1
|
Braithwaite SA, Berg EM, de Heer LM, Jennekens J, Neyrinck A, van Hooijdonk E, Luijk B, Buhre WFFA, van der Kaaij NP. Mitigating the risk of inflammatory type primary graft dysfunction by applying an integrated approach to assess, modify and match risk factors in lung transplantation. FRONTIERS IN TRANSPLANTATION 2024; 3:1422088. [PMID: 39229386 PMCID: PMC11368876 DOI: 10.3389/frtra.2024.1422088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/08/2024] [Indexed: 09/05/2024]
Abstract
Long-term outcome following lung transplantation remains one of the poorest of all solid organ transplants with a 1- and 5-year survival of 85% and 59% respectively for adult lung transplant recipients and with 50% of patients developing chronic lung allograft dysfunction (CLAD) in the first 5 years following transplant. Reducing the risk of inflammatory type primary graft dysfunction (PGD) is vital for improving both short-term survival following lung transplantation and long-term outcome due to the association of early inflammatory-mediated damage to the allograft and the risk of CLAD. PGD has a multifactorial aetiology and high-grade inflammatory-type PGD is the result of cumulative insults that may be incurred in one or more of the three variables of the transplantation continuum: the donor lungs, the recipient and intraoperative process. We set out a conceptual framework which uses a fully integrated approach to this transplant continuum to attempt to identify and, where possible, modify specific donor, recipient and intraoperative PGD risk with the goal of reducing inflammatory-type PGD risk for an individual recipient. We also consider the concept and risk-benefit of matching lung allografts and recipients on the basis of donor and recipient PGD-risk compatibility. The use of ex vivo lung perfusion (EVLP) and the extended preservation of lung allografts on EVLP will be explored as safe, non-injurious EVLP may enable extensive inflammatory testing of specific donor lungs and has the potential to provide a platform for targeted therapeutic interventions on lung allografts.
Collapse
Affiliation(s)
- Sue A. Braithwaite
- Department of Anesthesiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Elize M. Berg
- Department of Pulmonology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Linda M. de Heer
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jitte Jennekens
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Arne Neyrinck
- Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium
| | - Elise van Hooijdonk
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bart Luijk
- Department of Pulmonology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Niels P. van der Kaaij
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
2
|
Han QJ, Zhu YP, Sun J, Ding XY, Wang X, Zhang QZ. PTGES2 and RNASET2 identified as novel potential biomarkers and therapeutic targets for basal cell carcinoma: insights from proteome-wide mendelian randomization, colocalization, and MR-PheWAS analyses. Front Pharmacol 2024; 15:1418560. [PMID: 39035989 PMCID: PMC11257982 DOI: 10.3389/fphar.2024.1418560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Basal cell carcinoma (BCC) is the most common skin cancer, lacking reliable biomarkers or therapeutic targets for effective treatment. Genome-wide association studies (GWAS) can aid in identifying drug targets, repurposing existing drugs, predicting clinical trial side effects, and reclassifying patients in clinical utility. Hence, the present study investigates the association between plasma proteins and skin cancer to identify effective biomarkers and therapeutic targets for BCC. Methods Proteome-wide mendelian randomization was performed using inverse-variance-weight and Wald Ratio methods, leveraging 1 Mb cis protein quantitative trait loci (cis-pQTLs) in the UK Biobank Pharma Proteomics Project (UKB-PPP) and the deCODE Health Study, to determine the causal relationship between plasma proteins and skin cancer and its subtypes in the FinnGen R10 study and the SAIGE database of Lee lab. Significant association with skin cancer and its subtypes was defined as a false discovery rate (FDR) < 0.05. pQTL to GWAS colocalization analysis was executed using a Bayesian model to evaluate five exclusive hypotheses. Strong colocalization evidence was defined as a posterior probability for shared causal variants (PP.H4) of ≥0.85. Mendelian randomization-Phenome-wide association studies (MR-PheWAS) were used to evaluate potential biomarkers and therapeutic targets for skin cancer and its subtypes within a phenome-wide human disease category. Results PTGES2, RNASET2, SF3B4, STX8, ENO2, and HS3ST3B1 (besides RNASET2, five other plasma proteins were previously unknown in expression quantitative trait loci (eQTL) and methylation quantitative trait loci (mQTL)) were significantly associated with BCC after FDR correction in the UKB-PPP and deCODE studies. Reverse MR showed no association between BCC and these proteins. PTGES2 and RNASET2 exhibited strong evidence of colocalization with BCC based on a posterior probability PP.H4 >0.92. Furthermore, MR-PheWAS analysis showed that BCC was the most significant phenotype associated with PTGES2 and RNASET2 among 2,408 phenotypes in the FinnGen R10 study. Therefore, PTGES2 and RNASET2 are highlighted as effective biomarkers and therapeutic targets for BCC within the phenome-wide human disease category. Conclusion The study identifies PTGES2 and RNASET2 plasma proteins as novel, reliable biomarkers and therapeutic targets for BCC, suggesting more effective clinical application strategies for patients.
Collapse
Affiliation(s)
- Qiu-Ju Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, China
| | - Yi-Pan Zhu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, China
| | - Jing Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, China
| | - Xin-Yu Ding
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, China
| | - Xiuyu Wang
- Department of Neurosurgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Qiang-Zhe Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, China
| |
Collapse
|
3
|
Chacon-Alberty L, Fernandez R, Jindra P, King M, Rosas I, Hochman-Mendez C, Loor G. Primary Graft Dysfunction in Lung Transplantation: A Review of Mechanisms and Future Applications. Transplantation 2023; 107:1687-1697. [PMID: 36650643 DOI: 10.1097/tp.0000000000004503] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lung allograft recipients have worse survival than all other solid organ transplant recipients, largely because of primary graft dysfunction (PGD), a major form of acute lung injury affecting a third of lung recipients within the first 72 h after transplant. PGD is the clinical manifestation of ischemia-reperfusion injury and represents the predominate cause of early morbidity and mortality. Despite PGD's impact on lung transplant outcomes, no targeted therapies are currently available; hence, care remains supportive and largely ineffective. This review focuses on molecular and innate immune mechanisms of ischemia-reperfusion injury leading to PGD. We also discuss novel research aimed at discovering biomarkers that could better predict PGD and potential targeted interventions that may improve outcomes in lung transplantation.
Collapse
Affiliation(s)
| | - Ramiro Fernandez
- Division of Cardiothoracic Transplantation and Mechanical Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
| | - Peter Jindra
- Division of Cardiothoracic Transplantation and Mechanical Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
| | - Madelyn King
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, TX
| | - Ivan Rosas
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | | | - Gabriel Loor
- Division of Cardiothoracic Transplantation and Mechanical Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
- Cardiothoracic Surgery Professional Staff, The Texas Heart Institute, Houston, TX
| |
Collapse
|
4
|
Toyoda T, Cerier EJ, Manerikar AJ, Kandula V, Bharat A, Kurihara C. Recipient, donor, and surgical factors leading to primary graft dysfunction after lung transplant. J Thorac Dis 2023; 15:399-409. [PMID: 36910052 PMCID: PMC9992558 DOI: 10.21037/jtd-22-974] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/05/2022] [Indexed: 02/10/2023]
Abstract
Background Primary graft dysfunction is a major cause of early mortality following lung transplantation. The International Society for Heart and Lung Transplantation subdivides it into 4 grades of increasing severity. Methods A retrospective review of the institutional lung transplant database from March 2018 to September 2021 was performed. Patients were stratified into three groups: primary graft dysfunction grade 0 patients, grade 1 or 2 patients, and grade 3 patients. Recipient, donor, and surgical variables were analyzed by logistic regression analysis to identify risk factors for primary graft dysfunction grade 1 or 2 and grade 3. Results Primary graft dysfunction grade 1 to 3 occurred in 45.0% of the cohort (n=68) of whom 33.3% (n=23) had primary graft dysfunction grade 3. Longer operative time was more common in primary graft dysfunction grade 1 to 3 patients (P<0.001). The 1-year survival of the patients with primary graft dysfunction grade 3 was lower than the others (grade 0-2 vs. 3, 93.7% vs. 65.2%, P=0.0006). Univariate analysis showed that acute respiratory distress syndrome, operative time, and intraoperative veno-arterial extracorporeal membrane oxygenation use were risk factors for primary graft dysfunction grades 1 or 2 and grade 3. Multivariate analysis identified that intraoperative veno-arterial extracorporeal membrane oxygenation use was an independent risk factor of primary graft dysfunction grade 1 or 2. Patients with an operative time of more than 8.18 hours had significantly higher incidence of primary graft dysfunction grade 3, acute kidney injury, and digital ischemia. Conclusions The calculated predictors of primary graft dysfunction grade 1 or 2 were similar to those of primary graft dysfunction grade 3.
