1
|
Ketema R, Ait Bamai Y, Goudarzi H, Yamaguchi T, Zeng Y, Yasuda A, Marsela M, Konno S, Kishi R, Ikeda A. Association of Phthalate Exposure with Respiratory and Allergic Symptoms and Type 2 and Non-Type 2 Inflammation: The Hokkaido Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7541-7549. [PMID: 40198672 PMCID: PMC12020737 DOI: 10.1021/acs.est.4c14579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
Phthalate exposure is linked to asthma and allergic symptoms, yet their individual and combined effects on symptoms and inflammatory biomarkers, type 2 (T2) and non-T2, remain unexplored. This study examined the association of phthalate metabolites with allergic symptoms (wheeze, allergic rhinoconjunctivitis, and eczema), T2 biomarker (fraction of exhaled nitric oxide (FeNO), blood eosinophil count, and total immunoglobulin E (IgE)), and non-T2 biomarker (absolute neutrophil count (ANC)) and also their association with oxidative stress biomarkers, such as 4-hydroxynonenal, hexanoyl-lysine, and 8-hydroxy-2-deoxyguanosine. Ten urinary phthalate metabolites were measured using UPLC-MS/MS in 421 children (aged 9-12 years) from The Hokkaido Cohort, Japan. Symptoms were defined using the International Study of Asthma and Allergies in Childhood questionnaire, and biomarkers were measured in blood. Logistic regression assessed individual metabolites, while quantile-g computation and Bayesian kernel machine regression analyzed mixture effects on binary outcomes. Individual analysis showed that MnBP (mono-n-butyl phthalate) was positively associated with allergic rhinoconjunctivitis and eosinophil ≥ 300 cells/μL, while ∑DBP (dibutyl phthalate) and OH-MiNP (mono-hydroxy-isononyl phthalate) were linked with FeNO ≥ 35 ppb. DEHP (di(2-ethylhexyl) phthalate) metabolites were associated with a high prevalence of blood eosinophils ≥ 300 cells/μL. We found a positive association between phthalates and oxidative stress markers, but no link was observed between oxidative stress and inflammatory markers. Mixture analysis identified MnBP as a major contributor to the high FeNO level, with di-n-butyl phthalate (DnBP) and DEHP metabolites contributing to eosinophil count ≥ 300 cells/μL and ANC ≥ 4400 cells/μL. These findings suggest that phthalate exposure from DnBP and DEHP is associated with immune dysregulation by triggering both T2 and non-T2 inflammatory responses.
Collapse
Affiliation(s)
- Rahel
Mesfin Ketema
- Faculty
of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
- Center
for Environmental and Health Sciences, Hokkaido
University, Kita 12,
Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Yu Ait Bamai
- Center
for Environmental and Health Sciences, Hokkaido
University, Kita 12,
Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Houman Goudarzi
- Faculty
of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638 Sapporo Japan
| | - Takeshi Yamaguchi
- Center
for Environmental and Health Sciences, Hokkaido
University, Kita 12,
Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Yi Zeng
- Faculty
of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
- Center
for Environmental and Health Sciences, Hokkaido
University, Kita 12,
Nishi 7, Kita-ku, Sapporo 060-0812, Japan
- Creative
Research Institution, Hokkaido University, North 21, West 10, Kita-ku, Sapporo 001-0021, Japan
| | - Ayaka Yasuda
- Graduate
School of Pharmaceutical Sciences, Health
Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu-cho, Ishikari-gun 061-0293, Japan
- Graduate
School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Megasari Marsela
- Faculty
of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Konno
- Faculty
of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638 Sapporo Japan
| | - Reiko Kishi
- Center
for Environmental and Health Sciences, Hokkaido
University, Kita 12,
Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Atsuko Ikeda
- Faculty
of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
- Center
for Environmental and Health Sciences, Hokkaido
University, Kita 12,
Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
2
|
Jiang Z, Wang L, Yang H, Qu M. Phthalate exposure in primary school children: concentrations, oral intake, and risk assessment in Jinan, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-19. [PMID: 40232296 DOI: 10.1080/09603123.2025.2493305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Phthalates in indoor environments can enter the human body through non-dietary exposure routes. Excessive exposure to phthalates in children may cause health issues. We examined exposure concentrations, oral intake, and risks for primary-school students in their living environments (home, classroom, and outdoor) in Jinan. We collected 138 dust samples and focused on 13 common phthalates. Phthalates were ubiquitous across all environments, with di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DnBP), and di-iso-butyl phthalate (DiBP) representing the highest proportions. Concentrations varied by environment: girls' bedrooms > boys' bedrooms, girls' living rooms > boys' living rooms, homes > classrooms > outdoors, and urban outdoors > suburban outdoors. Factors such as PM2.5 levels, the use of personal care products, item types, and fabric types influenced indoor phthalate concentrations. Oral exposure data showed that the home is the primary exposure environment, accounting for 51%-88%, followed by the classroom and outdoor environments. The carcinogenic risk associated with DEHP exceeded acceptable limits for all children, with four children exhibiting hazard index values greater than 1. We provide significant data on phthalate exposure in primary school children and suggest that exposure reduction strategies should focus on DEHP, DnBP, and DiBP in both homes and classrooms.
Collapse
Affiliation(s)
- Zhiyu Jiang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Lixin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Haoming Yang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Meinan Qu
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Hassen HY, Govarts E, Remy S, Cox B, Iszatt N, Portengen L, Covaci A, Schoeters G, Den Hond E, Henauw SD, Bruckers L, Koppen G, Verheyen VJ. Association of environmental pollutants with asthma and allergy, and the mediating role of oxidative stress and immune markers in adolescents. ENVIRONMENTAL RESEARCH 2025; 265:120445. [PMID: 39586518 PMCID: PMC11672208 DOI: 10.1016/j.envres.2024.120445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Asthma and allergic diseases are among the common causes of morbidity and mortality globally. Various environmental pollutants are linked to the development of asthma and allergic diseases. Evidence on the role of oxidative stress and immune markers in the association of environmental pollutants with asthma and allergy is scant. We examined cross-sectional associations between environmental pollutants and asthma and allergy, investigated mixture effects and possible mediation by oxidative stress or immune markers. METHODS We used data from the Flemish Environment and Health Study 2016-2020 (FLEHS IV), including 409 adolescents aged 13-16 years. Fifty-four pollutants, including metals, phthalates, Di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH), bisphenols, currently used and legacy pesticides, flame retardants, per- and polyfluoroalkyl substances (PFAS), polyaromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) were analyzed. Outcomes were self-reported asthma, rhinitis, eczema, allergies, respiratory infection, and airway inflammation, measured through fractional exhaled nitric oxide (FeNO). Single pollutant models using multiple regression analysis and multipollutant models using Bayesian Kernel Machine Regression (BKMR) were fitted. As sensitivity analysis, Bayesian model averaging (BMA) and elastic net (ENET) models were also performed. For Bayesian models, posterior inclusion probabilities (PIP) were used to identify the most important chemicals. Mediation analysis was performed to investigate the role of oxidative stress, measured by urinary 8-hydroxy-2' -deoxyguanosine (8-OHdG), and immune markers (eosinophils, basophils, InterLeukin 8, InterLeukin 6, and Interferon-ᵧ in blood). RESULTS In single pollutant models, FeNO was significantly higher by 20% (95% CI: 6, 36%) and 13% (95% CI: 2, 25%) per interquartile range (IQR) fold in mono-n-butyl phthalate (MnBP) and mono-benzyl phthalate (MBzP), respectively. In BKMR analysis, the group PIPs indicated phthalates and DINCH as the most important group (group PIP = 0.509), with MnBP being the most important pollutant within that group (conditional PIP = 0.564; %change = 28%; 95%CI: 6, 54%). Similar patterns were observed in all multipollutant models. Eosinophil count mediated 37.8% (p = 0.018) and 27.9% (p = 0.045) of the association between MBzP and FeNO, and the association between MnBP and FeNO, respectively. 8-OHdG plays a significant mediating role in the association of 2,4-Dichlorophenoxyacetic acid (2,4-D) (55.4%), 3,5,6-Trichloro-2-pyridinol (TCPY) (48.1%), and 1-Naphthylamine (1-NAP) (32.7%) with rhinitis, while the total effects of these chemicals on rhinitis were not statistically significant. CONCLUSIONS This study found associations between phthalates, MnBP and MBzP, and elevated FeNO, which appeared to be mediated by eosinophil count. 8-OHdG plays a significant mediating role in the association between 2,4-D, TCPY, and 1-NAP with rhinitis, while their direct effects remain non-significant. Use of inflammatory and oxidative stress markers can enhance the understanding of inflammatory processes in asthma and allergic diseases due to environmental pollutants.
Collapse
Affiliation(s)
- Hamid Y Hassen
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium.
| | - Eva Govarts
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Sylvie Remy
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Bianca Cox
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway; Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Greet Schoeters
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Elly Den Hond
- Provincial Institute of Hygiene (PIH), Kronenburgstraa 45, 2000, Antwerpen, Belgium; Family Medicine and Population health, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Stefaan De Henauw
- Department of Public Health and Primary Care, Ghent university, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Liesbeth Bruckers
- BioStat, Data Science Institute, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Gudrun Koppen
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Veerle J Verheyen
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| |
Collapse
|
4
|
Oh Y, Hong SJ, Park YJ, Baek IH. Association between phthalate exposure and risk of allergic rhinitis in children: A systematic review and meta-analysis. Pediatr Allergy Immunol 2024; 35:e14230. [PMID: 39229646 DOI: 10.1111/pai.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
Phthalates are ubiquitous in diverse environments and have been linked to a myriad of detrimental health outcomes. However, the association between phthalate exposure and allergic rhinitis (AR) remains unclear. To address this knowledge gap, we conducted a systematic review and meta-analysis to comprehensively evaluate the relationship between phthalate exposure and childhood AR risk. We searched the Cumulative Index to Nursing and Allied Health Literature, Excerpta Medica Database, and PubMed to collect relevant studies and estimated pooled odds ratios (OR) and 95% confidence intervals (CI) for risk estimation. Ultimately, 18 articles, including seven cross-sectional, seven case-control, and four prospective cohort studies, were selected for our systematic review and meta-analysis. Our pooled data revealed a significant association between di-2-ethylhexyl phthalate (DEHP) exposure in children's urine and AR risk (OR = 1.188; 95% CI = 1.016-1.389). Additionally, prenatal exposure to combined phthalates and their metabolites in maternal urine was significantly associated with the risk of childhood AR (OR = 1.041; 95% CI = 1.003-1.081), although specific types of phthalates and their metabolites were not significant. Furthermore, we examined environmental phthalate exposure in household dust and found no significant association with AR risk (OR = 1.021; 95% CI = 0.980-1.065). Our findings underscore the potential hazardous effects of phthalates on childhood AR and offer valuable insights into its pathogenesis and prevention.
Collapse
Affiliation(s)
- Yeonghun Oh
- College of Pharmacy, Kyungsung University, Busan, Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Respiratory and Allergy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Joo Park
- College of Pharmacy, Kyungsung University, Busan, Korea
| | - In-Hwan Baek
- College of Pharmacy, Kyungsung University, Busan, Korea
- Functional Food & Drug Convergence Research Center, Industry-Academic Cooperation Foundation, Kyungsung University, Busan, Korea
| |
Collapse
|
5
|
Li X, Li Z, Ye J, Ye W. Association Between Urinary Phthalate Metabolites and Chronic Obstructive Pulmonary Disease: A Cross-Sectional Study. Int J Chron Obstruct Pulmon Dis 2024; 19:1421-1431. [PMID: 38948906 PMCID: PMC11212814 DOI: 10.2147/copd.s459435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024] Open
Abstract
Objective To determine the association of urinary phthalate metabolites with chronic obstructive pulmonary disease (COPD), airflow obstruction, lung function and respiratory symptoms. Methods Our study included a total of 2023 individuals aged ≥ 40 years old in the National Health and Nutrition Examination Survey (NHANES). Multivariate logistic regression was conducted to explore the correlation of eleven urinary phthalate metabolites (MCNP, MCOP, MECPP, MnBP, MCPP, MEP, MEHHP, MEHP, MiBP, MEOHP, and MBzP) with COPD, airflow obstruction and respiratory symptoms. Linear regression analyses were used to evaluate the relationship between urinary phthalate metabolites and lung function. Results When compared to the first tertile, the third tertile of MEHHP was associated with the risk of COPD [OR: 2.779; 95% confidence interval (CI): 1.129-6.840; P = 0.026]. Stratified analysis showed that MEHHP increased the risk of COPD by 7.080 times in male participants. Both MCPP and MBzP were positively correlated with the risk of airflow obstruction. The third tertile of MBzP increased the risk of cough by 1.545 (95% CI: 1.030-2.317; P = 0.035) times. Both FEV1 and FVC were negatively associated with MEHHP, MECPP, MnBP, MEP, MiBP and MEOHP. Conclusion Higher levels of MEHHP are associated with increased risk of COPD, and lower measures of FEV1 and FVC. MBzP is positively related to airflow obstruction and cough.
Collapse
Affiliation(s)
- Xuefang Li
- Department of Infectious Diseases, Zhejiang Hospital, Hangzhou, People’s Republic of China
| | - Zhijun Li
- Department of Respiratory Diseases, Zhejiang Hospital, Hangzhou, People’s Republic of China
| | - Jian Ye
- Department of Respiratory Diseases, Zhejiang Hospital, Hangzhou, People’s Republic of China
| | - Wu Ye
- Department of Respiratory Diseases, Zhejiang Hospital, Hangzhou, People’s Republic of China
| |
Collapse
|
6
|
Yu Y, Wang JQ. Phthalate exposure and lung disease: the epidemiological evidences, plausible mechanism and advocacy of interventions. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:37-45. [PMID: 36151703 DOI: 10.1515/reveh-2022-0077] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Phthalates are a kind of synthetic plasticizers, which extensively used as plastic productions to improve their plasticity and flexibility. However, exposure to phthalates has been proved an increased risk of respiratory disease, because by they affect the development and functions of the lung and immune system. Here, we attempt to review respiratory health of phthalate exposure. Firstly, we describe the relationship between phthalates and lung function and airway inflammation. Then, the role of phthalates in asthma, lung cancer, rhinitis, and respiratory tract infections and the possible mechanisms of action are discussed. Finally, possible effective measures to reduce exposure to phthalates are proposed, and health care workers are called upon to provide educational resources and advocate for informed public health policies. Overall, the evidence for association between phthalate exposure and respiratory disease is weak and inconsistent. Therefore, thorough implementation in large populations is needed to produce more consistent and robust results and to enhance the overall understanding of the potential respiratory health risks of phthalate in long-term exposure.
