1
|
Koozi H, Engström J, Zwawi A, Spångfors M, Didriksson I, Larsson A, Friberg H, Frigyesi A. Plasma endostatin at intensive care admission is independently associated with acute kidney injury, dialysis, and mortality in COVID-19. Intensive Care Med Exp 2025; 13:42. [PMID: 40178654 PMCID: PMC11968582 DOI: 10.1186/s40635-025-00748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Critical COVID-19 is associated with high mortality, and acute kidney injury (AKI) is common. Endostatin has emerged as a promising prognostic biomarker for predicting AKI and mortality in intensive care. This study aimed to investigate plasma endostatin at intensive care unit (ICU) admission as a biomarker for AKI, renal replacement therapy (RRT), and 90-day mortality in COVID-19. METHODS A pre-planned retrospective analysis of a prospectively collected cohort of admissions with a primary SARS-CoV-2 infection to six ICUs in southern Sweden between May 2020 and May 2021 was undertaken. Endostatin at ICU admission was evaluated with multivariable logistic regression analyses adjusted for age, sex, C-reactive protein, and creatinine. Net reclassification index analyses were also performed. RESULTS Four hundred eighty-four patients were included. Endostatin showed a non-linear association with AKI, RRT, and 90-day mortality. Endostatin levels of 100-200 ng/mL were associated with AKI on ICU day 1 (OR 5.1, 95% CI 1.5-18, p = 0.0097), RRT during the ICU stay (OR 3.5, 95% CI 1.1-12, p = 0.039), and 90-day mortality (OR 4.2, 95% CI 1.6-11, p = 0.0037). Adding endostatin to creatinine improved prediction of AKI on ICU day 1, while adding it to a model containing age, sex, CRP, and creatinine improved prediction of both AKI on ICU day 1 and 90-day mortality, but not RRT. CONCLUSIONS Endostatin at ICU admission was independently associated with AKI, RRT, and 90-day mortality in ICU patients with COVID-19. In addition, endostatin improved the prediction of AKI and 90-day mortality, highlighting its potential as a biomarker for early risk stratification in intensive care.
Collapse
Affiliation(s)
- Hazem Koozi
- Department of Clinical Sciences, Anaesthesiology and Intensive Care, Lund University, 22185, Lund, Sweden.
- Department of Anaesthesia and Intensive Care, Kristianstad Hospital, 29133, Kristianstad, Sweden.
| | - Jonas Engström
- Department of Clinical Sciences, Anaesthesiology and Intensive Care, Lund University, 22185, Lund, Sweden
- Department of Anaesthesia and Intensive Care, Kristianstad Hospital, 29133, Kristianstad, Sweden
| | - Ahmad Zwawi
- Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Martin Spångfors
- Department of Clinical Sciences, Anaesthesiology and Intensive Care, Lund University, 22185, Lund, Sweden
- Department of Anaesthesia and Intensive Care, Kristianstad Hospital, 29133, Kristianstad, Sweden
| | - Ingrid Didriksson
- Department of Clinical Sciences, Anaesthesiology and Intensive Care, Lund University, 22185, Lund, Sweden
- Department of Intensive and Perioperative Care, Skåne University Hospital, 20502, Malmö, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, 75185, Uppsala, Sweden
| | - Hans Friberg
- Department of Clinical Sciences, Anaesthesiology and Intensive Care, Lund University, 22185, Lund, Sweden
- Department of Intensive and Perioperative Care, Skåne University Hospital, 20502, Malmö, Sweden
| | - Attila Frigyesi
- Department of Clinical Sciences, Anaesthesiology and Intensive Care, Lund University, 22185, Lund, Sweden
- Department of Intensive and Perioperative Care, Skåne University Hospital, 22185, Lund, Sweden
| |
Collapse
|
2
|
Huang S, Li N, Yan D. Delayed treatment with endostatin displays a protective role against pulmonary hypertension by targeting VEGF pathway. Minerva Med 2025; 116:13-21. [PMID: 33913657 DOI: 10.23736/s0026-4806.21.07145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Endostatin (ES) is an endogenous angiogenesis inhibitor. It is confirmed that ES has antitumor effects and plays a crucial part in regulating vascular smooth cells' proliferation. However, ES's effect on pulmonary hypertension (PH) is unclear. The aim of this study was to determine the effect of ES on PH's pathogenesis. METHODS PH was induced by pneumonectomy plus monocrotaline (MCT) injection, as indicated with significantly increased pulmonary arterial pressure and vascular wall thickness. RESULTS Immunohistochemical analysis showed that under physiological conditions, ES localized in endothelial cells (ECs) and spread to the muscular vascular layers in PH rats. ES was transfected into the lungs of rats intratracheally 2 weeks after MCT injection. Consequently, ES not only reduced elevated VEGF's expression but also reversed pulmonary artery remodeling. Eventually, ES improved elevated right ventricular (RV) mean pressure and RV hypertrophy. CONCLUSIONS The administration of ES may be a new treatment for PH and PA remodeling, associating with the downregulation of VEGF production.
Collapse
Affiliation(s)
- Shuai Huang
- Department of Cardiology, Yuncheng People Hospital, Heze, China
| | - Nannan Li
- Emergency Department, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Dong Yan
- Department of Bone and Joint Surgery, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China -
| |
Collapse
|
3
|
Yaghoubi A, Heijl C, Khoshnood AM, Wändell PE, Carlsson AC, Wessman T. Association between endostatin and mortality in patients with acute dyspnoea, with or without congestive heart failure: a single-centre, prospective, observational study. BMJ Open 2025; 15:e085238. [PMID: 39800400 PMCID: PMC11752042 DOI: 10.1136/bmjopen-2024-085238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 12/02/2024] [Indexed: 01/24/2025] Open
Abstract
OBJECTIVE The aim of this study was to assess associations between endostatin levels and short-term mortality in unsorted acute hospitalised dyspnoea patients with or without congestive heart failure (CHF), adjusted for common cardiovascular risk factors. DESIGN, SETTING AND PARTICIPANTS In this prospective observational study, 723 hospitalised patients who visited the emergency department at Skåne University Hospital, Sweden, between 2013 and 2018 were included. Of these, 276 had a history of CHF. The association between endostatin levels and 1 month and 3-month mortality was evaluated, stratified by whether patients had a history of CHF or not. RESULTS Patients with prior CHF had higher endostatin levels, higher short-term mortality and were more likely to have CHF as discharge diagnosis. In a fully adjusted model, endostatin was independently associated with 3-month mortality (HR=1.01 per 1 ng/mL increment of endostatin; 95% CI 1.00 to 1.02; p=0.016). No evidence of association was identified with 1-month mortality. CONCLUSIONS Endostatins are potential biomarkers for 3 months' mortality in patients hospitalised with CHF seeking emergency care with acute dyspnoea. Further studies are needed in different settings to assess the predictive value of endostatins in patients with CHF.
Collapse
Affiliation(s)
| | - Caroline Heijl
- Department of Cardiology, Skåne University Hospital, Malmö, Skåne, Sweden
- Department of Clinical Sciences Malmö, Lund University, Malmö, Skåne, Sweden
| | | | | | | | - Torgny Wessman
- Emergency Department, Skåne University Hospital, Malmo, Skåne, Sweden
- Department of Clinical Sciences Malmö, Lund University, Malmö, Skåne, Sweden
| |
Collapse
|
4
|
Griffiths M, Simpson CE, Yang J, Vaidya D, Nies MK, Brandal S, Damico R, Hassoun P, Ivy DD, Austin ED, Pauciulo MW, Lutz KA, Martin LJ, Rosenzweig EB, Benza RL, Nichols WC, Manlhiot C, Everett AD. Equivalency of Multiple Biomarkers to Clinical Pulmonary Arterial Hypertension Survival Risk Models. Chest 2024; 166:1511-1531. [PMID: 39154795 PMCID: PMC11736302 DOI: 10.1016/j.chest.2024.06.3824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Risk assessment in pulmonary arterial hypertension (PAH) is fundamental to guiding treatment and improved outcomes. Clinical models are excellent at identifying high-risk patients, but leave uncertainty amongst moderate-risk patients. RESEARCH QUESTION Can a multiple blood biomarker model of PAH, using previously described biomarkers, improve risk discrimination over current models? STUDY DESIGN AND METHODS Using a multiplex enzyme-linked immunosorbent assay, we measured N-terminal pro-B-type natriuretic peptide (NT-proBNP), soluble suppressor of tumorigenicity, IL-6, endostatin, galectin 3, hepatoma derived growth factor, and insulin-like growth factor binding proteins (IGFBP1-7) in training (n = 1,623), test (n = 696), and validation (n = 237) cohorts. Clinical variables and biomarkers were evaluated by principal component analysis. NT-proBNP was not included to develop a model independent of NT-proBNP. Unsupervised k-means clustering classified participants into clusters. Transplant-free survival by cluster was examined using Kaplan-Meier and Cox proportional hazard regressions. Hazard by cluster was compared with NT-proBNP, Registry to Evaluate Early and Long-Term PAH Disease Management (REVEAL), and European Society of Cardiology and European Respiratory Society risk models alone and combined clinical and biomarker models. RESULTS The algorithm generated five clusters with good risk discrimination using six biomarkers, weight, height, and age at PAH diagnosis. In the test and validation cohorts, the biomarker model alone performed equivalent to REVEAL (area under the receiver operating characteristic curve, 0.74). Adding the biomarker model to the European Society of Cardiology and European Respiratory Society score and REVEAL score improved the European Society of Cardiology and European Respiratory Society score and REVEAL score. The best overall model was the biomarker model adjusted for NT-proBNP with the best C statistic, Akaike information criterion, and calibration for the adjusted model compared with either the biomarker or NT-proBNP model alone. INTERPRETATION In this study, a multibiomarker model alone was equivalent to current PAH clinical mortality risk prediction models and improved performance when combined and added to NT-proBNP. Clinical risk scores offer excellent predictive models, but require multiple tests; adding blood biomarkers to models can improve prediction or can enable more frequent, noninvasive monitoring of risk in PAH to support therapeutic decision-making.
Collapse
Affiliation(s)
- Megan Griffiths
- Blalock-Taussig-Thomas Congenital Heart Center, Department of Pediatrics, Johns Hopkins University, Baltimore, MD; Division of Pediatric Cardiology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX.
| | - Catherine E Simpson
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Jun Yang
- Blalock-Taussig-Thomas Congenital Heart Center, Department of Pediatrics, Johns Hopkins University, Baltimore, MD
| | - Dhananjay Vaidya
- Department of Internal Medicine, Johns Hopkins University, Baltimore, MD
| | - Melanie K Nies
- Blalock-Taussig-Thomas Congenital Heart Center, Department of Pediatrics, Johns Hopkins University, Baltimore, MD
| | - Stephanie Brandal
- Blalock-Taussig-Thomas Congenital Heart Center, Department of Pediatrics, Johns Hopkins University, Baltimore, MD
| | - Rachel Damico
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Paul Hassoun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Dunbar D Ivy
- Division of Pediatric Cardiology, Children's Hospital Colorado, Denver, CO
| | - Eric D Austin
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Michael W Pauciulo
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Katie A Lutz
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Lisa J Martin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Erika B Rosenzweig
- Division of Pediatric Cardiology, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Raymond L Benza
- Division of Cardiology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - William C Nichols
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Cedric Manlhiot
- Blalock-Taussig-Thomas Congenital Heart Center, Department of Pediatrics, Johns Hopkins University, Baltimore, MD
| | - Allen D Everett
- Blalock-Taussig-Thomas Congenital Heart Center, Department of Pediatrics, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
5
|
Ahmed S, Ahmed A, Rådegran G. Circulating biomarkers in pulmonary arterial hypertension: State-of-the-art review and future directions. JHLT OPEN 2024; 6:100152. [PMID: 40145036 PMCID: PMC11935499 DOI: 10.1016/j.jhlto.2024.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Pulmonary arterial hypertension is a complex and heterogeneous condition, associated with a considerable diagnostic delay, diminished exercise capacity, and poor outcomes. In pulmonary arterial hypertension, biomarker research has become a subject of intense inquiry, and novel circulating biomarkers acknowledged in a multitude of mechanistic pathways are emerging. Beyond the widely used natriuretic peptides, novel biomarkers may provide deeper pathophysiological understanding, support clinical decision-making, and prompt the incorporation of precision medicine by enabling a more precise individual phenotyping. In this state-of-the-art review, the recent advances in circulating biomarkers in pulmonary arterial hypertension from a clinical perspective are discussed, with particular emphasis on the current state of knowledge, gaps in evidence, and future perspectives.
Collapse
Affiliation(s)
- Salaheldin Ahmed
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
- Department of Education and Research, Helsingborg Hospital, Helsingborg, Sweden
| | - Abdulla Ahmed
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
- Department of Education and Research, Helsingborg Hospital, Helsingborg, Sweden
| | - Göran Rådegran
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
6
|
Harder EM, Nardelli P, Pistenmaa CL, Ash SY, Balasubramanian A, Bowler RP, Iturrioz Campo M, Diaz AA, Hassoun PM, Leopold JA, Martinez FJ, Nathan SD, Noth I, Podolanczuk AJ, Saggar R, San José Estépar R, Shlobin OA, Wang W, Waxman AB, Putman RK, Washko GR, Choi B, San José Estépar R, Rahaghi FN. Preacinar Arterial Dilation Mediates Outcomes of Quantitative Interstitial Abnormalities in the COPDGene Study. Am J Respir Crit Care Med 2024; 210:1132-1142. [PMID: 38820122 PMCID: PMC11544357 DOI: 10.1164/rccm.202312-2342oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/31/2024] [Indexed: 06/02/2024] Open
Abstract
Rationale: Quantitative interstitial abnormalities (QIAs) are a computed tomography (CT) measure of early parenchymal lung disease associated with worse clinical outcomes, including exercise capacity and symptoms. The presence of pulmonary vasculopathy in QIAs and its role in the QIA-outcome relationship is unknown. Objectives: To quantify radiographic pulmonary vasculopathy in QIAs and determine whether this vasculopathy mediates the QIA-outcome relationship. Methods: Ever-smokers with QIAs, outcomes, and pulmonary vascular mediator data were identified from the Genetic Epidemiology of COPD (COPDGene) study cohort. CT-based vascular mediators were right ventricle-to-left ventricle ratio, pulmonary artery-to-aorta ratio, and preacinar intraparenchymal arterial dilation (pulmonary artery volume, 5-20 mm2 in cross-sectional area, normalized to total arterial volume). Outcomes were 6-minute walk distance and a modified Medical Council Research Council Dyspnea Scale score of 2 or higher. Adjusted causal mediation analyses were used to determine whether the pulmonary vasculature mediated the QIA effect on outcomes. Associations of preacinar arterial dilation with select plasma biomarkers of pulmonary vascular dysfunction were examined. Measurements and Main Results: Among 8,200 participants, QIA burden correlated positively with vascular damage measures, including preacinar arterial dilation. Preacinar arterial dilation mediated 79.6% of the detrimental impact of QIA on 6-minute walk distance (56.2-100%; P < 0.001). Pulmonary artery-to-aorta ratio was a weak mediator, and right ventricle-to-left ventricle ratio was a suppressor. Similar results were observed in the relationship between QIA and modified Medical Council Research Council dyspnea score. Preacinar arterial dilation correlated with increased pulmonary vascular dysfunction biomarker levels, including angiopoietin-2 and N-terminal brain natriuretic peptide. Conclusions: Parenchymal QIAs deleteriously impact outcomes primarily through pulmonary vasculopathy. Preacinar arterial dilation may be a novel marker of pulmonary vasculopathy in QIAs.