Collapse
Affiliation(s)
- Takahide Toyoda
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily Jeong Cerier
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Adwaiy Jayant Manerikar
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Viswajit Kandula
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ankit Bharat
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chitaru Kurihara
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
5
|
Abstract
Primary graft dysfunction (PGD) is a form of acute lung injury after transplantation characterized by hypoxemia and the development of alveolar infiltrates on chest radiograph that occurs within 72 hours of reperfusion. PGD is among the most common early complications following lung transplantation and significantly contributes to increased short-term morbidity and mortality. In addition, severe PGD has been associated with higher 90-day and 1-year mortality rates compared with absent or less severe PGD and is a significant risk factor for the subsequent development of chronic lung allograft dysfunction. The International Society for Heart and Lung Transplantation released updated consensus guidelines in 2017, defining grade 3 PGD, the most severe form, by the presence of alveolar infiltrates and a ratio of PaO2:FiO2 less than 200. Multiple donor-related, recipient-related, and perioperative risk factors for PGD have been identified, many of which are potentially modifiable. Consistently identified risk factors include donor tobacco and alcohol use; increased recipient body mass index; recipient history of pulmonary hypertension, sarcoidosis, or pulmonary fibrosis; single lung transplantation; and use of cardiopulmonary bypass, among others. Several cellular pathways have been implicated in the pathogenesis of PGD, thus presenting several possible therapeutic targets for preventing and treating PGD. Notably, use of ex vivo lung perfusion (EVLP) has become more widespread and offers a potential platform to safely investigate novel PGD treatments while expanding the lung donor pool. Even in the presence of significantly prolonged ischemic times, EVLP has not been associated with an increased risk for PGD.
Collapse
Affiliation(s)
- Jake G Natalini
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joshua M Diamond
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Natalini JG, Diamond JM, Porteous MK, Lederer DJ, Wille KM, Weinacker AB, Orens JB, Shah PD, Lama VN, McDyer JF, Snyder LD, Hage CA, Singer JP, Ware LB, Cantu E, Oyster M, Kalman L, Christie JD, Kawut SM, Bernstein EJ. Risk of primary graft dysfunction following lung transplantation in selected adults with connective tissue disease-associated interstitial lung disease. J Heart Lung Transplant 2021; 40:351-358. [PMID: 33637413 DOI: 10.1016/j.healun.2021.01.1391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/23/2020] [Accepted: 01/19/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Previous studies have reported similarities in long-term outcomes following lung transplantation for connective tissue disease-associated interstitial lung disease (CTD-ILD) and idiopathic pulmonary fibrosis (IPF). However, it is unknown whether CTD-ILD patients are at increased risk of primary graft dysfunction (PGD), delays in extubation, or longer index hospitalizations following transplant compared to IPF patients. METHODS We performed a multicenter retrospective cohort study of CTD-ILD and IPF patients enrolled in the Lung Transplant Outcomes Group registry who underwent lung transplantation between 2012 and 2018. We utilized mixed effects logistic regression and stratified Cox proportional hazards regression to determine whether CTD-ILD was independently associated with increased risk for grade 3 PGD or delays in post-transplant extubation and hospital discharge compared to IPF. RESULTS A total of 32.7% (33/101) of patients with CTD-ILD and 28.9% (145/501) of patients with IPF developed grade 3 PGD 48-72 hours after transplant. There were no significant differences in odds of grade 3 PGD among patients with CTD-ILD compared to those with IPF (adjusted OR 1.12, 95% CI 0.64-1.97, p = 0.69), nor was CTD-ILD independently associated with a longer post-transplant time to extubation (adjusted HR for first extubation 0.87, 95% CI 0.66-1.13, p = 0.30). However, CTD-ILD was independently associated with a longer post-transplant hospital length of stay (median 23 days [IQR 14-35 days] vs17 days [IQR 12-28 days], adjusted HR for hospital discharge 0.68, 95% CI 0.51-0.90, p = 0.008). CONCLUSION Patients with CTD-ILD experienced significantly longer postoperative hospitalizations compared to IPF patients without an increased risk of grade 3 PGD.
Collapse
Affiliation(s)
- Jake G Natalini
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joshua M Diamond
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mary K Porteous
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Keith M Wille
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Ann B Weinacker
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Jonathan B Orens
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pali D Shah
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vibha N Lama
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - John F McDyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Laurie D Snyder
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Chadi A Hage
- Division of Pulmonary Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jonathan P Singer
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco School of Medicine, San Francisco, California
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Edward Cantu
- Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michelle Oyster
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Laurel Kalman
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jason D Christie
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven M Kawut
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elana J Bernstein
- Division of Rheumatology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York.
| |
Collapse
|
7
|
Norel X, Sugimoto Y, Ozen G, Abdelazeem H, Amgoud Y, Bouhadoun A, Bassiouni W, Goepp M, Mani S, Manikpurage HD, Senbel A, Longrois D, Heinemann A, Yao C, Clapp LH. International Union of Basic and Clinical Pharmacology. CIX. Differences and Similarities between Human and Rodent Prostaglandin E 2 Receptors (EP1-4) and Prostacyclin Receptor (IP): Specific Roles in Pathophysiologic Conditions. Pharmacol Rev 2020; 72:910-968. [PMID: 32962984 PMCID: PMC7509579 DOI: 10.1124/pr.120.019331] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins are derived from arachidonic acid metabolism through cyclooxygenase activities. Among prostaglandins (PGs), prostacyclin (PGI2) and PGE2 are strongly involved in the regulation of homeostasis and main physiologic functions. In addition, the synthesis of these two prostaglandins is significantly increased during inflammation. PGI2 and PGE2 exert their biologic actions by binding to their respective receptors, namely prostacyclin receptor (IP) and prostaglandin E2 receptor (EP) 1-4, which belong to the family of G-protein-coupled receptors. IP and EP1-4 receptors are widely distributed in the body and thus play various physiologic and pathophysiologic roles. In this review, we discuss the recent advances in studies using pharmacological approaches, genetically modified animals, and genome-wide association studies regarding the roles of IP and EP1-4 receptors in the immune, cardiovascular, nervous, gastrointestinal, respiratory, genitourinary, and musculoskeletal systems. In particular, we highlight similarities and differences between human and rodents in terms of the specific roles of IP and EP1-4 receptors and their downstream signaling pathways, functions, and activities for each biologic system. We also highlight the potential novel therapeutic benefit of targeting IP and EP1-4 receptors in several diseases based on the scientific advances, animal models, and human studies. SIGNIFICANCE STATEMENT: In this review, we present an update of the pathophysiologic role of the prostacyclin receptor, prostaglandin E2 receptor (EP) 1, EP2, EP3, and EP4 receptors when activated by the two main prostaglandins, namely prostacyclin and prostaglandin E2, produced during inflammatory conditions in human and rodents. In addition, this comparison of the published results in each tissue and/or pathology should facilitate the choice of the most appropriate model for the future studies.
