medicine, Tsinghua University, No. 1 Tsinghua Yuan, Beijing, China
| | - John Sembrat
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mauricio Rojas
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Robert Lafyatis
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chunbin Zou
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, Pennsylvania, USA
| | - Frank Sciurba
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Prithu Sundd
- Vascular Medical Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Li Lan
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Toru Nyunoya
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, Pennsylvania, USA
| |
Collapse
|
16
|
Vanderstocken G, Dvorkin-Gheva A, Shen P, Brandsma CA, Obeidat M, Bossé Y, Hassell JA, Stampfli MR. Identification of Drug Candidates to Suppress Cigarette Smoke-induced Inflammation via Connectivity Map Analyses. Am J Respir Cell Mol Biol 2019; 58:727-735. [PMID: 29256623 DOI: 10.1165/rcmb.2017-0202oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cigarette smoking is the main risk factor for chronic obstructive pulmonary disease, and to date, existing pharmacologic interventions have been ineffective at controlling inflammatory processes associated with the disease. To address this issue, we used the Connectivity Map (cMap) database to identify drug candidates with the potential to attenuate cigarette smoke-induced inflammation. We queried cMap using three independent in-house cohorts of healthy nonsmokers and smokers. Potential drug candidates were validated against four publicly available human datasets, as well as six independent datasets from cigarette smoke-exposed mice. Overall, these analyses yielded two potential drug candidates: kaempferol and bethanechol. Subsequently, the efficacy of each drug was validated in vivo in a model of cigarette smoke-induced inflammation. BALB/c mice were exposed to room air or cigarette smoke and treated with each of the two candidate drugs either prophylactically or therapeutically. We found that kaempferol, but not bethanechol, was able to reduce cigarette smoke-induced neutrophilia, both when administered prophylactically and when administered therapeutically. Mechanistically, kaempferol decreased expression of IL-1α and CXCL5 concentrations in the lung. Our data suggest that cMap analyses may serve as a useful tool to identify novel drug candidates against cigarette smoke-induced inflammation.
Collapse
Affiliation(s)
- Gilles Vanderstocken
- 1 Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre
| | - Anna Dvorkin-Gheva
- 1 Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre.,2 Department of Pathology and Molecular Medicine, Centre for Functional Genomics, and
| | - Pamela Shen
- 1 Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre
| | - Corry-Anke Brandsma
- 3 Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ma'en Obeidat
- 4 The University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Yohan Bossé
- 5 Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada; and.,6 Department of Molecular Medicine, Laval University, Québec City, Québec, Canada
| | - John A Hassell
- 2 Department of Pathology and Molecular Medicine, Centre for Functional Genomics, and
| | - Martin R Stampfli
- 1 Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre.,7 Department of Medicine, Firestone Institute for Respiratory Health at St. Joseph's Healthcare, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
17
|
Voic H, Li X, Jang JH, Zou C, Sundd P, Alder J, Rojas M, Chandra D, Randell S, Mallampalli RK, Tesfaigzi Y, Ryba T, Nyunoya T. RNA sequencing identifies common pathways between cigarette smoke exposure and replicative senescence in human airway epithelia. BMC Genomics 2019; 20:22. [PMID: 30626320 PMCID: PMC6325884 DOI: 10.1186/s12864-018-5409-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/26/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Aging is affected by genetic and environmental factors, and cigarette smoking is strongly associated with accumulation of senescent cells. In this study, we wanted to identify genes that may potentially be beneficial for cell survival in response to cigarette smoke and thereby may contribute to development of cellular senescence. RESULTS Primary human bronchial epithelial cells from five healthy donors were cultured, treated with or without 1.5% cigarette smoke extract (CSE) for 24 h or were passaged into replicative senescence. Transcriptome changes were monitored using RNA-seq in CSE and non-CSE exposed cells and those passaged into replicative senescence. We found that, among 1534 genes differentially regulated during senescence and 599 after CSE exposure, 243 were altered in both conditions, representing strong enrichment. Pathways and gene sets overrepresented in both conditions belonged to cellular processes that regulate reactive oxygen species, proteasome degradation, and NF-κB signaling. CONCLUSIONS Our results offer insights into gene expression responses during cellular aging and cigarette smoke exposure, and identify potential molecular pathways that are altered by cigarette smoke and may also promote airway epithelial cell senescence.