Collapse
Affiliation(s)
| | | | | | - Samuel Y Ash
- Department of Critical Care Medicine, South Shore Hospital, South Weymouth, Massachusetts, and School of Medicine, Tufts University, Boston, Massachusetts
| | - Aparna Balasubramanian
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Russell P Bowler
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | | | | | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | | | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York City, New York
| | - Steven D Nathan
- Inova Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, Falls Church, Virginia
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Anna J Podolanczuk
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York City, New York
| | - Rajan Saggar
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, Los Angeles, Los Angeles, California; and
| | | | - Oksana A Shlobin
- Inova Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, Falls Church, Virginia
| | - Wei Wang
- Division of Sleep and Circadian Disorders, Department of Medicine, and Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Bina Choi
- Division of Pulmonary and Critical Care Medicine
| | | | | |
Collapse
|
7
|
Kemberi M, Minns AF, Santamaria S. Soluble Proteoglycans and Proteoglycan Fragments as Biomarkers of Pathological Extracellular Matrix Remodeling. PROTEOGLYCAN RESEARCH 2024; 2:e70011. [PMID: 39600538 PMCID: PMC11587194 DOI: 10.1002/pgr2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Proteoglycans and their proteolytic fragments diffuse into biological fluids such as plasma, serum, urine, or synovial fluid, where they can be detected by antibodies or mass-spectrometry. Neopeptides generated by the proteolysis of proteoglycans are recognized by specific neoepitope antibodies and can act as a proxy for the activity of certain proteases. Proteoglycan and proteoglycan fragments can be potentially used as prognostic, diagnostic, or theragnostic biomarkers for several diseases characterized by dysregulated extracellular matrix remodeling such as osteoarthritis, rheumatoid arthritis, atherosclerosis, thoracic aortic aneurysms, central nervous system disorders, viral infections, and cancer. Here, we review the main mechanisms accounting for the presence of soluble proteoglycans and their fragments in biological fluids, their potential application as diagnostic, prognostic, or theragnostic biomarkers, and highlight challenges and opportunities ahead of their clinical translation.
Collapse
Affiliation(s)
- Marsioleda Kemberi
- Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonEnglandUK
| | - Alexander F. Minns
- Department of Biochemical SciencesSchool of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| | - Salvatore Santamaria
- Department of Biochemical SciencesSchool of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| |
Collapse
|
8
|
Dardi F, Boucly A, Benza R, Frantz R, Mercurio V, Olschewski H, Rådegran G, Rubin LJ, Hoeper MM. Risk stratification and treatment goals in pulmonary arterial hypertension. Eur Respir J 2024; 64:2401323. [PMID: 39209472 PMCID: PMC11525341 DOI: 10.1183/13993003.01323-2024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
Risk stratification has gained an increasing role in predicting outcomes and guiding the treatment of patients with pulmonary arterial hypertension (PAH). The most predictive prognostic factors are three noninvasive parameters (World Health Organization functional class, 6-min walk distance and natriuretic peptides) that are included in all currently validated risk stratification tools. However, suffering from limitations mainly related to reduced specificity of PAH severity, these variables may not always be adequate in isolation for guiding individualised treatment decisions. Moreover, with effective combination treatment regimens and emerging PAH therapies, markers associated with pulmonary vascular remodelling are expected to become of increasing relevance in guiding the treatment of patients with PAH. While reaching a low mortality risk, assessed with a validated risk tool, remains an important treatment goal, preliminary data suggest that invasive haemodynamics and cardiac imaging may add incremental value in guiding treatment decisions.
Collapse
Affiliation(s)
- Fabio Dardi
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Athénaïs Boucly
- Université Paris-Saclay, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Raymond Benza
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Frantz
- Department of Cardiovascular Disease, Mayo Clinic, Rochester, MN, USA
| | - Valentina Mercurio
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Horst Olschewski
- Div. Pulmonology, Department Internal Medicine, Medical University of Graz, Graz, Austria
| | - Göran Rådegran
- Department of Clinical Sciences Lund, Cardiology, Lund University and The Haemodynamic Lab, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Lewis J Rubin
- University of California San Diego School of Medicine, San Diego, CA, USA
| | - Marius M Hoeper
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School and the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
9
|
Ambade AS, Naranjo M, Tuhy T, Yu R, Marimoutou M, Everett AD, Shimoda LA, Zimmerman SL, Cubero Salazar IM, Simpson CE, Tedford RJ, Hsu S, Hassoun PM, Damico RL. Collagen 18A1/Endostatin Expression in the Progression of Right Ventricular Remodeling and Dysfunction in Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2024; 71:343-355. [PMID: 38861354 PMCID: PMC11376241 DOI: 10.1165/rcmb.2024-0039oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024] Open
Abstract
Numerous studies have demonstrated that endostatin (ES), a potent angiostatic peptide derived from collagen type XVIII α 1 chain and encoded by COL18A1, is elevated in pulmonary arterial hypertension (PAH). It is important to note that elevated ES has consistently been associated with altered hemodynamics, poor functional status, and adverse outcomes in adult and pediatric PAH. This study used serum samples from patients with Group I PAH and plasma and tissue samples derived from the Sugen/hypoxia rat pulmonary hypertension model to define associations between COL18A1/ES and disease development, including hemodynamics, right ventricle (RV) remodeling, and RV dysfunction. Using cardiac magnetic resonance imaging and advanced hemodynamic assessments with pressure-volume loops in patients with PAH to assess RV-pulmonary arterial coupling, we observed a strong relationship between circulating ES levels and metrics of RV structure and function. Specifically, RV mass and the ventricular mass index were positively associated with ES, whereas RV ejection fraction and RV-pulmonary arterial coupling were inversely associated with ES levels. Our animal data demonstrate that the development of pulmonary hypertension is associated with increased COL18A1/ES in the heart as well as the lungs. Disease-associated increases in COL18A1 mRNA and protein were most pronounced in the RV compared with the left ventricle and lung. COL18A1 expression in the RV was strongly associated with disease-associated changes in RV mass, fibrosis, and myocardial capillary density. These findings indicate that COL18A1/ES increases early in disease development in the RV and implicates COL18A1/ES in pathologic RV dysfunction in PAH.
Collapse
Affiliation(s)
| | - Mario Naranjo
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania
| | - Tijana Tuhy
- Division of Pulmonary and Critical Care Medicine
| | - Rose Yu
- Division of Pulmonary Medicine, Johns Hopkins Community Physicians, Columbia, Maryland
| | - Mery Marimoutou
- Institute for In Vitro Sciences, Gaithersburg, Maryland; and
| | | | | | | | | | | | - Ryan J Tedford
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Steven Hsu
- Division of Cardiology, Department of Medicine
| | | | - Rachel L Damico
- Division of Pulmonary and Critical Care Medicine
- Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
10
|
Mutgan AC, Radic N, Valzano F, Crnkovic S, El-Merhie N, Evermann M, Hoetzenecker K, Foris V, Brcic L, Marsh LM, Tran-Lundmark K, Jandl K, Kwapiszewska G. A comprehensive map of proteoglycan expression and deposition in the pulmonary arterial wall in health and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L173-L188. [PMID: 38771138 DOI: 10.1152/ajplung.00022.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Changes in the extracellular matrix of pulmonary arteries (PAs) are a key aspect of vascular remodeling in pulmonary hypertension (PH). Yet, our understanding of the alterations affecting the proteoglycan (PG) family remains limited. We sought to investigate the expression and spatial distribution of major vascular PGs in PAs from healthy individuals and various PH groups (chronic obstructive pulmonary disease: PH-COPD, pulmonary fibrosis: PH-PF, idiopathic: IPAH). PG regulation, deposition, and synthesis were notably heightened in IPAH, followed by PH-PF, with minor alterations in PH-COPD. Single-cell analysis unveiled cell-type and disease-specific PG regulation. Agrin expression, a basement membrane PG, was increased in IPAH, with PA endothelial cells (PAECs) identified as a major source. PA smooth muscle cells (PASMCs) mainly produced large-PGs, aggrecan and versican, and small-leucine-like proteoglycan (SLRP) biglycan, whereas the major PGs produced by adventitial fibroblasts were SLRP decorin and lumican. In IPAH and PF-PH, the neointima-forming PASMC population increased the expression of all investigated large-PGs and SLRPs, except fibroblast-predominant decorin (DCN). Expression of lumican, versican, and biglycan also positively correlated with collagen 1α1/1α2 expression in PASMCs in patients with IPAH and PH-PF. We demonstrated that transforming growth factor-beta (TGF-β) regulates versican and biglycan expression, indicating their contribution to vessel fibrosis in IPAH and PF-PH. We furthermore show that certain circulating PG levels display a disease-dependent pattern, with increased decorin and lumican across all patient groups, while versican was elevated in PH-COPD and IPAH and biglycan reduced in IPAH. These findings suggest unique compartment-specific PG regulation in different forms of PH, indicating distinct pathological processes.NEW & NOTEWORTHY Idiopathic pulmonary arterial hypertension (IPAH) pulmonary arteries (PAs) displayed the greatest proteoglycan (PG) changes, with PH associated with pulmonary fibrosis (PH-PF) and PH associated with chronic obstructive pulmonary disease (PH-COPD) following. Agrin, an endothelial cell-specific PG, was solely upregulated in IPAH. Among all cells, neo-intima-forming smooth muscle cells (SMCs) displayed the most significant PG increase. Increased levels of circulating decorin, lumican, and versican, mainly derived from SMCs, and adventitial fibroblasts, may serve as systemic indicators of pulmonary remodeling, reflecting perivascular fibrosis and neointima formation.
Collapse
MESH Headings
- Humans
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Proteoglycans/metabolism
- Male
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Female
- Middle Aged
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Vascular Remodeling
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/pathology
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Biglycan/metabolism
- Decorin/metabolism
- Adult
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Pulmonary Fibrosis/metabolism
- Pulmonary Fibrosis/pathology
- Lumican/metabolism
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
Collapse
Affiliation(s)
- Ayse Ceren Mutgan
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Nemanja Radic
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Slaven Crnkovic
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Lung Center (DZL), Giessen, Germany
| | - Natalia El-Merhie
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Lung Center (DZL), Giessen, Germany
| | - Matthias Evermann
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Vasile Foris
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Leigh M Marsh
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Karin Tran-Lundmark
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- The Pediatric Heart Center, Skåne University Hospital, Lund, Sweden
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
11
|
Rodolfi S, Ong VH, Denton CP. Recent developments in connective tissue disease associated pulmonary arterial hypertension. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2024; 16:100513. [PMID: 39712533 PMCID: PMC11657338 DOI: 10.1016/j.ijcchd.2024.100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 12/24/2024] Open
Abstract
Connective tissue disease associated pulmonary arterial hypertension (CTD-PAH) has benefited from the major treatment advances that have occurred within pulmonary hypertension over the past three decades. Inclusion of CTD-PAH cases in pivotal clinical trials led to regulatory approval and drug availability. This has improved outcomes but there are additional challenges for management. First, the multifaceted co-morbidity related to the associated CTD needs treatment alongside PAH and may impact on diagnosis and evaluation of treatment response. Secondary, cardiac involvement, interstitial lung disease and predisposition to thromboembolism in CTD may lead to compound phenotypes where PH has multiple mechanisms as well as precapillary pulmonary vasculopathy of PAH. In general, especially for systemic sclerosis, CTD-PAH has worse long-term survival than idiopathic or familial PAH. However, CTD also present an opportunity for screening and early detection and treatment for associated PAH, and this may in the future be a major advantage over idiopathic disease where presentation inevitable only occurs at symptomatic stages and diagnosis may be delayed. This article reviews and summarises some of the recent developments in investigation and management of CTD-PAH.
Collapse
Affiliation(s)
- Stefano Rodolfi
- Centre for Rheumatology and Connective Tissue Diseases, University College London Medical School, London, UK
- Department of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Voon H. Ong
- Centre for Rheumatology and Connective Tissue Diseases, University College London Medical School, London, UK
| | - Christopher P. Denton
- Centre for Rheumatology and Connective Tissue Diseases, University College London Medical School, London, UK
| |
Collapse
|
12
|
Correale M, Tricarico L, Bevere EML, Chirivì F, Croella F, Severino P, Mercurio V, Magrì D, Dini F, Licordari R, Beltrami M, Dattilo G, Salzano A, Palazzuoli A. Circulating Biomarkers in Pulmonary Arterial Hypertension: An Update. Biomolecules 2024; 14:552. [PMID: 38785959 PMCID: PMC11117582 DOI: 10.3390/biom14050552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare subtype of group 1 pulmonary hypertension (PH) diseases, characterized by high pulmonary artery pressure leading to right ventricular dysfunction and potential life-threatening consequences. PAH involves complex mechanisms: vasoconstriction, vascular remodeling, endothelial dysfunction, inflammation, oxidative stress, fibrosis, RV remodeling, cellular hypoxia, metabolic imbalance, and thrombosis. These mechanisms are mediated by several pathways, involving molecules like nitric oxide and prostacyclin. PAH diagnosis requires clinical evaluation and right heart catheterization, confirming a value of mPAP ≥ 20 mmHg at rest and often elevated pulmonary vascular resistance (PVR). Even if an early and accurate diagnosis is crucial, PAH still lacks effective biomarkers to assist in its diagnosis and prognosis. Biomarkers could contribute to arousing clinical suspicion and serve for prognosis prediction, risk stratification, and dynamic monitoring in patients with PAH. The aim of the present review is to report the main novelties on new possible biomarkers for the diagnosis, prognosis, and treatment monitoring of PAH.