Collapse
Affiliation(s)
- Xavier Norel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yukihiko Sugimoto
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Gulsev Ozen
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Heba Abdelazeem
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yasmine Amgoud
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amel Bouhadoun
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Wesam Bassiouni
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Marie Goepp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Salma Mani
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Hasanga D Manikpurage
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amira Senbel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Dan Longrois
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Akos Heinemann
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Chengcan Yao
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Lucie H Clapp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| |
Collapse
|
8
|
Monticelli LA, Diamond JM, Saenz SA, Tait Wojno ED, Porteous MK, Cantu E, Artis D, Christie JD. Lung Innate Lymphoid Cell Composition Is Altered in Primary Graft Dysfunction. Am J Respir Crit Care Med 2020; 201:63-72. [PMID: 31394048 PMCID: PMC6938146 DOI: 10.1164/rccm.201906-1113oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/07/2019] [Indexed: 01/08/2023] Open
Abstract
Rationale: Primary graft dysfunction (PGD) is the leading cause of early morbidity and mortality after lung transplantation, but the immunologic mechanisms are poorly understood. Innate lymphoid cells (ILC) are a heterogeneous family of immune cells regulating pathologic inflammation and beneficial tissue repair. However, whether changes in donor-derived lung ILC populations are associated with PGD development has never been examined.Objectives: To determine whether PGD in chronic obstructive pulmonary disease or interstitial lung disease transplant recipients is associated with alterations in ILC subset composition within the allograft.Methods: We performed a single-center cohort study of lung transplantation patients with surgical biopsies of donor tissue taken before, and immediately after, allograft reperfusion. Donor immune cells from 18 patients were characterized phenotypically by flow cytometry for single-cell resolution of distinct ILC subsets. Changes in the percentage of ILC subsets with reperfusion or PGD (grade 3 within 72 h) were assessed.Measurements and Main Results: Allograft reperfusion resulted in significantly decreased frequencies of natural killer cells and a trend toward reduced ILC populations, regardless of diagnosis (interstitial lung disease or chronic obstructive pulmonary disease). Seven patients developed PGD (38.9%), and PGD development was associated with selective reduction of the ILC2 subset after reperfusion. Conversely, patients without PGD exhibited significantly higher ILC1 frequencies before reperfusion, accompanied by elevated ILC2 frequencies after allograft reperfusion.Conclusions: The composition of donor ILC subsets is altered after allograft reperfusion and is associated with PGD development, suggesting that ILCs may be involved in regulating lung injury in lung transplant recipients.
Collapse
Affiliation(s)
- Laurel A. Monticelli
- Division of Pulmonary and Critical Care Medicine and
- Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, New York; and
| | | | - Steven A. Saenz
- Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, New York; and
| | - Elia D. Tait Wojno
- Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, New York; and
| | | | - Edward Cantu
- Division of Cardiovascular Surgery, Center for Translational Lung Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Artis
- Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, New York; and
| | | |
Collapse
|
9
|
Wilkey BJ, Abrams BA. Mitigation of Primary Graft Dysfunction in Lung Transplantation: Current Understanding and Hopes for the Future. Semin Cardiothorac Vasc Anesth 2019; 24:54-66. [DOI: 10.1177/1089253219881980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Primary graft dysfunction (PGD) is a form of acute lung injury that develops within the first 72 hours after lung transplantation. The overall incidence of PGD is estimated to be around 30%, and the 30-day mortality for grade 3 PGD around 36%. PGD is also associated with the development of bronchiolitis obliterans syndrome, a specific form of chronic lung allograft dysfunction. In this article, we will discuss perioperative strategies for PGD prevention as well as possible future avenues for prevention and treatment.
Collapse
|
10
|
Venter C, Meyer RW, Nwaru BI, Roduit C, Untersmayr E, Adel‐Patient K, Agache I, Agostoni C, Akdis CA, Bischoff S, du Toit G, Feeney M, Frei R, Garn H, Greenhawt M, Hoffmann‐Sommergruber K, Lunjani N, Maslin K, Mills C, Muraro A, Pali I, Poulson L, Reese I, Renz H, Roberts GC, Smith P, Smolinska S, Sokolowska M, Stanton C, Vlieg‐Boerstra B, O'Mahony L. EAACI position paper: Influence of dietary fatty acids on asthma, food allergy, and atopic dermatitis. Allergy 2019; 74:1429-1444. [PMID: 31032983 DOI: 10.1111/all.13764] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/12/2019] [Accepted: 02/21/2019] [Indexed: 12/11/2022]
Abstract
The prevalence of allergic diseases such as allergic rhinitis, asthma, food allergy, and atopic dermatitis has increased dramatically during the last decades, which is associated with altered environmental exposures and lifestyle practices. The purpose of this review was to highlight the potential role for dietary fatty acids, in the prevention and management of these disorders. In addition to their nutritive value, fatty acids have important immunoregulatory effects. Fatty acid-associated biological mechanisms, human epidemiology, and intervention studies are summarized in this review. The influence of genetics and the microbiome on fatty acid metabolism is also discussed. Despite critical gaps in our current knowledge, it is increasingly apparent that dietary intake of fatty acids may influence the development of inflammatory and tolerogenic immune responses. However, the lack of standardized formats (ie, food versus supplement) and standardized doses, and frequently a lack of prestudy serum fatty acid level assessments in clinical studies significantly limit our ability to compare allergy outcomes across studies and to provide clear recommendations at this time. Future studies must address these limitations and individualized medical approaches should consider the inclusion of specific dietary factors for the prevention and management of asthma, food allergy, and atopic dermatitis.
Collapse
Affiliation(s)
- Carina Venter
- Section of Allergy and Immunology University of Colorado Denver School of Medicine, Children's Hospital Colorado Colorado
| | | | - Bright I. Nwaru
- Krefting Research Centre, Institute of Medicine University of Gothenburg Gothenburg Sweden
| | - Caroline Roduit
- University Children's Hospital Zurich Switzerland
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
| | - Eva Untersmayr
- Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Karine Adel‐Patient
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Immuno‐Allergie Alimentaire (LIAA) INRA, CEA, Université Paris Saclay Gif sur Yvette Cedex France
| | | | - Carlo Agostoni
- Fondazione IRCCS Ca' Granda ‐ Ospedale Maggiore Policlinico Milano Italy
- Dipartimento di Scienze Cliniche e di Comunita Universita' degli Studi Milano Italy
| | - Cezmi A. Akdis
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Stephan Bischoff
- Institut für Ernährungsmedizin Universität Hohenheim Stuttgart Germany
| | - George du Toit
- Division of Asthma, Allergy and Lung Biology, Department of Paediatric Allergy King's College London London UK
- Guy's & St Thomas' Hospital London UK
| | - Mary Feeney
- Division of Asthma, Allergy and Lung Biology, Department of Paediatric Allergy King's College London London UK
- Guy's & St Thomas' Hospital London UK
| | - Remo Frei
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Holger Garn
- Center for Tumor‐ and Immunobiology (ZTI), Institute of Laboratory Medicine and Pathobiochemistry Philipps University of Marburg ‐ Medical Faculty Marburg Germany
| | - Matthew Greenhawt
- School of Medicine, Section of Allergy and Immunology Children's Hospital Colorado, University of Colorado Aurora Colorado
| | - Karin Hoffmann‐Sommergruber
- Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Nonhlanhla Lunjani
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- University of Cape Town Cape Town South Africa
| | - Kate Maslin
- MRC Lifecourse Epidemiology Unit University of Southampton Southampton UK
| | - Clare Mills
- School of Biological Sciences, Manchester Academic Health Sciences Centre, Manchester Institute of Biotechnology The University of Manchester Manchester UK
| | - Antonella Muraro
- Centro di Specializzazione Regionale per lo Studio e la Cura delle Allergie e delle Intolleranze Alimentari presso l'Azienda Ospedaliera Università di Padova Padova Italy
| | - Isabella Pali
- Comparative Medicine, Messerli Research Institute of the University of Veterinary Medicine Vienna Medical University Vienna Vienna Austria
| | - Lars Poulson
- Allergy Clinic, Dept. of Skin and Allergy Diseases Copenhagen University Hospital at Gentofte Copenhagen Denmark
| | - Imke Reese
- Dietary Counseling and Nutrition Therapy Centre Munich Germany
| | - Harald Renz
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL) Philipps Universität Marburg Marburg Germany
| | - Graham C. Roberts
- The David Hide Asthma and Allergy Research Centre St Mary's Hospital Newport UK
- NIHR Biomedical Research Centre University Hospital Southampton NHS Foundation Trust Southampton UK
- Faculty of Medicine, Clinical and Experimental Sciences and Human Development in Health Academic Units University of Southampton Southampton UK
| | - Peter Smith
- School of Medicine Griffith University Southport Australia
| | - Sylwia Smolinska
- Department of Clinical Immunology Wroclaw Medical University Wroclaw Poland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | | | | | - Liam O'Mahony
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Depts of Medicine and Microbiology APC Microbiome Ireland, National University of Ireland Cork Ireland
| |
Collapse
|
11
|
Verleden SE, Martens A, Ordies S, Neyrinck AP, Van Raemdonck DE, Verleden GM, Vanaudenaerde BM, Vos R. Immediate post-operative broncho-alveolar lavage IL-6 and IL-8 are associated with early outcomes after lung transplantation. Clin Transplant 2018; 32:e13219. [PMID: 29405435 DOI: 10.1111/ctr.13219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2018] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Previous studies demonstrated that increased cytokine and chemokine levels, either shortly before or after lung transplantation, were associated with post-transplant outcome. However, small patient cohorts were mostly used, focusing on 1 molecule and 1 outcome. In a large single-center cohort, we investigated the predictive value of immediate post-operative broncho-alveolar lavage (BAL) expression of IL-6 and IL-8 on multiple key outcomes, including PGD, CLAD, graft survival, as well as several secondary outcomes. MATERIAL AND METHODS All patients undergoing a first lung transplant in whom routine bronchoscopy with BAL was performed during the first 48 hours post-transplantation were included. IL-6 and IL-8 protein levels were measured in BAL via ELISA. RESULTS A total of 336 patients were included. High IL-6 levels measured within 24 hours of transplantation were associated with longer time on ICU and time to hospital discharge; and increased prevalence of PGD grade 3. Increased IL-8 levels, measured within 24 hours, were associated with PGD3, more ECMO use, higher donor paO2 , younger donor age, but not with other short-or long-term outcome. IL-6 and IL-8 measured between 24 and 48 hours of transplantation were not associated with any outcome parameters. CONCLUSION Recipient BAL IL-6 and IL-8 within 24 hours post-transplant were associated with an increased incidence of PGD3.