Collapse
Affiliation(s)
- Yun Yu
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Jian Qing Wang
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
7
|
Shah A, Miller RL. Synthetic Chemicals: What We Have Learned and Still Need to Learn About Their Associations with Childhood Allergy and Asthma. Curr Environ Health Rep 2023; 10:459-468. [PMID: 37770759 PMCID: PMC11836913 DOI: 10.1007/s40572-023-00411-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
PURPOSE OF REVIEW Prenatal and childhood exposure to synthetic chemicals, such as phenols and phthalates, have been linked to asthma and allergy, but the extent of this association and the underlying mechanisms are not fully understood. Here we provide an up-to-date review of the evidence linking phenol and phthalate exposure with childhood asthma and allergy and of proposed mechanistic pathways. RECENT FINDINGS Five experimental and 12 epidemiological studies that examined associations between exposures to synthetic chemicals to asthma and allergic diseases were included. An additional 14 studies provided mechanistic support for the importance of immune modification through epigenetic regulation, induction of pro-allergic T2 expression, and endocrine disruption. While recent studies have provided further experimental and epidemiological evidence for how these chemical exposures may induce childhood asthma and allergy, the recent literature remains limited. However, emerging mechanistic studies have identified chemical-induced alterations in DNA methylation of genes implicated in allergic inflammation and endocrine disruption as potential pathways. In addition, barriers to decrease exposure to synthetic chemicals at the individual level (facilitated through education) and areas for further action at the organizational and governmental levels are suggested. The latter includes transferring some of the onus from the individual to organizations and legislation to restrict marketing and access to products containing potentially harmful chemicals and provide alternative products. We also suggest future research that focuses on further elucidating pathways between exposure to disease development and identifying strategies to reduce exposure at the population level.
Collapse
Affiliation(s)
- Ami Shah
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Rachel L Miller
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
8
|
Song X, Wang C, He H, Peng M, Hu Q, Wang B, Tang L, Yu F. Association of phthalate exposure with pulmonary function in adults: NHANES 2007-2012. ENVIRONMENTAL RESEARCH 2023; 237:116902. [PMID: 37625539 DOI: 10.1016/j.envres.2023.116902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/03/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Epidemiological evidence for the adverse effect of phthalate exposure on respiratory health is on the rise, but cross-sectional studies regarding its effects on lung function are limited and contradictory, especially in adults. OBJECTIVE To assess the associations between individual and a mixture of urinary phthalate metabolites and adult pulmonary function in the United States, and to identify which ones were primarily responsible for impaired respiratory function. METHODS We obtained a cross-sectional data on 3788 adults aged 20 years and older from the National Health and Nutrition Examination Survey (2007-2012). Respiratory function was evaluated using spirometry, and phthalate exposure was assessed by measuring the levels of ten urinary phthalate metabolites. The effects of individual and mixed phthalate metabolites exposure on lung function were assessed using multivariate linear regression models and the repeated holdout weighted quantile sum (WQS) regression models, respectively, after adjusting for potential confounders including age, gender, family poverty income ratio, body mass index, and serum cotinine. RESULTS When modeled as continuous variables or quantiles, urinary phthalate metabolites, including mono-ethyl phthalate (MEP), mono-n-butyl phthalate, mono-iso-butyl phthalate, mono-benzyl phthalate, mono-(2-ethyl-5-oxohexyl) phthalate, mono-(2-ethyl-5-hydroxyhexyl) phthalate, mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-(3-carboxypropyl) phthalate, and mono-carboxyoctyl phthalate, were identified to be negatively associated with forced vital capacity in percent predicted values (ppFVC) and forced expiratory volume in the first second in percent predicted values (ppFEV1). In addition, per each decile increase in the WQS index, ppFVC (β = -2.87, 95% CI: -3.56, -2.08) and ppFEV1 (β = -2.53, 95% CI: -3.47, -1.54) declined significantly, primarily due to the contribution of MEP and MECPP. Furthermore, there were no significant interactions between co-exposure to urinary phthalate metabolites and each covariate. CONCLUSION Our findings reveal that urinary phthalate metabolites are significantly associated with adult respiratory decrements, with diethyl and di-(2-ethylhexyl) phthalate contributing the most to the impaired lung function.
Collapse
Affiliation(s)
- Xinli Song
- School of Public Health, Institute of Child and Adolescent Health, Peking University, Beijing, China; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Cheng Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hao He
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Muyun Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qikang Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bin Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lei Tang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
9
|
Shen J, Wang Y, Zhou S, Tang M, Li M, Han R, Fei G, Wang R. Association between urinary phthalate metabolites and chronic obstructive pulmonary disease incidence in US adults: results from NHANES 2007-2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113026-113038. [PMID: 37848781 DOI: 10.1007/s11356-023-30334-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Despite associations between urinary phthalates and respiratory symptoms and disorders have been investigated, knowledge about their impact on COPD incidence remains limited. Using data of 8242 adults (aged 20-80 years) from the 2007-2018 National Health and Nutrition Examination Survey (NHANES), the association of mixed urinary phthalate metabolites with COPD incidence was evaluated. Among them, 789 were COPD patients, and the rest were non-COPD participants. In the single-pollutant models, a variety of phthalate metabolites were identified as independent positive factors for COPD incidence, including mono-(carboxynonyl) phthalate (MCNP), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-n-butyl phthalate (MnBP), mono-(3-carboxylpropyl) phthalate (MCPP), mono-ethyl phthalate (MEP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono-benzyl phthalate (MBzP). Multi-pollutant models, including weighted quantile sum (WQS) regression, quantile-based g computation (qgcomp), and Bayesian kernel machine regression (BKMR) approaches consistently revealed the positive association between phthalates co-exposure and COPD incidence, and MCPP was recognized as the dominant positive driver. The positive association was more evident in the youth group and the male group. The interactions between certain phthalate metabolites in COPD were also observed. Given the limitations of the cross-sectional design of NHANES study, well-designed longitudinal studies are needed to verify or disprove these findings.
Collapse
Affiliation(s)
- Jiran Shen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yue Wang
- Department of Infectious Disease, Hefei Second People's Hospital, Hefei, 230001, China
| | - Sijing Zhou
- Department of Occupational Disease, Hefei Third Clinical College of Anhui Medical University, Hefei, 230022, China
| | - Min Tang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Min Li
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Rui Han
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Guanghe Fei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
10
|
Karmaus W, Kheirkhah Rahimabad P, Pham N, Mukherjee N, Chen S, Anthony TM, Arshad HS, Rathod A, Sultana N, Jones AD. Association of Metabolites, Nutrients, and Toxins in Maternal and Cord Serum with Asthma, IgE, SPT, FeNO, and Lung Function in Offspring. Metabolites 2023; 13:737. [PMID: 37367895 DOI: 10.3390/metabo13060737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
The role of metabolites, nutrients, and toxins (MNTs) in sera at the end of pregnancy and of their association with offspring respiratory and allergic disorders is underexplored. Untargeted approaches detecting a variety of compounds, known and unknown, are limited. In this cohort study, we first aimed at discovering associations of MNTs in grandmaternal (F0) serum with asthma, immunoglobulin E, skin prick tests, exhaled nitric oxide, and lung function parameters in their parental (F1) offspring. Second, for replication, we tested the identified associations of MNTs with disorders in their grandchildren (F2-offspring) based on F2 cord serum. The statistical analyses were sex-stratified. Using liquid chromatography/high-resolution mass spectrometry in F0, we detected signals for 2286 negative-ion lipids, 59 positive-ion lipids, and 6331 polar MNTs. Nine MNTs (one unknown MNT) discovered in F0-F1 and replicated in F2 showed higher risks of respiratory/allergic outcomes. Twelve MNTs (four unknowns) constituted a potential protection in F1 and F2. We recognized MNTs not yet considered candidates for respiratory/allergic outcomes: a phthalate plasticizer, an antihistamine, a bile acid metabolite, tryptophan metabolites, a hemiterpenoid glycoside, triacylglycerols, hypoxanthine, and polyphenol syringic acid. The findings suggest that MNTs are aspirants for clinical trials to prevent adverse respiratory/allergic outcomes.
Collapse
Affiliation(s)
- Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Parnian Kheirkhah Rahimabad
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Ngan Pham
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Nandini Mukherjee
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Su Chen
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198-4375, USA
| | - Thilani M Anthony
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Hasan S Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight PO30 5TG, UK
| | - Aniruddha Rathod
- Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nahid Sultana
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - A Daniel Jones
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
11
|
Quirós-Alcalá L, Belz DC, Woo H, Lorizio W, Putcha N, Koehler K, McCormack MC, Hansel NN. A cross sectional pilot study to assess the role of phthalates on respiratory morbidity among patients with chronic obstructive pulmonary disease. ENVIRONMENTAL RESEARCH 2023; 225:115622. [PMID: 36894111 PMCID: PMC10580394 DOI: 10.1016/j.envres.2023.115622] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) affects ∼16 million U.S. adults. Phthalates, synthetic chemicals in consumer products, may adversely impact pulmonary function and airway inflammation; however, their role on COPD morbidity remains unknown. OBJECTIVE We examined associations between phthalate exposures and respiratory morbidity among 40 COPD patients who were former smokers. METHODS We quantified 11 phthalate biomarkers in urine samples collected at baseline in a 9-month prospective cohort study in Baltimore, Maryland. COPD baseline morbidity measures included: health status and quality of life measures (CAT: COPD Assessment Test, CCQ: Clinical COPD Questionnaire, SGRQ: St. George's Respiratory Questionnaire; mMRC: Modified Medical Research Council Dyspnea Scale), and lung function. Information on prospective exacerbation data was monitored monthly during the 9-month longitudinal follow-up period. To examine associations between morbidity measures and phthalate exposures, we used multivariable linear and Poisson regression models for continuous and count outcomes, respectively, adjusting for age, sex, race/ethnicity, education, and smoking pack-years. RESULTS Higher mono-n-butyl phthalate (MBP) concentrations were associated with increased CAT(β, 2.41; 95%CI, 0.31-4.51), mMRC (β, 0.33; 95%CI 0.11-0.55), and SGRQ (β, 7.43; 95%CI 2.70-12.2) scores at baseline. Monobenzyl phthalate (MBzP) was also positively associated with CCQ and SGRQ scores at baseline. Higher concentrations of the molar sum of Di (2-ethylhexyl) phthalate (DEHP) were associated with increased incidence of exacerbations during the follow-up period (incidence rate ratio, IRR = 1.73; 95%CI 1.11, 2.70 and IRR = 1.94; 95%CI 1.22, 3.07, for moderate and severe exacerbations, respectively). MEP concentrations were inversely associated with incidence of exacerbations during the follow-up period. CONCLUSIONS We found that exposure to select phthalates was associated with respiratory morbidity among COPD patients. Findings warrant further examination in larger studies given widespread phthalate exposures and potential implications for COPD patients should relationships observed be causal.
Collapse
Affiliation(s)
- Lesliam Quirós-Alcalá
- Department of Environmental Health & Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Daniel C Belz
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Han Woo
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wendy Lorizio
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kirsten Koehler
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meredith C McCormack
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Strømmen K, Lyche JL, Moltu SJ, Müller MHB, Blakstad EW, Brække K, Sakhi AK, Thomsen C, Nakstad B, Rønnestad AE, Drevon CA, Iversen PO. Estimated daily intake of phthalates, parabens, and bisphenol A in hospitalised very low birth weight infants. CHEMOSPHERE 2022; 309:136687. [PMID: 36206919 DOI: 10.1016/j.chemosphere.2022.136687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Very low birth weight infants (VLBW, birth weight (BW) < 1500 g) are exposed to phthalates, parabens and bisphenol A (BPA) early in life. We estimated daily intake (EDI) of these excipients in 40 VLBW infants the first and fifth week of life while hospitalised. Based on urinary samples collected in 2010, EDI was calculated and compared to the tolerable daily intake (TDI) with hazard quotients (HQs) evaluated. A HQ > 1 indicates that EDI exceeded TDI with increased risk of adverse health effects. EDI was higher in VLBW infants compared to term-born infants and older children. VLBW infants born at earlier gestational age (GA), or with lower BW, had higher EDI than infants born at later GA or with higher BW. First week median EDI for BPA was higher than TDI in 100% of infants, in 75% for di(2-ethylhexyl) phthalate (DEHP), 90% for the sum of butyl benzyl phthalate (BBzP), di-n-butyl phthalate (DnBP), DEHP and di-iso-nonyl phthalate (DiNP) = ∑BBzP+DnBP+DEHP+DiNP, and in 50% of infants for propylparaben (PrPa), indicating increased risk of adverse effects. Fifth week EDI remained higher than TDI in all infants for BPA, in 75% for DEHP and ∑BBzP+DnBP+DEHP+DiNP, and 25% of infants for PrPa, indicating prolonged risk. Maximum EDI for di-iso-butyl phthalate was higher than TDI suggesting risk of adverse effects at maximum exposure. VLBW infants born earlier than 28 weeks GA had higher EDI, above TDI, for PrPa compared to infants born later than 28 weeks GA. Infants with late-onset septicaemia (LOS) had higher EDI for DEHP, ∑BBzP+DnBP+DEHP+DiNP and BPA, above TDI, compared to infants without LOS. More 75% of the infants' EDI for DEHP and ∑BBzP+DnBP+DEHP+DiNP, 25% for PrPa, and 100% of infants' EDI for BPA, were above TDI resulting in HQs > 1, indicating increased risk of adverse health effects.