Collapse
Affiliation(s)
- Michele Correale
- Cardiothoracic Department, Ospedali Riuniti University Hospital, 71100 Foggia, Italy
| | - Lucia Tricarico
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (L.T.); (E.M.L.B.); (F.C.)
| | - Ester Maria Lucia Bevere
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (L.T.); (E.M.L.B.); (F.C.)
| | - Francesco Chirivì
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (L.T.); (E.M.L.B.); (F.C.)
| | - Francesca Croella
- Cardiothoracic Vascular Department, Division of Provincial Cardiology, Santissima Annunziata Hospital and Delta Hospital, Azienda Unità Sanitaria Locale di Ferrara, 44121 Ferrara, Italy;
| | - Paolo Severino
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 00185 Rome, Italy;
| | - Valentina Mercurio
- Department of Translational Medical Sciences, Federico II University, 80138 Naples, Italy;
| | - Damiano Magrì
- Department of Clinical and Molecular Medicine, Azienda Ospedaliera Sant’Andrea, “Sapienza” Università degli Studi di Roma, 00161 Rome, Italy;
| | - Frank Dini
- Istituto Auxologico IRCCS, Centro Medico Sant’Agostino, Via Temperanza, 6, 20127 Milan, Italy;
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Roberto Licordari
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Cardiology, University of Messina, 98122 Messina, Italy; (R.L.); (G.D.)
| | - Matteo Beltrami
- Arrhythmia and Electrophysiology Unit, Careggi University Hospital, 50134 Florence, Italy;
| | - Giuseppe Dattilo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Cardiology, University of Messina, 98122 Messina, Italy; (R.L.); (G.D.)
| | - Andrea Salzano
- Cardiology Unit, AORN A Cardarelli, 80131 Naples, Italy;
| | - Alberto Palazzuoli
- Cardiovascular Diseases Unit, Cardio-Thoracic and Vascular Department, S. Maria alle Scotte Hospital, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
13
|
Mutgan AC, Jandl K, Radic N, Valzano F, Kolb D, Hoffmann J, Foris V, Wilhelm J, Boehm PM, Hoetzenecker K, Olschewski A, Olschewski H, Heinemann A, Wygrecka M, Marsh LM, Kwapiszewska G. Pentastatin, a matrikine of the collagen IVα5, is a novel endogenous mediator of pulmonary endothelial dysfunction. Am J Physiol Cell Physiol 2023; 325:C1294-C1312. [PMID: 37694286 PMCID: PMC11550886 DOI: 10.1152/ajpcell.00391.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Deposition of basement membrane components, such as collagen IVα5, is associated with altered endothelial cell function in pulmonary hypertension. Collagen IVα5 harbors a functionally active fragment within its C-terminal noncollageneous (NC1) domain, called pentastatin, whose role in pulmonary endothelial cell behavior remains unknown. Here, we demonstrate that pentastatin serves as a mediator of pulmonary endothelial cell dysfunction, contributing to pulmonary hypertension. In vitro, treatment with pentastatin induced transcription of immediate early genes and proinflammatory cytokines and led to a functional loss of endothelial barrier integrity in pulmonary arterial endothelial cells. Mechanistically, pentastatin leads to β1-integrin subunit clustering and Rho/ROCK activation. Blockage of the β1-integrin subunit or the Rho/ROCK pathway partially attenuated the pentastatin-induced endothelial barrier disruption. Although pentastatin reduced the viability of endothelial cells, smooth muscle cell proliferation was induced. These effects on the pulmonary vascular cells were recapitulated ex vivo in the isolated-perfused lung model, where treatment with pentastatin-induced swelling of the endothelium accompanied by occasional endothelial cell apoptosis. This was reflected by increased vascular permeability and elevated pulmonary arterial pressure induced by pentastatin. This study identifies pentastatin as a mediator of endothelial cell dysfunction, which thus might contribute to the pathogenesis of pulmonary vascular disorders such as pulmonary hypertension.NEW & NOTEWORTHY This study is the first to show that pentastatin, the matrikine of the basement membrane (BM) collagen IVα5 polypeptide, triggers rapid pulmonary arterial endothelial cell barrier disruption, activation, and apoptosis in vitro and ex vivo. Mechanistically, pentastatin partially acts through binding to the β1-integrin subunit and the Rho/ROCK pathway. These findings are the first to link pentastatin to pulmonary endothelial dysfunction and, thus, suggest a major role for BM-matrikines in pulmonary vascular diseases such as pulmonary hypertension.
Collapse
Affiliation(s)
- Ayse Ceren Mutgan
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Nemanja Radic
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Julia Hoffmann
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Vasile Foris
- Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Jochen Wilhelm
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| | - Panja M Boehm
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Malgorzata Wygrecka
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
- Center for Infection and Genomics of the Lung, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Leigh M Marsh
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Grazyna Kwapiszewska
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
14
|
Torres G, Lancaster AC, Yang J, Griffiths M, Brandal S, Damico R, Vaidya D, Simpson CE, Martin LJ, Pauciulo MW, Nichols WC, Ivy DD, Austin ED, Hassoun PM, Everett AD. Low-affinity insulin-like growth factor binding protein 7 and its association with pulmonary arterial hypertension severity and survival. Pulm Circ 2023; 13:e12284. [PMID: 37674873 PMCID: PMC10477418 DOI: 10.1002/pul2.12284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Insulin-like growth factor (IGF) binding proteins (IGFBPs) are a family of growth factor modifiers, some of which are known to be independently associated with pulmonary arterial hypertension (PAH) survival. IGF factor binding protein 7 (IGFBP7) is a unique low-affinity IGFBP that, independent of IGF, stimulates prostacyclin production. This study proposed to establish associations between IGFBP7 and PAH severity and survival, using enrollment and longitudinal samples. Serum IGFBP7 levels were significantly elevated in patients with PAH compared to controls. After adjusting for age and sex, logarithmic increases in IGFBP7 were associated with a 20 m shorter six-minute walk distance (6MWD; p < 0.001), a 2-3 mmHg higher mean right atrial pressure (p < 0.001 and 0.02), and a higher likelihood of a greater REVEAL 2.0 risk category placement (p < 0.001). Kaplan-Meier analysis demonstrated significantly decreased survival with IGFBP7 above the median and Cox multivariable analysis adjusted for age and sex, demonstrated higher serum IGFBP7 was an independent predictor of survival. Though the exact mechanism is still unknown, given IGFBP7's role as a prostacyclin stimulant, it has potential use as a therapeutic target for disease modulation.
Collapse
Affiliation(s)
- Guillermo Torres
- Department of Pediatrics, Division of Pediatric CardiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Jun Yang
- Department of Pediatrics, Division of Pediatric CardiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Megan Griffiths
- Department of Pediatrics, Division of Pediatric CardiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Stephanie Brandal
- Department of Pediatrics, Division of Pediatric CardiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Rachel Damico
- Department of Medicine, Division of Pulmonary and Critical Care MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Dhananjay Vaidya
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Division of General Internal MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Catherine E. Simpson
- Department of Medicine, Division of Pulmonary and Critical Care MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Lisa J. Martin
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Michael W. Pauciulo
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - William C. Nichols
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - David D. Ivy
- Department of Pediatric CardiologyChildren's Hospital ColoradoDenverColoradoUSA
| | - Eric D. Austin
- Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Paul M. Hassoun
- Department of Medicine, Division of Pulmonary and Critical Care MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Allen D. Everett
- Department of Pediatrics, Division of Pediatric CardiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
15
|
Vraka A, Diamanti E, Kularatne M, Yerly P, Lador F, Aubert JD, Lechartier B. Risk Stratification in Pulmonary Arterial Hypertension, Update and Perspectives. J Clin Med 2023; 12:4349. [PMID: 37445381 DOI: 10.3390/jcm12134349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Risk stratification in pulmonary arterial hypertension (PAH) is crucial in assessing patient prognosis. It serves a prominent role in everyday patient care and can be determined using several validated risk assessment scores worldwide. The recently published 2022 European Society of Cardiology (ESC)/European Respiratory Society (ERS) guidelines underline the importance of risk stratification not only at baseline but also during follow-up. Achieving a low-risk status has now become the therapeutic goal, emphasising the importance of personalised therapy. The application of these guidelines is also important in determining the timing for lung transplantation referral. In this review, we summarise the most relevant prognostic factors of PAH as well as the parameters used in PAH risk scores and their evolution in the guidelines over the last decade. Finally, we describe the central role that risk stratification plays in the current guidelines not only in European countries but also in Asian countries.
Collapse
Affiliation(s)
- Argyro Vraka
- Pulmonary Division, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Eleni Diamanti
- Pulmonary Division, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Mithum Kularatne
- Division of Respiratory Medicine, Department of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Patrick Yerly
- Division of Cardiology, Cardiovascular Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Frédéric Lador
- Pulmonary Division, Geneva University Hospital, 1211 Geneva, Switzerland
| | - John-David Aubert
- Pulmonary Division, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Benoit Lechartier
- Pulmonary Division, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
16
|
Walters R, Vasilaki E, Aman J, Chen CN, Wu Y, Liang OD, Ashek A, Dubois O, Zhao L, Sabrin F, Cebola I, Ferrer J, Morrell NW, Klinger JR, Wilkins MR, Zhao L, Rhodes CJ. SOX17 Enhancer Variants Disrupt Transcription Factor Binding And Enhancer Inactivity Drives Pulmonary Hypertension. Circulation 2023; 147:1606-1621. [PMID: 37066790 PMCID: PMC7614572 DOI: 10.1161/circulationaha.122.061940] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/15/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a rare disease characterized by remodeling of the pulmonary arteries, increased vascular resistance, and right-sided heart failure. Genome-wide association studies of idiopathic/heritable PAH established novel genetic risk variants, including conserved enhancers upstream of transcription factor (TF) SOX17 containing 2 independent signals. SOX17 is an important TF in embryonic development and in the homeostasis of pulmonary artery endothelial cells (hPAEC) in the adult. Rare pathogenic mutations in SOX17 cause heritable PAH. We hypothesized that PAH risk alleles in an enhancer region impair TF-binding upstream of SOX17, which in turn reduces SOX17 expression and contributes to disturbed endothelial cell function and PAH development. METHODS CRISPR manipulation and siRNA were used to modulate SOX17 expression. Electromobility shift assays were used to confirm in silico-predicted TF differential binding to the SOX17 variants. Functional assays in hPAECs were used to establish the biological consequences of SOX17 loss. In silico analysis with the connectivity map was used to predict compounds that rescue disturbed SOX17 signaling. Mice with deletion of the SOX17-signal 1 enhancer region (SOX17-4593/enhKO) were phenotyped in response to chronic hypoxia and SU5416/hypoxia. RESULTS CRISPR inhibition of SOX17-signal 2 and deletion of SOX17-signal 1 specifically decreased SOX17 expression. Electromobility shift assays demonstrated differential binding of hPAEC nuclear proteins to the risk and nonrisk alleles from both SOX17 signals. Candidate TFs HOXA5 and ROR-α were identified through in silico analysis and antibody electromobility shift assays. Analysis of the hPAEC transcriptomes revealed alteration of PAH-relevant pathways on SOX17 silencing, including extracellular matrix regulation. SOX17 silencing in hPAECs resulted in increased apoptosis, proliferation, and disturbance of barrier function. With the use of the connectivity map, compounds were identified that reversed the SOX17-dysfunction transcriptomic signatures in hPAECs. SOX17 enhancer knockout in mice reduced lung SOX17 expression, resulting in more severe pulmonary vascular leak and hypoxia or SU5416/hypoxia-induced pulmonary hypertension. CONCLUSIONS Common PAH risk variants upstream of the SOX17 promoter reduce endothelial SOX17 expression, at least in part, through differential binding of HOXA5 and ROR-α. Reduced SOX17 expression results in disturbed hPAEC function and PAH. Existing drug compounds can reverse the disturbed SOX17 pulmonary endothelial transcriptomic signature.
Collapse
Affiliation(s)
- Rachel Walters
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Eleni Vasilaki
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Jurjan Aman
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
- Department of Pulmonary Medicine, Amsterdam University Medical Center, The Netherlands (J.A.)
| | - Chien-Nien Chen
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Yukyee Wu
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Olin D Liang
- Division of Hematology/Oncology, Department of Medicine (O.D.L.), Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence
| | - Ali Ashek
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Olivier Dubois
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Lin Zhao
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Farah Sabrin
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Inês Cebola
- Section of Genetics & Genomics, Department of Metabolism, Digestion & Reproduction, Hammersmith Hospital, Imperial College, London, United Kingdom (I.C., J.F.)
| | - Jorge Ferrer
- Section of Genetics & Genomics, Department of Metabolism, Digestion & Reproduction, Hammersmith Hospital, Imperial College, London, United Kingdom (I.C., J.F.)
- Computational Biology and Health Genomics Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Spain (J.F.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain (J.F.)
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, United Kingdom (N.W.M.)
- NIHR BioResource for Translational Research, University of Cambridge, United Kingdom (N.W.M.)
- On Behalf of the British Heart Foundation/Medical Research Council UK PAH Cohort Consortium (N.W.M., M.R.W., C.J.R.)
| | - James R Klinger
- Division of Pulmonary, Sleep and Critical Care Medicine, Department of Medicine (J.R.K.), Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence
| | - Martin R Wilkins
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
- On Behalf of the British Heart Foundation/Medical Research Council UK PAH Cohort Consortium (N.W.M., M.R.W., C.J.R.)
| | - Lan Zhao
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Christopher J Rhodes
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
- On Behalf of the British Heart Foundation/Medical Research Council UK PAH Cohort Consortium (N.W.M., M.R.W., C.J.R.)
| |
Collapse
|
17
|
Jandl K, Radic N, Zeder K, Kovacs G, Kwapiszewska G. Pulmonary vascular fibrosis in pulmonary hypertension - The role of the extracellular matrix as a therapeutic target. Pharmacol Ther 2023; 247:108438. [PMID: 37210005 DOI: 10.1016/j.pharmthera.2023.108438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Pulmonary hypertension (PH) is a condition characterized by changes in the extracellular matrix (ECM) deposition and vascular remodeling of distal pulmonary arteries. These changes result in increased vessel wall thickness and lumen occlusion, leading to a loss of elasticity and vessel stiffening. Clinically, the mechanobiology of the pulmonary vasculature is becoming increasingly recognized for its prognostic and diagnostic value in PH. Specifically, the increased vascular fibrosis and stiffening resulting from ECM accumulation and crosslinking may be a promising target for the development of anti- or reverse-remodeling therapies. Indeed, there is a huge potential in therapeutic interference with mechano-associated pathways in vascular fibrosis and stiffening. The most direct approach is aiming to restore extracellular matrix homeostasis, by interference with its production, deposition, modification and turnover. Besides structural cells, immune cells contribute to the level of ECM maturation and degradation by direct cell-cell contact or the release of mediators and proteases, thereby opening a huge avenue to target vascular fibrosis via immunomodulation approaches. Indirectly, intracellular pathways associated with altered mechanobiology, ECM production, and fibrosis, offer a third option for therapeutic intervention. In PH, a vicious cycle of persistent activation of mechanosensing pathways such as YAP/TAZ initiates and perpetuates vascular stiffening, and is linked to key pathways disturbed in PH, such as TGF-beta/BMPR2/STAT. Together, this complexity of the regulation of vascular fibrosis and stiffening in PH allows the exploration of numerous potential therapeutic interventions. This review discusses connections and turning points of several of these interventions in detail.