Collapse
Affiliation(s)
- Stijn E Verleden
- Leuven Lung transplant unit, Department of chronic diseases, metabolism and ageing, KU Leuven, Leuven, Belgium
| | - An Martens
- Department of cardiovascular sciences, KU Leuven, Leuven, Belgium
| | - Sofie Ordies
- Department of cardiovascular sciences, KU Leuven, Leuven, Belgium
| | - Arne P Neyrinck
- Department of cardiovascular sciences, KU Leuven, Leuven, Belgium
| | - Dirk E Van Raemdonck
- Leuven Lung transplant unit, Department of chronic diseases, metabolism and ageing, KU Leuven, Leuven, Belgium
| | - Geert M Verleden
- Leuven Lung transplant unit, Department of chronic diseases, metabolism and ageing, KU Leuven, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Leuven Lung transplant unit, Department of chronic diseases, metabolism and ageing, KU Leuven, Leuven, Belgium
| | - Robin Vos
- Leuven Lung transplant unit, Department of chronic diseases, metabolism and ageing, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Negorev D, Beier UH, Zhang T, Quatromoni JG, Bhojnagarwala P, Albelda SM, Singhal S, Eruslanov E, Lohoff FW, Levine MH, Diamond JM, Christie JD, Hancock WW, Akimova T. Human neutrophils can mimic myeloid-derived suppressor cells (PMN-MDSC) and suppress microbead or lectin-induced T cell proliferation through artefactual mechanisms. Sci Rep 2018; 8:3135. [PMID: 29453429 PMCID: PMC5816646 DOI: 10.1038/s41598-018-21450-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/31/2018] [Indexed: 01/01/2023] Open
Abstract
We report that human conventional CD15+ neutrophils can be isolated in the peripheral blood mononuclear cell (PBMC) layer during Ficoll gradient separation, and that they can impair T cell proliferation in vitro without concomitant neutrophil activation and killing. This effect was observed in a total of 92 patients with organ transplants, lung cancer or anxiety/depression, and in 18 healthy donors. Although such features are typically associated in the literature with the presence of certain myeloid-derived suppressor cell (PMN-MDSC) populations, we found that commercial centrifuge tubes that contained membranes or gels for PBMC isolation led to up to 70% PBMC contamination by CD15+ neutrophils, with subsequent suppressive effects in certain cellular assays. In particular, the suppressive activity of human MDSC should not be evaluated using lectin or microbead stimulation, whereas assays involving soluble or plate-bound antibodies or MLR are unaffected. We conclude that CD15+ neutrophil contamination, and associated effects on suppressor assays, can lead to significant artefacts in studies of human PMN-MDSC.
Collapse
Affiliation(s)
- Dmitri Negorev
- The Pathology Bioresource, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ulf H Beier
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Tianyi Zhang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Jon G Quatromoni
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, 19104, Philadelphia, PA, USA
| | - Pratik Bhojnagarwala
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, 19104, Philadelphia, PA, USA
| | - Steven M Albelda
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, 19104, Philadelphia, PA, USA
| | - Evgeniy Eruslanov
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Falk W Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, 20892-154, USA
| | - Matthew H Levine
- Department of Surgery, Penn Transplant Institute, Hospital of the University of Pennsylvania and University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joshua M Diamond
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason D Christie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Cantu E, Diamond JM, Suzuki Y, Lasky J, Schaufler C, Lim B, Shah R, Porteous M, Lederer DJ, Kawut SM, Palmer SM, Snyder LD, Hartwig MG, Lama VN, Bhorade S, Bermudez C, Crespo M, McDyer J, Wille K, Orens J, Shah PD, Weinacker A, Weill D, Wilkes D, Roe D, Hage C, Ware LB, Bellamy SL, Christie JD. Quantitative Evidence for Revising the Definition of Primary Graft Dysfunction after Lung Transplant. Am J Respir Crit Care Med 2018; 197:235-243. [PMID: 28872353 PMCID: PMC5768905 DOI: 10.1164/rccm.201706-1140oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/01/2017] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Primary graft dysfunction (PGD) is a form of acute lung injury that occurs after lung transplantation. The definition of PGD was standardized in 2005. Since that time, clinical practice has evolved, and this definition is increasingly used as a primary endpoint for clinical trials; therefore, validation is warranted. OBJECTIVES We sought to determine whether refinements to the 2005 consensus definition could further improve construct validity. METHODS Data from the Lung Transplant Outcomes Group multicenter cohort were used to compare variations on the PGD definition, including alternate oxygenation thresholds, inclusion of additional severity groups, and effects of procedure type and mechanical ventilation. Convergent and divergent validity were compared for mortality prediction and concurrent lung injury biomarker discrimination. MEASUREMENTS AND MAIN RESULTS A total of 1,179 subjects from 10 centers were enrolled from 2007 to 2012. Median length of follow-up was 4 years (interquartile range = 2.4-5.9). No mortality differences were noted between no PGD (grade 0) and mild PGD (grade 1). Significantly better mortality discrimination was evident for all definitions using later time points (48, 72, or 48-72 hours; P < 0.001). Biomarker divergent discrimination was superior when collapsing grades 0 and 1. Additional severity grades, use of mechanical ventilation, and transplant procedure type had minimal or no effect on mortality or biomarker discrimination. CONCLUSIONS The PGD consensus definition can be simplified by combining lower PGD grades. Construct validity of grading was present regardless of transplant procedure type or use of mechanical ventilation. Additional severity categories had minimal impact on mortality or biomarker discrimination.