Collapse
Affiliation(s)
- Kenneth Strømmen
- Division of Paediatric and Adolescent Medicine, Department of Neonatal Intensive Care, Rikshospitalet, Oslo University Hospital, Norway.
| | - Jan Ludvig Lyche
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Science, Oslo, Norway
| | - Sissel Jennifer Moltu
- Division of Paediatric and Adolescent Medicine, Department of Neonatal Intensive Care, Ullevål, Oslo University Hospital, Norway
| | - Mette H B Müller
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Science, Oslo, Norway
| | - Elin Wahl Blakstad
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital and Institute for Clinical Medicine, Campus Ahus, University of Oslo, Nordbyhagen, Norway
| | - Kristin Brække
- Division of Paediatric and Adolescent Medicine, Department of Neonatal Intensive Care, Ullevål, Oslo University Hospital, Norway
| | | | | | - Britt Nakstad
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital and Institute for Clinical Medicine, Campus Ahus, University of Oslo, Nordbyhagen, Norway; Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Arild Erlend Rønnestad
- Division of Paediatric and Adolescent Medicine, Department of Neonatal Intensive Care, Rikshospitalet, Oslo University Hospital, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway
| | - Per Ole Iversen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; Department of Haematology, Oslo University Hospital, Norway
| |
Collapse
|
13
|
Bosch de Basea M, Carsin AE, Abellan A, Cobo I, Lertxundi A, Marin N, Soler-Blasco R, Ibarluzea J, Vrijheid M, Sunyer J, Casas M, Garcia-Aymerich J. Gestational phthalate exposure and lung function during childhood: A prospective population-based study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119833. [PMID: 35931390 DOI: 10.1016/j.envpol.2022.119833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The potential effect of gestational exposure to phthalates on the lung function levels during childhood is unclear. Therefore, we examined this association at different ages (from 4 to 11 years) and over the whole childhood. Specifically, we measured 9 phthalate metabolites (MEP, MiBP, MnBP, MCMHP, MBzP, MEHHP, MEOHP, MECPP, MEHP) in the urine of 641 gestating women from the INMA study (Spain) and the forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1) and FEV1/FVC in their offspring at ages 4, 7, 9 and 11. We used linear regression and mixed linear regression with a random intercept for subject to assess the association between phthalates and lung function at each study visit and for the overall childhood, respectively. We also assessed the phthalate metabolites mixture effect on lung function using a Weighted Quantile Sum (WQS) regression. We observed that the phthalate metabolites gestational levels were consistently associated with lower FVC and FEV1 at all ages, both when assessed individually and jointly as a mixture, although most associations were not statistically significant. Of note, a 10% increase in MiBP was related to lower FVC (-0.02 (-0.04, 0)) and FEV1 z-scores (-0.02 (-0.04, -0.01) at age 4. Similar significant reductions in FVC were observed at ages 4 and 7 associated with an increase in MEP and MnBP, respectively, and for FEV1 at age 4 associated with an increase in MBzP. WQS regression consistently identified MBzP as an important contributor to the phthalate mixture effect. We can conclude that the gestational exposure to phthalates was associated with children's lower FVC and FEV1, especially in early childhood, and in a statistically significant manner for MEP, MiBP, MBzP and MnBP. Given the ubiquity of phthalate exposure and its established endocrine disrupting effects in children, our findings support current regulations that limit phthalate exposure.
Collapse
Affiliation(s)
- Magda Bosch de Basea
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Anne-Elie Carsin
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; IMIM, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Alicia Abellan
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona. Spain
| | - Inés Cobo
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Aitana Lertxundi
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; BIODONOSTIA Health Research Institute, Environmental Epidemiology and Child Development Group, San Sebastian, Spain; Faculty of Medicine and Nursery of the University of the Basque Country (UPV-EHU), Leioa, Spain
| | - Natalia Marin
- Epidemiology and Environmental Health Joint Research Unit, FISABIO -Universitat Jaume I - Universitat de València, Valencia, Spain
| | - Raquel Soler-Blasco
- Epidemiology and Environmental Health Joint Research Unit, FISABIO -Universitat Jaume I - Universitat de València, Valencia, Spain
| | - Jesús Ibarluzea
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; BIODONOSTIA Health Research Institute, Environmental Epidemiology and Child Development Group, San Sebastian, Spain; Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain; Faculty of Psychology of the University of the Basque Country (UPV-EHU), San Sebastian, Spain
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Sunyer
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; IMIM, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Maribel Casas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Judith Garcia-Aymerich
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
14
|
Wu Y, Song J, Li Y, Jin X, Liang Y, Qin W, Yi W, Pan R, Yan S, Sun X, Mei L, Song S, Cheng J, Su H. Association between exposure to a mixture of metals, parabens, and phthalates and fractional exhaled nitric oxide: A population-based study in US adults. ENVIRONMENTAL RESEARCH 2022; 214:113962. [PMID: 35940230 DOI: 10.1016/j.envres.2022.113962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The effects of environmental endocrine-disrupting chemicals (EDCs) (e.g., phthalates) on fractional exhaled nitric oxide (FeNO) in children have received much attention. However, few studies evaluated this relationship in adults, and the previous studies have considered only a unitary exposure or a set of similar exposures instead of mixed exposures, which contain complicated interactions. We aimed to evaluate simultaneously the relationship between three types of EDCs (six phthalate metabolites and two parabens in urine, two heavy metals in blood) and FeNO (as a continuous variable) in adults. Data of adults aged ≥20 years from the National Health and Nutrition Examination Survey (NHANES, 2007-2012) were collected and analyzed. The generalized linear (GLM) regression model was used to explore the association of chemicals with FeNO. The combined effect of 10 chemicals on the overall association with FeNO was evaluated by the weighted quantile sum regression (WQS) model. In addition, The Bayesian kernel machine regression (BKMR) model was explored to investigate the interaction and joint effects of multiple chemicals with FeNO. Of the 3296 study participants ultimately included, among the GLMs, we found that mercury (Hg) (β = 0.84, 95%CI:0.32-1.36, FDR = 0.01) and methyl paraben (MPB) (β = 0.47, 95%CI:0.16-0.78, FDR = 0.015) were positively correlated with FeNO. In the WQS model, the combined effect of chemicals almost had a significantly positive association with FeNO and the top three contributors to the WQS index were Hg (40.2%), MECPP (22.1%), and MPB (19.3%). BKMR analysis showed that there may be interactions between MPB and Hg, Mono (carboxyoctyl) phthalate (MCOP) and Hg and the overall effect of the mixture showed a positive correlation with FeNO. In conclusion, our study strengthens the credibility of the view that EDCs can affect respiratory health. In the future, we should be particularly careful with products containing Hg, MECPP, MPB, and MEHP for the prevention of respiratory diseases.
Collapse
Affiliation(s)
- Yudong Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Yuxuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Xiaoyu Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Yunfeng Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Wei Qin
- Lu'an Municipal Center for Disease Control and Prevention, Lu'an, Anhui, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Shuangshuang Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Xiaoni Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Lu Mei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Shasha Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China.
| |
Collapse
|
15
|
Fandiño-Del-Rio M, Matsui EC, Peng RD, Meeker JD, Quirós-Alcalá L. Phthalate biomarkers and associations with respiratory symptoms and healthcare utilization among low-income urban children with asthma. ENVIRONMENTAL RESEARCH 2022; 212:113239. [PMID: 35405131 DOI: 10.1016/j.envres.2022.113239] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Phthalates are synthetic chemicals present in building materials, personal care products and other consumer goods. Limited studies link phthalates to pediatric asthma incidence; however, their effects on respiratory-related outcomes among those with pre-existing asthma remains unclear. OBJECTIVE We examined associations between phthalates and asthma symptoms, healthcare use, lung function, and lung inflammation among children with asthma. METHODS We collected repeated measures of urinary biomarkers for select phthalates and phthalate replacements (MBzP, MCINP, MCIOP, MCPP, MECPTP, MEHHTP, molar sum of DEHP biomarkers [MECPP, MEHHP, MEHP, MEOHP], MEP, MiBP, MnBP) and asthma symptoms, healthcare utilization, lung function, and inflammation among 148 predominantly low-income Black children (5-17 years) with persistent asthma every 3 months for one year. We used generalized estimating equations to assess associations between biomarker concentrations and asthma-related measures adjusting for age, sex, race/ethnicity, caregiver's education level, presence of smokers in the home, and season. We also considered co-exposures to other contaminants previously associated with asthma morbidity. RESULTS We observed consistent positive associations with individual DEHP biomarkers, the molar sum of DEHP, and BBzP with increased odds of asthma symptoms and with healthcare utilization (adjusted Odds Ratio for general asthma symptoms: ΣDEHP:1.49,95% Confidence Interval, CI:1.08-2.07; BBzP:1.34, CI:1.04-1.73). We observed similar associations between the DEHP phthalate replacement biomarker MEHHTP and most asthma symptoms evaluated; and with select low molecular weight phthalates (DiBP, DBP) and healthcare utilization. Results were similar when controlling for other environmental exposures (e.g., PM2.5, BPA). No associations were observed with lung function or inflammation, and overall, we did not observe consistent evidence of sexually dimorphic effects. CONCLUSION In the present study, we found evidence to suggest that exposure to select phthalates may be associated with asthma symptoms and healthcare utilization. These findings warrant confirmation given the high asthma burden and widespread and disparate phthalate exposures reported among select populations of color.
Collapse
Affiliation(s)
- Magdalena Fandiño-Del-Rio
- Johns Hopkins University, Bloomberg School of Public Health, Department of Environmental Health and Engineering, Baltimore, MD, USA.
| | | | - Roger D Peng
- Johns Hopkins University, Bloomberg School of Public Health, Department of Biostatistics, Baltimore, MD, USA.
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Lesliam Quirós-Alcalá
- Johns Hopkins University, Bloomberg School of Public Health, Department of Environmental Health and Engineering, Baltimore, MD, USA.
| |
Collapse
|
16
|
Babadi RS, Riederer AM, Sampson PD, Sathyanarayana S, Kavanagh TJ, Krenz JE, Andra SS, Kim-Schulze S, Jansen KL, Torres E, Perez A, Younglove LR, Tchong-French MI, Karr CJ. Longitudinal measures of phthalate exposure and asthma exacerbation in a rural agricultural cohort of Latino children in Yakima Valley, Washington. Int J Hyg Environ Health 2022; 243:113954. [PMID: 35588565 DOI: 10.1016/j.ijheh.2022.113954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 12/15/2022]
Abstract
Phthalates are a class of widely used synthetic chemicals found in commonly used materials and products. Epidemiological studies suggest phthalate exposure is associated with asthma outcomes, though most studies have not investigated phthalates as triggers of exacerbations in children diagnosed with asthma. This study used data from the Home Air in Agriculture Pediatric Intervention Trial (HAPI) to examine relationships between phthalate exposure and outcomes related to childhood asthma exacerbation. We used measures of phthalate metabolites and respiratory health measures including fractional exhaled nitric oxide (FENO), the Asthma Control Test (ACT), caregiver report of symptoms, and urinary leukotriene E4 (uLTE4) to estimate longitudinal associations using mixed effects models, adjusted for covariates. For 100% (i.e., doubling) increases in mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-2-ethylhexyl phthalate (MEHP), and mono-ethyl phthalate (MEP), concentrations of FENO increased by 8.7% (95% CI: 0.7-17.3), 7.2% (95% CI: 0.0-14.9), and 6.4% (95% CI: 0.0-13.3), respectively. All phthalate metabolites demonstrated associations with uLTE4, effect sizes ranging from an 8.7% increase in uLTE4 (95% CI: 4.3-12.5) for a 100% increase in MEHP to an 18.1% increase in uLTE4 (95% CI: 13.3-23.1) for a 100% increase in MNBP. In models of caregiver report of symptoms, no phthalate metabolites were significantly associated in primary models. No phthalate metabolites were associated with standardized ACT score. Our results suggest urinary phthalate metabolites are significant predictors of inflammatory biomarkers related to asthma exacerbation in children but not child and caregiver report of airway symptomatology.
Collapse
Affiliation(s)
- Ryan S Babadi
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA.
| | - Anne M Riederer
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Paul D Sampson
- Department of Statistics, University of Washington, Seattle, WA, 98195, USA
| | - Sheela Sathyanarayana
- Seattle Children's Research Institute, Seattle, WA, 98145, USA; Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Jennifer E Krenz
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Syam S Andra
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Seunghee Kim-Schulze
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Karen L Jansen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Elizabeth Torres
- Northwest Communities Education Center, Radio KDNA, Granger, WA, 98932, USA
| | - Adriana Perez
- Yakima Valley Farm Workers Clinic, Toppenish, WA, 98901, USA
| | - Lisa R Younglove
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Maria I Tchong-French
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Catherine J Karr
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA; Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
17
|
Zeng G, Zhang Q, Wang X, Wu KH. Urinary levels of Phthalate metabolite mixtures and pulmonary function in adolescents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118595. [PMID: 34843848 DOI: 10.1016/j.envpol.2021.118595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Although an association between urinary phthalate (PAE) metabolites and respiratory symptoms and diseases has been reported, knowledge regarding its effect on pulmonary function is limited, especially in adolescents. Using cross-sectional data from 1389 adolescents (aged 10-19 years) in the 2007-2012 National Health and Nutrition Examination Survey, the association of mixed urinary PAE metabolites with pulmonary function was evaluated using the weighted quantile sum. Moreover, multivariate linear regression was performed to investigate associations between each urinary PAE metabolite and pulmonary function indicators and to estimate the interaction effects between urinary PAE metabolites and demographic characteristics. We found that mixed urinary PAE metabolites were negatively associated with forced expiratory volume at the 1 s (FEV1, p < 0.001) and forced vital capacity (FVC, p = 0.008) levels. In individual PAE metabolite analyses, mono (carboxynonyl) pthalate (MCNP), mono-n-butyl pthalate (MnBP), mono-isobutyl pthalate (MiBP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) and mono-benzyl phthalate (MBzP) correlated negatively with both FVC and FEV1 values (Holm-Bonferroni corrected p < 0.05). Mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) was negatively associated with the FVC value. Significant interactions between sex and urinary MnBP or MBzP levels for the risk of FEV1 decrease in girls were found (p = 0.005), as was a significant interaction between sex and urinary MBzP level for the risk of FVC decline. Our findings suggest that higher PAE exposure is associated with respiratory dysfunction; the association is more pronounced among girls.