Collapse
Affiliation(s)
- Katharina Jandl
- Division of Pharmacology, Otto Loewi Research Center, Medical University Graz, Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Graz, Austria.
| | - Nemanja Radic
- Division of Physiology, Otto Loewi Research Center, Medical University Graz, Graz, Austria
| | - Katarina Zeder
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Graz, Austria; Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Graz, Austria; Division of Physiology, Otto Loewi Research Center, Medical University Graz, Graz, Austria; Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
18
|
Gallardo-Vara E, Ntokou A, Dave JM, Jovin DG, Saddouk FZ, Greif DM. Vascular pathobiology of pulmonary hypertension. J Heart Lung Transplant 2023; 42:544-552. [PMID: 36604291 PMCID: PMC10121751 DOI: 10.1016/j.healun.2022.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/31/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
Pulmonary hypertension (PH), increased blood pressure in the pulmonary arteries, is a morbid and lethal disease. PH is classified into several groups based on etiology, but pathological remodeling of the pulmonary vasculature is a common feature. Endothelial cell dysfunction and excess smooth muscle cell proliferation and migration are central to the vascular pathogenesis. In addition, other cell types, including fibroblasts, pericytes, inflammatory cells and platelets contribute as well. Herein, we briefly note most of the main cell types active in PH and for each cell type, highlight select signaling pathway(s) highly implicated in that cell type in this disease. Among others, the role of hypoxia-inducible factors, growth factors (e.g., vascular endothelial growth factor, platelet-derived growth factor, transforming growth factor-β and bone morphogenetic protein), vasoactive molecules, NOTCH3, Kruppel-like factor 4 and forkhead box proteins are discussed. Additionally, deregulated processes of endothelial-to-mesenchymal transition, extracellular matrix remodeling and intercellular crosstalk are noted. This brief review touches upon select critical facets of PH pathobiology and aims to incite further investigation that will result in discoveries with much-needed clinical impact for this devastating disease.
Collapse
Affiliation(s)
- Eunate Gallardo-Vara
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Aglaia Ntokou
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Jui M Dave
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Daniel G Jovin
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Fatima Z Saddouk
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Daniel M Greif
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut.
| |
Collapse
|
19
|
Torres G, Yang J, Griffiths M, Brandal S, Damico R, Vaidya D, Simpson CE, Pauciulo MW, Nichols WC, Ivy DD, Austin ED, Hassoun PM, Everett AD. Insulin-like growth factor binding Protein-4: A novel indicator of pulmonary arterial hypertension severity and survival. Pulm Circ 2023; 13:e12235. [PMID: 37152104 PMCID: PMC10156920 DOI: 10.1002/pul2.12235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 05/09/2023] Open
Abstract
Proteomic analysis of patients with pulmonary arterial hypertension (PAH) has demonstrated significant abnormalities in the insulin-like growth factor axis (IGF). This study proposed to establish associations between a specific binding protein, insulin-like growth factor binding protein 4 (IGFBP4), and PAH severity as well as survival across varying study cohorts. In all cohorts studied, serum IGFBP4 levels were significantly elevated in PAH compared to controls (p < 0.0001). IGFBP4 concentration was also highest in the connective tissue-associated PAH (CTD-PAH) and idiopathic PAH subtypes (876 and 784 ng/mL, median, respectively). After adjustment for age and sex, IGFBP4 was significantly associated with worse PAH severity as defined by a decreased 6-min walk distance (6MWD), New York heart association functional class (NYHA-FC), REVEAL 2.0 score and higher right atrial pressures. In longitudinal analysis provided by one of the study cohorts, IGFBP4 was prospectively significantly associated with a shorter 6MWD, worse NYHA-FC classification, and decreased survival. Cox multivariable analysis demonstrated higher serum IGFBP4 as an independent predictor of survival in the overall PAHB cohort. Therefore, this study established that higher circulating IGFBP4 levels were significantly associated with worse PAH severity, decreased survival and disease progression. Dysregulation of IGF metabolism/growth axis may play a significant role in PAH cardio-pulmonary pathobiology.
Collapse
Affiliation(s)
- Guillermo Torres
- Division of Pediatric Cardiology, Department of PediatricsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jun Yang
- Division of Pediatric Cardiology, Department of PediatricsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Megan Griffiths
- Division of Pediatric Cardiology, Department of PediatricsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Stephanie Brandal
- Division of Pediatric Cardiology, Department of PediatricsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Rachel Damico
- Division of Pulmonary and Critical Care Medicine, Department of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Dhananjay Vaidya
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Division of General Internal MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Catherine E. Simpson
- Division of Pulmonary and Critical Care Medicine, Department of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Michael W. Pauciulo
- Division of Human Genetics, Department of PediatricsCincinnati Children's Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiOhioUSA
| | - William C. Nichols
- Division of Human Genetics, Department of PediatricsCincinnati Children's Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiOhioUSA
| | - David D. Ivy
- Department of Pediatric CardiologyChildren's Hospital ColoradoDenverColoradoUSA
| | - Eric D. Austin
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of PediatricsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Paul M. Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Allen D. Everett
- Division of Pediatric Cardiology, Department of PediatricsJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
20
|
Moccaldi B, De Michieli L, Binda M, Famoso G, Depascale R, Perazzolo Marra M, Doria A, Zanatta E. Serum Biomarkers in Connective Tissue Disease-Associated Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24044178. [PMID: 36835590 PMCID: PMC9967966 DOI: 10.3390/ijms24044178] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening complication of connective tissue diseases (CTDs) characterised by increased pulmonary arterial pressure and pulmonary vascular resistance. CTD-PAH is the result of a complex interplay among endothelial dysfunction and vascular remodelling, autoimmunity and inflammatory changes, ultimately leading to right heart dysfunction and failure. Due to the non-specific nature of the early symptoms and the lack of consensus on screening strategies-except for systemic sclerosis, with a yearly transthoracic echocardiography as recommended-CTD-PAH is often diagnosed at an advanced stage, when the pulmonary vessels are irreversibly damaged. According to the current guidelines, right heart catheterisation is the gold standard for the diagnosis of PAH; however, this technique is invasive, and may not be available in non-referral centres. Hence, there is a need for non-invasive tools to improve the early diagnosis and disease monitoring of CTD-PAH. Novel serum biomarkers may be an effective solution to this issue, as their detection is non-invasive, has a low cost and is reproducible. Our review aims to describe some of the most promising circulating biomarkers of CTD-PAH, classified according to their role in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Beatrice Moccaldi
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Laura De Michieli
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Marco Binda
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Giulia Famoso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Roberto Depascale
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-0498212190
| | - Elisabetta Zanatta
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| |
Collapse
|
21
|
Nakwan N, Kunhapan P, Chaiyasung T, Satproedprai N, Singkhamanan K, Mahasirimongkol S, Charalsawadi C. Genome-wide association study identifies WWC2 as a possible locus associated with persistent pulmonary hypertension of the newborn in the Thai population. Transl Pediatr 2023; 12:1-12. [PMID: 36798934 PMCID: PMC9926135 DOI: 10.21037/tp-22-280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/22/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND There is known to be significant genetic involvement in persistent pulmonary hypertension of the newborn (PPHN), but to date there is not a clear understanding of this situation, and clarifying that involvement would be of considerable assistance in devising effective treatments for the disease. This case-control study was undertaken to search for genetic variants associated with PPHN in the Thai population using a genome-wide association study (GWAS). METHODS A 659,184 single nucleotide polymorphisms from 387 participants (54 PPHN cases and 333 healthy participants) were genotyped across the human genome using an Illumina Asian Screening Array-24 v1.0 BeadChip Array. After quality control, we obtained 443,063 autosomal SNPs for the GWAS analysis. The FaST-LMM and R packages were used for all statistical analyses. RESULTS For the case-control analysis, the genomic inflation factor (λ) was 1.016, rs149768622 T>C in the first intron of WWC2 gene showed the strongest association with a P value of 3.76E-08 and odds ratio (OR) of 13.24 (95% CI: 3.91-44.78). The variants at the LOC102723906/LOC105377599, CADM4, GPM6A, CIT, RIMBP2, LOC105374510, LOC105375193, PTPRN2, CDK14, and LCORL loci showed suggestive evidence of associations with PPHN (P<1E-05). CONCLUSIONS This GWAS found that rs149768622 T>C in the WWC2 gene was possibly associated with PPHN. However, replication and functional studies are needed to validate this association and further explore the role(s) of the WWC2 gene in PPHN.
Collapse
Affiliation(s)
- Narongsak Nakwan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.,Department of Pediatrics, Hat Yai Medical Education Center, Hat Yai Hospital, Songkhla, Thailand
| | - Punna Kunhapan
- Medical Genetics Center, Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Tassamonwan Chaiyasung
- Medical Genetics Center, Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Nusara Satproedprai
- Medical Genetics Center, Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Surakameth Mahasirimongkol
- Medical Genetics Center, Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Chariyawan Charalsawadi
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.,Genomic Medicine Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
22
|
Foris V, Kovacs G, Avian A, Bálint Z, Douschan P, Ghanim B, Klepetko W, Olschewski A, Olschewski H. Apelin-17 to diagnose idiopathic pulmonary arterial hypertension: A biomarker study. Front Physiol 2023; 13:986295. [PMID: 36685176 PMCID: PMC9846527 DOI: 10.3389/fphys.2022.986295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Background: NT-proBNP and GDF-15 are established blood-derived biomarkers for risk assessment in pulmonary hypertension (PH), despite limited sensitivity and specificity. Apelin has a crucial function in endothelial homeostasis, thus it might represent a new biomarker for PH. However, there are numerous circulating apelin isoforms, and their potential role in this setting is unknown. This study evaluated different apelin isoforms in PH patients and prospectively evaluated the role of apelin-17 in comparison with NT-proBNP and GDF-15 as diagnostic marker in idiopathic pulmonary arterial hypertension (IPAH). Methods: Based on our pilot study, we performed a power calculation for apelin-13, apelin-17, apelin-36, as predictor of IPAH vs healthy controls. Apelin-17 provided the best discriminatory power, and accordingly, we enrolled n = 31 patients with IPAH and n = 31 matched healthy controls in a prospective study. NT-proBNP and GDF-15 was determined in all patients. ROC curve analysis was performed to assess the diagnostic value of the markers and their combinations. Results: Apelin-17, NT-proBNP, and GDF-15 were significantly elevated in IPAH patients as compared to controls (p < .001). Apelin-17 detected IPAH with a sensitivity of 68% and a specificity of 93% at a cut-off value of >1,480 pg/ml (AUC 0.86, 95%CI:0.76-0.95) as compared to GDF-15 (sensitivity 86%; specificity 72%, AUC 0.81 (95%CI:0.7-0.92)) and NT-proBNP (sensitivity 86%; specificity 72% (AUC 0.85, 95%CI:0.75-0.95)). Combinations of these markers could be used to increase either specificity or sensitivity. Conclusion: Apelin-17 appears to be suitable blood derived diagnostic marker for idiopathic pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Vasile Foris
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria,*Correspondence: Vasile Foris,
| | - Gabor Kovacs
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Alexander Avian
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria,Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Zoltán Bálint
- Faculty of Physics, Babes-Bolyai University Cluj-Napoca, Cluj-Napoca, Romania
| | - Philipp Douschan
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Bahil Ghanim
- Division of General and Thoracic Surgery, University Hospital Krems, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria,Experimental Anesthesiology, Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| |
Collapse
|
23
|
Hindmarch CCT, Tian L, Xiong PY, Potus F, Bentley RET, Al-Qazazi R, Prins KW, Archer SL. An integrated proteomic and transcriptomic signature of the failing right ventricle in monocrotaline induced pulmonary arterial hypertension in male rats. Front Physiol 2022; 13:966454. [PMID: 36388115 PMCID: PMC9664166 DOI: 10.3389/fphys.2022.966454] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/19/2022] [Indexed: 01/25/2023] Open
Abstract
Aim: Pulmonary arterial hypertension (PAH) is an obstructive pulmonary vasculopathy that results in death from right ventricular failure (RVF). There is limited understanding of the molecular mechanisms of RVF in PAH. Methods: In a PAH-RVF model induced by injection of adult male rats with monocrotaline (MCT; 60 mg/kg), we performed mass spectrometry to identify proteins that change in the RV as a consequence of PAH induced RVF. Bioinformatic analysis was used to integrate our previously published RNA sequencing data from an independent cohort of PAH rats. Results: We identified 1,277 differentially regulated proteins in the RV of MCT rats compared to controls. Integration of MCT RV transcriptome and proteome data sets identified 410 targets that are concordantly regulated at the mRNA and protein levels. Functional analysis of these data revealed enriched functions, including mitochondrial metabolism, cellular respiration, and purine metabolism. We also prioritized 15 highly enriched protein:transcript pairs and confirmed their biological plausibility as contributors to RVF. We demonstrated an overlap of these differentially expressed pairs with data published by independent investigators using multiple PAH models, including the male SU5416-hypoxia model and several male rat strains. Conclusion: Multiomic integration provides a novel view of the molecular phenotype of RVF in PAH which includes dysregulation of pathways involving purine metabolism, mitochondrial function, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Charles Colin Thomas Hindmarch
- QCPU, Queen’s Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Lian Tian
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Ping Yu Xiong
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Francois Potus
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et Pneumologie de Quebec, Quebec City, QC, Canada
| | | | - Ruaa Al-Qazazi
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Kurt W. Prins
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Stephen L. Archer
- QCPU, Queen’s Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen’s University, Kingston, ON, Canada,Department of Medicine, Queen’s University, Kingston, ON, Canada,*Correspondence: Stephen L. Archer,
| |
Collapse
|
24
|
Boucherat O, Yokokawa T, Krishna V, Kalyana-Sundaram S, Martineau S, Breuils-Bonnet S, Azhar N, Bonilla F, Gutstein D, Potus F, Lawrie A, Jeyaseelan J, Provencher S, Bonnet S. Identification of LTBP-2 as a plasma biomarker for right ventricular dysfunction in human pulmonary arterial hypertension. NATURE CARDIOVASCULAR RESEARCH 2022; 1:748-760. [PMID: 39196085 DOI: 10.1038/s44161-022-00113-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/07/2022] [Indexed: 08/29/2024]
Abstract
Although right ventricular (RV) function is the primary determinant of morbidity and mortality in pulmonary arterial hypertension (PAH), the molecular mechanisms of RV remodeling and the circulating factors reflecting its function remain largely elusive. In this context, the identification of new molecular players implicated in maladaptive RV remodeling along with the optimization of risk stratification approaches in PAH are key priorities. Through combination of transcriptomic and proteomic profiling of RV tissues with plasma proteome profiling, we identified a panel of proteins, mainly related to cardiac fibrosis, similarly upregulated in the RV and plasma of patients with PAH with decompensated RV. Among these, we demonstrated that plasma latent transforming growth factor beta binding protein 2 (LTBP-2) level correlates with RV function in human PAH and adds incremental value to current risk stratification models to predict long-term survival in two independent PAH cohorts.