Collapse
Affiliation(s)
| | - Joshua M. Diamond
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | | | | | | | - Brian Lim
- Division of Cardiovascular Surgery and
| | - Rupal Shah
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Mary Porteous
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - David J. Lederer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Steven M. Kawut
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Center for Clinical Epidemiology and Biostatistics and
- Penn Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Scott M. Palmer
- Division of Pulmonary, Allergy, and Critical Care Medicine and
| | | | - Matthew G. Hartwig
- Division of Cardiothoracic Surgery, Duke University, Durham, North Carolina
| | - Vibha N. Lama
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sangeeta Bhorade
- Division of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois
| | | | - Maria Crespo
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - John McDyer
- Division of Pulmonary, Allergy, and Critical Care, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Keith Wille
- Division of Pulmonary and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jonathan Orens
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Johns Hopkins University Hospital, Baltimore, Maryland
| | - Pali D. Shah
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Johns Hopkins University Hospital, Baltimore, Maryland
| | - Ann Weinacker
- Division of Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, California
| | - David Weill
- Institute for Advanced Organ Disease and Transplantation, University of South Florida, Tampa, Florida
| | - David Wilkes
- Division of Pulmonary, Allergy, Critical Care, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - David Roe
- Division of Pulmonary, Allergy, Critical Care, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chadi Hage
- Division of Pulmonary, Allergy, Critical Care, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lorraine B. Ware
- Department of Medicine and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee; and
| | - Scarlett L. Bellamy
- Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania
| | - Jason D. Christie
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Center for Clinical Epidemiology and Biostatistics and
| |
Collapse
|
14
|
Diamond JM, Ramphal K, Porteous MK, Cantu E, Christie JD, Kawut SM. Association of long pentraxin-3 with pulmonary hypertension and primary graft dysfunction in lung transplant recipients. J Heart Lung Transplant 2017; 37:792-794. [PMID: 29370970 DOI: 10.1016/j.healun.2017.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/03/2017] [Accepted: 12/17/2017] [Indexed: 01/01/2023] Open
Affiliation(s)
- Joshua M Diamond
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Kristy Ramphal
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mary K Porteous
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward Cantu
- Division of Cardiovascular Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jason D Christie
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven M Kawut
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
15
|
Diamond JM, Arcasoy S, Kennedy CC, Eberlein M, Singer JP, Patterson GM, Edelman JD, Dhillon G, Pena T, Kawut SM, Lee JC, Girgis R, Dark J, Thabut G. Report of the International Society for Heart and Lung Transplantation Working Group on Primary Lung Graft Dysfunction, part II: Epidemiology, risk factors, and outcomes—A 2016 Consensus Group statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2017; 36:1104-1113. [DOI: 10.1016/j.healun.2017.07.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 11/28/2022] Open
|
16
|
Diamond JM, Cantu E, Porteous M, Suzuki Y, Meyer KC, Lederer D, Milewski RK, Arcasoy S, D’Ovidio F, Bacchetta M, Sonett JR, Singh G, Costa J, Tobias JW, Rodriguez H, Van Deerlin VM, Olthoff KM, Shaked A, Chang BL, Christie JD, for the Clinical Trials in Organ Transplantation (CTOT)-03 Investigators. Peripheral Blood Gene Expression Changes Associated With Primary Graft Dysfunction After Lung Transplantation. Am J Transplant 2017; 17:1770-1777. [PMID: 28117940 PMCID: PMC5489369 DOI: 10.1111/ajt.14209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/27/2016] [Accepted: 01/14/2017] [Indexed: 01/25/2023]
Abstract
Recipient responses to primary graft dysfunction (PGD) after lung transplantation may have important implications to the fate of the allograft. We therefore evaluated longitudinal differences in peripheral blood gene expression in subjects with PGD. RNA expression was measured throughout the first transplant year in 106 subjects enrolled in the Clinical Trials in Organ Transplantation-03 study using a panel of 100 hypothesis-driven genes. PGD was defined as grade 3 in the first 72 posttransplant hours. Eighteen genes were differentially expressed over the first year based on PGD development, with significant representation from innate and adaptive immunity genes, with most differences identified very early after transplant. Sixteen genes were overexpressed in the blood of patients with PGD compared to those without PGD within 7 days of allograft reperfusion, with most transcripts encoding innate immune/inflammasome-related proteins, including genes previously associated with PGD. Thirteen genes were underexpressed in patients with PGD compared to those without PGD within 7 days of transplant, highlighted by T cell and adaptive immune regulation genes. Differences in gene expression present within 2 h of reperfusion and persist for days after transplant. Future investigation will focus on the long-term implications of these gene expression differences on the outcome of the allograft.
Collapse
Affiliation(s)
- Joshua M. Diamond
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Edward Cantu
- Division of Cardiovascular Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mary Porteous
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Yoshikazu Suzuki
- Division of Cardiovascular Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Keith C. Meyer
- Division of Allergy, Pulmonary, and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - David Lederer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Rita K. Milewski
- Division of Cardiovascular Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Selim Arcasoy
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Frank D’Ovidio
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York, New York
| | - Matthew Bacchetta
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York, New York
| | - Joshua R. Sonett
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York, New York
| | - Gopal Singh
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York, New York
| | - Joseph Costa
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York, New York
| | - John W. Tobias
- Penn Molecular Profiling Facility, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hetty Rodriguez
- Penn Molecular Profiling Facility, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vivianna M. Van Deerlin
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kim M. Olthoff
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Abraham Shaked
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Bao-Li Chang
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA,The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jason D. Christie
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
17
|
Shaver CM, Ware LB. Primary graft dysfunction: pathophysiology to guide new preventive therapies. Expert Rev Respir Med 2017; 11:119-128. [PMID: 28074663 DOI: 10.1080/17476348.2017.1280398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Primary graft dysfunction (PGD) is a common complication of lung transplantation characterized by acute pulmonary edema associated with bilateral pulmonary infiltrates and hypoxemia in the first 3 post-operative days. Development of PGD is a predictor of poor short- and long-term outcomes after lung transplantation, but there are currently limited tools to prevent its occurrence. Areas covered: Several potentially modifiable donor, recipient, and operative risk factors for PGD have been identified. In addition, basic and translational studies in animals and ex vivo lung perfusion systems have identified several biomarkers and mechanisms of injury in PGD. In this review, we outline the clinical and genetic risk factors for PGD and summarize experimental data exploring PGD mechanisms, with a focus on strategies to reduce PGD risk and on potential novel molecular targets for PGD prevention. Expert commentary: Because of the clinical importance of PGD, development of new therapies for prevention and treatment is critically important. Improved understanding of the pathophysiology of clinical PGD provides a framework to explore novel agents to prevent or reverse PGD. Ex vivo lung perfusion provides a new opportunity for rapid development of therapeutics that target this devastating complication of lung transplantation.
Collapse
Affiliation(s)
- Ciara M Shaver
- a Department of Medicine , Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center , Nashville , TN , USA
| | - Lorraine B Ware
- a Department of Medicine , Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center , Nashville , TN , USA.,b Department of Pathology, Microbiology and Immunology , Vanderbilt University Medical Center , Nashville , TN , USA
| |
Collapse
|
18
|
Cornejo-García JA, Perkins JR, Jurado-Escobar R, García-Martín E, Agúndez JA, Viguera E, Pérez-Sánchez N, Blanca-López N. Pharmacogenomics of Prostaglandin and Leukotriene Receptors. Front Pharmacol 2016; 7:316. [PMID: 27708579 PMCID: PMC5030812 DOI: 10.3389/fphar.2016.00316] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/02/2016] [Indexed: 01/15/2023] Open
Abstract
Individual genetic background together with environmental effects are thought to be behind many human complex diseases. A number of genetic variants, mainly single nucleotide polymorphisms (SNPs), have been shown to be associated with various pathological and inflammatory conditions, representing potential therapeutic targets. Prostaglandins (PTGs) and leukotrienes (LTs) are eicosanoids derived from arachidonic acid and related polyunsaturated fatty acids that participate in both normal homeostasis and inflammatory conditions. These bioactive lipid mediators are synthesized through two major multistep enzymatic pathways: PTGs by cyclooxygenase and LTs by 5-lipoxygenase. The main physiological effects of PTGs include vasodilation and vascular leakage (PTGE2); mast cell maturation, eosinophil recruitment, and allergic responses (PTGD2); vascular and respiratory smooth muscle contraction (PTGF2), and inhibition of platelet aggregation (PTGI2). LTB4 is mainly involved in neutrophil recruitment, vascular leakage, and epithelial barrier function, whereas cysteinyl LTs (CysLTs) (LTC4, LTD4, and LTE4) induce bronchoconstriction and neutrophil extravasation, and also participate in vascular leakage. PTGs and LTs exert their biological functions by binding to cognate receptors, which belong to the seven transmembrane, G protein-coupled receptor superfamily. SNPs in genes encoding these receptors may influence their functionality and have a role in disease susceptibility and drug treatment response. In this review we summarize SNPs in PTGs and LTs receptors and their relevance in human diseases. We also provide information on gene expression. Finally, we speculate on future directions for this topic.