Collapse
Affiliation(s)
- Guowei Zeng
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Qi Zhang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Kai-Hong Wu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
18
|
Ahn K. The Detrimental Effects of Phthalates on Allergic Diseases. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:285-288. [PMID: 35557493 PMCID: PMC9110913 DOI: 10.4168/aair.2022.14.3.285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/20/2022]
Affiliation(s)
- Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Baek HS, Won HY, Kim JH, Ha EK, Jee HM, Shin YH, Kim MA, Han MY. Association of phthalate exposure and airway dysfunction with mediation by serum periostin. Pediatr Allergy Immunol 2021; 32:1681-1690. [PMID: 34291496 DOI: 10.1111/pai.13602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Phthalates can cause respiratory and immunological disorders. However, little is known about the role of serum periostin and YKL-40 levels in mediating the effects of phthalates. We investigated the mediating role of these biomarkers in the relationship between phthalates and airway dysfunction. METHODS A total of 487 children (aged 10-12 years old) were examined. Four high-molecular-weight phthalate (HMWP) [Σ4 HMWP] metabolites and 3 low-molecular-weight phthalate (LMWP) [Σ3 LMWP] metabolites in urine samples were measured. Serum periostin and YKL-40 levels were measured. Airway function was measured using impulse oscillometry. A mediation model was used to quantify the mediating effects of periostin and YKL-40 on airway dysfunction. RESULTS After adjustment for height, gender, BMI z-score, aeroallergen sensitization, secondary smoking, and vitamin D level, the level of urinary Σ3 LMWP metabolites was significantly associated with respiratory system resistance at 5 Hz (Rrs5; adjusted β: 0.020, 95% CI: 0.005-0.034; p = .010). The levels of urinary Σ4 HMWP and Σ3 LMWP metabolites were significantly associated with periostin level, but not with YKL-40 level. In addition, the periostin level was associated with Rrs5 (adjusted β: 0.048, 95% CI: 0.015-0.081; p = .005) and Rrs20-5 (adjusted β: 0.040, 95% CI: 0.011-0.069; p = .007). Serum periostin level had a significant effect in mediating the relationship between Σ3 LMWP and Rrs5 (13.9%, 95% CI: 10.7-77.0; p < .001). CONCLUSION Exposure to LMWPs was significantly associated with airway dysfunction, and this effect was partially attributable to increased serum periostin level.
Collapse
Affiliation(s)
- Hey Sung Baek
- Department of Pediatrics, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Ha Young Won
- Clinical Research Institute, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Ju Hee Kim
- Departments of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Eun Kyo Ha
- Department of Pediatrics, Kangnam Sacred Heart Hospital, Hallym University Medical Center, Seoul, Korea
| | - Hye Mi Jee
- Departments of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Youn Ho Shin
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Korea
| | - Mi-Ae Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Man Yong Han
- Departments of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
20
|
Wang J, Shi J, Zhao Y, Xue L, Li G, Wang B, Huang J, Wu S, Guo X. Cardiorespiratory responses in healthy young adults with exposure to indoor airborne PAEs: A randomized, crossover trial of air purification. ENVIRONMENT INTERNATIONAL 2021; 156:106761. [PMID: 34284317 DOI: 10.1016/j.envint.2021.106761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Phthalic acid esters (PAEs) are widely used as plasticizers in industrial process and consumer products. Nowadays, PAEs are ubiquitous in the environment and are reported to be associated with cardiorespiratory diseases. However, studies about the association between indoor airborne PAEs exposure and cardiorespiratory health were limited, and the potential biological mechanism remains under-recognized. METHODS A randomized crossover trial was conducted on 57 healthy young adults in Beijing. Repeated health measurements were performed under real and sham indoor air purification with a washout interval of at least 2 weeks. The concentration of indoor airborne PAEs were determined by gas chromatography-orbit ion trap mass spectrometry. Health indicators including blood pressure, lung function, airway inflammation, and circulating biomarkers reflecting blood coagulation and systematic oxidative stress were measured. Linear mixed-effect model was used to examine the between-treatment differences in health indicators, and three models including single-constituent, constituent-fine particulate matter (PM2.5) joint, and single-constituent residual model were used to estimate the association between indoor airborne PAEs and health indicators. RESULTS The indoor airborne PAEs were reduced effectively under real air purification. The total indoor airborne di-2-ethylhexyl phthalate (DEHP), bis (4-Methyl-2-pentyl) phthalate (DMPP), diphenyl phthalate (DPP), and diethyl phthalate (DEP) were identified to be most significantly associated with the increase of blood pressure and airway inflammation, and decrease of lung function. A doubling increase in DEHP, DMPP, DPP, DEP was associated with the increase of 17.2% (95% CI: 3.9%, 32.2%), 11.7% (95% CI: 3.5%, 20.6%), 7.0% (95% CI: 2.4%, 11.8%), 6.0% (95% CI: 1.8%, 10.4%) in FeNO, respectively, in single-constituent residual model. Significant associations between specific total indoor airborne PAEs and increased levels of health biomarkers including oxidized low-density lipoprotein (ox-LDL), 8-isoprostane (8-isoPGF2α), and soluble P-selectin (sP-selectin) were observed. CONCLUSION Indoor airborne PAEs may cause adverse cardiorespiratory health effects in young healthy adults, and indoor air purification could ameliorate the adverse cardiorespiratory effects.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Jiazhang Shi
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Yan Zhao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Lijun Xue
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Bin Wang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| |
Collapse
|
21
|
Sarigiannis DA, Papaioannou N, Handakas E, Anesti O, Polanska K, Hanke W, Salifoglou A, Gabriel C, Karakitsios S. Neurodevelopmental exposome: The effect of in utero co-exposure to heavy metals and phthalates on child neurodevelopment. ENVIRONMENTAL RESEARCH 2021; 197:110949. [PMID: 33716031 DOI: 10.1016/j.envres.2021.110949] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/27/2020] [Accepted: 02/25/2021] [Indexed: 05/22/2023]
Abstract
In this study, the exposome paradigm has been applied on a mother-child cohort adopting an optimised untargeted metabolomics approach for human urine followed by advanced bioinformatics analysis. Exposome-wide association algorithms were used to draw links between in utero co-exposure to metals and phthalates, metabolic pathways deregulation, and clinically observed phenotypes of neurodevelopmental disorders such as problems in linguistic, motor development and cognitive capacity. Children (n = 148) were tested at the first and second year of their life using the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). Their mothers had been exposed to metals and phthalates during the pregnancy, according to human biomonitoring results from previously performed studies. Untargeted metabolomics analysis of biobanked urine samples from the mothers was performed using a combination of the high throughput analytical methods liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR). Most perturbed metabolic pathways from co-exposure heavy metals and phthalates were pathways related to the tricarboxylic acid cycle (TCA cycle) and oxidative phosphorylation, indicating the possibility of disruption of mitochondrial respiration. Overproduction of reactive oxygen species (ROS); the presence of glutathione peroxidase 3 (GPx3) during pregnancy and presence of glutathione peroxidase 1 (GPx1) in the umbilical cord were linked to verbal development problems. Another finding of the study is that in real life, adverse outcomes occur as a combination of environmental and social factors, all of them acting synergistically towards the deployment of an observed phenotype. Finally, the two-steps association process (exposure to pathways and pathways to adverse outcomes) was able to (a) provide associations that are not evident by directly associating exposure to outcomes and (b) provides additional insides on the mechanisms of environmental disease.
Collapse
Affiliation(s)
- Denis A Sarigiannis
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10thkm Thessaloniki-Thermi Road, 57001, Greece; School for Advanced Study (IUSS), Science, Technology and Society Department, Environmental Health Engineering, Piazza Della Vittoria 15, Pavia, 27100, Italy.
| | - Nafsika Papaioannou
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10thkm Thessaloniki-Thermi Road, 57001, Greece
| | - Evangelos Handakas
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki, 54124, Greece
| | - Ourania Anesti
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10thkm Thessaloniki-Thermi Road, 57001, Greece; School of Medicine, University of Crete, Voutes, Heraklion, 71003, Greece
| | - Kinga Polanska
- Nofer Institute of Occupational Medicine, 91348, Lodz, Poland
| | - Woijcek Hanke
- Nofer Institute of Occupational Medicine, 91348, Lodz, Poland
| | - Athanasios Salifoglou
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Inorganic Chemistry Laboratory, University Campus, Thessaloniki, 54124, Greece
| | - Catherine Gabriel
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10thkm Thessaloniki-Thermi Road, 57001, Greece
| | - Spyros Karakitsios
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10thkm Thessaloniki-Thermi Road, 57001, Greece
| |
Collapse
|
22
|
Kim M, Yon DK, Jee HM, Kim JH, Park J, Lee SW, Sung M, Sheen YH, Han MY. Association of phthalates with nasal patency and small airway dysfunction in first-grade elementary school children. Allergy 2020; 75:2967-2969. [PMID: 32473031 DOI: 10.1111/all.14423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/03/2020] [Accepted: 05/21/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Mi‐Ae Kim
- Department of Pulmonology, Allergy and Critical Care Medicine CHA Bundang Medical Center CHA University Seongnam Korea
| | - Dong Keon Yon
- Department of Pediatrics CHA Bundang Medical Center CHA University School of Medicine Seongnam Korea
| | - Hye Mi Jee
- Department of Pediatrics CHA Bundang Medical Center CHA University School of Medicine Seongnam Korea
| | - Ju Hee Kim
- Department of Pediatrics CHA Bundang Medical Center CHA University School of Medicine Seongnam Korea
| | - Jisoo Park
- Department of Pulmonology, Allergy and Critical Care Medicine CHA Bundang Medical Center CHA University Seongnam Korea
| | - Seung Won Lee
- Department of Data Science Sejong University College of Software Convergence Seoul South Korea
| | - Myongsoon Sung
- Department of Pediatrics Soonchunyang University Gumi hospital Gumi Korea
| | - Youn Ho Sheen
- Department of Pediatrics CHA Gangnam Medical Center CHA University School of Medicine Seoul Korea
| | - Man Young Han
- Department of Pediatrics CHA Bundang Medical Center CHA University School of Medicine Seongnam Korea
| |
Collapse
|
23
|
Bølling AK, Sripada K, Becher R, Bekö G. Phthalate exposure and allergic diseases: Review of epidemiological and experimental evidence. ENVIRONMENT INTERNATIONAL 2020; 139:105706. [PMID: 32371302 DOI: 10.1016/j.envint.2020.105706] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Phthalates are among the most ubiquitous environmental contaminants and endocrine-disrupting chemicals. Exposure to phthalates and related health effects have been extensively studied over the past four decades. An association between phthalate exposure and allergic diseases has been suggested, although the literature is far from conclusive. This article reviews and evaluates epidemiological (n = 43), animal (n = 49), and cell culture studies (n = 42), published until the end of 2019, on phthalates and allergic diseases, such as asthma, rhinoconjunctivitis, and eczema. In contrast to earlier reviews, emphasis is placed on experimental studies that use concentrations with relevance for human exposure. Epidemiological studies provide support for associations between phthalate exposures and airway, nasal, ocular, and dermal allergic disease outcomes, although the reported significant associations tend to be weak and demonstrate inconsistencies for any given phthalate. Rodent studies support that phthalates may act as adjuvants at levels likely to be relevant for environmental exposures, inducing respiratory and inflammatory effects in the presence of an allergen. Cell culture studies demonstrate that phthalates may alter the functionality of innate and adaptive immune cells. However, due to limitations of the applied exposure methods and models in experimental studies, including the diversity of phthalates, exposure routes, and allergic diseases considered, the support provided to the epidemiological findings is fragmented. Nevertheless, the current evidence points in the direction of concern. Further research is warranted to identify the most critical windows of exposure, the importance of exposure pathways, interactions with social factors, and the effects of co-exposure to phthalates and other environmental contaminants.
Collapse
Affiliation(s)
| | - Kam Sripada
- Centre for Global Health Inequalities Research, Department of Sociology and Political Science, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Rune Becher
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Gabriel Bekö
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark; Faculty of Civil Engineering and Architecture, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
24
|
Wu W, Wu C, Ji C, Diao F, Peng J, Luo D, Mu X, Ruan X. Association between phthalate exposure and asthma risk: A meta-analysis of observational studies. Int J Hyg Environ Health 2020; 228:113539. [PMID: 32335495 DOI: 10.1016/j.ijheh.2020.113539] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Phthalates are ubiquitously found in numerous environments and have been related to a variety of adverse health effects. Previous studies have suggested that phthalate exposure is associated with asthma risk in humans; however, such findings are inconsistent. METHODS The aim of the present meta-analysis was to clarify the association between phthalate exposure and asthma risk. A literature search was conducted using PubMed, EMBASE and Web of Science for relevant studies published up to January 5, 2020. Fixed-effects or random-effects models were applied to combine the results, and several subgroup analyses were used to explore the sources of heterogeneity. RESULTS A total of 14 studies containing more than 14,000 participants were included in the present study. A positive, significant association between mono-benzyl phthalate (MBzP) levels and asthma risk was found, and the overall odds ratio (OR) was 1.17 (95% confidence interval [CI]: 1.06-1.28, P-value for overall effect [Pz] = 0.001), with a low heterogeneity (P-value for heterogeneity [Phet] = 0.193, I2 = 23.6%). The pooled ORs for mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) concentrations were 1.13 (95% CI: 1.03-1.24, Pz = 0.011) and 1.20 (95% CI: 1.00-1.42, Pz = 0.045), respectively. Children with high levels of MBzP or mono-(carboxynonyl) phthalate (MCNP) were suggested to have increased odds of asthma compared to older populations. In the subgroup analysis by study location, an increased risk for asthma in relation to levels of the sum of di-2-ethylhexyl phthalate (ΣDEHP) was observed in European studies (OR = 1.16, 95% CI: 1.00-1.34, Pz = 0.048) compared to Asia and North America. CONCLUSIONS Urinary levels of MBzP, MEHHP, MECPP, MCNP, and DEHP were positively related to asthma risk. No significant association was observed for the other phthalate metabolites in relation to asthma risk. Further research is needed to verify these findings and shed light on the molecular mechanism by which phthalates are associated with asthma.