Collapse
Affiliation(s)
- Olivier Boucherat
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
- Department of Medicine, Université Laval, Québec City, Québec, Canada
| | - Tetsuro Yokokawa
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| | - Vinod Krishna
- Janssen Research & Development, Spring House, PA, USA
| | | | - Sandra Martineau
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| | - Nabil Azhar
- Janssen Research & Development, Spring House, PA, USA
| | - Fany Bonilla
- Janssen Research & Development, Spring House, PA, USA
| | | | - François Potus
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK & Insigneo institute for in silico medicine, Sheffield, UK
| | | | - Steeve Provencher
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
- Department of Medicine, Université Laval, Québec City, Québec, Canada
| | - Sebastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada.
- Department of Medicine, Université Laval, Québec City, Québec, Canada.
| |
Collapse
|
25
|
Santos-Gomes J, Gandra I, Adão R, Perros F, Brás-Silva C. An Overview of Circulating Pulmonary Arterial Hypertension Biomarkers. Front Cardiovasc Med 2022; 9:924873. [PMID: 35911521 PMCID: PMC9333554 DOI: 10.3389/fcvm.2022.924873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH), also known as Group 1 Pulmonary Hypertension (PH), is a PH subset characterized by pulmonary vascular remodeling and pulmonary arterial obstruction. PAH has an estimated incidence of 15-50 people per million in the United States and Europe, and is associated with high mortality and morbidity, with patients' survival time after diagnosis being only 2.8 years. According to current guidelines, right heart catheterization is the gold standard for diagnostic and prognostic evaluation of PAH patients. However, this technique is highly invasive, so it is not used in routine clinical practice or patient follow-up. Thereby, it is essential to find new non-invasive strategies for evaluating disease progression. Biomarkers can be an effective solution for determining PAH patient prognosis and response to therapy, and aiding in diagnostic efforts, so long as their detection is non-invasive, easy, and objective. This review aims to clarify and describe some of the potential new candidates as circulating biomarkers of PAH.
Collapse
Affiliation(s)
- Joana Santos-Gomes
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Inês Gandra
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rui Adão
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Frédéric Perros
- Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERM, Université Paris-Saclay, Paris, France
- Université Paris–Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Carmen Brás-Silva
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
26
|
Simpson CE, Griffiths M, Yang J, Nies MK, Vaidya D, Brandal S, Martin LJ, Pauciulo MW, Lutz KA, Coleman AW, Austin ED, Ivy DD, Nichols WC, Everett AD, Hassoun PM, Damico RL. COL18A1 genotypic associations with endostatin levels and clinical features in pulmonary arterial hypertension: a quantitative trait association study. ERJ Open Res 2022; 8:00725-2021. [PMID: 35769420 PMCID: PMC9234438 DOI: 10.1183/23120541.00725-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/29/2022] [Indexed: 11/05/2022] Open
Abstract
Variation around the COL18A1 gene, which encodes the angiostatic peptide endostatin, may influence disease heterogeneity in pulmonary arterial hypertension https://bit.ly/3shXrNR.
Collapse
Affiliation(s)
- Catherine E. Simpson
- Johns Hopkins University, Dept of Medicine, Division of Pulmonary and Critical Care Medicine, Baltimore, MD, USA
| | - Megan Griffiths
- Johns Hopkins University, Dept of Pediatrics, Division of Pediatric Cardiology, Baltimore, MD, USA
| | - Jun Yang
- Johns Hopkins University, Dept of Pediatrics, Division of Pediatric Cardiology, Baltimore, MD, USA
| | - Melanie K. Nies
- Johns Hopkins University, Dept of Pediatrics, Division of Pediatric Cardiology, Baltimore, MD, USA
| | - Dhananjay Vaidya
- Johns Hopkins University, Dept of Medicine, Division of General Internal Medicine, Baltimore, MD, USA
| | - Stephanie Brandal
- Johns Hopkins University, Dept of Pediatrics, Division of Pediatric Cardiology, Baltimore, MD, USA
| | - Lisa J. Martin
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Dept of Pediatrics, Division of Human Genetics, Cincinnati, OH, USA
| | - Michael W. Pauciulo
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Dept of Pediatrics, Division of Human Genetics, Cincinnati, OH, USA
| | - Katie A. Lutz
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Dept of Pediatrics, Division of Human Genetics, Cincinnati, OH, USA
| | - Anna W. Coleman
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Dept of Pediatrics, Division of Human Genetics, Cincinnati, OH, USA
| | - Eric D. Austin
- Vanderbilt University, Dept of Pediatrics, Division of Allergy, Immunology, and Pulmonary Medicine, Nashville, TN, USA
| | - D. Dunbar Ivy
- Children's Hospital Colorado, Dept of Pediatric Cardiology, Aurora, CO, USA
| | - William C. Nichols
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Dept of Pediatrics, Division of Human Genetics, Cincinnati, OH, USA
| | - Allen D. Everett
- Johns Hopkins University, Dept of Pediatrics, Division of Pediatric Cardiology, Baltimore, MD, USA
| | - Paul M. Hassoun
- Johns Hopkins University, Dept of Medicine, Division of Pulmonary and Critical Care Medicine, Baltimore, MD, USA
| | - Rachel L. Damico
- Johns Hopkins University, Dept of Medicine, Division of Pulmonary and Critical Care Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Lago-Docampo M, Solarat C, Méndez-Martínez L, Baloira A, Valverde D. Common Variation in EDN1 Regulatory Regions Highlights the Role of PPARγ as a Key Regulator of Endothelin in vitro. Front Cardiovasc Med 2022; 9:823133. [PMID: 35282351 PMCID: PMC8913939 DOI: 10.3389/fcvm.2022.823133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/14/2022] [Indexed: 01/08/2023] Open
Abstract
Pulmonary Arterial Hypertension (PAH) is a rare disease caused by the obliteration of the pulmonary arterioles, increasing pulmonary vascular resistance and eventually causing right heart failure. Endothelin-1 (EDN1) is a vasoconstrictor peptide whose levels are indicators of disease progression and its pathway is one of the most common targeted by current treatments. We sequenced the EDN1 untranslated regions of a small subset of patients with PAH, predicted the effect in silico, and used a luciferase assay with the different genotypes to analyze its influence on gene expression. Finally, we used siRNAs against the major transcription factors (TFs) predicted for these regions [peroxisome proliferator-activated receptor γ (PPARγ), Krüppel-Like Factor 4 (KLF4), and vitamin D receptor (VDR)] to assess EDN1 expression in cell culture and validate the binding sites. First, we detected a single nucleotide polymorphism (SNP) in the 5' untranslated region (UTR; rs397751713) and another in the 3'regulatory region (rs2859338) that altered luciferase activity in vitro depending on their genotype. We determined in silico that KLF4/PPARγ could bind to the rs397751713 and VDR to rs2859338. By using siRNAs and luciferase assays, we determined that PPARγ binds differentially to rs397751713. PPARγ and VDR Knock-Down (KD) increased the EDN1 mRNA levels and EDN1 production in porcine aortic endothelial cells (PAECs), while PPARγ and KLF4 KD increased the EDN1 production in HeLa. In conclusion, common variants in EDN1 regulatory regions could alter EDN1 levels. We were able to validate that PPARγ binds in rs397751713 and is a key regulator of EDN1. In addition, KLF4 and VDR regulate EDN1 production in a cell-dependent manner, but VDR does not bind directly to the regions we studied.
Collapse
Affiliation(s)
- Mauro Lago-Docampo
- CINBIO, Universidade de Vigo, Vigo, Spain
- Rare Diseases and Pediatric Medicine, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Carlos Solarat
- CINBIO, Universidade de Vigo, Vigo, Spain
- Rare Diseases and Pediatric Medicine, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Luis Méndez-Martínez
- Department of Biotechnology and Aquaculture, Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Adolfo Baloira
- Pneumology Department, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - Diana Valverde
- CINBIO, Universidade de Vigo, Vigo, Spain
- Rare Diseases and Pediatric Medicine, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| |
Collapse
|
28
|
Griffiths M, Yang J, Vaidya D, Nies M, Brandal S, Ivy DD, Hickey F, Wolter-Warmerdam K, Austin ED, Mullen M, Pauciulo MW, Lutz KA, Rosenzweig EB, Hirsch R, Yung D, Nichols WC, Everett AD. Biomarkers of Pulmonary Hypertension Are Altered in Children with Down Syndrome and Pulmonary Hypertension. J Pediatr 2022; 241:68-76.e3. [PMID: 34687693 PMCID: PMC9092284 DOI: 10.1016/j.jpeds.2021.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/05/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To evaluate the performance of pulmonary hypertension (PH) biomarkers in children with Down syndrome, an independent risk factor for PH, in whom biomarker performance may differ compared with other populations. STUDY DESIGN Serum endostatin, interleukin (IL)-1 receptor 1 (ST2), galectin-3, N-terminal pro hormone B-natriuretic peptide (NT-proBNP), IL-6, and hepatoma-derived growth factor (HDGF) were measured in subjects with Down syndrome and PH (n = 29), subjects with Down syndrome and resolved PH (n = 13), subjects with Down syndrome without PH (n = 49), and subjects without Down syndrome with World Symposium on Pulmonary Hypertension group I pulmonary arterial hypertension (no Down syndrome PH group; n = 173). Each biomarker was assessed to discriminate PH in Down syndrome. A classification tree was created to distinguish PH from resolved PH and no PH in children with Down syndrome. RESULTS Endostatin, galectin-3, HDGF, and ST2 were elevated in subjects with Down syndrome regardless of PH status. Not all markers differed between subjects with Down syndrome and PH and subjects with Down syndrome and resolved PH. NT-proBNP and IL-6 levels were similar in the Down syndrome with PH group and the no Down syndrome PH group. A classification tree identified NT-proBNP and galectin-3 as the best markers for sequentially distinguishing PH, resolved PH, and no PH in subjects with Down syndrome. CONCLUSIONS Proteomic markers are used to improve the diagnosis and prognosis of PH but, as demonstrated here, can be altered in genetically unique populations such as individuals with Down syndrome. This further suggests that clinical biomarkers should be evaluated in unique groups with the development of population-specific nomograms.
Collapse
Affiliation(s)
- Megan Griffiths
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD; Department of Internal Medicine, Johns Hopkins University, Baltimore, MD
| | - Jun Yang
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD
| | - Dhananjay Vaidya
- Division of Pediatric Cardiology, Children's Hospital Colorado, Aurora, CO
| | - Melanie Nies
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD
| | - Stephanie Brandal
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD
| | - D Dunbar Ivy
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Francis Hickey
- Sie Center for Down Syndrome, Children's Hospital Colorado, Aurora, CO
| | - Kristine Wolter-Warmerdam
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Eric D Austin
- Department of Cardiology, Boston Children's Hospital, Boston, MA
| | - Mary Mullen
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Michael W Pauciulo
- Division of Pediatric Cardiology; Department of Pediatrics, Columbia University, New York, NY
| | - Katie A Lutz
- Division of Pediatric Cardiology; Department of Pediatrics, Columbia University, New York, NY
| | - Erika B Rosenzweig
- Department of Internal Medicine, Johns Hopkins University, Baltimore, MD
| | - Russel Hirsch
- Division of Pediatric Cardiology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Delphine Yung
- Division of Pediatric Cardiology, Department of Pediatrics, University of Washington, Seattle, WA
| | - William C Nichols
- Division of Pediatric Cardiology; Department of Pediatrics, Columbia University, New York, NY
| | - Allen D Everett
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
29
|
Jandl K, Mutgan AC, Eller K, Schaefer L, Kwapiszewska G. The basement membrane in the cross-roads between the lung and kidney. Matrix Biol 2021; 105:31-52. [PMID: 34839001 DOI: 10.1016/j.matbio.2021.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022]
Abstract
The basement membrane (BM) is a specialized layer of extracellular matrix components that plays a central role in maintaining lung and kidney functions. Although the composition of the BM is usually tissue specific, the lung and the kidney preferentially use similar BM components. Unsurprisingly, diseases with BM defects often have severe pulmonary or renal manifestations, sometimes both. Excessive remodeling of the BM, which is a hallmark of both inflammatory and fibrosing diseases in the lung and the kidney, can lead to the release of BM-derived matrikines, proteolytic fragments with distinct biological functions. These matrikines can then influence disease activity at the site of liberation. However, they are also released to the circulation, where they can directly affect the vascular endothelium or target other organs, leading to extrapulmonary or extrarenal manifestations. In this review, we will summarize the current knowledge of the composition and function of the BM and its matrikines in health and disease, both in the lung and in the kidney. By comparison, we will highlight, why the BM and its matrikines may be central in establishing a renal-pulmonary interaction axis.
Collapse
Affiliation(s)
- Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Otto Loewi Research Center, Department of Pharmacology, Medical University of Graz, Graz, Austria
| | - Ayse Ceren Mutgan
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Otto Loewi Research Center, Department of Physiology, Medical University of Graz, Graz, Austria
| | - Kathrin Eller
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Otto Loewi Research Center, Department of Physiology, Medical University of Graz, Graz, Austria; Institute for Lung Health (ILH), Giessen, Germany..
| |
Collapse
|
30
|
Qin X, Li T, Sun W, Guo X, Fang Q. Proteomic analysis of pulmonary arterial hypertension. Ther Adv Chronic Dis 2021; 12:20406223211047304. [PMID: 34729151 PMCID: PMC8482352 DOI: 10.1177/20406223211047304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare but fatal cardiovascular disorder
with high morbidity and mortality. Diagnosis and treatment of this disease at an
early stage would greatly improve outcomes. The molecular indicators of PAH are
mostly nonspecific, and diagnostic and prognostic biomarkers are urgently
needed. A more comprehensive understanding of the molecular mechanisms
underlying this complex disease is crucial for the development of new and more
effective therapeutics to improve patient outcomes. In this article, we review
published literature on proteomic biomarkers and underlying molecular mechanisms
in PAH and their value for disease management, aiming to deepen our
understanding of the disease and, ultimately, pave the way for clinical
application.