Collapse
Affiliation(s)
- Hannah Voic
- 0000 0004 0504 9575grid.422569.eDivision of Natural Sciences, New College of Florida, Sarasota, FL USA
| | - Xiuying Li
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Jun-Ho Jang
- 0000 0004 0454 5075grid.417046.0Cardiovascular Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, PA USA
| | - Chunbin Zou
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Prithu Sundd
- 0000 0004 1936 9000grid.21925.3dVascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Jonathan Alder
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Mauricio Rojas
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Divay Chandra
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Scott Randell
- 0000 0001 1034 1720grid.410711.2Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC USA
| | - Rama K. Mallampalli
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Yohannes Tesfaigzi
- Lovelace Respiratory Research Institute, COPD program, Albuquerque, NM USA
| | - Tyrone Ryba
- 0000 0004 0504 9575grid.422569.eDivision of Natural Sciences, New College of Florida, Sarasota, FL USA
| | - Toru Nyunoya
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| |
Collapse
|
18
|
Dvorkin-Gheva A, Vanderstocken G, Yildirim AÖ, Brandsma CA, Obeidat M, Bossé Y, Hassell JA, Stampfli MR. Total particulate matter concentration skews cigarette smoke's gene expression profile. ERJ Open Res 2016; 2:00029-2016. [PMID: 27995131 PMCID: PMC5165723 DOI: 10.1183/23120541.00029-2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/05/2016] [Indexed: 01/05/2023] Open
Abstract
Exposure of small animals to cigarette smoke is widely used as a model to study the pathogenesis of chronic obstructive pulmonary disease. However, protocols and exposure systems utilised vary substantially and it is unclear how these different systems compare. We analysed the gene expression profile of six publically available murine datasets from different cigarette smoke-exposure systems and related the gene signatures to three clinical cohorts. 234 genes significantly regulated by cigarette smoke in at least one model were used to construct a 55-gene network containing 17 clusters. Increasing numbers of differentially regulated clusters were associated with higher total particulate matter concentrations in the different datasets. Low total particulate matter-induced genes mainly related to xenobiotic/detoxification responses, while higher total particulate matter activated immune/inflammatory processes in addition to xenobiotic/detoxification responses. To translate these observations to the clinic, we analysed the regulation of the revealed network in three human cohorts. Similar to mice, we observed marked differences in the number of regulated clusters between the cohorts. These differences were not determined by pack-year. Although none of the experimental models exhibited a complete alignment with any of the human cohorts, some exposure systems showed higher resemblance. Thus, depending on the cohort, clinically observed changes in gene expression may be mirrored more closely by specific cigarette smoke exposure systems. This study emphasises the need for careful validation of animal models.
Collapse
Affiliation(s)
- Anna Dvorkin-Gheva
- Dept of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada
- Centre for Functional Genomics, McMaster University, Hamilton, ON, Canada
- These authors contributed equally
| | - Gilles Vanderstocken
- Dept of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada
- These authors contributed equally
| | - Ali Önder Yildirim
- Institute of Lung Biology and Disease (iLBD), Helmholtz Zentrum München, Neuherberg, Germany, Member of the German Center for Lung Research (DZL)
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, GRIAC research institute, Groningen, The Netherlands
| | - Ma'en Obeidat
- The University of British Columbia Center for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Yohan Bossé
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, QC, Canada
- Dept of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - John A. Hassell
- Centre for Functional Genomics, McMaster University, Hamilton, ON, Canada
| | - Martin R. Stampfli
- Dept of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada
- Dept of Medicine, Firestone Institute of Respiratory Health at St. Joseph's Healthcare, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
19
|
Candidate SNP Markers of Chronopathologies Are Predicted by a Significant Change in the Affinity of TATA-Binding Protein for Human Gene Promoters. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8642703. [PMID: 27635400 PMCID: PMC5011241 DOI: 10.1155/2016/8642703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/25/2016] [Accepted: 06/28/2016] [Indexed: 01/14/2023]
Abstract
Variations in human genome (e.g., single nucleotide polymorphisms, SNPs) may be associated with hereditary diseases, their complications, comorbidities, and drug responses. Using Web service SNP_TATA_Comparator presented in our previous paper, here we analyzed immediate surroundings of known SNP markers of diseases and identified several candidate SNP markers that can significantly change the affinity of TATA-binding protein for human gene promoters, with circadian consequences. For example, rs572527200 may be related to asthma, where symptoms are circadian (worse at night), and rs367732974 may be associated with heart attacks that are characterized by a circadian preference (early morning). By the same method, we analyzed the 90 bp proximal promoter region of each protein-coding transcript of each human gene of the circadian clock core. This analysis yielded 53 candidate SNP markers, such as rs181985043 (susceptibility to acute Q fever in male patients), rs192518038 (higher risk of a heart attack in patients with diabetes), and rs374778785 (emphysema and lung cancer in smokers). If they are properly validated according to clinical standards, these candidate SNP markers may turn out to be useful for physicians (to select optimal treatment for each patient) and for the general population (to choose a lifestyle preventing possible circadian complications of diseases).