Collapse
Affiliation(s)
- Weixiang Wu
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511443, China
| | - Chuangyan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cunwei Ji
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511443, China
| | - Fuqiang Diao
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511443, China
| | - Jinglun Peng
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511443, China
| | - Dan Luo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xiaoping Mu
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511443, China.
| | - Xiaolin Ruan
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511443, China.
| |
Collapse
|
25
|
Kwan WS, Nikezic D, Roy VAL, Yu KN. Multiple Stressor Effects of Radon and Phthalates in Children: Background Information and Future Research. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2898. [PMID: 32331399 PMCID: PMC7215282 DOI: 10.3390/ijerph17082898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
The present paper reviews available background information for studying multiple stressor effects of radon (222Rn) and phthalates in children and provides insights on future directions. In realistic situations, living organisms are collectively subjected to many environmental stressors, with the resultant effects being referred to as multiple stressor effects. Radon is a naturally occurring radioactive gas that can lead to lung cancers. On the other hand, phthalates are semi-volatile organic compounds widely applied as plasticizers to provide flexibility to plastic in consumer products. Links of phthalates to various health effects have been reported, including allergy and asthma. In the present review, the focus on indoor contaminants was due to their higher concentrations and to the higher indoor occupancy factor, while the focus on the pediatric population was due to their inherent sensitivity and their spending more time close to the floor. Two main future directions in studying multiple stressor effects of radon and phthalates in children were proposed. The first one was on computational modeling and micro-dosimetric studies, and the second one was on biological studies. In particular, dose-response relationship and effect-specific models for combined exposures to radon and phthalates would be necessary. The ideas and methodology behind such proposed research work are also applicable to studies on multiple stressor effects of collective exposures to other significant airborne contaminants, and to population groups other than children.
Collapse
Affiliation(s)
- W. S. Kwan
- Department of Physics, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong, China;
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong, China
| | - D. Nikezic
- Department of Mathematical Sciences, State University of Novi Pazar, Vuka Karadžića 9, RS-36300 Novi Pazar, Serbia;
- Faculty of Science, University of Kragujevac, R. Domanovica 12, 34000 Kragujevac, Serbia
| | | | - K. N. Yu
- Department of Physics, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong, China;
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong, China
| |
Collapse
|
26
|
Araki A, Ait Bamai Y, Bastiaensen M, Van den Eede N, Kawai T, Tsuboi T, Miyashita C, Itoh S, Goudarzi H, Konno S, Covaci A, Kishi R. Combined exposure to phthalate esters and phosphate flame retardants and plasticizers and their associations with wheeze and allergy symptoms among school children. ENVIRONMENTAL RESEARCH 2020; 183:109212. [PMID: 32058144 DOI: 10.1016/j.envres.2020.109212] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/12/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Phthalate esters and phosphate flame retardants and plasticizers (PFRs) are both used as plasticizers and are commonly detected in indoor environments. Although both phthalates and PFRs are known to be associated with children's wheeze and allergic symptoms, there have been no previous studies examining the effects of mixtures of these exposures. OBJECTIVES To investigate the association between exposure to mixtures of phthalate esters and PFRs, and wheeze and allergic symptoms among school-aged children. METHODS A total of 128 elementary school-aged children were enrolled. Metabolites of 3 phthalate esters and 7 PFRs were measured in urine samples. Parent-reported symptoms of wheeze, rhinoconjunctivitis, and eczema were evaluated using the International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire. In the primary model, we created a phthalate ester and PFR mixture exposure index, and estimated odds ratios (ORs) using weighted quantile sum (WQS) regression and quantile g (qg)-computation. The two highest chemicals according to qg-computation weight %s were combined to create a combination high × high exposure estimate, with ORs calculated using the "low × low" exposure group as the reference category. Concentrations of each metabolite were corrected by multiplying this value by the sex- and body size-Standardised creatinine concentration and dividing by the observed creatinine value. All models were adjusted for sex, grade, dampness index and annual house income. RESULTS The odds ratio of rhinoconjunctivitis for the association between exposure to chemical mixtures according to the WQS index positive models was; OR = 2.60 (95% confidence interval [CI]: 1.38-5.14). However, wheeze and eczema of the WQS index positive model, none of the WQS index negative models or qg-computation result yielded statistically significant results. Combined exposure to the two highest WQS weight %s of "high-high" ΣTCIPP and ΣTPHP was associated with an increased prevalence of rhino-conjunctivitis, OR = 5.78 (1.81-18.43) to the "low × low" group. CONCLUSIONS Significant associations of mixed exposures to phthalates and PFRs and increased prevalence of rhinoconjunctivitis was found among elementary school-aged children in the WQS positive model. Mixed exposures were not associated with any of allergic symptoms in the WQS negative model or qg-computation approach. However, the combined effects of exposure to two PFRs suggested an additive and/or multiplicative interaction, potentially increasing the prevalence of rhinoconjunctivitis. A further study with a larger sample size is needed to confirm these results.
Collapse
Affiliation(s)
- Atsuko Araki
- Hokkaido University, Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan
| | - Yu Ait Bamai
- Hokkaido University, Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan
| | - Michiel Bastiaensen
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Nele Van den Eede
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Toshio Kawai
- Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association, 2-3-8, Tosabori, Nishi-ku, Osaka, 550-0001, Japan
| | - Tazuru Tsuboi
- Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association, 2-3-8, Tosabori, Nishi-ku, Osaka, 550-0001, Japan
| | - Chihiro Miyashita
- Hokkaido University, Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan
| | - Sachiko Itoh
- Hokkaido University, Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan
| | - Houman Goudarzi
- Center for Medical Education and International Relations, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan; Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-0815, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-0815, Japan
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Reiko Kishi
- Hokkaido University, Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
27
|
Conrad L, Perzanowski MS. The Role of Environmental Controls in Managing Asthma in Lower-Income Urban Communities. Clin Rev Allergy Immunol 2020; 57:391-402. [PMID: 30903438 DOI: 10.1007/s12016-019-08727-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Children living in lower-income urban communities are at much greater risk of developing asthma, going to the emergency department for an asthma attack and being hospitalized for asthma than children living in upper- and middle-income communities. For many asthmatic children living in urban communities, especially those with greater morbidity, the allergic pathway is important in the etiology of the disease. The stages of developing allergic disease can be divided into the onset of allergic sensitization, development of allergic disease and subsequent exacerbations, and it is useful to consider the relevance of interventions at each of these stages. Indoor allergens and environmental exposures are a major contributor to allergic disease, particularly among lower socioeconomic status, urban, minority communities. These exposures include allergens, environmental tobacco smoke, combustion by-products, and mold, all of which can play an important role in asthma progression as well as morbidity. These exposures are often not found in isolation and thus these concomitant exposures need to be considered when conducting environmental interventions. There have been numerous studies looking at both primary and tertiary prevention strategies and the impact on allergic sensitization and asthma with varied results. While the outcomes of these studies have been mixed, what has emerged is the need for tertiary interventions to be targeted to the individual and to reduce all relevant exposures to which an asthmatic child is exposed and sensitized. In addition, effective intervention strategies must also consider other social determinants of asthma morbidity impacting low socioeconomic, urban communities.
Collapse
Affiliation(s)
- Laura Conrad
- Division of Pulmonology, Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Matthew S Perzanowski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 11th floor, New York, NY, 10032, USA.
| |
Collapse
|
28
|
Hassoun Y, James C, Bernstein DI. The Effects of Air Pollution on the Development of Atopic Disease. Clin Rev Allergy Immunol 2020; 57:403-414. [PMID: 30806950 DOI: 10.1007/s12016-019-08730-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Air pollution is defined as the presence of noxious substances in the air at levels that impose a health hazard. Thus, there has been long-standing interest in the possible role of indoor and outdoor air pollutants on the development of respiratory disease. In this regard, asthma has been of particular interest but many studies have also been conducted to explore the relationship between air pollution, allergic rhinitis, and atopic dermatitis. Traffic-related air pollutants or TRAP refers to a broad group of pollutants including elemental carbon, black soot, nitrogen dioxide (NO2), nitric oxide (NO), sulfur dioxide (SO2), particulate matter (PM2.5 and PM10), carbon monoxide (CO), and carbon dioxide (CO2). In this review, we aim to examine the current literature regarding the impact of early childhood exposure to TRAP on the development of asthma, allergic rhinitis, and atopic dermatitis. Although there is growing evidence suggesting significant associations, definitive conclusions cannot be made with regard to the effect of TRAP on these diseases. This conundrum may be due to a variety of factors, including different definitions used to define TRAP, case definitions under consideration, a limited number of studies, variation in study designs, and disparities between studies in consideration of confounding factors. Regardless, this review highlights the need for future studies to be conducted, particularly with birth cohorts that explore this relationship further. Such studies may assist in understanding more clearly the pathogenesis of these diseases, as well as other methods by which these diseases could be treated.
Collapse
Affiliation(s)
- Yasmin Hassoun
- Division of Immunology, Allergy, and Rheumatology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0563, USA
| | - Christine James
- Division of Immunology, Allergy, and Rheumatology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0563, USA
| | - David I Bernstein
- Division of Immunology, Allergy, and Rheumatology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0563, USA.
| |
Collapse
|
29
|
Hammel SC, Levasseur JL, Hoffman K, Phillips AL, Lorenzo AM, Calafat AM, Webster TF, Stapleton HM. Children's exposure to phthalates and non-phthalate plasticizers in the home: The TESIE study. ENVIRONMENT INTERNATIONAL 2019; 132:105061. [PMID: 31400598 PMCID: PMC7511177 DOI: 10.1016/j.envint.2019.105061] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Phthalates and their potential replacements, including non-phthalate plasticizers, are ubiquitous in home environments due to their presence in building materials, plastics, and personal care products. As a result, exposure to these compounds is universal. However, the primary pathways of exposure and understanding which products in the home are associated most strongly with particular exposures are unclear. OBJECTIVES We sought to investigate the relationships between phthalates and non-phthalate plasticizers in paired samples of house dust, hand wipes, and their corresponding metabolites in children's urine samples (n = 180). In addition, we compared product use or presence of materials in the household against all compounds to investigate the relationship between product use or presence and exposure. METHODS Children aged 3-6 years provided hand wipe and urine samples. Questionnaires were completed by mothers or legal guardians to capture product use and housing characteristics, and house dust samples were collected from the main living area during home visits. RESULTS Phthalates and non-phthalate replacements were detected frequently in the environmental matrices. All urine samples had at least 13 of 19 phthalate or non-phthalate replacement metabolites present. Hand wipe mass and dust concentrations of diisobutyl phthalate, benzyl butyl phthalate (BBP), bis(2-ethylhexyl) phthalate, and di-isononyl phthalate were significantly associated with their corresponding urinary metabolites (rs = 0.18-0.56, p < 0.05). Bis(2-ethylhexyl) terephthalate (DEHTP) in dust was also significantly and positively correlated with its urinary metabolites (rs = 0.33, p < 0.001). Vinyl flooring was most significantly and positively associated with particular phthalate exposures (indicated by concentrations in environmental matrices and urinary biomarkers). In particular, children who lived in homes with 100% vinyl flooring had urinary concentrations of monobenzyl phthalate, a BBP metabolite, that were 15 times higher than those of children who lived in homes with no vinyl flooring (p < 0.0001). Levels of BBP in hand wipes and dust were 3.5 and 4.5 times higher, respectively, in those homes with 100% vinyl flooring (p < 0.0001 for both). CONCLUSIONS This paper summarizes one of the most comprehensive phthalate and non-phthalate plasticizer investigation of potential residential exposure sources conducted in North America to date. The data presented herein provide evidence that dermal contact and hand-to-mouth behaviors are important sources of exposure to phthalates and non-phthalate plasticizers. In addition, the percentage of vinyl flooring is an important consideration when examining residential exposures to these compounds.
Collapse
Affiliation(s)
- Stephanie C Hammel
- Nicholas School of Environment, Duke University, Durham, NC, United States.
| | | | - Kate Hoffman
- Nicholas School of Environment, Duke University, Durham, NC, United States.
| | - Allison L Phillips
- Nicholas School of Environment, Duke University, Durham, NC, United States.
| | - Amelia M Lorenzo
- Nicholas School of Environment, Duke University, Durham, NC, United States.
| | - Antonia M Calafat
- Centers for Disease Control and Prevention, Atlanta, GA, United States.
| | - Thomas F Webster
- Boston University School of Public Health, Boston University, Boston, MA, United States.
| | - Heather M Stapleton
- Nicholas School of Environment, Duke University, Durham, NC, United States; Children's Health Discovery Initiative, Duke School of Medicine, NC, United States.
| |
Collapse
|
30
|
Kim YM, Kim J, Cheong HK, Jeon BH, Ahn K. Exposure to phthalates aggravates pulmonary function and airway inflammation in asthmatic children. PLoS One 2018; 13:e0208553. [PMID: 30557318 PMCID: PMC6296560 DOI: 10.1371/journal.pone.0208553] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/19/2018] [Indexed: 11/18/2022] Open
Abstract
Introduction Studies on the associations between phthalate exposures and respiratory outcomes are limited. We investigated the association of phthalates exposure with pulmonary function and airway inflammation in asthmatic children. Methods Fifty-six children with asthma living in Seoul Metropolitan Area, Korea aged 6–16 years were enrolled. Their pulmonary function including forced expiratory volume in 1 sec (FEV1) and peak expiratory flow rate (PEFR) were measured, and the fractional exhaled nitric oxide (FeNO) as a marker of airway inflammation was examined repeatedly up to four times during the study period. Urinary levels of mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), metabolites for di-(2-ethylhexyl) phthalate (DEHP), and mono-n-butyl phthalate (MnBP), a metabolite of di-n-butyl phthalate (DnBP), were also measured on the same days. The effects of phthalate metabolites on the respiratory symptoms were analyzed using linear mixed effect models with adjustment for potential cofounders. Results An increase in phthalate metabolites was associated with a decrease in pulmonary function and an increase in FeNO in asthmatic children. As one natural log-unit (ln-unit) levels of urinary MEHHP and MEOHP increased, FeNO levels on the same day increased by 19.47 ppb [95% confidence interval (CI): 9.28, 29.67] and 17.93 ppb (95% CI: 5.86, 30.01), respectively. An increases in the urinary level of MEHHP, MEOHP, and MnBP by one ln-unit was associated with a decrease in PEFR on the next day by 12.17 L/min (95% CI: 2.59, 21.74), 10.80 L/min (95% CI: 0.29, 21.32), and 13.65 L/min (95% CI: 5.07, 22.24), respectively. Conclusion Phthalates, especially DEHP, may worsen pulmonary function and airway inflammation in asthmatic children. To control asthma symptoms, exposure to phthalates needs to be avoided.