Collapse
Affiliation(s)
- Xiaohan Qin
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianhao Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaoxiao Guo
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Dongcheng District, Beijing 100730, China
| | - Quan Fang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Dongcheng District, Beijing 100730, China
| |
Collapse
|
31
|
Li M, Popovic Z, Chu C, Krämer BK, Hocher B. Endostatin in Renal and Cardiovascular Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2021; 7:468-481. [PMID: 34901193 PMCID: PMC8613550 DOI: 10.1159/000518221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/29/2021] [Indexed: 04/21/2023]
Abstract
UNLABELLED Endostatin, a protein derived from the cleavage of collagen XVIII by the action of proteases, is an endogenous inhibitor known for its ability to inhibit proliferation and migration of endothelial cells, angiogenesis, and tumor growth. Angiogenesis is defined as the formation of new blood vessels from pre-existing vasculature, which is crucial in many physiological processes, such as embryogenesis, tissue regeneration, and neoplasia. SUMMARY Increasing evidence shows that dysregulation of angiogenesis is crucial for the pathogenesis of renal and cardiovascular diseases. Endostatin plays a pivotal role in the regulation of angiogenesis. Recent studies have provided evidence that circulating endostatin increases significantly in patients with kidney and heart failure and may also contribute to disease progression. KEY MESSAGE In the current review, we summarize the latest findings on preclinical and clinical studies analyzing the impact of endostatin on renal and cardiovascular diseases.
Collapse
Affiliation(s)
- Mei Li
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- *Berthold Hocher,
| | - Zoran Popovic
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Chang Chu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Nephrology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Bernhard K. Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- European Center for Angioscience, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
- Center for Innate Immunoscience, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- Institute of Medical Diagnostics, IMD Berlin, Berlin, Germany
| |
Collapse
|
32
|
Daly CM, Griffiths M, Simpson CE, Yang J, Damico RL, Vaidya RD, Williams M, Brandal S, Jone PN, Polsen C, Ivy DD, Austin ED, Nichols WC, Pauciulo MW, Lutz K, Nies MK, Rosenzweig EB, Hirsch R, Yung D, Everett AD. Angiostatic Peptide, Endostatin, Predicts Severity in Pediatric Congenital Heart Disease-Associated Pulmonary Hypertension. J Am Heart Assoc 2021; 10:e021409. [PMID: 34622662 PMCID: PMC8751905 DOI: 10.1161/jaha.120.021409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Endostatin, an angiogenic inhibitor, is associated with worse pulmonary arterial hypertension (PAH) outcomes in adults and poor lung growth in children. This study sought to assess whether endostatin is associated with disease severity and outcomes in pediatric PAH. Methods and Results Serum endostatin was measured in cross-sectional (N=160) and longitudinal cohorts (N=64) of pediatric subjects with PAH, healthy pediatric controls and pediatric controls with congenital heart disease (CHD) (N=54, N=15), and adults with CHD associated PAH (APAH-CHD, N=185). Outcomes, assessed by regression and Kaplan-Meier analysis, included hemodynamics, change in endostatin over time, and transplant-free survival. Endostatin secretion was evaluated in pulmonary artery endothelial and smooth muscle cells. Endostatin was higher in those with PAH compared with healthy controls and controls with CHD and was highest in those with APAH-CHD. In APAH-CHD, endostatin was associated with a shorter 6-minute walk distance and increased mean right atrial pressure. Over time, endostatin was associated with higher pulmonary artery pressure and pulmonary vascular resistance index, right ventricular dilation, and dysfunction. Endostatin decreased with improved hemodynamics over time. Endostatin was associated with worse transplant-free survival. Addition of endostatin to an NT-proBNP (N-terminal pro-B-type natriuretic peptide) based survival analysis improved risk stratification, reclassifying subjects with adverse outcomes. Endostatin was secreted primarily by pulmonary artery endothelial cells. Conclusions Endostatin is associated with disease severity, disease improvement, and worse survival in APAH-CHD. Endostatin with NT-proBNP improves risk stratification, better predicting adverse outcomes. The association of elevated endostatin with shunt lesions suggests that endostatin could be driven by both pulmonary artery flow and pressure. Endostatin could be studied as a noninvasive prognostic marker, particularly in APAH-CHD.
Collapse
Affiliation(s)
| | - Megan Griffiths
- Division of Pediatric Cardiology Department of Pediatrics Johns Hopkins University Baltimore MD
| | - Catherine E Simpson
- Division of Pulmonary and Critical Care Medicine Johns Hopkins University Baltimore MD
| | - Jun Yang
- Division of Pediatric Cardiology Department of Pediatrics Johns Hopkins University Baltimore MD
| | - Rachel L Damico
- Division of Pulmonary and Critical Care Medicine Johns Hopkins University Baltimore MD
| | | | - Monica Williams
- Department of Anesthesia and Critical Care Medicine Johns Hopkins University Baltimore MD
| | - Stephanie Brandal
- Division of Pediatric Cardiology Department of Pediatrics Johns Hopkins University Baltimore MD
| | - Pei-Ni Jone
- Department of Pediatric Cardiology Children's Hospital ColoradoUniversity of Colorado Aurora CO
| | - Cassandra Polsen
- Department of Pediatric Cardiology Children's Hospital ColoradoUniversity of Colorado Aurora CO
| | - D Dunbar Ivy
- Department of Pediatric Cardiology Children's Hospital ColoradoUniversity of Colorado Aurora CO
| | - Eric D Austin
- Division of Allergy, Immunology, and Pulmonary Medicine Department of Pediatrics Vanderbilt University Medical Center Nashville TN
| | - William C Nichols
- Division of Human Genetics Department of Pediatrics University of Cincinnati College of Medicine Cincinnati OH
| | - Michael W Pauciulo
- Division of Human Genetics Department of Pediatrics University of Cincinnati College of Medicine Cincinnati OH
| | - Katie Lutz
- Division of Human Genetics Department of Pediatrics University of Cincinnati College of Medicine Cincinnati OH
| | - Melanie K Nies
- Division of Pediatric Cardiology Department of Pediatrics Johns Hopkins University Baltimore MD
| | - Erika B Rosenzweig
- Division of Pediatric Cardiology Department of Pediatrics Columbia University New York City NY
| | - Russel Hirsch
- Division of Pediatric Cardiology Department of Pediatrics University of Cincinnati College of Medicine Cincinnati OH
| | - Delphine Yung
- Division of Pediatric Cardiology Department of Pediatrics University of Washington Seattle WA
| | - Allen D Everett
- Division of Pediatric Cardiology Department of Pediatrics Johns Hopkins University Baltimore MD
| |
Collapse
|
33
|
Chen DD, Hu WP, Xie L, Xiang GL, Wu QH, Qu JM, Li SQ, Guan LH, Liu D. Serum cartilage oligomeric matrix protein is decreased in patients with pulmonary hypertension: a potential protective factor. Pulm Circ 2021; 11:0271678X20978861. [PMID: 34603688 PMCID: PMC8481745 DOI: 10.1177/20458940211031111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 06/12/2021] [Indexed: 11/16/2022] Open
Abstract
Cartilage oligomeric matrix protein (COMP) was a protective factor in the cardiovascular system. Previous studies showed that hypoxia led to decreased COMP in rat models of pulmonary hypertension. However, the expression pattern of COMP in the pulmonary hypertension population was unclear. A total of 35 patients newly diagnosed with pulmonary hypertension and 70 controls were enrolled in the study. Circulating COMP concentrations of serum samples were measured by enzyme-linked immunosorbent assay and were analyzed the association with multiple clinical variables. Serum COMP concentrations in the pulmonary hypertension group were significantly declined in comparison with age- and sex-matched normal controls, especially in the female subgroup. No significant difference of COMP concentrations was observed in the etiological classification, heart function classification, and risk stratification. Major hemodynamic parameters, six-minute walk distance, N-terminal pro brain natriuretic peptide, and short-term prognosis were not statistically associated with COMP. However, some echocardiography parameters, like tricuspid annular plane systolic excursion and mean right atrial pressure, were found the negative relation to COMP concentrations. In conclusion, serum COMP levels were decreased in the patients with pulmonary hypertension, which was in accordance with its known biological effects. Its association with long-term prognosis was worth further exploring.
Collapse
Affiliation(s)
- Dan-Dan Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei-Ping Hu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liang Xie
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gui-Ling Xiang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qin-Han Wu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie-Ming Qu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shan-Qun Li
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li-Hua Guan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dong Liu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
34
|
Simpson CE, Griffiths M, Yang J, Nies MK, Vaidya RD, Brandal S, Martin LJ, Pauciulo MW, Lutz KA, Coleman AW, Austin ED, Ivy DD, Nichols WC, Everett AD, Hassoun PM, Damico RL. The angiostatic peptide endostatin enhances mortality risk prediction in pulmonary arterial hypertension. ERJ Open Res 2021; 7:00378-2021. [PMID: 34651041 PMCID: PMC8503279 DOI: 10.1183/23120541.00378-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/09/2021] [Indexed: 11/06/2022] Open
Abstract
Currently available noninvasive markers for assessing disease severity and mortality risk in pulmonary arterial hypertension (PAH) are unrelated to fundamental disease biology. Endostatin, an angiostatic peptide known to inhibit pulmonary artery endothelial cell migration, proliferation and survival in vitro, has been linked to adverse haemodynamics and shortened survival in small PAH cohorts. This observational cohort study sought to assess: 1) the prognostic performance of circulating endostatin levels in a large, multicentre PAH cohort; and 2) the added value gained by incorporating endostatin into existing PAH risk prediction models. Endostatin ELISAs were performed on enrolment samples collected from 2017 PAH subjects with detailed clinical data, including survival times. Endostatin associations with clinical variables, including survival, were examined using multivariable regression and Cox proportional hazards models. Extended survival models including endostatin were compared to null models based on the REVEAL risk prediction tool and European Society of Cardiology/European Respiratory Society (ESC/ERS) low-risk criteria using likelihood ratio tests, Akaike and Bayesian information criteria and C-statistics. Higher endostatin was associated with higher right atrial pressure, mean pulmonary arterial pressure and pulmonary vascular resistance, and with shorter 6-min walk distance (p<0.01). Mortality risk doubled for each log higher endostatin (hazard ratio 2.3, 95% CI 1.6-3.4, p<0.001). Endostatin remained an independent predictor of survival when incorporated into existing risk prediction models. Adding endostatin to REVEAL-based and ESC/ERS criteria-based risk assessment strategies improved mortality risk prediction. Endostatin is a robust, independent predictor of mortality in PAH. Adding endostatin to existing PAH risk prediction strategies improves PAH risk assessment.
Collapse
Affiliation(s)
- Catherine E. Simpson
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Megan Griffiths
- Dept of Pediatrics, Division of Pediatric Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Jun Yang
- Dept of Pediatrics, Division of Pediatric Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Melanie K. Nies
- Dept of Pediatrics, Division of Pediatric Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - R. Dhananjay Vaidya
- Dept of Medicine, Division of General Internal Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Stephanie Brandal
- Dept of Pediatrics, Division of Pediatric Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Lisa J. Martin
- Dept of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael W. Pauciulo
- Dept of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Katie A. Lutz
- Dept of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Anna W. Coleman
- Dept of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Eric D. Austin
- Dept of Pediatrics, Division of Allergy, Immunology, and Pulmonary Medicine, Vanderbilt University, Nashville, TN, USA
| | - D. Dunbar Ivy
- Dept of Pediatric Cardiology, Children's Hospital Colorado, Denver, CO, USA
| | - William C. Nichols
- Dept of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Allen D. Everett
- Dept of Pediatrics, Division of Pediatric Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Paul M. Hassoun
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Rachel L. Damico
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
35
|
miR-29a-3p/THBS2 Axis Regulates PAH-Induced Cardiac Fibrosis. Int J Mol Sci 2021; 22:ijms221910574. [PMID: 34638915 PMCID: PMC8509017 DOI: 10.3390/ijms221910574] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/21/2022] Open
Abstract
Pulmonary artery hypertension (PAH) pathology involves extracellular matrix (ECM) remodeling in cardiac tissues, thus promoting cardiac fibrosis progression. miR-29a-3p reportedly inhibits lung progression and liver fibrosis by regulating ECM protein expression; however, its role in PAH-induced fibrosis remains unclear. In this study, we aimed to investigate the role of miR-29a-3p in cardiac fibrosis progression in PAH and its influence on ECM protein thrombospondin-2 (THBS2) expression. The diagnostic and prognostic values of miR-29a-3p and THBS2 in PAH were evaluated. The expressions and effects of miR-29a-3p and THBS2 were assessed in cell culture, monocrotaline-induced PAH mouse model, and patients with PAH. The levels of circulating miR-29a-3p and THBS2 in patients and mice with PAH decreased and increased, respectively. miR-29a-3p directly targets THBS2 and regulates THBS2 expression via a direct anti-fibrotic effect on PAH-induced cardiac fibrosis. The circulating levels of miR-29a-3p and THBS2 were correlated with PAH diagnostic parameters, suggesting their independent prognostic value. miR-29a-3p targeted THBS2 expression via a direct anti-fibrotic effect on PAH-induced cardiac fibrosis, indicating miR-29a-3p acts as a messenger with promising therapeutic effects.
Collapse
|
36
|
Evans CE, Cober ND, Dai Z, Stewart DJ, Zhao YY. Endothelial cells in the pathogenesis of pulmonary arterial hypertension. Eur Respir J 2021; 58:13993003.03957-2020. [PMID: 33509961 DOI: 10.1183/13993003.03957-2020] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease that involves pulmonary vasoconstriction, small vessel obliteration, large vessel thickening and obstruction, and development of plexiform lesions. PAH vasculopathy leads to progressive increases in pulmonary vascular resistance, right heart failure and, ultimately, premature death. Besides other cell types that are known to be involved in PAH pathogenesis (e.g. smooth muscle cells, fibroblasts and leukocytes), recent studies have demonstrated that endothelial cells (ECs) have a crucial role in the initiation and progression of PAH. The EC-specific role in PAH is multi-faceted and affects numerous pathophysiological processes, including vasoconstriction, inflammation, coagulation, metabolism and oxidative/nitrative stress, as well as cell viability, growth and differentiation. In this review, we describe how EC dysfunction and cell signalling regulate the pathogenesis of PAH. We also highlight areas of research that warrant attention in future studies, and discuss potential molecular signalling pathways in ECs that could be targeted therapeutically in the prevention and treatment of PAH.