Collapse
Affiliation(s)
- José A Cornejo-García
- Research Laboratory, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA)Malaga, Spain; Allergy Unit, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA)Malaga, Spain
| | - James R Perkins
- Research Laboratory, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA) Malaga, Spain
| | - Raquel Jurado-Escobar
- Research Laboratory, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA) Malaga, Spain
| | | | - José A Agúndez
- Department of Pharmacology, University of Extremadura Caceres, Spain
| | - Enrique Viguera
- Genetics Unit, Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga Malaga, Spain
| | - Natalia Pérez-Sánchez
- Allergy Unit, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA) Malaga, Spain
| | | |
Collapse
|
19
|
Lee SH, Lee JG, Lee CY, Kim N, Chang MY, You YC, Kim HJ, Paik HC, Oh YJ. Effects of intraoperative inhaled iloprost on primary graft dysfunction after lung transplantation: A retrospective single center study. Medicine (Baltimore) 2016; 95:e3975. [PMID: 27399072 PMCID: PMC5058801 DOI: 10.1097/md.0000000000003975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
DESIGN Inhaled iloprost was known to alleviate ischemic-reperfusion lung injury. We investigated whether intraoperative inhaled iloprost can prevent the development of primary graft dysfunction after lung transplantation. Data for a consecutive series of patients who underwent lung transplantation with extracorporeal membrane oxygenation were retrieved. By propensity score matching, 2 comparable groups of 30 patients were obtained: patients who inhaled iloprost immediately after reperfusion of the grafted lung (ILO group); patients who did not receive iloprost (non-ILO group). RESULTS The severity of pulmonary infiltration on postoperative days (PODs) 1 to 3 was significantly lower in the ILO group compared to the non-ILO group. The PaO2/FiO2 ratio was significantly higher in the ILO group compared to the non-ILO group (318.2 ± 74.2 vs 275.9 ± 65.3 mm Hg, P = 0.022 on POD 1; 351.4 ± 58.2 vs 295.8 ± 53.7 mm Hg, P = 0.017 on POD 2; and 378.8 ± 51.9 vs 320.2 ± 66.2 mm Hg, P = 0.013 on POD 3, respectively). The prevalence of the primary graft dysfunction grade 3 was lower in the ILO group compared to the non-ILO group (P = 0.042 on POD 1; P = 0.026 on POD 2; P = 0.024 on POD 3, respectively). The duration of ventilator use and intensive care unit were significantly reduced in the ILO group (P = 0.041 and 0.038). CONCLUSIONS Intraoperative inhaled iloprost could prevent primary graft dysfunction and preserve allograft function, thus reducing the length of ventilator care and intensive care unit stay, and improving the overall early post-transplant morbidity in patients undergoing lung transplantation.
Collapse
Affiliation(s)
- Su Hyun Lee
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute
| | - Jin Gu Lee
- Department of Thoracic and Cardiovascular Surgery
| | | | - Namo Kim
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute
| | - Min-Yung Chang
- Department of Radiology, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Chul You
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute
| | - Hyun Joo Kim
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute
| | - Hyo Chae Paik
- Department of Thoracic and Cardiovascular Surgery
- Correspondence: Hyo Chae Paik, Department of Thoracic and Cardiovascular Surgery, Seodaemun-gu, Seoul, Korea (e-mail: ); Young Jun Oh, Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea (e-mail: )
| | - Young Jun Oh
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute
- Correspondence: Hyo Chae Paik, Department of Thoracic and Cardiovascular Surgery, Seodaemun-gu, Seoul, Korea (e-mail: ); Young Jun Oh, Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea (e-mail: )
| |
Collapse
|
20
|
Jacquot J, Delion M, Gangloff S, Braux J, Velard F. Bone disease in cystic fibrosis: new pathogenic insights opening novel therapies. Osteoporos Int 2016; 27:1401-1412. [PMID: 26431978 DOI: 10.1007/s00198-015-3343-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/24/2015] [Indexed: 01/17/2023]
Abstract
Mutations within the gene encoding for the chloride ion channel cystic fibrosis transmembrane conductance regulator (CFTR) results in cystic fibrosis (CF), the most common lethal autosomal recessive genetic disease that causes a number of long-term health problems, as the bone disease. Osteoporosis and increased vertebral fracture risk associated with CF disease are becoming more important as the life expectancy of patients continues to improve. The etiology of low bone density is multifactorial, most probably a combination of inadequate peak bone mass during puberty and increased bone losses in adults. Body mass index, male sex, advanced pulmonary disease, malnutrition and chronic therapies are established additional risk factors for CF-related bone disease (CFBD). Consistently, recent evidence has confirmed that CFTR plays a major role in the osteoprotegerin (OPG) and COX-2 metabolite prostaglandin E2 (PGE2) production, two key regulators in the bone formation and regeneration. Several others mechanisms were also recognized from animal and cell models contributing to malfunctions of osteoblast (cell that form bone) and indirectly of bone-resorpting osteoclasts. Understanding such mechanisms is crucial for the development of therapies in CFBD. Innovative therapeutic approaches using CFTR modulators such as C18 have recently shown in vitro capacity to enhance PGE2 production and normalized the RANKL-to-OPG ratio in human osteoblasts bearing the mutation F508del-CFTR and therefore potential clinical utility in CFBD. This review focuses on the recently identified pathogenic mechanisms leading to CFBD and potential future therapies for treating CFBD.
Collapse
Affiliation(s)
- J Jacquot
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP-Santé (FED 4231), Université Reims Champagne Ardenne, 1, Avenue du Maréchal Juin, 51095, Reims, France.
| | | | | | | | | |
Collapse
|
21
|
Cantu E, Suzuki Y, Diamond JM, Ellis J, Tiwari J, Beduhn B, Nellen JR, Shah R, Meyer NJ, Lederer DJ, Kawut SM, Palmer SM, Snyder LD, Hartwig MG, Lama VN, Bhorade S, Crespo M, Demissie E, Wille K, Orens J, Shah PD, Weinacker A, Weill D, Wilkes D, Roe D, Ware LB, Wang F, Feng R, Christie JD. Protein Quantitative Trait Loci Analysis Identifies Genetic Variation in the Innate Immune Regulator TOLLIP in Post-Lung Transplant Primary Graft Dysfunction Risk. Am J Transplant 2016; 16:833-40. [PMID: 26663441 PMCID: PMC4767612 DOI: 10.1111/ajt.13525] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 01/25/2023]
Abstract
The authors previously identified plasma plasminogen activator inhibitor-1 (PAI-1) level as a quantitative lung injury biomarker in primary graft dysfunction (PGD). They hypothesized that plasma levels of PAI-1 used as a quantitative trait could facilitate discovery of genetic loci important in PGD pathogenesis. A two-stage cohort study was performed. In stage 1, they tested associations of loci with PAI-1 plasma level using linear modeling. Genotyping was performed using the Illumina CVD Bead Chip v2. Loci meeting a p < 5 × 10(-4) cutoff were carried forward and tested in stage 2 for association with PGD. Two hundred ninety-seven enrollees were evaluated in stage 1. Six loci, associated with PAI-1, were carried forward to stage 2 and evaluated in 728 patients. rs3168046 (Toll interacting protein [TOLLIP]) was significantly associated with PGD (p = 0.006). The increased risk of PGD for carrying at least one copy of this variant was 11.7% (95% confidence interval 4.9-18.5%). The false-positive rate for individuals with this genotype who did not have PGD was 6.1%. Variants in the TOLLIP gene are associated with higher circulating PAI-1 plasma levels and validate for association with clinical PGD. A protein quantitative trait analysis for PGD risk prioritizes genetic variations in TOLLIP and supports a role for Toll-like receptors in PGD pathogenesis.