Collapse
Affiliation(s)
- Young-Min Kim
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jihyun Kim
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hae-Kwan Cheong
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Byoung-Hak Jeon
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Kangmo Ahn
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
31
|
Levy JI, Quirós-Alcalá L, Fabian MP, Basra K, Hansel NN. Established and Emerging Environmental Contributors to Disparities in Asthma and Chronic Obstructive Pulmonary Disease. CURR EPIDEMIOL REP 2018; 5:114-124. [PMID: 30319934 PMCID: PMC6178976 DOI: 10.1007/s40471-018-0149-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW Multiple respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD), display significant socioeconomic and racial/ethnic disparities. The objective of this review is to evaluate the evidence supporting a link between disproportionate environmental exposures and these health disparities. RECENT FINDINGS Studies suggest that various co-occurring factors related to the home environment, neighborhood environment, non-modifiable individual factors, and individual behaviors and attributes can increase or modify the risk of adverse respiratory outcomes among socioeconomically-disadvantaged and racially/ethnically diverse populations. Pollutants in the home environment, including particulate matter, nitrogen dioxide, and pesticides, are elevated among lower socioeconomic status populations and have been implicated in the development or exacerbation of respiratory-related conditions. Neighborhood crime and green space are socioeconomically patterned and linked with asthma outcomes through psychosocial pathways. Non-modifiable individual factors such as genetic predisposition cannot explain environmental health disparities but can increase susceptibility to air pollution and other stressors. Individual behaviors and attributes, including obesity and physical activity, contribute to worse outcomes among those with asthma or COPD. SUMMARY The root causes of these multifactorial exposures are complex, but many likely stem from economic forces and racial/ethnic and economic segregation that influence the home environment, neighborhood environment, and access to healthy foods and consumer products. Critical research needs include investigations that characterize exposure to and health implications of numerous stressors simultaneously, both to guard against potential confounding in epidemiological investigations and to consider the cumulative impact of multiple elevated environmental exposures and sociodemographic stressors on health disparities.
Collapse
Affiliation(s)
- Jonathan I. Levy
- Department of Environmental Health, Boston University School of Public Health
| | - Lesliam Quirós-Alcalá
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health; Division of Pulmonary & Critical Care Medicine, Johns Hopkins University
| | - M. Patricia Fabian
- Department of Environmental Health, Boston University School of Public Health
| | - Komal Basra
- Department of Environmental Health, Boston University School of Public Health
| | - Nadia N. Hansel
- Division of Pulmonary & Critical Care Medicine, Johns Hopkins University
| |
Collapse
|
32
|
Perovich LJ, Ohayon JL, Cousins EM, Morello-Frosch R, Brown P, Adamkiewicz G, Brody JG. Reporting to parents on children's exposures to asthma triggers in low-income and public housing, an interview-based case study of ethics, environmental literacy, individual action, and public health benefits. Environ Health 2018; 17:48. [PMID: 29784007 PMCID: PMC5963109 DOI: 10.1186/s12940-018-0395-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/11/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Emerging evidence about the effects of endocrine disruptors on asthma symptoms suggests new opportunities to reduce asthma by changing personal environments. Right-to-know ethics supports returning personal results for these chemicals to participants, so they can make decisions to reduce exposures. Yet researchers and institutional review boards have been reluctant to approve results reports in low-income communities, which are disproportionately affected by asthma. Concerns include limited literacy, lack of resources to reduce exposures, co-occurring stressors, and lack of models for effective reporting. To better understand the ethical and public health implications of returning personal results in low-income communities, we investigated parents' experiences of learning their children's environmental chemical and biomonitoring results in the Green Housing Study of asthma. METHODS The Green Housing Study measured indoor chemical exposures, allergens, and children's asthma symptoms in "green"-renovated public housing and control sites in metro-Boston and Cincinnati in 2011-2013. We developed reports for parents of children in the study, including results for their child and community. We observed community meetings where results were reported, and metro-Boston residents participated in semi-structured interviews in 2015 about their report-back experience. Interviews were systematically coded and analyzed. RESULTS Report-back was positively received, contributed to greater understanding, built trust between researchers and participants, and facilitated action to improve health. Sampling visits and community meetings also contributed to creating a positive study experience for participants. Participants were able to make changes in their homes, such as altering product use and habits that may reduce asthma symptoms, though some faced roadblocks from family members. Participants also gained access to medical resources, though some felt that clinicians were not responsive. Participants wanted larger scale change from government or industry and wanted researchers to leverage study results to achieve change. CONCLUSIONS Report-back on environmental chemical exposures in low-income communities can enhance research benefits by engaging residents with personally relevant information that informs and motivates actions to reduce exposure to asthma triggers. Ethical practices in research should support deliberative report-back in vulnerable communities.
Collapse
Affiliation(s)
- Laura J. Perovich
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA USA
- Silent Spring Institute, Newton, MA USA
| | - Jennifer Liss Ohayon
- Silent Spring Institute, Newton, MA USA
- Social Science Environmental Health Research Institute, Northeastern University, Boston, MA USA
| | - Elicia Mayuri Cousins
- Department of Sociology and Anthropology and Social Science Environmental Health Research Institute, Northeastern University, Boston, MA USA
| | - Rachel Morello-Frosch
- Department of Environmental Science, Policy and Management and School of Public Health, University of California, Berkeley, Berkeley, CA USA
| | - Phil Brown
- Social Science Environmental Health Research Institute, Northeastern University, Boston, MA USA
| | - Gary Adamkiewicz
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA USA
| | | |
Collapse
|
33
|
Lin LY, Tsai MS, Chen MH, Ng S, Hsieh CJ, Lin CC, Lu FL, Hsieh WS, Chen PC. Childhood exposure to phthalates and pulmonary function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:1282-1289. [PMID: 29751433 DOI: 10.1016/j.scitotenv.2017.08.318] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 06/08/2023]
Abstract
Phthalate exposure is related to the development of allergic diseases; however, studies regarding its effect on lung function are limited. Our study aims to identify an association between phthalate exposure at different ages and lung function in children at age 9 by conducting a cohort study. The Taiwan Birth Panel Study (TBPS) was established from April 2004 to January 2005. Urine samples were collected from children in the TBPS cohort at ages 2, 5, and 9years. Urinary phthalate metabolite concentrations were measured via ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry. Questionnaires, lung function tests and serum IgE levels were obtained from children at the age of 9. Multiple linear regressions adjusted for confounding factors were applied to investigate the associations between phthalate exposure at different ages and lung function at age 9. Our results demonstrate that in children with allergic diseases, a per log unit increase in the urinary phthalate metabolite mono-ethyl phthalate (MEP) concentration at age 9 was associated with a decreasing forced expiratory volume in 1 sec (FEV1) (β=-25.22; 95% CI: -47.53 to -2.91 per log ml/ln-μg/g cr) and forced vital capacity (FVC) (β=-32.3; 95% CI: -63.51 to -1.09 per log ml/ln-μg/g cr). For children with high serum IgE levels (>100kU/L) at age 9, the urinary MEP concentrations at the same age were negatively associated with the FEV1 (β=-30.4; 95% CI: -56.8 to -4.0 per log ml/ln-μg/g cr), FVC (β=-47.6; 95% CI: -84.2 to -11.0 per log ml/ln-μg/g cr) and peak expiratory flow (PEF) (β=-102.4; 95% CI: 180.2 to -24.7 per log ml/ln-μg/g cr). Phthalate exposure at ages 2 and 5 had little effect on lung function at age 9. Our study suggests that concurrent exposure to phthalates, such as MEP, is negatively associated with lung function in children. Further investigation is required to elaborate on this correlation.
Collapse
Affiliation(s)
- Liang-Yu Lin
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Meng-Shan Tsai
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Mei-Huei Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Pediatrics, National Taiwan University Hospital Yun-Lin Branch, Yunlin, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Sharon Ng
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Chia-Jung Hsieh
- Department of Public Health, Tzu Chi University, Hualian County, Taiwan
| | - Ching-Chun Lin
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Frank Leigh Lu
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Wu-Shiun Hsieh
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan; Department of Pediatrics, Cathy General Hospital, Taipei, Taiwan
| | - Pau-Chung Chen
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan; Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan.
| |
Collapse
|
34
|
Ginsberg GL, Belleggia G. Use of Monte Carlo analysis in a risk-based prioritization of toxic constituents in house dust. ENVIRONMENT INTERNATIONAL 2017; 109:101-113. [PMID: 28890219 DOI: 10.1016/j.envint.2017.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/07/2017] [Accepted: 06/10/2017] [Indexed: 06/07/2023]
Abstract
Many chemicals have been detected in house dust with exposures to the general public and particularly young children of potential health concern. House dust is also an indicator of chemicals present in consumer products and the built environment that may constitute a health risk. The current analysis compiles a database of recent house dust concentrations from the United States and Canada, focusing upon semi-volatile constituents. Seven constituents from the phthalate and flame retardant categories were selected for risk-based screening and prioritization: diethylhexyl phthalate (DEHP), butyl benzyl phthalate (BBzP), diisononyl phthalate (DINP), a pentabrominated diphenyl ether congener (BDE-99), hexabromocyclododecane (HBCDD), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tris(2-chloroethyl) phosphate (TCEP). Monte Carlo analysis was used to represent the variability in house dust concentration as well as the uncertainty in the toxicology database in the estimation of children's exposure and risk. Constituents were prioritized based upon the percentage of the distribution of risk results for cancer and non-cancer endpoints that exceeded a hazard quotient (HQ) of 1. The greatest percent HQ exceedances were for DEHP (cancer and non-cancer), BDE-99 (non-cancer) and TDCIPP (cancer). Current uses and the potential for reducing levels of these constituents in house dust are discussed. Exposure and risk for other phthalates and flame retardants in house dust may increase if they are used to substitute for these prioritized constituents. Therefore, alternative assessment and green chemistry solutions are important elements in decreasing children's exposure to chemicals of concern in the indoor environment.
Collapse
Affiliation(s)
- Gary L Ginsberg
- Department of Community Medicine, MPH Program, University of Connecticut Health Center School of Medicine, Farmington, CT, USA.
| | - Giuliana Belleggia
- Department of Community Medicine, MPH Program, University of Connecticut Health Center School of Medicine, Farmington, CT, USA
| |
Collapse
|
35
|
Andersen FA. Dibutyl, Dimethyl, and Diethyl Phthalate and Butyl Benzyl Phthalate. Int J Toxicol 2017; 36:44S-45S. [PMID: 29025342 DOI: 10.1177/1091581817716148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- F Alan Andersen
- 1 Former Director, Cosmetic Ingredient Review, Washington, DC, USA
| |
Collapse
|
36
|
Wang IJ, Karmaus WJJ. Oxidative Stress-Related Genetic Variants May Modify Associations of Phthalate Exposures with Asthma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14020162. [PMID: 28208751 PMCID: PMC5334716 DOI: 10.3390/ijerph14020162] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/30/2017] [Accepted: 02/04/2017] [Indexed: 12/12/2022]
Abstract
Background: Phthalate exposure may increase the risk of asthma. Little is known about whether oxidative-stress related genes may alter this association. First, this motivated us to investigate whether genetic polymorphisms of the oxidative-stress related genes glutathione S-transferase Mu 1 (GSTM1), glutathione S-transferase pi 1 (GSTP1), superoxide dismutase 2 (SOD2), catalase (CAT), myeloperoxidase (MPO), and EPHX1 in children are associated with phthalate urine concentrations. Second, we addressed the question whether these genes may affect the influence of phthalates on asthma. Methods: In a case-control study composed of 126 asthmatic children and 327 controls, urine phthalate metabolites (monoethyl phthalate (MEP), monobutyl phthalate (MBP), monobenzyl phthalate (MBzP), and mono(2-ethyl-5-hydroxyhexyl)phthalate (MEHHP) were measured by UPLC-MS/MS at age 3. Genetic variants were analyzed by TaqMan assay. Information on asthma and environmental exposures was also collected. Analyses of variance and logistic regressions were performed. Results: Urine MEHHP levels were associated with asthma (adjusted OR 1.33, 95% CI (1.11–1.60). Children with the GSTP1 (rs1695) AA and SOD2 (rs5746136) TT genotypes had higher MEHHP levels as compared to GG and CC types, respectively. Since only SOD2 TT genotype was significantly associated with asthma (adjusted OR (95% CI): 2.78 (1.54–5.02)), we estimated whether SOD2 variants modify the association of MEHHP levels and asthma. As MEHHP concentrations were dependent on GSTP1 and SOD2, but the assessment of interaction requires independent variables, we estimated MEHHP residuals and assessed their interaction, showing that the OR for SOD2 TT was further elevated to 3.32 (1.75–6.32) when the residuals of MEHHP were high. Conclusions: Urine phthalate metabolite concentrations are associated with oxidative-stress related genetic variants. Genetic variants of SOD2, considered to be reflect oxidative stress metabolisms, might modify the association of phthalate exposure with asthma.
Collapse
Affiliation(s)
- I-Jen Wang
- Department of Pediatrics, Taipei Hospital, Ministry of Health and Welfare, Taipei 11267, Taiwan.
- Institute of Environmental & Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei 100044, Taiwan.
- Department of Health Risk Management, China Medical University, Taichung 110001, Taiwan.
| | - Wilfried J J Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
37
|
Outcome reporting bias in observational epidemiology studies on phthalates. Ann Epidemiol 2016; 26:597-599.e4. [DOI: 10.1016/j.annepidem.2016.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 12/19/2022]
|
38
|
The Impact of Bisphenol A and Phthalates on Allergy, Asthma, and Immune Function: a Review of Latest Findings. Curr Environ Health Rep 2016; 2:379-87. [PMID: 26337065 DOI: 10.1007/s40572-015-0066-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, the impact of environmental exposure to chemicals and their immunological effects, including the development of allergy, has been a topic of great interest. Epidemiologic studies indicate that exposure to endocrine-disrupting chemicals produced in high volumes, including bisphenol A (BPA) and phthalates, is ubiquitous. The links between their exposure and the development of allergy, asthma, and immune dysfunction have been studied in vitro, in vivo, and through human cohort studies. The purpose of this review is to examine the current body of research and to highlight deficits and strengths of current findings. Emerging science indicates that deleterious immunologic changes, including increased propensity to develop wheeze, allergy, and asthma after dietary and inhalation exposure to these chemicals, may be occurring.