Collapse
Affiliation(s)
- Colin E Evans
- Program for Lung and Vascular Biology, Section of Injury Repair and Regeneration, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Dept of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nicholas D Cober
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Dept of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Zhiyu Dai
- Program for Lung and Vascular Biology, Section of Injury Repair and Regeneration, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Dept of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Dept of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Duncan J Stewart
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Dept of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Section of Injury Repair and Regeneration, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA .,Dept of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Dept of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Dept of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
37
|
Ambade AS, Hassoun PM, Damico RL. Basement Membrane Extracellular Matrix Proteins in Pulmonary Vascular and Right Ventricular Remodeling in Pulmonary Hypertension. Am J Respir Cell Mol Biol 2021; 65:245-258. [PMID: 34129804 PMCID: PMC8485997 DOI: 10.1165/rcmb.2021-0091tr] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM), a highly organized network of structural and nonstructural proteins, plays a pivotal role in cellular and tissue homeostasis. Changes in the ECM are critical for normal tissue repair, whereas dysregulation contributes to aberrant tissue remodeling. Pulmonary arterial hypertension is a severe disorder of the pulmonary vasculature characterized by pathologic remodeling of the pulmonary vasculature and right ventricle, increased production and deposition of structural and nonstructural proteins, and altered expression of ECM growth factors and proteases. Furthermore, ECM remodeling plays a significant role in disease progression, as several dynamic changes in its composition, quantity, and organization are documented in both humans and animal models of disease. These ECM changes impact vascular cell biology and affect proliferation of resident cells. Furthermore, ECM components determine the tissue architecture of the pulmonary and myocardial vasculature as well as the myocardium itself and provide mechanical stability crucial for tissue homeostasis. However, little is known about the basement membrane (BM), a specialized, self-assembled conglomerate of ECM proteins, during remodeling. In the vasculature, the BM is in close physical association with the vascular endothelium and smooth muscle cells. While in the myocardium, each cardiomyocyte is enclosed by a BM that serves as the interface between cardiomyocytes and the surrounding interstitial matrix. In this review, we provide a brief overview on the current state of knowledge of the BM and its ECM composition and their impact on pulmonary vascular remodeling and right ventricle dysfunction and failure in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Anjira S Ambade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Rachel L Damico
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
38
|
Bauer Y, de Bernard S, Hickey P, Ballard K, Cruz J, Cornelisse P, Chadha-Boreham H, Distler O, Rosenberg D, Doelberg M, Roux S, Nayler O, Lawrie A. Identifying early pulmonary arterial hypertension biomarkers in systemic sclerosis: machine learning on proteomics from the DETECT cohort. Eur Respir J 2021; 57:13993003.02591-2020. [PMID: 33334933 PMCID: PMC8276065 DOI: 10.1183/13993003.02591-2020] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/17/2020] [Indexed: 12/31/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating complication of systemic sclerosis (SSc). Screening for PAH in SSc has increased detection, allowed early treatment for PAH and improved patient outcomes. Blood-based biomarkers that reliably identify SSc patients at risk of PAH, or with early disease, would significantly improve screening, potentially leading to improved survival, and provide novel mechanistic insights into early disease. The main objective of this study was to identify a proteomic biomarker signature that could discriminate SSc patients with and without PAH using a machine learning approach and to validate the findings in an external cohort. Serum samples from patients with SSc and PAH (n=77) and SSc without pulmonary hypertension (non-PH) (n=80) were randomly selected from the clinical DETECT study and underwent proteomic screening using the Myriad RBM Discovery platform consisting of 313 proteins. Samples from an independent validation SSc cohort (PAH n=22 and non-PH n=22) were obtained from the University of Sheffield (Sheffield, UK). Random forest analysis identified a novel panel of eight proteins, comprising collagen IV, endostatin, insulin-like growth factor binding protein (IGFBP)-2, IGFBP-7, matrix metallopeptidase-2, neuropilin-1, N-terminal pro-brain natriuretic peptide and RAGE (receptor for advanced glycation end products), that discriminated PAH from non-PH in SSc patients in the DETECT Discovery Cohort (average area under the receiver operating characteristic curve 0.741, 65.1% sensitivity/69.0% specificity), which was reproduced in the Sheffield Confirmatory Cohort (81.1% accuracy, 77.3% sensitivity/86.5% specificity). This novel eight-protein biomarker panel has the potential to improve early detection of PAH in SSc patients and may provide novel insights into the pathogenesis of PAH in the context of SSc. Early screening for pulmonary arterial hypertension in patients with systemic sclerosis improves patient outcome. This study identified a novel eight-protein biomarker panel that has the potential to assist early detection of PAH in this patient group.https://bit.ly/373BNkL
Collapse
Affiliation(s)
- Yasmina Bauer
- Galapagos GmbH, Basel, Switzerland.,Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | - Peter Hickey
- Dept of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK.,Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | | | | | | | | | - Oliver Distler
- Dept of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | - Allan Lawrie
- Dept of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| |
Collapse
|
39
|
Bush D, Galambos C, Dunbar Ivy D. Pulmonary hypertension in children with Down syndrome. Pediatr Pulmonol 2021; 56:621-629. [PMID: 32049444 DOI: 10.1002/ppul.24687] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/23/2020] [Indexed: 12/26/2022]
Abstract
Individuals with Down syndrome (DS) have an increased risk of developing pulmonary hypertension (PH). In this review, we explore the epidemiology and clinical characteristics of PH in the population with DS and examine genetic, molecular and clinical contributions to the condition. The presence of an additional copy of chromosome 21 (trisomy 21) increases the risk of developing PH in children with DS through many mechanisms, including increased hemodynamic stress in those with congenital heart disease, hypoxemia through impaired ventilation to perfusion matching secondary to developmental lung abnormalities, pulmonary hypoplasia from pulmonary vascular endothelial dysfunction, and an increase in pulmonary vascular resistance often related to pulmonary comorbidities. We review recent studies looking at novel biomarkers that may help diagnose, predict or monitor PH in the population with DS and examine current cardiopulmonary guidelines for monitoring children with DS. Finally, we review therapeutic interventions specific to PH in individuals with DS. Contemporary work has identified exciting mechanistic pathways including the upregulation of antiangiogenic factors and interferon activity, which may lead to additional biomarkers or therapeutic opportunities. Throughout the manuscript, we identify gaps in our knowledge of the condition as it relates to the population with DS and offer suggestions for future clinical, translational, and basic science research.
Collapse
Affiliation(s)
- Douglas Bush
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Csaba Galambos
- Department of Pathology and Laboratory Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - David Dunbar Ivy
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
40
|
Adachi S, Kikuchi R, Shimokata S, Suzuki A, Yoshida M, Imai R, Nakano Y, Kondo T, Murohara T. Endostatin and Vascular Endothelial Growth Factor-A 165b May Contribute to Classification of Pulmonary Hypertension. Circ Rep 2021; 3:161-169. [PMID: 33738349 PMCID: PMC7956881 DOI: 10.1253/circrep.cr-20-0096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background: Pulmonary hypertension (PH) is characterized by dysregulation of small pulmonary arteries. In addition to endostatin (ES), placenta growth factor (PlGF), vascular endothelial growth factor-A (VEGF-A), and the anti-angiogenesis isoform of VEGF-A (VEGF-A165b) are associated with PH. However, the usefulness of these biomarkers in PH in unknown. We investigated whether these 4 biomarkers are related to PH classification. Methods and Results: Between July 2015 and August 2017, 33 control patients and 107 PH patients were enrolled in the study. Among the PH patients, 48 had pulmonary arterial hypertension (PAH), 5 had left heart disease-associated PH (LHD-PH), 4 had lung disease-associated PH (LD-PH), and 50 had chronic thromboembolic PH (CTEPH). Among the PAH patients, 16 had idiopathic PAH (IPAH) and 17 had connective tissue disease-associated PAH (CTD-PAH). PlGF, total VEGF-A, and VEGF-A165b levels were measured in the control and PH groups. ES was only measured in the PH group. VEGF-A165b levels were significantly higher in the LD-PH group than in the PAH, LHD-PH, and CTEPH groups (all P<0.001). PlGF levels were significantly higher in the CTD-PAH group than in the IPAH and control groups. ES levels were significantly correlated with the 6-min walk distance (P<0.001), B-type natriuretic peptide (P<0.001), and pulmonary vascular resistance (P=0.008). Conclusions: ES could detect CTD-PAH in PAH and may be an indicator of PH severity. VEGF-A165b was useful in detecting LD-PH.
Collapse
Affiliation(s)
- Shiro Adachi
- Department of Cardiology, Nagoya University Hospital Nagoya Japan
| | - Ryosuke Kikuchi
- Department of Medical Technique, Nagoya University Hospital Nagoya Japan
| | | | - Atsuo Suzuki
- Department of Medical Technique, Nagoya University Hospital Nagoya Japan
| | - Masahiro Yoshida
- Department of Cardiology, Nagoya University Hospital Nagoya Japan
| | - Ryo Imai
- Department of Cardiology, Nagoya University Graduate School of Medicine Nagoya Japan
| | - Yoshihisa Nakano
- Department of Advanced Medicine in Cardiopulmonary Disease, Nagoya University Graduate School of Medicine Nagoya Japan
| | - Takahisa Kondo
- Department of Advanced Medicine in Cardiopulmonary Disease, Nagoya University Graduate School of Medicine Nagoya Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine Nagoya Japan
| |
Collapse
|
41
|
Dara A, Arvanitaki A, Theodorakopoulou M, Athanasiou C, Pagkopoulou E, Boutou A. Non-Invasive Assessment of Endothelial Dysfunction in Pulmonary Arterial Hypertension. Mediterr J Rheumatol 2021; 32:6-14. [PMID: 34386697 PMCID: PMC8314877 DOI: 10.31138/mjr.32.1.6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/01/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterised by an increased pressure in the pulmonary arterial circulation, resulting in the elevation of pulmonary vascular resistance. Pulmonary endothelial dysfunction and inflammation, triggered by shear stress and hypoxia, constitute the hallmarks of pulmonary vasculopathy by promoting endothelial and smooth muscle cells proliferation, vasoconstriction, and thrombosis. While research was predominantly focused on pulmonary vasculature, the investigation of peripheral endothelial damage in different vascular beds has attracted the interest over the last years. As a result, effective non-invasive methods that can assess the endothelial function and the architectural integrity have been utilized for the evaluation of pulmonary and peripheral vasculature. Non-invasive plethysmography, pulmonary flow reserve, nailfold videocapillaroscopy, near-infrared spectroscopy, and imaging techniques such as magnetic resonance angiography and perfusion imaging coupled by a number of biomarkers can be used for the assessment of peripheral vascular function in PAH individuals. In this review, we summarise and critically approach the current evidence of more systemic derangement of vascular function in PAH defined by novel, non-invasive methods employed for functional and morphological assessment of endothelium and microcirculation.
Collapse
Affiliation(s)
- Athanasia Dara
- Fourth Department of Internal Medicine, Hippokration University Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandra Arvanitaki
- Fourth Department of Internal Medicine, Hippokration University Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.,First Department of Cardiology, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Adult Congenital Heart Centre and National Centre for Pulmonary Arterial Hypertension, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, Imperial College, London, UK
| | | | - Christos Athanasiou
- Fourth Department of Internal Medicine, Hippokration University Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Pagkopoulou
- Fourth Department of Internal Medicine, Hippokration University Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Afroditi Boutou
- Department of Respiratory Medicine, G. Papanikolaou Hospital, Thessaloniki, Greece
| |
Collapse
|
42
|
Swietlik EM, Prapa M, Martin JM, Pandya D, Auckland K, Morrell NW, Gräf S. 'There and Back Again'-Forward Genetics and Reverse Phenotyping in Pulmonary Arterial Hypertension. Genes (Basel) 2020; 11:E1408. [PMID: 33256119 PMCID: PMC7760524 DOI: 10.3390/genes11121408] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Although the invention of right heart catheterisation in the 1950s enabled accurate clinical diagnosis of pulmonary arterial hypertension (PAH), it was not until 2000 when the landmark discovery of the causative role of bone morphogenetic protein receptor type II (BMPR2) mutations shed new light on the pathogenesis of PAH. Since then several genes have been discovered, which now account for around 25% of cases with the clinical diagnosis of idiopathic PAH. Despite the ongoing efforts, in the majority of patients the cause of the disease remains elusive, a phenomenon often referred to as "missing heritability". In this review, we discuss research approaches to uncover the genetic architecture of PAH starting with forward phenotyping, which in a research setting should focus on stable intermediate phenotypes, forward and reverse genetics, and finally reverse phenotyping. We then discuss potential sources of "missing heritability" and how functional genomics and multi-omics methods are employed to tackle this problem.
Collapse
Affiliation(s)
- Emilia M. Swietlik
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- Royal Papworth Hospital NHS Foundation Trust, Cambridge CB2 0AY, UK
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Matina Prapa
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Jennifer M. Martin
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
| | - Divya Pandya
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
| | - Kathryn Auckland
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
| | - Nicholas W. Morrell
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- Royal Papworth Hospital NHS Foundation Trust, Cambridge CB2 0AY, UK
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
- NIHR BioResource for Translational Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- NIHR BioResource for Translational Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| |
Collapse
|
43
|
Griffiths M, Yang J, Everett AD, Jennings JM, Freire G, Williams M, Nies M, McGrath-Morrow SA, Collaco JM. Endostatin and ST2 are predictors of pulmonary hypertension disease course in infants. J Perinatol 2020; 40:1625-1633. [PMID: 32366869 PMCID: PMC7578107 DOI: 10.1038/s41372-020-0671-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/16/2020] [Accepted: 04/17/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Pulmonary hypertension (PH) is a common comorbidity of cardiopulmonary disease. Endostatin, an inhibitor of angiogenesis, is elevated in neonates with lung disease. ST2 is a heart failure biomarker correlated with PH in adults. We hypothesized that these biomarkers may be useful in diagnosing PH and categorizing its severity in infants. METHODS Endostatin, ST2, and NT-proBNP plasma concentrations from 26 infants with PH and 21 control infants without PH were correlated with echocardiographic and clinical features using regression models over time. RESULTS Endostatin, ST2, and NT-proBNP concentrations were elevated in PH participants versus controls (p < 0.0001). Endostatin was associated with right ventricular dysfunction (p = 0.014), septal flattening (p = 0.047), and pericardial effusion (p < 0.0001). ST2 concentrations predicted right to left patent ductus arteriosus flow (p = 0.009). NT-proBNP was not associated with PH features. CONCLUSIONS Endostatin and ST2 concentrations were associated with echocardiographic markers of worse PH in infants and may be better predictors than existing clinical standards.