Collapse
Affiliation(s)
- Edward Cantu
- Division of Cardiovascular Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Yoshikazu Suzuki
- Division of Cardiovascular Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Joshua M. Diamond
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - John Ellis
- Division of Cardiovascular Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Jaya Tiwari
- Division of Cardiovascular Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Ben Beduhn
- Division of Cardiovascular Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - James R. Nellen
- Division of Cardiovascular Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Rupal Shah
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Nuala J. Meyer
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - David J. Lederer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Steven M. Kawut
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA,Penn Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Scott M. Palmer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Durham, North Carolina
| | - Laurie D. Snyder
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Durham, North Carolina
| | - Matthew G. Hartwig
- Division of Cardiothoracic Surgery, Duke University, Durham, North Carolina
| | - Vibha N. Lama
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sangeeta Bhorade
- Division of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois
| | - Maria Crespo
- Division of Pulmonary, Allergy, and Critical Care, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ejigayehu Demissie
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Keith Wille
- Division of Pulmonary and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jonathan Orens
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Johns Hopkins University Hospital, Baltimore, Maryland
| | - Pali D. Shah
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Johns Hopkins University Hospital, Baltimore, Maryland
| | - Ann Weinacker
- Division of Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, California
| | - David Weill
- Division of Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, California
| | - David Wilkes
- Division of Pulmonary, Allergy, Critical Care, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - David Roe
- Division of Pulmonary, Allergy, Critical Care, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lorraine B. Ware
- Departments of Medicine and Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Fan Wang
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Rui Feng
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Jason D. Christie
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA
| | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Chronic lung allograft dysfunction (CLAD) was recently introduced as an overarching term covering different phenotypes of chronic allograft dysfunction, including obstructive CLAD (bronchiolitis obliterans syndrome), restrictive CLAD (restrictive allograft syndrome) and graft dysfunction due to causes not related to chronic rejection. In the present review, we will highlight the latest insights and current controversies regarding the new CLAD terminology, underlying pathophysiologic mechanisms, diagnostic approach and possible treatment options. RECENT FINDINGS Different pathophysiological mechanisms are clearly involved in clinically distinct phenotypes of chronic rejection, as is reflected by differences in histology, allograft function and imaging. Therefore, not all CLAD patients may equally benefit from specific therapies. SUMMARY The recent introduction of CLAD importantly changed the clinical practice in lung transplant recipients. Given the relative low accuracy of the current diagnostic tools, future research should focus on specific biomarkers, more sensitive pulmonary function parameters and imaging techniques for timely CLAD diagnosis and phenotyping. Personalized or targeted therapeutic options for adequate prevention and treatment of CLAD are required.
Collapse
|
23
|
Design and Implementation of the International Genetics and Translational Research in Transplantation Network. Transplantation 2016; 99:2401-12. [PMID: 26479416 PMCID: PMC4623847 DOI: 10.1097/tp.0000000000000913] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genetic association studies of transplantation outcomes have been hampered by small samples and highly complex multifactorial phenotypes, hindering investigations of the genetic architecture of a range of comorbidities which significantly impact graft and recipient life expectancy. We describe here the rationale and design of the International Genetics & Translational Research in Transplantation Network. The network comprises 22 studies to date, including 16494 transplant recipients and 11669 donors, of whom more than 5000 are of non-European ancestry, all of whom have existing genomewide genotype data sets. iGeneTRAiN is a consortium that has genome-wide genotype datasets. These genomic data allows robust statistically analysis of genetic associations that impact graft and patients variables such as, such as: graft survival, acute rejection, new onset of diabetes after transplantation, and delayed graft kidney function. Supplemental digital content is available in the text.
Collapse
|
24
|
Diamond JM, Porteous MK, Roberts LJ, Wickersham N, Rushefski M, Kawut SM, Shah RJ, Cantu E, Lederer DJ, Chatterjee S, Lama VN, Bhorade S, Crespo M, McDyer J, Wille K, Orens J, Weinacker A, Arcasoy S, Shah PD, Wilkes DS, Hage C, Palmer SM, Snyder L, Calfee CS, Ware LB, Christie JD. The relationship between plasma lipid peroxidation products and primary graft dysfunction after lung transplantation is modified by donor smoking and reperfusion hyperoxia. J Heart Lung Transplant 2016; 35:500-507. [PMID: 26856667 DOI: 10.1016/j.healun.2015.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/16/2015] [Accepted: 12/21/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Donor smoking history and higher fraction of inspired oxygen (FIO2) at reperfusion are associated with primary graft dysfunction (PGD) after lung transplantation. We hypothesized that oxidative injury biomarkers would be elevated in PGD, with higher levels associated with donor exposure to cigarette smoke and recipient hyperoxia at reperfusion. METHODS We performed a nested case-control study of 72 lung transplant recipients from the Lung Transplant Outcomes Group cohort. Using mass spectroscopy, F2-isoprostanes and isofurans were measured in plasma collected after transplantation. Cases were defined in 2 ways: grade 3 PGD present at day 2 or day 3 after reperfusion (severe PGD) or any grade 3 PGD (any PGD). RESULTS There were 31 severe PGD cases with 41 controls and 35 any PGD cases with 37 controls. Plasma F2-isoprostane levels were higher in severe PGD cases compared with controls (28.6 pg/ml vs 19.8 pg/ml, p = 0.03). Plasma F2-isoprostane levels were higher in severe PGD cases compared with controls (29.6 pg/ml vs 19.0 pg/ml, p = 0.03) among patients reperfused with FIO2 >40%. Among recipients of lungs from donors with smoke exposure, plasma F2-isoprostane (38.2 pg/ml vs 22.5 pg/ml, p = 0.046) and isofuran (66.9 pg/ml vs 34.6 pg/ml, p = 0.046) levels were higher in severe PGD compared with control subjects. CONCLUSIONS Plasma levels of lipid peroxidation products are higher in patients with severe PGD, in recipients of lungs from donors with smoke exposure, and in recipients exposed to higher Fio2 at reperfusion. Oxidative injury is an important mechanism of PGD and may be magnified by donor exposure to cigarette smoke and hyperoxia at reperfusion.
Collapse
Affiliation(s)
- Joshua M Diamond
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mary K Porteous
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - L Jackson Roberts
- Departments of Medicine and Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Nancy Wickersham
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee
| | - Melanie Rushefski
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Steven M Kawut
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.,Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Philadelphia, PA.,Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Rupal J Shah
- Department of Medicine, University of California, San Francisco, California
| | - Edward Cantu
- Division of Cardiovascular Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - David J Lederer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Shampa Chatterjee
- Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Philadelphia, PA
| | - Vibha N Lama
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sangeeta Bhorade
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois
| | - Maria Crespo
- Division of Pulmonary, Allergy, and Critical Care, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John McDyer
- Division of Pulmonary, Allergy, and Critical Care, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Keith Wille
- Division of Pulmonary and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jonathan Orens
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Johns Hopkins University Hospital, Baltimore, Maryland
| | - Ann Weinacker
- Division of Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, California
| | - Selim Arcasoy
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Pali D Shah
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Johns Hopkins University Hospital, Baltimore, Maryland
| | - David S Wilkes
- Division of Pulmonary, Allergy, Critical Care, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chadi Hage
- Division of Pulmonary, Allergy, Critical Care, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Scott M Palmer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Raleigh-Durham, North Carolina
| | - Laurie Snyder
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Raleigh-Durham, North Carolina
| | - Carolyn S Calfee
- Department of Medicine, University of California, San Francisco, California.,Departments of Medicine and Anesthesia, University of California, San Francisco, California
| | - Lorraine B Ware
- Departments of Medicine and Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Jason D Christie
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.,Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Philadelphia, PA
| | | |
Collapse
|
25
|
Lung Transplantation. PATHOLOGY OF TRANSPLANTATION 2016. [PMCID: PMC7153460 DOI: 10.1007/978-3-319-29683-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The therapeutic options for patients with advanced pulmonary parenchymal or vascular disorders are currently limited. Lung transplantation remains one of the few viable interventions, but on account of the insufficient donor pool only a minority of these patients actually undergo the procedure each year. Following transplantation there are a number of early and late allograft complications such as primary graft dysfunction, allograft rejection, infection, post-transplant lymphoproliferative disorder and late injury that is now classified as chronic lung allograft dysfunction. The pathologist plays an essential role in the diagnosis and classification of these myriad complications. Although the transplant procedures are performed in selected centers patients typically return to their local centers. When complications arise it is often the responsibility of the local pathologist to evaluate specimens. Therefore familiarity with the pathology of lung transplantation is important.