Collapse
|
39
|
Mamtani M, Curran JE, Blangero J, Kulkarni H. Association of Urinary Phthalates with Self-Reported Eye Affliction/Retinopathy in Individuals with Diabetes: National Health and Nutrition Examination Survey, 2001-2010. J Diabetes Res 2016; 2016:7269896. [PMID: 26798652 PMCID: PMC4698956 DOI: 10.1155/2016/7269896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 08/24/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023] Open
Abstract
Background. An epidemiological association between exposure to phthalates and type 2 diabetes (T2D) is known. However, the potential role of environmental phthalates in the complications of T2D is unknown. Methods. Using data from the National Health and Nutrition Examination Survey (NHANES) 2001-2010, we studied the association of 12 urinary phthalate metabolites with self-reported eye affliction/retinopathy in 1,004 participants with diabetes. Data from retinal imaging was used to validate this outcome. Independence of the phthalates→T2D association was studied by adjusting for age, sex, race, marital status, educational attainment, poverty income ratio, physical activity, glycated hemoglobin levels, total serum cholesterol, serum high-density lipoprotein cholesterol, serum triglycerides, blood pressure, duration of diabetes, total calorie intake, and obesity. Results. Self-reported eye affliction/retinopathy had 82% accuracy with Cohen's kappa of 0.31 (p < 0.001). Urinary mono-n-octyl phthalate (MOP) was independently associated with the likelihood of self-reported eye affliction/retinopathy in subjects with T2D after accounting for all the confounders. This significance of this association was robust to the potential misclassification in cases and controls of retinopathy. Further, a significant dose-response relationship between MOP and self-reported eye affliction/retinopathy was demonstrable. Conclusions. We show a novel epidemiological link between the environment and diabetic complications in NHANES 2001-2010 participants.
Collapse
Affiliation(s)
- Manju Mamtani
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
- *Manju Mamtani:
| | - Joanne E. Curran
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - Hemant Kulkarni
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| |
Collapse
|
40
|
Gong M, Weschler CJ, Liu L, Shen H, Huang L, Sundell J, Zhang Y. Phthalate metabolites in urine samples from Beijing children and correlations with phthalate levels in their handwipes. INDOOR AIR 2015; 25:572-81. [PMID: 25557639 DOI: 10.1111/ina.12179] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/21/2014] [Indexed: 05/23/2023]
Abstract
UNLABELLED Little attention has been paid to dermal absorption of phthalates even though modeling suggests that this pathway may contribute meaningfully to total uptake. We have concurrently collected handwipe and urine samples from 39 Beijing children (5-9 years) for the purpose of measuring levels of five phthalates in handwipes, corresponding concentrations of eight of their metabolites in urine, and to subsequently assess the contribution of dermal absorption to total uptake. In summer sampling, DEHP was the most abundant phthalate in handwipes (median: 1130 μg/m(2) ), while MnBP was the most abundant metabolite in urine (median: 232 ng/ml). We found significant associations between the parent phthalate in handwipes and its monoester metabolite in urine for DiBP (r = 0.41, P = 0.01), DnBP (r = 0.50, P = 0.002), BBzP (r = 0.48, P = 0.003), and DEHP (r = 0.36, P = 0.03). Assuming that no dermal uptake occurred under clothing-covered skin, we estimate that dermal absorption of DiBP, DnBP, BBzP, and DEHP contributed 6.9%, 4.6%, 6.9%, and 3.3%, respectively, to total uptake. Assuming that somewhat attenuated dermal uptake occurred under clothing-covered skin, these estimates increase to 19%, 14%, 17%, and 10%. The results indicate that absorption from skin surfaces makes a meaningful contribution to total phthalate uptake for children and should be considered in future risk assessments. PRACTICAL IMPLICATIONS This study indicates that children’s hands acquire substantial amounts of various phthalates. The levels measured in handwipes, although higher, are somewhat representative of levels on other body locations. Via dermal absorption, as well as hand-to-mouth activity, phthalates on hands and other body locations contribute to the overall body burden of these compounds. Dermal absorption from air and contact transfer from surfaces is expected to occur for many SVOCs commonly found indoors (e.g. bisphenols, synthetic musks, organophosphates). However, the dermal pathway has often been neglected in exposure assessments of indoor pollutants. Knowledge regarding phthalates and other SVOCs in handwipes can facilitate our understanding of risks and aid in the mitigation of adverse health effects resulting from indoor exposures. To make progress toward these goals, further studies are necessary, including investigations of phthalate level variability in skinwipes collected at different locations on the body and the impact of clothing on dermal absorption from air.
Collapse
Affiliation(s)
- M Gong
- Department of Building Science, Tsinghua University, Beijing, China
| | - C J Weschler
- Department of Building Science, Tsinghua University, Beijing, China
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - L Liu
- Institute of Urban Environment, Key Lab of Urban Environment Health, Chinese Academy of Sciences, Xiamen, China
| | - H Shen
- Institute of Urban Environment, Key Lab of Urban Environment Health, Chinese Academy of Sciences, Xiamen, China
| | - L Huang
- Department of Building Science, Tsinghua University, Beijing, China
| | - J Sundell
- Department of Building Science, Tsinghua University, Beijing, China
| | - Y Zhang
- Department of Building Science, Tsinghua University, Beijing, China
| |
Collapse
|
41
|
Just AC, Miller RL, Perzanowski MS, Rundle AG, Chen Q, Jung KH, Hoepner L, Camann DE, Calafat AM, Perera FP, Whyatt RM. Vinyl flooring in the home is associated with children's airborne butylbenzyl phthalate and urinary metabolite concentrations. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2015; 25:574-9. [PMID: 25690585 PMCID: PMC4540696 DOI: 10.1038/jes.2015.4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/17/2014] [Accepted: 12/07/2014] [Indexed: 05/02/2023]
Abstract
Prior studies have shown that vinyl flooring as well as the vinyl-softening plasticizers butylbenzyl phthalate (BBzP) and di(2-ethylhexyl) phthalate (DEHP) are associated with asthma and airway inflammation. Although DEHP exposure is primarily dietary, whether home vinyl flooring contributes to indoor air and urinary metabolite concentrations for these two phthalates is unclear. Exposures to BBzP and DEHP were examined in a prospective birth cohort of New York City children (n=239) using: (i) visual observation of potential phthalate containing flooring, (ii) a 2-week home indoor air sample, and (iii) concurrent urinary metabolites in a subset (n=193). The category "vinyl or linoleum" flooring was observed in 135 (56%) of monitored rooms; these rooms had statistically significantly higher indoor air geometric mean concentrations of BBzP (23.9 ng/m(3)) than rooms with wood or carpet flooring (10.6 ng/m(3)). Children from homes with "vinyl or linoleum" flooring also had significantly higher urinary BBzP metabolite concentrations than other children. Indoor air BBzP and urinary metabolite concentrations were correlated positively (Spearman's rho 0.40). By contrast, indoor air DEHP was not associated with flooring type nor with its urinary metabolite concentrations. Vinyl flooring in the home may be an important source of children's exposure to BBzP via indoor air.
Collapse
Affiliation(s)
- Allan C. Just
- Department of Environmental Health, Harvard School of Public Health, Harvard University, Boston, MA, USA
| | - Rachel L. Miller
- Columbia Center for Children’s Environmental Health, Columbia University, New York, NY, USA
- Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Matthew S. Perzanowski
- Columbia Center for Children’s Environmental Health, Columbia University, New York, NY, USA
| | - Andrew G. Rundle
- Columbia Center for Children’s Environmental Health, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Qixuan Chen
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Kyung Hwa Jung
- Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Lori Hoepner
- Columbia Center for Children’s Environmental Health, Columbia University, New York, NY, USA
| | | | - Antonia M. Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Frederica P. Perera
- Columbia Center for Children’s Environmental Health, Columbia University, New York, NY, USA
| | - Robin M. Whyatt
- Columbia Center for Children’s Environmental Health, Columbia University, New York, NY, USA
| |
Collapse
|
42
|
Frischer T. [Effects of outdoor pollutants on the respiratory health of children]. Wien Med Wochenschr 2015; 165:343-6. [PMID: 26335772 DOI: 10.1007/s10354-015-0380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/23/2015] [Indexed: 11/24/2022]
Abstract
The exposure against common air pollutants such as NO2, PM10 and SO2 has decreased in the last decades due to efforts of the EC to reduce emissions of industrial or traffic related origins. However, ozone exposure demonstrates an upward trend. New epidemiologic studies use geographical information systems for a more precise special and temporal categorisation of exposure. They show adverse effects of ultrafine particles as well as elemental carbon on the respiratory system of children. Children growing up next to busy traffic routes are most affected. Adverse effects include respiratory symptoms as well as a delay in lung growth. Intrauterine exposure against PM10 seems to effect lung function in newborns. There is a lack of data about other organic substances widely used in synthetic materials in the outdoor air such as phthalates or bisphenols, some studies show detrimental effects.
Collapse
Affiliation(s)
- Thomas Frischer
- Abteilung für Kinder- und Jugendheilkunde, Wilhelminenspital, Montleartstr. 37, 1160, Wien, Österreich.
| |
Collapse
|
43
|
Ferguson KK, McElrath TF, Mukherjee B, Loch-Caruso R, Meeker JD. Associations between Maternal Biomarkers of Phthalate Exposure and Inflammation Using Repeated Measurements across Pregnancy. PLoS One 2015; 10:e0135601. [PMID: 26317519 PMCID: PMC4552851 DOI: 10.1371/journal.pone.0135601] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/23/2015] [Indexed: 11/18/2022] Open
Abstract
Phthalate exposure is prevalent in populations worldwide, including pregnant women. Maternal urinary metabolite concentrations have been associated with adverse reproductive outcomes, but underlying mechanisms remain unclear. Here we investigate inflammation as a possible pathway by examining phthalates in association with inflammation biomarkers, including C-reactive protein (CRP) and a panel of cytokines (IL-1β, IL-6, IL-10, and TNF-α) in a repeated measures analysis of pregnant women (N = 480). Urinary phthalate metabolites and plasma inflammation biomarkers were measured from samples collected at up to four visits per subject during gestation (median 10, 18, 26, and 35 weeks). Associations were examined using mixed models to account for within-individual correlation of measures. Few statistically significant associations or clear trends were observed, although in full models mono-carboxypropyl phthalate (MCPP) was significantly (percent change with interquartile range increase in exposure [%Δ] = 8.89, 95% confidence interval [CI] = 3.28, 14.8), and mono-benzyl phthalate (MBzP) was suggestively (%Δ = 6.79, 95%CI = -1.21, 15.4) associated with IL-6. Overall these findings show little evidence of an association between phthalate exposure and peripheral inflammation in pregnant women. To investigate inflammation as a mechanism of phthalate effects in humans, biomarkers from target tissues or fluids, though difficult to measure in large-scale studies, may be necessary to detect effects.
Collapse
Affiliation(s)
- Kelly K. Ferguson
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, Michigan, United States of America
| | - Thomas F. McElrath
- Brigham and Women’s Hospital, Harvard Medical School, Division of Maternal-Fetal Medicine, Boston, Massachusetts, United States of America
| | - Bhramar Mukherjee
- University of Michigan School of Public Health, Department of Biostatistics, Ann Arbor, Michigan, United States of America
| | - Rita Loch-Caruso
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, Michigan, United States of America
| | - John D. Meeker
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
44
|
Smit LAM, Lenters V, Høyer BB, Lindh CH, Pedersen HS, Liermontova I, Jönsson BAG, Piersma AH, Bonde JP, Toft G, Vermeulen R, Heederik D. Prenatal exposure to environmental chemical contaminants and asthma and eczema in school-age children. Allergy 2015; 70:653-60. [PMID: 25753462 DOI: 10.1111/all.12605] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 02/01/2023]
Abstract
BACKGROUND Emerging evidence suggests that prenatal or early-life exposures to environmental contaminants may contribute to an increased risk of asthma and allergies in children. We aimed to the explore associations of prenatal exposures to a large set of environmental chemical contaminants with asthma and eczema in school-age children. METHODS We studied 1024 mother-child pairs from Greenland and Ukraine from the INUENDO birth cohort. Data were collected by means of an interview-based questionnaire when the children were 5-9 years of age. Questions from the ISAAC study were used to define asthma, eczema, and wheeze. We applied principal components analysis (PCA) to sixteen contaminants in maternal serum sampled during pregnancy, including perfluoroalkyl substances (PFASs), metabolites of diethylhexyl (DEHP) and diisononyl (DiNP) phthalates, PCB-153, and p,p'-DDE. Scores of five principal components (PCs) explaining 70% of the variance were included in multiple logistic regression models. RESULTS In a meta-analysis that included both populations, the PC2 score, reflecting exposure to DiNP, was negatively associated with current eczema (OR 0.71, 95% CI 0.52-0.96). Other associations were not consistent between the two populations. In Ukrainian children, the PC3 score (DEHP) was positively associated with current wheeze (adjusted OR 1.56, 95% CI 1.03-2.37), whereas the PC5 score, dominated by perfluorooctanoic acid (PFOA), was inversely associated with current wheeze (OR 0.64, 0.41-0.99). In Greenlandic children, a negative association of PC4 (organochlorines) with ever eczema (OR 0.78, 0.61-0.99) was found. CONCLUSIONS We found limited evidence to support a link between prenatal exposure to environmental chemical contaminants and childhood asthma and eczema.