Collapse
Affiliation(s)
- Megan Griffiths
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD
| | - Jun Yang
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD
| | - Allen D. Everett
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD
| | - Jacky M. Jennings
- Biostatistics, Epidemiology And Data management (BEAD) Core, Department of Pediatrics, Johns Hopkins University, Baltimore, MD
| | - Grace Freire
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Monica Williams
- Department of Anesthesia and Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Melanie Nies
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD
| | - Sharon A. McGrath-Morrow
- Eudowood Division of Pediatric Respiratory Sciences, Department of Pediatrics, Johns Hopkins University, Baltimore, MD
| | - Joseph M. Collaco
- Eudowood Division of Pediatric Respiratory Sciences, Department of Pediatrics, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
44
|
Jandl K, Marsh LM, Hoffmann J, Mutgan AC, Baum O, Bloch W, Thekkekara-Puthenparampil H, Kolb D, Sinn K, Klepetko W, Heinemann A, Olschewski A, Olschewski H, Kwapiszewska G. Basement Membrane Remodeling Controls Endothelial Function in Idiopathic Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2020; 63:104-117. [PMID: 32160015 DOI: 10.1165/rcmb.2019-0303oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix (ECM) increasingly emerges as an active driver in several diseases, including idiopathic pulmonary arterial hypertension (IPAH). The basement membrane (BM) is a specialized class of ECM proteins. In pulmonary arteries, the BM is in close contact and direct proximity to vascular cells, including endothelial cells. So far, the role of the BM has remained underinvestigated in IPAH. Here, we aimed to shed light on the involvement of the BM in IPAH, by addressing its structure, composition, and function. On an ultrastructural level, we observed a marked increase in BM thickness in IPAH pulmonary vessels. BM composition was distinct in small and large vessels and altered in IPAH. Proteoglycans were mostly responsible for distinction between smaller and larger vessels, whereas BM collagens and laminins were more abundantly expressed in IPAH. Type IV collagen and laminin both strengthened endothelial barrier integrity. However, only type IV collagen concentration dependently increased cell adhesion of both donor and IPAH-derived pulmonary arterial endothelial cells (PAECs) and induced nuclear translocation of mechanosensitive transcriptional coactivator of the hippo pathway YAP (Yes-activated protein). On the other hand, laminin caused cytoplasmic retention of YAP in IPAH PAECs. Accordingly, silencing of COL4A5 and LAMC1, respectively, differentially affected tight junction formation and barrier integrity in both donor and IPAH PAECs. Collectively, our results highlight the importance of a well-maintained BM homeostasis. By linking changes in BM structure and composition to altered endothelial cell function, we here suggest an active involvement of the BM in IPAH pathogenesis.
Collapse
Affiliation(s)
- Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pharmacology and
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Julia Hoffmann
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | | | - Oliver Baum
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wilhelm Bloch
- German Sports University Cologne, Cologne, Germany; and
| | | | | | - Katharina Sinn
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, and
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Physiology, Otto Loewi Research Center
| |
Collapse
|
45
|
Yang J, Griffiths M, Nies MK, Brandal S, Damico R, Vaidya D, Tao X, Simpson CE, Kolb TM, Mathai SC, Pauciulo MW, Nichols WC, Ivy DD, Austin ED, Hassoun PM, Everett AD. Insulin-like growth factor binding protein-2: a new circulating indicator of pulmonary arterial hypertension severity and survival. BMC Med 2020; 18:268. [PMID: 33019943 PMCID: PMC7537100 DOI: 10.1186/s12916-020-01734-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a fatal disease that results from cardio-pulmonary dysfunction with the pathology largely unknown. Insulin-like growth factor binding protein 2 (IGFBP2) is an important member of the insulin-like growth factor family, with evidence suggesting elevation in PAH patients. We investigated the diagnostic and prognostic value of serum IGFBP2 in PAH to determine if it could discriminate PAH from healthy controls and if it was associated with disease severity and survival. METHODS Serum IGFBP2 levels, as well as IGF1/2 levels, were measured in two independent PAH cohorts, the Johns Hopkins Pulmonary Hypertension program (JHPH, N = 127), NHLBI PAHBiobank (PAHB, N = 203), and a healthy control cohort (N = 128). The protein levels in lung tissues were determined by western blot. The IGFBP2 mRNA expression levels in pulmonary artery smooth muscle cells (PASMC) and endothelial cells (PAEC) were assessed by RNA-seq, secreted protein levels by ELISA. Association of biomarkers with clinical variables was evaluated using adjusted linear or logistic regression and Kaplan-Meier analysis. RESULTS In both PAH cohorts, serum IGFBP2 levels were significantly elevated (p < 0.0001) compared to controls and discriminated PAH from controls with an AUC of 0.76 (p < 0.0001). A higher IGFBP2 level was associated with a shorter 6-min walk distance (6MWD) in both cohorts after adjustment for age and sex (coefficient - 50.235 and - 57.336 respectively). Cox multivariable analysis demonstrated that higher serum IGFBP2 was a significant independent predictor of mortality in PAHB cohort only (HR, 3.92; 95% CI, 1.37-11.21). IGF1 levels were significantly increased only in the PAHB cohort; however, neither IGF1 nor IGF2 had equivalent levels of associations with clinical variables compared with IGFBP2. Western blotting shown that IGFBP2 protein was significantly increased in the PAH vs control lung tissues. Finally, IGFBP2 mRNA expression and secreted protein levels were significantly higher in PASMC than in PAEC. CONCLUSIONS IGFBP2 protein expression was increased in the PAH lung, and secreted by PASMC. Elevated circulating IGFBP2 was associated with PAH severity and mortality and is a potentially valuable prognostic marker in PAH.
Collapse
Affiliation(s)
- Jun Yang
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University, 720 Rutland Ave. Ross RM 1143, Baltimore, MD, 21205, USA.
| | - Megan Griffiths
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University, 720 Rutland Ave. Ross RM 1143, Baltimore, MD, 21205, USA
| | - Melanie K Nies
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University, 720 Rutland Ave. Ross RM 1143, Baltimore, MD, 21205, USA
| | - Stephanie Brandal
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University, 720 Rutland Ave. Ross RM 1143, Baltimore, MD, 21205, USA
| | - Rachel Damico
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dhananjay Vaidya
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Division of General Internal Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Xueting Tao
- Depart of Pediatrics, Biostatics Epidemiology and Data Management Core, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Catherine E Simpson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Todd M Kolb
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen C Mathai
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michael W Pauciulo
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William C Nichols
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David D Ivy
- Department of Pediatric Cardiology, Children's Hospital Colorado, Denver, CO, USA
| | - Eric D Austin
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Allen D Everett
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University, 720 Rutland Ave. Ross RM 1143, Baltimore, MD, 21205, USA
| |
Collapse
|
46
|
Ramjug S, Weatherald J, Sahay S, Khoury J, Foris V, Chandran N, Bokan A, Godinas L, Delcroix M. ERS International Congress, Madrid, 2019: highlights from the Pulmonary Vascular Diseases Assembly. ERJ Open Res 2020; 6:00304-2020. [PMID: 33083438 PMCID: PMC7553109 DOI: 10.1183/23120541.00304-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
The 2019 European Respiratory Society (ERS) International Congress, held in Madrid, Spain, had exciting sessions regarding the field of pulmonary vascular disease. The symposia related to the new ERS/European Society of Cardiology (ESC) Guidelines for the diagnosis and management of acute pulmonary embolism were well received, as were sessions on pulmonary hypertension related to lung disease, demonstrating the concept of pulmonary hypertension not being the rarity that it was previously thought to be. The use of risk stratification in relation to pulmonary arterial hypertension (PAH) was heavily featured and the scientific sessions informing the respiratory community of potential biomarkers and targets for future therapies were thought-provoking. This article discusses highlights of the 2019 pulmonary vascular disease sessions as a summary of current knowledge and practice. We have summarised the key points from the sessions pertaining to the new ERS/ESC Guidelines for the management of acute pulmonary embolism. We have also focused on prognostic factors and potential therapies in pulmonary hypertension related to interstitial lung disease. Relating to PAH, we have reviewed the symposia on risk stratification, along with the use of noninvasive measures and the sessions relating to biomarkers in PAH.
Collapse
Affiliation(s)
- Sheila Ramjug
- Dept of Respiratory Medicine, Manchester University NHS Foundation Trust, Wythenshawe, UK
| | - Jason Weatherald
- Dept of Medicine, Division of Respirology, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Sandeep Sahay
- Houston Methodist Lung Center, Division of Pulmonary Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Johad Khoury
- Pulmonary Division, Lady Davis-Carmel Medical Center, Haifa, Israel
| | - Vasile Foris
- Medical University of Graz, Dept of Internal Medicine, Division of Pulmonology, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Nagaraj Chandran
- Medical University of Graz, Dept of Internal Medicine, Division of Pulmonology, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Aleksandar Bokan
- Dept for Emergency Pulmonology, Institute for Pulmonary Diseases of Vojvodina, Faculty of Medicine Novi Sad, Novi Sad, Serbia
| | | | | |
Collapse
|
47
|
Agrawal V, Lahm T, Hansmann G, Hemnes AR. Molecular mechanisms of right ventricular dysfunction in pulmonary arterial hypertension: focus on the coronary vasculature, sex hormones, and glucose/lipid metabolism. Cardiovasc Diagn Ther 2020; 10:1522-1540. [PMID: 33224772 PMCID: PMC7666935 DOI: 10.21037/cdt-20-404] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare, life-threatening condition characterized by dysregulated metabolism, pulmonary vascular remodeling, and loss of pulmonary vascular cross-sectional area due to a variety of etiologies. Right ventricular (RV) dysfunction in PAH is a critical mediator of both long-term morbidity and mortality. While combinatory oral pharmacotherapy and/or intravenous prostacyclin aimed at decreasing pulmonary vascular resistance (PVR) have improved clinical outcomes, there are currently no treatments that directly address RV failure in PAH. This is, in part, due to the incomplete understanding of the pathogenesis of RV dysfunction in PAH. The purpose of this review is to discuss the current understanding of key molecular mechanisms that cause, contribute and/or sustain RV dysfunction, with a special focus on pathways that either have led to or have the potential to lead to clinical therapeutic intervention. Specifically, this review discusses the mechanisms by which vessel loss and dysfunctional angiogenesis, sex hormones, and metabolic derangements in PAH directly contribute to RV dysfunction. Finally, this review discusses limitations and future areas of investigation that may lead to novel understanding and therapeutic interventions for RV dysfunction in PAH.
Collapse
Affiliation(s)
- Vineet Agrawal
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tim Lahm
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Anna R. Hemnes
- Division of Allergy, Pulmonology and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
48
|
Decreased Expression of Canstatin in Rat Model of Monocrotaline-Induced Pulmonary Arterial Hypertension: Protective Effect of Canstatin on Right Ventricular Remodeling. Int J Mol Sci 2020; 21:ijms21186797. [PMID: 32947968 PMCID: PMC7554857 DOI: 10.3390/ijms21186797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease which causes right ventricular (RV) failure. Canstatin, a C-terminal fragment of type IV collagen α2 chain, is expressed in various rat organs. However, the expression level of canstatin in plasma and organs during PAH is still unclear. We aimed to clarify it and further investigated the protective effects of canstatin in a rat model of monocrotaline-induced PAH. Cardiac functions were assessed by echocardiography. Expression levels of canstatin in plasma and organs were evaluated by enzyme-linked immunosorbent assay and Western blotting, respectively. PAH was evaluated by catheterization. RV remodeling was evaluated by histological analyses. Real-time polymerase chain reaction was performed to evaluate RV remodeling-related genes. The plasma concentration of canstatin in PAH rats was decreased, which was correlated with a reduction in acceleration time/ejection time ratio and an increase in RV weight/body weight ratio. The protein expression of canstatin in RV, lung and kidney was decreased in PAH rats. While recombinant canstatin had no effect on PAH, it significantly improved RV remodeling, including hypertrophy and fibrosis, and prevented the increase in RV remodeling-related genes. We demonstrated that plasma canstatin is decreased in PAH rats and that administration of canstatin exerts cardioprotective effects.
Collapse
|
49
|
Mutgan AC, Jandl K, Kwapiszewska G. Endothelial Basement Membrane Components and Their Products, Matrikines: Active Drivers of Pulmonary Hypertension? Cells 2020; 9:cells9092029. [PMID: 32899187 PMCID: PMC7563239 DOI: 10.3390/cells9092029] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/19/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a vascular disease that is characterized by elevated pulmonary arterial pressure (PAP) due to progressive vascular remodeling. Extracellular matrix (ECM) deposition in pulmonary arteries (PA) is one of the key features of vascular remodeling. Emerging evidence indicates that the basement membrane (BM), a specialized cluster of ECM proteins underlying the endothelium, may be actively involved in the progression of vascular remodeling. The BM and its steady turnover are pivotal for maintaining appropriate vascular functions. However, the pathologically elevated turnover of BM components leads to an increased release of biologically active short fragments, which are called matrikines. Both BM components and their matrikines can interfere with pivotal biological processes, such as survival, proliferation, adhesion, and migration and thus may actively contribute to endothelial dysfunction. Therefore, in this review, we summarize the emerging role of the BM and its matrikines on the vascular endothelium and further discuss its implications on lung vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Ayse Ceren Mutgan
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, 8010 Graz, Austria;
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Grazyna Kwapiszewska
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, 8010 Graz, Austria;
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
- Correspondence:
| |
Collapse
|
50
|
Cool CD, Kuebler WM, Bogaard HJ, Spiekerkoetter E, Nicolls MR, Voelkel NF. The hallmarks of severe pulmonary arterial hypertension: the cancer hypothesis-ten years later. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1115-L1130. [PMID: 32023082 PMCID: PMC9847334 DOI: 10.1152/ajplung.00476.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 01/25/2023] Open
Abstract
Severe forms of pulmonary arterial hypertension (PAH) are most frequently the consequence of a lumen-obliterating angiopathy. One pathobiological model is that the initial pulmonary vascular endothelial cell injury and apoptosis is followed by the evolution of phenotypically altered, apoptosis-resistant, proliferating cells and an inflammatory vascular immune response. Although there may be a vasoconstrictive disease component, the increased pulmonary vascular shear stress in established PAH is caused largely by the vascular wall pathology. In this review, we revisit the "quasi-malignancy concept" of severe PAH and examine to what extent the hallmarks of PAH can be compared with the hallmarks of cancer. The cancer model of severe PAH, based on the growth of abnormal vascular and bone marrow-derived cells, may enable the emergence of novel cell-based PAH treatment strategies.
Collapse
Affiliation(s)
- Carlyne D Cool
- Department of Pathology, University of Colorado, Anschuetz Campus, Aurora, Colorado
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitaetsmedizin, Berlin, Germany
| | - Harm Jan Bogaard
- Amsterdam University Medical Centers, Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Edda Spiekerkoetter
- Division of Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, California
| | - Mark R Nicolls
- Division of Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, California
| | - Norbert F Voelkel
- Amsterdam University Medical Centers, Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|