Collapse
|
20
|
Jang JH, Lee JH, Chand HS, Lee JS, Lin Y, Weathington N, Mallampalli R, Jeon YJ, Nyunoya T. APO-9'-Fucoxanthinone Extracted from Undariopsis peteseniana Protects Oxidative Stress-Mediated Apoptosis in Cigarette Smoke-Exposed Human Airway Epithelial Cells. Mar Drugs 2016; 14:E140. [PMID: 27455285 PMCID: PMC4962029 DOI: 10.3390/md14070140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 01/16/2023] Open
Abstract
Long-term cigarette smoking increases the risk for chronic obstructive pulmonary disease (COPD), characterized by irreversible expiratory airflow limitation. The pathogenesis of COPD involves oxidative stress and chronic inflammation. Various natural marine compounds possess both anti-oxidant and anti-inflammatory properties, but few have been tested for their efficacy in COPD models. In this study, we conducted an in vitro screening test to identify natural compounds isolated from various brown algae species that might provide protection against cigarette smoke extract (CSE)-induced cytotoxicity. Among nine selected natural compounds, apo-9'-fucoxanthinone (Apo9F) exhibited the highest protection against CSE-induced cytotoxicity in immortalized human bronchial epithelial cells (HBEC2). Furthermore, the protective effects of Apo9F were observed to be associated with a significant reduction in apoptotic cell death, DNA damage, and the levels of mitochondrial reactive oxygen species (ROS) released from CSE-exposed HBEC2 cells. These results suggest that Apo9F protects against CSE-induced DNA damage and apoptosis by regulating mitochondrial ROS production.
Collapse
Affiliation(s)
- Jun-Ho Jang
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
- Medical Specialty Service Line, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| | - Ji-Hyeok Lee
- Department of Marine Science, Jeju National University, Jeju 690-756, Korea.
| | - Hitendra S Chand
- Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA.
| | - Jong-Soo Lee
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 650-160, Korea.
| | - Yong Lin
- Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA.
| | | | - Rama Mallampalli
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
- Medical Specialty Service Line, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| | - You-Jin Jeon
- Department of Marine Science, Jeju National University, Jeju 690-756, Korea.
| | - Toru Nyunoya
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
- Medical Specialty Service Line, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
21
|
Kim SY, Kim HJ, Park MK, Huh JW, Park HY, Ha SY, Shin JH, Lee YS. Mitochondrial E3 Ubiquitin Protein Ligase 1 Mediates Cigarette Smoke-Induced Endothelial Cell Death and Dysfunction. Am J Respir Cell Mol Biol 2016. [PMID: 26203915 DOI: 10.1165/rcmb.2014-0377oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
By virtue of the critical roles of Akt in vascular endothelial cell (EC) survival and function, cigarette smoke-induced Akt reduction may contribute to EC death and dysfunction in smokers' lungs. One of the negative Akt regulatory mechanisms is K48-linked Akt ubiquitination and subsequent proteasomal degradation. Here, we assessed the involvement of mitochondrial E3 ubiquitin protein ligase 1 (MUL1), recently revealed as a novel Akt ubiquitin E3 ligase, in cigarette smoke-induced Akt ubiquitination and its contribution to pulmonary EC death and dysfunction. In human lung microvascular ECs (HLMVECs), cigarette smoke extract (CSE) noticeably elevated MUL1 expression and K48-linked Akt ubiquitination, whereas Akt, p-Akt, eNOS, and p-eNOS levels were decreased. MUL1 knockdown suppressed CSE-induced Akt ubiquitination/degradation and cytoplasmic reductions of Akt and p-Akt. Furthermore, MUL1 knockdown attenuated reductions of eNOS and p-eNOS and alleviated EC survival, migration, and tube formation in the presence of CSE exposure. In addition, overexpression of K284R Akt, a mutant for a MUL1-ubiquitination site, produced similar effects. In HLMVECs exposed to CSE, Akt-MUL1 interaction was increased in coimmunoprecipitation and in situ proximity ligation assays. Similarly, the proximity ligation assay signals were elevated in rat lungs exposed to cigarette smoke for 3 months, during which Mul1 levels were noticeably increased. Finally, we found that CSE-mediated MUL1 induction in HLMVECs is mediated by retinoic acid receptor-related orphan receptor α. Taken together, these data suggest that cigarette smoke-induced MUL1 elevation mediates Akt ubiquitination/degradation, potentially leading to pulmonary EC death and functional impairment.