Collapse
Affiliation(s)
- L. A. M. Smit
- IRAS; Division of Environmental Epidemiology; Utrecht University; Utrecht The Netherlands
| | - V. Lenters
- IRAS; Division of Environmental Epidemiology; Utrecht University; Utrecht The Netherlands
| | - B. B. Høyer
- Danish Ramazzini Centre; Department of Occupational Medicine; Aarhus University Hospital; Aarhus Denmark
| | - C. H. Lindh
- Division of Occupational and Environmental Medicine; Department of Laboratory Medicine; Lund University; Lund Sweden
| | - H. S. Pedersen
- Centre for Arctic Environmental Medicine; Dronning Ingrids Hospital; Nuuk Greenland
| | - I. Liermontova
- Department of Social Medicine and Organization of Public Health; Kharkiv National Medical University; Kharkiv Ukraine
| | - B. A. G. Jönsson
- Division of Occupational and Environmental Medicine; Department of Laboratory Medicine; Lund University; Lund Sweden
| | - A. H. Piersma
- Laboratory for Health Protection Research; National Institute for Public Health and the Environment (RIVM); Bilthoven The Netherlands
| | - J. P. Bonde
- Department of Occupational and Environmental Medicine; Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| | - G. Toft
- Danish Ramazzini Centre; Department of Occupational Medicine; Aarhus University Hospital; Aarhus Denmark
| | - R. Vermeulen
- IRAS; Division of Environmental Epidemiology; Utrecht University; Utrecht The Netherlands
| | - D. Heederik
- IRAS; Division of Environmental Epidemiology; Utrecht University; Utrecht The Netherlands
| |
Collapse
|
45
|
Ku HY, Su PH, Wen HJ, Sun HL, Wang CJ, Chen HY, Jaakkola JJK, Wang SL. Prenatal and postnatal exposure to phthalate esters and asthma: a 9-year follow-up study of a taiwanese birth cohort. PLoS One 2015; 10:e0123309. [PMID: 25875379 PMCID: PMC4395154 DOI: 10.1371/journal.pone.0123309] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 03/02/2015] [Indexed: 11/23/2022] Open
Abstract
Previous studies have shown that phthalate exposure in childhood is associated with the development of respiratory problems. However, few studies have assessed the relative impact of prenatal and postnatal exposure to phthalates on the development of asthma later in childhood. Therefore, we assessed the impact of prenatal and postnatal phthalate exposure on the development of asthma and wheezing using a Taiwanese birth cohort. A total of 430 pregnant women were recruited, and 171 (39.8%) of them had their children followed when they were aged 2, 5, and 8 years. The International Study of Asthma and Allergies in Childhood questionnaire was used to assess asthma and wheezing symptoms and serum total immunoglobulin E levels were measured at 8 years of age. Urine samples were obtained from 136 women during their third trimester of pregnancy, 99 children at 2 years of age, and 110 children at 5 years. Four common phthalate monoester metabolites in maternal and children’s urine were measured using liquid chromatography-electrospray ionization-tandem mass spectrometry. Maternal urinary mono-benzyl phthalate [MBzP] concentrations were associated with an increased occurrence of wheezing in boys at 8 years of age (odds ratio [OR] = 4.95 (95% CI 1.08–22.63)), for upper quintile compared to the others) after controlling for parental allergies and family members' smoking status. Urinary mono-2-ethylhexyl phthalate [MEHP] levels over the quintile at 2-year-old were associated with increased asthma occurrence (adjusted OR = 6.14 (1.17–32.13)) in boys. Similarly, the sum of di-2-ethyl-hexyl phthalate [DEHP] metabolites at 5 years was associated with asthma in boys (adjusted OR = 4.36 (1.01–18.86)). Urinary MEHP in maternal and 5-year-old children urine were significantly associated with increased IgE in allergic children at 8 years. Prenatal and postnatal exposure to phthalate was associated with the occurrence of asthma in children, particularly for boys.
Collapse
Affiliation(s)
- Hsiu Ying Ku
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Division of Environmental Health & Occupational Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Pen Hua Su
- Division of Genetics, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui Ju Wen
- Division of Environmental Health & Occupational Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hai Lun Sun
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien Jen Wang
- Division of Environmental Health & Occupational Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hsiao Yen Chen
- Division of Environmental Health & Occupational Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Jouni J. K. Jaakkola
- Center for Environmental and Respiratory Health Research, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu, Finland
| | - Shu-Li Wang
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Division of Environmental Health & Occupational Medicine, National Health Research Institutes, Miaoli, Taiwan
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
- * E-mail:
| | | |
Collapse
|
46
|
Can exposure to environmental chemicals increase the risk of diabetes type 1 development? BIOMED RESEARCH INTERNATIONAL 2015; 2015:208947. [PMID: 25883945 PMCID: PMC4391693 DOI: 10.1155/2015/208947] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/14/2014] [Indexed: 01/09/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease, where destruction of beta-cells causes insulin deficiency. The incidence of T1DM has increased in the last decades and cannot entirely be explained by genetic predisposition. Several environmental factors are suggested to promote T1DM, like early childhood enteroviral infections and nutritional factors, but the evidence is inconclusive. Prenatal and early life exposure to environmental pollutants like phthalates, bisphenol A, perfluorinated compounds, PCBs, dioxins, toxicants, and air pollutants can have negative effects on the developing immune system, resulting in asthma-like symptoms and increased susceptibility to childhood infections. In this review the associations between environmental chemical exposure and T1DM development is summarized. Although information on environmental chemicals as possible triggers for T1DM is sparse, we conclude that it is plausible that environmental chemicals can contribute to T1DM development via impaired pancreatic beta-cell and immune-cell functions and immunomodulation. Several environmental factors and chemicals could act together to trigger T1DM development in genetically susceptible individuals, possibly via hormonal or epigenetic alterations. Further observational T1DM cohort studies and animal exposure experiments are encouraged.
Collapse
|
47
|
Exposure to bisphenol A, but not phthalates, increases spontaneous diabetes type 1 development in NOD mice. Toxicol Rep 2015; 2:99-110. [PMID: 28962342 PMCID: PMC5598488 DOI: 10.1016/j.toxrep.2015.02.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/20/2015] [Accepted: 02/22/2015] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune destruction of insulin producing pancreatic beta-cells due to a genetic predisposition and can be triggered by environmental factors. We have previously shown that bisphenol A (BPA) accelerates the spontaneous development of diabetes in non-obese diabetic (NOD) mice. Here, we hypothesized that oral exposure to a mixture of the endocrine disruptors BPA and phthalates, relevant for human exposure, would accelerate diabetes development compared to BPA alone. NOD mice were exposed to BPA (1 mg/l), a mixture of phthalates (DEHP 1 mg/l, DBP 0.2 mg/l, BBP 10 mg/l and DiBP 20 mg/l) or a combination of BPA and the phthalate mixture through drinking water from conception and throughout life. Previous observations that BPA exposure increased the prevalence of diabetes and insulitis and decreased the number of tissue resident macrophages in pancreas were confirmed, and extended by demonstrating that BPA exposure also impaired the phagocytic activity of peritoneal macrophages. None of these effects were observed after phthalate exposure alone. The phthalate exposure in combination with BPA seemed to dampen the BPA effects on macrophage number and function as well as diabetes development, but not insulitis development. Exposure to BPA alone or in combination with phthalates decreased cytokine release (TNFα, IL-6, IL-10, IFNγ, IL-4) from in vitro stimulated splenocytes and lymph node cells, indicating systemic changes in immune function. In conclusion, exposure to BPA, but not to phthalates or mixed exposure to BPA and phthalates, accelerated diabetes development in NOD mice, apparently in part via systemic immune alterations including decreased macrophage function.
Collapse
|
48
|
Bekö G, Callesen M, Weschler CJ, Toftum J, Langer S, Sigsgaard T, Høst A, Kold Jensen T, Clausen G. Phthalate exposure through different pathways and allergic sensitization in preschool children with asthma, allergic rhinoconjunctivitis and atopic dermatitis. ENVIRONMENTAL RESEARCH 2015; 137:432-439. [PMID: 25625823 DOI: 10.1016/j.envres.2015.01.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/09/2014] [Accepted: 01/14/2015] [Indexed: 06/04/2023]
Abstract
Studies in rodents indicate that phthalates can function as adjuvants, increasing the potency of allergens. Meanwhile, epidemiological studies have produced inconsistent findings regarding relationships between phthalate exposures and allergic disease in humans. The present study examined phthalate exposure and allergic sensitization in a large group of 3-5 year old children: 300 random controls and 200 cases with asthma, rhinoconjunctivitis or atopic dermatitis as reported in questionnaires. The children were clinically examined to confirm their health status. Blood samples were analyzed for IgE sensitization to 20 allergens. Adjusted logistic regressions were used to look for associations between phthalate exposure indicators (mass fractions in dust from children's homes and daycares, metabolites in urine, and estimated daily indoor intakes from dust ingestion, inhalation and dermal absorption) and sensitization and allergic disease. No direct associations were found between phthalate exposures and asthma, rhinoconjunctivitis or atopic dermatitis. However, among children with these diseases, there were significant associations between non-dietary exposures to DnBP, BBzP and DEHP in the indoor environment (mass fractions in dust or daily indoor intakes from dust ingestion, inhalation and dermal absorption) and allergic sensitization. Some exposure pathways were more strongly associated with sensitization than others, although the results are not conclusive and require confirmation. A number of the associations depended on accounting for a child's exposure in more than one environment (i.e., daycare facility as well as home). Significant associations were not observed between phthalate metabolites in urine, which reflected exposure from diet as well as indoor pathways, and allergic sensitization.
Collapse
Affiliation(s)
- Gabriel Bekö
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Nils Koppels Allé 402, 2800 Lyngby, Denmark.
| | - Michael Callesen
- Department of Pediatrics, HC Andersen Children's Hospital, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark
| | - Charles J Weschler
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Nils Koppels Allé 402, 2800 Lyngby, Denmark; Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ 08854, United States
| | - Jørn Toftum
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Nils Koppels Allé 402, 2800 Lyngby, Denmark
| | - Sarka Langer
- IVL Swedish Environmental Research Institute, P.O. Box 53021, SE-400 14 Göteborg, Sweden
| | - Torben Sigsgaard
- Department of Public Health, Institute of Environmental and Occupational Medicine, University of Aarhus, Bartholins Allé 2, 8000 Aarhus, Denmark
| | - Arne Høst
- Department of Pediatrics, HC Andersen Children's Hospital, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark
| | - Tina Kold Jensen
- Department of Environmental Medicine, University of Southern Denmark, J.B. Winsløws Vej 17, 5000 Odense, Denmark
| | - Geo Clausen
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Nils Koppels Allé 402, 2800 Lyngby, Denmark
| |
Collapse
|
49
|
Abstract
OBJECTIVE To investigate the influence of phthalate exposure on lung function in the Canadian population. METHODS We tested the association between 1-second forced expiratory volume (FEVl), forced vital capacity (FVC), and urinary phthalate metabolite levels in a nationally representative sample of 3147, from 6 to 49 years old. RESULTS An interquartile increase in mono-n-butyl phthalate was associated with decreases in percent predicted FEV1 of 0.8% (95% confidence interval = 0.3 to 1.4) and in FVC of 0.9% (95% confidence interval = 0.3 to 1.5). Results were similar for mono-3-carboxypropyl phthalate, mono-benzyl phthalate, and di(2-ethylhexyl) phthalate metabolites, but significant effects of the latter were only seen in males and those at least 17 years old. CONCLUSIONS These results provide evidence that phthalate exposure may adversely affect lung function in the Canadian population. Given that these chemicals are ubiquitous, the population health burden may be significant if the associations were causal.
Collapse
|
50
|
Gascon M, Casas M, Morales E, Valvi D, Ballesteros-Gómez A, Luque N, Rubio S, Monfort N, Ventura R, Martínez D, Sunyer J, Vrijheid M. Prenatal exposure to bisphenol A and phthalates and childhood respiratory tract infections and allergy. J Allergy Clin Immunol 2014; 135:370-8. [PMID: 25445825 DOI: 10.1016/j.jaci.2014.09.030] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 09/17/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND There is growing concern that prenatal exposure to bisphenol A (BPA) and phthalates, which are widely used in consumer products, might affect susceptibility to infections and the development of allergy and asthma in children, but there are currently very few prospective studies. OBJECTIVE We sought to evaluate whether prenatal exposure to BPA and phthalates increases the risk of respiratory and allergic outcomes in children at various ages from birth to 7 years. METHODS We measured BPA and metabolites of high-molecular-weight phthalates, 4 di-(2-ethylhexyl) phthalate (DEHP) metabolites (Σ4DEHP) and mono-benzyl phthalate (MBzP), and 3 low-molecular-weight phthalate (LMWP) metabolites (Σ3LMWP) in urine samples collected during the first and third trimesters in pregnant women participating in the Infancia y Medio Ambiente-Sabadell birth cohort study. The occurrence of chest infections, bronchitis, wheeze, and eczema in children was assessed at ages 6 and 14 months and 4 and 7 years through questionnaires given to the mothers. Atopy (specific IgE measurement) and asthma (questionnaire) were assessed at ages 4 and 7 years, respectively. RESULTS The relative risks (RRs) of wheeze (RR, 1.20; 95% CI, 1.03-1.40; P = .02), chest infections (RR, 1.15; 95% CI, 1.00-1.32; P = .05), and bronchitis (RR, 1.18; 95% CI, 1.01-1.37; P = .04) at any age increased for each doubling in concentration of maternal urinary BPA. Σ4DEHP metabolites were associated with the same outcomes (wheeze: RR, 1.25; 95% CI, 1.04-1.50, P = .02; chest infections: RR, 1.15; 95% CI, 0.97-1.35; P = .11; bronchitis: RR, 1.20; 95% CI, 1.01-1.43; P = .04). MBzP was associated with higher risk of wheeze (RR, 1.15; 95% CI, 1.00-1.33; P = .05). The risk of asthma at age 7 years was also increased with increasing prenatal BPA, Σ4DEHP, and MBzP exposure. There were no other exposure-outcome associations. CONCLUSIONS Prenatal exposure to BPA and high-molecular-weight phthalates might increase the risk of asthma symptoms and respiratory tract infections throughout childhood.
Collapse
Affiliation(s)
- Mireia Gascon
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
| | - Maribel Casas
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Eva Morales
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Damaskini Valvi
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | | | - Noelia Luque
- Departamento de Química Analítica, Universidad de Córdoba, Córdoba, Spain
| | - Soledad Rubio
- Departamento de Química Analítica, Universidad de Córdoba, Córdoba, Spain
| | - Núria Monfort
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Rosa Ventura
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - David Martínez
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Jordi Sunyer
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Martine Vrijheid
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| |
Collapse
|