Collapse
|
26
|
Emtiazjoo A, Shilling RA. Preventing the NET negative in primary graft dysfunction. Am J Respir Crit Care Med 2015; 191:368-9. [PMID: 25679102 DOI: 10.1164/rccm.201412-2218ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Amir Emtiazjoo
- 1 Department of Medicine University of Florida Gainesville, Florida
| | | |
Collapse
|
27
|
Somers J, Ruttens D, Verleden SE, Vandermeulen E, Piloni D, Wauters E, Lambrechts D, Vos R, Verleden GM, Vanaudenaerde B, van Raemdonck DE. Interleukin-17 receptor polymorphism predisposes to primary graft dysfunction after lung transplantation. J Heart Lung Transplant 2015; 34:941-9. [PMID: 25935436 DOI: 10.1016/j.healun.2015.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/24/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Primary graft dysfunction (PGD), with an incidence of 11% to 57%, is a major cause of morbidity and mortality within the first 30 days after lung transplantation (LTx). In this study, we postulate that recipient genetic variants in interleukin-17 and -23 receptor genes (IL-17R and IL-23R, respectively) may predispose LTx recipients to an increased risk for developing PGD. METHODS Seven genetic variants of IL-17R and IL-23R were successfully genotyped in 431 lung transplant recipients. Our primary end-point was PGD and secondary end-points were time to extubation, intensive care unit (ICU) stay, bronchoalveolar lavage neutrophilia and serum C-reactive protein. RESULTS The AA genotype of the rs882643 genetic variant of IL-17R was associated with higher PGD grades at 0 hour (adjusted p = 0.042), 12 hours (adjusted p = 0.013) and 48 hours (adjusted p = 0.0092) after LTx. The GG genotype of the rs2241049 genetic variant of IL-17R was associated with higher PGD grades at 48 hours (adjusted p = 0.0067) after LTx. For both genetic variants, no association was found with extubation time, ICU stay, post-operative BAL neutrophilia, serum CRP, chronic lung allograft dysfunction (CLAD) or graft loss. CONCLUSION Both genetic variants of IL-17R (rs882643 and rs2241049) were associated with PGD. This confirms a genetic predisposition toward PGD and suggests a role of IL-17 in driving neutrophilia in PGD.
Collapse
Affiliation(s)
- Jana Somers
- Laboratory of Respiratory Disease and Laboratory for Experimental Thoracic Surgery, Department of Clinical and Experimental Medicine
| | - David Ruttens
- Laboratory of Respiratory Disease and Laboratory for Experimental Thoracic Surgery, Department of Clinical and Experimental Medicine
| | - Stijn E Verleden
- Laboratory of Respiratory Disease and Laboratory for Experimental Thoracic Surgery, Department of Clinical and Experimental Medicine
| | - Elly Vandermeulen
- Laboratory of Respiratory Disease and Laboratory for Experimental Thoracic Surgery, Department of Clinical and Experimental Medicine
| | - Davide Piloni
- Laboratory of Respiratory Disease and Laboratory for Experimental Thoracic Surgery, Department of Clinical and Experimental Medicine
| | - Els Wauters
- Laboratory of Translational Genetics, Vesalius Research Center; Vesalius Reseach Centrum, VIB, Vlaams Instituut voor Biotechnologie, KU Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Vesalius Research Center; Vesalius Reseach Centrum, VIB, Vlaams Instituut voor Biotechnologie, KU Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Robin Vos
- Laboratory of Respiratory Disease and Laboratory for Experimental Thoracic Surgery, Department of Clinical and Experimental Medicine
| | - Geert M Verleden
- Laboratory of Respiratory Disease and Laboratory for Experimental Thoracic Surgery, Department of Clinical and Experimental Medicine
| | - Bart Vanaudenaerde
- Laboratory of Respiratory Disease and Laboratory for Experimental Thoracic Surgery, Department of Clinical and Experimental Medicine
| | - Dirk E van Raemdonck
- Laboratory of Respiratory Disease and Laboratory for Experimental Thoracic Surgery, Department of Clinical and Experimental Medicine.
| |
Collapse
|
28
|
Ruttens D, Vandermeulen E, Verleden SE, Bellon H, Vos R, Van Raemdonck DE, Dupont LJ, Vanaudenaerde BM, Verleden GM. Role of genetics in lung transplant complications. Ann Med 2015; 47:106-15. [PMID: 25766881 DOI: 10.3109/07853890.2015.1004359] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is increasing knowledge that patients can be predisposed to a certain disease by genetic variations in their DNA. Extensive genetic variation has been described in molecules involved in short- and long-term complications after lung transplantation (LTx), such as primary graft dysfunction (PGD), acute rejection, respiratory infection, chronic lung allograft dysfunction (CLAD), and mortality. Several of these studies could not be confirmed or were not reproduced in other cohorts. However, large multicenter prospective studies need to be performed to define the real clinical consequence and significance of genotyping the donor and receptor of a LTx. The current review presents an overview of genetic polymorphisms (SNP) investigating an association with different complications after LTx. Finally, the major drawbacks, clinical relevance, and future perspectives will be discussed.
Collapse
Affiliation(s)
- D Ruttens
- KU Leuven, and UZ Leuven, Department of Clinical and Experimental Medicine, Laboratory of Pneumology, Lung Transplant Unit , Leuven , Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cantu E, Shah RJ, Lin W, Daye ZJ, Diamond JM, Suzuki Y, Ellis JH, Borders CF, Andah GA, Beduhn B, Meyer NJ, Ruschefski M, Aplenc R, Feng R, Christie JD. Oxidant stress regulatory genetic variation in recipients and donors contributes to risk of primary graft dysfunction after lung transplantation. J Thorac Cardiovasc Surg 2015; 149:596-602. [PMID: 25439478 PMCID: PMC4346512 DOI: 10.1016/j.jtcvs.2014.09.077] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/19/2014] [Accepted: 09/23/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Oxidant stress pathway activation during ischemia reperfusion injury may contribute to the development of primary graft dysfunction (PGD) after lung transplantation. We hypothesized that oxidant stress gene variation in recipients and donors is associated with PGD. METHODS Donors and recipients from the Lung Transplant Outcomes Group (LTOG) cohort were genotyped using the Illumina IBC chip filtered for oxidant stress pathway genes. Single nucleotide polymorphisms (SNPs) grouped into SNP sets based on haplotype blocks within 49 oxidant stress genes selected from gene ontology pathways and literature review were tested for PGD association using a sequencing kernel association test. Analyses were adjusted for clinical confounding variables and population stratification. RESULTS Three hundred ninety-two donors and 1038 recipients met genetic quality control standards. Thirty percent of patients developed grade 3 PGD within 72 hours. Donor NADPH oxidase 3 (NOX3) was associated with PGD (P = .01) with 5 individual significant loci (P values between .006 and .03). In recipients, variation in glutathione peroxidase (GPX1) and NRF-2 (NFE2L2) was significantly associated with PGD (P = .01 for both). The GPX1 association included 3 individual loci (P values between .006 and .049) and the NFE2L2 association included 2 loci (P = .03 and .05). Significant epistatic effects influencing PGD susceptibility were evident between 3 different donor blocks of NOX3 and recipient NFE2L2 (P = .026, P = .017, and P = .031). CONCLUSIONS Our study has prioritized GPX1, NOX3, and NFE2L2 genes for future research in PGD pathogenesis, and highlights a donor-recipient interaction of NOX3 and NFE2L2 that increases the risk of PGD.
Collapse
Affiliation(s)
- Edward Cantu
- Cardiovascular Surgery Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Rupal J. Shah
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Wei Lin
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Zhongyin J. Daye
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Joshua M. Diamond
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Yoshikazu Suzuki
- Cardiovascular Surgery Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - John H. Ellis
- Cardiovascular Surgery Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Catherine F. Borders
- Cardiovascular Surgery Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Gerald A. Andah
- Cardiovascular Surgery Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Ben Beduhn
- Cardiovascular Surgery Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Nuala J. Meyer
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Melanie Ruschefski
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Richard Aplenc
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Rui Feng
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jason D. Christie
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | |
Collapse
|
30
|
Zhang Y. From gene variants to novel therapies. Is the prostaglandin e2 pathway in primary graft dysfunction ready for prime time? Am J Respir Crit Care Med 2014; 189:507-8. [PMID: 24579833 DOI: 10.1164/rccm.201401-0154ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Yingze Zhang
- 1 Division of Pulmonary, Allergy and Critical Care Medicine University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| |
Collapse
|