Collapse
Affiliation(s)
- Sun-Yong Kim
- 1 Department of Otolaryngology, Ajou University School of Medicine, Suwon
| | - Hyo Jeong Kim
- 2 Department of Pharmacology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon
| | - Mi Kyeong Park
- 2 Department of Pharmacology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon
| | - Jin Won Huh
- 3 Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul; and
| | - Hye Yun Park
- 4 Division of Pulmonary and Critical Care Medicine, Department of Medicine and
| | - Sang Yun Ha
- 5 Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joo-Ho Shin
- 2 Department of Pharmacology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon
| | - Yun-Song Lee
- 2 Department of Pharmacology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon
| |
Collapse
|
22
|
Yao H, Sundar IK, Huang Y, Gerloff J, Sellix MT, Sime PJ, Rahman I. Disruption of Sirtuin 1-Mediated Control of Circadian Molecular Clock and Inflammation in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2016; 53:782-92. [PMID: 25905433 DOI: 10.1165/rcmb.2014-0474oc] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth most common cause of death, and it is characterized by abnormal inflammation and lung function decline. Although the circadian molecular clock regulates inflammatory responses, there is no information available regarding the impact of COPD on lung molecular clock function and its regulation by sirtuin 1 (SIRT1). We hypothesize that the molecular clock in the lungs is disrupted, leading to increased inflammatory responses in smokers and patients with COPD and its regulation by SIRT1. Lung tissues, peripheral blood mononuclear cells (PBMCs), and sputum cells were obtained from nonsmokers, smokers, and patients with COPD for measurement of core molecular clock proteins (BMAL1, CLOCK, PER1, PER2, and CRY1), clock-associated nuclear receptors (REV-ERBα, REV-ERBβ, and RORα), and SIRT1 by immunohistochemistry, immunofluorescence, and immunoblot. PBMCs were treated with the SIRT1 activator SRT1720 followed by LPS treatment, and supernatant was collected at 6-hour intervals. Levels of IL-8, IL-6, and TNF-α released from PBMCs were determined by ELISA. Expression of BMAL1, PER2, CRY1, and REV-ERBα was reduced in PBMCs, sputum cells, and lung tissues from smokers and patients with COPD when compared with nonsmokers. SRT1720 treatment attenuated LPS-mediated reduction of BMAL1 and REV-ERBα in PBMCs from nonsmokers. Additionally, LPS differentially affected the timing and amplitude of cytokine (IL-8, IL-6, and TNF-α) release from PBMCs in nonsmokers, smokers, and patients with COPD. Moreover, SRT1720 was able to inhibit LPS-induced cytokine release from cultured PBMCs. In conclusion, disruption of the molecular clock due to SIRT1 reduction contributes to abnormal inflammatory response in smokers and patients with COPD.
Collapse
Affiliation(s)
- Hongwei Yao
- Departments of 1 Environmental Medicine, Lung Biology and Disease Program
| | - Isaac K Sundar
- Departments of 1 Environmental Medicine, Lung Biology and Disease Program
| | - Yadi Huang
- Departments of 1 Environmental Medicine, Lung Biology and Disease Program
| | - Janice Gerloff
- Departments of 1 Environmental Medicine, Lung Biology and Disease Program
| | - Michael T Sellix
- 2 Medicine, Division of Endocrinology, Diabetes and Metabolism; and
| | - Patricia J Sime
- 3 Medicine, Pulmonary Diseases and Critical Care, University of Rochester Medical Center, Rochester, New York
| | - Irfan Rahman
- Departments of 1 Environmental Medicine, Lung Biology and Disease Program
| |
Collapse
|
23
|
Sundar IK, Yao H, Sellix MT, Rahman I. Circadian molecular clock in lung pathophysiology. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1056-75. [PMID: 26361874 DOI: 10.1152/ajplung.00152.2015] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023] Open
Abstract
Disrupted daily or circadian rhythms of lung function and inflammatory responses are common features of chronic airway diseases. At the molecular level these circadian rhythms depend on the activity of an autoregulatory feedback loop oscillator of clock gene transcription factors, including the BMAL1:CLOCK activator complex and the repressors PERIOD and CRYPTOCHROME. The key nuclear receptors and transcription factors REV-ERBα and RORα regulate Bmal1 expression and provide stability to the oscillator. Circadian clock dysfunction is implicated in both immune and inflammatory responses to environmental, inflammatory, and infectious agents. Molecular clock function is altered by exposomes, tobacco smoke, lipopolysaccharide, hyperoxia, allergens, bleomycin, as well as bacterial and viral infections. The deacetylase Sirtuin 1 (SIRT1) regulates the timing of the clock through acetylation of BMAL1 and PER2 and controls the clock-dependent functions, which can also be affected by environmental stressors. Environmental agents and redox modulation may alter the levels of REV-ERBα and RORα in lung tissue in association with a heightened DNA damage response, cellular senescence, and inflammation. A reciprocal relationship exists between the molecular clock and immune/inflammatory responses in the lungs. Molecular clock function in lung cells may be used as a biomarker of disease severity and exacerbations or for assessing the efficacy of chronotherapy for disease management. Here, we provide a comprehensive overview of clock-controlled cellular and molecular functions in the lungs and highlight the repercussions of clock disruption on the pathophysiology of chronic airway diseases and their exacerbations. Furthermore, we highlight the potential for the molecular clock as a novel chronopharmacological target for the management of lung pathophysiology.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| | - Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| | - Michael T Sellix
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, Rochester, New York
| | - Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| |
Collapse
|
24
|
Korytina GF, Akhmadishina LZ, Kochetova OV, Burduk YV, Aznabaeva YG, Zagidullin SZ, Victorova TV. Association of genes involved in nicotine and tobacco smoke toxicant metabolism (CHRNA3/5, CYP2A6, and NQO1) and DNA repair (XRCC1, XRCC3, XPC, and XPA) with chronic obstructive pulmonary disease. Mol Biol 2014. [DOI: 10.1134/s0026893314060090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Bhatti P, Zhang Y, Song X, Makar KW, Sather CL, Kelsey KT, Houseman EA, Wang P. Nightshift work and genome-wide DNA methylation. Chronobiol Int 2014; 32:103-12. [PMID: 25187986 DOI: 10.3109/07420528.2014.956362] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The negative health effects of shift work, including carcinogenesis, may be mediated by changes in DNA methylation, particularly in the circadian genes. Using the Infinium HumanMethylation450 Bead Array (Illumina, San Diego, CA), we compared genome-wide methylation between 65 actively working dayshift workers and 59 actively working nightshift workers in the healthcare industry. A total of 473 800 loci, including 391 loci across the 12 core circadian genes, were analyzed to identify methylation markers associated with shift work status using linear regression models adjusted for gender, age, body mass index, race, smoking status and leukocyte cell profile as measured by flow cytometry. Analyses at the level of gene, CpG island and gene region were also conducted. To account for multiple comparisons, we controlled the false discovery rate (FDR ≤0.05). Significant differences between nightshift and dayshift workers were found at 16 135 of 473 800 loci, across 3769 of 20 164 genes, across 7173 of 22 721 CpG islands and across 5508 of 51 843 gene regions. For each significant loci, gene, CpG island or gene region, average methylation was consistently found to be decreased among nightshift workers compared to dayshift workers. Twenty-one loci located in the circadian genes were also found to be significantly hypomethylated among nightshift workers. The largest differences were observed for three loci located in the gene body of PER3. A total of nine significant loci were found in the CSNK1E gene, most of which were located in a CpG island and near the transcription start site of the gene. Methylation changes in these circadian genes may lead to altered expression of these genes which has been associated with cancer in previous studies. Gene ontology enrichment analysis revealed that among the significantly hypomethylated genes, processes related to host defense and immunity were represented. Our results indicate that the health effects of shift work may be mediated by hypomethylation of a wide variety of genes, including those related to circadian rhythms. While these findings need to be followed-up among a considerably expanded group of shift workers, the data generated by this study supports the need for future targeted research into the potential impacts of shift work on specific carcinogenic mechanisms.
Collapse
|
26
|
Kim EJ, Choi YK, Han YH, Kim HJ, Lee IK, Lee MO. RORα suppresses proliferation of vascular smooth muscle cells through activation of AMP-activated protein kinase. Int J Cardiol 2014; 175:515-21. [DOI: 10.1016/j.ijcard.2014.06.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/05/2014] [Accepted: 06/24/2014] [Indexed: 12/20/2022]
|
27
|
Yuan Y, Hou X, Zhang J, Chen Y, Feng Y, Su Z. Genetic variations in RORα are associated with chronic obstructive pulmonary disease. J Hum Genet 2014; 59:430-6. [PMID: 24943193 DOI: 10.1038/jhg.2014.48] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/14/2014] [Accepted: 05/21/2014] [Indexed: 02/05/2023]
Abstract
Retinoic acid receptor-related orphan receptor-α (RORα) plays a key role in the regulation of lipid and cholesterol metabolism that has been implicated in the development of chronic obstructive pulmonary disease (COPD). The aim of this study was to determine the frequencies of single-nucleotide polymorphisms (SNPs) in RORα gene in a Chinese population and their possible association with COPD susceptibility. Nine tagging SNPs, including rs17270181, rs1898413, rs17270216, rs8033552, rs8036966, rs7169364, rs340002, rs340023 and rs11630262, were screened in 279 COPD patients and 367 controls by the SNaPshot method. Association analysis of genotypes and haplotypes constructed from these loci with COPD was conducted under different genetic models. Alleles or genotypes of rs8033552 distributed significantly differently in COPD patients and controls (allele: P=0.0001, false discovery rate (FDR) Q=0.004, odds ratios (OR): 1.62 and 95% confidence interval (CI): 1.27-2.07; genotype: P=0.0005, FDR Q=0.008). The allele A at rs8033552 was potentially associated with an increased risk of COPD in additive model, displaying ORs of 1.62 (95% CI: 1.17-2.26, P=0.004, FDR Q=0.019) in subjects with genotypes AG vs GG and 2.69 (95% CI: 1.47-4.93, P=0.001, FDR Q=0.011) in subjects with genotypes AA vs GG, respectively. In haplotype analysis, we observed haplotypes GGAGATGTG and GGAGCTGTG had protective effects, whereas haplotypes GGAGATACA and GGAGATACG were significantly associated with the increased risk of COPD. These data suggest that RORα may be a potential risk gene for COPD.
Collapse
Affiliation(s)
- Yiming Yuan
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoming Hou
- Molecular Medicine Research Center, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Jinlong Zhang
- Molecular Medicine Research Center, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yulong Chen
- Molecular Medicine Research Center, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yulin Feng
- Department of Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiguang Su
- Molecular Medicine Research Center, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Nyunoya T, Mebratu Y, Contreras A, Delgado M, Chand HS, Tesfaigzi Y. Molecular processes that drive cigarette smoke-induced epithelial cell fate of the lung. Am J Respir Cell Mol Biol 2014; 50:471-82. [PMID: 24111585 DOI: 10.1165/rcmb.2013-0348tr] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cigarette smoke contains numerous chemical compounds, including abundant reactive oxygen/nitrogen species and aldehydes, and many other carcinogens. Long-term cigarette smoking significantly increases the risk of various lung diseases, including chronic obstructive pulmonary disease and lung cancer, and contributes to premature death. Many in vitro and in vivo studies have elucidated mechanisms involved in cigarette smoke-induced inflammation, DNA damage, and autophagy, and the subsequent cell fates, including cell death, cellular senescence, and transformation. In this Translational Review, we summarize the known pathways underlying these processes in airway epithelial cells to help reveal future challenges and describe possible directions of research that could lead to better management and treatment of these diseases.
Collapse
Affiliation(s)
- Toru Nyunoya
- 1 Chronic Obstructive Pulmonary Disease Program, Lovelace Respiratory Research Institute, and
| | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Danielle Morse
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115;
| | - Ivan O. Rosas
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115;
- Pulmonary Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108
| |
Collapse
|
30
|
Aoshiba K, Tsuji T, Yamaguchi K, Itoh M, Nakamura H. The danger signal plus DNA damage two-hit hypothesis for chronic inflammation in COPD. Eur Respir J 2013; 42:1689-1695. [PMID: 23397294 DOI: 10.1183/09031936.00102912] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammation in chronic obstructive pulmonary disease (COPD) is thought to originate from the activation of innate immunity by a danger signal (first hit), although this mechanism does not readily explain why the inflammation becomes chronic. Here, we propose a two-hit hypothesis explaining why inflammation becomes chronic in patients with COPD. A more severe degree of inflammation exists in the lungs of patients who develop COPD than in the lungs of healthy smokers, and the large amounts of reactive oxygen species and reactive nitrogen species released from inflammatory cells are likely to induce DNA double-strand breaks (second hit) in the airways and pulmonary alveolar cells, causing apoptosis and cell senescence. The DNA damage response and senescence-associated secretory phenotype (SASP) are also likely to be activated, resulting in the production of pro-inflammatory cytokines. These pro-inflammatory cytokines further stimulate inflammatory cell infiltration, intensifying cell senescence and SASP through a positive-feedback mechanism. This vicious cycle, characterised by mutually reinforcing inflammation and DNA damage, may cause the inflammation in COPD patients to become chronic. Our hypothesis helps explain why COPD tends to occur in the elderly, why the inflammation worsens progressively, why inflammation continues even after smoking cessation, and why COPD is associated with lung cancer.
Collapse
|
31
|
Yao H, Sundar IK, Gorbunova V, Rahman I. P21-PARP-1 pathway is involved in cigarette smoke-induced lung DNA damage and cellular senescence. PLoS One 2013; 8:e80007. [PMID: 24244594 PMCID: PMC3823706 DOI: 10.1371/journal.pone.0080007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/07/2013] [Indexed: 12/20/2022] Open
Abstract
Persistent DNA damage triggers cellular senescence, which may play an important role in the pathogenesis of cigarette smoke (CS)-induced lung diseases. Both p21CDKN1A (p21) and poly(ADP-ribose) polymerase-1 (PARP-1) are involved in DNA damage and repair. However, the role of p21-PARP-1 axis in regulating CS-induced lung DNA damage and cellular senescence remains unknown. We hypothesized that CS causes DNA damage and cellular senescence through a p21-PARP-1 axis. To test this hypothesis, we determined the levels of γH2AX (a marker for DNA double-strand breaks) as well as non-homologous end joining proteins (Ku70 and Ku80) in lungs of mice exposed to CS. We found that the level of γH2AX was increased, whereas the level of Ku70 was reduced in lungs of CS-exposed mice. Furthermore, p21 deletion reduced the level of γH2AX, but augmented the levels of Ku70, Ku80, and PAR in lungs by CS. Administration of PARP-1 inhibitor 3-aminobenzamide increased CS-induced DNA damage, but lowered the levels of Ku70 and Ku80, in lungs of p21 knockout mice. Moreover, 3-aminobenzamide increased senescence-associated β-galactosidase activity, but decreased the expression of proliferating cell nuclear antigen in mouse lungs in response to CS. Interestingly, 3-aminobenzamide treatment had no effect on neutrophil influx into bronchoalveolar lavage fluid by CS. These results demonstrate that the p21-PARP-1 pathway is involved in CS-induced DNA damage and cellular senescence.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, Rochester, New York, United States of America
- * E-mail: (HY); (IR)
| | - Isaac K. Sundar
- Department of Environmental Medicine, Lung Biology and Disease Program, Rochester, New York, United States of America
| | - Vera Gorbunova
- Department of Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, Rochester, New York, United States of America
- * E-mail: (HY); (IR)
| |
Collapse
|
32
|
Han MK, Criner GJ. Update in chronic obstructive pulmonary disease 2012. Am J Respir Crit Care Med 2013; 188:29-34. [PMID: 23815721 DOI: 10.1164/rccm.201302-0319up] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Meilan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|